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Abstract 
 
This thesis aims at building a three Degrees of Freedom (DoFs) mathematical model in 
order to represent the motion of a cylindrical buoy subjected to the action of regular waves, 
calibrating it through a comparison between the model results and the experiments 
performed at LIDR (Laboratory of Hydraulic Engineering of Alma Mater Studiorum 
University of Bologna). The simplicity of the model is a very important feature as it should 
be used as a preliminary study to understand how the buoy moves under a certain incident 
wave in terms of oscillation amplitude and frequency. The model has been written by 
making use of the software Matlab. 
The cylindrical buoy is placed at the middle of a channel and anchored at the bottom 
through a mooring system made of four catenaries.  
The mathematical model consists of two main parts: the first part is developed in the 
frequency domain while the second one in the time domain. In the frequency domain part, 
hydrodynamic coefficients are computed through the specific function named Nemoh 
(developed by LHEEA Laboratoire de recherche en Hydrodynamique, Énergétique et 
Environnement Atmosphérique di Nantes), which first builds a grid to divide the body 
surface in little elements and then performs an integration with the boundary element 
method (BEM). The result represented by the assessment of excitation force, radiation force 
and added mass coefficients are expressed as function of frequency. Then, the coefficients 
for the response amplitude operator (RAO) are calculated again as function of frequency. 
The model in the time domain makes use of the hydrodynamic coefficients estimated in the 
frequency domain in order to build the actual mathematical model, which consists of an 
equation of motion built considering inertia and drag forces, neglecting diffraction 
contribution. Furthermore, mooring system has first been analysed and then inserted into 
the equation of motion to complete the model. The implemented mooring system model 
contains constants on which a calibration process has to be performed. 
Experimental tests consist of perturbing the free surface with a wave generator and creating 
a situation in which the buoy is solicited by regular waves. Different tests have been carried 
out as to analyse several wave conditions, in particular with different wave heights and 
periods. Two GoPro cameras capture the body motion, and videos of the tests are then 
analysed in order to be able to compare the data with the model results. 
The model results are then compared with the laboratory ones in order to calibrate the 
model itself and define the value of calibration coefficients. This procedure allows to be 
able to compute the buoy dynamics with an accurate potential flow model. 
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Introduction 
 
 

1.1 Renewable energy 
	
Abundant presence of energy resources has permitted industrial and social 
development of today society. In facts, society growth and evolution is based on an 
increasing consumption of energy resources, which has also brought to energy 
production and storage too. It is then true that human activities need a lot of energy 
in order to maintain and improve society itself, and the amount of requested energy 
grows according to the living standard which has today become very high in some 
parts of the world. Unfortunately, this great energy amount that society needs is 
today based on fossil fuels as primary energy resources, and fossil fuel consumption 
is then what current world economic model is based on. The greatest deal fossil 
fuels bring is GreenHouse Gasses (GHG) production: their effect upon natural and 
anthropic systems is already visible, with large consequences on humans’ health, 
biodiversity, migrations, natural hazards and resources availability.  
GHG can be considered the principal cause of the climate change that we are 
nowadays able to experience and which, together with the previously reported 
effects, is defined through the temperature growth. The latter aspect has been 
studied by the IPCC (Intergovernmental Panel on Climate Change), which has 
developed models to predict climate change effects and especially temperature 
growth following several scenarios, concerning the human behaviour in terms of 
use of fossil fuels during next decades. Figure 1.03 shows the different model 
predictions in terms of temperature increase, associated to CO2 concentration until 
2100. The worst one predicts an increase until 5°C in 2100, which represents a 
catastrophic scenario for humankind and for life on planet earth in general.  
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Figure 1.01 Total annual anthropogenic GHG Emissions by Groups of Gases 1970-2010 [1]. 

 

	
Figure 1.02 Greenhouse Gas Emissions by Economic Sectors [1]. 
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Figure 1.03 Total GHG Emissions in all AR5 Scenarios [1]. 

 
In order to prevent such predictions from becoming a reality, a new energetic model 
has to be developed. This should be fulfilled by reducing fossil fuels demand 
replacing it by renewable resources: they are represented by all those kind of energy 
sources that can be replenished at the same rate as it is consumed during a human 
timescale. The natures of renewable energies are four: geothermal, hydroelectric, 
biomass and solar. 
Geothermal energy is the heat from the Earth and it is clean and sustainable. 
Resources of geothermal energy range from the shallow ground to hot water and 
hot rock found a few miles beneath the earth's surface, and down even deeper to the 
extremely high temperatures of molten rock called magma. For this reason, it can 
be hard to reach. Hydroelectric energy merely takes advantages of the potential 
energy stored in high quoted water reservoirs typically found in mountainous 
systems. Biomass energy can be produced by any material of organic-vegetable 
origin (trees, plants, farming or industrial waste, urban waste). It is regarded as more 
of a valid resource for the environment than an answer to the energy shortage. As 
such the growth and informed use of the large quantities of vegetation across the 
world can contribute to improving the ecosystem through a greater level of carbon 
dioxide absorption. The use of plants fuelled by biomass energy makes it possible 
to complete the so-called “carbon cycle”: the amount of carbon emitted through 
their use is the same as the amount absorbed by the plants to produce the same 
quantity of biomass. It is partially considered as a solar type of energy resource, 
since plants in order to thrive need to capture energy from the sun by means of 
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photosynthesis. Last form of renewable energy is the one coming from the sun, 
which can be captured directly both as photovoltaic and thermal, storing energy as 
heat in water with the second one, or indirectly. The most diffused form indirect 
solar energy is wind energy.  
 

1.1.2 Wind energy 
 

Wind energy is due to the difference in terms of solar energy that invests earth 
surface at the equator and the poles, creating as consequence a remarkable pressure 
gap in the atmosphere producing winds and moving huge amounts of air from high 
pressure regions to low pressure ones, [4,35]. It is interest to report that this process 
causes an energy density increase, as wind energy (0.5kW/m2), in average more 
concentrated than solar energy (0.1 − 0.3kW/m2). Wind power is one of the fastest-
growing renewable energy technologies. Usage is on the rise worldwide, in part 
because costs are falling. Global installed wind-generation capacity onshore and 
offshore has increased by a factor of almost 50 in the past two decades, jumping 
from 7.5 GW in 1997 to some 487 GW by 2016, according to figures from the 
Renewable Energy Network for the 21st Century (REN21). Production of wind 
electricity doubled between 2009 and 2013 as it is possible to understand from the 
histogram of Figure 1.04 and Figure 1.05.  Many parts of the world have strong 
wind speeds, but the best locations for generating wind power are sometimes remote 
ones. Offshore wind power offers tremendous potential: higher wind speeds are 
available offshore compared to on land, so offshore wind power electricity 
generation is higher per amount of capacity installed. For this reason, offshore wind 
energy use is increased a lot in the last decade and at the end of 2017, the total 
worldwide offshore wind power capacity was 18.8 GW [3].  
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Figure 1.04 Installed Capacity trends for both Onshore and Offshore Wind energy [2]. 

 

 
Figure 1.05 Installed Capacity trends for Offshore Wind energy [2]. 
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Offshore wind power includes inshore water areas such as lakes, fjords and 
sheltered coastal areas, utilizing traditional fixed-bottom wind turbine technologies, 
as well as deeper-water areas utilizing floating wind turbines.  
The most used way of placing wind turbines is to gather a lot of turbines together 
forming a wind farm. Large wind farms are formed by hundreds of wind turbines 
to cover total surfaces of hundreds of square miles. All the largest offshore wind 
farms are currently in northern Europe, especially in the United Kingdom and 
Germany, which together account for over two thirds of the total offshore wind 
power installed worldwide. Figure (1.06) shows the example a wind farm located 
in the North Sea in Germany. 
 

 
Figure 1.06 Offshore wind farm in the North Sea. 

 
Wind is used to produce electricity using the kinetic energy created by air in motion. 
This is transformed into electrical energy using wind turbines or wind energy 
conversion systems. Wind first hits turbine blades, causing them to rotate and turn 
the turbine connected to them. That changes the kinetic energy to rotational energy, 
by moving a shaft which is connected to a generator, and thereby producing 
electrical energy through electromagnetism. The amount of power that can be 
harvested from wind depends on the size of the turbine and the length of its blades. 
The output is proportional to the dimensions of the rotor and to the cube of the wind 
speed. Theoretically, when wind speed doubles, wind power potential increases by 
a factor of eight. 
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Wind-turbine capacity has increased over time. In 1985, typical turbines had a rated 
capacity of 0.05 MW and a rotor diameter of 15 m. Today new wind power projects 
have turbine capacities of about 2 MW onshore and 3–5 MW offshore. 
Commercially available wind turbines have reached 8 MW capacity, with rotor 
diameters of up to 164 metres. The average capacity of wind turbines increased 
from 1.6 MW in 2009 to 2 MW in 2014 [4]. 
Several are the mooring system that allow the single wind turbine to maintain its 
position offshore, as shown in Figure 1.07. The first is the one using a ballast 
stabilized buoy linked to the bottom through a mooring system consisting of 
catenaries. The second system consists of a tension leg platform positioned under 
the free surface and then linked to the bottom through mooring lines anchored to 
the bottom itself. Another possible method is the one that takes advantage of barge 
platform floating at the MWL anchored to the bottom with catenaries. 
The first mooring method is the one that is going to be analysed in the following 
chapters of this thesis. As all the other mooring system, it is meant to decrease the 
motion of the wind turbine in response to sea state and the consequently wave 
action. They are a very stable kind of buoys because both of their form which 
reaches deep water and their mass: their design is based on a weighted mass at the 
bottom to keep it upright, a big container of water in the middle, and typical air-
filled hull at the top. 
 

 
Figure 1.07 Mooring system for buoys. 
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1.2 Scope of the thesis 
	
This thesis aims at developing a potential flow model able to represent the dynamics 
of a floating body. In particular, the scope is to analyse the motion of a cylindrical 
buoy under the action of regular waves both experimentally and mathematically, 
and perform a model calibration by comparing the results of the two approaches. 
The mathematical model has been carried out with the software Matlab, writing 
several routines that will be better exposed in chapter 4. The model describes the 
buoy dynamics in two dimensions, and it is based on few hypothesis and 
approximations which tend to limit its applicability range. Nevertheless, it has to 
serve as a simple one in order to predict the experimental buoy motion under the 
action of the tested sea states. Simplicity of the model implies the use of some 
hypothesis that allow to neglect several forces and effects that are actually present, 
but that are worth not to be considered as suggested by the aim of the model. 
Furthermore, it will be possible to apply the model to other floating bodies.  

 
 

1.3 Structure of the thesis 
 

This document is developed in five chapters, introduction included, where an 
overview of renewable energies is given and the aim that this work is meant to have 
is explained.  
The second chapter is devoted to the presentation of the theoretical background that 
has been needed to develop such study. Particular attention is given to the linear 
wave theory, Airy theory [38], through which waves have been studied and their 
characteristics have been described. Then, principal aspects of fluid-structure 
interaction theory are carefully explained in such a way to understand their 
application in this thesis case. 
Third chapter is dedicated to the laboratory set-up description. First, the whole set-
up is described focusing on the dimensions of both the buoy and all the other 
structure involved. Furthermore, attention is given to the gauges recording system 
installed into the channel through which the free surface perturbation during 
simulation events is recorded, explaining how they work and how to perform their 
calibration. Last part of third chapter is related to the study of such waves, with 
particular attention to their propagation in time together with wave particles 
velocities, representing an important aspect from which the following development 
of the model is influenced by.  
In the fourth chapter the essence of this work, the mathematical model, is developed. 
First a careful explanation of all the forces involved is carried on, describing their 
physical meaning and how they have been modelled when inserting them into the 
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equation itself. Besides, during this part, further important hypothesis are reported 
as to better understand why some forces have been neglected or considered. The 
construction of motion equation is then described gathering all the acting forces 
selected. The mooring system is involved too, and a particular section is written in 
order to describe how it has been modelled. After that, the real model is finally 
explained, starting from a frequency domain part where principal characteristics of 
the cylindrical buoy motion are discovered arriving to the second and most 
important part of the code, time domain one, where equation is solved and buoy 
motion is actually determined. Particular attention is paid to the used algorithm, 
explained in a dedicated section. 
Last chapter is devoted to the comparison between model and laboratory results, 
both in frequency and time domain, and to the calibration of the model itself. Plots 
of buoy motions under several incident waves and calibration coefficients values 
are reported. At the end, some conclusions are drawn. 
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2 

 

 Theoretical background 
 

2.1 Linear wave theory 
 

In the present thesis, the wave generation is performed taking into account linear 
wave theory. This is possible because of the characteristics of the waves created 
by the generator, which is programmed to create regular waves. 
 
Linear wave theory is based on the velocity potential concept, which represents 
the spatial integral form of velocity. In particular, under the hypothesis of 
 

• Irrotational motion; 
• Inviscid fluid; 
• Conservative forces. 

 
it is possible to say that a velocity potential exists and it should satisfy the 
continuity equation 
 

∇∙u=0 
 

(2.01) 

or 
			∇ ∙ ∇f = 0 

 
(2.02) 

 
The divergence of a gradient leads to the Laplace equation (2.03), which must hold 
throughout the fluid. 
 

	∇2f=∂2f
∂x2
+ ∂2f
∂y2
+ ∂2f

∂z2
=0                                     (2.03) 

 
Furthermore, under the same hypothesis it is possible to derive Bernoulli equation 
(2.04) too, as 
 

∂f
∂t
+ 1
2
∇f 2+ p

ρ
+gz=0                                       (2.04) 
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Together, these equations represent irrotational theory bases for wave motion.  
 
Besides, experimental studies have demonstrated that another constraint must be 
added to maintain the theory validity. The period of the sea waves must be within 
the following range of almost 1s < T < 30s. In essence, it must not be too much 
high in order to be able to neglect the influence of bottom friction and at the same 
time not too much low in order to be able to neglect surface tension.  
For what this thesis is concerned, as the work is developed on a small scale 
laboratory setup, the considered period is around 1s, so it is still possible to apply 
this theory. 
 
Unfortunately, due to the difficulties related to the nonlinearity of the boundary 
conditions, it is not possible to achieve exact analytical solutions of the problem. 
So, in order to obtain valid analytical solutions, it is necessary to simplify the 
problem. For this reason, in the following paragraphs the linear wave theory, also 
known as first order theory, will be developed. 
This theory is applied within the boundaries of a domain, and in particular the 
adopted one is delimited by four boundaries: two lateral ones, the bottom one and 
the free surface boundary.  
Considering a flat and impermeable bottom, both Laplace equation and the 
kinematic bottom boundary condition are linear. The problem is that both 
kinematic and dynamic free surface boundary conditions are nonlinear, so, firstly, 
they have to be linearized. 
As already said, the two free surface conditions are respectively expressed by the 
kinematic equation (2.05) and the dynamic equation (2.06): 
 

                                           ∂h
∂t
+ ∂f

∂x
∂h
∂x
+ ∂f
∂y
∂h
∂y
+ ∂f

∂z
=0					for	z=h(x,	y,	t)           (2.05)                                    

 

              gh+∂f
∂t
+ 1
2

∂f2

∂x
+ ∂f2

∂y
+ ∂f2

∂z
=0					for	z=h(x,	y,	t)  (2.06)

     
First, these equations are directly nonlinear for the unknowns η and f, but they 
also present a hidden nonlinearity because of the fact that they have to be applied 
on the free surface z = η (x, y, t), which is the unknown itself. In order to make 
these conditions useful for the achievement of an analytical solution they have to 
be linearized, and to do this the introduction of new constrains is necessary. 
Figure 2.01 fully describes a progressive periodic wave and all its involved 
parameters; this wave propagates in a flat-bottomed channel, following the x axis, 
and is mainly defined by its period T, its wavelength L and its wave height H = 
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2a. Analyzing the figure, the proportion among the different parameters is clear 
and the orders of magnitude can securely be determined: 
 

h=O H ∂h
∂t
=O H

T
∂h
∂x
=O H

L
                                  (2.07) 

 

 
Figure 2.01 Parameters of a progressive periodic wave [5]. 

 

The maximum velocity of the water particles can be approximated to πH/T, which 
leads to the following relation: 
 

umax=vmax=wmax=
∂f
∂xmax

= ∂f
∂ymax

= ∂f
∂zmax

= pH
T
=O H

T
																													(2.08)	

 
Being wave celerity c = L/T, the nonlinear terms have the following orders of 
magnitude:  

 
∂f
∂z
=O H

T
=	O 𝑐 ϕ

L
                                         (2.09)	

	
∂η
∂z
=O H

T
=	O 𝑐 ∂f

∂z
                                        (2.10) 

 
∂ϕ
∂x

∂η
∂x
= ∂ϕ

∂y
∂η
∂y
=	O c H

2

L2
= H

L
O ∂f

∂z
                             (2.11)	
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These relations proof that the nonlinear terms have an order of magnitude H/L 
times the one of the linear terms. Assuming that the wave slope is ε = H/L << 1, 
the nonlinear terms of the free surface BC can be, in first approximation, neglected 
due to their small influence. In this way, direct nonlinearity has been suppressed. 
In order to suppress the hidden nonlinearity too, a similar approach can be used. 
Indeed, it is possible to express the condition as a Taylor series referring to 𝑧 =
𝜂 = 0: 
 

∂ϕ
∂z

x,η,t = ∂ϕ
∂z

x,0,t +η	 ∂
2ϕ
∂z2

x,0,t +…                           (2.12)	
 
Being that 
 

h ∂fH

∂z
x,0,t =O H

T
H
h
=O 𝑐 H

L
H
h
	                             (2.13)	

 
the second order term of the series can be neglected if compared with the first 
order term if H/h << 1. 
This means that if the ratio between wave height and water depth is sufficiently 
low, the free surface boundary condition can be applied at 𝑧 = 𝜂 = 0, suppressing 
the hidden nonlinearity. At the end, the kinematic and dynamic free surface 
boundary conditions are linearized and become: 
 

∂η
∂t

- ∂ϕ
∂z

=0     for z	=	0                                          (2.14) 
  

g𝜂+ ∂ϕ
∂t

=0     for z	=	0                                          (2.15) 
 
It is possible to gather the two free surface conditions into one single equation 
considering the relation (2.16) and simplifying the problem. 
 

η	= 1
g
∂ϕ
∂t z=0

                                             (2.16) 

 
At last, also considering the expressions of the bottom boundary condition (2.19) 
and the linearized Bernoulli equation (2.18), where p+ is the pressure excess 
induced by the wave in the fluid, it is possible to get to the final expression of the 
linearized problem through which a solution for the velocity potential and the 
velocity field can now be found: 
 

ÑLf = ∂Hϕ
∂MH

+ ∂Hϕ
∂NH

+ ∂Hϕ
∂OH

                                     (2.17)	
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p+=p+ρgz=-ρ ∂ϕ

∂t
                                       (2.18)	

	
∂2ϕ
∂t2
+g ∂ϕ

∂z
=0					for	z=0                                  (2.19)	

	
∂ϕ
∂z
=0					for	z=-h																																															(2.20) 

	
In order to find a solution for the velocity potential, some additional hypothesis 
need to be introduced: 
 

• Constant period T: waves need to be periodic in time (equation (2.21)); 
• Constant shape: waves need to be periodic in space throughout the entire domain 

(equation (2.22)); 
• Bidimensional waves in the xz plane, hence neglecting the y component of the 

velocity potential. 
 

∂ϕ
∂x

x,η,t = ∂ϕ
∂x

x,η,t+T                                     (2.21)	
	

∂ϕ
∂x

x,η,t = ∂ϕ
∂x

x+L,η,t                                     (2.22)	
 

The periodicity hypothesis shows that the previously described phase celerity 
relation c = L/T is constant, finding a valid link between the spatial and the 
temporal domain. This link can be used by formulating a new variable theta, which 
fulfils the conditions described above: 
 

θ=2π x
L

- t
T

                                              (2.23) 

 
Dependencies now change from η(x,t) and φ(x,z,t) to η(θ) and φ(θ,z). Two new 
parameters are introduced in order to achieve a full determination of the equations 
of motion (2.13 -2.16). These are called the wave number k = 2π/L and the angular 
frequency ω = 2π/T. Applying the changes, the simplified Laplace system of 
equations can be written again as follows:  
 

θ=kx-ωt																																																												(2.24)	
	

∂2ϕ
∂z2

+k2 ∂
2ϕ
∂θ2

=0                       (2.25)	
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p+=p+ρgz=-ρ ∂ϕ
∂t

         (2.26)	
	

∂ϕ
∂z
+ TH

U
∂Hϕ
∂VH

= 0							𝑓𝑜𝑟	𝑧 = 0     (2.27)	

	
∂ϕ
∂z
=0					for	z=-h    (2.28)	

	
∂ϕ
∂θ

θ=-2π t
T
,z = ∂ϕ

∂θ
θ=-2π 1- t

T
,z     (2.29) 

	
Equation (2.25) is an Ordinary Differential Equation (ODE) and its resolution leads to 
the velocity potential and the free water surface, [6]: 

 

ϕ θ,z = ag
ω
cosh k h+z
cosh kh

sin(θ)      (2.30) 

 
η=a	cos(θ)      (2.31) 

 
However, the problem is not yet fully defined since the wave number k is still an 
arbitrary number, given that no relation between ω and k has been provided yet, 
and thus a wavelength cannot be computed for a fixed period.  In order to solve 
this problem, the dynamic free surface BC is used. In particular, combining the 
free surface BC in (2.31) and the derivative of (2.30), the following expression are 
derived: 

 
∂ϕ
∂z z=0

= ag
ω
tanh(kh)sin(θ)     (2.32) 

 
^H_
^OH O`a

= −𝑎𝑔𝜔	sin	(𝜃)     (2.33) 

 
At this point, substituting both the obtained equations into (2.16) the dispersion 
relation (2.34) is obtained. Firstly, this relation gives a link between ω and k, thus 
between T and L: 

ω2=gktanh(kh)     (2.34) 
 
Being 𝐿 = 𝑐𝑇, also considering the expression of frequency (w=2π/T) and wave 
number (k=2π/L), between w, k and c the following relation exists: 
 

ω=ck     (2.35) 
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Substituting into the dispersion relation it is possible to get to the wave velocity 
expression (2.36) 
 

c= gL
2π

tanh 2πh
L

    (2.36) 

 
Being wave celerity computed as the ratio between wave length and wave period 
c=L/T, substituting in the previous expression it is possible to write down 
dispersion relation such as in equation (2.37). The latter allows the computation 
of wave length L when h and T are known, in an iterative way since L compares 
in both left and right member of the implicit equation.  
 

L= gL2

2π
tanh 2πh

L
    (2.37) 

 
 
2.1.1 Velocity field  

 
Once dispersion relation is obtained, the velocity field can be easily computed by 
applying the spatial derivatives to the velocity potential. Since the application of 
the hypothesis of bidimensional domain only two components are yielded, the 
horizontal velocity u and the vertical one w. 
 

u θ,z = ∂ϕ
∂x
= agk

ω
cosh k h+z
cosh kh

cos(θ)    (2.38) 

 

w θ,z = ∂ϕ
∂z
= agk

ω
sinh k h+z
cosh kh

sin(θ)    (2.39) 

 
The velocity expression is a product of three different groups, each representing 
different contributes: the first term expresses the wave characteristics i.e. wave 
amplitude, wave number and wave frequency, the second one reflects the velocity 
variation along the vertical position, and the third group states the armonic 
behavior of the wave, [6]. From the previous formulas, it is possible to define the 
principal characteristics of the velocity field under a standing wave. Figure 2.02 
represents the velocity field under a wave progressing according to the arrow 
direction: both horizontal and vertical velocities are maximum at the MWL and 
experience a decrease along with the depth until they reach their minimum values 
at the bottom. Furthermore, horizontal velocity reaches its maximum value at 
wave crest, where particles move in the wave propagation direction, and its 
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minimum one at the wave cave, where particles move with opposite direction. On 
the other hand, max vertical velocity is reached between wave crest and cave. 
 

 
Figure 2.02 Velocity field under a progressive periodic wave. 

 

Once velocity field is known, it is possible to compute water particles trajectories and 
acceleration, performing integration and derivation of velocity expressions respectively. 
In particular, to reach a better understanding of the linear wave theory, particles 
trajectories are derived as follows:  

 
xp t =x0+ u x t ,z(t) dt	    (2.40) 

 
zp t =z0+ w x t ,z(t) dt	    (2.41) 

 
Performing the integral and after some mathematical simplification passages, the 
expressions of the trajectories become: 
 

xp t =x0-	a
cosh k h+z0
cosh kh

sin(θ0)    (2.42) 

 

zp t = z0 − 	a
sinh k h+Oj
cosh kh

cos(𝜃a)    (2.43) 

 
where θ0 = ωt – kx0, [6]. 
Introducing the terms a and b   
 

𝛼 = a cosh k h+Oj
sinh kh

     (2.44) 
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𝛽 = a sinh k h+Oj
sinh kh

    (2.45) 

 
Dividing equations (2.42) and (2.43) by α and β respectively, squaring them and 
then adding them, the obtained result is the well known ellipse equation: 
 

xp t -x0
2

α2
+ zp t -z0

2

β2
=1    (2.46) 

 
The parameters α and β define the shape of the ellipse according with water depth. 
In deep water conditions the ellipses tend to take the form of perfect circles with 
decreasing radius when approaching increasing depth (Figure (2.03 a)). In shallow 
water condition the ellipse are quite eccentric, varying the minor radius only when 
approaching increasing depth Figure 2.03b. In intermediate depth cases, both 
major and minor radius vary approaching increasing depth.  
 

 
Figure 2.03 Wave particle trajectories for deep water and shallow water situations [5]. 

 

The definition of shallow and deep water cases is not immediately achievable, but 
it depends both on water depth and on the characteristics of the wave: for example 
tidal or tsunamis waves or any wave with extremely long periods and wave lengths 
can be shallow water waves in deep ocean too. 
So, the definition of the different situations is linked to the calculation of a 
particular dimensionless quantity defined as the ratio between water depth h and 
wave length L. A ratio h/L<1/20 represents the situation of shallow water, when 
h/L>1/2 we are in the deep water case, while when the ratio assumes any value 
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between the two previous limits the intermediate case takes place. The same 
conclusion could be achieved by considering a different dimensionless quantity, 
the product of the wave number k and the water depth h: according to this quantity, 
kh<p/10 represents a shallow water situation, kh>p  a deep water one, and all the 
included vales are representative of an intermediate situation. 
 
Besides, according to each situation, simplifications exist about the computation 
of wave characteristics as wave length and celerity. In particular, for what deep 
water is concerned, being kh>>1 it is possible to simplify expression (2.37) in the 
form (2.47), as wave length in deep water is often called L0 

 

L=L0=
gT2

2π
    (2.47) 

 
Furthermore, L0 can also be written as 
 

L0=	1.56	T2    (2.48) 
 

Wave celerity in deep water, also called c0 becomes 
 

c= g	L0
2π

     (2.49)	

 
For what shallow water is concerned, the simplified expression of wave length and 
wave celerity are written below through equations (2.50) and (2.51) respectively. 
 

L= g	T2	h	
L

=T gh     (2.50) 
 

𝑐 = gh    (2.51) 
 

When the condition happens to be an intermediate one, wave length and wave 
celerity have to be computed through the application of the standard equations 
(2.36) and (2.37). 
 

2.1.2 Pressure distribution 
 
The pressure distribution throughout the fluid domain is obtained through the 
linearized Bernoulli’s equation: 
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p+=-ρ ∂ϕ
∂t
=ρag cosh k h+z

cosh kh
cos θ =ρgη θ cosh k h+z

cosh kh
=ρgKpη θ     (2.52) 

 
The coefficient Kp represents the pressure response factor and it always follow the 
condition 𝐾t≤1, depending on the value of z. Considering the expression of p+, 
pressure profile can be described as 
 

p=p+-ρgz=ρg(Kpη-z)    (2.53) 
 

When z = 0 then Kp = 1 thus resulting in a pressure p = ρgη. Therefore, in the crest 
of the wave pressure is     p = ρga and in the trough of the wave pressure is p = 
−ρga. As the depth of the study point grows also the pressure does having the 
component p+ less important, since the hydrostatic component after a certain value 
is dominant. 
 

 
Figure 2.04 Hydrostatic and hydrodynamic pressure under the crest and the cave of a progressive wave [7].  

 
2.1.3 Energy of the wave motion 

 
In linear wave theory, dissipative phenomena are neglected and therefore the 
energy related to the wave motion consists of two components only: potential 
energy and kinetic energy. Being the motion an oscillating one, energy at a certain 
point (x, z) is time dependent.  However, the energy at a certain point at a certain 
time is not really a matter of major interest from the engineering point of view. 
However, the energy at a certain point at a certain time is not really a matter of 
major interest from the engineering point of view. 
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Referring to Figure 2.05, the elementary fluid column of unitary width, length 
equal to dx and (h+h), it has the following elementary potential energy: 
 

dEp1=ghG	dm     (2.54) 
 

 
Figure 2.05 Discretization of the wave for the computation of potential and kinetic energy [7]. 

 

where hG represents the distance between the column centre of mass and the 
potential energy calculation plane, while dm represents the fluid column mass. 
 

hG=
h+η
2

             (2.55) 
 

dm=ρ h+η dx    (2.56) 
 

Substituting last two equations in (2.54) it becomes 
   

dEp1=
1
2
ρg(h+η)2	dx                (2.57) 

 
which is function of space x and time t, due to the fact that  
 

η=η x,t =a	cos(kx-ωt)    (2.58) 
 
In order to obtain potential energy density, it is necessary to integrate (2.57) over 
space x and time t. In particular the kind of energy density that has to be found is 
an average value both over surface and time, so the easiest way to do this is to 
integrate over a wave length and a wave period as follows: 
 

Ep1=
1
LT

dEp1
x+L
x = ρg

2LT
t+T
t (h+η)2	dx	dtx+L

x
t+T
t    (2.59) 
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Integration has been performed along x only because of the hypothesis of 
cylindrical wave that propagates in direction x. 
The result of the integral is represented by the following expression (2.60) which 
consists of two contributes, the first one is related to the situation without wave 
motion while the second one to the wave motion only. 
 

Ep1=
ρg
2
	 h2+ a2

2
=ρg h

2

2
+ρg a

2

4
   (2.60) 

 
Taking in account the second term only, it is possible to describe the potential 
energy density due to the presence of wave motion as 
 

Ep=ρg
a2

4
        (2.61) 

 
To develop the kinetic energy expression, the schematic shown in Figure 2.05b is 
followed. The study area is also an elementary region of fluid mass, which length, 
height and width are respectively dx, dz and 1. The resulting expression is: 
 

dEc t =
1
2
u2+w2 dm= ρ

2
(u2+w2)dxdz  (2.62) 

 
Integrating along the vertical and averaging with respect to time and length the 
following expression is obtained 
 

Ec=
1
LT

dEc
x+L
x dxdzdt= ρ

2LT
t+T
t (u2+w2)	dxdzdtx+L

x
t+T
t  (2.63) 

 
After some mathematical manipulation and trigonometric operations, the final 
simplified expression of the kinetic energy is obtained: 
 

Ec=ρg
a2

4
    (2.64) 

 
At the end, the total energy is obtained by summing the two potential and kinetic 
contributes: 
 

E=Ec+Ep=
1
8
ρgH2    (2.65) 

 
It is important to remember that this expression is valid for a unitary horizontal 
section, that is why it is called energy density. Energy density keeps maintaining 
a positive quantity due to the fact that it is proportional to squared value H. 
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Furthermore, it is important to note that energy density is not function of the wave 
period, but it only depends on its wave height. 
 

2.1.4 Groups of waves 
 
Despite the initial hypothesis, linear wave theory is still applicable with slight 
variations of the hypothesis themselves by suffering small modifications, such as 
propagation direction or water depth. 
Up to now monochromatic wave has been treated, but they are scarcely found in 
real seas where even a little portion of sea surface is composed by many different 
waves, with different characteristics, i.e. different heights, directions, periods and 
phases. 
In order to understand groups of waves and their effects, the application of the 
principle of superposition is valid within linear wave theory premises. Such 
principle can be practically written, for n different waves propagating along x 
direction, as  
 

η x,t = ηn=n an	sin(n knx-ωnx+δn)    (2.66) 
 

Wave groups have a particular behavior depending on the characteristics of each 
wave composing it. The shape of a wave group is determined by its envelope and 
its celerity is different from the one related to single waves. The group celerity is 
the velocity in which the energy contained in the group propagates, and determines 
the envelope variation too. 
 
In the following, some particular cases of two waves interacting are explained. 

1) Waves propagating in the same direction and with same period: 
 

• with same phase 
 

η x,t = a1+a2 sin(kx-ωt+δ)    (2.67) 
 

• with p rad opposed phase 
 

η x,t = a1-a2 sin(kx-ωt+π)     (2.68) 
 

2) Waves propagating in the same direction but with different periods: 
 

η x,t =2a δk-δωt-δ)	sin(kx-ωt)    (2.69) 
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3) Waves propagating in opposed directions (reflected): 
 

• total reflection: if ai = ar 
 

η x,t =2ar cos kx cos(ωt)    (2.70) 
 

4) Minimum and maximum values of free surface elevation: 
 

• minimum  
 

ηmin =ai-ar    (2.71) 
 

• maximum  
 

ηmax =ai+ar    (2.72) 
 
In order to find the group celerity, dispersion relation needs to be applied and its 
final expression can be simplified getting to a different form for each condition of 
depth. 
In shallow or deep water conditions, group celerity assumes the following shape 
 

cg=
c
2
(1+G)    (2.73) 

 
where G derives from the dispersion relation and it is written as  
 

G= 2kh
sinh(2kh)

    (2.74) 

 
In specific conditions of deep and shallow water, the simplified formulas 
describing group celerity are respectively 
 

cg0=
1
2
c0    (2.75) 

 
cg=c= gh    (2.76) 

 
It is now important to focus on the description of the wave energy propagation 
through a group of waves. 
As already said, to each wave belongs an energy density defined as the sum of a 
potential and a kinetic component. The problem is now to understand how this 
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energy propagates in space or its mean value over a period propagating through a 
fluid vertical section.  
Taking into account Figure 2.05, the horizontal force acting on the elements equal 
to pdz. Being that the elementary volume of fluid travel with velocity u, it covers 
the distance udt in time dt. At the left side of the element, at x=0, the fluid acts 
with an elementary work written as: 
 

dL=pudzdt    (2.77) 
 
During the same time interval, the fluid volume equal to udzdt crosses the vertical 
element dz. Being that potential and kinetic energy can be written respectively as 

 
Ep=ρgz                     (2.78) 

 
								Ec=

1
2
ρ(u2+w2)										              (2.79) 

 
the elementary fluid volume udzdt travels with energy 
 

E= ρgz+ 1
2
ρ(u2+w2) udzdt   (2.80) 

 
 
Putting together this energy contributes with the pressure one, it is possible to 
derive the expression of the instantaneous energy flux crossing the vertical section 
as 
 

Ef(t)= p+ρgz+ 1
2
ρ(u2+w2) udzη

-h     (2.81) 
 

Remembering that p+=p +	𝜌𝑔𝑧, after few mathematical passages it is possible to 
get to the expression of 
the energy flux related to a wave group, which is given by the energy of the wave 
multiplied by the group celerity: 
 

Ef=cgE=
1
16
ρgH2c 1+ 2kh

sinh(2kh)
   (2.82) 

 
This result shows that energy transport exists along the propagation direction and 
its mean value for unit of width is called mean energy flux, which represents the 
product between group celerity and specific energy. 
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Thus, it is possible to conclude that energy propagates with group celerity when 
talking about linear waves. 
 

2.1.5 Transformation of waves entering shallow water 
 
When approaching the shoreline, in the area called surf or near-shore, the seabed 
starts having a significant influence in the wave behavior. The first wave response 
at the presence of seabed is called shoaling. When the wave reaches that area, it 
has gradually less space to propagate while the energy remains constant, as in 
linear wave theory there is no energy loss until wave breaking, where the theory 
is no longer valid. As a result, an initial smooth decrease in wave height happens 
to give place to a sudden substantial increase of the wave height as the bottom 
keeps getting closer, as it is possible to see in Figure 2.06. The shoaling 
development is represented by the shoaling coefficient KS: 
 

Ks=
H
H0
= c0

2cg
= 1

tanh(kh)(1+G)
    (2.83) 

 

 
Figure 2.06 Shoaling coefficient KS trend vs  the ratio between water depth and wave length [5]. 

 

The offshore direction of propagation of waves is not always perpendicular to 
coastal line; however, when breaking, waves have turn and oriented 
perpendicularly to the coast. This phenomenon is called refraction and follows 
Snell law, developed for light waves but also valid for sea waves, which delivers 
the refraction coefficient Kr (2.84). Figure 2.07 shows a geometric representation 
of the Snell’s law applied in the near-shore area, determining the wave front width 
used to compute the refraction coefficient in the following way: 
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Kr=
L1
L2

      (2.84) 

 

 
Figure 2.07 Geometric representation for Snell’s law. 

 

Depending on the coastline shape, the wave height can increase or decrease when 
refracted, i.e. if the coast is a bay (concave form) waves will tend to spread into a 
wider area and therefore, their height will decrease. On the contrary, if the coast is 
a cape (convex form) the waves will tend to concentrate towards the tip of the cape 
and their height will grow. The height in this case is computed by combining both 
coefficients, the shoaling and the refraction coefficient: 
 

KrKs=
H
H0
= c0

2cg

L1
L2

    (2.85) 

 
2.1.6 Wave diffraction  

 
Another important phenomenon from the engineering point of view is represented 
by wave diffraction. Diffraction occurs every time an obstacle is encountered by 
the wave at the mean sea level and its dimensions are smaller or equal to the 
incident wave length. So, diffraction means a change in the sea surface due to the 
presence of the obstacle, which diverts the wave from its natural direction of 
propagation. Besides, diffraction rarely comes on its own. In facts, it is always 
linked to other phenomena, for example wave reflection. At the end, diffraction 
will occur depending on the obstacle size; if this is bigger than one order of 
magnitude less than the wavelength will take place, if the obstacle is smaller, the 
wave has enough energy to overcome it without particularly feeling its presence. 
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From practical point of view, the simplest case is the one representing flat bottom 
and obstacle with vertical walls coming out from the mean sea level. Concerning 
these conditions, the diffraction issue is described by the Helmholtz equation, an 
adaptation of the Laplace equation: 
 

								ϕ x,y,z,t =Áf(z)Φ(x,y)e-tiω   (2.86)	
	

η x,y,z,t =ÂH(x,y)e-tiω   (2.87)	
 

where  
					f z = cosh k(h+z)

cosh(kH)
    (2.88)	

 
After some mathematical operations and simplifications, the Helmholtz version of 
the Laplace equation results: 
 

				∂
2Φ
∂x2

+ ∂2Φ
∂y2

+k2Φ	=	0    (2.89)	

 
This is an elliptic equation and it has been proved to be valid for the following 
situations: 
 

• Straight hurdle of semi-infinite length; 
• Finite gap in an infinite length straight hurdle; 
• Isolated obstacle made of a straight hurdle of finite length; 
• Isolated obstacle which horizontal section is circular. 

 
Diffraction is an important element that has to be considered in the design and 
representations of wave energy converters and in general in every problem 
concerning fluid structure interaction, depending on the dimensions of the incident 
waves and of course the structure itself. This problem will be better discussed in 
paragraph 2.2 while describing the importance of diffraction in the particular case 
treated in this thesis. 
 
 

2.2 Fluid-structure interaction 
 
Fluid-structure interaction is a very important subject for this thesis development 
as the principal aim is to represent, in the best way possible, the cylindrical buoy 
dynamics when subjected to regular waves. In this section wave-structure 
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interaction will be explained describing all the forces acting in this kind of 
situation. 
 
Before the description of the acting forces it is very important, when talking about 
floating structures dynamics, to define a reference coordinate framework upon 
which all variables will be based. The most widely used reference system is the 
Cartesian one, in which three axis x, y and z are defined. For simplicity, the centre 
of the coordinate system is usually set at the centre of gravity (CoG) of the studied 
structure or at the Mean Water Level (MWL). Each axis is orthogonal to the other, 
defining the normal vector of three planes that describe the three-dimensional 
space. A free-moving body has six DoFs, three of them describing the translations 
and the other three, the rotations. Therefore, in mathematical formulae the 
subscripts 1 − 3 are linked to the translations and 4 − 6 to the rotations. Modes 1, 
2 and 4, 5 are ambiguous, especially if the structure is axisymmetric with respect 
to the z axis and therefore they may be interchanged. However, common praxis is 
to remove this ambiguity when there is an incident wave; orienting the structure 
so as to make the wave propagation direction coincide with the x-axis of the 
structure, see Figure 2.08. In marine structures, each DoF is associated to a 
particular name, as reported in table 2.08, [8]. 
 

Mode Component 
Mode 
Name 

1 u1 = Ux Surge 

2 u2 = Uy Sway 

3 u3 = Uz Heave 

4 u4 = Wx Roll 

5 u5 = Wy Pitch 

6 u6 = Wz Yaw 

        Table 2.01 Degrees of Freedom (DoFs) for a floating body. 
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Figure 2.08 DoFs reference system convention for a floating body [26]. 

 
For what forces are concerned, first of all it is important to notice that rigid body 
dynamics is governed by Newton’s second law: 
 

F	=	ma    (2.90)	
 
where  F=F1,F2,F3,F4,F5,F6≡Fx,Fy,Fz,Mx,My,Mz is the force vector for each DoF, 
m is the mass matrix of the body, in which the first three components of the 
diagonal are the mass of the body and the last three are the moments of inertia and 
a=a1,a2,a3,a4,a5,a6 is the acceleration vector of the body for each DoF. 
When it comes to floating bodies,  F is decomposed into two main kinds of 
forces exerted by the incident wave, in particular hydrodynamic force Fhd and 
hydrostatic force Fhs: 
	

																							 F	= 	Fhd	+	Fhs    (2.91)	
 
For what hydrodynamic force is concerned, it can be seen as the integral of 
hydrodynamic pressure over the wet surface of the body. So, considering the ith 
DoF and referring to Figure 2.09, the general expression of hydrodynamic force 
can be written as 
 

Fi=	- pni	dSs    (2.92)	
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Figure 2.09 Normal to the body surface, direction through which pressure is integrated along the body surface 
[8]. 

 

In terms of complex amplitudes, through the imposition of the relation p=-iωρϕ 
for a given potential 𝜙: 

	

Fi=iωρ phi	ni	dSs     (2.93)	
 

However, hydrodynamic force is the sum of three different sub forces: 
 

• Excitation force Fexc ; 
 

• Radiation damping force Fr; 
 

• Drag force Fdrag; 
	

Fhd	=	Fexc	+	Fr	+	Fdrag    (2.94)	
 
Excitation force 𝐹�M� is the contribute related to the incident wave considering the 
body fixed, so a potential that is due to the incoming wave only has to be taken 
into account. Nevertheless, excitation force is the resultant of two other 
contributes: Froude-Krylov force which represents the integral of the 
hydrodynamic pressure on the wet body surface (with potential 𝜙a), and the 
diffraction force which is due to the diffracted wave field that forms when the 
wave touches the body surface (with potential 𝜙�). 
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Substituting into the general form, it is possible to derive the expression for 
excitation force as 
 

Fexc,i	=	iωρ ϕ0+ϕd nidSS    (2.95)	
 
In particular, diffracted wave field is created when the boundary conditions for the 
wet surface is not satisfied and thus the following relation becomes valid: 
 

- ∂ϕd
∂x
	=	 ∂ϕ0

∂x
			on	S   (2.96)	

 
Diffraction force can sometimes be neglected if compared to the other acting 
forces. The cases in which this is possible depends both on the incident wave and 
body dimensions: in particular the relationship is described on the Koulegan-
Carpenter number (KC), [10, 37]. KC is a dimensionless quantity representing the 
ratio between drag forces and inertia forces, and it is computed as 
 

						KC= 2πA
L

    (2.97)	
 
where: 

• A represents the incident wave amplitude; 
•  L stands for the characteristic dimension of the body. 

 
If 𝐾𝐶 > 10 the body can be considered small and drag forces are dominant with 
respect to diffraction forces, while when 𝐾𝐶 ≤ 2 no appreciable flow separation 
happens and viscous effects are confined to the boundary layer.  In case of	𝐾𝐶 <
10 the ratio between a significant body dimension and the wave length 𝑙/𝜆 has to 
be taken into account: if 𝑙/𝜆 ≪ 1 diffraction can be neglected, while if 𝑙/𝜆 ≫ 1/5 
diffraction must be considered. 
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Figure 2.10 Acting forces and their influence domains with respect to H/D and λ/D ratios [11]. 

 
Radiation force is the contribute related to the radiation phenomena. In particular, 
considering a flat free surface, hence setting the incident wave potential equal to 
zero, but a moving body. While moving, the body produces waves as the result of 
the displacing of water around its external surface. This produced waves are 
radiated waves and this phenomenon is called radiation. As well as diffracted 
waves, radiated ones present a fundamental difference compared with incident 
wave. An incident wave is a plane wave propagating in only one direction, 
whereas a diffracted/radiated wave propagates in every direction from the source 
point (i.e. the oscillating body). In particular, it means that one effect of the wave-
structure interaction is to redistribute part of the incident energy, which had been 
propagating in a single direction, along all other directions. Therefore, the overall 
wave field is perturbed everywhere around the structure, and not only at the wake 
of the body, as explained in [29]. The phenomenon is graphically shown in Figure 
2.10. 
Of course, radiated waves exert a reaction force on the body surface, the so-called 
radiation force. Radiation potential has to be introduce as 𝜙� and the force it 
produces can be written as  

 

					Fe,i	=	iωρ ϕr	nidSS 															 	 														(2.98)					
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Figure 2.11 Wave pattern around an oscillating body subjected to an incident wave field [30]. 

 

Drag force consists of two components too: the surface frictional drag and wake 
pressure drag. The overall effect that the drag force induces to the body is 
extremely complicated, to such extent that is still not fully understood. Empirical 
analysis however, have brought to a formula which is still the widely used to the 
present date: 

					Fd	=	
1
2
ρCdAdu2    (2.99)	
 

where Ad is the area of the wet part of the body projected onto the normal plane of 
the velocity, Cd is the drag coefficient, which mainly depends on the shape of the 
body, the roughness of the surface, the KC number and on the Reynolds number 
(Re). Finally, u is the relative velocity between the body and the fluid flow, 
considering that in equation (2.99) flow is assumed to be steady. Nonetheless, in 
the presence of waves the flow cannot be assumed steady as it varies harmonically, 
the adapted expression for the drag force under the presence of waves is 
 

Fd	=	
1
2
ρCdAd	 u 	u			 	 	 	 (2.100) 

 
The absolute value allows predict the oscillatory behavior of waves by taking into 
account the sign of the velocity. For simple body shape, Cd can be found tabulated 
in literature deriving physical experiments. For more complex shapes however; on 
the one hand, ad-hoc experimental tests need to be carried out in order to determine 
such parameter; on the other hand, the fast growing computation capacity has led 
to the irruption of a new tool, the CFD which allow to perform simulations in order 
to determine the Cd parameter in a much more efficient way, either in terms of cost 
and times. 
 
Finally, the last force to be determined is the hydrostatic force, caused by the 
hydrostatic pressure and first postulated by Archimedes. Back in the ancient Greek 
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times, the Philosopher theorized the following principle: A body placed in a liquid 
loses and amount of weight equal to the weight of the liquid that it displaces. 
Following this observation, the equation of hydrostatics can be derived. 
Considering a partially submerged body, which displaces a volume V of water. 
Consider also W the total weight of the body, A its cross-sectional area and d its 
draft. Then, following the Archimede’s principle one can write 
 

W	=	γV	=	(ρg)Ad    (2.101)	
 
Where γ is the weight density of the liquid, water in this case. As W is a force, the 
hydrostatic pressure acting on the bottom of the body can be assumed to p = −ρgd. 
From its equilibrium position, assume the body be given a small downwards 
vertical displacement −δz. From the Archimede’s theorem the new equilibrium 
position results in the following equation: 
 

γ δV 	=	-ρg δz A	=	δpA   (2.102)	
	
This variation from the equilibrium, in this example in the vertical axis, causes 
then a restoring force that tends to bring the body back to its initial equilibrium 
position. The restoring force, also known as buoyancy force in a more general 
form is given by the following expression: 
 

Fb	=	-W	=	 ρgV k    (2.103) 
	

Where ⃗k is the versor of the vertical direction in the orientation of the body. 
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3  

 

Experimental tests 
 
 

The experimental part of this thesis has been carried out at the Laboratory of 
Hydraulic Engineering (LIDR) of Alma Mater Studiorum University of Bologna. 
In this section, laboratory setup is going to be presented, describing dimensions 
and characteristics of the cylindrical buoy, of the channel and the initial position 
of the buoy in comparison with the free surface. Furthermore, wave generation 
and the measurements of the dynamics of the modelled floating body will be 
explained. 
 
 

3.1 Laboratory set-up 
 
Waves are generated by a wave generator positioned at the beginning of the 
channel. At the end of the channel a wave absorber panel is installed in order to 
avoid wave reflection which would disturb the experiment reflecting incoming 
waves, subsequently modifying free surface. The latter is made of structured fill 
obtained from the assembly of plastic sheets.  
The floating body is located at the centre of the flume. The buoy is a cylindrical 
and slender object made of plastic and lead. While most of the cave structure of 
the buoy is made of plastic, a lead block is placed at the bottom of the body in 
order to shift down the centre of mass and allowing the buoy to maintain a 
vertical configuration while floating.  
A mooring system made up of four metal chains of negligible weight is installed 
with the aim of keeping the buoy around its reference position and avoiding 
excessive shifts due to the action of the incident waves. Furthermore, as general 
characteristics of mooring systems, it should control the directional heading of 
the body it is linked to, when the orientation is important for safety or operational 
considerations, and, at the end, limiting other motion characteristics as the 
acceleration of the body. These characteristics of catenaries and other kinds of 
mooring system are widely described by [27]. 
This kind of mooring system has a large footprint and the anchor point should be 
subjected to horizontal forces only. The catenaries are hooked to the buoy 



Experimental tests  3.1 Laboratory set-up 

 40 

through a plastic crown placed 20 cm below the upper surface of the buoy itself, 
and anchored at the bottom at the edges of a rectangular platform placed at the 
bottom of the channel, as shown in Figure 3.04. 
In the latter, geometric dimensions of the cylindrical buoy are shown too, with 
the indication of the centers of mass of the single parts and of the total rigid body, 
computed as a weighted average, [9]. The characteristics and dimensions of the 
whole laboratory set-up are reported in Table 3.01. 
A recording system made of seven gauges (represented in green) is distributed 
all along the channel as to register the free surface perturbations during the 
simulations. 
Furthermore, two GoPro cameras (represented in red) are installed in order to 
record buoy movements from lateral and top points of view respectively. Thanks 
to the cameras used, the motion of the cylindrical buoy was analyzed, after a 
video processing which is described in paragraph 3.3.1.  

 

 
Figure 3.01 Horizontal section of the laboratory channel. 

 

 
Figure 3.02 Photo of the laboratory set-up. 
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FLUME  
Length 15.00  m 
Width 0.50  m 
Height 0.70  m 

Water depth 0.40  m 
Material plexiglass  

CYLINDRICAL BUOY  
Height [H] 0.355  m 

Diameter [D] 0.050  m 
Total Mass 0.601  Kg 

Plastic Mass 0.188  Kg 
Lead Mass 0.413 Kg 

MOORING SYSTEM  
n. of chains 4 - 

Chain length 0.35 m 
Material steel - 

Table 3.01 Laboratory set-up characteristics and simulation wave parameters. 

 

 
Figure 3.03 Dimensions of the buoy section and mooring system injection, top view (measures in mm). 
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Figure 3.04 Lateral section of the buoy at its balance position (measures in mm). 

 
3.1.1 Experimental tests 
 

Before the experimental test starts, the free surface is flat and hence the buoy takes 
its balance position, which is described in Figure 3.04. Experimental part is then 
carried out by a free decay test and then switching on the wave generator which 
perturbs free surface generating waves of different height and length. By doing so, 
it is possible to generate both regular and irregular waves, nevertheless in this thesis 
only regular waves are taken into account. Several experiments with different wave 
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height and period conditions have been conducted and are catalogued in table 3.02 
in order to resume the characteristics related to each wave. During each test event 
both wave heights and buoy motion are recorded at each instant, respectively 
through the gauge recording system and the GoPro cameras. 

 
FREE DECAY (heave)  

Initial condition  -40 mm 
Wave height [H] 0 mm 

WAVE R03  
Height [H] 6.91 mm 
Period [T] 0.72 s 

Wave length [𝜆] 800 mm 
WAVE R04  

Height [H] 8.23 mm 
Period [T] 0.77 s 

Wave length [𝜆] 900 mm 
WAVE R05  

Height [H] 8.61 mm 
Period [T] 0.82 s 

Wave length [𝜆] 1000 mm 
WAVE R06  

Height [H] 10.27 mm 
Period [T] 0.85 s 

Wave length [𝜆] 1100 mm 
WAVE R07  

Height [H] 10.44 mm 
Period [T] 0.90 s 

Wave length [𝜆] 1200 mm 
WAVE R08  

Height [H] 11.23 mm 
Period [T] 0.94 s 

Wave length [𝜆] 1300 mm 
WAVE R10  

Height  [H] 33.50 mm 
Period [T] 0.93 s 

Wave length [𝜆] 1300 mm 
Table 3.02 Laboratory tests parameters. 
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3.1.2 Gauge recording system 
 

The experimental record apparatus consists of seven gauges which reconstruct 
generated and diffracted waves during the tests, respectively previously and at the 
wake of the body. One gauge is positioned at the beginning of the channel, 
immediately after the generator, in order to reconstruct the generated wave profile, 
while the remaining six gauges are installed around the object. In particular, three 
gauges are placed before the buoy as to reconstruct the exact wave which hits the 
buoy itself, while the others are positioned at the wake of the body to understand 
how the latter modifies free surface level after waves have hit it. The positions of 
the gauges are reported in Figure 3.01. 
Being the gauges electrical devices, they detect voltage associated with wave 
elevation at a certain time, so they finally return a vector of voltages related to a one 
of time instants with regular time step of 0.001s for the entire experiment. Then, 
thanks to the calibration performed before each test day, voltage series have been 
converted into wave height series in order to be able to describe the free surface 
motion. This also represents the needed data to be put into the mathematical model. 
Examples of the free surface perturbation signal are reported in Figure 3.05 and 
Figure 3.06, relatively to R05 wave case. 
Among the seven gauges distributed along the channel, the motion described by S3 
has been taken into account, as it is the nearest gauge to the buoy and hence the one 
which best captures the perturbation occurring to the buoy itself during tests. Data 
coming from this gauge will be use as input to the mathematical model as incident 
wave height. 
 

 
Figure 3.05 Voltage as recorded by the S3 gauge during wave test R05. 
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Figure 3.06 Free surface expressed in meters, wave test R05. 

 

It is possible to see, after the wave generator starts working, quite a regular free 
surface oscillation. This is first due to the fact that the wave generator has been 
programmed in order to produce waves which are as much regular as possible, that 
is the reason why in the central part of the plot a sinusoidal form is almost taken by 
the free surface. Second reason is linked to the presence of the absorber positioned 
at the end of the channel, which is able to avoid wave reflection nearly completely, 
in order to maintain a regular wave profile along the channel. For these reasons, 
every consideration about free surface and every derivation are made considering 
linear regular waves.  
The three gauges positioned at the wake of the cylinder are aimed at capturing how 
the buoy is capable of deforming the free surface from that point onward. Despite 
the presence of these three gauges, they are not taken into account due to the fact 
that the study of the free surface variation at the wake of the body goes beyond the 
purposes of this thesis work. Furthermore, waves considered are long enough to be 
able to neglect any diffraction effect. 
The last assumptions will be better explained in chapter 4, where the entire 
hypothesis and considerations list referred to the case studied is presented.  

 
A calibration process has been performed on the gauges in order to transform 
voltage signals in meters. The result is represented in Figure 3.06, where the 
example of wave R05 is shown. 

  



Experimental tests  3.3 Laboratory tests analysis 

 46 

3.3 Laboratory tests analysis 
 

3.3.1 Video analysis for body dynamics 
 
With the two GoPro cameras, videos at lateral and top view have been recorded 
during laboratory tests. These videos are analysed in order to record all the positions 
occupied by a point of the buoy during the test time, and to be able to plot the buoy 
motion along the interested DoFs for all the generated sea states. At the end, it will 
be possible to compare these laboratory results with the model ones. 
A Matlab routine for video analysis has been created and applied to each video. 
First, a calibration process has been performed: a chessboard with known square 
dimensions has been positioned inside the channel in (at least) five different 
positions and photographed by the cameras. Then, the calibration procedure has 
been applied through a Matlab routine, in which, a metrical unit has been associated 
to the single pixel of the image. This is an important part of the video analysis, 
which allows to compute the real oscillation of the buoy in meters.  
Before starting the main routine, all the videos have been modified by the use of the 
GoPro Studio program, a dedicated GoPro application useful in order to modify 
some video characteristics. In particular, the cameras recorded at almost 30 fps 
(frame per second), a very high number of frames. So, with GoPro Studio, the 
number of fps has been lowered to 15 fps: this allows to reduce videos dimensions, 
working in an easier and faster way, but still maintaining quite a good enough 
resolution.  
Then, the videos have been analysed through the introduced Matlab routine. First, 
the 15 fps video is loaded in Matlab, then, each frame is cut in order to deal with a 
much less heavy document, keeping inside the cylinder and the space needed to see 
it moving during the test only. Furthermore, the video is converted in RGB format: 
this is an important step, as it is useful to associate an RGB colour scale to each 
pixel of the frames. At this point, two particular points have to be chosen inside the 
domain described by the cylinder. The choice of these points is crucial for the 
description of the buoy motion during laboratory tests: the first one has to represents 
surge and heave motions of the cylinder during tests, while the second one is needed 
in order to determine pitch motion. So, for what the first point is concerned, it has 
to coincide with the centre of rotation of the buoy as not to influence surge and 
heave translations through any contribution coming from rotations. This point 
practically coincides with the centre of mass detected in Figure 3.04. Concerning 
the second one, it has to belong to the same axis that crosses the first point and 
maintaining the same distance from the latter, for all the duration of the tests. 
Points individuation practically consists in isolating a zone to which the point 
belongs, picking the pixel associated to a particular span of RGB colour values and 
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then finding the position of their centre by performing the computation of the mean 
of both vertical and horizontal coordinates of the whole picked points. Their centre 
has to coincide with the desired point.  
A point very close to the real centre of rotation has been picked and tracked as 
Figure 3.07 and Figure 3.08 show, and where points 1 and 2 are represented. The 
same way of picking and tracking the two points is applied to all the videos of the 
laboratory tests. As already introduced, tracking point 1 is useful in order to catch 
both surge and heave motions of the cylinder, while, for what point 2 is concerned, 
only its surge motion is necessary. In fact, being the cylinder a solid body, the 
distance between point 1 and 2 does not change during the test and once distance 
itself and the horizontal motion of both points are determined, pitch rotation is 
derived by applying some easy trigonometric calculation. 
The accuracy and the precision of this kind of procedure depends on the quality of 
the points that one is able to select and isolate, and of course, on the image quality 
that each frame is capable of offering. In fact, a very good isolation and 
determination of the point to track in one frame could not be so good in the 
following frames: it is possible that color indices slightly vary along with the studied 
frame. This process characteristic brings to the fact that some noise arises in the 
data signal and it tends to be higher when the buoy motion is lower. This is the case 
of the heave motion for wave R03: the wave height is small, and it forces the 
cylindrical buoy to a very small oscillation in the vertical direction which keeps 
lower than a millimeter, and the noise becomes a very important and visible 
phenomenon. 
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Figure 3.07 Example of video analysis of wave R07. The red area gathers all the points whose centre of gravity is 
represented in yellow by point 1. The latter is used for surge and heave motions tracking.  

 

 
Figure 3.08 Example of video analysis of wave R07: The red area gathers all the points whose centre of gravity is 
represented in yellow by point 2. The latter, together with point 1, is used for pitch motion tracking. 
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3.3.2 Analysis of the generated waves 
 
As already introduced in section 3.1, waves are generated by a wave generator, 
positioned at the beginning of the channel. Each generated regular sea state has been 
recorded by 7 gauges placed at different sections of the channel itself. The most 
important and considered one in the development of this thesis is the signal recorded 
by gauge S3, positioned immediately previously the buoy, as to catch the 
characteristics of the wave that actually impacts the body in the best way possible. 
In this section, only the group of waves recorded by the gauge S3 are going to be 
shown. 
 
Once signals expressed as voltages have been converted into wave heights 
representing the free surface perturbation that spreads during the laboratory test 
time, it is possible to plot them. While the seven waves characteristics are expressed 
in table 3.01, their plots are shown in following Figures 3.07 to 3.13. 
The plots show how the surface perturbation produced by the generator is not 
perfectly regular, but it is still possible to catch small irregularities among the same 
wave. There are little irregularities for what high frequencies are concerned: higher 
is the wave height, more likely is this phenomenon occurrence, which is visible in 
the form of a small perturbation of the waves envelop. Cases R07, R08 and R10 are 
representative of the latter situation. This phenomenon is due to the not perfect wave 
absorption provided by the wave absorber that makes wave reflection not 
completely deleted inside the channel. Furthermore, as the most intense high 
frequency perturbation is related to the first seconds of test, it is also likely to be 
due to the free surface displacement from the previous performed tests. 
 

 
Figure 3.09 Free-surface for wave R03 during the test time. 
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Figure 3.10 Free-surface for wave R04 during the test time. 

 

 
Figure 3.11 Free-surface for wave R05 during the test time. 

 

 
Figure 3.12 Free-surface for wave R05 during the test time. 
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Figure 3.13 Free-surface for wave R06 during the test time. 

 

 
Figure 3.14 Free-surface for wave R07 during the test time. 

 

 
Figure 3.15 Free-surface for wave R10 during the test time. 

 



Experimental tests  3.3 Laboratory tests analysis 

 52 

Wave frequency is a very important characteristic when it comes to the development 
of the model as it will be accurately explained in chapter 4, where the whole 
mathematical model is described. Hence, a frequency analysis of the wave signal 
has been performed in order to define waves frequency in a precise way. Fourier 
transformed function has been applied to the recorded signals, passing from their 
description in time domain to the frequency one. This passage has been performed 
through the use of the Matlab function Fast Fourier Transformed (fft), whose 
application will be better reported in section 4.6 when talking about the procedure 
of frequency analysis on the model and laboratory results. It follows a plot gathering 
all the wave signals in frequency domain. 
 

 
Figure 3.16 Envelops of the waves during experimental test time. 
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Figure 3.17 Waves signal in frequency domain. 

The frequencies of the seven wave signals are then summarized in the following 
table: 

 
WAVE w [rad/s] 
R03 8.71 
R04 8.22 
R05 7.64 
R06 7.37 
R07 6.97 
R08 6.70 
R10 6.75 

Table 3.03 Peak frequency of simulated wave signals.	

 

Despite some very small undesirable effects, the generated waves keep being 
regular, and hence, linear wave theory is used to described waves themselves. 
Linear wave theory has been used to understand what kind of waves this work has 
to deal with, first distinguishing shallow water, deep water and intermediate water 
situations for each case and then studying the particle velocity under the waves 
themselves. First the coefficients h/L and kh are computed in order to verify which 
condition among the three previously exposed is satisfied: the results are gathered 
in table 3.03. 
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WAVE h/L kh 
R03 0.50 3.14 
R04 0.44 2.79 
R05 0.40 2.51 
R06 0.36 2.29 
R07 0.33 2.09 
R08 0.31 1.93 
R10 0.31 1.93 

Table 3.04 Values of h/L and kh coefficients for each simulated wave to define depth condition. 

 
While wave R03 represents a deep water condition, the others are intermediate 
values, but very close to the limit between intermediate and deep water. The fact 
that they are very close to deep water condition makes further analysis worth to be 
done. In particular, particle velocities are computed at the mean water level MWL 
according to expressions (2.38) and (2.39), in order to understand the kind of 
trajectories that particles themselves assume under the free surface. Mean value of 
maximum horizontal and vertical velocities, u and w respectively, are computed 
under each wave crest. The velocities u and w under the crests are the biggest ones, 
because of the smooth asymmetry of the generated waves that brings to slightly 
bigger wave amplitude and then velocities over MWL. Furthermore, a look at the 
development of velocities all along simulation time is interesting too. 
As it is possible to notice, the difference between u and w enhances with respect to 
a decrease of h/L ratio (and of the kh coefficient) and hence, it means that the higher 
h/L is, the smaller is the difference between the two. This result agrees with linear 
wave theory and confirms that in deep water conditions the two velocities are almost 
equal and then particles trajectories tend to be circular ones, while when 
approaching lower values of h/L, and hence entering intermediate or shallow water 
conditions, trajectories tend to take elliptical form. However, as already said, h/L 
values indicate that the considered waves, although they belong to intermediate 
water depth conditions, their characteristics maintain very close to the deep water 
ones and both mean velocities and plots show that the difference between u and w 
are very small. Plots of horizontal and vertical velocities of R03 and R08 are shown, 
as examples to understand the difference between the two velocities, in Figure 3.16 
and Figure 3.17. The very small relative percentage gap between the two enhances 
this concept (Figure 3.18). 
Then, all the experimental waves do have circular particles trajectory and then, as 
linear theory explains, velocity varies very fast under the free surface along water 
depth, becoming very small at half the channel depth, according to the vertical 
velocity profile that generally belongs to deep water cases, [6]. Vertical profiles for 
waves from R03 to R08 are shown in Figure 3.19. Although completely developed 
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deep water conditions are never really achieved in reported waves tests, velocity 
decreases very quickly according to depth achieving very small velocity values. 
 

 
Figure 3.18 Horizontal and vertical particle velocities in wave R03. 

 

 
Figure 3.19 Horizontal and vertical particle velocities in wave R08.



  

 

 

 
Figure 3.20 Percentage difference between horizontal and vertical velocities for all the simulated waves. 

 

 
Figure 3.21 Horizontal velocity profile for all the tested waves.



  

 

4 

 

 Mathematical model 
 
In this chapter, the numerical model used to solve the problem is presented, describing how 
all theoretical issues have been applied in order to obtain consistent results. A potential 
flow model has been implemented in the software Matlab with the purpose of modelling 
the buoy behavior under the action of different regular sea states, adopting 3 Degrees of 
Freedom: surge, heave and pitch. 
The model consists of two main parts. The first one is related to the frequency domain, 
where hydrodynamic coefficients have been assessed through the use of specific Matlab 
functions that will be later discussed and the general behavior of the buoy is determined. 
The second part of the model is related to the time domain, trying to represent in a more 
specific way how the buoy moves in time under the action of certain free surface conditions. 
In order to understand this, all theoretical concepts expressed in the previous chapter will 
be discussed again describing their specific application to the case of a cylindrical buoy. 
Primary importance on the application of the model is linked to the free surface behavior, 
that is, as already said, defined by regular waves. A sketch of the composition of the model 
and how it works is presented in Figure 4.01. 
 

 
Figure 4.01 Mathematical model scheme. 
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4.1 Acting forces 
 
Before describing in a precise way the equations constituting the code, it is necessary to 
clearly understand which are the forces between the ones exposed in chapter 2.2 that must 
be taken into account and, on the other hand, which can be neglected. In particular the 
influence of diffraction and drag forces has to be evaluated so as to understand if they must 
be considered in the calculations and hence if their influence on buoy motion is relevant or 
not. 
First, Koulegan-Carpenter number has been computed. As already said in chapter 2.2, 
through this dimensionless quantity it is possible to evaluate the ratio between drag forces 
and inertia forces, hence understand if drag forces assume relevant importance or not in the 
specific work case. If	KC>10 drag forces are predominant over inertia ones, while if KC≤2 
inertia forces are predominant with respect to drag forces and the latter can be neglected. 
If KC assumes intermediate values both inertia and drag forces are relevant and cannot be 
neglected, [10]. KC is computed as  
 

KC= 2πA
L

     (4.01) 
where: 
 
• A represents the waves amplitude; 
• L represents a characteristic dimension of the body (diameter). 
 

WAVE KC 

R03 3.02 

R04 3.39 

R05 3.77 

R06 4.14 

R07 4.52 

R08 4.90 

R10 7.54 
Table 4.01 Koulegan-Carpenter number for the simulated waves. 

 
As shown in table 4.01, Koulegan-Carpenter numbers for the studied simulation waves 
takes intermediate values: in particular, KC gets bigger when wave height enhances. So, it 
is possible to conclude that drag forces have to be taken into account as much as inertia 
forces.  
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At this point the relative importance of diffraction forces has to be found out. The ratio 
between a relevant buoy dimension l (in this case diameter D) and the wave length l has 
to be computed. If l

λ
≪1, it means that the body is too small in order to produce relevant 

diffraction phenomena and hence diffraction forces can be neglected compared with the 
other acting forces, otherwise, if  l

λ
≥1/5, diffraction forces cannot be neglected. 

 
The results for each wave case are presented in table 4.02: 
 

WAVE l/l 

R03 0.063 

R04 0.056 

R05 0.050 

R06 0.046 

R07 0.042 

R08 0.039 

R10 0.039 
Table 4.02 l/l ratio for the simulated waves. 

 
So, the ratio l

λ
≪1 and it is lower than 1/5 too. This means that buoy diameter is very small 

compared with the wave length, so diffraction phenomena are very small and then 
negligible. 
Finally, a plot representing the relative importance of inertia, drag and diffraction forces is 
reported, highlighting this thesis buoy situation in red. In particular the plot is defined by 
the ratio between wave length and buoy diameter on abscissa axis and the ratio between 
wave height and buoy diameter on the ordinate axis. The latter is defined by a ratio which 
is similar and proportional to the Koulegan-Carpenter number.  
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Figure 4.02 Acting forces and their influence domains with respect to H/D and λ/D ratios [11]. 

 
The dynamics of body motions is described by Newton’s second law, which links internal 
and external forces as stated in equation (2.90). Internal forces are expressed by the right 
member of the equation and are only linked to the characteristics of the body, while external 
forces, represented by the left term, are defined as the sum of all the forces that are 
transferred from the external environment to the body. In this particular case, external 
forces are transferred to the buoy by water and by the mooring system. 
In the next paragraph, it follows an explanation on how internal and external forces are 
computed. 
 
4.1.1 Internal forces 
 
Internal forces are expressed through the inertial terms 
 

F
M

= P T
-T I

∙ τ
θ
=M τ

θ
    (4.02)	

 

where 𝐹, 𝑀, 𝜏 and q are the vectors of forces, moments, linear acceleration and angular 
acceleration respectively. Matrix M is the so-called inertia tensor, representing the inertial 
properties of the buoy. In case of a single body, it is represented by a 6x6 matrix, where: 
 
• 𝑃 is the mass matrix, regarding the first three DoFs described by the Cartesian 
reference system: the three translations surge, sway and heave. It is filled as shown in 
equation (4.03).  
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P =
𝑀 0 0
0 𝑀 0
0 0 𝑀

    (4.03) 

 
• 𝐼 is the inertial matrix, concerning the rotation DoFs (roll, pitch, yaw), and it is filled 
with the buoy moments of inertia 
 

I =
𝐼�� 𝐼�� 𝐼� 
𝐼�� 𝐼�� 𝐼� 
𝐼 � 𝐼 � 𝐼  

    (4.04) 

 
in which moments of inertia are computed as in expressions (4.05), taking X, Y and Z as 
the radians of rotation of the corresponding axis. 
 

I44= Y2+Z2
M

dm											I55= X2+Z2
M

dm												I66= Y2+X2
M

dm 

(4.05) 

I45=I54=	- 𝑋𝑌
M

dm											I46=	I64=	- XZ
M

dm												I65=I56=	- ZY
M

dm 

  
• 𝑇 is the coupling matrix, containing the terms that are linked both to translations 
and rotations 
 

T=
0 MzG0 -MyG0

-MzG0 0 MxG0
MyG0 -MxG0 0

    (4.06) 

 
4.1.2 External forces 
 
As already reported at the beginning of this chapter, external forces are the sum of all the 
forces which are transferred to the buoy from the external environment: in the case of this 
thesis, are considered to be part of this group the ones exerted on the body by water and the 
mooring system. External forces can be split into two main groups: hydrostatic, which are 
consequence of the balance between gravity forces, and hydrodynamic, due to dynamic 
pressure and viscous effects. 
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 Hydrostatic 
 
Reintroducing chapter 2 concepts, hydrostatic forces are the formalization of Archimede’s 
principle, which states the relation between body weight and its buoyancy. A floating body 
at equilibrium must respect the following conditions: 
 

Mg=rgV0      XC0=XG0      YC0=YG0   (4.07) 
 

where 
 
• V0 is the body volume; 
 
• C0   is the hull centre; 
 
• G0 is the gravity centre. 
 
As in the case of internal forces, it is necessary to introduce a 6x6 matrix which defines 
hydrostatic restoring force for all the 6 DoFs. This matrix is called hydrostatic restoring 
matrix (4.08). The positions of the matrix occupied by not null terms are only the ones 
linked to heave translation, roll and pitch rotations. The latter are computed as described in 
expressions (4.09). Surge, sway and yaw DoFs are not interested in this kind of force. 
 

S=

0 0 0
0 0 0
0 0 S33

0 0 0
0 0 0
S34 S35 0

0 0 S43
0 0 S53
0 0 0

S44 S45 0
S54 S55 0
0 0 0

    (4.08) 

 
 

S33=ρg dS=ρgV0					S44=ρg Y2dS+ρgV0(ZC0-
SW

ZC0)				 

 

	S55=ρg X2dS+ρgV0(ZC0-SW
ZC0)					S34=S43=ρg Y	dSSW

  (4.09) 

 

S35=S53=ρg X	dS
SW

															S45=S54=ρg XY	dS
SW

		 

 
Once hydrostatic restoring matrix is known, it is possible to define the effective hydrostatic 
forces as the product between matrix (4.08) and the displacement vector: 
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FHD
MHD

=	S	 τ
θ

     (4.10) 

 
Hydrodynamic 
 

Hydrodynamic forces are due to the wave field which the buoy is influenced by. As 
introduced at the beginning of paragraph 4.1, not all the hydrodynamic forces influence the 
buoy motion the same way, but it has been found that diffraction force can be neglected 
because of the small dimensions of the buoy with respect to wave length. Thus, 
hydrodynamic forces actually considered acting on the body are excitation force, radiation 
force and drag force. 
 
For what excitation force Fe is concerned, it depends both on frequency w and time t: 
 

Fe(w,t)=	fe(w)	∙	A(t)	    (4.11) 
 

where 
 

- 	fe(w) is a six elements vector of the excitation force coefficients (one coefficient 
for each DoF) and it depends on frequency only. 

- A(t) is the wave amplitude, which is instead time dependent. 
 
Fe results to be a six elements vector, representing the force linked to the incoming 
undisturbed wave for each DoF, concerning a single value of wave frequency. Coefficients 
	fe(w) derive from equation (2.92) and their calculation has practically been performed 
through the use of a particular matlab function called NEMOH, later explained in the 
following chapter 4.3. However, their value keeps being the same both in frequency and 
time domain. This is due to the fact that this work deals with linear regular waves. When 
this situation does not verify and, instead of regular waves a combination of linear waves 
happens, the coefficients take a slightly different expression which takes into account the 
convolution of all the several wave frequencies involved. 
 
Reintroducing radiation contribute, it expresses the force computed considered a flat free 
surface, without waves perturbation, but only produced by the body motion. Practically, it 
represents a sort of loss of the body energy and hence it counteracts excitation force in 
order to reduce buoy motion. For this reason, radiation force has been modelled as 
described in equation (4.12), with 𝑅� matrix whose elements are the radiation damping 
coefficients and 𝑢	the vector containing velocities that buoy assumes during its motion 
along each DoF. 
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Fr(w,t)=	Rd	(w)∙	u	(t)	    (4.12) 
 
where: 
 

- 𝑅�(w) is the radiation damping matrix (6x6), containing the radiation coefficients; 
the latter are frequency dependent as the excitation force coefficients. 

- u	(t) represents the buoy velocity assumed at each time instant during its motion. 
 

Such as in case of excitation force, radiation force depends both on frequency, because of 
the fact that radiation coefficients are defined in frequency domain, and time, as it depends 
on buoy velocity too (which is function of time). The values of radiation damping 
coefficients are still valid in time domain due to the fact that this thesis deals with regular 
waves as well. 
 
Last considered external hydrodynamic contribute is drag force. It is computed considering 
form drag only, being the buoy made of a very smooth material and hence viscous drag 
forces become negligible compared with the other contributes.  
This kind of force will be included in translations only, because of the fact that in these 
cases it is possible to relate fluid velocity and body velocity in a simple way, having both 
the same measure unit and directions, while in rotations a complex procedure should be 
developed in order to be able to relate fluid velocity and buoy rotation velocity. For this 
reason, it has been decided to take into account drag force in translations only. 
For sake of clarity, drag force expression is reported again below: 
 

Fdrag	=	-
1
2
ρACd∙	 u	(t)	 ∙	u	(t)	    (4.13) 

 
- Cd is the vector of drag coefficients. 
- 𝐴 is the vector containing the values of the areas concerning the different DoFs. 

 
The velocity considered in the drag force expression should be the relative velocity, namely 
the difference between water particles velocity and buoy velocity. As the aim of this thesis 
is to build a simplified model, velocity u	(t), on which drag force depends, has been set 
into the ODE as the velocity of the buoy only. This is possible because of the fact that the 
two velocities are comparable at the MWL and within a little depth only, as particle velocity 
decreases exponentially according to vertical axis, from the MWL to the bottom. The 
variation of particles velocity along water depth is shown in Figure 3.21. 
Studying the incident wave characteristics and in particular the ratio between water depth 
h and wave length it is possible to understand that according to the treated incident waves, 
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we are in cases representing both deep water and intermediate water, but very close to the 
deep water condition. 
At the end, as described in section 3.2.1, not negligible water particles velocity values 
happens within a very small depth from the MWL, while the main part of the depth is 
interested by very small and negligible both horizontal and vertical velocity values. 
Besides, a very small buoy area is involved and then the resulting drag force due to particles 
velocity happens to be very small. Then, the sum of these reasons and the fact that the aim 
of this work is to build a predictive simplified model, brings to the decision of considering 
the effect of particles velocity negligible and hence velocity u	(t)	as the one related to the 
buoy only. 
Having the spar buoy, unless for the very small crown in which catenaries are inserted, a 
perfect cylindrical form, its drag coefficient Cd can be found in literature, for example as 
results in [13, 33, 39], where, as well as in reported in the table of Figure 4.03, it is often 
linked to the ratio L/D between cylinder length and diameter.  
 

 
Figure 4.03 Drag coefficients for common body geometries [33]. 

Furthermore, for the particular case of the cylindrical form, a more accurate definition of 
Cd, for what the two considered DoFs are concerned, is given in the following Figure 4.04. 
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Figure 4.04 Cylinder drag coefficients for laminar flow and different L/D ratios [12]. 

 

In order to obtain the final results of the drag coefficients, a linear interpolation has been 
performed between the values contained in Figure 4.04, resulting in 0.84 and 0.98 for surge 
and heave drag coefficients respectively. 
 
 

4.2 Equation of motion 
 
With the assumptions introduced in section 4.1 it is possible to describe motion according 
to the Morrison’s method. It allows to obtain water particles kinematic from the analytical 
solutions of different wave theories, assuming that the body does not disturb water particles 
motion. This brings to the fundamental advantage of reducing the complexity of the model 
and thus, the computational cost of the simulations. 
Its applicability depends on the entity of body diameter D, wave height H and wave length 
𝜆, in order to define if the loads induced by the waves are dominated by inertia, drag or 
diffraction forces. Slender members with relative small diameter compared to the wave 
length and the wave height are dominated by drag forces, while for intermediate ranges are 
dominated by inertia forces. In both latter cases, Morrison’s method is applicable, being 
more determinant the inertial or viscous term of the equation. As already reported, when  
D
λ
≥1/5 diffraction forces cannot be neglected and potential flow theory is required to the 

computation of wave diffraction effects.  
So, according to the results of section 4.1, where it is stated that buoy is slender enough to 
not create any disturb to wave particles kinematic and diffraction forces are negligible 
compared with inertia and drag ones, Morrison’s method will be adopted. 
 
The buoy has been modelled as a single body with three DoFs: horizontal translation along 
wave propagation direction defined through x axis in the Cartesian reference system 
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(surge), vertical translation along z axis (heave) and a rotation restrained in the vertical 
plane (x-z) defined by the two translations (pitch). Besides, each DoF is characterized by 
an index number in order to make practically simpler the understanding of the equations: 
surge mode has index 1, heave mode has index 3 and pitch mode has index 5.  
Once that acting forces have all been introduced, it is possible to define buoy equation of 
motion in a complete manner. Through the application of this equation, it is possible to 
solve the problem of the buoy motion under the effect of incident waves in time domain 
and the result consists in the description of buoy behavior with respect to time.  
Before writing the final form of the equation, a summary of forces expressions is 
developed: 
 
• Excitation force 
 

Fexc=	fexc∙	η(t)     (4.14) 
 
• Radiation damping force 
 

Fr	=	Rd	(w)∙	x(t)	    (4.15) 
 
• Hydrostatic restoring force 
 

Fhyd	=	-KH ∙	x(t)				     (4.16) 
 
• Drag force 
 

Fdrag	=-
1
2
ρACd∙	 x(t)	 ∙	x(t)	    (4.17) 

 
where fexc, Rd and	KH are the hydrodynamic coefficients whose calculation will be later 
explained, and 𝐶� is drag coefficient. Terms x(t) and x(t) represent generic position and 
velocity of the buoy respectively. Having to deal with linear regular waves, hydrodynamic 
coefficients maintain the same value both in frequency and in time domain, so that the ones 
computed as function of frequency keeps being the same without any modifications in 
motion equation too. 
Remembering Newton’s second law (2.90) and considering the previously defined acting 
forces, it is possible to write down motion equation, [40, 41]. Equations for all three 
involved DoFs, surge (4.18), heave (4.19) and pitch (4.20) respectively are reported for 
clarity: 
 

(M1+Ca1)	∙	x t =Fexc1 t +Fr1 t +Fhyd1 t +Fdrag1 t    (4.18) 
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(M3+Ca3)	∙	z t 	=	Fexc3 t +Fr3 t +Fhyd3 t +Fdrag3 t   (4.19) 

 
(M5+Ca5)	∙	θ t 	=	Fexc5 t +Fr5 t +Fhyd5 t             (4.20) 

 
Substituting the forces with expressions (4.18), (4.19) and (4.20), and writing buoy 
displacements as x (surge), z (heave) and q (pitch), they become 
 

(M1+Ca1)∙x t =fexc1 ∙η t -(Rd11+Rd13+Rd15)∙x t -(KH11+KH13+KH15)∙x t -
1
2
ρACd1∙ x(t) ∙x(t)          

       (4.21) 
 

(M3+Ca3)∙z t =fexc3 ∙η t -(Rd31+Rd33+Rd35)∙z t 	–	(KH31+KH33+KH35)∙z t  -	
1
2
ρACd3∙ z(t) ∙z(t)                                                                      

(4.22) 
 
(M5+Ca5)∙θ t 	=	fexc5 ∙η t 	-	(Rd51+Rd53+Rd55)∙θ t − (KH51+KH53+KH55)	∙	θ t   (4.23) 

                  
where Mi and Cai are the summation of the picked DoF Inertia and added mass elements. 
 
So, from these equations it is clear that excitation force is responsible for enhancing buoy 
motion, making the body oscillating far from its balance position, while all the others 
contributes as radiation, buoyancy and drag forces act as restoring ones, which try to bring 
buoy back to equilibrium. 
Considering now all the three DoFs together, it is possible to write down the motion 
equation in a matrix form, where single hydrodynamic coefficients are replaced by matrices 
introduced in chapter 4.1 and x stands as total displacements vector (x = [𝑥	𝑧	q]): 
 

(M+Ca(ω))∙x t 	=	fexc ω ∙η t 	-	Rd ω ∙x t 	-	KH∙x t 	-	 1
2
ρ	A	Cd∙ x(t) ∙x(t)      (4.24) 

 
Added mass coefficient 𝐶° and radiation force coefficient Rd computation will be explained 
in the following section. Like excitation force and radiation coefficients, 𝐶° is frequency 
dependent as well. It has the unit of measure of a mass [kg] and represents the mass of fluid 
volume that the body moves during its own motion through the fluid itself. It is summed to 
Inertia matrix in order to consider in motion equation both mass coming from the body and 
the one associate with the displaced fluid. 
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4.3 Frequency domain 
 
The first part of the code is developed in frequency domain, first of all because of the fact 
that hydrodynamic coefficients needed to evaluate acting forces are frequency dependent, 
so, it results useful to calculate them in frequency domain before passing to time domain. 
Besides, it is very interesting to get a first understanding of the buoy behavior at different 
frequencies. For example, in the design of a wave energy converter, principal importance 
is taken by the definition of the resonance frequency of the body in order to produce as 
much energy as possible, tuning the device at the most energetic frequency band of the 
wave field, as introduced in [23]. Design is not this thesis aim, not having to deal with a 
WEC but with a simple buoy. Nevertheless, a preliminary understanding of the effect that 
regular waves created by the wave generator have on the buoy is very important in order to 
create an expectation about the frequency and the amplitude of the buoy motion.  
 
The aim of this part of the code is to determine the elements that the equation of motion 
needs to be solved: inertia matrix, containing mass for translation DoFs, moments of inertia 
for rotation DoFs and added mass matrix, buoyancy matrix, coefficients of excitation force, 
coefficients of radiation force. 
As showed in section 4.1, internal forces expressed by inertia, added mass matrixes and 
hydrostatic ones do not need any potential integration because they are independent from 
the incident wave. Then, dimensions and weight of the body are enough, and for their 
computation a mesh definition is required only, in order to be able to perform the numerical 
integration on the body surface. In order to do that, a function called Mesh is used: it allows 
both the grid construction and the calculation of the specified elements. The latter function 
is going to be better explained in next paragraph. 
 
For what the computation of the excitation force and radiation coefficient is concerned, a 
different kind of integration has to be performed. 
Being the general expressions of excitation and radiation forces written as (4.25) and (4.26) 
respectively, again reported for clarity, the aim of this part is the resolution of the potential 
𝜙 and its integration on the buoy surface in order to get to the hydrodynamic coefficients 
values. 

𝐹�M�,± = 𝑖𝜔𝜌 𝜙a + 𝜙� 𝑛±𝑑𝑆¶    (4.25) 
 

					𝐹�,± = 𝑖𝜔𝜌 𝜙�	𝑛±𝑑𝑆¶     (4.26) 
 
This operation is performed numerically by the use of BEM (boundary element method) 
integration. Software offering the capability of performing this kind of integration are 
several and the most widely used are WAMIT ® [34], developed by the Massachussetts 
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Institute of Technology (MIT) and AQWA, part of the workbench package of ANSYS ®, 
[28].  
In this case, however, the open-source code Nemoh has been adopted in order to perform 
the calculation of the hydrodynamic coefficients. It has been developed by the Laboratoire 
d’Hydrodynamique, Énergétique et Environnement (LHEEA) laboratory at the Ecole 
Centrale de Nantes, France, over the past 30 years. It does not offer the only calculation 
code, but it comes in a package with a Matlab toolbox to control Nemoh and the already 
introduced meshing tool Mesh too. The latter has to be ran before the computation 
performed by Nemoh, in such a way to give Nemoh itself the meshing grid upon which 
integrate the potential, [14]. 
 
BEM method solves the fluid velocity potential integration on the body surface applying 
the following hypothesis: 
 
1) Fluid continuity; 

 
2) Strains proportional to deformations velocity (Newtonian fluid); 

 
3) Fluid homogeneity and isotropy; 

 
4) Inviscid fluid; 

 
5) Fluid initially at rest (only gravity and external forces); 

 
6) Atmospheric pressure assumed above free surface and surface tension neglected. 

 
Application of the first three hypothesis enables the derivation of the Navier-Stokes 
equations, while through hypothesis 4) perfect fluid equations are obtained. Hypothesis 5) 
allows the definition of velocity potential 𝑉 = ∇𝜙. The problem is then solved thanks to 
the application of an additional BC (boundary condition), assuming body surface as 
impermeable and thus forcing fluid velocity to be equal to the normal velocity of the body 
in the normal direction of the structure surface. Latter BC mathematical expression is given 
by equation (4.27) where C and E represent body surface and centre of gravity respectively. 
 

																						Vn C=
∂ϕ
∂n C

=	VEnC     (4.27) 

 
Surface need to be discretized in elements as the integration is performed at each element 
composing the surface. 
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To solve the BC on the body, the free surface and the bottom the Green’s functions are 
used. The solutions of the problem are the velocities and then the potential is obtained 
through the influence coefficients. These, need to be discretized and then integrated on the 
surface panel. In the general form, they are expressed as: 
 

C=C1+C2       (4.28) 
 

C1= f 1
MM1

' dS(M1
' )S ;							for	M1

' (x',	y',	z')    (4.29) 

 

C2= 𝑔(𝜂)º/L
»º/L dθdS(M' )S    (4.30) 

 
The terms C1 are computed by an approximation to the analytical Hess formula as in [30]. 
For the terms C2 first the θ integral is calculated and then the double integral S is obtained 
numerically. Due to the slow variation of the integration term on the panel, integration in 
S can be achieved by using the approximation of the one point formula. For the computation 
of the integral in θ, the analytical formula proposed by [32] are used. Through the 
discretization of the integral equations the following linear systems are derived: 
 

∂_
∂n Mi

=	 ¼½
L
+ σ¿𝐾±ÀÁ

±`Â     (4.31) 

 
𝜙

Mi
=	 − σ¿𝑆±ÀÁ

±`Â       (4.32) 
 

𝑆±À=
Â
�º

𝑆(Mi ,M' )dS(M' )S 				    (4.33) 
 

𝐾±À=
Â
�º
	 ∂
∂n M'

𝑆(Mi ,M' )dS(M' )S    (4.34) 

 
Where 𝑆	is the Green’s function of the problem and N stands for the number of bodies 
considered. The element “ ˜ ” indicates a complex term. At this point, the elemental 
radiation and diffraction problems are respectively expressed as follows: 
 

															∂_Ã
∂n Ä

=	σ±
Å     (4.35) 

 

													∂_Ã
∂n Ä

=	-	 ∂_Æ
∂n Ä

     (4.36) 
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Where 𝜎±
Å = 𝑒Å ∙ 𝑛 for q = 1,2,3 and 𝜎±

Å = (⃗𝑒Å»É	∧O𝑃) for q = 4,5,6 which are the modes 
corresponding to translational and rotational modes respectively. The term 𝑒Å	represents 
the unit vector of the axis q. The adoption of complex numbers is not only due to the easier 
writing, but to the fact that it allows to save computational time. Calculations could be done 
in real numbers but the unknowns would then be twice as much as with complex numbers, 
having computation times of the order of 8M3 instead of 4M3 for a complex system of order 
M, being M the number of panels, [8]. The radiation problem is stated by a body forced 
with a sinusoidal motion in completely calm water, whereas the diffraction problem is 
stated by the still body in the presence of monochromatic waves. The pressure integral of 
the diffraction restitutes the excitation force coefficients. The results are the hydrodynamic 
coefficients shown in Figure 5.02, which are obtained in complex numbers, but are 
expressed in real numbers. In particular, the real part of the radiation coefficient is referred 
to as the added mass coefficient, its imaginary part represents the radiation damping 
coefficient and, at last, the module of the excitation force influence is the excitation force 
coefficient. 
 
 
4.3.1 Mesh 
 
Before the BEM integration performed by NEMOH ([22, 36]), the meshing tool MESH is 
used in order to subdivide buoy surface in elements, defining a grid and allowing the 
following numerical integration itself. MESH is provided as a folder in which two sub-
codes are present: the first one is called Mesh.m which is useful in order to build a grid 
around the surface of bodies having any shape while the second one, axiMesh.m, is a 
meshing tool particularly created for axisymmetric bodies. Having to deal with a cylindrical 
and hence axisymmetric buoy, axiMesh.m has been used in order to build the grid. 
Implementation of axiMesh.m needs the definition of a plane which coincides with the one 
containing the axis of the cylinder and cutting the buoy in 2 parts. Then, in a 2D reference 
system the coordinates of the vertices of half the object have to be written as an input 
argument in the form of a vector, supposed the object to be axisymmetric. This part has to 
be done already considering the object in its equilibrium position with respect to the flat 
free surface, setting the null vertical coordinate at the free surface. 
At this point axiMesh.m code is ready to be run. During code running other input 
parameters are requested in order to define the mesh. In particular, the number of angular 
elements in which the base of the cylinder is discretized and the number of total elements, 
with a maximum of 2000 total ones need to be defined once the code ask them in the 
command window. 
Once all the input arguments are defined, the code returns a plot of the grid built all around 
the object as it is possible to see in the example of Figure 4.05. Furthermore, inertia and 
hydrostatic restoring matrixes are given. This is possible because the latter two matrixes 



Mathematical model  4.3 Frequency domain 

 73 

depend on the characteristic of the object, once water density is known, so data are enough 
to compute them. 
 

 
Figure 4.05 Computation mesh built by mesh.m function for BEM coefficients calculation. 

 

4.3.2 Nemoh 
 
After the mesh construction, enough data are available in order to run Nemoh. Frequencies 
vector is the only input argument that Nemoh needs, being the hydrodynamic coefficients 
function of w. Frequencies have been chosen in such a way that both the wave frequency 
and resonance one (determined by the computation of RAO operator) would be inside the 
interval: the first one is defined by the wave period T, varying for each experimental wave, 
while resonance frequency is a body characteristics which depends on both buoy mass and 
dimensions and can roughly be computed at this step as 
 

ω= ρgS
m	+	A

     (4.37) 

  
After BEM integration, added mass coefficients matrix, radiation damping coefficients 
matrix and excitation force coefficients vectors are completely filled up. Plots and values 
of the resulting coefficients will be shown at the end of this section. 
 



Mathematical model  4.3 Frequency domain 

 74 

Last section of the frequency domain part is aimed at computing RAO (Response 
Amplitude Operator). It represents a significant quantity which is able to give first 
informations about the motion amplitude according to different incident wave frequencies.  
RAO computation starts applying the Fourier Transform to the linearized equation of 
motion and the following equation is achieved: 
 

Fe	=	X0	(-	ω2	 m+A 	+	iωB	+	KH)    (4.38) 
 
where 𝜔 is the frequency of monochromatic regular wave exciting the buoy, m is the mass 
matrix of the system and hence it coincides with Inertia matrix, A represents the added 
mass matrix previously computed with Nemoh function, and then B represents the radiation 
damping matrix. Furthermore, KH takes the role of the hydrostatic restoring matrix and Fe 
is the excitation force coefficient. At the end, X0 represents the RAO and it is also the only 
unknown term of the equation, while all other terms have been found as explained in 
paragraph 4.3.1, [10]. So, RAO operator can be easily assessed by inverting previous 
equation, obtaining 

 
     X0	=

Fe
-	ω2	 Inertia+mad 	+	iωRd	+	KH

      (4.39) 

 
To RAO coefficient a particular meaning belongs. In facts, it is a dimensionless quantity 
(for translations motions), but it can also be defined in [m/m] in case of translations and in 
[rad/m] for rotations, as it represents how much the body moves compared with the wave 
height, along each DoF. For example, considering heave mode, it has to be interpreted as 
the ratio between the vertical oscillation of the buoy and the wave height, [20]. This is the 
reason why RAO is a very important parameter, capable of giving a first view of the 
principal characteristics of the body motion: it is possible to define a first approximated 
value of resonance frequency and it gives a preliminary understanding of the oscillation 
amplitude of the object. 
Nevertheless, frequency approach lacks of a little bit of precision, not being possible to 
consider the nonlinear terms acting in the equation of motion. This is drag force case, whose 
expression contains squared velocity, which brings an accentuated nonlinearity: then, it 
cannot be included in the RAO computation. 
 
Furthermore, RAO has been useful in mesh definition as well. In facts, finding 
hydrodynamic coefficients needs working with a good enough mesh for the representation 
of the body external surface, as the integration method (BEM) works on the single elements 
of the grid. Working with the right mesh means both having little elements enough to catch 
acting forces variations the best way possible and, on the other hand, avoiding the presence 
of too many elements in order to maintaining fair computation costs.  
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So, a sensitivity analysis has been performed varying the size of mesh elements through a 
variation of the number of total panels (input of the function axiMesh) and comparing RAO 
plots for different configurations.  
In particular, angular discretization has been fixed to a number of “slices” equal to 20. 
Besides, an increasing number of total panels in which the grid is subdivided has been 
implemented. Eight different grids, from a coarse one to a more refined one have been 
defined, and RAO operator has been computed for each configuration. Finally, different 
mesh configurations are reported in table 4.03: 
 

 
Angular 

discretization 
Total number 

of panels 
Cell dimension 

[cm^2] 
B1 20 100 0.92x7.00 

B2 20 200 0.92x3.11 

B3 20 300 0.92x2.15 

B4 20 400 0.92x1.65 

B5 20 500 0.92x1.33 

B6 20 600 0.92x1.12 

B7 20 700 0.92x0.96 

B8 20 800 0.92x0.82 
Table 4.03 Different meshes characteristics considered for sensitivity analysis. 

 
Figure 4.06, Figure 4.07 and Figure 4.08 show surge, heave and pitch RAO respectively 
for different number of elements within the frequency range [3 - 9 rad/s]. 
With an increasing number of total panels a much more precise solution is achieved, and 
the gap between progressive RAO curves grows smaller. In chapter 5 the final choice is 
presented, taking into account the gap between different configurations for what RAO 
computation is concerned. 
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Figure 4.06 Comparison of surge RAOs for sensitivity analysis.  

 

 
Figure 4.07 Comparison of heave RAOs for sensitivity analysis.  

 

 
Figure 4.08 Comparison of pitch RAOs for sensitivity analysis.  
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Figure 4.09 Comparison of each DoF RAOs percentage relative error. 

 
 

4.4 Time domain 
 
Up to now, the buoy motion has been described as frequency dependent, which certainly is 
a useful procedure, but it lacks of some important aspects: it is not possible to include 
nonlinear contributes (in this particular case drag force). In addition, frequency domain 
consists in a general description of the phenomenon associating to each frequency value, 
describing it according to the computation of RAO coefficient. The latter guarantees the 
definition of a mean value of how much the body moves under certain conditions of 
frequency only. For this reason, time domain is a more accurate way to describe the buoy 
motion, which goes further on what it is possible to understand with RAO computation. It 
is like opening the box and studying the evolution of the buoy motion for each singular 
frequency along a certain time span. 
 
In order to describe the buoy behavior in time it is necessary to solve equation (4.24). 
Unfortunately, the derived motion equation is a second order one, but available time 
integration algorithms are usually implemented for first order differential equations (ODEs) 
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only. So, as to make the integration possible, (4.24) has to be transformed into an ODE. 
This is possible through the definition of the so-called state vector X, [21]: 
 

X= X
X       (4.40) 

 
Thus, equation (4.24) can be rewritten as  
 
X= X 2 	;	 fexc ω ∙η t 	-	Rd∙X 2 	-	KH∙X(1)-

1
2
ρACd∙ X 2 ∙X(2) / Inertia+Ca(ω)  

     (4.41) 
 
This is finally an ODE solvable through the use of usual Matlab integration algorithms such 
as ode15s, ode23, ode45 etc, being its general expression 
 

dx
dt
=F(x,t)      (4.42) 

 
Note that, as already mentioned in previous chapter, hydrodynamic coefficients depend on 
frequency. Nevertheless, when passing from frequency domain to time domain they need 
sometimes an adjustment. In particular this happens when dealing with irregular waves, 
where sea state is defined through a so-called wave spectrum, a relationship between the 
distribution of energy or wave heights and frequency within the extension of sea surface 
considered. In the latter case both added mass coefficients and radiation force vary from 
frequency to time domain, because of the fact that coefficients linked to different 
frequencies have to be taken into account. Then, memory function K(t) related to radiation 
phenomenon has to be evaluated as a convolution computed taking into account all 
frequencies [40, 42], and at the end it can be computed as written in expression (4.43). 
Added mass coefficients could then be computed as expression (4.44) and equation of 
motion would become expression (4.45). 
 

Krad t = 2
π

B(ω)¥
0 cos(ωτ)dω    (4.43) 

 
µ∞ = A ω + 1

ω
Krad

¥
0 (τ)sin(ωτ)dτ   (4.44) 

 
M+µ∞ 	X	=	Fe	-	 K t-τ 	X τ 	dτ	t

0 -	KHX	+	Fdrag	+	Fothers  (4.45) 
 

Nevertheless, this is not this thesis case, where regular waves are taken into account only. 
Thus, a singular frequency value is defined for each simulation. So, hydrodynamic 
coefficients values keep being the same in the two different domains: for this reason, used 
coefficients are the one related to the frequency defined by current sea state as 𝜔 = 2𝜋/𝑇. 
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Unfortunately, it is not easy to catch the exact value of frequency, because of the fact that 
frequency vector has been built with a 0.05 rad/s interval. Despite this, immediately 
following value to the one of interest has been selected and maintained through the entire 
simulation time. This kind of procedure represents obviously a little approximation. 
 In spite of having reduced the equation in an easier to handle one, not all mentioned 
algorithms are useful in order to get consistent solutions. In facts, integration has to be 
performed taking into account that wave heights are given as elements of a vector, in which 
each recorded value is related to a time instant, as described in chapter 3. Thus, some 
problems arise according to time integration, as they define a time vector in which the 
solution is computed, which is different from the instants where wave heights are defined.  
To circumvent this limit, a different integration algorithm has been used: ode4. It is based 
on the widely known fourth order Runge-Kutta method, an iterative and discretized way 
through which a numerical approximation of ODEs solution is computed. It is applied to 
equations with defined initial conditions values (Cauchy’s problem), [15]. In particular, 
initial conditions are represented by buoy position and velocity, defined for each DoF. 
Cauchy’s problem is presented as follows: 
 

x t0 =x0

x t0 =x0
     (4.46) 

 
where x0 and x0 values are known and put equal to zero, because of the fact that they refer 
to a situation in which there is no perturbation of the free surface and hence spar buoy is 
still at its balance position. 
Time integration range is then defined, assuming a small enough ∆t in order to get a fine 
resolution, but not too small to avoid useless increments in computation costs. Once ∆t is 
defined, the integration process can start in order to define solution x. It follows a 
description of the integration algorithm performed to find the solution at a single time 
interval. 
Working in a discretized domain, equation (4.42) becomes: 
 

Δx
Δt
=F(x,t)      (4.47) 

 
First, each time interval ∆t is divided into two further subintervals of same length. 
Supposing to deal with a single time step, solution at tn is known and its value at tn+∆t has 
to be evaluated. This is done calculating a first solution increment at time tn: 
 

Δx1=F(xn,tn)·Δt     (4.48) 
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Then, second and third increments of the solution are computed at time tn+∆t/2, including 
first and second increments respectively: 
 

Δx2=F(xn+
Δx1
2
,tn+

Δt
2
)·Δt    (4.49) 

 
Δx3=F(xn+

Δx2
2
,tn+

Δt
2
)·Δt    (4.50) 

 
Finally, one more increment is evaluated at the end of the interval, especially at tn+∆t as 
 

Δx4=F(xn+Δx3,	tn+Δt)·Δt    (4.51) 
 
At the end, solution is defined as a weighted average of the four increments, where the 
central ones Δ𝑥L and Δ𝑥É, computed at tn+∆t/2, influence final solution in a higher way: 
 
 

tn+1=tn+Δt

xn+1=xn+
1
6
∆x1+2∆x2+2∆x3+∆x4

   (4.52) 

 
This way of integrating motion equation allows to make instants at which wave height is 
recorded coincide with the integration instants, avoiding any kind of problem related to the 
not perfect match between the two when using other integration algorithms. In this case, 
being wave heights defined any 0.001s, integration time step length has been fixed to 0.01s, 
corresponding to almost 100 points per period in which solution is evaluated.  
Of course, solution is computed at half of each time step too, but those values are not 
returned in solution vector by ode4. Figure 4.12 gives a graphical representation of how the 
algorithm works. 
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Figure 4.12 Graphic representation of Runge-Kutta discrete method of 4th order [16]. 

4.4.1 Mooring system 
 
As already presented in chapter 3, a mooring system is added to the set-up. It consists of 
four metal chains, linked to the cylindrical buoy through a circular plastic ring applied on 
the body itself, and fixed to the bottom. As shown in Figure 3.03 and Figure 3.04, the 
catenaries are anchored at the four nodes of a rectangular base.  
The latter are applied in order to reduce oscillations and to maintain the body around its 
prescribed position, bringing in new forces due to the chains tensions that arise at the 
moment in which the chain itself experiences a displacement from its initial position.  This 
represents the principal goal of this catenary mooring system, and its action has possibly to 
be performed avoiding the situation in which catenaries are pulled to their maximum length. 
If this happens, the mooring system is normally well designed.  
Considering the three DoFs that have been taken into account (surge, heave, pitch), it is 
easy to understand that buoy motion can happen in the (x-z) plane only: this leads to the 
conclusion that mooring could be modelled considering two chains in the prescribed plane 
only, one upstream and one at the wake of the buoy.  
Despite the possibility of this simplification, accurately modelling this kind of mooring 
system is still a very difficult matter to have to deal with and its development goes beyond 
this work purposes, as this mathematical model has the aim of understand from a 
preliminary point of view the specific laboratory setup and buoy movement under the action 
of a certain sea state.  
For these reasons, the mooring system has been modelled as follows, through the use of 
two calibration coefficients defined while comparing the buoy motion coming from 
laboratory video analysis and the results coming from the mathematical model 
implemented on Matlab. 
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Mooring system influence on the buoy motion can be of two different sorts depending on 
the solicitation characteristics. Catenaries can be stretched through their whole length when 
solicitation is high enough or not be stretched at all but working in such a way that they 
influence the buoy motion as well, because they experience a displacement from their initial 
position and they are so put in tension anyway. It follows the description of how these two 
different mechanisms have been modelled. 
 
When incident wave is high enough to stretch catenaries to their whole length (this happens 
in the case R10), since they are characterized by negligible weight compared with the buoy, 
they have been modelled taking into account their action at the moment in which buoy 
position is far enough from the initial one to tight the chains. Since the latter stiffness when 
they are totally stretched, they make the buoy immediately stop avoiding any further 
movement further from that position. In order to model this situation, an end-stop 
mechanism has been implemented. Through this mechanism a very high stiffness is 
associated to the chains when they get tight, while a null one is associated to any other 
situation. In mathematical terms, the mooring system is represented by the Fmoor function 
(4.53), created separately in a dedicated Matlab script. As Fmoor depends on the buoy 
position at each instant of simulation, it is function of time too. 
 
 

Fmoor(t)=

-	Kmoor		 y t -Ylim ,					when	 y t ≥Ylim

0,																																																otherwise

  (4.53) 

 
where: 
 
• Kmoor	is constant representing mooring stiffness; 
 
• Ylim represents the length of a single chain and acts as a limit for buoy position 
(35cm); 
 
• y t  is the distance of the buoy from the point in which the chain is anchored. 
 
Relative position of the buoy y(t) has been computed considering both position as function 
of time, and the relative distance between the anchored point and the initial buoy position. 
In this way, it is possible to compare the chain length and the effective position of the buoy, 
in order to apply condition (4.53). In particular, distance y(t) has been defined as 
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y t = (x t +x0-x1 + d1∙ sin θ(𝑡) )2+(z t +z0)2+(d0)2  (4.54) 
 
where x(t) and z(t) represent buoy position as function of time, respectively along 
horizontal and vertical direction, referred to the initial position in surge and heave mode 
respectively, while x0, z0 and d0 takes the role of the coordinates of the buoy with respect 
to the anchored point of the chain: in particular d0 is the horizontal distance from the 
anchored point of the chain at the bottom to the buoy. The distance d1 represents the length 
measured from the centre of rotation of the object and the point in which catenaries are 
hooked to the body. Parameter x1 represents the difference between the centre of gravity 
horizontal coordinate and the chain end, and it is evaluated as buoy radius. 
 
The value of stiffness constant  Kmoor	 has been selected through a calibration process as to 
find the correct value of stiffness that best represents the real effect that mooring has on the 
buoy. 
 
When the incident wave happens to be small enough to avoid previous situation, mooring 
system cannot be modelled through the same function because of the fact that it is not 
totally stretched and the condition about y(t) would always get to a value of  Kmoor	 equal 
to zero and then catenaries effect would not be represented by the model.  
So, when this happens, mooring system is modelled representing its effect as a sum of two 
contributions: a damping and a stiffness.  
The damping term has been modelled in the same way as the damping contribution due to 
the radiation phenomena, so through the coefficient Kdamp	multiplied by a velocity, which 
in particular is the velocity of the buoy for each DoF, as follows: 
 

𝐹damp(t)	=	𝐾damp	∙	𝑢 t     (4.55) 
 
where u(t) is a 3x1 vector containing the three components of velocity along each DoF. 
Being velocity function of time, the whole damping term will be defined at each instant as 
well. 
Damping force exerted by the chains is in particular responsible for a motion amplitude 
reduction or increase with respect to the member sign. 
 
The stiffness member has a similar structure as the one of the damping term, with the 
constant KÒÓÔÕÕ that multiplies a position: 
 

𝐹stiff(t)	=	𝐾stiff	∙	𝑥 t      (4.56) 
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where x(t) is a 3x1 vector containing the three components of position along each DoF. 
Being position function of time, the whole stiffness term will be defined at each instant as 
well. 
 
The mooring effect is then modelled as the sum of the latter two contributes with the 
addition of the end-stop mechanism that works anytime catenaries are stretched. The 
following equation recalls the final total force FMS through which mooring system is 
modelled at any situation: 
 

𝐹MS	=	𝐾stiff	∙	𝑥 t 	+	𝐾damp	∙	𝑢 t 	+	𝐹moor   (4.57) 
 
All the previous expressions concerning mooring system are expressed taking into account 
one single DoF. 
At the end, the final version of the ordinary differential equation (ODE) representing buoy 
motion along the three considered DoFs, including mooring system effect, is defined in the 
following expression: 

 
M+Ca(ω) ∙x t 	=	fexc ω ∙η t 	-	Rd ω 	∙	x t 	-	Kdamp∙x t 	-	Kstiff	∙	x t 	-	KH	∙	x t 	-	

𝐹moor-
1
2
ρACd∙ x(t) ∙x(t)                                     

(4.58) 
 

As for coefficient Kmoor	, Kdamp	and Kstiff	 are evaluated through a calibration process too. 
Final values of the coefficients are reached for each test, hence for each experimental wave, 
and along every DoF too. In particular the calibration process consists of imposing different 
values of the calibration coefficients at each wave and DoF until the model results, both in 
time and frequency domain, best fit the laboratory ones. Acting with different coefficients 
at each wave and DoF, allows to define the trend taken by the coefficients against wave 
height. 
While Kmoor	 is related to all the DoFs and maintains the same value due to the fact that its 
action has to practically reply the effect that catenaries have on the buoy once they reach 
their maximum extension, Kdamp	and Kstiff	 do not keep being the same at each DoF. The 
reason why this happens is related to the forces that the mooring system has to fight against 
and to the different resistance that the catenaries exert along different directions. In fact, 
the forces exploited by the catenaries are related to the displacements experienced by the 
chains. When the displacement grows, and the chain becomes more stretched, the exploited 
force grows as well. In chapter 5, where results will be presented, the values assumed by 
these coefficients will be discussed in a more precise way according to the other simulation 
characteristics. 
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4.4.2 Outputs of time domain model running 
 
The model simulation returns as result a series of vectors gathered in two matrixes: 𝑥 
contains the position vectors, the ones which contains the position that the buoy occupies 
at each simulation instant along each DoF while 𝑥 is formed by the buoy velocitiy vectors 
along each DoF. Both have dimension 3xTspan, where Tspan stands for the number of 
simulation instants. The result expressed in this form is then split in six different vector of 
dimensions 1xTspan, as to achieve an easier handling: 
 
- x_buoy: position of the buoy along surge motion; 
- z_buoy: position of the buoy along heave motion; 
- r_buoy: rotation of the buoy along pitch motion; 
- vx_buoy: velocity of the buoy along surge motion; 
- vz_buoy: velocity of the buoy along heave motion; 
- vr_buoy: angular velocity of the buoy along pitch motion; 

 
 

4.5 Post-processing in frequency domain 
 
After the obtained results are compared with the laboratory ones, a frequency analysis on 
the position vector has been performed on order to compare the oscillation frequency of the 
model motion and the one related to laboratory one.  
The passage from time domain to frequency domain is performed through the application 
of the Matlab function “Fast Fourier Transformed” (fft), directly applied to the vectors 
themselves. Having to deal with vectors resulting from the resolution of the equation of 
motion in time domain, nonlinear forces effect is not cut out and it is possible to define a 
more precise frequency behaviour of the body than the one obtained through the 
computation of the RAO, performed in section 4.3.2, [17], [18]. 
 
The vector resulting from Fast Fourier Transformed application is then modified in order 
to obtain a function of frequency representing the real signal amplitude called P1, expressed 
in [m]. 
This requires the definition of a vector of frequencies f inside which motion amplitude is 
observed. Then, as to reach the real motion amplitude, vector P2 is first computed and 
hence vector P1 expression is derived: 
 

P2=abs
X
L

      (4.59) 
 

P1=P2(1:L/2)  à     P1=2*P1    (4.60) 
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where X represent the Fourier transformed of the original vector, L is the length of the 
vector itself and 𝑃Â is the final result, so the vector of real motion amplitudes along 
frequency. 𝑃Â is described in an interval of length L/2 because of the fact that Fourier 
transformed X is symmetric with respect to half the domain length L. 
At the end, both X and P1 are plotted against frequency vector to better understand their 
behaviour in frequency domain. 
 
This kind of analysis, after the resolution of the equation of motion in time domain, 
represents a quite precise way to describe frequency behaviour of the body because of the 
fact that it includes nonlinear effects too.  
The peak frequency that is expected to assess in this section is very similar to the wave 
frequency: in fact, unless the solicitation has a too high frequency, it always occurs that the 
body moves with the same frequency of the wave.  
 
 

4.6 Free decay test  
 
Free decay tests are particular kind of simulation in which no incident wave is present and 
hence none kind of excitation force is provided to the body. The free surface is flat and the 
only perturbation it undergoes is due to the motion of the body (radiation contribution), 
moving from an initial position which is different from its balance one. Once the body itself 
is released it tends to oscillate until equilibrium is reached. Free decay test is useful in order 
both to assess a body natural frequency and study the amplitude of oscillations of its own 
motion while moving searching its balance configuration, [19, 24]. 
 
A free decay test has been performed in order to assess natural frequency of the buoy for 
what heave DoF is concerned and, being the aim of this work the construction of a model 
representing a buoy motion, to compare the model free decay results with the experimental 
simulation performed in laboratory as well in order to evaluate the reliability of the model 
itself. 
Free decay test has been conducted imposing flat free surface along the entire simulation 
time, in particular a null wave height (H=0) has been set in order to represent this condition. 
Furthermore, a long enough test time has been imposed as to catch motion decay the best 
way possible and hydrodynamic coefficients for a very low frequency have been computed 
with the use of function Nemoh, starting from the same mesh defined through the sensitivity 
analysis. It is not actually fundamental to compute every hydrodynamic coefficient for null 
frequencies because most of them already assume an asymptotical behavior when 
approaching low frequencies. Nevertheless, in this case, not every coefficient has an 
asymptotical behavior, so they have been again computed assuming a frequency range 
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equal to [0.05 : 0.05 : 4.00], which trend is plotted in chapter 5 Figure 5.57, with all the 
other results of the model. 
 
Finally, initial conditions have been introduced in order to define an initial state 
representing a starting position of the buoy which is different from its balance 
configuration. Initial state has been defined through the following condition: 
 

z0=-0.04	m	 heave       (4.61) 
 

It does not make sense to impose a different initial condition from the null one for what 
surge motion is concerned, because any surge oscillation arises when no excitation force 
due to the waves is provided. 
When simulation begins the buoy starts oscillating along the vertical direction. The 
amplitude of the oscillation decreases until the balance configuration is assessed according 
to a particular frequency: the natural one. Each DoF has its own motion natural frequency 
which is assessed through a frequency analysis performed the same way as described in 
section 4.5. 
Frequency analysis is very useful in free decay as well, because, as already said, on one 
hand it is possible to compare model and laboratory results both in time and frequency 
domain. On the other hand, it enables to catch natural frequencies considering the whole 
amount of acting forces, both linear and nonlinear, and this brings to a more precise result 
than the one achieved through the computation of RAO coefficient. It is then worth to 
compare the two latter natural frequency values results. 
 
As for all the other wave cases, laboratory tests have been recorded and analyzed. The 
comparison between model and laboratory results will be developed in chapter 5. 
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5 

 

Results 
 
In this chapter, all the results of the model concerning both frequency and time domain will 
be presented, paying particular attention to the comparison between the model and the 
laboratory results, in order to verify the reliability of the model itself.  
Furthermore, the values of the calibration coefficients inserted in the mathematical model 
in order to obtain such results will be reported and their values plotted against wave height. 
In this way, the trend taken by the coefficients against wave height can be easily 
understood.  
 
 

5.1 Frequency domain results  
 
The aim of the frequency domain part of the code is to compute consistent values for the 
hydrodynamic coefficients that are later used in the time domain part. 
As already explain in chapter 4, this is done through the application of a sensitivity analysis 
on the mesh elements. Taking into account Figure 4.06, Figure 4.07, Figure 4.08 and Figure 
4.09, although in surge case 20x600 grid represents a good mesh solution, in heave and 
pitch cases this is not as precise as well. Hence, it has been chosen to proceed with the 
adoption of 20x700 mesh for all three DoFs. Once the choice of the mesh is made, final 
RAO and hydrodynamic coefficients can be definitely assessed. Their plots are shown in 
Figure 5.01 and Figure 5.02 respectively. 
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Figure 5.01 RAOs after the choice of the final mesh (20x700).  

 

 
Figure 5.02 Added mass, radiation and excitation force coefficients for each DoF and for 3-10 rad/s frequency interval. 
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Hydrodynamic coefficients plot shows that added mass coefficients tend to maintain 
constant values throughout the frequency domain. Radiation coefficients tend to a very 
small value at low frequencies, but, while heave and pitch ones keep being small, the surge 
coefficient increases. This could be explained because of the fact that, being the buoy a 
slender body, influence areas are different if we consider vertical or horizontal section, and 
the vertical one is bigger than the other. Being vertical section linked to surge motion bigger 
than the horizontal one, it is then possible to understand that it can have a bigger influence 
on free surface while perturbing it, during the object motion. Excitation force coefficients 
do not reach constant values inside the frequency interval. This is the reason why smaller 
frequency value will be adopted in order to compute once again the coefficients for what 
the free decay test is concerned. All the coefficients values are quite low because of the 
small dimensions of both waves and buoy. 
 
From RAO plots it is possible to assess the value of the resonance frequency, the one 
corresponding to the peak of function RAO itself. Resonance frequency represents buoy 
natural frequency too, and it should be the same value determined performing a free decay 
test. Nevertheless, as already considered, RAO is not a very accurate instrument in order 
to investigate body motion characteristic, for the reason exposed in section 4.3.2. Hence, 
real resonance frequency values could be a little bit different, but RAO still keeps being a 
useful tool for a preliminary analysis. The same thing can be said for the amplitude that 
RAO indicates, as it represents the ratio between wave oscillation amplitude and the wave 
amplitude. In fact, not being all the real acting forces involved brings to a not meticulous 
evaluation, but again, still valid for a first overview. 
 
 

5.2 Time domain results 
 
As explained in chapter 4, the part of the model concerning the mooring system needs a 
calibration process. In particular, the calibration process consists in finding the values of 
the coefficients Kstiff and Kdamp through which the cylindrical buoy oscillation matches quite 
accurately the oscillation recorded by the laboratory video analysis. This procedure has 
been carried out for each wave test and for each of the three DoFs too. In this section, the 
plots of the results will be shown in time domain and the values of the calibration 
coefficients will be reported for each wave and DoF case. Together with the time domain 
plots, a frequency analysis of the results has been carried out, in order to better understand 
the comparison.  
Before introducing the results, a clarification on the calibration coefficients must be done.  
The role of the calibration coefficients is to complete the part of the model related to the 
mooring system, modelled as the sum of a stiffness and a damping term. The catenaries 
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weight has been taken as negligible, and hence little oscillations along vertical direction 
produce very small forces exploited by the chains. The action of the mooring system is 
particularly evident along horizontal direction, due to the slightly asymmetrical form of the 
generated waves, phenomenon that induce the cylindrical buoy to experience a shift from 
its initial position (as better described in chapter 3). Consequently, catenaries exploit not 
negligible forces in order to avoid this shift. For these reasons, the only calibration 
coefficients that produce evident effects on the model are the one associated to the surge 
motion.  
Then, from now on, Kdamp and Kstiff will only be referred to as the calibration coefficients 
acting on surge direction and hence occupying the surge spot in the (1x3) vectors defined 
by Kdamp and Kstiff, while all the other spots are supposed to host null values, as represented 
in expressions (5.01) and (5.02): 
 

Kdamp		=	 Kdamp 0 0      (5.01) 
 

Kstiff	=	 Kstiff 0 0                       (5.02) 
 
In the next paragraphs, the results will be presented for each wave test separately, and inside 
each wave test every DoF will be discussed on its own. While from wave R03 to wave R08, 
including R05, R06 and R07, the wave characteristics allow to keep the mooring system 
working in normal conditions (catenaries are not totally tight), wave R10 presents very high 
wave height compared with the other ones, with consequent pulling of the catenaries. So, 
for what the first group of waves is concerned, the calibration coefficients are determined 
in such a way to prevent buoy shift along surge direction and that the end-stop mechanism 
(introduced in equation (4.53)) is not activated, while in R10 its effect plays a very 
important role. 
 
5.2.1 Free decay results 
 
Free decay test is the first one to be performed. As introduced in chapter 4, in this kind of 
test no perturbation of the free surface comes from the wave generator, but the only one 
that is created is due to the radiation phenomenon. The test is conducted making the 
cylinder oscillating from the starting configuration in which the upper surface of the body 
is placed at free surface level. During the laboratory test, it is clearly visible that the 
catenaries are not stressed for what surge DoF is concerned because of the fact that there 
are no active waves contributing to buoy horizontal shift, and the only oscillation verifies 
along vertical direction. So, according to what has been written in the previous paragraphs, 
most of the mooring action is not present in this test, being that no surge forces take place. 
For what vertical direction is concerned, very little forces are exploited by the mooring 
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system, also considering its negligible weight. For this reason, all the coefficients are 
inserted in the model as null values, as shown in Table 5.08. 
Furthermore, the results are assessed through the application of the particular 
hydrodynamic coefficients described in section 4.6. They have to represent the situation of 
static free surface, practically intended as a wave with infinite period and hence they are 
captured at very low frequency, near to 0 rad/s. The one linked to a frequency equal to 0.05 
rad/s have been taken into account for the calculations of the results. Figure 5.03 represents 
the trend of the hydrodynamic coefficients inside the interval 0.05 – 4.05 rad/s. 
 
Figure 5.04 and figure 5.05 show the results of the model compared to the laboratory one, 
and in particular the free decay of the cylindrical buoy along vertical direction. The very 
low incidence of the catenaries makes it possible to put the values of the calibration 
coefficients as null, avoiding the forces due to the mooring system. The model performs in 
a quite good way, especially considering the frequency of the oscillation. 
 
 

 
Figure 5.03 Hydrodynamic coefficients for free decay test (frequency interval 0-4 rad/s). 
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Figure 5.04 Free decay HEAVE oscillation along with simulation time (starting configuration: z=-40 mm). 
 
 

 
Figure 5.05 Frequency analysis of the comparison between model and laboratory HEAVE results for free decay test. 
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 surge heave pitch 

Kdamp  0 0 0 

Kstiff 0 0 0 

Table 5.08 Calibration coefficients for free decay test. 

 
A particular result coming from the free decay test is the value of the frequency of 
oscillation, which correspond to the natural oscillation frequency of the body. The natural 
frequency derived from this free decay test is equal to 5.29 rad/s, as it is possible catch from 
Figure 5.61. This important value of frequency is related to the concept of resonance: as 
introduced while talking about RAO, the resonance condition is achieved when the wave 
frequency matches the body natural frequency and produces the higher oscillation possible. 
Considering RAO operator of Figure 5.01, heave resonance frequency is equal to 5.25 rad/s, 
very similar to the natural frequency detected during free decay test. This agreement 
between the two values of natural frequency figured out from both the frequency (with 
RAO operator) and time domain represents a good result for what model reliability is 
concerned. The small difference between the two frequency values is due to the fact that 
drag force is not taken into account while performing the RAO calculation, being it a 
nonlinear term. 
 
 
5.2.2 Wave R03 
 
As introduced in section 3.3.1, this wave is the smaller among the tested ones, both in wave 
height and length, with correspondent relatively small buoy motion. Heave motion is 
particularly small and noise is very evident in the signal coming from the video analysis. 
For this reason, it has been chosen neither to perform any calibration for what this DoF is 
concerned nor to report the results. Despite this, both surge and pitch results are reported 
in this section.  
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Surge motion (R03) 
 

 
Figure 5.06 SURGE model oscillation, velocity and free surface deformation against time for wave R03.  

 

 
Figure 5.07 Comparison between model and laboratory SURGE results for wave R03.  

 

 
Figure 5.08 Frequency analysis of the comparison between model and laboratory SURGE results for wave R03.  
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Pitch motion (R03) 
 

 
Figure 5.09 PITCH oscillation and free surface deformation against time for wave R03. 

 

 
Figure 5.10 Comparison between model and laboratory PITCH results for wave R03.  

 

 
Figure 5.11 Frequency analysis of the comparison between model and laboratory PITCH results for wave R03.  



Results  5.2 Time domain results 

 98 

The calibration coefficients inserted in the model in order to obtain previous results are 
shown in Table 5.01. 
 

 surge heave pitch 

Kdamp  4.5 / 0 

Kstiff 245 / 1.05 

Table 5.01 Calibration coefficients for wave R03. 

 

5.2.3 Wave R05 
 
Wave R05 is the second wave that has been recorded by the GoPro cameras and the signal 
coming from the video analysis are not too much influenced by noise. Once again, surge 
and pitch motion laboratory results are quite regular, while heave ones present some noise 
disturbing the signal. Although this disturbance takes place, the amplitude of the oscillation 
is higher than the one related to R03, then its effect is not as big as in the previous case. 
From now onward, the calibration process is applied on heave motion as well as on surge 
and pitch ones.  
 
Surge motion (R05) 
 

 
Figure 5.12 SURGE model oscillation, velocity and free surface deformation against time for wave R05.  

 

 
Figure 5.13 Comparison between model and laboratory SURGE results for wave R05.  
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Figure 5.14 Frequency analysis of the comparison between model and laboratory SURGE results for wave R05. 

 

Heave motion (R05) 
 

 
Figure 5.15 HEAVE model oscillation, velocity and free surface deformation against time for wave R05.  

 

 
Figure 5.16 Comparison between model and laboratory HEAVE results for wave R05. 
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Figure 5.17 Frequency analysis of the comparison between model and laboratory HEAVE results for wave R05. 

 

Pitch motion (R05) 
 

 
Figure 5.18 PITCH oscillation and free surface deformation against time for wave R05.  

 

 
Figure 5.19 Comparison between model and laboratory PITCH results for wave R05.  
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Figure 5.20 Frequency analysis of the comparison between model and laboratory PITCH results for wave R05. 

The calibration coefficients inserted in the model in order to obtain previous results are 
shown in Table 5.02. 
 

 surge heave pitch 

Kdamp  4.4 2.8 0 

Kstiff 233 10 0.63 

Table 5.02 Calibration coefficients for wave R05. 

 

5.2.4 Wave R06 
 
Surge motion (R06) 
 

 
Figure 5.21 SURGE model oscillation, velocity and free surface deformation against time for wave R06.  
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Figure 5.22 Comparison between model and laboratory SURGE results for wave R06.  

 

 
Figure 5.23 Frequency analysis of the comparison between model and laboratory SURGE results for wave R06. 

 

Heave motion (R06) 
 

 
Figure 5.24 HEAVE model oscillation, velocity and free surface deformation against time for wave R06.  
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Figure 5.25 Comparison between model and laboratory HEAVE results for wave R06.  

 

 
Figure 5.26 Frequency analysis of the comparison between model and laboratory HEAVE results for wave R06. 

 

Pitch motion (R06) 
 

 
Figure 5.27 PITCH oscillation and free surface deformation against time for wave R06.  
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Figure 5.28 Comparison between model and laboratory PITCH results for wave R06.  

 

 
Figure 5.29 Frequency analysis of the comparison between model and laboratory PITCH results for wave R06. 

 

The calibration coefficients inserted in the model in order to obtain previous results are 
shown in Table 5.03. 
 

 surge heave pitch 

Kdamp  4.4 2.5 0 

Kstiff 230 10 0.53 

Table 5.03 Calibration coefficients for wave R06. 
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5.2.5 Wave R07 
 
Surge motion (R07) 
 

 
Figure 5.30 SURGE model oscillation, velocity and free surface deformation against time for wave R07.  

 

 
Figure 5.31 Comparison between model and laboratory SURGE results for wave R07.  

 

 
Figure 5.32 Frequency analysis of the comparison between model and laboratory SURGE results for wave R07.  
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Heave motion (R07) 
 

 
Figure 5.33 HEAVE model oscillation, velocity and free surface deformation against time for wave R07.  

 

	

Figure 5.34 Comparison between model and laboratory HEAVE results for wave R07. 

 

 
Figure 5.35 Frequency analysis of the comparison between model and laboratory HEAVE results for wave R07.  
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Pitch motion (R07) 
 

 
Figure 5.36 PITCH oscillation and free surface deformation against time for wave R07.  

 

 
Figure 5.37 Comparison between model and laboratory PITCH results for wave R07. 

 

 
Figure 5.38 Frequency analysis of the comparison between model and laboratory PITCH results for wave R07.  
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The calibration coefficients inserted in the model in order to obtain previous results are 
shown in Table 5.04. 
 

 surge heave pitch 

Kdamp  4.3 1.95 0 

Kstiff 221 10 0.57 

Table 5.04 Calibration coefficients for wave R07. 

 

5.2.6 Wave R08 
 
Surge motion (R08) 
 

 
Figure 5.39 SURGE model oscillation, velocity and free surface deformation against time for wave R08.  

 

 
Figure 5.40 Comparison between model and laboratory SURGE results for wave R08. 
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Figure 5.41 Frequency analysis of the comparison between model and laboratory SURGE results for wave R08. 
 
 
Heave motion (R08) 
 

 
Figure 5.42 HEAVE model oscillation, velocity and free surface deformation against time for wave R08.  

 

 
Figure 5.43 Comparison between model and laboratory HEAVE results for wave R08. 
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Figure 5.44 Frequency analysis of the comparison between model and laboratory HEAVE results for wave R08. 
 
 
Pitch motion (R08) 
 

 
Figure 5.45 PITCH oscillation and free surface deformation against time for wave R08.  

 

 
Figure 5.46 Comparison between model and laboratory PITCH results for wave R08. 
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Figure 5.47 Frequency analysis of the comparison between model and laboratory PITCH results for wave R08. 
 
The calibration coefficients inserted in the model in order to obtain previous results are 
shown in Table 5.05. 
 

 surge heave pitch 

Kdamp  4.3 0.90 0 

Kstiff 207 10 0.43 

Table 5.05 Calibration coefficients for wave R08. 

 

5.2.7 Wave R10 
 
Wave R10 is the bigger among the tested ones, and, when it is generated, the situation in 
which catenaries are pulled to their maximum length takes place. As already explained in 
chapter 4, when this condition happens, the end-stop mechanism starts working in order to 
represent the mooring system effect. Being this mechanism function of the buoy position 
through the constant Kmoor, a similar calibration process to the one previously described is 
necessary. 
This wave case is more difficult to describe by the model than the previous ones. The most 
important reason why this happens is linked to the fact that, as explained in chapter 3, 
higher the wave height is, bigger are the reflection phenomena which arise during the test, 
and with them also transversal free surface displacements grow up. The latter effects bring 
the buoy to experience a different motion compared to the one that it would take without 
transversal effects. In particular, after the first seconds of test, the cylinder motion comes 
out from the plane described by the three DoFs considered for the development of this 
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work: a three dimensions model concerning also sway, roll and yaw DoFs could better 
represent the situation. 
 
Surge motion (R10) 
 

 
Figure 5.48 Comparison between model and laboratory SURGE results for wave R10. 

 

 
Figure 5.49 Frequency analysis of the comparison between model and laboratory SURGE results for wave R10. 
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Heave motion (R10) 
 

 
Figure 5.50 Comparison between model and laboratory HEAVE results for wave R10. 

 

 
Figure 5.51 Frequency analysis of the comparison between model and laboratory HEAVE results for wave R10. 
 
 
Pitch motion (R10) 
 

 
Figure 5.52 Comparison between model and laboratory PITCH results for wave R10.  
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Figure 5.53 Frequency analysis of the comparison between model and laboratory PITCH results for wave R10. 
 
The calibration coefficients inserted in the model in order to obtain previous results are 
shown in Table 5.06. 
 

 surge heave pitch 

Kdamp  3 0 0.02 

Kstiff 0 0 0 

Kmoor 4 4 4 
Table 5.06 Calibration coefficients for wave R10. 

 

5.2.8 Calibration of the coefficients 
 
In this section, the trend of the calibration coefficients is determined for waves from R03 
to R08. 
In this situation, where the end-stop mechanism is not involved, the coefficients take a 
certain trend that is going to be discussed. The calibration process is influenced by a 
particular choice: since there can be several couples of Kdamp and Kstiff capable of giving 
similar results, it has been chosen to maximize as much as possible the values assumed by 
Kdamp, and consequently choosing the values of Kstiff. In particular, this decision is the 
consequence of the different effect that the two coefficients can bring to the solution. In 
fact, Kdamp is multiplied, inside the motion equation, by the buoy velocity and together 
constitute the damping term which is responsible for a variation of the oscillation 
amplitude. On the other hand, Kstiff acts in the term of stiffness, where it is multiplied by 
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the buoy position. The stiffness term is then both responsible for reducing or enhancing the 
oscillation amplitude but is also able to produce a variation of the motion frequency.  
In the following plots, different colours and symbols are used to represent the coefficients 
tendency. Blue is associated to waves R03, R05, R07 and R08 and red is related to R06. 
This particular subdivision is due to the fact that R06 and the other waves are characterised 
by different wave height-length ratio, as reported in Table 5.07. 
 

WAVE H/L 

R03 0.0086 

R05 0.0086 

R06 0.0093 

R07 0.0086 

R08 0.0086 
Table 5.07 H/L ratio of the tested waves. 

 

Surge DoF 
 

 
Figure 5.54 Trend of calibration coefficient Kdamp against wave height along SURGE DoF. 
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Figure 5.55 Trend of calibration coefficient Kstiff against wave height along SURGE DoF. 
 
 

 
Figure 5.56 Peak values of stiffness and damping terms exploited by the mooring system along surge direction. 

 

The calibration coefficients involved in the surge motion case define an evident trend. 
When wave height increase, both damping and stiffness coefficients decrease inside the 
interval described by the wave heights tested in this thesis. Nevertheless, not all the waves 
follow the same trend. As it is possible to see both in Figure 5.52 and Figure 5.51, the red 
points corresponding to wave R06 are positioned slightly away from the line described by 
the blue ones.  
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Although such decrease happens, it does not mean that the whole damping and stiffness 
terms grow lower with wave height. On the contrary, they tend to increase due to the 
correspondent enhancing of buoy displacements and velocities. This kind of behavior of 
the damping and stiffness terms, expressed as forces, is plotted in Figure 5.53. The values 
reported in the plot are obtained by multiplying the calibration coefficients and the 
amplitude of the oscillations of position and velocity functions derived from the model. 
 
 
Heave DoF 
 
A different trend is denoted in the case of heave motion. Kd keeps growing lower against 
wave height, but according to a more extended spot than in surge case. R06 keeps 
maintaining a slightly higher value of Kd compared with the waves of the same height, but 
H/L ratio as the other ones.  
On the other hand, Ks varies a lot its tendency taken along surge motion: it becomes lower 
and constant throughout the entire wave height interval. The reason why it takes small 
values has to be linked to the smaller effect produced by the mooring system along this 
direction, as reported at the beginning of this section. 
 
  

 
Figure 5.57 Trend of calibration coefficient Kdamp with respect to wave height along HEAVE DoF. 
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Figure 5.58 Trend of calibration coefficient Kstiff  with respect to wave height along HEAVE DoF. 
 
 
 
Pitch DoF 
 

 
Figure 5.59 Trend of calibration coefficient Kdamp  with respect to wave height along PITCH DoF. 
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Figure 5.60 Trend of calibration coefficient Kstiff  with respect to wave height along PITCH DoF. 
 
 
Pitch rotation is not as influenced as surge and heave translations by the mooring system 
action, and this characteristic is reflected in the calibration coefficients values. As stiffness 
coefficients for the heave motion case, Kd used for the pitch motion is constant and assumes 
the null value, both for blue and red waves independently from the H/L ratio.  
Stiffness coefficient Kstiff experiences instead a similar variation as it happens in surge case. 
Despite this similarity, a difference is clearly visible: the coefficient linked to wave R06 
does not reply surge and heave examples but seems to follow the tendency expressed by 
blue points.  
At the end, due to the conditions defined by the set up and the characteristics of the body, 
it is clear that the force exploited by the mooring system is different along the three DoFs, 
and in particular it is higher for the surge direction, and then it grows lower from heave 
case, reaching the smallest values for what pitch is concerned. 
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Conclusions 
 

In this thesis, a numerical model based on the potential flow theory has been developed to 
describe the main dynamics characteristics of a floating body which undergoes a 
solicitation given by a regular sea state.  
The main feature of the model is represented by its simplicity, and its implementation is 
based on some assumptions and hypothesis: diffraction effect has been considered 
negligible on the basis of the Koulegan-Carpenter number and on the dimensions of the 
buoy diameter compared to the wave length. Then, the drag force has been taken into 
account for translations only (surge and heave), neglecting it for the pitch. Furthermore, 
due to the water particles velocities along with water depth, it has been decided to discard 
the idea of involving it in the computation of the drag forces, considering the buoy velocity 
the only one that compares in the drag force formula. One more little approximation is 
found in the definition of a discrete frequency interval which the hydrodynamic coefficients 
are defined on. In particular, when the wave frequency does not perfectly match a value 
contained in the frequency vector, the coefficients selected are a little bit different from the 
correct one. At the end, the forces involved are modelled in a simple way, maintaining them 
linear ones, except for drag force. 
In this thesis, the dynamics of a cylinder moored at the bottom with catenaries type mooring 
system has been considered. The new terms given by the presence of the mooring systems 
have been represented by linear terms, which need a calibration process. 
Laboratory tests measuring the dynamics of a floating cylinder carried out at LIDR 
(Laboratory of Hydraulic Engineering of Alma Mater Studiorum University of Bologna) 
were used to calibrate the numerical tests.  
The cylinder was 355 mm high, with a 25 mm radius and a total mass of 600 g, while the 
catenaries were 350 mm long. An image processing analysis of the videos was carried out 
in order to detect the main dynamics of the experimental floating body. Both frequency 
domain and time domain analysis were performed. The calibration of the mooring stiffness 
(KS) and damping (KD) coefficients was performed by comparing laboratory analysis and 
model results of both the time series of surge, heave and pitch DoF and their frequency 
behavior. 
The involvement of calibration coefficients makes the model lost a general validity, being 
the coefficients related to the particular body, mooring system and other laboratory set-up 
characteristics. The trend taken by the calibration coefficients allows to run the model and 
obtain consistent results for this particular set-up in a wide range of wave conditions. 
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We have observed a linear trend of the calibration coefficients along with the wave heights, 
maintaining a certain H/L ratio. If some differences with the current set-up, in terms of 
mooring system and body characteristics, arise, it is clear that the calibration coefficients 
should be determined once again. Despite this, all the other parts of the model keep being 
applicable to any other floating body. The determination of the computation mesh is, in 
fact, possible on every body shape due to the versatility of the Mesh tool that is able to 
create both symmetric and asymmetric grids. Besides, the final computation of the 
hydrodynamic coefficients through the function Nemoh is possible on every previously 
defined mesh. 
The results show that the model performs well both in frequency and time, in the case of 
waves that do not provoke the chains to be pulled at their maximum length. This condition 
verifies for test waves R03 (H=6.91mm, T=0.72 s), R05 (H=8.23 mm, T=0.82 s), R06 
(H=10.27 mm, T=0.85 s), R07 (H=10.44 mm, T=0.90 s) and R08 (H=11.23 mm, T=0.94 
s). This is important because it means that the model is useful for the situations in which 
the system should work.  
During the test with wave R10 (H=33.50 mm, T=0.93 s), with the maximum simulated 
wave height, the catenaries become tight at most of the time. In this case the results are not 
as good as in the previous cases, because of the presence of transversal forces that make 
the model to slightly overestimate the oscillation. For this reason, when wave height takes 
such high values as in wave R10 case, the consideration of the reflection phenomenon could 
be taken into account. There are several methods devoted to the quantification of the 
reflection phenomenon, such as the one described by [31], where only two wave gauges 
were used and noise cancellation was not possible. It works both in case of regular and 
irregular waves. The model works in a good way concerning frequency determination.  
Free decay test results show a good agreement between model and laboratory as well. Since 
in this situation the catenaries effect is practically negligible, it confirms that the code works 
well to simulate the free floating bodies dynamics. 
In conclusion, the model represents a valid and quick tool in order to have an overview of 
the body dynamics both in frequency and time domain. In order to obtain more precise and 
accurate results, more complicate models or CFD methods should be taken into account, 
allowing better results but with a lot higher computation costs. 
In the future, some model improvements could be performed especially for what the 
mooring system is concerned. Some models able to represent the effect of the mooring 
system in a precise way have already been developed (see [8, 25]), but they are very 
complicated and it would have no sense to insert them into a simple model like the one 
treated in this thesis, both for the simplicity of the rest of the code and for the aim that this 
model is supposed to have. More simplified mooring system model than the cited ones 
could be enough in order to give the code a sort of generality, allowing it to be applied to 
any body with this type of mooring system. 
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