
Master of Science in Geoinformatics Engineering
School of Industrial and Information Engineering

Improving Typha Classification using Spatial

Information

Supervisor: Giacomo Boracchi, Ph.D.

Graduation Thesis of:
Guidi Matteo

Student ID: 878827

Academic Year 2018-2019

Contents

Acknowledgments IV

Abstract VI

Sommario VIII

1 Introduction 1

2 Backgrounds and Related Works 5
2.1 Introduction to Remote Sensing . 5
2.2 Neural Networks . 8

2.2.1 Neurons . 8
2.2.2 Activation Functions . 9
2.2.3 Loss Functions . 10
2.2.4 Network Training . 11
2.2.5 Regularization . 13

2.3 Convolutional Neural Networks . 14
2.3.1 Convolutional Layer . 14
2.3.2 MaxPooling layer . 16
2.3.3 Activation Functions . 16
2.3.4 Batch normalization layer . 17

2.4 Classifiers Using Spatial Information . 18

3 Improving Typha Segmentation Using Spatial Information 21
3.1 Problems related to Typha . 21
3.2 Aim of the Thesis . 23
3.3 Proposed Solutions . 23

3.3.1 Problem Formulation . 24
3.3.2 Integration of Spatial Information 24
3.3.3 Preprocessing of Groundtruths . 27
3.3.4 Blob Split Method for Training and Test Set Partioning 31

Matteo Guidi I

4 Dataset and Preprocessing 34
4.1 Datasets . 35

4.1.1 Study area . 35
4.1.2 Satellite image . 35
4.1.3 Groundtruth Data . 36

4.2 Preprocessing . 37
4.2.1 Image Preparation . 37
4.2.2 Additional Data . 37

4.3 Integration of GIS Data . 38
4.4 Typha’s Groundtruth Cleaning . 40
4.5 Training and Test Partitioning . 42
4.6 Number of Output Classes . 42
4.7 Software . 43

5 Models Setup/Design 45
5.1 Overview of Design Steps . 45
5.2 Class Imbalance . 46

5.2.1 Class Weights . 46
5.2.2 Loss Function: Weighted Categorical Cross Entropy 47

5.3 Neural Network Models . 47
5.3.1 Model architecture . 47
5.3.2 Regularization . 48
5.3.3 Gradient Clipping . 48
5.3.4 Prediction . 48

5.4 Convolutional Neural Network model . 48
5.4.1 Architecture . 48
5.4.2 Feature Map Sizes . 49
5.4.3 Patch Selection Method . 49
5.4.4 Prediction on Patches . 51

6 Experiments and Results 52
6.1 Evaluation Metrics . 52
6.2 Analysis of the Results obtained with Neural Networks 54

6.2.1 Results . 54
6.2.2 Groundtruth Cleaning . 55
6.2.3 2-class Classification . 56
6.2.4 6-class Classification . 60

6.3 Analysis of the Results Obtained with Convolutional Neural Networks . . 63
6.4 Comparison between NN 7-class and CNN 63
6.5 Final Considerations . 64

Matteo Guidi II

7 Final Conclusions and Future Works 68

A Details of Experiments 70
A.1 NN 2-class 4-bands Blob Split No cleaning 70
A.2 NN 2-class 4-bands Blob Split . 72
A.3 NN 2-class 4-bands Random Split . 74
A.4 NN 2-class 6-bands Blob Split . 76
A.5 NN 2-class 6-bands Random Split . 78
A.6 NN 2-class 7-bands Blob Split . 80
A.7 NN 2-class 7-bands Random Split . 82
A.8 NN 6-class 4-bands Blob Split No cleaning 84
A.9 NN 6-class 4-bands Blob Split . 86
A.10 NN 6-class 4-bands Random Split . 88
A.11 NN 6-class 6-bands Blob Split . 90
A.12 NN 6-class 6-bands Random Split . 92
A.13 NN 6-class 7-bands Blob Split . 94
A.14 NN 6-class 7-bands Random Split . 96
A.15 CNN . 98

Bibliografia 102

Matteo Guidi III

Acknowledgments

In first place i’d like to thanks Prof. Giacomo Boracchi for the help he provided and the
availability to solve all my doubts.

I am also grateful to Prof. Ludovico Biagi, that accepted me in this MSc. course
and motivated me to take this path. I would also like to thanks all the professors that
helped me in my journey.

Matteo Guidi IV

Matteo Guidi V

Abstract

Remote sensing, the science of obtaining information about objects or areas from a
distance, typically from aircrafts or satellites, has gained a lot of attention in the latest
years. Due to the increasing number of satellites, providing daily and high resolution
data, the need of automatic systems, that can analyze images and extract important
features, is progressively increasing, and one of the most advanced method is represented
by the neural networks. In this thesis, we used neural networks, a set of model mimicking
the functioning of the human brain and designed to recognize patterns, in order to
analyze, classify and extract important features from satellite images. In particular, we
focused on the classification of Typha australis, an invasive aquatic plant that is spread
in African regions and which correlates with the presence of the dangerous parasite
Schistosoma. In order to classify this plant, we propose a classification method that
exploits not only the spectral characteristics of the plant, but also spatial informations,
given that Typha plants tend to grow close to or inside rivers. Differently from previous
studies, where the neural network learns spatial constraints from data themselves, we
integrated Geographic Information System (GIS) data in the classification as an “a priori”
input. This integration turned out to substantially help the model to perform a better
classification process. The solution of exploiting GIS data, which are updated every
few days with high precision and freely available from websites like OpenStreetMap,
represents an advantageous strategy for improving environmental assessments, easier
to implement with respect to other state-of-the-art solutions. Furthermore, since the
groundtruths provided were not precise, and the pixels therein contained did not refer
to a single class, we also proposed a pre-processing technique, aimed at identifying and
removing all the pixels which did not belong to the Typha’s class. This process is based
on the k-nearest neighbours algorithm. The integration of these approaches turned out
to substantially helped the model to classify with high precision Typha’s plants.

Matteo Guidi VI

Matteo Guidi VII

Sommario

Il “remote sensing”, cioe’ la scienza che consente di ottenere informazioni a distanza su
oggetti o su aree territoriali per mezzo di velivoli o satelliti, ha riscosso una grande atten-
zione negli ultimi anni. L’enorme quantita’ di dati ad alta risoluzione ottenuti su base
giornaliera offre la possibilita’ di sfruttare le informazioni ottenibili da tali dati, grazie al
numero sempre crescente di satelliti. Di conseguenza, sta diventando sempre piu’ pres-
sante la necessita’ di mettere a punto sistemi automatici che siano in grado di analizzare
le immagini ed estrarne le piu’ importanti caratteristiche. Le reti neurali, un insieme di
algoritmi che analizzano, classificano ed estraggono le caratteristiche delle immagini at-
traverso procedimenti che simulano il funzionamento del cervello umano, rappresentano
uno dei metodi piu’ avanzati in questo ambito. In questa tesi, il modello delle reti neurali
e’ stato utilizzato per la classificazione della Typha australis, una pianta acquatica inva-
siva che si sviluppa nelle regioni africane e la cui distribuzione e’ correlata con la presenza
del pericoloso parassita Schistosoma. Per ottimizzare la classificazione della Typha aus-
tralis, abbiamo deciso di sfruttare non solo le caratteristiche spettrali della pianta, ma
anche alcune specifiche informazioni spaziali. In particolare, dato che le piante di Typha
tendono a crescere vicino o all’interno dei fiumi, abbiamo integrato nella classificazione,
come input “a priori”, i dati che descrivono la localizzazione dei corsi d’acqua ottenuti
dal Geographic Information System (GIS). Questa implementazione, che rappresenta
una novita’ rispetto alla normale procedura in cui le reti neurali apprendono dai dati
forniti i vincoli spaziali durante il processo di training, ha migliorato in modo sostanziale
il processo di classificazione. La strategia di sfruttare i dati GIS, come quelli forniti da
OpenStreetMap che vengono aggiornati ogni giorno con alta precisione e che sono libera-
mente disponibili nel Web, puo’ consentire di migliorare in modo sensibile le valutazioni
ambientali eseguite tramite le analisi delle immagini satellitari, soprattutto se queste
ultime sono, per vari motivi, di qualita’ non elevata. Inoltre, poiche’ i “groundtruth"
forniti sono non precisi e i pixel contenuti non si riferiscono a una singola classe, e’ stata
anche implementata una tecnica di pre-elaborazione che, usando l’algoritmo “k-nearest
neighbours”, si e’ mostrata capace di identificare e rimuovere i pixel non appartenenti
alla classe della groundtruth. L’integrazione di questi approcci si e’ rivelata di notevole
utilita’ per aiutare il modello a classificare con precisione le piante di Typha.

Matteo Guidi VIII

Matteo Guidi IX

Chapter 1

Introduction

This thesis is framed in the Remote Sensing and Machine Learning areas. It focuses on
the segmentation of satellite images by means of machine learning techniques. Remote
sensing allows to detect and monitor the physical characteristics of an area by measuring
its reflected and emitted radiation from a distance. Earth remote sensing is performed
by sensors which can be mounted on satellites or aircrafts. Since each object has its own
unique spectral signature, which also depends on its chemical composition, the ability
of satellites to sense information in various wavelengths of the spectrum is critical for
their use in mapping, where the distinction between different objects is essential. In the
recent years, a huge number of new satellites are being launched, in order to monitor
the Earth in its entirety. The number of data extracted is growing every day, providing
the opportunity to make extensive research in many fields, from oil spills detection for
environmental preservation to locating wetland ecosystems to prevent their degradation,
from locating groundwater activities to monitoring dangerous vegetation spread. This is
the case of Typha, an invasive aquatic plant that has largely spread out in some African
lands, disrupting farming and fishing activities and causing ecological imbalance. Besides
being highly invasive, the localization of this plant is correlated with the presence of the
Schistosoma parasite, which induces schistosomiasis, a very dangerous illness, especially
in developing countries. Schistosomiasis belongs to the group of the so called Neglected
Tropical Diseases, which globally affect more than 200 million people [1]. The economic
and health effects of schistosomiasis are therefore considerably high as stated by the
World Health Organization (WHO) [2].

Mapping the risk of schistosomiasis spread is fundamental, in order to minimize the
population exposure and increase awareness of local communities. In this frame, the
project MASTR-SLS (Mapping Schistosomiasis Risk in the Saint Louis region, Senegal,
[3]) aims at collecting high resolution geographical information in order to create eco-
epidemiological models that can be translated into operative tools to fight the disease.
The Senegal River Valley, a prototypical endemic region of Senegal, was selected as a
case study. In order to provide groundtruths of aquatic Typha australis, in March/April

Matteo Guidi 1

2019 multispectral images of prototypical waterpoints of the lower Senegal River Valley
were taken with drones. In this thesis, we exploited the groundtruths provided by the
project for satellite image interpretation.

One of the most important and common method to interpret a satellite image, providing
a map that is easier to understand, is classification, which means assigning to each pixel
of the image a specific class that it represents [4]. Different types of image classification
algorithms, ranging from visual interpretation methods to advanced machine learning
algorithms, are being used since the early 1970s, when Earth observation’s information
became available. Early works for classification mainly used handcrafted features, and
were based on, for example, color histograms or texture descriptors, and, subsequently,
on SIFT [5] and HOG [6]. These methods proved to be ineffective, since they captured
only a single characteristic inside the image. More recently, the unsupervised learn-
ing was considered a more attractive alternative, allowing the learning of features from
images instead of relying on manually designed information [7]. Typical unsupervised
feature learning methods included principal component analysis (PCA) [8], k-means clus-
tering, sparse representations and autoencoders. Although unsupervised feature learning
methods have achieved good performance for land-use classification, the lack of semantic
information provided by the category labels does not allow an optimal discrimination
ability between classes. Most of the current state-of-the-art approaches rely on super-
vised learning to obtain good feature representations, and the methods that are mostly
used are decision trees [9], support vector machines [10] and nearest neighbour.

Deep learning represents a further improvement for machine learning. When compared
with unsupervised feature learning methods, deep learning models, exploiting multiple
processing layers, are able to learn additional data features. To achieve this, deep learning
uses a layered structure of algorithms called artificial neural network (ANN) that recog-
nizes patterns through processes simulating the way by which a human being learns [11].
Neural networks automatically extract features from data using a general-purpose train-
ing procedure and classify large amounts of data based on a labeled dataset on which
they previously trained. Neural networks have been exploited in the remote sensing area
to perform pixel-wise classification of satellite images, that is assigning with precision
to each single pixel a specific label that represents a semantic class, e.g. vegetation,
buildings, vehicles or roads, thus providing a map that can be easily interpreted. Indeed,
per-pixel classifiers develop a signature obtained by combining the spectra of all training-
set pixels, assuming that the contributions of all materials present is homogeneous and
thus neglecting the impact of the mixed pixels [12].

The aim of this thesis was to provide a detailed analysis of the multispectral images
of the Senegal River Valley using neural networks, in order to localize Typha with the
highest precision. The attempt to classify available satellite images (4 band RGB +NIR,
3m resolution, Section 4.1) using the provided Typha’s groundtruths produced very poor

Matteo Guidi 2

results. We investigated therefore the possibility to improve the process of classification
by integrating spatially derived information.

A large number of remote sensing classification techniques utilizes the spectral character-
istics of the image only, while ignoring the spatial constraints [13]. Conversely, the spatial
correlation among different classes could be succesfuly exploited to significantly enhance
the classification, especially when the proximity between different pixels belonging to
specific classes is known a-priori. This is the case of Typha, which is known to grow near
or inside the rivers. The spatial correlation between these classes was obtained from the
Geographic Information System (GIS) data of the river, and integrated into the classi-
fier as an “a priori” input. To the best of my knowledge, the process of integrating GIS
data into the classification algorithm has not been used yet for similar projects. Besides
being easier to implement with respect to other state-of-the-art solutions, this method
offers the advantage that OpenStreetMap, an initiative to create and make geographic
data freely available [38], provides GIS data of rivers, cities, roads and other classes,
for almost every country in the world. GIS data are updated every few days with high
precision, thus providing a relevant source for improving environmental assessments and
monitoring. To further improve the classification performance, we propose an additional
method. As Typha plants grow near or inside the river, the provided groundtruths of
Typha inevitably contain pixels that are wrongly labeled, as they belong to the river.
The proposed method consists in the cleaning of the groundtruths in order to obtain a
more homogeneous and correct dataset. The integration of these methods significantly
improved the process performance and allowed to obtain more refined and clean data
compared to the basic method.

The thesis is structured as follows:

• In Chapter 2 we present the background concepts necessary to understand this
thesis together with the state-of-the-art researches.

• In Chapter 3 we first introduce the characteristcs of Typha and the MASTR-SLS
project. Then the aim of this thesis is explained in details and formally defined.
We next present the proposed approach for classification with the integration of
spatial constraints in details. The algorithm proposed to clean the groundtruth
data is discussed thoroughly.

• In Chapter 4 we present the datasets. Then the preprocessing steps performed in
order to use them properly are explained in details.

• In Chapter 5 we discuss all the details necessary to implement the neural networks
models. The problem of class imbalance is also discussed.

• In Chapter 6 we assess the performances of the experiments and present the results.

Matteo Guidi 3

• In Chapter 7 we summarize the contribution of this work and propose future im-
provements.

• In Appendix A we report an extensive version of the experiments.

Matteo Guidi 4

Chapter 2

Backgrounds and Related Works

The use of remote sensing has gained increasing attention in the latest years. This
is because the number of satellites providing daily and high resolution data offers the
possibity to exploit the knowledge that can be extracted from satellite images. The need
of automatic systems, that can analyze and extract important features, is increasing,
and one of the methods that developed the most is the neural networks.

The following chapter is focused on how neural networks can be used to classify and
segmentate remote sensed satellite images. A detailed explanation on the basis of neural
networks and how they work, is provided.

This chapter starts with an overview of remote sensing in Section 2.1. Then the theory
behind neural networks and how they work is discussed in details in Section 2.2. In
Section 2.3 convolutional neural networks are introduced, and the most important ele-
ments which compose them are introduced. Finally in Section 2.4 other studies which
use machine learning algorithms to classify satellite images are briefly presented.

2.1 Introduction to Remote Sensing

Altough it has been described in many different ways, remote sensing can be defined as
“the science of gaining information from a distance” [14].

Commonly, remote sensing refers to the act of scanning the Earth by sensors in order
to obtain information on Earth’s land and water surfaces. The used sensors (usually
cameras and digital scanners) can be installed on airborne (aircraft and balloons) or
spaceborne (satellites and space shuttles) platforms. A sensing system usually produces
digital pictures representing the objects/events being observed, that need to be analyzed
and interpreted in order to extract useful information. The quality and quantity of these
information is called resolution, and can be divided in three main categories:

1. Spectral resolution describes the number of spectral bands in which a sensor is
able to resolve the wavelenghts of the electromagnetic spectrum. There are two

Matteo Guidi 5

2.1. Introduction to Remote Sensing

important characteristics that define the spectral resolution:

– Number of spectral bands, which defines how many bands the sensor is able
to distinguish. There are 3 different categories: monospectral, meaning the
sensor is able to collect data in only one single band; multispectral, meaning
that the sensor is able to collect data in multiple bands, typically from 4 to
12; hyperspectral, meaning that the sensor is able to collect data in hundreds
of bands.

– Width of each bands, which defines the portion of the spectrum in which each
band can resolve the energy received.

2. Spatial resolution defines how much detailed the image is. The area captured from
a sensor is defined by:

– Istantaneous Field of View (IFOV), is the angular cone over which radiation
is detected. A narrow angle produces a smaller IFOV, while a larger angle
produces a higher IFOV.

– Height, i.e. the distance from Earth (altitude), which also determines the
resolution. A higher altitude produces a lower resolution.

A pixel, defined as the smallest area that is identifiable on the image, can be
expressed by the following equation:

pixel = Height× IFOV (2.1)

Which describes the aforementioned relations. A smaller pixel size means a higher
resolution. The spatial resolution defines the area of the real world which is covered
by a pixel. For example a spatial resolution of 10 meters means that each pixel of
the image covers an area of 10× 10 meters.

3. Temporal resolution is defined as the amount of time needed to revisit and ac-
quire data for the exact same location. When applied to remote sensing, this
amount of time depends on the altitude and orbit of the satellite as well as its
sensor characteristics. A key feature that satellites systems provide is the ability
to systematically observe multiple sequential image taken in the same area at dif-
ferent times. This allows to compare images with very high precision, and extract
important information regarding the changes occured in the area sensed.

There are different kinds of sensors, but the most important distinction is based on the
different ways with which they capture images:

Matteo Guidi 6

2.1. Introduction to Remote Sensing

Figure 2.1: IFOV variation with altitude and angle, as described in Formula 2.1 [15].

– Passive Sensors are instruments that capture the sun’s energy that is either emitted
or absorbed by an object. The signal received depends on the physical character-
istics of the object. This kind of sensing can be exploited only when the sun is
illuminating the object. During the night, or in presence of shadows and clouds,
the receipt of the signal is impossible.

– Active Sensors are instruments that send a signal towards an object and measure
the radiation reflected. These kind of sensors do not need the light in order to be
able to gather information.

Figure 2.2: Passive sensors vs active sensors [16].

Matteo Guidi 7

2.2. Neural Networks

2.2 Neural Networks

In recent years, there has been an increase interest in the use of neural networks to
classify remote-sensed data. These methods have proven to give better results than the
other state-of-the-art classifiers, thanks to their capability to model non-linear processes
and identify unknown patterns [17]. Indeed, neural networks are a set of algorithms
design to simulate the way by which a human being learns. Specifically, neural networks
analyze a defined input, called training data, until they have “learned” how to correctly
relate the defined input to the desired output. Neural networks are based on key elements
which are briefly introduced below.

2.2.1 Neurons

The fundamental unit of a neural network is called an artificial neuron. A neuron is a
simple mathematical model, that produces an output (makes a decision) based on the
inputs received (Figure 2.3). The different inputs are multiplied by specific weights and
then the arithmetic sum is converted in output through an activation function, which
allows data to be passed to the other neurons. The equation defining the output result
is the following:

y = f(
k∑

j=0

(wjxj) + bj) (2.2)

Where y is the output, f(x) is a non-linear activation function (described in Section
2.2.2), k is the number of inputs, wj are the so called weights and bj is the neuron
bias. The weights are real numbers that express the importance of a certain input: a
higher weight means that an input will contribute more to the final sum. The bias is an
additional constant parameter which is used to help fitting the model in the best possible
way for the given data.

Figure 2.3: Example of a neuron.

A neural network is an architecture composed of different layers of neurons. The first
layer is usually called the input layer, the last layer is the output layer, and all the ones
in between are called hidden layers. The first layer takes the data as inputs, and make
some simple decisions. The subsequent layers make more and more complex decisions
depending on the outputs of the previous layers. The deeper the network, the more
sophisticated and complex the decisions are.

Matteo Guidi 8

2.2. Neural Networks

These types of networks, and the models used for this thesis, are called feedforward
neural networks, that means that the output from one layer is used as input to the next
layer and that there are no loops. The information goes directly from the input to the
output. The feedforward neural network was the first and simplest type of artificial
neural network devised, where the information moves in only one direction, forward,
from the input nodes, through the hidden nodes (if any) and then the output nodes.

Figure 2.4: Example on a network composed of an input layer with 3 neurons, an hidden layer with
4 neurons and an output layer with 1 neuron [18].

2.2.2 Activation Functions

The decision of which neuron produces an output for the next layers and the value which
is passed is determined on the basis of the activation functions, which define the output
of that node given an input or set of inputs. The activation function is used to introduce
non-linearity in the modeling capabilities of the network. There are different kinds of
activation functions, and here some are presented.

ReLU

The Rectified Linear Unit (ReLU) is the most commonly used activation function in
deep learning models. This function outputs the value of 0 if it receives any negative
input, whereas, for any positive value, it returns that value like a linear function (Figure
2.5). From a mathematical point of view, this can be expressed as:

fRELU (z) = max(0, z)

Matteo Guidi 9

2.2. Neural Networks

Figure 2.5: Relu activation function.

Softmax

The Softmax activation function is different from the others, since its purpose is to
output a probability of each target class over all the possible classes. Typically in neural
networks, Softmax is the output function of the last layer, which has the role to turn
the score produced by the entire network into values that can be easily interpreted by
humans. The range of each probability is between 0 and 1, and the sum of all probabilities
is equal to 1. The mathematical formula is:

σ(z)i =
ezi∑k
j=1 e

zj

Where zi is the vector of inputs and k is the number of classes. The exponential is applied
to each element of the input vector and then is divided by the sum of the exponentials
of all these elements.

2.2.3 Loss Functions

After the input data passes through all the neurons of the network, which apply their
transformation and send data to the neurons of the next layer, the final layer is reached
with a result. The divergence between the estimated and expected value is called loss
function. The loss function has an important job, since it reduces all the aspects of
a complex system down to a single number, a scalar value, which allows candidate
solutions to be ranked and compared, in order to select the one which reduces the most
the error in prediction. Therefore, as the model is being trained, the weights of the
neuron interconnections will gradually be adjusted until good predictions are obtained.
In other words, the neural network learns to map a set of inputs, given as training data,
to a set of outputs.

Matteo Guidi 10

2.2. Neural Networks

Specifically, when a set of training data, whose output is known, is given as inputs
to the model, weights and biases are adjusted with an iterative process in order for the
algorithm to model at best the given data. If predictions deviate too much from actual
results, the loss function will have high values. The goal of training a neural network is
to find the particular set of weights that minimizes this value.

There are multiple loss functions that can be used, depending on the network archi-
tecture and the data used. Among the many loss functions, the most importants include
the mean squared error, the mean absolute error, the cross entropy and the Hinge loss.

The loss function used in this thesis was the categorical cross entropy, which is the
most common setting for classification problems. Cross entropy is used to assess the
performance of the classification, in particular by comparing how well a set of predicted
probabilities matches the true probability distribution. The cross entropy loss becomes
smaller as the prediction gets more accurate, and turns to zero if the prediction is perfect.
The formula is the following:

L(p, q) = − 1

m

m∑
i=1

K∑
k=1

y
(i)
k log(p̂

(i)
k) (2.3)

Where m is the number of observations, K is the number of classes. y(i)k is equal to 1 if
the target class for the i-th instance is k; otherwise, it is equal to 0. p̂(i)k is the probability
for the i-th observation to belong in the k-th class.

2.2.4 Network Training

The training phase of a neural network is the process of adjusting weights and biases with
an iterative process, in order to obtain the smallest loss value. Optimisation algorithms
are used to update weights and biases, i.e. the internal parameters of a model, to reduce
the error. Gradient Descent is one of the most commonly used techniques to optimize
neural networks. It is a first-order iterative optimization algorithm which updates the
weights by moving in the direction opposite to the gradient of the objective function
with respect to the network parameters.

Indeed, given that the gradient is a vector that mathematically gives the direction
of steepest increase and since the objective is to minimize the loss function, parameters
are updated in the negative gradient direction [19].

As previously said, training is the adaptation of the weights in such a way that the loss
function is minimized. After the Forward Pass, where the data are used as inputs and
the weights are randomly initialized, backpropagation allows the updating of weigths
based on the output produced in the first phase. Starting from the last layer, and going
backwards, the weights are updated using the gradient descent.

Backpropagation is the essence of neural network training. The fine-tuning of weights

Matteo Guidi 11

2.2. Neural Networks

based on the error rate (i.e. loss) obtained in the previous epoch (i.e. iteration), ensures
lower error rates, making the model reliable by increasing its generalization (Figure 2.6).

Figure 2.6: Scheme of the neural network training.

There are different gradient descent optimisers, which adapt the learning rate component
using factors that are functions of the gradients. The most used are Momentum, Nes-
terov Accelerated Gradient, Adagrad, RMSprop and Adam. In this thesis it was chosen
to use the Adaptive Moment Estimation (Adam) optimizer because is an algorithm de-
signed specifically for training neural networks. It shows better performances and results
compared to the others methods, combining the advantages of two other extensions of
stochastic gradient descent, the AdaGrad and RMSprop [20].

Optimizer: Adam

Adam is a stochastic gradient descent algorithm based on estimation of 1st and 2nd-
order moments. The algorithm estimates 1st-order moment (the gradient mean) and
2nd-order moment (element-wise squared gradient) of the gradient using exponential
decay rates for the moment estimates, and corrects its bias [20]. The final weight update
is proportional to the learning rate times the 1st-order moment divided by the square
root of 2nd-order moment. The formulas used to update the parameters are:

m̂t =
mt

1− βt1
(2.4)

v̂t =
vt

1− βt2
(2.5)

θt = θt−1 − α ·
m̂t√
v̂ + ε

(2.6)

Where t is the timestep, θ is the model weights, m is the 1st moment vector moment
vector, m̂ is the bias-corrected 1st moment estimate, v is the 2nd moment vector, v̂ is the
bias-corrected 2nd moment estimate, α is the learning rate and ε is a constant, usually
set to 10-8.

Matteo Guidi 12

2.2. Neural Networks

2.2.5 Regularization

As described, during training the error gradient is backpropagated from the output layer
to the input layer and, through the gradient descent step, the gradient calculated is
used to update every weight in the network. The longer the network is trained, the
more specialized the weights will become to predict the training data, with the risk of
overfitting them. In such a case, the network will likely perform poorly when making
predictions on new data. Updating the learning algorithm to encourage the network to
minimize the weights can be of help, improving the generalization of the model. This
process is called is called “weight regularization”. The two most used methods to apply
regularization are the L1 and L2.

Kernel Regularizer L1

L1 regularization is also called Lasso Regression, and adds to the loss function the abso-
lute value of the of all the feature’s weights (Equation 2.7, part in the box).

L(x, y) = Loss+ λ
n∑

i=1

|θi| (2.7)

Where λ is the parameter of regularization, Loss is the loss function (introduced in
Section 2.2.3), n is the number of weights and θ is the value of each weight. It can be
noticed that if λ is equal to 0, then the regularization term is cancelled and only the
loss function remains. Thanks to the addition of this term, a feature selection process is
made: features with values that are non significant are set to zero, while useful features
are set to non-zero values.

Kernel Regularizer L2

L2 regularization is also called Ridge Regression, and adds to the loss function the sum
of the squares of all the feature’s weights (Equation 2.8, part in the box).

L(x, y) = Loss+ λ
n∑

i=1

θ2i (2.8)

Where λ is the parameter of regularization, Loss is the loss function (introduced in
Section 2.2.3), n is the number of weights and θ is the value of each weight. It can be
noticed that if λ is equal to 0, then the regularization term is cancelled and only the
loss function remains. Thanks to the addition of this term, the weights are kept smaller,
thus preventing the overfitting problem.

Matteo Guidi 13

2.3. Convolutional Neural Networks

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a special type of neural networks, which
classify images by taking advantage of the spatial structure. CNN are designed to process
data in multiple arrays, for example multi-spectral images composed of multiple two
dimensional arrays containing pixel intensities in different band channels. CNN are
typically organized as a series of layers. The convolutional layer extracts the features
from the image, with the first layers extracting low-level features (edges and corners)
and the deeper layers learning more complex features (objects and shapes) by combining
the information deriving from the low-level layers. Afterwards, pooling layers compute
local non-linear operations of a particular feature over a region of the image, allowing the
result consistency even in the presence of small translations or rotations of the image.
Subsequently, the normalization layer aims to improve generalization and finally the
fully connected layers, which represent the last layers of the network, summarize the
information conveyed by lower-level layers in view of the final decision [7]. Additional
functions are employed to correct possible over-fitting.

For these reasons, in the last years, convolutional neural networks have been used
for a multitude of tasks in remote sensing applications, and have been proven to be
especially useful in classification tasks [21] [22] [23].

The main components of a CNN are described in details in the following sections. In
this thesis a CNN was used to solve the image segmentation problem.

2.3.1 Convolutional Layer

The convolutional layer is one of the most important layers in a convolutional neural
network. It consists of a series of filters that take into account different spatial dimensions
(width and height) but the whole input depth. Generally, a filter dimension can be
described as (w×h×d), where w is the width, h is the height and d is the depth. During
the forward pass, each filter is convolved (meaning slid across) through the whole image
and is multiplied with the input values with an element wise multiplication (Figure 2.7).

Figure 2.7: Element wise multiplication between input I and filter K, producing a feature map [25]

Matteo Guidi 14

2.3. Convolutional Neural Networks

This process is performed for all the channels of the image, and the results are
summed together to produce a feature map, that is a matrix containing the results of
the convolution. Each filter produces different feature maps, that are stacked together
to produce the output layer. The network is able to learn which filter responds to a local
region of the input, thus exploiting the spatial correlation of the input image.

After the convolution of the input image, a feature map is produced. Conventionally,
the first convolutional layer is responsible for capturing edges, colors, gradient orienta-
tion, etc, the so called low level features. More Convolutional layers can be added, that
are able to capture more high level features, giving the network a complete understanding
of the image (Figure 2.8).

Figure 2.8: Network composed of many convolutional operations, that decrease the size of the feature
map but increase the depth [18].

Kernel Initializer

When the training of a model is started, during the first epoch, the weights are unknown.
It is common practice to choose the weights randomly before starting to optimize them.
This selection however can cause problems such as the vanishing or exploding gradients,
meaning that the loss gradient is either too large or too small to perform the backprop-
agation properly. In these cases, the network will take longer to reach a convergence
point, or it might not even reach it.

There are different ways of setting the initial weights using a procedure that prevents
gradient problems, and the one chosen in this thesis was the He initializer [24]. With
this technique, the weights are drawn from the uniform distribution within [−limit, limit]
where limit is defined in the following equation:

limit =

√
6

fan_in
(2.9)

Where fan_in is the number of neurons of the previous layer.

Matteo Guidi 15

2.3. Convolutional Neural Networks

2.3.2 MaxPooling layer

It is a common practice to insert a Pooling layer between the convolutional layers. A
Pooling layer is a sort of filter applied to the feature maps obtained from a convolutional
layer. Its function is to reduce the spatial size of each feature map, in order to lower the
number of parameters and speed up the computation. The pooling layer chosen in this
thesis was a MaxPooling layer of 2 × 2, that means that the feature map is divided in
many non-overlapping 2 × 2 matrices where the maximum value is selected. The new
feature map contains these maximum values, in such a way that the feature map size
is halved (Figure 2.9). The pooling layer is applied independently on every depth. The
purpose of a pooling layer is to create a summarized version of the features detected
in the input, where the most prominent features are retrieved even in case of rotation,
distortion and other modifications.

Figure 2.9: An example of MaxPooling operation applied on a 4 × 4 matrix. The result is a 2 × 2
matrix where each element is the maximum value over the 2× 2 filter [25].

2.3.3 Activation Functions

In a convolutional neural network, the activation functions have the same purpose as in
a neural network (described in Chapter 2.2.2). Typically, convolutional neural networks
exploit ReLUs activation function, but since they are more “deep” with respect to feed-
forward neural networks, the arising of problems such as overfitting and dying ReLUs is
more frequent. The dying ReLUs, is the situation when a ReLU neuron is stuck in the
negative side and always outputs 0, thus becoming dead (essentially an useless neuron).
In order to prevent this situation, the ELU activation function can be used.

ELU Activation Function

Recently, a new activation function named Exponential Linear Unit (ELU) was intro-
duced [26]. ELU is very similiar to ReLU except for negative inputs. Indeed, with ELU,
a negative value is propagated to the next layer as a small value close to zero, while a

Matteo Guidi 16

2.3. Convolutional Neural Networks

positive input is unchanged (Figure 2.10). With respect to the ReLU activation function,
ELU can prevent the effect of dying ReLUs. The use of ELU instead of ReLU avoids
that, over time, a large part of the network ends up not contributing anymore. From a
mathematical point of view, it can be expressed as:

fELU (z) =

α(ex − 1) if x < 0

x if x ≥ 0

Where α is a constant value that affects the negative values.

Figure 2.10: ELU activation function, with α = 0.5.

2.3.4 Batch normalization layer

In a neural network, the model is updated backwards from the output to the input. In
each hidden layer an estimation of the error is calculated, assuming that the weights in
the previous layers are fixed. In reality, the inputs of each layer are updated every time
that a parameter of a previous layer is changed, making the updating procedure very
slow. This change, happening during training, is often referred to as Internal Covariate
Shift.

Batch normalization is a technique proposed by Ioffe and Szegedy (2015) [27] that
can help in the update of these parameters. A batch is defined as the number of samples
used to train the network before updating the internal model weights. In neural networks
models the batch is tipically equal to the whole training dataset, but in CNN models
usually the training dataset is split in smaller parts, called mini-batches, that are used to
train the model. The fundamental concept is that the normalization of the output of a
previous activation layer is obtained by subtracting the batch mean and dividing by the
batch standard deviation, rescaling the input data to obtain a fixed mean and variance
(Equation 2.10). This can speed up the training process by dramatically reducing the

Matteo Guidi 17

2.4. Classifiers Using Spatial Information

number of epochs required. The batch normalizing algorithm, applied to a mini-batch,
is the following:

µBj =
1

m

m∑
i=1

xi (mini-batch mean)

σ2Bj
=

1

m

m∑
i=1

(xi − µB)2 (mini-batch variance)

x̂i =
xi − µB√
σ2B + ε

(normalization)

yi = γx̂i + β (scaling and shifting)

(2.10)

Where xi are the values over a mini-batch Bj = {x1...m} and ε is a constant; γ is the
scale and β is the shift, that are two additional parameters that the model needs to
learn.

2.4 Classifiers Using Spatial Information

Classification of satellite images is an essential aspect of remote sensing. In recent years
a large number of remote sensing classification techniques have been developed. Most
methods base the classification on the spectral characteristics of the image, while ignoring
the spatial constraints [28]. Spatial dependence is essential when dealing with geographic
information, provided by satellite images.

The addition of spatial information in classification techniques has been defined as
“spatio-contextual” image classification, indicating that a pixel classified belonging to a
specific class is more likely to be surrounded by pixels of the same class [13].

Some of the most important studies dealing with spatial information added to clas-
sification are reported below.

k-NN classifier Atkinson and Naser (2010) [29] developed a k-nearest neighbor method
for pixel classification incorporated with geographical weighting. The basis of the k-
NN classifier states that pixels that are close in the feature space are more likely to
belong to the same class. This method was improved by incorporating a weight scheme
that gives more importance to information derived from close neighbors with respect to
distant ones. The geographical weights introduced in this study are based on the inverse
distance weighting and the difference distance weighting. With the first one the weights
are based on the distance in feature space between two neighboring pixels. With the
second one a pixel is assigned to a class using a decision rule that is affected by both the
neighboring and distant class training samples. By adding these weights to the k-NN
method, the results achieved a better performance accuracy with respect to a simple
spectral classification.

Matteo Guidi 18

2.4. Classifiers Using Spatial Information

Spectral-Spatial Hypergraph Ji et al. (2013) [30] created a hypergraph composed of
one feature-based hyperedge, that connects pixels based on the spectral features, and
one spatial-based hyperedge, that connects pixels based on the spatial layout. This idea
was proposed because pixels that are close in the feature space have high probability to
belong to the same class, but that holds also for pixels that are spatially nearby, since
usually pixels of the same class are spread in an area. Once the hypergraph is created,
a semi-supervised learning algorithm is performed, to learn the relation between pixels
and the weights related to each hyperdge. The experiments presented affirm that the
combination of the spectral-based hyperedge and spatial-based hyperedge was able to
improve the classification performance with respect to other spectral based methods.

Deep learning with spectral-spatial joint information Chen et al. (2014) [31]
proposed a deep learning-based feature extraction method for hyperspectral data classi-
fication that deals with joint spectral-spatial information. The method used is based on
a stacked autoencoder network that takes spectral and spatial information as separated
input. For the spectral information, the spectrum of a single pixel is taken in consider-
ation. For the spatial information a neighbour region of that pixel is extracted. These
data are then fed to the neural network to produce the class probabilities for each pixel.
The results show that this kind of classifier yields an higher accuracy than traditional
spectral classification methods.

U-Net Pixel-wise image segmentation is a very challenging task in computer vision. In
recent years the CNNs proved their success in image classification, object detection and
image segmentation. One of the most successful state-of-the-art deep learning method is
based on the Fully Convolutional Neural Networks, and is now known as U-Net neural
network [32].

A U-Net is similar to a convolutional encoder-decoder network, with its main feature
being the connection between these two parts, in a way that some information in the
decoder section comes from the encoder part, bypassing the compressive bottleneck i.e.
the deepest part of the network. In this way the network can still generalize the infor-
mation retrieved from the encoder part but also includes the spatial information, that
is necessary when performing a per-pixel classification. The encoder part consists of a
contrating path, while the decoder part consists of an expansive path.

The model architecture, as described in [32]: “... consists in the repeated application
of two 3 × 3 convolutions (unpadded convolutions), each followed by a rectified linear
unit (ReLU) and a 2 × 2 max pooling operation with stride 2 for downsampling. At
each downsampling step the number of feature channels is doubled. Every step in the
expansive path consists of an upsampling of the feature map followed by a 2 × 2 con-
volution (“up-convolution”) that halves the number of feature channels, a concatenation
with the correspondingly cropped feature map from the contracting path, and two 3× 3

convolutions, each followed by a ReLU” (Figure 2.11).

Matteo Guidi 19

2.4. Classifiers Using Spatial Information

Figure 2.11: U-Net architecture [32].

This architecture has proved to be very successful in classification of satellite images,
as noted in [33]. In this thesis, some experiments were carried out with a network based
on U-Net (Section 5.4.1).

Matteo Guidi 20

Chapter 3

Improving Typha Segmentation
Using Spatial Information

Detection of objects over large areas is one of the primary drivers of interest in satellite
imagery analytics. Optimization strategies are therefore required to successfully localize
small objects in large images. This is the case for the localization of Typha, an invasive
acquatic plant that has spread out in some African regions. The localization of this
plants correlates with the presence of the Schistosoma parasite, which induces the schis-
tosomiasis, a very dangerous illness. The MASTR-SLS is a project that aims to reduce
the risk of illness controlling the spread of Typha.

The main contribution of this thesis is the implementation of algorithms designed to
improve the localizaton of Typha. Deep learning techniques were applied to the satellite
images and groundtruth data provided by the MASTR-SLS project, integrated with pub-
lic domain GIS information. In particular, the novel approach presented is based on the
integration of spatial relations between the plant and the river, based on the knowledge
that Typha plants tend to grow near or inside rivers. Furthermore, and additional al-
gorithmic approach was designed in order to remove from the Typha’s groundtruths the
pixels representing water, thus improving the spectral characterization of groundtruths.

In Section 3.1 the reasons related to the importance of localizing Typha are presented.
In Section 3.2 the aim of this thesis is introduced. The Section 3.3 contains the core of
this thesis: the algorithms implemented to integrate the spatial constraints and clean
the groundtruth are presented. Furthermore the blob split algorithm, used to partition
the groundtruth between training and test set, is presented.

3.1 Problems related to Typha

It has been widely reported that Typha australis, a species of cattail grass, is taking over
river banks and farmlands in the wetlands of western african states, disrupting farming

Matteo Guidi 21

3.1. Problems related to Typha

and fishing activities and causing ecological imbalance [34]. Indeed, the presence of Ty-
pha reduces plant diversity [35], altering the plant-community system and the physical
structure of vegetation [36], by replacing other emergent and submergent aquatic species.
This can negatively affect fish communities, and therefore the whole food chain. Furthe-
more, due to its highly invasive nature, Typha australis destroys forests and harvestable
lands. Also, the plant’s entangled roots spreads, rapidly blocking waterways and favoring
the standing of shallow waters, a condition which further promotes the diffusion of the
plant, particularly on the fertile lands close to rivers.

Most importantly, Typha hosts freshwater snails (Figure 3.1), which represent the inter-
mediate hosts of the Schistosoma parasite. These parasitic worms, released from infected
snails, contaminate people that enter in contact with infected water during agricultural,
domestic and recreational activities, causing the schistosomiasis. This disease might
lead to liver damage, kidney failure, infertility and bladder cancer. In children, it may
cause poor growth and learning difficulties. Furthermore, urogenital schistosomiasis is
considered to be a risk factor for HIV infection. The economic and health effects of schis-
tosomiasis are therefore considerably high as stated by the World Health Organization
(WHO) [2].

Figure 3.1: Typha plants hosting the freshwater snails, carriers of the Schistosoma parasite [3].

In order to provide ground-truthing for remote detection of aquatic Typha australis, the
project MASTR-SLS (Mapping Schistosomiasis Risk in the Saint Louis region, Senegal,
[3]) was started, and in March/April 2019 multispectral images of prototypical water-
points of the lower Senegal River Valley were taken with drones. This project aims to
exploit the satellite images to map Typha with high precision.

Matteo Guidi 22

3.2. Aim of the Thesis

Figure 3.2: Schistosomiasis transmission cycle [37].

3.2 Aim of the Thesis

In order to precisely locate Typha, satellite images need to be analyzed, and algorithms
capable of classifying unlabeled pixels are required. As already stated in Chapter 2
machine learning models, and in particular neural networks, are suitable for these kinds
of tasks. The aim of this thesis was to implement neural networks model in order to
classify Typha with the highest precision. The attempt of classifying available satellite
image using only the spectral information produced very poor results since the spectral
signature of the plants is often not sufficient to differentiate plant species. This especially
occurs when the satellite images are constituted by few bands, as is in this case, where the
bands provided were only 4 (Blue, Green, Red, Near InfraRed). However, the availability
of additional information about the specific plant to be located, could be exploited to
ease the classification task. As already mentioned, Typha plants tend to grow near or
inside the rivers. The novel idea at the basis of this work was to integrate the spatial
correlation between these classes, obtained from the Geographic Information System
(GIS) data of the river, into the classifier as an “a priori” input. Furthermore, in order
to have more precise Typha’s groundtruths, a cleaning method was developed, so that
the pixels wrongly labeled were removed. These integrations proved to be very useful,
and allowed to obtain better results with respect to the basic methods.

Furthermore, a new method of partitioning the inputs, called blob split, was imple-
mented, and the results were compared with the random split method.

3.3 Proposed Solutions

In this section the main solutions and the novel ideas are discussed in details. First, the
segmentation problem is introduced. Then the creation of a matrix which incorporates
spatial constraints is explained in details. Then the algorithm exploited to clean the
groundtruth is reported. Finally, the blob split method, used to partition the input data
into training and test set, is discussed.

Matteo Guidi 23

3.3. Proposed Solutions

3.3.1 Problem Formulation

The goal of the classification process is to find and detect all the pixels p which belongs
to a specific class ci in an image I. To this purpose, we will pursue a pixel-based
classification approach. To reach our goal we are given:

• An image I, composed by a certain number of pixels p.

• A set of classes C = {c1, c2, . . . , ci}, where i denotes a different class.

• A set of groundtruthsGTc = {GT1, GT2, . . . , GTi}, where eachGTi is the groundtruth
of the ci class, and is composed by a certain number of pixels pi.

Our goal can be defined as:

Train a classifier that:

∀p ∈ I assign p to the class ci relying on features learned on GT
(3.1)

Thus creating a set of non-overlapping regions S1, S2, . . . , Sn which, when combined,
form I:

n⋃
i=1

Si = I where Si ∩ Sj = ∅ (3.2)

We decided to solve this problem using neural networks and convolutional neural net-
works, presented in Chapter 5.

3.3.2 Integration of Spatial Information

Typha plants tend to grow near or inside the rivers. The novel idea at the basis of this
work was to integrate this relationship into neural networks models, in order to detect
with more precision the Typha plants present in the area.

Given as inputs:

• An image I, of w × h× d dimensions.

• A known relationship between Typha and river.

The goal is defined as:

Integrate the known spatial relationship into the neural network model.

There are different solutions that can be employed, but we decided to augment the input
data with an image representing the proximity of each pixel with respect to the closest
river’s pixel 3.3..

Matteo Guidi 24

3.3. Proposed Solutions

Figure 3.3: Creation of the datacube used as input for the neural network models. The “distance
from river ” layer was created an then used as an additional input.

To achieve that, we created an image D in which every pixel’s value is equal to the
distance from the closest pixel of the class r, that is the river. In order to obtain this
image the following input is given:

• A mask M in which the pixels belonging to the class r are labeled as 1, while all
other pixels are labeled as 0.

The formal definition of the problem is the following:
Given a boolean matrix M where the pixels belonging to the river class r are labeled as 1,
create a matrix D where, for every pixel, the distance d from the closest pixel of class r
is computed.

The algorithm used in order to create the matrix D, is reported below:

Algorithm 1 Computation of matrix D
1: Initialization of D as a zeroes matrix with dimensions equal to M
2: for i in M_rows do
3: for j in M_columns do
4: Initialize min_dist = 0
5: if Mi,j = 0 then . i.e. p does not belong to the class r
6: for Evey pixel p = 1 in M do . i.e. pr belongs to the class r
7: Compute distance d between pi,j and p
8: if d ≤ min_dist then
9: min_dist = d

10: Di,j = min_dist . i.e. assign to Di,j the minimum distance found

In order to compute the distance between two pixels (line 7 of Algorithm 1) different
methods could be employed:

Chessboard distance between two pixels (x1, y1) and (x2, y2) can be computed as:

d = max(|x1 − x2| , |y1 − y2|) (3.3)

Cityblock distance between two pixels (x1, y1) and (x2, y2) can be computed as:

|x1 − x2|+ |y1 − y2| (3.4)

Matteo Guidi 25

3.3. Proposed Solutions

Euclidean Distance between two pixels (x1, y1) and (x2, y2) can be computed as:

d =
√

(x1 − x2)2 + (y1 − y2)2 (3.5)

Quasi-Euclidean Distance between two pixels (x1, y1) and (x2, y2) can be computed
as:

d =

|x1 − x2|+ (
√
2− 1) |y1 − y2| if |x1 − x2| > |y1 − y2|

(
√
2− 1) |x1 − x2|+ |y1 − y2| otherwise

(3.6)

Given the matrix M and the class k the computation of the distance matrix, using
the Euclidean distance described in Equation 3.5, was performed. An illustration is
provided in Figure 3.4, and in Figure 3.5 the results of the algorithm applied to an
image are reported.

Figure 3.4: Image showing how the euclidean distance from each pixel labeled as ‘1’ to the closest
pixel labeled as ‘0’ is computed. The euclidean distance between a ‘0’ pixel (in red) and the closest
‘1’ pixel (in green) is computed using the formula presented in Equation 3.5.

Figure 3.5: Results of the algorithm applied to an image. On the left is presented the river mask,
where all the white pixels belong to river, while the black ones do not. On the right is presented the
result of the algorithm, where the distance of each pixel from the closest pixel of river is computed.
Distance values closer to 0 are in blue, meanwhile higher distance values are in yellow.

Matteo Guidi 26

3.3. Proposed Solutions

The integration of this additional layer was used by the classifier to “learn” the spatial
proximity between every object in the map and the river. This helped to classify the
Typha with higher precision. Indeed, the groundtruths of Typha were located close to
the river, and this relation was exploited by the model as a further information, added on
top of the spectral characteristics. The classifier learned that Typha’s pixels have very
low values of distance from rivers, thus using this information in the prediction phase.

This novel approach turned out to substantially help the model to perform a better
classification process. Differently from previous studies, where the model learned the
spatial constraints from the data [29][30][31][32], we provided information about spatial
relationship, obtained from Geographic Information System (GIS) data of the river, as
an “a priori” input. To the best of my knowledge, the process of integrating GIS data into
the classification algorithm has never been used yet for similar projects. Besides being
easier to implement with respect to other state-of-the-art solutions, this method offers
the advantage that OpenStreetMap, which creates and makes freely available geographic
data [38], providing GIS data of rivers, cities, roads and other classes, for almost every
country in the world. GIS data are updated every few days with high precision, thus
providing a relevant source for improving environmental assessments and monitoring.

3.3.3 Preprocessing of Groundtruths

Another contribution of this work was the implementation of the groundtruth cleaning. A
groundtruth is defined as the information collected in-situ. In remote sensing specifically,
the groundtruths are the data that are collected on the ground by a team of experts,
which define with almost certainty a specific class. These data can be used to compare
a pixel obtained from a satellite image with the real object that is on the ground in
the same specific location. When performing classification on satellite images, the set
of groundtruths is typically used as training set. The model learns the features of each
different class in order to classify with precision other pixels. The groundtruth are
typically given as closed contours, where all pixels inside the area are considered to
belong to a single specific class (Figure 3.6).
However, this is not always the case as sometime pixels inside a groundtruth belong to a
completely different class. This problem happened with the data that we were provided
with. According to the experts, the groundtruths of Typha were difficult to collect, since
the plants grow in swamps, impossible to be accessed. To recover the groundtruths, a
drone was flown over the marshes and the location of the plants was recorded. However,
since plant areas and water areas were not well separated, the groundtruths recovered
were not precise (Figure 3.7).

Matteo Guidi 27

3.3. Proposed Solutions

Figure 3.6: Example of city groundtruth, in yellow. It can be noticed how the groundtruth are
provided as multiple different areas.

Figure 3.7: Photo of Typha’s plants from the top, taken with the drone, clearly showing that the
plants are mixed with the water. Courtesy of [3]

The goal of the groundtruth cleaning is to identify and remove all the pixels which
do not belong to the groundtruth’s class, in order to give the model more precise and
homogeneous training data, hence guaranteeing that the classifier does not learn from a
class features of pixels that do not belong to that class.
The inputs given are:

• An image I of w × h× d dimensions, composed by a certain number of pixels p

• A label function L(p) which returns the label of the class assigned to the pixel.

Matteo Guidi 28

3.3. Proposed Solutions

• A true label function L(p) which return the true label of the class to which the
pixel belongs to, i.e. the class in the real world to which the pixel belongs to.

• A groundtruth GTc = {∀p ∈ GT | L(p) = c}, which means that for every pixel
p ∈ GT contained in the groundtruth GTc, where c is a specific class, the label
L(p) is equal to c.

• A set of classes C = {c1, c2, . . . , ci}.

• An unknown number of pixels r ∈ GTc for which L(r) 6= c, where L(p) indicates the
true label of the pixel, meaning that the true label of the pixel r, that is contained
in GTc, is not c.

The goal is defined as follow:

∀pixel ∈ GTc remove pixel from GTc =⇒ L(pixel) 6= c (3.7)

The solution we proposed expoited the k-Nearest Neighbour algorithm, that is a clas-
sification algorithm often used in machine learning. It is (i) non-parametric, meaning
that it tries to fit the training data in the best possible way- i.e. the model structure is
determined from the data - and (ii) lazy, meaning that the training phase is not present,
but the data are “memorized” from the input. The k-NN algorithm is based on feature
similarity, so it tries to predict a given data searching which training example is the most
similar.

As already stated, the groundtruths of Typha contained pixels whose true label was
river. Knowing this relation, we decided to exploit the groundtruths of two classes
as training inputs: vegetation and water. The k-NN algorithm learned the features of
these two classes and, when presented with pixels belonging to the Typha’s groundtruth,
was able to discern if the pixel was more similar to the vegetation class or to the river
class. The pixels which were considered more similar to the river were removed from the
Typha’s groundtruth, thus creating a dataset more precise and accurate, composed of
pixels belonging only to Typha.
The algorithm is explained below:

Matteo Guidi 29

3.3. Proposed Solutions

Algorithm 2 Groundtruth Cleaning with k-NN
1: procedure Fitting Data(X,Y)
2: Vegetation and river groundtruths are stored as training data

3: procedure Classification and removal(GTtypha)
4: for x in GTtypha do
5: for i in X do
6: Compute distance d(Xi, x) . i.e. compute distance between x and all

elements of X
7: Compute set N of the k elements with smallest distance d
8: for j in N do
9: Return Y (j) . i.e. return the class label of the j element

10: Count the number of labels of the set N
11: Assign x to the class which has the majority of labels
12: if x is classified as river then
13: Remove x from GTtypha

Where X is the vector of training data, Y the class labels for each element of the training
data; x is the element that needs to be classified, and k is the number of nearest neighbour
considered.

Knowing that each pixel has its own vector of values (or features) along the depth, the
similarity between two pixels is calculated as a simple distance between their two vectors.
In this thesis, the function used to compute the distance was the euclidean formula:

E(x, y) =

√√√√ d∑
i=0

(xi − yi)2 (3.8)

Where x is the first vector, y is the second vector and d is the number of features of the
vectors (depth of the image).
This distance is computed between every item that needs to be classified and every item
in the training dataset. Then the k closest data points are selected, and the item is
assigned to the class which has the “majority of votes”.

Using this method, pixels contained in a groundtruth to which they do not belong are
removed. This ensures a better classification and better performances, since the neural
network models that were developed learned on a training dataset whose groundtruths
were composed by pixels belonging to a single class. An example of the result of the
algorithm is presented in Figure 3.8.

Matteo Guidi 30

3.3. Proposed Solutions

Figure 3.8: Results of the algorithm applied to a fictional groundtruth of Typha. On the left is
presented the groundtruth of Typha, where purple pixels belong to the groundtruth and yellow pixels
do not. In the center there is the NIR band of the area, where the red square delimites the groundtruth.
Blue pixels belong to the river, while greener pixel to the Typha. On the right is presented the
groundtruth after the removal of the pixels found to belong to river. It can be noticed that the
majority of pixels that were blue were removed from the groundtruth.

3.3.4 Blob Split Method for Training and Test Set Partioning

A new way of partitioning the training and test dataset was used in this thesis. In
machine learning, it is a common practice to split the input data randomly between
training and test set. The training set is used as input to train the model. The test set is
used to validate the parameters obtained in the training set and to compute the errors.
The latter process is performed in order to assess if the model is able to generalize what
was learned during the training phase, and predict a set of data that was not used as
training.

In classification of remote sensed images, the input data is the set of groundtruths.
The pixels therein contained are typically partitioned between training and test set in
a random way. In this thesis, instead of using only a random split, we propose a new
method, which consists in dividing the groundtruths in different blobs, i.e. agglomerates
of contiguous pixels that belong to the same class, as displayed in Figure 3.9.

Figure 3.9: Groundtruths of vegetation divided in blobs: each color corresponds to a different blob.

Then all the blobs of a same class were divided, to be later used, either in the training
or the test set, using a 2:1 ratio, meaning that 66% of the blobs of a specific class were

Matteo Guidi 31

3.3. Proposed Solutions

selected as training set, while the other 33% were selected as test set. This process
was made because we reasoned that different areas of the same class could have slightly
different features. The idea was therefore to assess wether the model would be strong
enough to predict areas belonging to the same class even when pixels of that specific
area were not used for training.

In order to achieve this goal, the inputs given are:

• A map M .

• A set C = {c1, c2, . . . , ci} of classes where i denotes a different class.

• A certain number of pixels pi located in the map, labeled as one of the i classes.
Pixels labeled with a ‘0’ do not belong to any class.

The formal definition of the problem is the following:
Given a map M composed by a set of pixels pi which belong to a class i, join as a single
agglomerate all the pixels which are contiguous (connected) and that are part of the same
class ci.

The algorithm that was implemented in order to split the groundtruths into blobs and
then partition them between training and test set is the following:

Matteo Guidi 32

3.3. Proposed Solutions

Algorithm 3 Blob Split and Training/Test Partitioning

1: procedure Blob Creation(M, C, pi)
2: Initialize label_counter as a zeroes vector of i dimension
3: Initialize the new label map as L, with same dimensions as M composed by only

zeroes
4: Initialize variable pixel_class
5: for each pixel p in M do
6: if p 6= 0 then . i.e: pixel belong to a class
7: pixel_class = C(p) . i.e: class k of pixel p
8: Find a set S of pixels connected to p which belong to the same class C(p)
9: for each elem in S do

10: get elem coordinates (x, y)
11: L(x, y) = label_counter[pixel_class] . i.e: set in map L the value of

label_counter
12: remove elem from M

13: label_counter[pixel_class] ++ . i.e: increase counter value

14: return L

15: procedure Training/Test Blob Partioning(L,C)
16: for c in C do
17: Find all blobs B that belong to class ci in matrix L
18: Select randomly 66% of them, and assign each pixel to the training set
19: Assign each pixel of the remaining 33% to the test set

20: return Training Set, Test Set

Using this algorithm, we first created a new map where the groundtruths were divided
in blobs. Subsequently the blobs were partitioned between training and test set in a
random way.

Matteo Guidi 33

Chapter 4

Dataset and Preprocessing

In order to obtain a segmented image, several steps have been done to prepare the
datasets used as inputs for the models. These steps are described in Figure 4.1. The
preprocessing steps were divided in three main branches:

1. Satellite data download and manipulation, as well as creation of NDVI and NDWI
indexes

2. Creation of the distance from the river matrix

3. Groundtruth data collection and manipulation

Figure 4.1: Pre-processing steps realized to create the input data for the models.

These steps are described in detail in the following sections. In particular, Section
4.1 explains how the satellite images and the groundtruth were retrieved. Section 4.2
reports the preprocessing steps actuated to manipulate the input data in order to make
them usable, and the creation of additional data. Then in Section 4.3 the creation of the
layer containing the spatial constraints is discussed. Section 4.4 reports the groundtruth
cleaning method applied to this dataset. In Section 4.5 the approaches used to partition
the data into training and test set are explained. In Section 4.6 the output class of the
models are defined. Finally in Section 4.7 the softwares used in this thesis are introduced.

Matteo Guidi 34

4.1. Datasets

4.1 Datasets

4.1.1 Study area

The case study area is situated around the Gaston Berger University in Senegal (Figure
4.4). The coordinates of the university are 16◦3’48" N, 16◦25’33" E. This area was chosen
because the MASTR-SLS project (described in Section 3.1) aims to monitor the spread
and apply containment measures for Typha, an aquatic flowering plant with invasive
potential and environmental impacts, in this area.

Figure 4.2: Location of Senegal in Africa. Figure 4.3: Location of the university.

Figure 4.4: Map with the study area (data: Google Maps).

4.1.2 Satellite image

The satellite images of the area were acquired by PlanetScope, a Planet and ESA (Eu-
ropean Space Agency) satellite constellation. Each PlanetScope satellite is a CubeSat
3U form factor (10 cm by 10 cm by 30 cm). The complete PlanetScope constellation, of
approximately 130 satellites, is able to image the entire land surface of the Earth every
day (equating to a daily collection capacity of 200 million km2/day) [39]. The acquisition
date was the 24th of March 2019. The Planetscope satellites provide data in 4 bands

Matteo Guidi 35

4.1. Datasets

(Red, Green, Blue, Near InfraRed), with a resolution of 3 meters (Table 4.1).

Spectral Band Wavelenght Resolution
Blue 455-515 nm 3 m
Green 500 - 590 nm 3 m
Red 590 - 670 nm 3 m
NIR 780 - 860 nm 3 m

Table 4.1: Information of PlanetScope satellite [39].

4.1.3 Groundtruth Data

The study area contains different land classes, but in this thesis it was decided to focus on
6 classes: river, Typha, soil, agriculture fields, city and vegetation. The groundtruth data
for each of these layers were needed to train and verify the models. The groundtruths
were collected by a team of experts, that performed on site surveys and provided GIS
data of each class for the area to be examined. The groundtruth data of all Senegal’s
buildings were downloaded from Open Street Map1, but only the buildings relative to
the area of interest were selected and used.

Each groundtruth was provided as a shapefile layer, that was later transformed in
a binary mask of 3137 × 5238 pixels. Each pixel was labeled as either 0 if it was not
belonging to the class, or 1 if it was.

Figure 4.5: Groundtruth layers overlapped to the satellite image of the area.

1https://download.geofabrik.de/africa/senegal-and-gambia.html

Matteo Guidi 36

4.2. Preprocessing

4.2 Preprocessing

4.2.1 Image Preparation

In order to cover the area of interest, a single satellite image was not enough, so three
different images taken in the same day, covering the whole area, were downloaded from
Planet website2. Then, with the use of QGIS, the images were merged in a single raster
and then cut around the study area (Figure 4.6).

Figure 4.6: Visualization of the three satellite images, boundaries in green. The area of interest is
inside the red box.

The final image had a size of 3137× 5238× 4 pixels, which corresponded to roughly
9×15km. The third dimensions channels were, in order, Blue, Green, Red and Near
InfraRed (NIR).

4.2.2 Additional Data

The available data on the case study area were integrated with additional information.
Two layers were created from a combination of bands: an NDVI layer and an NDWI
layer. The integration of these layers was studied to assess how their inclusion changed
the results of the predictions of the models used.

NDVI The normalized difference vegetation index (NDVI) is a common index that
gives the quantitative estimation of vegetation growth and biomass [40], that uses a

2https://www.planet.com/products/planet-imagery/

Matteo Guidi 37

4.3. Integration of GIS Data

combination of the Red and NIR channels:

NDV I =
NIR−RED
NIR+RED

This index is particularly useful when trying to highlight active and healthy vegetation.
Its value ranges from -1 to 1. High values of NDVI indicate presence of healthy green
vegetation, because vegetation reflects more in the NIR channel and less in the Red
channel, whereas lower values indicate non-healthy vegetation, bare soil and buildings.
Very low values are typical for water bodies.

NDWI The normalized difference water index (NDWI) is a common index used for
water body mapping. It uses a combination of the Green and NIR channels:

NDWI =
GREEN −NIR
GREEN +NIR

This index is particularly useful when trying to highlight water bodies, because water
reflects almost zero in the NIR channel and has the highest reflection in the Green
channel.

Figure 4.7: NDVI index clearly shows where
the vegetation is located (in dark green).

Figure 4.8: NDWI index clearly shows where
the water bodies are located (in dark blue).

4.3 Integration of GIS Data

The GIS data of Senegal’s rivers were downloaded from the up-to-date OpenStreetMap
website3. The data contained the geometries of every waterway in Senegal (Figure 4.9).
Only the rivers of the area around Saint Louis were selected (Figure 4.10).

The data of the rivers were provided as a single line feature passing through the center
of the river. This representation does not describe the reality, since the width of the
river is often many meters long. For this reason, a small buffer was created around each
of these lines, providing a more realistic representation of the rivers (Figure 4.11).

3https://download.geofabrik.de/africa/senegal-and-gambia.html

Matteo Guidi 38

4.3. Integration of GIS Data

Figure 4.9: Senegal’s rivers downloaded from OpenStreetMap.

Figure 4.10: River layer of the St. Louis area.
The rivers layout is provided as a line.

Figure 4.11: River layer of the St. Louis area
after the buffer operation.

In order to compute the distance from the river, the image was binarized, meaning
that each pixel that was part of the river was converted into a ‘1’, all the others pixels
were set as ‘0’ (Figure 4.12).

Figure 4.12: Mask of the river layer, where the pixels belonging to the river have value equal to ‘1’,
while the pixels not belonging to the river have value equal to ‘0’.

Then the algorithm described in Section 3.3.2 was applied to the newly created mask.
In this way, a matrix where all the pixels have a value equal to the euclidean distance

Matteo Guidi 39

4.4. Typha’s Groundtruth Cleaning

from the closest pixel of a river was created (Figure 4.13). This matrix was used as
an additional layer (Section 5.3.1), given as input to the neural network, ensuring that
the proximity relationship that involves the Typha and the river was given as a-priori
information.

Figure 4.13: Image representing the distance of each pixel from the closest river. Blue represents
values closer to zero, while the highest values appear in yellow.

The final data consisted of 3137 × 5238 × nc pixels. The number of channels nc
changed depending on the case studied. The channels used were, in order: Blue, Green,
Red, NIR, NDVI, NDWI, distance from river, as seen in Figure 4.14

Figure 4.14: Datacube creation.

4.4 Typha’s Groundtruth Cleaning

As already stated in Section 3.3.3 the groundtruths of Typha were difficult to collect,
since the plants grow in swamps, difficult to be accessed. To recover the groundtruths a
drone was flown over the marshes, and the location of the plants was recorded. However,
since plant areas and water areas were not well separated, the groundtruths recovered
were not precise. Comparing the data with respect to the actual satellite image, it was

Matteo Guidi 40

4.4. Typha’s Groundtruth Cleaning

possible to see that some areas labeled as Typha were, in reality, water bodies. This
was noticed by checking the NIR band (Figure 4.15), where clearly appeared that the
river’s pixels had very low values (leaning towards a dark blue color), meanwhile the
vegetation’s pixels had higher values (leaning towards a green/yellow color).

Figure 4.15: NIR band of two groundtruths of Typha inside the red box: it is evident that some of
the pixels do not represent Typha, but belong to the river.

In order to remove the non-Typha’s pixels from the groundtruth, it was decided to
use the algorithm described in Section 4.4 (Algorithm 2). To fit the data two classes were
chosen: river and vegetation. The groundtruths of these classes were used as training
data. Then the pixels of the Typha’s groundtruth were classified with respect to either
class, in such a way that the pixels of the groundruth that were more similar to the river
were removed. The new groundtruths obtained showed that the pixels that looked like
water were correctly removed (Fig 4.16).

This process was made in order to have more reliable and more accurate groundtruth
on which the neural network model could train on. In fact, having some completely wrong
pixels inside the Typha’s groundtruth could have worsened the final classification.

Figure 4.16: Groundtruths of Typha showing the removal of pixels found to belong to the river.

Matteo Guidi 41

4.5. Training and Test Partitioning

4.5 Training and Test Partitioning

As already introduced in Section 3.3.4, in machine learning is a common practice to
split the input data randomly between training and test set. There are different ratio
combinations that can be used, among which one of the most common is the 4:1 ratio,
that means 80% of the pixels are chosen as the training set, and 20% as the test set.
This ratio is typically used in presence of high amounts of data. Since the groundtruths
provided were not enough to justify this choice, it was decided to compare two different
methods for training and test set selection.

1. A random split of the groundtruth data between training and test with a ratio of
2:1, meaning 66% of groundtruth’s pixels were selected as training set and 33% as
test set

2. The blob split method described in Section 3.3.4. All the blobs were divided
between training and test set using a 2:1 ratio, meaning that 66% of the blobs of
a specific class were selected as training set, while the other 33% were selected as
test set.

Since the groundtruth provided of Typha consisted of three blobs, when the blob
split method was performed, two blobs were selected for the training set, and the
last one was used as test set. The three different cases that are presented later
corresponds to the distinct combinations of the blobs selected as either training or
test set.

These choices were applied to the neural networks models. Furthermore, during the
training phase of the model, the training set was also split between training set and
validation set with a ratio of 4:1. The validation set was composed of 20% of the pixels,
and it was used to validate the model performances, meaning that the set of weights
which produced the smallest error with respect to the validation set was selected.

For the convolutional neural network model, it was decided to use the same blob split
method adopted for the neural network model. The blobs of each class were split with
a ratio of 2:1, meaning that 66% of the blobs of a specific class were selected as training
set, while the other 33% were selected as test set. This choice was made to test if the
model was able to learn on a blob and then predict correctly on a different blob, that
might have non-similar characteristcs.

4.6 Number of Output Classes

When performing a classification, the number of output classes defines how many classes
the model is going to predict. Usually, but not necessarily, is equal to the number of

Matteo Guidi 42

4.7. Software

classes provided as groundtruth. In this thesis, it was decided to study two different
cases, a 2-class classification and 6-class classification.

2-class Classification In the first case it was decided to perform a 2-class classification,
where the two classes were represented by Typha and all the other groundtruths (river,
vegetation, soil, agriculture, city) merged in one single class. This analysis was performed
to get more insights into the classification of the Typha, and to see if the model was
able to perform a precise classification. Furthermore we wanted to determine whether
the integration of the spatial constraints improved the classification.

6-class Classification In the second case, it was decided to perform a 6-class classifica-
tion, using all the classes given in the groundtruths. This analysis was performed to get
more information on how the pixels of the Typha were classified, and to reveal possible
misclassification errors made by the model. Furthermore, the tests were performed to
determine if the results obtained in the 2-class classification were convalidated even in
this case.

The workflow of the case studied is presented in Figure 4.17.

Figure 4.17: Workflow of the case studied.

4.7 Software

To perform the analyses described in this thesis, the following softwares were used:

QGIS4 QGIS is a professional geographic information system application that is Free and
Open Source Software (FOSS). QGIS allows users to analyze and edit spatial information,
in addition to composing and exporting graphical maps. QGIS supports both raster and

4https://qgis.org/en/site

Matteo Guidi 43

4.7. Software

vector layers; vector data are stored as either points, lines, or polygon features. Multiple
formats of raster images are supported, and the software can georeference images. Web
services are also supported to allow the use of data from external sources.

Scikit-learn5 Scikit-learn is a machine learning library built for Python that provides
simple and efficient tools for data mining and data analysis, as well as several different
machine learning techniques such as classification, regression and clustering [41].

Keras6 Keras is a high-level API for neural networks, written in Python. It was used on
top of Tensorflow, an open source platform for machine learning. Keras allows to build
personalized neural networks models using pre-built blocks, for example different kinds
of layers, activation functions and optimizers [42].

Colaboratory7 Google Colaboratory (also known as Colab) is a cloud service based on
Jupyter Notebooks. It is especially useful because provides a runtime fully configured
for deep learning and free-of-charge access to a robust GPU (Tesla K80 GPU of 12.72
GB), that was needed when training convolutional neural networks [43].

The neural network models were run on a MacBook Pro with 8GB of RAM and an Intel
Core i5.

5https://scikit-learn.org
6https://keras.io
7https://colab.research.google.com

Matteo Guidi 44

Chapter 5

Models Setup/Design

Obtaining classification from images requires several passages. The choices that have to
be made concern mainly the selection of the training and test data sets and the model
architecture design. This chapter starts with a detailed overview of the design steps
required before the training of a neural network (Section 5.1). In Section 5.2 the problem
of class imbalance is introduced and the methods adopted to overcome it are presented.
Then in Section 5.3 the neural networks models used in this thesis are presented, and
the main implementation decisions are reported. Finally in Section 5.4 the convolutional
neural network model used in this thesis is presented, and the implementation choices
are explained in details.

5.1 Overview of Design Steps

An overview of the design steps for the neural network model and the convolutional
neural network model is presented below. The steps necessary for creating, training and
evaluating the neural network can be resumed as:

– Preprocessing of the data

– Partition in training and test set

– Training the model (with intristic split into training and validation of the training
set)

– Network prediction and evaluation metrics calculation

– Converting network output into a segmented image

For the convolutional neural network model, the steps can be summarized as:

– Preprocessing of the data

– Partition in training and test set

Matteo Guidi 45

5.2. Class Imbalance

– Training the model with patches

– Network prediction on patches and evaluation metrics calculation

– Converting network output in a segmented image

This chapter will mainly focus on the steps needed for setting up the networks and
on the description of the adopted methods.

5.2 Class Imbalance

5.2.1 Class Weights

The groundtruths collected were very imbalanced, that means that they consisted of
different number of pixels (Table 5.1). Under these circumstances, the model encountered
problems to classify the least represented classes. One way to solve this issue was to add
class weights to the loss functions (Section 2.2.3). Indeed, as Keras documentation
states: “This can be useful to tell the model to “pay more attention” to samples from an
under-represented class” [42].

Class Number of pixels
River 154’652
Typha 11’032
Soil 90’879
Agriculture 82’319
City 141’397
Vegetation 18’632

Table 5.1: Number of pixels for each groundtruth class.

The weights for each class were computed using this formula:

wk =
n

k ∗ nk
(5.1)

Where n is the total number of pixels, k is the number of classes and nk is the
number of pixels belonging to the k class. Note that the n and nk are computed from
the training set. Since the training set was defined randomly each time the model was
run (as described in Section 4.5), the weights were different for each iteration, according
to the size of the training set and the number of pixels for each class therein contained.

It was decided to add the class weights to the loss function since the Typha’s
groundtruths contained less pixels than any other class, while being the most impor-
tant class to classify. Furthermore it was decided to compute them using the training
set data, since it contained the number of pixels on which the model was learning on.

Matteo Guidi 46

5.3. Neural Network Models

5.2.2 Loss Function: Weighted Categorical Cross Entropy

The class weights were used to change the loss function, in order to weight more the
missclassified elements of a smaller class. The loss function used was the categorical
cross entropy (Equation 2.3), and its weighted version is:

Lw(p, q) = L(p, q) ∗ w (5.2)

Where L(p, q) is the loss function and w is the vector of weights, defined in Equation
5.1.

The weighted categorical cross entropy was used as loss function for both the neural
networks and the CNN.

5.3 Neural Network Models

5.3.1 Model architecture

The neural network was designed using Keras [42]. Figure 5.1 shows the architecture of
the model that was used for training. The network had 5 layers, composed by:

– One input layer of variable number of neurons (depending on the number of chan-
nels used). The activation function used was the ReLU.

– Three hidden layer composed by 5 neurons each. The activation function used was
the ReLU.

– One output layer composed by 2 or 6 neurons, that corresponded to the number
of output classes. The activation function used was Softmax.

Figure 5.1: Neural network architecture used in this thesis [18].

Matteo Guidi 47

5.4. Convolutional Neural Network model

5.3.2 Regularization

As stated in Section 2.2.5 a problem that a neural network may suffer is the overfitting
of the data. In order to prevent and resolve this issue a Kernel regularizer L2, for each
neuron, was used, with the λ value equal to 0.01.

5.3.3 Gradient Clipping

Another issue that may occur in deep neural networks, is the exploding gradient, that
happens when the gradient is unstable [44]. The gradient that is computed can get
extremely high, if the weights are big enough, and this may cause the model to not learn
anymore.

An easy way to fix the exploding gradient is the gradient clipping, that consists in
setting a value for the gradients when it goes beyond a certain threshold. In particular,
in this thesis the clipnorm from Keras, that “clip the gradient if the L2 norm exceed a
threshold” [42] was used, with the following formula:

gradient =

gradient * threshold

‖L2‖ if ‖L2‖ ≥ threshold

gradient otherwise
(5.3)

In this way the gradient was not able to increase to the point where it could not be
handled anymore. The threshold value chosen in this thesis was 1.0

5.3.4 Prediction

Once the model was trained, the prediction was carried out. Each pixel of the map was
given to the neural network model that produced a probability map - i.e. a vector which
contained the probability for the pixel to belong in each class. Each pixel was assigned
to the class with the highest probability, thus producing a semantic map where each
pixel was assigned to the class which is most similar to.

5.4 Convolutional Neural Network model

5.4.1 Architecture

The convolutional neural network was designed using Keras. The architecture used for
this model was based on the U-Net network model created by Ronneberger, Fischer, and
Brox [32] and is displayed in Figure 5.2.

The network has 5 contracting layers, supplemented by other 5 upsampling operators,
giving the ”U” shape where the model takes the name from. The contracting path
resembles a typical architecture from a convolutional network, where each block consists
of 2 mini-blocks, composed of a Convolutional Layer, a Batch Normalization Layer,

Matteo Guidi 48

5.4. Convolutional Neural Network model

and a ELU activation function. The last layer of the block is a MaxPooling layer.
The contracting blocks are concatenated with simmetric upsampled ones, except for the
MaxPooling layer that is converted into a UpSampling layer. The output is given by a
final Softmax activation layer.

Figure 5.2: U-Net architecture.

5.4.2 Feature Map Sizes

Every layer of the network produced a feature map size of different dimensions. The
patch size used for training had size 128× 128× 6. As seen in Table 5.2, the dimensions
of the feature map became smaller as it went deeper in the network, while the depth
increases. In the ‘deepest’ point, it was 8× 8× 512.

5.4.3 Patch Selection Method

As previously stated, each patch had a size of 128 × 128 pixels. Usually, in segmenta-
tion tasks, patches are selected in random positions throughout the image. Since the
groundtruth data were sparse and did not cover the whole image, training patches were

Matteo Guidi 49

5.4. Convolutional Neural Network model

Layer Output Size
Input (128×128×nc)
Convolution (128×128×32)
Batch Normalization + ELU (128×128×32)
Convolution (128×128×32)
Batch Normalization + ELU (128×128×32)
Max Pooling (64×64×32)
Convolution (64×64×64)
Batch Normalization + ELU (64×64×64)
Convolution (64×64×64)
Batch Normalization + ELU (64×64×64)
Max Pooling (32×32×64)
Convolution (32×32×128)
Batch Normalization + ELU (32×32×128)
Convolution (32×32×128)
Batch Normalization + ELU (32×32×128)
Max Pooling (16×16×128)
Convolution (16×16×256)
Batch Normalization + ELU (16×16×256)
Convolution (16×16×256)
Batch Normalization + ELU (16×16×256)
Max Pooling (8×8×256)
Convolution (8×8×512)
Batch Normalization + ELU (8×8×512)
Convolution (8×8×512)
Batch Normalization + ELU (8×8×512)
Up Sampling (16×16×512)

Layer Output Size
Concatenate (16×16×768)
Convolution (16×16×256)
Batch Normalization + ELU (16×16×256)
Convolution (16×16×256)
Batch Normalization + ELU (16×16×256)
Up Sampling (32×32×256)
Concatenate (32×32×384)
Convolution (32×32×128)
Batch Normalization + ELU (32×32×128)
Convolution (32×32×128)
Batch Normalization + ELU (32×32×128)
Up Sampling (64×64×128)
Concatenate (64×64×192)
Convolution (64×64×64)
Batch Normalization (64×64×64)
ELU (64×64×64)
Convolution (64×64×64)
Batch Normalization + ELU (64×64×64)
Up Sampling (128×128×64)
Concatenate (128×128×96)
Convolution (128×128×32)
Batch Normalization (128×128×32)
ELU (128×128×32)
Convolution (128×128×32)
Batch Normalization + ELU (128×128×32)
Convolution (128×128×nk)

Table 5.2: Feature map sizes through the network. Notice that the input has size 128×128×nc,
where nc is the number of channels of the datacube (6 in this case), while the output has size
128×128×nk where nk is the number of classes (6 in this case).

selected only in locations that contained at least 1 pixel of a groundtruth (Figure 5.3).
In this way a training process that used part of the images containing a groundtruth is
assured.

In order to ensure a homogeneous selection of training samples, the number of patches
for each class was the same, meaning that with a batch size of 102 and 6 classes, the
training patches were 17 for each class. Furthermore, in order to increase the train-
ing dataset, augmentation on the patches was performed, by flipping horizontally or
vertically or by doing 90◦ rotations.

Matteo Guidi 50

5.4. Convolutional Neural Network model

Figure 5.3: In the left image we can see the groundtruth blobs selected for the training set, in yellow.
In the right image we can see where the patches selected are located.

The batch size selected was 102, meaning that in one epoch 102 patches were created
and used for training the model.

5.4.4 Prediction on Patches

The prediction was also performed on patches. The whole image was divided into patches
of 128× 128 pixels, and the prediction was carried on these patches.

As in the neural network model, the output of the prediction was a patch that
contained, for each pixel, the probability values to belong to each class. The highest
probability value was selected and the pixel was assigned to the corresponding class.

Matteo Guidi 51

Chapter 6

Experiments and Results

The aim of these experiments was to compare different classification methods with dif-
ferent inputs, and evaluate the advantages and disadvantages of each method. In first
place, in Section 6.1 the evaluation metrics used for this study are presented. Then, the
experiments performed with the neural network architectures are presented in Section
6.2, where the first test presented is comparison between the cleaning and no-cleaning
method. Then, the 2-class and the 6-class methods with blob and random split are pre-
sented and the results are compared. In the following Section 6.3 the results obtained
with a convolutional neural network architecture are displayed. The comparison of the
different methods is then presented in Section 6.4. Final considerations are reported in
Section 6.5.

6.1 Evaluation Metrics

Evaluation metrics are used to assess how the model is performing. They can be calcu-
lated from a confusion matrix, a table used to describe the performance of a classification
model on a set of test data for which the true values are known. Each entry of the matrix
contains a value which represents the number of pixels of a certain class, classified with
a specific label. The diagonal contains all the values that are predicted correctly. An
example of a confusion matrix is given in Table 6.1.

Matteo Guidi 52

6.1. Evaluation Metrics

Predicted label
River Typha Soil Agriculture City Vegetation

T
ru
e
L
ab

el

River 50000 0 0 62 27 0
Typha 4 3000 109 0 0 74
Soil 74 412 28000 72 18 96

Agriculture 0 24 0 26000 34 0
City 765 0 3 8 33000 55

Vegetation 9 6 0 0 12 4000

Table 6.1: Example of a confusion matrix.

From the confusion matrix it is possible to derive:

True Positive. True positives of a certain class are the cases that are predicted in the
class they really belong to. From the confusion matrix, the true positive elements are
the values that lay on the diagonal.

False Positive. False positives of a certain class are the cases that are predicted to be
in that class, while they actually belong to another one. From the confusion matrix, the
false positive elements of a certain class are the values that lay on the column of that
class, excluded the one laying on the diagonal.

False Negative. False negatives of a certain class are the cases that actually belong
to that class, but they are predicted as belongin to another one. From the confusion
matrix, the false negative elements of a certain class are the values that lay on the row
of that class, excluded the one laying on the diagonal.

Traditionally, the most important evaluation metrics are Accuracy, Precision, Recall and
F1-Score, that are described below.

Accuracy The accuracy of a prediction is defined as the fraction of all the correctly
predicted values over the total amount of predicted values (Equation 6.1). This metric
gives an idea of how close the predicted values are to the actual values.

Accuracy =
Correcly Predicted Pixels
Total Number of Pixels

(6.1)

This metric alone is not sufficient to describe how well the model is predicting the
dataset, especially in the case on unbalanced datasets. Additional metrics should be
taken into account to evaluate the model performance.

Precision The precision of a prediction is defined as the fraction of true positives values
divided by the number of true positives plus the number of false positives values (Equa-
tion 6.2). This metric gives an idea of how many predicted values for a specific class are
actually correct.

Matteo Guidi 53

6.2. Analysis of the Results obtained with Neural Networks

Precision =
True Positive

True Positive + False Positive
(6.2)

Taken alone, precision has limitations since it does not consider the class values that
are not predicted correctly.

Recall The recall of a prediction is defined as the fraction of the true positive values
divided by the number of true positive values plus the number of false negative values
(Equation 6.3). This metric gives an idea of how many true labels of a class are correctly
predicted.

Recall =
True Positive

True Positive + False Negative
(6.3)

Taken alone, recall has limitations since it does not consider how many values of
other classes are predicted in the specific class.

F1-Score The F1 score of a prediction is the weighted average of Precision and Recall
(Equation 6.4). It is a measure that considers both the false positives and false negatives,
overcoming the limitation of the Precision and Recall measures when taken singularly.

F1-Score = 2 ∗ Precision * Recall
Precision + Recall

(6.4)

6.2 Analysis of the Results obtained with Neural Networks

As previously introduced in Chapter 4, the dataset is composed by a multispectral image,
of dimensions 3137 × 5238 × nc where nc is the number of channels selected. For the
neural network architecture it was decided to study the differences between 3 different
cases:

1. 4-bands: Using only the channels provided by the satellite (meaning: Blue, Green,
Red, NIR)

2. 6-bands: Using the channels provided by the satellite joined with the NDVI and
NDWI layers

3. 7-bands: Using the channels provided by the satellite, joined with the NDVI and
NDWI layers, and further integrated with the distance from the river

Depending on the case, the inputs of the network were changed, and the behaviour of
the model was investigated.

6.2.1 Results

In this set of experiments the architecture used was the neural network model described
in Section 5.3.1. As first instance, the benefits of the cleaning of the groundtruth were

Matteo Guidi 54

6.2. Analysis of the Results obtained with Neural Networks

examined. Then two different cases were taken into consideration, the 2-class classifica-
tion (Typha vs other) and the multi-class classification (using all classes, Typha, Soil,
Agriculture, City, River, Vegetation). Each case was exploited using 4, 6 or 7-bands.

A random selection of training/test set pixels was compared to a blob selection, for
each case. Furthermore, the metrics were computed on both the Overall dataset - i.e.
both training and test set, meaning the whole groundtruth data - and the test set only.

The results were evaluated and the metrics were extracted. In the next sections the
results are presented. The accuracy is computed taking into account all the classes, while
Precision, Recall and F1-Score were estimated only on the Typha. Each different case
was run three times, and the tables present the arithmetic mean of these tests. The
singular tests are presented in Appendix A.

The blob split method was run three times with different combinations of Typha
blobs, as stated in Section 4.5. For the random split method, each test was performed
three times in order to generate a comparable case study and obtain more robust and
solid metrics.

6.2.2 Groundtruth Cleaning

As previosly introduced in Section 4.4, it was noticed that the groundtruths were not
precise. Thus, a way to remove the pixels that belong to the river from the Typha’s
groundtruth was exploited.

Below are reported the images obtained from the experiments performed with 2-class
6-bands blob split classification with and without cleaning. Only two out of the three
cases are described, because they report the most significative difference. The single
experiments executed on groundtruth which were not cleaned are reported in Appendix
A.1 and A.8.

Matteo Guidi 55

6.2. Analysis of the Results obtained with Neural Networks

Figure 6.1: Figure showing how the Typha blobs used as Test Set are classified. In the upper part are
the no-cleaning results, below are the cleaning result. The left case is referred to the first blob case,
while the right one to the third blob case. The red square delimites the groundruth, pixels classified
as Typha are green, pixels that belong to the Typha groundtruth but are not classified as Typha are
in purple. The black pixels inside the red square are the pixels removed from the Typha groundtruth
with the cleaning method. It can be deduced that these pixels were wrongly labeled pixels inside the
groundtruth.

6.2.3 2-class Classification

In this set of experiments, a 2-class (Typha and Other) classification was performed.
All the classes that were not Typha, meaning river, soil, agriculture fields, city and
vegetation, were merged into a single class. The general goal of these experiments was
to classify at best the pixels of Typha, and to assess wether the integration of the spatial
constraints affected the results.

The results are presented in the sections below. The first section shows the results
when the blob split method was used. The second section shows the results when the
random split method was used. The third section presents a comparison between the
random and blob split methods. The details of each experiment, and the confusion
matrices, are reported in Appendix A.2, A.3, A.4, A.5, A.6, A.7.

Blob Split

This set of tests was performed with the blob split method, with either 4, 6 or 7 bands.
The metrics are computed for each of these cases on both the Overall dataset and the
Test Set only. The results are reported in table 6.2.

Matteo Guidi 56

6.2. Analysis of the Results obtained with Neural Networks

4-bands 6-bands 7-bands
Overall Test Set Overall Test Set Overall Test Set

Accuracy 99.202 99.167 99.165 99.141 99.199 98.577
Precision Typha 71.684 58.020 71.418 57.963 76.195 53.852
Recall Typha 84.924 80.895 83.361 78.165 84.127 39.778

F1-Score Typha 77.374 64.186 76.522 63.295 78.138 44.394

Table 6.2: Results with the blob split method.

The analysis of this table reveals that:

– There is a significant difference between the Overall and Test Set results, when
examining each band case singularly, especially for the Typha’s metrics. This is
expected, since when the Test Set only is considered, the model classifies an area of
Typha that was not used for training. These differences indicate that the model is
not able to generalize well, especially when the training and test blobs have slightly
different features. Figure 6.2 shows the differences, for each band, among every
blob of Typha. Given that i) the distance from the river is the value that changes
most between the three cases and ii) differences are more noticeable when 7-bands
are used, it can be concluded that the distance from the river plays an important
role in the blob split classification scenario.

Figure 6.2: Mean values of each Typha blob.

– Considering the three different cases and comparing the results on the Overall set, it
can be noticed that the addition of more bands does not improve the classification.
In fact, the Accuracy remains the almost same, and the metrics that refer to the
Typha are comparable, with a slight increase of the F1-Score of ∼2% of the 7-bands
case with respect to the 4-bands case.

Matteo Guidi 57

6.2. Analysis of the Results obtained with Neural Networks

– Considering the results on the Test Set, the addition of more bands seems to worsen
the classification. While for the 6-bands case is hard to provide an explanation for
these results, for the 7-bands the reason could be that in one of the tests performed
(reported in Appendix A.6, case NN2c7bB1), the Typha blob used in the test set
was not detected at all. This could be possible due to a combination of Typha blobs
selected for training and the integration of the distance: since the other two blobs
of Typha have very low distance from the river, the model learned this feature.
The testing blob is farther from the river, and thus is not classified as Typha, as
shown in Figure 6.3. This substantially contributes to reduce the overall metrics.

Figure 6.3: Detail of image showing the problem with this particular case: the blob selected as test
set is not recognized at all. The pixels classifed as Typha are in green, while the pixels of Typha
missclassified are in purple.

Random Split

This set of tests was performed with the random split method, with either 4, 6 or 7
bands. The metrics are computed for each of these cases on both the Overall dataset
and the Test Set only. The results are reported in table 6.3.

4-bands 6-bands 7-bands
Overall Test Set Overall Test Set Overall Test Set

Accuracy 99.194 99.207 99.248 99.240 99.614 99.614
Precision Typha 75.952 76.230 78.673 78.177 91.421 91.350
Recall Typha 81.157 81.285 81.826 81.681 88.935 88.940

F1-Score Typha 78.466 78.676 80.198 79.873 90.161 90.129

Table 6.3: Results with the random split methods.

The analysis of this table reveals that:

– There is no difference between the Overall and Test Set results when examining
each band case singularly. This is an expected result, since the random split

Matteo Guidi 58

6.2. Analysis of the Results obtained with Neural Networks

method uses as training set pixels from all the three different blobs, creating a
more homogeneous and well distributed training set. The differences between the
three blobs are not taken into consideration when a random split is used.

– Considering both the Overall set and the Test Set, the 6-bands case performs
equally as the the 4-bands case. This is an unexpected result, since the integration
of the NDVI and NDWI layers was supposed to increase the classification per-
formance. Altough a specific reason at the basis of this behaviour can be hardly
provided, some hypothesis can be made. Since one of the two classes is composed
by all the groundtruths with the exception of Typha, the differences provided by
the two additional layers between the different classes are included in the mixed
class. Since Typha is very similar to the vegetation class, the differences between
the Typha class and the Other class are actually diminished, thus resulting in a
less precise classification.

– Considering both the Overall and Test Set, the 7-bands case performs significantly
better than any other case, with an increment of the F1-score on the Test Set of
∼14%, with respect to the 4-bands case.

Blob and Random Split Comparison

In this section a comparison between the Random and Blob split methods is presented.

Blob Split Random Split
4 bands 7 bands 4 bands 7 bands

Overall Test Set Overall Test Set Overall Test Set Overall Test Set

Accuracy 99.202 99.167 99.199 98.577 99.194 99.207 99.614 99.614
Precision Typha 71.684 58.020 76.195 53.852 75.952 76.230 91.421 91.350

Recall Typha 84.924 80.895 84.127 39.778 81.157 81.285 88.935 88.940
F1-Score Typha 77.374 64.186 78.138 44.394 78.466 78.676 90.161 90.129

Table 6.4: Comparison between the results obtained with a 2-class Blob split and a Random split.

The analysis of this table reveals that:

– Accuracies obtained are similar for all cases.

– Comparing the metrics referred to Typha between the Blob and Random split, it
can be noticed that:

1. The results on the Overall set are comparable between blob and random split
in case of the 4-bands. Conversely in the 7-bands classification, the random
split performs better than the blob split, with an increment of the F1-Score
of ∼15%

Matteo Guidi 59

6.2. Analysis of the Results obtained with Neural Networks

2. The results on the Test set are significantly improved using a random split.
Indeed, for the 4-bands case the increment of F1-Score is ∼22% with respect
to the blob split; for the 7-bands the increment further raises to ∼103% with
respect to the blob split.

With a random split method, the performances are unquestionably better, and the
integration of the spatial constraints consistently improves the classification.

6.2.4 6-class Classification

This set of experiments was performed to gain more insights into how the model per-
forms in a multi-case classification scenario. Also, the idea was to assess if the results
obtained with the 2-class classification with the integration of the distance were the
same. Furthermore, more information on how the pixels of Typha were classified were
collected. A 6-class classification (Typha, river, soil, agriculture fields, city and vegeta-
tion was performed. The tests were perfomed with three different settings: only 4 bands,
i.e. the original satellite data; the 4-bands with the integration of the NDVI and NDWI
layers; the 6-bands, previously described, with the integration of the spatial constraints
obtained from the river distance.

Results are presented in the section below. The first section shows the results when
the blob split method was used. The second section shows the results when the random
split method was used. The third section presents a comparison between the random
and blob split methods. The details of each experiment, and the confusion matrices, are
reported in Appendix A.9, A.10, A.11, A.12, A.13, A.14.

Blob Split

This set of tests was performed with the blob split method, with either 4, 6 or 7 bands.
The metrics are computed for each of these cases on both the Overall dataset and the
Test Set only. The results are reported in table 6.5.

4-bands 6-bands 7-bands
Overall Test Set Overall Test Set Overall Test Set

Accuracy 86.217 86.001 85.769 85.707 81.091 76.909
Precision Typha 72.575 60.637 69.654 56.752 82.960 62.464
Recall Typha 83.130 78.226 82.438 76.678 96.586 58.159

F1-Score Typha 76.942 64.667 74.806 60.591 87.921 59.938

Table 6.5: Results with the blob split method and 6 class.

The analysis of this table reveals that:

Matteo Guidi 60

6.2. Analysis of the Results obtained with Neural Networks

– There is a significant difference between the Overall and Test Set results, when
examining each band case singularly, especially for the Typha’s metrics. This
behaviour is very similar to the 2-class classification case.

– Considering only the Overall set, the 4-bands and 6-bands performs evenly. The 7-
bands classification performs better than any other case, with an F1-score increase
of ∼14% with respect to the 4-bands case.

– Considering the Test set only, the integration of more bands does not seem to
majorly improve the classification. With respect to the 4-bands, the F1-Score of
the 6-bands classification decreases of ∼6%, likewise the F1-Score of the 7-bands
classification decreases of ∼-7%

As already shown for the 2-class classification, even in this case, the Typha blob
used as test set was not detected at all (reported in Appendix A.13, case NN6c7bB1).
Possible reasons were already introduced in Section 6.2.3. The testing blob is far-
ther from the river, and thus is classified as vegetation, as shown in Figure 6.4.
This substantially contributes to reduce the overall metrics.

Figure 6.4: Detail of the image, showing the problem with this particular case. The Typha blob
selected as training set (inside the red square) is not recognized at all, as is classified as half city and
half vegetation.

Random Split

This set of tests was performed with the random split method, with either 4, 6 or 7
bands. The metrics are computed for each of these cases on both the Overall dataset
and the Test Set only. The results are reported in table 6.6.

Matteo Guidi 61

6.2. Analysis of the Results obtained with Neural Networks

4-bands 6-bands 7-bands
Overall Test Set Overall Test Set Overall Test Set

Accuracy 89.874 89.845 86.534 86.488 95.559 95.589
Precision Typha 75.634 75.918 75.208 75.074 98.795 98.717
Recall Typha 82.188 81.978 80.809 80.663 96.149 96.129

F1-Score Typha 78.700 78.736 77.879 77.731 97.453 97.405

Table 6.6: Results with the random split methods and 6 class.

The analysis of this table reveals that:

– There is no difference between the Overall and Test Set results when examining
each band case singularly. As for the 2-class case, this is an expected result.

– Considering both the Overall set and the Test Set, the 6-bands case performs evenly
as the 4-bands case.

– Considering both the Overall and Test Set, the 7-bands case performs significantly
better than any other case, with an increment of the F1-score on the Test Set of
∼23%, with respect to the 4-bands case, and an increment of ∼25% with respect
to the 6-bands case.

Blob and Random Split Comparison

In this section a comparison between the Random and Blob split method is presented.

Blob Split Random Split
4 bands 7 bands 4 bands 7 bands

Overall Test Set Overall Test Set Overall Test Set Overall Test Set

Accuracy 86.217 86.001 81.091 76.909 89.874 89.845 95.559 95.589
Precision Typha 72.575 60.637 82.960 62.464 75.634 75.918 98.795 98.717

Recall Typha 83.130 78.226 96.586 58.159 82.188 81.978 96.149 96.129
F1-Score Typha 76.942 64.667 87.921 59.938 78.700 78.736 97.453 97.405

Table 6.7: Comparison between the results obtained with a 6-class Blob and Random split methods.

– The table shows that, regarding the Overall set the best accuracy is obtained by
the 7-bands random split case. The same applies to the Test Set.

– Comparing the metrics referred to the Typha, the 7-bands random split performs
better than the 7-bands blob split, for both for the Overall and the Test Set. The
increment of F1-Score on the Overall set is ∼10%, and on the Test Set is ∼62%.

In conclusion, the integration of the spatial contraints improves significantly the
classification, especially with the random split method.

Matteo Guidi 62

6.3. Analysis of the Results Obtained with Convolutional Neural Networks

6.3 Analysis of the Results Obtained with Convolutional

Neural Networks

As previously said in Chapter 4, the dataset is composed by a multispectral image,
of dimensions 3137 × 5238 × nc where nc is the number of channel selected. For the
convolutional neural network architecture it was decided to focus on only one case: using
the channels provided by the satellite joined with the NDVI and NDWI layers (6-bands).
The CNN already integrates the spatial data, so there is no need to add the layer of the
distance from the river. These tests were made to assess wether a more complex model
that intrinsically uses spatial data is able to classify Typha’s pixels, and how it compares
to our model, that integrate spatial information “a-priori”.

As said in Section 4.5, only the blob split method was used for the CNN. The single
tests are presented in Appendix A.15. The table 6.8 shows the results.

6-bands
Overall Test Set

Accuracy 94.667 80.886
Precision 93.757 70.613
Recall 98.866 93.949

F1-Score 96.173 78.601

Table 6.8: Results with the CNN method using 6 classes and a blob split method.

6.4 Comparison between NN 7-class and CNN

In this section the final comparison between the results of the NN 7-class classification
and the CNN are presented. The 2-class is not considered, since the CNN model was
run only with a 6 class setting.

NN 6-class 7-bands CNN
Blob Split Random split Blob Split

Overall Test Set Overall Test Set Overall Test Set

Accuracy 81.091 76.909 95.559 95.589 94.667 80.886
Precision Typha 82.960 98.795 62.464 98.717 93.757 70.613

Recall Typha 96.586 58.159 96.149 96.129 98.866 93.949
F1-Score Typha 87.921 59.938 97.453 97.405 96.173 78.601

Table 6.9: Comparison between the results obtained with a NN 6-class 7-bands and the CNN.

The analysis of this table reveals that:

Matteo Guidi 63

6.5. Final Considerations

– Comparing the Overall Accuracy, the CNN performs better than the NN blob split,
with an increase of ∼16%. Meanwhile, the CNN performs comparably with respect
to the NN Random split, with a neglectable decrease.

– Comparing the Test Set accuracies, the CNN performs better than the NN Blob
split, with an increase of ∼5%. However, the NN Random Split performs better,
with a significant increase of ∼18%, with respect to the CNN.

– Comparing the metrics referred to Typha, it can be noticed that:

1. The results of the Overall set show that the NN 7-bands random split performs
better than any other case, with an F1-Score increase of ∼10% with respect
to the NN Blob split, and an F1-Score increase of ∼1% with respect to the
CNN.

2. The results on the Test set show that the NN Random split provides the best
performances. Indeed, besides showing an F1-Score increase of ∼62% with
respect to the NN Blob split, it displays an F1-Score increase of ∼23% even
with respect to the CNN.

6.5 Final Considerations

In this section final considerations are presented. In particular, the differences between
the base case i.e. 4-bands with no cleaning, and the case exploiting all the contribu-
tions made in this thesis i.e. 6-bands with the addition of spatial information and the
groundtruth cleaning, are reported. All the cases below are presented when using a
random split, because it achieved the best performances.

2-class classification

4-bands no cleaning 7-bands with cleaning

Figure 6.5: Comparison of the classification on the whole image.

Matteo Guidi 64

6.5. Final Considerations

Figure 6.6: Comparison between the first groundtruth of Typha. In the right image the black pixels
inside the red area were removed with the cleaning.

Figure 6.7: Comparison between the second groundtruth of Typha.

Figure 6.8: Comparison between the third groundtruth of Typha.

As Figure 6.5 shows, the full classified map looks similar. Going in details, Figure 6.6
shows much better results when 7-bands method is used: in fact almost every pixel inside
the groundtruth is classified as Typha. The same results can be seen in Figure 6.8. In
Figure 6.7 the two methods perform equally well.

Matteo Guidi 65

6.5. Final Considerations

6-class classification

4-bands no cleaning 7-bands with cleaning

Figure 6.9: Comparison of the classification on the whole image.

Figure 6.10: Comparison between the first groundtruth of Typha. In the right image, the groundtruth
is split because the center part was removed with the cleaning.

Figure 6.11: Comparison between the second groundtruth of Typha.

Matteo Guidi 66

6.5. Final Considerations

Figure 6.12: Comparison between the third groundtruth of Typha. In the right image, the red circles
inside the groundtruth are the pixels removed with the cleaning.

As Figure 6.5 shows, the map looks similar. With the 7-bands method, most of the map
was classified, not correctly, as city. This problem may arise due to the number of the
city’s groundtruths, that was much higher when compared to the other. Furthermore
the fact that the city is spread homogeneously with respect to the distance of the river,
may have worsened the classification.

Going in details in Figures 6.6, the 7-bands methods performs much better. In fact,
almost every pixel inside the groundtruth is classified as Typha, and the pixels classified
as river were removed from the groundtruth with the cleaning method. In Figure 6.8
the behaviour is very similar: the 7-bands classify almost perfectly every pixel inside
the Typha’s groundtruth, meanwhile the 4-bands contains a high quantity of wrongly
classified pixels. In Figure 6.7 the difference is not noticeable, since both the methods
performs well.

Matteo Guidi 67

Chapter 7

Final Conclusions and Future Works

In this work we studied the problem of satellite image segmentation using neural net-
works, one of the most up-to-dated models. In particular, we developed a novel approach
consisting in the integration of spatial information, that produced improvements with
respect to spectral-based only classification.
The main contribution are:

– Integration of spatial constraints coming from GIS data in order to improve the
classification.

– Cleaning of the Typha’s groundtruth in order to improve the classification.

– Split between training and test data with a novel blob split method, and report of
the effects on the classification.

We tested our work in different scenarios, and, using a random split, we concluded that:

1. Performing a 2-class classification (Typha vs Other), our method showed superior
performances with respect to the basic method, achieving an F1-Score on Typha
of 90%.

2. To further confirm the result, a 6-class classification (Typha, Soil, River, City,
Agriculture fields, Vegetation) was performed. Even in this case, our method
showed superior performances with respect to the basic method, achieving an F1-
Score of 97%

3. To confirm even further, a CNN model, which intrinsically exploit spatial con-
straints contained in the image, was tested against our model. The results showed
that the CNN performs better than our model, when using a blob split method,
but performs worse when the random split method is employed.

Matteo Guidi 68

Given these results, the integration of spatial constraints in the classification us-
ing GIS data, combined with the groundturth cleaning, can be a valid solution when
performing a classification that needs high precision.

The results presented in Chapter 6 can be certainly improved, with more possible sce-
narios to be explored. Foremost is the fact that the groundtruth dataset is fairly small,
does not contain enough pixels and is not precise. A better dataset would yield much
better results. Furthermore, the possibility to exploit more groundtruths of Typha could
enhance the blob split method. Indeed, given only three blobs of Typha, the cross-
validation tests could not be robust.

Another improvement that could be made is the exploiting of different satellite im-
ages, derived for example from Sentinel-2, whose data have less spatial resolution but
more bands. The increased number of bands could help the model to further discrimi-
nate the vegetation, especially considering that the spectral signature of Typha and other
plants might be very different. Using only 4 bands, this difference was not detectable,
and it was difficult to distinguish these two classes.

Another approach that could be taken is by integrating multi-temporal images, in
such a way that the seasonality of the Typha could be taken into account.

The neural networks models could also be improved. The hyperparameter were fine-
tuned manually, but an algorithmic approach could be used, in order to selected the best
set of hyperparameters.

Matteo Guidi 69

Appendix A

Details of Experiments

In these appendices the details of each experiment are reported. Each of the experiments
was performed in both the cases of a random split and the blob split method. Each
different instance was defined with a different name, in order to differentiate it from the
others (Figure A.1). For example, the code NN6c7bB2 has the meaning: Neural Network
model, 6-class classification, 7 bands used, Blob split, case number 2. The results of these
analyses are presented in the following sections.

Figure A.1: Taxonomy of the cases. The codes used for the different cases are explained in this
image.

A.1 NN 2-class 4-bands Blob Split No cleaning

In this section the results of the Neural Network model, with a 2-class 4-bands blob split
classification and no cleaning is presented. The three different experiments represent the
three different combination of Typha blobs selected for training and test set.

Matteo Guidi 70

A.1. NN 2-class 4-bands Blob Split No cleaning

NN2c4bB0 - no cleaning

Predicted label
Typha Other

T
ru
e Typha 575 866

Other 329 156375

Overall Test Set

Accuracy 99.128 99.244
Precision Typha 73.250 39.902

Recall Typha 82.282 63.606
F1-Score Typha 77.504 49.040

Table A.1: Results of the test with the neural network 2-class 4-bands blob split and without cleaning,
first case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.2: Result of the classification.

Figure A.3: Detail of the Ty-
pha blob that belongs to the
test set.

NN2c4bB1 - no cleaning

Predicted label
Typha Other

T
ru
e Typha 4390 1

Other 526 201658

Overall Test Set

Accuracy 99.146 99.744
Precision Typha 75.933 99.977

Recall Typha 81.203 89.303
F1-Score Typha 78.480 94.337

Table A.2: Results of the test with the neural network 2-class 4-bands blob split and without cleaning,
second case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.4: Result of the classification

Figure A.5: Detail of the Ty-
pha blob that belongs to the
test set.

Matteo Guidi 71

A.2. NN 2-class 4-bands Blob Split

NN2c4bB2 - no cleaning

Predicted label
Typha Other

T
ru
e Typha 1217 3983

Other 218 211071

Overall Test Set

Accuracy 98.908 98.059
Precision Typha 54.151 23.403

Recall Typha 88.021 84.808
F1-Score Typha 67.052 36.684

Table A.3: Results of the test with the neural network 2-class 4-bands blob split and without cleaning,
third case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.6: Result of the classification

Figure A.7: Detail of the Ty-
pha blob that belongs to the
test set.

A.2 NN 2-class 4-bands Blob Split

In this section the results of the Neural Network model, with a 2-class 4-bands blob split
and cleaning is presented. The three different experiments represent the three different
combination of Typha blobs selected for training and test set.

NN2c4bB0

Predicted label
Typha Other

T
ru
e Typha 542 664

Other 252 156452

Overall Test Set

Accuracy 99.254 99.420
Precision Typha 76.234 44.942

Recall Typha 83.740 68.262
F1-Score Typha 79.811 54.200

Table A.4: Results of the test with the neural network 2-class 4-bands blob split with cleaning, first
case. On the left is presented the confusion matrix, on the right the metrics computed.

Matteo Guidi 72

A.2. NN 2-class 4-bands Blob Split

Figure A.8: Result of the classification.

Figure A.9: Detail of the Ty-
pha blob that belongs to the
test set.

NN2c4bB1

Predicted label
Typha Other

T
ru
e Typha 4387 4

Other 454 201730

Overall Test Set

Accuracy 99.310 99.778
Precision Typha 79.244 99.909

Recall Typha 84.183 90.622
F1-Score Typha 81.639 95.039

Table A.5: Results of the test with the neural network 2-class 4-bands blob split with cleaning, second
case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.10: Result of the classification

Figure A.11: Detail of the Ty-
pha blob that belongs to the
test set.

Matteo Guidi 73

A.3. NN 2-class 4-bands Random Split

NN2c4bB2

Predicted label
Typha Other

T
ru
e Typha 1402 3398

Other 271 211018

Overall Test Set

Accuracy 99.043 98.302
Precision Typha 59.575 29.208

Recall Typha 86.848 83.802
F1-Score Typha 70.671 43.318

Table A.6: Results of the test with the neural network 2-class 4-bands blob split with cleaning, third
case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.12: Result of the classification

Figure A.13: Detail of the Ty-
pha blob that belongs to the
test set.

A.3 NN 2-class 4-bands Random Split

In this section the results of the Neural Network model, with a 2-class 4-bands random
split classification with cleaning is presented. The three different experiments represent
the three different combination of Typha blobs selected for training and test set.

NN2c4bR0

Predicted label
Typha Other

T
ru
e Typha 2566 846

Test set 611 173328

Overall Test Set

Accuracy 99.153 99.178
Precision Typha 74.647 75.205

Recall Typha 80.200 80.768
F1-Score Typha 77.324 77.887

Table A.7: Results of the test with the neural network 2-class 4-bands random split with cleaning,
first case. On the left is presented the confusion matrix, on the right the metrics computed.

Matteo Guidi 74

A.3. NN 2-class 4-bands Random Split

Figure A.14: Result of the classification.

Figure A.15: Detail one of the
Typha blobs.

NN2c4bR1

Predicted label
Typha Other

T
ru
e Typha 2655 785

Other 589 173322

Overall Test Set

Accuracy 99.219 99.225
Precision Typha 77.359 77.180

Recall Typha 81.357 81.843
F1-Score Typha 79.308 79.443

Table A.8: Results of the test with the neural network 2-class 4-bands random split with cleaning,
second case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.16: Result of the classification

Figure A.17: Detail one of the
Typha blobs.

Matteo Guidi 75

A.4. NN 2-class 6-bands Blob Split

NN2c4bR2

Predicted label
Typha Other

T
ru
e Typha 2560 795

Other 591 173405

Overall Test Set

Accuracy 99.209 99.218
Precision Typha 75.849 76.304

Recall Typha 81.915 81.244
F1-Score Typha 78.765 78.697

Table A.9: Results of the test with the neural network 2-class 4-bands random split with cleaning,
third case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.18: Result of the classification

Figure A.19: Detail one of the
Typha blobs.

A.4 NN 2-class 6-bands Blob Split

In this section the results of the Neural Network model, with a 2-class 6-bands blob split
classification with cleaning is presented. The three different experiments represent the
three different combination of Typha blobs selected for training and test set.

NN2c6bB0

Predicted label
Typha Other

T
ru
e Typha 519 687

Other 319 156385

Overall Test Set

Accuracy 99.188 99.363
Precision Typha 74.723 43.035

Recall Typha 81.736 61.933
F1-Score Typha 78.073 50.783

Table A.10: Results of the test with the neural network 2-class 6-bands blob split with cleaning, first
case. On the left is presented the confusion matrix, on the right the metrics computed.

Matteo Guidi 76

A.4. NN 2-class 6-bands Blob Split

Figure A.20: Result of the classification.

Figure A.21: Detail of the Ty-
pha blob that belongs to the
test set.

NN2c6bB1

Predicted label
Typha Other

T
ru
e Typha 4391 0

Other 562 201622

Overall Test Set

Accuracy 99.261 99.728
Precision Typha 79.610 100.000

Recall Typha 81.724 88.653
F1-Score Typha 80.653 93.985

Table A.11: Results of the test with the neural network 2-class 6-bands blob split with cleaning,
second case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.22: Result of the classification

Figure A.23: Detail of the Ty-
pha blob that belongs to the
test set.

Matteo Guidi 77

A.5. NN 2-class 6-bands Random Split

NN2c6bB2

Predicted label
Typha Other

T
ru
e Typha 1481 3319

Other 284 211005

Overall Test Set

Accuracy 99.046 98.333
Precision Typha 59.921 30.854

Recall Typha 86.624 83.909
F1-Score Typha 70.840 45.118

Table A.12: Results of the test with the neural network 2-class 6-bands blob split with cleaning, third
case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.24: Result of the classification

Figure A.25: Detail of the Ty-
pha blob that belongs to the
test set.

A.5 NN 2-class 6-bands Random Split

In this section the results of the Neural Network model, with a 2-class 6-bands random
split classification with cleaning is presented. The three different experiments represent
the three different combination of Typha blobs selected for training and test set.

NN2c6bR0

Predicted label
Typha Other

T
ru
e Typha 2699 696

Other 547 173409

Overall Test Set

Accuracy 99.287 99.299
Precision Typha 79.600 79.499

Recall Typha 82.859 83.148
F1-Score Typha 81.197 81.283

Table A.13: Results of the test with the neural network 2-class 6-bands random split with cleaning,
first case. On the left is presented the confusion matrix, on the right the metrics computed.

Matteo Guidi 78

A.5. NN 2-class 6-bands Random Split

Figure A.26: Result of the classification.

Figure A.27: Detail one of the
Typha blobs

NN2c6bR1

Predicted label
Typha Other

T
ru
e Typha 2673 723

Other 701 173254

Overall Test Set

Accuracy 99.215 99.197
Precision Typha 79.744 78.710

Recall Typha 79.691 79.223
F1-Score Typha 79.717 78.966

Table A.14: Results of the test with the neural network 2-class 6-bands random split with cleaning,
second case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.28: Result of the classification

Figure A.29: Detail one of the
Typha blobs.

Matteo Guidi 79

A.6. NN 2-class 7-bands Blob Split

NN2c6bR2

Predicted label
Typha Other

T
ru
e Typha 2643 820

Other 554 173334

Overall Test Set

Accuracy 99.243 99.225
Precision Typha 76.676 76.321

Recall Typha 82.929 82.671
F1-Score Typha 79.680 79.369

Table A.15: Results of the test with the neural network 2-class 6-bands random split with cleaning,
third case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.30: Result of the classification

Figure A.31: Detail one of
the Typha blobs.

A.6 NN 2-class 7-bands Blob Split

In this section the results of the Neural Network model, with a 2-class 7-bands blob split
classification with cleaning is presented. The three different experiments represent the
three different combination of Typha blobs selected for training and test set.

NN2c7bB0

Predicted label
Typha Other

T
ru
e Typha 1121 85

Other 1223 155481

Overall Test Set

Accuracy 99.462 99.172
Precision Typha 90.055 92.952

Recall Typha 83.434 47.824
F1-Score Typha 86.618 63.155

Table A.16: Results of the test with the neural network 2-class 7-bands blob split with cleaning, first
case. On the left is presented the confusion matrix, on the right the metrics computed.

Matteo Guidi 80

A.6. NN 2-class 7-bands Blob Split

Figure A.32: Result of the classification.

Figure A.33: Detail of the Ty-
pha blob that belongs to the
test set.

NN2c7bB1

Predicted label
Typha Other

T
ru
e Typha 0 4391

Other 21 202163

Overall Test Set

Accuracy 99.145 97.864
Precision Typha 56.795 0.000

Recall Typha 98.253 0.000
F1-Score Typha 71.981 nan

Table A.17: Results of the test with the neural network 2-class 7-bands blob split with cleaning,
second case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.34: Result of the classification

Figure A.35: Detail of the Ty-
pha blob that belongs to the
test set.

Matteo Guidi 81

A.7. NN 2-class 7-bands Random Split

NN2c7bB2

Predicted label
Typha Other

T
ru
e Typha 3293 1507

Other 1312 209977

Overall Test Set

Accuracy 98.991 98.695
Precision Typha 81.735 68.604

Recall Typha 70.693 71.509
F1-Score Typha 75.814 70.027

Table A.18: Results of the test with the neural network 2-class 7-bands blob split with cleaning, third
case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.36: Result of the classification

Figure A.37: Detail of the Ty-
pha blob that belongs to the
test set.

A.7 NN 2-class 7-bands Random Split

In this section the results of the Neural Network model, with a 2-class 7-bands blob split
classification with cleaning is presented. The three different experiments represent the
three different combination of Typha blobs selected for training and test set.

NN2c7bR0

Predicted label
Typha Other

T
ru
e Typha 3316 84

Other 175 173776

Overall Test Set

Accuracy 99.851 99.854
Precision Typha 97.422 97.529

Recall Typha 94.983 94.987
F1-Score Typha 96.187 96.241

Table A.19: Results of the test with the neural network 2-class 7-bands random split with cleaning,
first case. On the left is presented the confusion matrix, on the right the metrics computed.

Matteo Guidi 82

A.7. NN 2-class 7-bands Random Split

Figure A.38: Result of the classification.

Figure A.39: Detail one of the
Typha blobs.

NN2c7bR1

Predicted label
Typha Other

T
ru
e Typha 3081 369

Other 464 173437

Overall Test Set

Accuracy 99.523 99.530
Precision Typha 89.180 89.304

Recall Typha 86.589 86.911
F1-Score Typha 87.865 88.091

Table A.20: Results of the test with the neural network 2-class 7-bands random split with cleaning,
second case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.40: Result of the classification

Figure A.41: Detail one of the
Typha blobs.

Matteo Guidi 83

A.8. NN 6-class 4-bands Blob Split No cleaning

NN2c7bR2

Predicted label
Typha Other

T
ru
e Typha 2968 435

Other 527 173421

Overall Test Set

Accuracy 99.467 99.458
Precision Typha 87.660 87.217

Recall Typha 85.233 84.921
F1-Score Typha 86.430 86.054

Table A.21: Results of the test with the neural network 2-class 7-bands random split with cleaning,
third case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.42: Result of the classification

Figure A.43: Detail one of the
Typha blobs.

A.8 NN 6-class 4-bands Blob Split No cleaning

In this section the results of the Neural Network model, with a 6-class 4-bands blob split
classification without cleaning is presented. The three different experiments represent
the three different combination of Typha blobs selected for training and test set.

NN6c4bB0 - no cleaning
Predicted label

Typha Soil Agriculture City Vegetation River

T
ru
e
L
ab

el

Typha 2585 0 356 0 593 0
Soil 0 22556 0 7299 5 0

Agriculture 78 0 26222 743 0 4
City 130 5069 613 53157 529 39

Vegetation 464 11 1 1180 4584 0
River 0 0 11 0 0 51332

Overall Test Set

Accuracy 90.399 90.355
Precision Typha 72.362 73.147

Recall Typha 79.496 79.368
F1-Score Typha 75.762 76.130

Table A.22: Results of the test with the neural network 6-class 4-bands blob split and without
cleaning, first case. On the left is presented the confusion matrix, on the right the metrics computed.

Matteo Guidi 84

A.8. NN 6-class 4-bands Blob Split No cleaning

Figure A.44: Result of the classification.

Figure A.45: Detail of the Ty-
pha blob that belongs to the
test set.

NN6c4bB1 - no cleaning
Predicted label

Typha Soil Agriculture City Vegetation River

T
ru
e
L
ab

el

Typha 2405 0 408 0 834 0
Soil 0 17838 0 12131 7 0

Agriculture 4 0 26290 788 0 31
City 136 5829 576 52544 614 46

Vegetation 412 9 0 973 4718 0
River 0 0 46 0 0 50922

Overall Test Set

Accuracy 87.200 87.135
Precision Typha 65.836 65.945

Recall Typha 81.387 81.332
F1-Score Typha 72.790 72.835

Table A.23: Results of the test with the neural network 6-class 4-bands blob split without cleaning,
second case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.46: Result of the classification.

Figure A.47: Detail of the Ty-
pha blob that belongs to the
test set.

Matteo Guidi 85

A.9. NN 6-class 4-bands Blob Split

NN6c4bB2 - no cleaning
Predicted label

Typha Soil Agriculture City Vegetation River
T
ru
e
L
ab

el
Typha 2482 0 295 1 813 0
Soil 0 24938 0 4982 0 0

Agriculture 117 0 26278 853 15 30
City 169 5893 546 52349 563 39

Vegetation 408 46 0 1093 4520 0
River 0 0 29 0 0 51102

Overall Test Set

Accuracy 91.091 91.050
Precision Typha 69.462 69.117

Recall Typha 77.373 78.149
F1-Score Typha 73.204 73.356

Table A.24: Results of the test with the neural network 6-class 4-bands blob split without cleaning,
third case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.48: Result of the classification.

Figure A.49: Detail one of the
Typha blobs.

A.9 NN 6-class 4-bands Blob Split

In this section the results of the Neural Network model, with a 6-class 4-bands blob split
classification with cleaning is presented. The three different experiments represent the
three different combination of Typha blobs selected for training and test set.

NN6c4bB0
Predicted label

Typha Soil Agriculture City Vegetation River

T
ru
e
L
ab

el

Typha 666 0 136 0 404 0
Soil 0 13622 0 4663 0 0

Agriculture 5 0 43791 1640 0 1471
City 190 9338 378 51748 927 0

Vegetation 179 0 0 197 3574 0
River 0 0 0 0 0 24981

Overall Test Set

Accuracy 86.513 87.633
Precision Typha 81.196 55.224

Recall Typha 82.169 64.038
F1-Score Typha 81.680 59.305

Table A.25: Results of the test with the neural network 6-class 4-bands blob split, with cleaning, first
case. On the left is presented the confusion matrix, on the right the metrics computed.

Matteo Guidi 86

A.9. NN 6-class 4-bands Blob Split

Figure A.50: Result of the classification.

Figure A.51: Detail of the Ty-
pha blob that belongs to the
test set.

NN6c4bB1
Predicted label

Typha Soil Agriculture City Vegetation River

T
ru
e
L
ab

el

Typha 4391 0 0 0 0 0
Soil 0 100 0 14155 0 0

Agriculture 0 0 3291 0 0 0
City 71 10340 528 48799 860 88

Vegetation 435 1 0 51 2980 0
River 0 0 0 0 0 120485

Overall Test Set

Accuracy 87.067 87.158
Precision Typha 78.734 100.000

Recall Typha 81.574 89.667
F1-Score Typha 80.129 94.552

Table A.26: Results of the test with the neural network 6-class 4-bands blob split with cleaning,
second case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.52: Result of the classification.

Figure A.53: Detail of the Ty-
pha blob that belongs to the
test set.

Matteo Guidi 87

A.10. NN 6-class 4-bands Random Split

NN6c4bB2
Predicted label

Typha Soil Agriculture City Vegetation River
T
ru
e
L
ab

el
Typha 1281 0 747 21 2751 0
Soil 0 9 0 14246 0 0

Agriculture 0 0 3291 0 0 0
City 164 13062 836 49568 273 172

Vegetation 137 4 0 3862 5180 0
River 0 0 0 0 0 120485

Overall Test Set

Accuracy 85.070 83.213
Precision Typha 57.796 26.687

Recall Typha 85.647 80.973
F1-Score Typha 69.017 40.144

Table A.27: Results of the test with the neural network 6-class 4-bands blob split with cleaning, third
case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.54: Result of the classification.

Figure A.55: Detail of the Ty-
pha blob that belongs to the
test set.

A.10 NN 6-class 4-bands Random Split

In this section the results of the Neural Network model, with a 6-class 4-bands random
split classification with cleaning is presented. The three different experiments represent
the three different combination of Typha blobs selected for training and test set.

NN6c4bR0
Predicted label

Typha Soil Agriculture City Vegetation River

T
ru
e
L
ab

el

Typha 2745 0 184 0 445 0
Soil 0 25277 0 4676 1 0

Agriculture 19 0 26382 735 0 4
City 127 5689 575 52685 599 33

Vegetation 539 4 0 1018 4680 0
River 0 0 24 0 0 50910

Overall Test Set

Accuracy 91.761 91.727
Precision Typha 80.821 81.357

Recall Typha 81.235 80.029
F1-Score Typha 81.028 80.688

Table A.28: Results of the test with the neural network 6-class 4-bands random split with cleaning,
first case. On the left is presented the confusion matrix, on the right the metrics computed.

Matteo Guidi 88

A.10. NN 6-class 4-bands Random Split

Figure A.56: Result of the classification.

Figure A.57: Detail one of the
Typha blobs.

NN6c4bR1
Predicted label

Typha Soil Agriculture City Vegetation River

T
ru
e
L
ab

el

Typha 2661 0 232 0 631 0
Soil 0 22805 0 7254 0 0

Agriculture 5 4 26530 736 0 11
City 107 7211 573 50601 715 46

Vegetation 410 4 0 884 4742 0
River 0 0 26 5 0 51158

Overall Test Set

Accuracy 89.375 89.369
Precision Typha 75.050 75.511

Recall Typha 82.371 83.600
F1-Score Typha 78.541 79.350

Table A.29: Results of the test with the neural network 6-class 4-bands random split with cleaning,
second case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.58: Result of the classification.

Figure A.59: Detail one of the
Typha blobs..

Matteo Guidi 89

A.11. NN 6-class 6-bands Blob Split

NN6c4bR2
Predicted label

Typha Soil Agriculture City Vegetation River
T
ru
e
L
ab

el
Typha 2442 0 329 0 674 0
Soil 0 22240 0 7763 17 0

Agriculture 1 2 26344 937 0 8
City 87 7953 584 50167 678 48

Vegetation 437 33 1 887 4828 0
River 0 0 65 0 0 50826

Overall Test Set

Accuracy 88.487 88.439
Precision Typha 71.030 70.885

Recall Typha 82.959 82.305
F1-Score Typha 76.532 76.170

Table A.30: Results of the test with the neural network 6-class 4-bands random split with cleaning,
third case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.60: Result of the classification.

Figure A.61: Detail one of the
Typha blobs..

A.11 NN 6-class 6-bands Blob Split

In this section the results of the Neural Network model, with a 6-class 4-bands blob split
classification with cleaning is presented. The three different experiments represent the
three different combination of Typha blobs selected for training and test set.

NN6c6bB0
Predicted label

Typha Soil Agriculture City Vegetation River

T
ru
e
L
ab

el

Typha 585 0 188 0 433 0
Soil 0 1710 0 16575 0 0

Agriculture 10 0 42180 1847 5 2865
City 246 6864 315 54256 900 0

Vegetation 148 12 0 194 3596 0
River 0 0 0 0 0 24981

Overall Test Set

Accuracy 88.198 80.621
Precision Typha 73.011 48.507

Recall Typha 80.252 59.151
F1-Score Typha 76.461 53.303

Table A.31: Results of the test with the neural network 6-class 6-bands blob split with cleaning, first
case. On the left is presented the confusion matrix, on the right the metrics computed.

Matteo Guidi 90

A.11. NN 6-class 6-bands Blob Split

Figure A.62: Result of the classification.

Figure A.63: Detail of the Ty-
pha blob that belongs to the
test set.

NN6c6bB1
Predicted label

Typha Soil Agriculture City Vegetation River

T
ru
e
L
ab

el

Typha 4390 0 0 0 1 0
Soil 0 25 0 14229 1 0

Agriculture 0 0 3291 0 0 0
City 96 11816 733 47228 720 93

Vegetation 458 1 0 62 2946 0
River 0 0 0 0 0 120485

Overall Test Set

Accuracy 85.083 86.344
Precision Typha 81.196 99.977

Recall Typha 80.646 88.794
F1-Score Typha 80.920 94.055

Table A.32: Results of the test with the neural network 6-class 6-bands blob split with cleaning,
second case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.64: Result of the classification.

Figure A.65: Detail of the Ty-
pha blob that belongs to the
test set.

Matteo Guidi 91

A.12. NN 6-class 6-bands Random Split

NN6c6bB2
Predicted label

Typha Soil Agriculture City Vegetation River
T
ru
e
L
ab

el
Typha 1045 0 1034 0 2721 0
Soil 0 14131 0 0 124 0

Agriculture 0 0 3291 0 0 0
City 52 12234 691 50370 467 261

Vegetation 176 867 59 2589 5492 0
River 0 0 0 0 0 120485

Overall Test Set

Accuracy 84.026 90.155
Precision Typha 54.756 21.771

Recall Typha 86.415 82.090
F1-Score Typha 67.036 34.415

Table A.33: Results of the test with the neural network 6-class 6-bands blob split with cleaning, third
case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.66: Result of the classification.

Figure A.67: Detail of the Ty-
pha blob that belongs to the
test set.

A.12 NN 6-class 6-bands Random Split

In this section the results of the Neural Network model, with a 6-class 4-bands blob split
classification with cleaning is presented. The three different experiments represent the
three different combination of Typha blobs selected for training and test set.

NN6c6bR0
Predicted label

Typha Soil Agriculture City Vegetation River

T
ru
e
L
ab

el

Typha 2607 0 148 0 681 0
Soil 0 17297 0 13040 0 0

Agriculture 49 0 26305 775 0 3
City 130 8565 631 49470 615 84

Vegetation 488 3 2 975 4826 0
River 0 0 19 0 0 50638

Overall Test Set

Accuracy 85.276 85.223
Precision Typha 75.743 75.873

Recall Typha 79.106 79.627
F1-Score Typha 77.388 77.705

Table A.34: Results of the test with the neural network 6-class 6-bands random split with cleaning,
first case. On the left is presented the confusion matrix, on the right the metrics computed.

Matteo Guidi 92

A.12. NN 6-class 6-bands Random Split

Figure A.68: Result of the classification.

Figure A.69: Detail one of the
Typha blobs.

NN6c6bR1
Predicted label

Typha Soil Agriculture City Vegetation River

T
ru
e
L
ab

el

Typha 3179 0 192 9 0 0
Soil 0 0 0 30087 0 0

Agriculture 17 0 26520 741 0 1
City 160 0 552 58463 0 52

Vegetation 2754 0 0 3434 0 0
River 0 0 16 0 0 51174

Overall Test Set

Accuracy 78.631 78.565
Precision Typha 94.123 94.053

Recall Typha 52.346 52.029
F1-Score Typha 67.276 66.997

Table A.35: Results of the test with the neural network 6-class 6-bands random split with cleaning,
second case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.70: Result of the classification.

Figure A.71: Detail one of the
Typha blobs.

Matteo Guidi 93

A.13. NN 6-class 7-bands Blob Split

NN6c6bB2
Predicted label

Typha Soil Agriculture City Vegetation River
T
ru
e
L
ab

el
Typha 2440 0 289 0 746 0
Soil 0 17645 0 12331 6 0

Agriculture 0 3 26376 836 37 14
City 62 6108 574 51807 787 112

Vegetation 534 172 7 791 4608 0
River 0 0 80 0 0 50986

Overall Test Set

Accuracy 86.813 86.756
Precision Typha 70.963 70.216

Recall Typha 80.652 80.369
F1-Score Typha 75.498 74.950

Table A.36: Results of the test with the neural network 6-class 6-bands random split with cleaning,
third case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.72: Result of the classification.

Figure A.73: Detail one of the
Typha blobs.

A.13 NN 6-class 7-bands Blob Split

In this section the results of the Neural Network model, with a 6-class 4-bands blob split
classification with cleaning is presented. The three different experiments represent the
three different combination of Typha blobs selected for training and test set.

NN6c7bB0
Predicted label

Typha Soil Agriculture City Vegetation River

T
ru
e
L
ab

el

Typha 1166 0 0 0 0 40
Soil 0 5135 0 13150 0 0

Agriculture 254 26 191 1734 44702 0
City 30 3035 265 58007 1242 2

Vegetation 49 82 112 640 3067 0
River 0 0 0 0 0 24981

Overall Test Set

Accuracy 76.260 58.607
Precision Typha 97.528 96.683

Recall Typha 95.498 77.785
F1-Score Typha 96.502 86.211

Table A.37: Results of the test with the neural network 6-class 7-bands blob split with cleaning, first
case. On the left is presented the confusion matrix, on the right the metrics computed.

Matteo Guidi 94

A.13. NN 6-class 7-bands Blob Split

Figure A.74: Result of the classification.

Figure A.75: Detail of the Ty-
pha blob that belongs to the
test set.

NN6c7bB1
Predicted label

Typha Soil Agriculture City Vegetation River

T
ru
e
L
ab

el

Typha 0 0 104 1607 2680 0
Soil 0 0 13477 778 0 0

Agriculture 0 0 3291 0 0 0
City 24 3975 282 55775 630 0

Vegetation 0 2 0 290 3175 0
River 0 0 0 0 0 120485

Overall Test Set

Accuracy 84.494 88.455
Precision Typha 56.622 0.000

Recall Typha 98.002 0.000
F1-Score Typha 71.775 nan

Table A.38: Results of the test with the neural network 6-class 4-bands blob split with cleaning,
second case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.76: Result of the classification.

Figure A.77: Detail of the Ty-
pha blob that belongs to the
test set.

Matteo Guidi 95

A.14. NN 6-class 7-bands Random Split

NN6c7bB2
Predicted label

Typha Soil Agriculture City Vegetation River

T
ru
e
L
ab

el

Typha 4354 0 0 40 406 0
Soil 0 0 14067 188 0 0

Agriculture 0 0 3291 0 0 0
City 24 3607 532 59192 593 127

Vegetation 125 39 9 5101 3909 0
River 0 0 10441 0 0 110044

Overall Test Set

Accuracy 82.520 83.665
Precision Typha 94.729 90.708

Recall Typha 96.257 96.691
F1-Score Typha 95.487 93.604

Table A.39: Results of the test with the neural network 6-class 7-bands blob split with cleaning,
second case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.78: Result of the classification.

Figure A.79: Detail of the Ty-
pha blob that belongs to the
test set.

A.14 NN 6-class 7-bands Random Split

In this section the results of the Neural Network model, with a 6-class 4-bands blob split
classification with cleaning is presented. The three different experiments represent the
three different combination of Typha blobs selected for training and test set.

NN6c7bR0
Predicted label

Typha Soil Agriculture City Vegetation River

T
ru
e
L
ab

el

Typha 3398 0 6 19 42 0
Soil 0 28679 1 1351 0 0

Agriculture 0 60 26885 346 0 0
City 99 3926 412 54424 529 35

Vegetation 44 1 8 847 5322 0
River 0 0 0 5 0 50912

Overall Test Set

Accuracy 95.618 95.641
Precision Typha 98.326 98.066

Recall Typha 96.171 95.962
F1-Score Typha 97.237 97.003

Table A.40: Results of the test with the neural network 6-class 7-bands random split with cleaning,
first case. On the left is presented the confusion matrix, on the right the metrics computed.

Matteo Guidi 96

A.14. NN 6-class 7-bands Random Split

Figure A.80: Result of the classification.

Figure A.81: Detail one of the
Typha blobs.

NN6c7bR1
Predicted label

Typha Soil Agriculture City Vegetation River

T
ru
e
L
ab

el

Typha 3444 0 0 8 17 6
Soil 0 28211 0 1729 0 0

Agriculture 17 2 26943 307 0 0
City 63 3770 249 54822 456 27

Vegetation 35 4 0 586 5435 0
River 0 0 0 0 0 51220

Overall Test Set

Accuracy 95.899 95.897
Precision Typha 99.154 99.108

Recall Typha 96.753 96.769
F1-Score Typha 97.938 97.924

Table A.41: Results of the test with the neural network 6-class 7-bands random split with cleaning,
second case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.82: Result of the classification.

Figure A.83: Detail one of the
Typha blobs.

Matteo Guidi 97

A.15. CNN

NN6c7bR2
Predicted label

Typha Soil Agriculture City Vegetation River
T
ru
e
L
ab

el
Typha 3480 0 0 5 31 0
Soil 0 28575 1 1443 0 0

Agriculture 6 0 26723 504 2 0
City 97 4745 238 53780 581 34

Vegetation 55 13 2 703 5365 0
River 0 0 0 0 0 50968

Overall Test Set

Accuracy 95.161 95.230
Precision Typha 98.904 98.976

Recall Typha 95.523 95.657
F1-Score Typha 97.184 97.288

Table A.42: Results of the test with the neural network 6-class 7-bands random split with cleaning,
third case. On the left is presented the confusion matrix, on the right the metrics computed.

Figure A.84: Result of the classification.

Figure A.85: Detail one of the
Typha blobs.

A.15 CNN

CNN6c6bB0
Predicted label

Typha Soil Agriculture City Vegetation River

T
ru
e
L
ab

el

Typha 438 44 90 0 481 153
Soil 0 2747 0 26811 0 0

Agriculture 0 0 23041 0 0 0
City 84 48 52 61782 165 126

Vegetation 0 59 0 1737 7376 0
River 0 0 0 0 0 24981

Overall Test Set

Accuracy 94.321 80.128
Precision Typha 92.613 36.318

Recall Typha 98.537 83.908
F1-Score Typha 95.483 50.694

Table A.43: Result of the test with the convolutional neural network 6-class 6-bands blob split, first
case. On the left is presented the confusion matrix, on the right the metrics computed.

Matteo Guidi 98

A.15. CNN

Figure A.86: Result of the classification.

CNN6c6bB1
Predicted label

Typha Soil Agriculture City Vegetation River

T
ru
e
L
ab

el

Typha 4391 0 0 0 0 0
Soil 0 5901 0 22880 0 0

Agriculture 0 42 46861 4 0 0
City 60 111 12 59974 337 0

Vegetation 0 1 0 129 4303 0
River 0 0 0 0 0 7211

Overall Test Set

Accuracy 95.392 84.512
Precision Typha 99.981 100.000

Recall Typha 98.419 98.652
F1-Score Typha 99.194 99.321

Table A.44: Result of the test with the convolutional neural network 6-class 6-bands blob split, second
case. On the left is presented the confusion matrix, on the right the metrics computed.

Matteo Guidi 99

A.15. CNN

Figure A.87: Result of the classification

CNN6c6bB2
Predicted label

Typha Soil Agriculture City Vegetation River

T
ru
e
L
ab

el

Typha 3625 0 0 105 1070 0
Soil 0 5744 0 23814 0 0

Agriculture 0 0 3291 0 0 0
City 26 68 36 61608 80 1

Vegetation 0 1 1 4544 6375 0
River 0 0 0 0 0 24981

Overall Test Set

Accuracy 94.291 78.026
Precision Typha 88.679 75.521

Recall Typha 99.643 99.288
F1-Score Typha 93.842 85.789

Table A.45: Result of the test with the convolutional neural network 6-class 6-bands blob split, third
case. On the left is presented the confusion matrix, on the right the mestrics metrics.

Matteo Guidi 100

A.15. CNN

Figure A.88: Result of the classification

Matteo Guidi 101

Bibliography

[1] Bruno Gryseels et al. “Human schistosomiasis”. In: The Lancet 368.9541 (2006),
pp. 1106–1118.

[2] World Health Organization et al. “Prevention and control of schistosomiasis and
soil-transmitted helminthiasis: report of a WHO expert committee”. In: (2002).

[3] Mapping Schistosomiasis Risk in the Saint Louis region, Senegal. url: http://
www.mastr-sls.polimi.it.

[4] Jwan Al-Doski, Shattri B Mansorl, and Helmi Zulhaidi Mohd Shafri. “Image clas-
sification in remote sensing”. In: Department of Civil Engineering, Faculty of En-
gineering, University Putra, Malaysia (2013).

[5] David G Lowe. “Distinctive image features from scale-invariant keypoints”. In:
International journal of computer vision 60.2 (2004), pp. 91–110.

[6] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human de-
tection”. In: international Conference on computer vision & Pattern Recognition
(CVPR’05). Vol. 1. IEEE Computer Society. 2005, pp. 886–893.

[7] Gong Cheng, Junwei Han, and Xiaoqiang Lu. “Remote sensing image scene clas-
sification: Benchmark and state of the art”. In: Proceedings of the IEEE 105.10
(2017), pp. 1865–1883.

[8] Ian T Jolliffe and Jorge Cadima. “Principal component analysis: a review and re-
cent developments”. In: Philosophical Transactions of the Royal Society A: Math-
ematical, Physical and Engineering Sciences 374.2065 (2016), p. 20150202.

[9] J. Ross Quinlan. “Induction of decision trees”. In: Machine learning 1.1 (1986),
pp. 81–106.

[10] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine
learning 20.3 (1995), pp. 273–297.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[12] Dengsheng Lu and Qihao Weng. “A survey of image classification methods and
techniques for improving classification performance”. In: International journal of
Remote sensing 28.5 (2007), pp. 823–870.

102

http://www.mastr-sls.polimi.it
http://www.mastr-sls.polimi.it

Bibliography

[13] Brandt CK Tso and Paul M Mather. “Classification of multisource remote sensing
imagery using a genetic algorithm and Markov random fields”. In: IEEE Transac-
tions on Geoscience and Remote Sensing 37.3 (1999), pp. 1255–1260.

[14] Floyd F Sabins. Remote sensing: principles and applications. Waveland Press, 2007.

[15] Bangalore D Nagesh Kumar IISc. “SPATIAL AND SPECTRAL RESOLUTIONS”.
In: ().

[16] Know Basics of Remote Sensing Quickly and Become Expert. 2015. url: https:
//grindgis.com/what-is-remote-sensing/know-basics-of-remote-sensing.

[17] Priyanka Sharma and Urvashi Mutreja. “Analysis of satellite images using artificial
neural network”. In: Int. J. Soft Comput. Eng 2 (2013), pp. 276–278.

[18] Tools for designing neural network architecture. url: http://alexlenail.me/NN-
SVG/index.html.

[19] David Kriesel. “A brief introduction on neural networks”. In: (2007).

[20] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[21] Kaiming He et al. “Mask r-cnn”. In: Proceedings of the IEEE international confer-
ence on computer vision. 2017, pp. 2961–2969.

[22] Ali Sharif Razavian et al. “CNN features off-the-shelf: an astounding baseline for
recognition”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition workshops. 2014, pp. 806–813.

[23] Dan Claudiu Ciresan et al. “Flexible, high performance convolutional neural net-
works for image classification”. In: Twenty-Second International Joint Conference
on Artificial Intelligence. 2011.

[24] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification”. In: Proceedings of the IEEE international con-
ference on computer vision. 2015, pp. 1026–1034.

[25] CS231n Convolutional Neural Networks for Visual Recognition. url: https://
github.com/cs231n/cs231n.github.io.

[26] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and accu-
rate deep network learning by exponential linear units (elus)”. In: arXiv preprint
arXiv:1511.07289 (2015).

[27] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift”. In: arXiv:1502.03167 (2015).

[28] Miao Li et al. “A review of remote sensing image classification techniques: The
role of spatio-contextual information”. In: European Journal of Remote Sensing
47.1 (2014), pp. 389–411.

Matteo Guidi 103

https://grindgis.com/what-is-remote-sensing/know-basics-of-remote-sensing
https://grindgis.com/what-is-remote-sensing/know-basics-of-remote-sensing
http://alexlenail.me/NN-SVG/index.html
http://alexlenail.me/NN-SVG/index.html
https://github.com/cs231n/cs231n.github.io
https://github.com/cs231n/cs231n.github.io

Bibliography

[29] Peter M Atkinson and David K Naser. “A Geostatistically Weighted k-NN Classifier
for Remotely Sensed Imagery.” In: Geographical analysis 42.2 (2010), pp. 204–225.

[30] Rongrong Ji et al. “Spectral-spatial constraint hyperspectral image classification”.
In: IEEE Transactions on Geoscience and Remote Sensing 52.3 (2013), pp. 1811–
1824.

[31] Yushi Chen et al. “Deep learning-based classification of hyperspectral data”. In:
IEEE Journal of Selected topics in applied earth observations and remote sensing
7.6 (2014), pp. 2094–2107.

[32] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional net-
works for biomedical image segmentation”. In: International Conference on Medical
image computing and computer-assisted intervention. Springer. 2015, pp. 234–241.

[33] Vladimir Iglovikov and Alexey Shvets. “Ternausnet: U-net with vgg11 encoder pre-
trained on imagenet for image segmentation”. In: arXiv preprint arXiv:1801.05746
(2018).

[34] Global Invasive Species Database. url: http://www.iucngisd.org/gisd/species.
php?sc=895r.

[35] Christin B Frieswyk and Joy B Zedler. “Do seed banks confer resilience to coastal
wetlands invaded by Typha× glauca?” In: Botany 84.12 (2006), pp. 1882–1893.

[36] Shane C Lishawa et al. “Biomass harvest of invasive Typha promotes plant diversity
in a Great Lakes coastal wetland”. In: Restoration ecology 23.3 (2015), pp. 228–237.

[37] Lorenzo Mari et al. “Big-data-driven modeling unveils country-wide drivers of en-
demic schistosomiasis”. In: Scientific reports 7.1 (2017), p. 489.

[38] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org.
https://www.openstreetmap.org. 2017.

[39] PLANET IMAGERY PRODUCT SPECIFICATIONS. 2019.

[40] Yanli Wu et al. “Landslide susceptibility assessment using frequency ratio, statis-
tical index and certainty factor models for the Gangu County, China”. In: Arabian
Journal of Geosciences 9.2 (2016), p. 84.

[41] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[42] François Chollet et al. Keras. https://keras.io. 2015.

[43] Tiago Carneiro et al. “Performance Analysis of Google Colaboratory as a Tool for
Accelerating Deep Learning Applications”. In: IEEE Access 6 (2018), pp. 61677–
61685.

[44] Michael A Nielsen. Neural networks and deep learning. Vol. 25. Determination press
San Francisco, CA, USA: 2015.

Matteo Guidi 104

http://www.iucngisd.org/gisd/species.php?sc=895r
http://www.iucngisd.org/gisd/species.php?sc=895r
 https://www.openstreetmap.org
https://keras.io

	Acknowledgments
	Abstract
	Sommario
	Introduction
	Backgrounds and Related Works
	Introduction to Remote Sensing
	Neural Networks
	Neurons
	Activation Functions
	Loss Functions
	Network Training
	Regularization

	Convolutional Neural Networks
	Convolutional Layer
	MaxPooling layer
	Activation Functions
	Batch normalization layer

	Classifiers Using Spatial Information

	Improving Typha Segmentation Using Spatial Information
	Problems related to Typha
	Aim of the Thesis
	Proposed Solutions
	Problem Formulation
	Integration of Spatial Information
	Preprocessing of Groundtruths
	Blob Split Method for Training and Test Set Partioning

	Dataset and Preprocessing
	Datasets
	Study area
	Satellite image
	Groundtruth Data

	Preprocessing
	Image Preparation
	Additional Data

	Integration of GIS Data
	Typha's Groundtruth Cleaning
	Training and Test Partitioning
	Number of Output Classes
	Software

	Models Setup/Design
	Overview of Design Steps
	Class Imbalance
	Class Weights
	Loss Function: Weighted Categorical Cross Entropy

	Neural Network Models
	Model architecture
	Regularization
	Gradient Clipping
	Prediction

	Convolutional Neural Network model
	Architecture
	Feature Map Sizes
	Patch Selection Method
	Prediction on Patches

	Experiments and Results
	Evaluation Metrics
	Analysis of the Results obtained with Neural Networks
	Results
	Groundtruth Cleaning
	2-class Classification
	6-class Classification

	Analysis of the Results Obtained with Convolutional Neural Networks
	Comparison between NN 7-class and CNN
	Final Considerations

	Final Conclusions and Future Works
	Details of Experiments
	NN 2-class 4-bands Blob Split No cleaning
	NN 2-class 4-bands Blob Split
	NN 2-class 4-bands Random Split
	NN 2-class 6-bands Blob Split
	NN 2-class 6-bands Random Split
	NN 2-class 7-bands Blob Split
	NN 2-class 7-bands Random Split
	NN 6-class 4-bands Blob Split No cleaning
	NN 6-class 4-bands Blob Split
	NN 6-class 4-bands Random Split
	NN 6-class 6-bands Blob Split
	NN 6-class 6-bands Random Split
	NN 6-class 7-bands Blob Split
	NN 6-class 7-bands Random Split
	CNN

	Bibliografia

