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Abstract

Accurate modeling of electromagnetic e�ects on patients and objects is becom-

ing increasingly important as higher magnetic �eld strengths are used in magnetic

resonance systems. Numerical simulations have good result in this area, but their ex-

ecution time make the exploration of the space of possibility extremely small. Exists

anyway a study able to make rigorous and fast simulations using mode expansions

with dyadic Green's functions. This study had amazing result in the magnetic reso-

nance systems coil design, and the tool to perform the simulations is widely used in

this �eld of research.

The aim of the work is analyzing the program distributed to the universities to

perform simulation and presenting eventual enhancements.

Is presented the program, with the theory behind it and the algorithms that

implement this theory. Some modi�cation are descripted explaining also which kind

of enhancements they bring. Finally some experiments are performed to compare

the two version reported in this work.

What emerge from this work is that the original tool is too much specialized and

not really user friendly, aspects solved by the second version. The performances any-

way, even if them are enhanced by the revised code, have a gain not really meaningful,

but still all considered the modi�cation of the original o�er a valid substitute.





Sommario

La costruzione di modelli accurati degli e�etti elettromagnetici sta diventando

sempre più importante in quanto campi magnetici di forza sempre maggiore vengono

utilizzati nei sistemi di risonanza magnetica. L'interazione di campi elettromagnetici

con tessuti biologici ad alta frequenza produce perturbazioni nelle linne di campo

speci�che da tessuto a tessuto, richiedendo uno studio accurato nel design delle coils

per migliorare la qualità dele immagini e evitare e�etti indesiderati nei pazienti.

Le thecniche di parallel magnetic resonance imaging tuttavia promettono di trovare

soluzione a uesto genere di problemi. Di risposta, il più alto repporto segnale ru-

more disponibile per alti valori di forza del campo permetterebbe maggiori gradi di

accellerazione nel parallel magnetic resonance imaging, quindi produrre immagini di

qualità con meno irradiazione di energia e limitando l'interazione con oggetti e altro

materiale che potrebbe disturbare il segnale. Essendo il numero di canali disponibile

per la risonanza magnetica incrementato per permettere un'acquisizione più veloce

e eccitazioni multiple delle coils, costruire prototipi per le coil è diventato di�cile e

costoso; quindi, il design di queste viene a�dato prevalentemente a simulazioni elet-

trodinamiche. Le simulazioni numeriche tramite tecniche come il metodo delle dif-

ferenze �nite sono normalmente utilizzate nelle analisi elettromagnetiche con modelli

dettagliati del corpo umano. anche se questi approcci sono rigorosi e hanno presen-

tato una buona concordanza con dati sperimentali, essi sono estremamente lunghi

nell'esecuzione e la loro complessità nimerica cresce rapidamente con il numero delle

coils simulate. La durata delle simulazioni restringe anche i numero di con�gurazioni

che possono essere realisticamente esplorate, limitando la generalità dei risultati. In-

fatti è stato dimostrato che c'è una forte correlazione fra il rapporto segnale rumore

e fattori �sici e geometrici, così come con forma, dimensione e proprietà elettriche

dei tessuti. Quindi assumono un ruolo importante approcci rigorosi ma rapidi per

simulazioni elettrodinamiche che operino su queste dipendenze fondamentali usand

semplici modelli geometrici comparativi. Un esempio di questo tipo è presentato dal

Professor Lattanzi in un suo studio, il cui metodo usa l'espansione modale e la dyadic

Green's function per caratterizzare un campo magnetico completo in un dielettrico

sferico. Per lo studio, è stato scritto un programma che implementa il metodo teorico

per contribuire al design delle coils paragonando il loro rapporto sengale rumore con



l'ultimate intrinsic signal to noise ratio, il più alto rapporto segnale rumore ottenibile

da una determinanta con�gurazione. Questo strumento riscuote molto succeso nei

dipartimenti di radiologia, tanto da spingere gli autori a iniziare lo sviluppo di un

applicazione che lo renda facile da usare.

Lo scopo di questo lavoro è analizzare e presentare il codice scritto dal Profes-

sor Lattanzi e, consecutivamente, proporre modi�che utili per generare una versione

del programma che sia facile da usare e capire, ottimizzata, generalizzata e più per-

formante. L'algoritmo originale è pensato per scopi di ricerca e calcola il rapporto

segnale rumore ottimale e quello per una determinata con�gurazione geometrica. Il

paragone fra i valori ottenuti indica la qualità della con�gurazione e consequenzial-

mente dell'immagine. Attualmente le simulazioni sono disponibili per un qualsiasi

numero di coils ma limitate a una sfera a tre strati che simula il cranio umano.

Nel primo capitolo viene descritto il codice originale, partendo dall'input, pas-

sando poi alla logica e terminando con l'output. La logica è separata in teoria e

metodi di implementazione della stessa. Il capitolo termina esponendo le limitazioni

del programma e gli e�etti che causano.

Il secondo capito è dedicato alla presentazione di modi�che con lo scopo di ri-

solvere i problemi esistenti. Viene proposta una nuova struttura, non più orientata

semplicemente alla ricerca, ma più user friendly, identi�cando come users possibili

non solo ricercatori esperti nel settore ma anche eventuali utenti non specializzati.

Vengono descritte delle modi�che al codice consistenti in un approccio a oggetti per

la gestione della sfera e in un approccio ricorsivo per il calcono dei coe�cienti della

dyadic Green's function, spiegando anche i bene�ci apportati al codice. Una sezione

invece tratta di ciò che del codice originale può essere riutilizzato in una versione

innovativa, spiegando le motivazioni che giusti�cano il mantenimento. Viene esposta

anche una descrizione degli esperimenti di validazione del codice scritto seguendo le

proposte del capitolo. In�ne i due codici vengono paragonati, sottolineando cosa la

nuova versione apporti alla vecchia.

L'ultimo capitolo parla dei test e�ettuati per veri�care le prestazioni in termini

memoria utilizzata, tempo di esecuzione e precisione. Viene anche sollevato un argo-

mento su un possibile approccio ripetitivo del codice originale, producendo una serie

di versioni specializzate nella processazione di uno speci�co numero di layers. Una

breve sezione è dedicata ai dati utilizzati nello svolgimento dei vari test. In�ne una

sezione riassume e valuta i risultati ottenuti. Il capitolo e il lavoro si chiudono con

una sezione sulle tecnologie utilizzate.
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Introduction

Accurate modeling of electromagnetic (EM) e�ects is becoming increasingly im-

portant as higher magnetic �eld strengths are used in magnetic resonance (MR)

systems. The interactions of the EM �eld with biological tissues at high frequencies

result in tissue-speci�c perturbations of EM �eld patterns, requiring appropriate coil

designs to improve image quality and to avoid adverse e�ects in patients. Parallel

MR imaging (MRI) [5,18,20] techniques are promising solutions to address these is-

sues. In reception, the increased signal-to-noise ratio (SNR) available at higher �eld

strengths allows for higher degrees of acceleration in parallel MRI, therefore enabling

e�cient imaging with reduced energy deposition and also limiting susceptibility ar-

tifacts and other time-dependent signal perturbations. As the number of channels

available in MR systems has increased to enable faster acquisitions and multiple coil

excitation, building prototypes of coil arrays has become more di�cult and expen-

sive; therefore, the design of coil arrays has relied ever more upon electrodynamic

simulations. Numerical simulations with techniques such as the �nite di�erence time

domain technique are normally used for EM analyses with detailed heterogeneous

models of the human body [4,8,9]. Although these approaches are rigorous and the

results have shown good agreement with experimental data, they are time consum-

ing and their numerical complexity grows rapidly as the number of modeled coils

increases. The duration of these simulations also restricts the number of di�erent

coil-sample con�gurations that can be realistically explored, limiting the generality

of the results. In fact, it has been shown that there is a strong dependency of SNR

upon geometrical and physical factors [13, 25], such as shape and dimensions of the

object and the conductors, or electrical properties of the tissues. There is therefore

a valuable role for rapid but rigorous electrodynamic simulation approaches that

may yield insight into these fundamental dependencies using comparatively simple

geometrical models. An example of rapid and rigorous electrodynamic simulation

approach is the solution presented by Professor Lattanzi in [12], that use mode ex-

pansions with dyadic Green's functions (DGFs) [21] to characterize the fullwave EM

�eld in a dielectric sphere. For the study [12] was written a program (P1) which

perform the mode expansions with DGFs to help and guide the design of MRI coils

according to the ultimate intrinsic SNR (UISNR), the best possible SNR in an ob-
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Introduction

ject. This algorithm had a great success in the radiology departments, so its authors

choose to start the development of an application to make P1 easy to use for research

reasons.

The purpose of this work is to analyze and present P1 and, consequentially,

present some useful modi�cation that produced another program (P2) to make the

code more easy to use, more general, more optimized and more performing. P1 is a

code that, thanks to mode expansions with DGFs, calculate the UISNR and the SNR

of coils in simulated position. The comparison between those two values indicate how

good is the coils con�guration. Actually the simulations are available for any number

of coil but the body to scan is limited to a sphere of three layers that wants to be a

sample of an human head.

In the �rst chapter is presented P1. The chapter starts with a section on the input

set. The approach is not just from a algorithmic point of view, but is given also a

representation of what the input try to simulate. Following there is a digression on

the theory P1 is based on. It is divided in sections about the computation of DGF

and EM �elds, the computation of UISNR and the relative current patterns, the coil

con�guration SNR and relative current patterns. There is also an illustration of the

implementation of the theory in the code, where there are some highlights on crucial

parts of the program. The list of section on the description of the code terminate

with the output of P1. The last section of the chapter is about the limitation of the

code and the reason why P1 has to be enhanced.

The second chapter instead is totally about P2, with an approach oriented to

underline the di�erences from P1 and why those modi�cations are better respect

to the previous solution. The chapter open with the description of a new structure

designed not thinking at the research but user oriented, individuating as user not only

experts of the �eld but in general also people may be in contact with P2 but without

any notions of electromagnetism. The chapter continue with the presentation of two

modi�cations in the algorithm itself: the adoption of an object oriented solution to

manage the sphere, its layers and EM features, and a recursive approach to calculate

the DGFs coe�cients. Those two modi�cations bring a new level of optimization and

generalization to P2. The description of P2 terminates with what was chosen to keep

from P1 and the explanations of the choice. The chapter continue with the validation

of P2, presenting the experiments necessary to the purpose. The last section of the

chapter about P2 make a comparison with P1 considering the modi�cations apported

tho the code.

Last chapter has the purpose to make some performances comparisons between

P1 and P2, in order to see if P2 is a valid replacement to P1. The chapter open with

an introduction to the experiments and an argument about the possibility to give

generality to P1 with several equivalent codes specialized each one on con�gurations

with di�erent number of layers. Than are presented the experiments to test per-
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Introduction

formances and their results. In order are analyzed memory consumption, execution

time and precision. After the experiments there is a short section to present the

small dataset used to perform the simulations. The data are about the tissues of the

human body simulated in the sphere and the coil characteristics. After the dataset

is present a summary on the results of the experiments on the performances. The

chapter and the work, before the conclusion, end with a description of the technology

used in the development of P1 and P2 and to perform the various testing.

3
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Chapter 1

Current solution

1.1 Input and Preparation to Calculations

P1 is a system which perform the calculation of Optimal Current Patterns for the

UISNR and for circular surface coils, starting from the mathematical reproduction of

the setting of an MRI. Inputs needed to represent properly the setting concerns the

characteristics of the body to scan, the asset of the coils, EM conditions created by

the machine and information for the creation of the �eld of view (FOV). As inputs

are asked also a set of �ags to indicate which part of the calculation perform and

some options to organize the graphical output, this parts will not be described in

this chapter since are just related to the execution of the code and not to its logic.

The body, up to now, is limited to an approximation of an human head, described

by a three concentric layers sphere that want to represent respectively brain (L3),

skull's bones (L2) and skin (L1) of the head. The innermost layer L3 radius has to

be indicated in the inputs in meters, instead for the following two has to be indicated

the radius increment, from the sum of the previous layer radius and the increment

is derived the layer radius. All L3, L2 and L1 also require the dielectric constant ε

and the conductivity σv in 1/(Ω*m) to describe the EM properties of tissues.

The coils are supposed as circular loops of copper and represented by a nx2

matrix that express the rotations of each of the n coils respect the center of the three

layers sphere, this data is completed by a radius that indicate the distance form the

center of the sphere and the radius of the coil itself. Distance from the center of the

sphere and coil radius are useful to calculate the e�ective distance of the coil copper

wire and the center of the sphere as
√
d2 +R2, where d and R are the two distances.

Those three elements describe a fourth layer, a spherical surface where the coils are

distributed, still concentric with the dielectric sphere. The radius of this layer has

to be grater than the radius of the last layer of the sphere.

The MRI machine generate the EM �eld enabling current to �ow trough the coils.

This situation produces EM waves with a certain frequency chose by the user, from

5



1. Current solution

Figure 1.1: Schematic representation of the spherical sample geometry, with two
exemplary loop coils arranged on a spherical surface at distance

√
d2 +R2 from the

center of the sphere. SNR calculation is performed on a transverse plane through
the center of the object. Picture from [12].

which is possible to calculate the �eld strength. P1 is also able to simulate parallel

imaging, so is necessary specify a vector nx2 of accelerations in the two dimensions

(a vector 1x2 means just one imaging). Frequency and acceleration, together with

some other �elds like mode of expansion and the image output size, are part of the

input that describe the activity of the machine. The input has also to specify which

current basis functions has to be included in the calculation (1 = divergence-free

magnetic dipole, 2 = curl-free electric dipole).

The FOV is the region of the sample that will be seen at the end of calculation,

so also the part where has to be performed the calculation. With some parameters

like an o�set and an angle, both three elements vectors, it describes a plane passing

through the center of the sphere and on this plane can be identi�ed, thanks to their

coordinates, the points where the user want to check the UISNR. In order to generate

the output images, are also inputs the patient position, can be 'head �rst' o 'feet

�rst' according to which part the machine will meet �rst, and patient orientation,

can be 'supine', 'prone', 'ldecub' (on the left side), or 'rdecub' (on the right side).

Before starting the calculation, from the inputs are calculated all the quantities

that can be derived from those, this in order to reduce the input as much a possible.

In this section are managed all the issues about the consistency of the �ag and

the execution of some adjustments, like conversion in spherical coordinates and the

assemble of physical quantities and inputs in thematic structures. The approach to

the memory consumption is a static one: all arrays and/or matrix are de�ned as zeros
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1.2. Electromagnetic Field Expansion in a Dielectric Sphere with Dyadic Green's

Functions

arrays of a �xed dimension avoiding any kind of threaten deriving from a dynamic

allocation of memory. Once all the preparation procedures are solved, according to

the �ag speci�cation, the calculation will start. In the following subsections the topics

will be the relevant parts of the calculation and the theory behind them. P1 is based

on four papers where all the calculation is fully described that are Ref.s [11�13,15],

the presentation of the theory is helped taking some hints from those works in order

to make the explanation as clear as possible.

1.2 Electromagnetic Field Expansion in a Dielectric Sphere

with Dyadic Green's Functions

Finding the DGF is the �rst checkpoint for the calculation. From Ref. [15], to

construct the EM DGFs in the layered media (sphere) the method adopted in P1 is

the scattering superposition [21], using the vector wave functions to describe it. In

the paper is given the DGF:

G
(f,s)
e (r, r′) = G0e(r, r

′)δsf +G
(f,s)
es (r, r′) (1.1)

where the scattering dyadic Green's function G
(f,s)
es (r, r′) describes an additional

contribution of the multiple re�ection and transmission waves in the presence of the

boundary of dielectric media while the unbounded dyadic Green's functionG0e(r, r
′)

represents the contribution of the direct waves from radiation sources in an un-

bounded medium, and the superscript (f,s) denotes the layers where the �eld point

and source point locate, respectively, while the subscript s identi�es the scattering

dyadic Green's functions. Applying the method of contour integration in the com-

plex h-plane, is obtained the dyadic Green's function in the unbounded medium as

a result of the residue theorem, given by:

G0e(r, r
′) =

r̂r̂

k2s
δ(r − r′)

+
iks
4π

∞∑
l=0

l∑
m=0

(2− δ0m)
2l + 1

l(l + 1)

(m− l)!
(l +m)!

×

M
(1)
l,m(ks)M

′
l,m(ks) +N

(1)
l,m(ks)N

′
l,m(ks) r ≥ r′

Ml,m(ks)M
′(1)
l,m (ks) +Nl,m(ks)N

′(1)
l,m(ks) r ≤ r′

(1.2)

where the prime denotes the coordinates (r′, θ′, φ′)of the current source Jf , l

and m are the expansion indices, and Ml,m(k) = jl(kr)Xl,m(θ, ϕ) stands for the

electric �eld of the TEl,m mode, with Xl,m a vector spherical harmonic of order (l,

m), while Nl,m(k) = 1
k∇ ×Ml,m(k) represents that of the TMl,mmode. Under the

spherical coordinates, the electromagnetic �elds usually consist of the radial wave

7



1. Current solution

Figure 1.2: Geometry of spherically multilayered medium

modes propagating outwards and inwards. Hence, under the assumption the current

source is located in the layer s, the scattering dyadic Green's function for the layer

f (= 1,2,..., N) is constructed among the multi layers with the spherical Bessel and

Hankel functions as follows:

G
(fs)
es (r, r′) =

r̂r̂

k2s
δ(r − r′)

+
iks
4π

∞∑
l=0

l∑
m=0

(2− δ0m)
2l + 1

l(l + 1)

(m− l)!
(l +m)!

× {(1− δNf )M
(1)
l,m(kf )[(1− δ1s)A

fs
MM

′
l,m(ks) + (1− δNf )Bfs

MM
′(1)
l,m (ks)]

+ (1− δNf )N
(1)
l,m(kf )[(1− δ1s)A

fs
N N

′
l,m(ks) + (1− δNs )Bfs

N N
′(1)
l,m (ks)]

+ (1− δ1f )Ml,m(kf )[(1− δ1s)C
fs
MM

′
l,m(ks) + (1− δNs )Dfs

MM
′(1)
l,m (ks)]

+ (1− δ1f )Nl,m(kf )[(1− δ1s)C
fs
N N

′
l,m(ks) + (1− δNs )Dfs

N N
′(1)
l,m (ks)]}

(1.3)

where AfsM,N ,B
fs
M,N ,C

fs
M,N and Dfs

M,Nare the coe�cients of scattered dyadic Green's

function to be solved, N represents the number of the layers of the spherical medium.

The superscript (1) denotes that the third-type spherical Bessel function or the �rst-

type spherical Hankel function should be chosen in the expression of the spherical

wave vector functions. For the rest of the vector wave functions, is chosen the

normal �rst-type spherical Bessel function because this type of function can be used

to represent both out-going and in-coming waves.

Find the coe�cients AfsM,N ,B
fs
M,N ,C

fs
M,N and Dfs

M,N is possible thanks to a system

that can be found starting from the boundary conditions satis�ed by the electric

8



1.2. Electromagnetic Field Expansion in a Dielectric Sphere with Dyadic Green's

Functions

type of the DGF:

r̂ ×G(f,s)
e = r̂ ×G[(f+1),s]

e (1.4)

1

µf
r̂ ×∇×G(f,s)

e =
1

µf+1
r̂ ×∇×G[(f+1),s]

e (1.5)

Calculation, absent in the code (you can �nd them in [15]), is skipped and is

immediately shown the coe�cients system:

[
A

(f+1)s
M,N + δsf+1 B

(f+1)s
M,N

C
(f+1)s
M,N D

(f+1)s
M,N

]
=

 1

TH,V
Ff

RH,V
Ff

TH,V
Ff

RH,V
Pf

TH,V
Pf

1

TH,V
Pf

 · [ AfsM,N Bfs
M,N

CfsM,N Dfs
M,N + δsf

]
(1.6)

where TH(P,F )f and RH(P,F )f represent the centripetal and centrifugal transmission and

re�ection contributions from TE waves (corresponding to the superscript H) while

T V(P,F )f and RV(P,F )f represent the centripetal and centrifugal transmission and re-

�ection contributions from TM waves (corresponding to the superscript V). All the

contributions TH,V(P,F )f and RH,V(P,F )f are easy to �nd since from the input is possible

to compute everything needed [15]. Is not easy instead �nding all the coe�cients

AfsM,N ,B
fs
M,N ,C

fs
M,N and Dfs

M,N , in fact the system shows how each of them depends

form the coe�cients of the layer directly under. Since P1 is dealing with a MRI,

according to [15], ANsM,N ,B
Ns
M,N ,C

1s
M,N and D1s

M,N are considered equal to zero since is

possible to assume f=N, , where the current distribution is placed for sure outside

the sphere, is also possible assuming s=1 and consequentially all AfsM,N and CfsM,N

coe�cients are equal to zero as well. Under those assumption the unknown coef-

�cients will be Bf1
M,N with f= (1,2,3,...(N-1)) and Df1

M,N with f= (2,3,...N) and the

system can be simpli�ed as follow:
B21
M,N = 1

TH,V
F1

[
B11
M,N +RH,VF1

]
D21
M,N = 1

TH,V
P1

[
1 +RH,VP1 B11

M,N

] (1.7)


Bi1
M,N = 1

TH,V
F (i−1)

[
B

(i−1)1
M,N +RH,VF (i−1)D

(i−1)1
M,N

]
i = (2...(N − 1))

Di1
M,N = 1

TH,V
P (i−1)

[
RH,VP (i−1)B

(i−1)1
M,N +D

(i−1)1
M,N

] (1.8)


0 = 1

TH,V
F (N−1)

[
B

(N−1)1
M,N +RH,VF (N−1)D

(N−1)1
M,N

]
DN1
M,N = 1

TH,V
P (N−1)

[
RH,VP (N−1)B

(i−1)1
M,N +D

(i−1)1
M,N

] (1.9)

This is a 2N equations with 2N unknown parameters linear system, so admit

a solution. Now all needed for expression 1.1 calculation is known, than all the

calculation showed up to now are performed in P1 to �nd the DGF.

As shown in [12] the DGF formalism enables calculation of the electric �eld

9



1. Current solution

resulting from any spatial current distribution J(r) as:

E(r) = iωµ0

˚

V

G(r, r′) · J(r′)dV ′ (1.10)

where i is the imaginary unit, ω is the angular frequency, µ0 is the magnetic perme-

ability in free space.

The current is constrained to �ow only on a spherical surface of radius b (which

need not coincide with the surface of the dielectric sphere itself):

J(r, θ, ϕ) = K(θ, ϕ)
δ(r − b)
b2sinθ

(1.11)

In the most general case, the surface current density K may consist of both

magnetic-type (divergence-free) and electric-type (curl-free) components, indicated

with the superscript (M) and (E), respectively, and in P1 is expressed with a mode

expansion. The generic surface current mode then takes the form of:

Kl,m(θ, ϕ) = −i
√
l(l + 1)

[
W

(M)
l,m Xl,m(θ, ϕ) +W

(E)
lm r̂ ×Xl,m(θ, ϕ)

]
(1.12)

where, W (M)
l,m and W (E)

lm are the series expansion coe�cients representing divergence-

free and curl-free surface current contributions, respectively, Xl,mis a vector spherical

harmonic of order (l, m). The DGF method shown at the beginning of this section

allows solution of the scattering problem to determine the EM �eld impressed upon

the sphere by the vector source current density K. From expression 1.10, is derived

(Appendix A of [12]) an expression for the electric �eld inside the sphere and then,

using Maxwell's equations, the corresponding expression for the magnetic �eld is

calculated:

E(r) = ωµ0
kin

∑+∞
l=0

∑+l
m=−l

[
Ml,m(kin, r)V

M
l,m +Nl,m(kin, r)V

N
l,m

]
B(r) = iµ0

∑+∞
l=0

∑+l
m=−l

[
Nl,m(kin, r)V

M
l,m +Ml,m(kin, r)V

N
l,m

] (1.13)

Note that harmonic time variation is assumed in everything to follow, and a

common factor of e−iωt is omitted but assumed for all �elds and currents throughout

the theoretical derivation. The complex wave number inside the sphere is calculated

as k2in = ωεrε0µ+ iωµ0σ, where ω is the angular frequency; εr and σv are the relative

permittivity and the electrical conductivity of the dielectric material, respectively;

µ0 and ε0 are the magnetic permeability and the electric permittivity in free space,

respectively. The weighting coe�cients VM
l,m and V N

l,m are derived by multiplying the

expansion coe�cients of the current density with a transformation matrix T that

10



1.3. Calculation of Ideal Current Patterns for Ultimate Intrinsic SNR

accounts for boundary conditions at the surface of the sphere:

V =

(
VM
l,m

V N
l,m

)

=

 −i
√
l(l + 1)h

(1)
l (k0b)Cl 0

0
−i
√
l(l+1)

k0b

∂
[
rh

(1)
l (k0b)

]
∂r

∣∣∣∣∣r=bDl


·

(
W

(M)
l,m

W
(e)
l,m

)
= T T ·W

(1.14)

where the superscript T indicates the transpose of the matrix, h(1)l is the spherical

Hankel function of the �rst kind of order l, and the complex wave number outside

the sphere is calculated as k20 = ω2µ0ε0. The coe�cients Cl and Dl in the matrix T

are determined by applying the Dirichlet boundary conditions at the surface of the

sphere. Note that the vectors V, T, and W are de�ned for given (l, m).

It should be noted that the individual EM �eld modes in expression 1.13, matched

to their associated surface current modes, can be used as if they correspond to

hypothetical coil current distributions. This observation make possible in P1 to �nd

optimal weighting coe�cients that allow combinations of modes for maximum SNR.

Ideal current patterns are computed as a weighted sum of the current modes in

expression 1.12, using the same coe�cients.

1.3 Calculation of Ideal Current Patterns for Ultimate

Intrinsic SNR

Ultimate intrinsic SNR (UISNR) [16,17,19,25], the theoretical best possible SNR

independent of any particular coil geometry, is calculated in P1 using the EM modes

in the basis set to maximize the general SNR expression. In the case of Cartesian

SENSE parallel imaging reconstructions [18] followed in the code to perform the

calculation, the combination of modes that results in the highest possible SNR is

found by solving a constrained minimization problem, which yields the following

solution for the optimal series expansion coe�cients [18]:

W opt = (SHΨ−1modeS)−1SHΨ−1mode (1.15)

where S is the sensitivity matrix, and Ψmode is the modes' noise covariance matrix.

The sensitivity matrix contains the complex signal sensitivities associated with each

11



1. Current solution

mode at the target position r0 and at all aliased positions:

S(r) =

 S1(r0) . . . S1(rR−1)

. . . . . . . . .

SLmode
(r0) . . . SLmode

(rR−1)

 (1.16)

where R is the acceleration (or reduction) factor and Lmode = 2(lmax + 1)2 is the

total number of modes corresponding to the expansion order lmax, which is chosen

to ensure convergence of the UISNR calculations. The elements of S is derived

by applying the principle of reciprocity [6], which allows calculation of the receive

sensitivity of a coil in terms of the left circularly polarized component of the RF

magnetic �eld that would be transmitted at the same position by a unit current

�owing around the coil:

Bx(r)− iBy(r) = iµ0

+∞∑
l=0

+l∑
m=−l

(VM
l,mV

N
l,m)

(
Nl,m(kin, r)x − iNl,m(kin, r)y

Ml,m(kin, r)x − iMl,m(kin, r)y

)

=
+∞∑
l=0

+l∑
m=−l

V TF (r) =
+∞∑
l=0

+l∑
m=−l

W TTF (r) =
+∞∑
l=0

+l∑
m=−l

W TS(r)

(1.17)

The only type of noise contributing to ultimate intrinsic SNR is, by de�nition,

sample noise, which means that any conductor is assumed to be perfect (i.e., to have

zero resistance and zero reactance) and that the modes' noise covariance matrix

Ψmode in expression 1.15 is calculated by simply integrating electric �eld products

over the volume of the sphere:

Rmode = σ

˚

V

E(r) · E∗(r)dV

= σ

∣∣∣∣ωµ0kin

∣∣∣∣2˚
V

+∞∑
l=0

+l∑
m=−l

(VM
l,mV

N
l,m)

×

(
Ml,m(kin, r)

Nl,m(kin, r)

)
(M∗l′′,m′(kin, r)N

∗
l′′,m′(kin, r))

(
VM
l′′,m′

V N
l′′,m′

)∗
dV

=
+∞∑
l=0

+l∑
m=−l

V TRLV
T∗ =

+∞∑
l=0

+l∑
m=−l

W TTRLT
T∗W ∗ =

+∞∑
l=0

+l∑
m=−l

W TΨmodeW
∗

(1.18)
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1.4. Optimal Currents for Circular Surface Coils

where

RL =

 ´ a0 |jl(kinr)|2 r2dr 0

0 1
|kin|2

{´ a
0

[∣∣∣∂rjl1(kinr)∂r

∣∣∣2 + l(l + 1) |jl(kinr)|2
]
dr

} 
(1.19)

and a and σv are the radius and the electrical conductivity of the sphere, respectively.

The UISNR received at any particular position r0 inside the sphere is calculated

using the weights in expression 1.15 as [25]:

ζ̃(r0) =
ω0M0

∑+∞
l=0

∑+l
m=−l(W

opt)TS(r)√
4kBTS

∑+∞
l=0

∑+l
m=−l((W

opt)TΨmode(W opt)∗)0,0

=
ω0M0√

4kBTS · (S(r)HΨ−1modeS(r))−10,0

(1.20)

where M0 is the equilibrium magnetization, ω0 is the Larmor frequency, kB is Boltz-

mann's constant, and TS is the absolute temperature of the sample. The �0,0� sub-

script in the denominator indicates the diagonal element of the matrix in parentheses

with an index associated with the target position r0.

Ideal surface current patterns associated with the ultimate intrinsic SNR are

found by applying the optimal weights in expression 1.15 to the individual current

modes in expression 1.12 and adding them up:

IidealRx (θ, ϕ) =
+∞∑
l=0

+l∑
m=−l

Kopt
l,m(θ, ϕ)

= −i
+∞∑
l=0

+l∑
m=−l

√
l(l + 1)(W opt)T

(
Xl,m(θ, ϕ)

r̂ ×Xl,m(θ, ϕ)

) (1.21)

The subscript Rx indicates that the currents refer to the signal reception case.

1.4 Optimal Currents for Circular Surface Coils

After deriving the ultimate intrinsic limit, in this section is described the method

used in P1 and explained in [12] for comparing UISNR with particular coil array

performance. In the previous sections, is showed that is possible to use a complete

set of basis functions to simulate the optimal SNR theoretically achievable with any

possible combination of coils. The performance of any actual coil can be simulated

with the same formalism by applying the appropriate weighting functions to the

general current distribution in expression 1.12. Note that this is possible because

the DGF formalism solves the scattering problem rigorously, accounting for boundary

conditions associated with the object geometry and its relation to the coil currents.
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1. Current solution

Consider a loop coil of radius R positioned outside the dielectric sphere as de-

scribed in the input, with its axis along the z-axis and at a distance d from the center

of the sphere in �g.1.1. The surface current distribution for this coil can be de�ned

as:

Kcoil
z (θ, ϕ) = ϕ̂I

sinθ√
d2 +R2

δ(r −
√
d2 +R2)δ(cosθ − d√

d2 +R2
(1.22)

where I is the current circulating in the coil and δ(r−
√
d2 +R2) = 1, as the current

is de�ned only on the spherical surface of radius b =
√
d2 +R2. The proportionality

factor sinθ√
d2+R2

guarantees that the �ux of Kcoil
z through any half plane of constant

θ (polar angle) is equal to I. The use of delta functions in expression 1.22 amounts

to modeling surface current patterns as in�nitely thin conductor wires. However,

in the practical implementation of our DGF computations, is used a �nite number

of basis functions (enough to ensure convergence), resulting in circulating surface

current patterns and corresponding e�ective coil conductors with a �nite width that

depends on the expansion order. The known bunching of current toward the edges of

�at conductive ribbons may be simulated using a su�ciently large number of modes,

but this measure is quite expensive so, for computational reasons, was considered

not necessary for the derivation of key physical insights, since �eld distributions

converge relatively rapidly with mode number, and since the remaining e�ects of

current distribution within conductor cross sections generally result in a simple scal-

ing of e�ective conductor resistivity. For simplicity, expression 1.22 also assumes

a uniform distribution of current azimuthally around the coil loop�an assumption

that admittedly does not hold rigorously for su�ciently long conductor paths and at

su�ciently high frequency that charge separation becomes signi�cant. Once again,

this limitation is not a fundamental impediment to the generation of basic physical

insights into coil and �eld behavior [7,10], and, as is the case for cross-sectional cur-

rent distribution, if the true azimuthal current distribution is known a priori, it may

certainly be simulated with our DGF formalism, using appropriate current weights.

The coil current distribution in expression 1.22 can be also expressed as a weighted

combination of the basis functions in 1.12, where the curl-free component is set to

zero, as currents can only �ow in closed patterns for the case of a loop coil:

K(θ, ϕ) =
+∞∑
l=0

+l∑
m=−l

W
(M)
l,m (−i

√
l(l + 1)Xl,m(θ, ϕ)). (1.23)

Equations 1.22 and 1.23 must be equivalent and, by comparing them, is possible
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1.4. Optimal Currents for Circular Surface Coils

ot �nd an expression for W (M)
l,m associated with the particular loop coil:

W
coil,(M)
l,0 =

−2πR

(l + 1)

(
cotθY 0

l (θ, ϕ)− cscθ
√

2l + 1

2l − 1
Y 0
l−1(θ, ϕ)

)
θ=arccos d√

d2+R2

.

(1.24)

I=1 is substituted, as, for the purposes of modeling coil sensitivities by reciprocity,

is interesting the unit current. The current density for a loop coil rotated to an

arbitrary position on the sphere �g.1.1 has the same functional form as that of the

loop coil along the z-axis, but in a coordinate system rotated with respect to the

reference coordinate system:

Kcoil
rot (θ, ϕ) ≡ Kcoil

z′ (θ′, ϕ′) =
+∞∑
l=0

(
W

coil,(M)
l,0

)
rot

[
−i
√
l(l + 1)X ′l,m(θ′, ϕ′)

]
, (1.25)

where the weights
(
W

coil,(M)
l,0

)
rot

are obtained from expression 1.24 by substituting

θ′, ϕ′ for θ, ϕ. Rotated vector spherical harmonics can always be represented as a

linear superposition of unrotated vector spherical harmonics [1]:

X ′l,0(θ
′, ϕ′) =

√
4π

2l + 1

+l∑
m=−l

Y m∗
l (β, α)Xl,m(θ, ϕ), (1.26)

where α and β de�ne the angular position of the center of the rotated coil on the

sphere (Fig. 1). Substituting in expression 1.25, we obtain an expression for the

current density of a rotated loop coil in the reference coordinate system:

Kcoil
rot (θ, ϕ) =

+∞∑
l=0

+l∑
m=−l

(
W

coil,(M)
l,0

)
rot

√
4π

2l + 1
Y m∗
l (β, α)

[
−i
√
l(l + 1)X l,m(θ, ϕ)

]

=

+∞∑
l=0

+l∑
m=−l

W
coil,(M)
l,m

[
−i
√
l(l + 1)X l,m(θ, ϕ)

]
,

(1.27)

The optimal SNR for an array of Lcoil receive loop coils is calculated with ex-

pression 1.20, after applying the weights W coil,(M)
l,m to the receive sensitivity of each

mode and to the elements of the noise resistance matrix:

Bcoilx,c (r)− iBcoily,c (r) =
+∞∑
l=0

+l∑
m=−l

(
W

coil,(M)
(l,m),c 0

)
S(r) (1.28)

Bcoilx,c (rn) + iBcoily,c (rn) =

+∞∑
l=0

+l∑
m=−l

(
W

coil,(M)
(l,m),c 0

)
Cn (1.29)
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1. Current solution

Rcoilcc′ =

+∞∑
l=0

+l∑
m=−l

(
W

coil,(M)
(l,m),c 0

)
Ψ̃mode

(
W

coil,(M)
(l,m),c′

0

)∗
, (1.30)

where c is the coil index, ranging from 1 to Lcoil. In receive, Ψ̃mode should include

all sources of noise a�ecting SNR. In P1, in addition to the intrinsic noise due to

the sample (see expression 1.18), is modeled coil noise, which is the second largest

noise contribution and can be calculated in a straightforward manner with the DGF

formalism. Thus, for SNR calculations Ψ̃mode = Ψmode + RA=TRLTT∗+RA
, where

RL is de�ned in expression 1.19 and the additional term, RA, which accounts for

resistive power losses in the coil conductors, is calculated by integrating the current

distribution on the spherical surface A' with radius b, where the coil lies:

R̃A =
1

σcdc

¨

A′

K(r′) ·K∗(r′)dA′

=
1

σcdc

¨

A′

+∞∑
l=0

+l∑
m=−l

+∞∑
l′=0

+l′∑
m′=−l′

(
W

coil,(M)
l,m 0

)( K
(M)
l,m

0

)
(
K
∗(M)
l′,m′ 0

)( W
coil,(M)
l′,m′

0

)∗
dA′

=
+∞∑
l=0

+l∑
m=−l

(
W

coil,(M)
l,m 0

) l(l + 1)

σcdc

(
1 0

0 1

)(
W

coil,(M)
l′,m′

0

)∗

=

+∞∑
l=0

+l∑
m=−l

(
W

coil,(M)
l,m 0

)
RA

(
W

coil,(M)
l′,m′

0

)∗
.

(1.31)

We see that the current �owing in the conductors causes a power loss inversely

proportional to the electrical conductivity (σc) and thickness (dc) of the coil material.

In calculating UISNR, is assumed perfect conductors with in�nite conductivity and

therefore RAbecomes zero.

1.5 Output

Output of P1 is strictly dependent from the FOV size and position. If the FOV

is placed far from the coils, the result of the UISNR in those points will result lower

than if the FOV was near a group of coils.

In the case the FOV is just one point, the output of the program will be a panel

like �g.1.3:

In the panel are present information about the the magnetic �eld intensity, the

radius where the coils are placed, the amount of mode expansions and the current

basis functions included in the calculation, in this case both divergence-free magnetic

dipole and curl-free electric dipole. At the top of this infos there is the value of UISNR
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1.5. Output

Figure 1.3: UISNR output panel with FOV equal to a single point

Figure 1.4: Coil SNR output panel for FOV equal to a single point

in the voxel considered by the FOV.

Same structure is for the panel for the coil SNR, with the obvious replacement

of the UISNR with the coil SNR at the chosen voxel (�g.1.4).

In case of bidimensional FOV the panel is quite di�erent. For both UISNR

(�g.1.5) and coil SNR (1.6) all the pure descriptive data are removed from the panel

and the only values shown are the mean of the values on each voxel on the bidimen-

sional panel and the max value. Together with those data is shown the image made

by all the voxels of the plane, where the color of each voxel indicate the value of SNR

in that position.

Tridimensional case is not available since not implemented because deducible

from sets of bidimensional solutions and because not representable since the surface

Figure 1.5: UISNR output panels for bidimensional FOV
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1. Current solution

Figure 1.6: Coil SNR output panels for bimensional FOV

Figure 1.7: Example of a 16 coils uniform distribution around a sphere

voxels would cover those inside.

Not dependent from the FOV are the representation on the surface of the sphere.

Ideal current pattern is show both on a sphere (�g.1.8) or on an unrolled sphere

resulting as a plane (�g.1.9). The image show how the ideal current pattern a�ect

the surface of the sphere, is possible to deduce the direction of the current vectors

from the arrows and the compared value from the length of the vectors (the e�ective

value of any point is visible selecting it with the cursor).

Not dependent from the FOV are the representation on the surface of the sphere.

In output is sent the con�guration of the coils described directly by the input

(�g.1.7). It is useful to have idea of how the coils are distributed: since the angles

have to be expressed just with couples of numbers is easy to don't have the certainty

of the distribution.

Ideal current pattern is show both on a sphere (�g.1.8) or on an unrolled sphere

resulting as a plane (�g.1.9). The image show how the ideal current pattern a�ect

the surface of the sphere, is possible to deduce the direction of the current vectors

from the arrows and the compared value from the length of the vectors (the e�ective

value of any point is visible selecting it with the cursor).

All of those inputs give a complete hint on the behavior of the EM �eld on the

sample, an example of an inspection of the e�ect of an MRI scans with di�erent

characteristics is shown in �g.1.10.
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1.5. Output

Figure 1.8: Examples of ideal current pattern on the surface of a sphere
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1. Current solution

Figure 1.9: Examples of ideal current pattern on the surface of an unrolled sphere

1.6 Applicative contest and algorithms

P1 has been written in Matlab, �rst of all because Professor Lattanzi had more

experience with this language and was also widely used in the radiology department

of New York University, but mainly to make easier the validation and the comparison

of the results with other existent methods having Matlab versions: CST method [2]

and a Keltner study [10]. The real technical reason to use Matlab anyway was the

integrated and easy tool to produce graphical objects, like those in the pictures form

section 1.5. Obviously other languages might have been valid also to give a useful

graphical output, like C++ and GTK, but the choice of Matlab was taken when

the work begun (2005) not thinking at the possibility to integrate it in a software

application, in that case maybe languages like C or java might have been a better

choice, but the attention was just on the math oriented library of Mathlab where

are already implemented a lot of function for EM, for example besselh() for the

calculation of the Henkel function.

The code is quite big, made of around three thousand lines of code in the main

body of the program plus sixteen functions covering some speci�c calculation, so is

impossible to report a detailed description of the program. Anyway the algorithms

that implement the theory presented in this chapter will be described highlighting

more precisely on some more relevant parts. In order to do this are skipped all the
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1.6. Applicative contest and algorithms

Figure 1.10: Coil performance maps for a transverse plane evaluated at di�erent �eld
strengths and for an increasing number of loop coils closely packed around a spherical
sample with 8.4 cm radius, for the case of 4-fold accelerated parallel imaging. Each
voxel shows the SNR of the array normalized by the corresponding ultimate intrinsic
SNR. Coil noise was included in the calculation of the SNR of the arrays. Mean and
maximum values are reported above each map. The gray circle indicates the surface
of the sphere.

elementary application of the formulas on the code, leaving what is important for

the de�nition of a path to the targets. All the following algorithms are inserted in a

loop that cycles on all the voxels in the FOV.

The �rst calculation described is the is the calculation of the UISNR.

A section of code which is important highlighting is the calculation of the Bf1
M,N

and Df1
M,N coe�cients. Starting from the system made by expressions 1.7, 1.8, 1.9, a

possible way to �nd a solution is the analythical calculation of the solution expression.

In the speci�c situation this is possible since the layers are a �nite number, N=41,

so the system can be solved analytically starting from 1.9 where is possible to �nd

B
(N−1)1
M,N = −RH,VF (N−1)D

(N−1)1
M,N , than sobstituting progressively the coe�cients the

end of the calculation is an equation with just B11
M,N unknown in function of TH,V(P,F )f

and RH,V(P,F )f .

B11
M,N = −

RH,V
F3

TH,V
P2 TH,V

P1

+
RH,V

F2

TH,V
F2 TH,V

P1

+
RH,V

F1

TH,V
F2 TH,V

F1

+
RH,V

F3 RH,V
P2 RH,V

F1

TH,V
P2 TH,V

P1

1

TH,V
F2 TH,V

F1

+
RH,V

F3 RH,V
P2

TH,V
P2 TH,V

F1

+
RH,V

F3 RH,V
P1

TH,V
F2 TH,V

F1

+
RH,V

F2 RH,V
P1

TH,V
F2 TH,V

P1

(1.32)

Having B11
M,N , all the other coe�cients can be derived from the equations 1.81.9.

In P1 is present directly expression 1.32, the calculation was done analytically on

paper from Professor Lattanzi following [15] directives for a three layer sphere, than

all the remaining (non zero) coe�cients are derived from expressions 1.81.9. In listing

1.1 is shown the code.

Listing 1.1: DGF coe�cents starting expression

1N=4 since in the theory is considered a layer also the air surrounding the sphere.
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B_m_11 = −(R_H_F_3/(T_H_P_2∗T_H_P_1)+
R_H_F_2/(T_H_F_2∗T_H_P_1)+
R_H_F_1/(T_H_F_2∗T_H_F_1)+
(R_H_F_3∗R_H_P_2∗R_H_F_1) /(T_H_P_2∗T_H_F_1) ) /
(1/(T_H_F_2∗T_H_F_1)+
(R_H_F_2∗R_H_F_2) /(T_H_P_2∗T_H_F_1)+
(R_H_F_3∗R_H_P_1) /(T_H_P_2∗T_H_P_1)+
(R_H_F_2∗R_H_P_1) /(T_H_F_2∗T_H_P_1) ) ;

B_n_11 = −(R_V_F_3/(T_V_P_2∗T_V_P_1)+
R_V_F_2/(T_V_F_2∗T_V_P_1)+
R_V_F_1/(T_V_F_2∗T_V_F_1)+
(R_V_F_3∗R_V_P_2∗R_V_F_1) /(T_V_P_2∗T_V_F_1) ) /
(1/(T_V_F_2∗T_V_F_1)+
(R_V_F_2∗R_V_F_2) /(T_V_P_2∗T_V_F_1)+
(R_V_F_3∗R_V_P_1) /(T_V_P_2∗T_V_P_1)+
(R_V_F_2∗R_V_P_1) /(T_V_F_2∗T_V_P_1) ) ;

B_m_21 = (1/T_H_F_1) ∗(B_m_11 + R_H_F_1) ;

B_n_21 = (1/T_V_F_1) ∗(B_n_11 + R_V_F_1) ;

D_m_21 = (1/T_H_P_1) ∗(1+ R_H_P_1∗B_m_11) ;

D_n_21 = (1/T_V_P_1) ∗(1+ R_V_P_1∗B_n_11) ;
B_m_31 = (1/T_H_F_2) ∗(B_m_21 + R_H_F_2∗D_m_21) ;

B_n_31 = (1/T_V_F_2) ∗(B_n_21 + R_V_F_2∗D_n_21) ;
D_m_31 = (1/T_H_P_2) ∗(R_H_P_2∗B_m_21 + D_m_21) ;

D_n_31 = (1/T_V_P_2) ∗(R_V_P_2∗B_n_21 + D_n_21) ;

D_m_41 = (1/T_H_P_3) ∗(R_H_P_3∗B_m_31 + D_m_31) ;

D_n_41 = (1/T_V_P_3) ∗(R_V_P_3∗B_n_31 + D_n_31) ;

A construct strictly dependent form the mode expansion is the spherical harmon-

ics Xl,m(θ, ϕ) calculation (listing 1.2), in the code named as Y_l_m for confusing

variables name problems. Even if this calculation is quite simple, it is also quite

important since is repeated in all the four calculation the program perform.

Listing 1.2: Spherical harmonics calculation

i f m > 0

Y_l_m = ((−1)^m)∗ legendrenorm ∗(1/ sq r t ( 2 ) )∗
l e g end r e f un c t i on s ( (m+1) , : ) .∗ exp (1 i ∗m∗ ph i s e t ) ;

e l s e i f m == 0

Y_l_m = legendrenorm∗ l e g end r e f un c t i on s ( 1 , : ) ;

e l s e
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Y_l_m = ((−1)^ abs (m))∗ conj (((−1)^ abs (m))∗
legendrenorm ∗(1/ sq r t ( 2 ) )∗
l e g end r e f un c t i on s ( ( abs (m)+1 ) , : ) .

∗exp (1 i ∗abs (m)∗ ph i s e t ) ) ;
end

From expression 1.20 we can notice the two important matrix: the sensitivity

matrix S from expression 1.16 and the Ψmode is the modes' noise covariance matrix

from expression 1.18.

The sensitivity matrix contains the complex signal sensitivities associated with

each mode at the target position r0 and at all aliased positions and is derived by

applying the principle of reciprocity [6]. The code is shown in listing 1.3.

Listing 1.3: Sensitivity matrix calculation

f o r i rho = 1 : l ength ( r s e t )

i f r s e t ( i rho ) < rad ius3

S_M( i rho ) = mag_scaling_r4∗D_m_41∗(N_x( i rho ) − 1 i ∗N_y( i rho ) ) ;

S_E( i rho ) = mag_scaling_r4∗D_n_41∗(M_x( i rho ) − 1 i ∗M_y( i rho ) ) ;

e l s e i f ( r s e t ( i rho ) < rad ius2 ) && ( r s e t ( i rho ) >= rad ius3 )

S_M( i rho ) = mag_scaling_r3 ∗(B_m_31∗(N3_x( i rho ) − 1 i ∗N3_y( i rho ) )

+ D_m_31∗(N_x( i rho ) − 1 i ∗N_y( i rho ) ) ) ;

S_E( i rho ) = mag_scaling_r3 ∗(B_n_31∗(M3_x( i rho ) − 1 i ∗M3_y( i rho ) )

+ D_n_31∗(M_x( i rho ) − 1 i ∗M_y( i rho ) ) ) ;

e l s e i f ( r s e t ( i rho ) < rad ius1 ) && ( r s e t ( i rho ) >= rad ius2 )

S_M( i rho ) = mag_scaling_r2 ∗(B_m_21∗(N3_x( i rho ) − 1 i ∗N3_y( i rho ) )

+ D_m_21∗(N_x( i rho ) − 1 i ∗N_y( i rho ) ) ) ;

S_E( i rho ) = mag_scaling_r2 ∗(B_n_21∗(M3_x( i rho ) − 1 i ∗M3_y( i rho ) )

+ D_n_21∗(M_x( i rho ) − 1 i ∗M_y( i rho ) ) ) ;

e l s e

S_M( i rho ) = 0 ;

S_E( i rho ) = 0 ;

end %end i f

end %end f o r

sma l l r = r s e t < eps ;

S_E( sma l l r ) = 0 ;

i f l == 1 ,
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switch m

case −1
S_M( sma l l r ) = −1 i ∗mu∗k_4∗k_0∗ cu r r en t r ad iu s ∗

cu r r en t r ad iu s ∗(1/3)∗ s q r t (3/(2∗ pi ) ) ;

case 0

S_M( sma l l r ) = 0 ;

case 1

S_M( sma l l r ) = 1 i ∗mu∗k_4∗k_0∗ cu r r en t r ad iu s
∗ cu r r en t r ad iu s ∗(1/3)∗ s q r t (3/(2∗ pi ) ) ;

end % end switch

e l s e

S_M( sma l l r ) = 0 ;

end % end i f

S = [S_M ; S_E ] ;

The modes' noise covariance matrix Ψmode in expression 1.15 is calculated by

integrating electric �eld products over the volume of the sphere, it is the most mem-

ory end time consuming calculation. In listing 1.4 are showed also the functions

"computePsiM_allregions(myL, ko, r1, r2, type)", that computes the value of the

elements of Psi M using Gaussian quadrature to solve the integrals, and the function

"spherbessJ(nu, z)", that computes the spherical Bessel function. Also other rou-

tine functions are involved in the calculation of the modes' noise covariance matrix

Ψmode, anyway all are quite similar to the two presented in listing 1.4, the di�erence

is just the �eld of work or wich bessel funcition the calculate.

Listing 1.4: Modes' noise covariance matrix calculation

term1 = ( abs (B_m_21)^2)

∗ computePsiM_allregions ( l , k_2 , rad ius2 , radius1 , 2)

+ ( abs (D_m_21)^2)

∗ computePsiM_allregions ( l , k_2 , rad ius2 , radius1 , 1)

+ (B_m_21∗ conj (D_m_21) )

∗ computePsiM_allregions ( l , k_2 , rad ius2 , radius1 , 4)

+ (D_m_21∗ conj (B_m_21) )

∗ computePsiM_allregions ( l , k_2 , rad ius2 , radius1 , 4 ) ;

term2 = ( abs (B_n_21)^2)

∗ computePsiE_al lreg ions ( l , k_2 , rad ius2 , radius1 , 2)

+(abs (D_n_21)^2)
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∗ computePsiE_al lreg ions ( l , k_2 , rad ius2 , radius1 , 1)

+(B_n_21∗ conj (D_n_21) )
∗ computePsiE_al lreg ions ( l , k_2 , rad ius2 , radius1 , 4)

+(D_n_21∗ conj (B_n_21) )
∗ computePsiE_al lreg ions ( l , k_2 , rad ius2 , radius1 , 4 ) ;

P_L_r2 = ( sigma_r2 /2)∗P_L_scaling∗
[ term1 0

0 term2 ] ;

P_L = P_L_r4 + P_L_r3 + P_L_r2 ;

% i s shown the c a l c u l a t i o n f o r one layer ,

%the other two are the same

P = T_hat∗P_L∗T_hat ' ;

% end o f main program ex t r a c t

func t i on PsiMvalue = computePsiM_allregions

(myL, ko , r1 , r2 , type )

[ . . . ]

x_i=(( r2 − r1 )/2)∗ st_i + ( r2 + r1 ) / 2 ;

switch type

case 1

sb_0 = spherbessJ (myL, ko∗x_i ) ;

PsiMvalue = ( ( r2 − r1 )/2)∗ (sum( ge_i .

∗ ( x_i .^2 .∗ abs ( sb_0 ) . ^ 2 ) ) ) ;

case 2

sb_0 = spherbessH (myL, ko∗x_i ) ;

PsiMvalue = ( ( r2 − r1 )/2)∗ (sum( ge_i .

∗ ( x_i .^2 .∗ abs ( sb_0 ) . ^ 2 ) ) ) ;

case 3

sb_0_1 = spherbessJ (myL, ko∗x_i ) ;

sb_0_2 = conj ( spherbessH (myL, ko∗x_i ) ) ;

PsiMvalue = ( ( r2 − r1 )/2)∗ (sum( ge_i .

∗ ( x_i .^2 . ∗ ( sb_0_1 .∗ sb_0_2 ) ) ) ) ;

case 4 sb_0_1 = conj ( spherbessJ (myL, ko∗x_i ) ) ;
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sb_0_2 = spherbessH (myL, ko∗x_i ) ;

PsiMvalue = ( ( r2 − r1 )/2)∗ (sum( ge_i .∗ ( x_i .^2 .

∗(sb_0_1 .∗ sb_0_2 ) ) ) ) ;

end

% end o f computePsiM_allregions

func t i on s ph e r b e s s e l j = spherbessJ (nu , z )

th r e sho ld = 0 . 1 ;

i1_ind = f i nd ( abs ( z ) >= thre sho ld ) ;

i2_ind = f i nd ( abs ( z ) < thre sho ld ) ;

i f l ength ( i1_ind ) > 0 % standard exp r e s s i on

z1 = z ( i1_ind ) ;

y1 = ze ro s ( l ength ( i1_ind ) , 1 ) ;

y1 = sq r t ( p i /2) .∗ s q r t ( 1 . / z1 ) .∗ b e s s e l j ( ( nu + 1/2) , z1 ) ;

s p h e r b e s s e l j ( i1_ind)=y1 ;

end

i f l ength ( i2_ind ) > 0 % s e r i e s expansion

z2 = z ( i2_ind ) ;

y2 = ze ro s ( l ength ( i2_ind ) , 1 ) ;

tmp_1 = gamma(3/2 + nu ) ;

tmp_2 = sq r t ( p i ) ;

y2 = ( z2 .^(1/2 + nu ) ) . ∗ ( (2.^(−1−nu ) ) .

∗tmp_2 . / ( tmp_1 .∗ s q r t ( z2 ) ) −
(2.^(−3−nu ) ) . ∗ tmp_2 . ∗ ( z2 . ^ ( 3 / 2 ) ) .

/(tmp_1.∗ (3/2 + nu ) ) +

(2.^(−6−nu ) ) . ∗ tmp_2 . ∗ ( z2 . ^ ( 7 / 2 ) ) .

/(tmp_1.∗ (3/2 + nu).∗(5/2+nu ) ) −
(2.^(−8−nu ) ) . ∗ tmp_2 . ∗ ( z2 . ^ ( 1 1 / 2 ) ) .

/(tmp_1.∗ (3/2 + nu ) .

∗(5/2 + nu ) .∗ ( 7 /2 + nu ) ) ) ;

s p h e r b e s s e l j ( i2_ind)=y2 ;

end

With those fundamental algorithms is possible to calculate the UISNR inserting

them in a double cycle for that iterate on the mode expansion coe�cients l and m

implementing the summations.

The calculation of the coil SNR is quite simple compared to the procedure to �nd

the UISNR.

There are two nested for cycle which iterate both on the number of coils (i and j):

the giver and the receiver of the current. For every coil (for the i coil inside the �rst

26



1.6. Applicative contest and algorithms

cycle and to the j coil inside the second) is performed the mode expansion cycling

this time �rst on l and nested in it on m. The mode expansion produce the matrix

needed in expression 1.20 for the calculation of the SNR. In listing 1.5 the example

of mode expansion in one of the coil and the calculation of the coil SNR.

Listing 1.5: Extract of coil SNR calculation

%Desc r ip t i on beg ins i n s i d e a i c o i l loop

f o r j c o i l = i c o i l +1: n co i l s ,

theta_co i l_j = ro t_co i l ( j c o i l , 1 ) ;

phi_coi l_j = ro t_co i l ( j c o i l , 2 ) ;

cos theta_co i l_j = cos ( theta_co i l_j ) ;

W_coil_j = ze ro s ( [ ( ( lmax + 1)^2 − 1) 1 ] ) ;

counter_coi l_j = 1 ;

f o r l = 1 : lmax

rot_coil_norm_j = sq r t (4∗ pi /(2∗ l + 1 ) ) ;

legendrenorm_j = sq r t ( (2∗ l + 1)/(4∗ pi ) ) ;
l e g endr e func t i on s_j =

legendre ( l , costheta_coi l_j , ' sch ' ) ;

l egendre funct ions_lminus1_j =

legendre ( l −1, costheta_coi l_j , ' sch ' ) ;

l egendre funct ions_lminus1_j =

[ legendre funct ions_lminus1_j ;

z e r o s ( s i z e ( cos theta_co i l_j ) ) ] ;

f o r m = − l : l ,

L i s t i n g 1 . 2 ;

W_coil_j ( counter_coi l_j ) = ((−1)^m)∗ rot_coil_norm_j

∗ conj (Y_l_m_j)∗W_coil_z ( l ) ;

counter_coi l_j = counter_coi l_j + 1 ;

end % end m loop

end % end l loop

W_coil_j_bis = ze ro s ( s i z e (W_coil_j ) ) ;

f o r l l = 1 : lmax

s t a r t i nd ex = ( l l ^2 − 1) + 1 ;
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endindex = ( ( l l +1)^2 − 1 ) ;

f o r mm = − l l : l l

i f mm < 0

index2 = endindex − ( l l−abs (mm) ) ;

o ld idx1 = s ta r t i nd ex + abs ( abs (mm)− l l ) ;

W_coil_j_bis ( index2 ) = W_coil_j ( o ld idx1 ) ;

e l s e i f mm > 0

index1 = s ta r t i nd ex + abs (mm− l l ) ;

o ld idx2 = endindex − ( l l−abs (mm))

W_coil_j_bis ( index1 ) = W_coil_j ( o ld idx2 ) ;

e l s e i f mm == 0

index1 = s ta r t i nd ex + l l ;

W_coil_j_bis ( index1 ) = W_coil_j ( index1 ) ;

end

end

end

W_coil_j = W_coil_j_bis ;

W_coil_j = W_coil_j ( : ) ;

p s i_co i l ( i c o i l , j c o i l ) = W_coil_i . ' ∗ ( P_modes .∗ conj (W_coil_j ) ) ;

p s i_co i l ( j c o i l , i c o i l ) = conj ( p s i_co i l ( i c o i l , j c o i l ) ) ;

end % end j c o i l loop

end % end i c o i l loop

1.7 Algorithm Limitations

Results obtained from P1 are quite interesting from a scienti�c point of view,

showing how DGFs is a quite valid alternative to traditional methods [12,14,22].

The success obtained in radiology departments of Universities and hospitals any-

way raised a problem of usability. Since the program was thought just on research

purpose, P1 has not an user friendly interface and the input data, even if grouped

approximately at the beginning of the program, are confused in the preparation of

the calculation. This chaos makes the tool hard to use since an immediate under-

standing is not possible for a user, consequentially the situation produce an awkward

chain of requests to as help in the usage and understanding of the tool. Is also absent

a clear structure of the code, making the comprehension of the code even harder.
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P1 is also not optimized, there are a several redundant code parts which would

have been better replace with cycles or functions, especially for what concerns the

layers. More in details, all the calculation dependent from layers radii shown in

sections 1.2 and 1.3, even if them are performed exactly in the same way for each

radius or each layer, are replicated just changing the radius to consider.

Another sub optimal calculation example is the calculation of the coe�cients

Bf1
M,N and Df1

M,N starting from expression 1.32 and reported (split for the TE and

TM case) in listing 1.1. Even if the supposition at the head of the code are con-

cerning a three layers sphere, the theory on the algorithm is based on is general and

applicable for any number of layers. Writing expression 1.32 in this way is not an

optimal solution since it cause a lack of generality in the code, limiting the possible

simulations (true purpose of P1).

The high request of usage of the tool anyway, pushed Professor Lattanzi to start

the development of a web application easy to use and also to elaborate P1 and other

programs concerning the MR simulation thanks to DGFs in order to have a system

easier to maintain, intuitive to read, more general and more performing. In the next

chapter are described the modi�cations brought to P1 to make it more performing

and clean.
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Chapter 2

Proposed solution

2.1 Structure

Since, as written in section 1.7, P1 has not a really logical structure, with input

and preparation to calculation merged and a lot of redundant code lines, the code

and all its parts were rearranged giving it a logical division as much as possible.

Fig.2.1 shows a complete graphical overview of the structure.

The idea behind the redesign of the structure is making possible and easy a black

box approach, ignoring completely the logic behind calculation part and avoiding if

desired the contact with the core of the code. This is a really user oriented choice:

the aim of the program is producing simulations in order to �nd the best coil con�g-

uration and excitation to have the best SNR in the desired point. According to the

purpose of the system, are identi�ed as users researchers in the �eld of electromag-

netism or medicine and MRI, medical doctors, coil design engineers or technicians

and software engineers (to integrate the program in larger systems). For users which

are quite inside the theory showed in chapter 1 (which are not the totality of the

identi�ed users) the input approach is not so di�erent between P1 and P2, for ev-

eryone else the understanding of the program might be quite challenging. Since in

P1 the input data are not completely separated from the preparation of the code

and often not even indicated clearly, an inexpert user will have di�culties for sure

even for searching and understanding which are inputs and what are just variables

expressed in the code. This because the black box approach is possible but in a

"shaded"1 way.

In P2, to produce a complete black box approach, the input is completely de-

tached from the rest of the code, so an inexpert user can face just the data the

code need from outside with no possibility of confusion or misunderstanding. The

starting function takes as input a Json with all the useful data and simply extract

1With shaded I mean that the a complete black box approach is not possible at the beginning

but progressively some parts of the code can be ignored focusing just on the input
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Figure 2.1: P2 structure with a distinct separation between input, preparation, cal-
culation, output and the eighteen coroutines. This structure is thinked to allow the
general user just to have a relation with the input and the output and interact with
the rest of the code as a black box.
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those data from it in a set of variables. This short solution require, from an under-

standing point of view, to know what is an input of an MRI machine since is exactly

what is simulated by the input, so every medic or coil design technician can use it.

From a software engineer point of view instead what is immediate to understand is

the structure of the required Json in order to design the output of a communicating

program.

The preparation to calculation in P1 is split. There is a part mixed with the

inputs which is dedicated to the calculation of the physical quantities directly deriv-

able from the input. The other part is related to the theory, with the necessary

transformation to perform the calculation and the creation of the vectors and matrix

to contain what will be calculated after. In P2 those two sections are grouped in one

which manage all the preparation. Since the input is isolated, the �rst part of the

separation become a block to small to be meaningful both from an actual meaning

point of view and from the amount of relevant operations, so it is merged with the

second part.

The calculation in P1 is quite chaotic, mainly for the several code repetitions

and the absence of a real order without a clear separation between the four di�erent

calculations (UISNR, coil SNR and the respective current patterns). In P2, the

structure of the two upper sections allows a clear separation of the calculations, using

the variables previously created in the preparation section. This approach make the

code easy to read since is immediate for an expert of the subject understand what

the program is doing in the considered part. Also from a debugging or a future

development point of view, having the four calculations separate is interesting, since

an error (which might be a malfunctioning not noticed in the code or simply a set

of input which produce suspicious results) in the output can be mapped exactly in

a speci�c part of the code, excluding all other possibilities.

The last two sections are the only two where a nice work of logical separation

and structuring is given also in P1, so it is not deeply transformed in P2.

The output is performed at the end of calculation. P1 is a program with research

purpose and results are obviously the most important part, considering a correct

calculation reproduction. According to this, the section is very well done, from any

point of view: any �nal user identi�ed at the beginning of the section is always

able to understand what are the results, according to his needs. In P2 the purpose

is the same even if there is the integration in a platform that change slightly the

situation. Anyway, even if in an hypothetical platform all the matlab plot would

be created separately from the program, was made the choiche to leave this part

approximately the same, with some minor change depending from some di�erent

calculation approach.

The section named "common routines" comprehend all small functions used sev-

eral times in the program. In P1 the purpose of creating a routine function is to
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separate a speci�c part of the calculation, maybe related to a speci�c theory in a pa-

per, from the main curse of the calculation and also the alternative code repetition,

even if some other parts are repeated anyway. In P2, the logic is maintained and are

also maintained all the common routines form P1. An inspection of the code anyway

revealed a lot of repetitions, several of them replaceable with a function other with

cycles. All the functions that was possible to extract from the code were extracted,

making the code more clean. Some other common routines were generated from a

di�erent approach to some problems in the calculation. At the end of the restructur-

ing the set of common routines of P2 is slightly bigger than the set of P1. The only

part of P2 which not interact with any common routine is the input acquisition, this

according to the complete black box approach.

On top of this redesign, results that P1 has a lot of lines unused and some sections

not working, oddments of a research oriented usage of the code. A light cleaning of

the code is performed, leaving the parts needed for the calculation and erasing what

is not useful even from a future development point of view.

2.2 Layers management and generalization

As described in sections 1.2 and 1.3, all the calculation of the DGF and after the

UISNR is dependent from the layers characteristics (radius, dielectric constant and

conductivity). In P1, all layers are described by three variables (radius, dielectric

constant and conductivity) and are considered as totally separated, so the situation

is having three of all the descriptive quantities.

Listing 2.1: Layers characteristics in P1

%% % ∗∗ INNER MOST LAYER − REGION 4 ∗∗ % %%

rad ius3_set = [ 0 . 1 ] ;

nradin = length ( rad ius3_set ) ;

eps i lon_r4 = 60 ;

sigma_r4 = 0 . 4 5 ;

%% % ∗∗ REGION 3 ( rad ius3 < rad ius < rad ius2 ) ∗∗ % %%

rad ius2_set = radius3_set + 0 . 0 0 5 ;

eps i lon_r3 = 32 ;

sigma_r3 = 0 . 1 ;

%% % ∗∗ REGION 2 ( rad ius2 < rad ius < rad ius1 ) ∗∗ % %%

rad ius1_set = radius2_set + 0 . 0 0 2 ;

eps i lon_r2 = 1 ;

sigma_r2 = 0 . 1 ;
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%% % ∗∗ OUTER MOST LAYER − REGION 1 ( always AIR) ∗∗ % %%

cur r ent rad iu s_se t = [ 0 . 1 4 ] ;

% [m] rad ius where curren t d en s i t y i s de f i ned

% ( outermost rad ius )

outer fov_radius_set = 0 . 1 6 ;

% how l a r g e the FOV fo r f i e l d s c a l c u l a t i o n s

Since the only relation that relate the three layers is the de�nition of the radius

(relation useless for theory purpose), without additional constructs like arrays, or

matlab structure, or classes, ecc... is not possible to avoid the repetition of the code

for each layer. Those constructs are indeed missing in P1, this produce a strictly

linear and ine�cient calculation on this topic with situation, like the code below for

the calculation of the complex wave numbers in layers k, with long section of code

doing repetitively the same thing:

Listing 2.2: Example of redundant lines in P1, calculation of the complex wave

number in each layer

k_0_squared = omega∗omega∗ eps i lon_0 ∗mu;

k_0 = sqrt ( k_0_squared ) ;

k_4_squared = omega∗mu∗( omega∗ eps i lon_r4+1 i ∗ sigma_r4 ) ;

k_4 = sqrt ( k_4_squared ) ;

k_3_squared = omega∗mu∗( omega∗ eps i lon_r3+1 i ∗ sigma_r3 ) ;

k_3 = sqrt ( k_3_squared ) ;

k_2_squared = omega∗mu∗( omega∗ eps i lon_r2+1 i ∗ sigma_r2 ) ;

k_2 = sqrt ( k_2_squared ) ;

In P2 the approach chosen is completely di�erent. Instead asking all the charac-

teristics of a layer separately, the input Json has to contain an array with the radii,

another one with the dielectric constant and a last one with the conductivity for each

layer. The radii vector contains always n+2 values, since n is the number of layers,

one is the radius where is de�ned the current density and one is the dimension of

the FOV. With those three information is built a class, completely absent in P1.

The class Sphere (�g. 2.2) is a class that contain information about the depth of

the layer, its lower bound as in_radius_set, the upper bound as out_radius_set

and the electrical properties epsilon (dielectric constant) and sigma (conductivity).

The dept is added to have a quick access to the position of the respective layer in

the sphere, the inner most layer has dept equal to n (the number of layers) and the
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Figure 2.2: Class Sphere of P2

outer most has dept 1. For each layer are indicated two radii in order to give a more

realistic imagine of the sample and to make the management of the various layers

in the calculation easier, indeed a lot of operations require both the upper bound

and the lower bound so having this information in just one object is better, even if

the information is deductible from the previous layer. The class has not so many

methods, limited to a constructor and set and get methods for each attribute. This

is also reasonable since the body in fact in the simulation is just a passive object

with no active interactions.

Listing 2.3: Funcion layers_construction(radii,epsilons,sigmas) for the creation of an

array of objects Sphere

function [ layers_array , n_layers ] =

laye r s_cons t ruc t i on ( r ad i i , e p s i l on s , s igmas )

for d=1: ( length ( r a d i i )−1)
obj=Sphere ( ) ;

obj . set_dept ( length ( r a d i i ) − d − 1) ;

%outer most rad ius

i f d == ( length ( r a d i i )−1)
obj . in_radius = r a d i i (d ) ;

obj . out_radius = r a d i i (d + 1) ;

else

%gener i c rad ius

obj . out_radius = r a d i i (d ) ;

obj . e p s i l o n = ep s i l o n s (d) ;
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obj . sigma = sigmas (d) ;

i f d == 1

%innermost rad ius

obj . in_radius = 0 ;

else

obj . in_radius = r a d i i (d−1) ;
end

end

l ayers_array (d) = obj ;

end

n_layers=d ;

As shown in listing 2.3, a �rst for cycle runt on the length of the radii array

generate at each iteration a Sphere object with the proper characteristics and store

it in the layers_array(d)2, at the end of the function is de�ned also n_layers, a

shortcut to the dimension of layers_array. Note that also the one named "Region-1"

in P1 is also de�ned as a Sphere object with 0 by default electric characteristics

never used in the code. An extension class was considered during the design but was

evaluated useless since not very meaningful.

In P1, thanks to this simple but e�cient shrewdness, all the code dependent from

the layers is managed by a for cycle that iterates on a variable (usually named i_lay)

until n_layers, or n_layers-1 if the "air" layer has not to be considered. In this way

the redundant code widely present in P1 is completely vanished in P2, giving a more

systematic approach to the problem. In listing 2.4 is shown the P2 respective part

of listing 2.2:

Listing 2.4: Example of cyclic version of listing 2.2, calculation of the complex wave

number in each layer

k=ze ro s (1 , n_layers ) ;

f o r i_lay=1: n_layers

i f i_lay == n_layers

kt=omega∗omega∗ eps i lon_0 ∗mu;

k ( i_lay)= sq r t ( kt ) ;

k_0=k( i_lay ) ;

e l s e

kt =omega∗mu∗
( omega∗ l ayers_array ( i_lay ) . e p s i l o n+

1 i ∗ l ayers_array ( i_lay ) . sigma ) ;

k ( i_lay)= sq r t ( kt ) ;

2This array is the only one not having a �xed size but dynamically built, this because not

knowing the size of the array radii is impossible to dimensionate it.
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end

end

Lets add some observations.

To save memory, Matlab asks to de�ne the dimension of every array. This is

not necessary if every single variable de�ned dependent from a radius, epsilon or

sigma is not shared in a structure or not need to be related to other similar variables

dependent from di�erent quantities. Anyway de�ning an array of variables instead

just the variables does not involve a big di�erence in the memory usage, since the

number of variables de�ned does not change between P1 and P2.

The management with layers_array spread itself "naturally" to each quantity

depending on layers characteristics, indeed happen to be quite comfortable pivoting

on n_layers and an array to store the results of calculation like listing 2.4. All those

quantities are managed in P1 with code repetitions totally absent in P2.

Last observation is concerning the generality. P1 is limited to the study of a three

layers sphere, this is done on purpose since three layers are considered enough to have

a meaningful simulation of the human head. Taking as input inside the Json three

arrays and not just eleven variable give to P2 a complete generality on this topic.

With the only precondition that radii, epsilons and sigmas are consistent between

them, according to their unbounded dimensions is possible to simulate a sphere with

any number of layer. The only limit has become the memory of the machine.

2.3 DGF coe�cients calculation in the rielaborated code

In P1 the solution of the DGF coe�cients is performed solving analytically the

linear system reported in expressions 1.7, 1.8 and 1.9, the solution produce expression

1.32 and the Matlab transposition in listing 1.1. Listing 1.1 can be easily adapted

to use as variables for transmission and refection, which are dependent from layers

radii and EM characteristics, those stored in some vectors with a simple indicization.

Anyway this solution is still valid only for a three layer sphere, opposing to the

research of generality wanted for to P2.

The �rst attempt to get a completely general version of the DGF coe�cients

solution was the run time construction and the solution of a system. De�ning an

array of the variables A 1xn, an array of the solution coe�cients B nx1 and a matrix

of the known coe�cients C nxn, the system can be solved by A=B/C3. This speci�c

procedure is valid only if C is squared. In P2 A would have been an array with all

the DGF coe�cients (unknown), B would have been an array with all 0 and a 1

as �rst element deriving from the �rst expression in 1.7, C a square matrix mostly

covered by 0 with the re�ection and transmission variables placed according to the

3This writing way is admissible just in Matlab, in algebra of matrix is not valid the commutative

properti so the correct writing is: A = C−1B
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system made by 1.7, 1.8 and 1.9. All the layers could be constructed iterating the

radiation and re�ection coe�cients arrays. This solution was totally independent

from the number of layers and theoretically correct, unfortunately it is mandatory

dependent from the invertibility of C, which can not be guaranteed in P2.

The second and de�nitive attempt is a recursive solution (listing 2.5). In the

system of expressions 1.7, 1.8 and 1.9, expressions 1.8 are particular since are com-

pletely general and valid for all n that goes from 2 to N-1. With a top-down approach

starting from the �rst expression of 1.9, was analyzed the behavior of the analytical

solution by substitution noticing some recursive behavior exactly on the expressions

corresponding to expressions 1.8. The recursion starts form the outer most layer be-

gins to go deep �nding the base cases which is in the innermost layer. Digging in the

sphere, the recursion split the path at every step, following the recursions generated

from the coe�cient B and the recursions generated from D. Every recursion , both

B and D, return two coe�cients, named as in listing 2.5 coe�b and coe�k. Coe�b

is the coe�cient of B terms in the system, coe�k is the coe�cient of D terms. The

base case of B recursion takes its coe�b and coe�k from the �rst expression of 1.9.

The base case of D recursion takes its coe�b and coe�k from the second expression

of 1.9 instead. The rest of the bottom up recursion part is based on expressions

1.8, every step coe�b is the sum of coe�cients of the �rst expression and coe�k is

the sum of coe�cients of the second expression, what is di�erent from the base case

is the presence of unknown B and D unknown variables. Those variables are the

results of the precedent step of the recursion and can be substituted as follow: the B

coe�cient in the �rst equation is the coe�b of a B recursion, the D coe�cient of the

�rst equation is the coe�b of a D recursion, the B coe�cient in the second equation

is the coe�k of a B recursion, the D coe�cient of the second equation is the coe�k

of a D recursion. The step before the end is slightly di�erent since based on the �rst

equation of expression 1.7. At the end of the recursion the result is two coe�cients,

B11
M,N now can be computed as B11

M,N = − coeffk
coeffb .

Explaining a recursive algorithm is quite di�cult, I add the complete code in

listing 2.5.

Listing 2.5: Recursive solution to �nd DGF coe�cients.

B_m(1)= −c o e f f k / c o e f f b ;

function [ c oe f fb , c o e f f k ] = recurs ive_calc_B ( t f , tp , r f , rp , d )

n=length ( t f ) ;

i f n==1

disp ( 'ERROR:  not enough l a y e r s ' ) ;

end

i f d == n
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c o e f f b=1/ t f (n ) ;

c o e f f k=r f (n)/ t f (n ) ;

else

[ bb , kb ] = recurs ive_calc_B ( t f , tp , r f , rp , d+1);

[ bd , kd ] = recursive_calc_D ( t f , tp , r f , rp , d+1);

i f d==1

co e f f b = bb + ( r f (1)∗bd ) ;

c o e f f k = kb + ( r f (1)∗ kd ) ;

else

c o e f f b = (bb/ t f (d ) ) + ( ( r f (d)∗bd)/ t f (d ) ) ;

c o e f f k = (kb/ t f (d ) ) + ( ( r f (d)∗kd )/ t f (d ) ) ;

end

end

function [ c oe f fb , c o e f f k ] = recursive_calc_D ( t f , tp , r f , rp , d )

n=length ( t f ) ;

i f n==1

disp ( 'ERROR:  not enough l a y e r s ' ) ;

end

i f d == n

co e f f b=rp (n)/ tp (n ) ;

c o e f f k=1/tp (n ) ;

else

[ bb , kb ] = recurs ive_calc_B ( t f , tp , r f , rp , d+1);

[ bd , kd ] = recursive_calc_D ( t f , tp , r f , rp , d+1);

c o e f f b = ( ( rp (d)∗bb)/ tp (d ) ) + (bd/tp (d ) ) ;

c o e f f k = ( ( rp (d)∗kb )/ tp (d ) ) + (kd/tp (d ) ) ;

end

The recursive solution is not dependent from the length of the input, completely

general, is totally generated and solved run time, theoretically correct and always

de�ned, so it has been inserted in P2 to manage spheres of any number of layers.

2.4 Other choices and considerations

The previous subsections talks about just layers dependent calculations. Those

calculation a�ect mainly the half of the code concerning the UISNR. The other half

of the code is dependent from the coils number and characteristic. This section,

contrarily to the one on UISNR, is totally general and can work for any number

of coils and any rotation. Since also the code is not a�ect of bad repetitions, this

section is not modi�ed since is already perfectly working in P1. In P2 there are just
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some adjustments to the structure and replication of the logic because was the most

reasonable thing to do.

Same reasoning was done for the output. As told in section 2.1, it is the most

important part of the program and in P1 it was already well done.

Was made the choice to leave P2 in Matlab. Even if the integration in a web

application would prefer di�erent frameworks, the Mathworks library o�er some

prebuilt functions which are extremely convenient for the purpose of the code. Since

some parts of the structure and all the co-routines functions are also taken unchanged,

maintaining the code in Matlab allows to reuse all useful parts of the original code.

The last reason to use Matlab is for have the same environment to make comparisons.

Having the possibility to save the workspace as math �les speeds up incredibly the

operation of comparisons of results. Also the integrated system of plotting is very

useful, and having also the same style in the presentation of results help to understand

the di�erences. The downside anyway is the small di�cult Matlab has reading Jsons:

Matlab read vectors in Jsons with the dimension swapped due to a di�erent style

of writing, so is necessary to transpose the vector once it is read in Matlab. This

problem does not happen for matrix.

2.5 Validation

The validation of P2 was done by comparing the results with some con�gurations

of the input with the result of P2 run with on the same con�guration. Since P1

was validated comparing it with other studies [2, 10], it can be consider a term of

comparison for validation, therefore all the experiments will involve P2 and P1. The

experiments to validate the code are quite simple. Since what has changed in P2 from

P1 is the part concerning the UISNR, the tests will take in account this information.

The con�guration of all the most meaningful tests is very basic: just one coil of

radius 2,5 cm placed at 1 cm from the surface of the sphere, sphere with same radius

and electromagnetic properties for both the codes, same choice of FOV for both the

algorithms, the rest of the con�guration is chosen as basic as possible. No signi�cant

di�erences where emerged during the validation as shown in �g. 2.3.

The experiment was repeated with several possible combination of data keeping

�xed the coil �rst, than it was also performed with random but coherent values

for the con�guration of the input also for the coils. Layers under the fourth were

performed in P1 de�ning needed adjacent layers with the same EM properties. Still

no meaningful di�erences. Notice that the two results were not exactly the same,

but since the di�erence between the two was always under a magnitude of 10−16it

can be ignored, this will be covered better in section 3.4.

Another test done was simulating a sphere with several layers with certain EM

properties and a sphere with just one layer with the same EM properties of the multi
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Figure 2.3: Ratio of P1 and P2 SNR, the green color correspond to value 1, which
means that the two code give the same result.

layer sphere. This is a behavioral test so I checked the two con�gurations just on

P2. Also in this situations, the two con�gurations produced an equivalent result,

con�rming an appropriate behavior of the simulation. Also this test was performed

with some random settings, anyway the result was always the same.

The last test is also behavioral. I tested, with the same con�gurations of the �rst

test, that the UISNR value is a coil SNR upper bound for each voxel in the FOV

according to the theory. Also this time all the result were coherent with the theory,

so P1 is able to simulate UISNR as ideal value and the coil SNR as e�ective value

of the con�guration.

The results of the tests are equal according to the prevision, this meas that the

result is not depending from the number of layers but just from the con�guration.

Since P2 has passed successfully all the tests useful for the purpose, it can be con-

sidered validated an therefore it can be used to "produce" acceptable results.

2.6 New solution

P1 is designed to solve, at least partially, limitations of P2 also thinking on the

purpose of the work which is the integration in a application.

P2 is "user friendly" as much as possible, allowing a full black box approach.

According to the use of the code, an user can have a targeted access to the code

without entering in contact with undesired part of it. The design hypothesizes also

the use for di�erent type of users according to their knowledge of electromagnetism

and MRI: an user who want to just use the code can have access just on the portions

of input and output, an user which can understand the code and want to investigate
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it can have a targeted access to the code without need to understand the separation

of the various parts. The design produced a structure (�g 2.1) well de�ned with a

clear separation of the components of the calculation.

P2 is more optimized respect to P1. Is obviously impossible to say that the code

is fully optimized, but at least several problems of optimization are solved analyzing

which parts are repeated an which are useless or not working in P1. The not working

paths are reasonably removed. Is left what might be useful for future developments

of the code and is in an advanced state on that purpose. The management of the

layers as three separated and unrelated values is completely replaced by an array

approach to the problem. All the code repeated dependent from the radii or the EM

properties of layers is replaced with a cycle on the length of the sphere objects and

perform the considered lines of code.

P2 is completely general. In P1, even if is possible a simulation of any number

of coil, the simulation of the scanned body is limited to four layers even if the

theory consider a general case. Replacing listing 1.1 with listing 2.5 allow a complete

generalization of the code. P2 is able to simulate every kind of MRI sphere scan,

with any number of coils and any number of precision in the simulation of the human

head. This is a big upside because allow to manage all possible situation with just

one program. The bene�t of the generalization, even if create an unlimited freedom

to the setting simulation, is limited by the bond of reality, since obviously there are

limitation deriving from what exist in the real world. A real human head might have

around ten di�erent layers with di�erent tissues, coils are bounded to a sphere and

even if is possible to apply a lot of them, far or close one from each other or even

one over another, there is a limit also to them. Anyway having the opportunity of a

completely free simulation give potential to the code, even if it might be meaningless

under certain conditions.

The only controversial choice is maintaining Matlab as framework but, as pre-

sented in section 2.4, it have an amazing library and integrated graphic tool for the

purpose of the code. Obviously another choice would have been better for an inte-

gration in other systems, but this opportunity is still possible, so no limitations rise

from this choice.
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Chapter 3

Performance Analysis

3.1 Analysis introduction

Even if P2 is more structured, optimized and general, it does not mean that

P1 is necessarily worst. To consider one of the two codes better than the other is

necessary to make an analysis of the performance, comparing the two algorithm on

the memory usage, execution time and result precision. An answer to those questions

is immediate if we consider just the versions described of P1 and P2. P2 indeed can

manage also less than four layers, so the code in those cases cycle less times, using

less registers to perform operations, terminating faster and with more precision due

to a less number of operation performed which bring an approximation each. Under

those condition P1 and P2 are not properly comparable, since technically they do a

di�erent thing, even if the purpose is always the simulations for coil design.

An objection can be raised to P2 saying that, still maintaining the analytical

approach to the solution, a version of P1 (P1') with an ad hoc solution for each

number of layers, may have the same performances of P2. In order to face this

problem is chosen to ampliate P1, creating di�erent versions which compute the

SNR for a speci�c number of layer each, and perform some testing on memory,

execution time and precision between P1 and each of them. Every version need

some adaptation, essentially the same for each. Are added to the code the new

layers features (radius, dielectric constant and conductivity) and all the lines of

code depending, directly or not directly, from the layers has to be repeated again

until all added layers are covered. Has also to be modi�ed the expression 1.32 for

the calculation of B11
M,N coe�cient of the DGF since it is valid just for four layers.

Adapting 1.32 can be made analytically by writing the system of equations 1.7, 1.8,

1.9: the di�erence layer by layer is the number of expression 1.8 is repeated. All the

repetition contribute in the same way to the growth of the �nal expression, the trend
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of grow can be summarized as follows:

numi = TH,VP1 numi−1 +
RH,V

F1

TH,V
F1

deni−1

deni = TH,Vf1 deni−1 +
RH,V

P1

TH,V
P1

numi−1
(3.1)

where numi−1 and deni−1 are numerator and denominator of the expression to �nd

B11
M,N for a sphere with one layer less, but with the layer of application of the �eld

incremented by one. Note that 3.1 follows exactly the same reasoning of the recursive

solution in listing 2.5. This solution allow to calculate faster than normal calculation

on paper the various expressions for each modi�cation of P1, the problem is the

grown of the terms. As can be evicted from expression 3.1, adding a layers means

having an expression with a numerator and a denominator that are the sum of terms

of denominator and numerator of the previous layer. This means the increment of

terms in the expression is exponential (2n−1), so it becomes immediately extremely

big, generating problem even to the transcription. The stop to the iteration happened

at nine layers, where the expression to calculate B11
M,N has 256 terms at numerator

and same number at denominator.

3.2 Memory usage performances evaluation

The memory approach is the same in all the versions with some small di�erences.

In P1, and alternative versions for more than four layers, the variables of the input

are directly de�ned in the code. Than all the new variables de�ned by the input

variables or other variables are allocated in the memory. Variables are not all of

the same type but are present also vectors and matrices, even if the majority of

them is just a single value (often imaginary). The only particularity is the usage

of structures to storage variables in order to make shorter the list of arguments

passed to some functions. As suggest from Matlab, all the arrays and matrix are

de�ned with a �xed dimension before the calculation of them, in the entire code

of P1 and modi�cations are no vectors with dimension updated at run time. This

description is valid for every modi�cation of P1. The variables which impact on

the memory usage are the number of layers, the number of coils, the value of mode

expansions and the dimension of the FOV. Some variables are derived by them or by

quantities them related, in particular there are some matrix that derive from three of

them like e�eld_ult_set = zeros(numbasis,2*tempindex_r,2*tempindex_c,3) where

numbasis is derived from the mode expansion and the temp indexes are derived

from the dimension of the FOV. Since there are structure dependent from three high

impact, the complexity of every modi�cation of P1 is respectively for the best case
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and for the worst case:
Ω(n)

O(an3 + bn2 + cn+ d)
(3.2)

The best case is assumed to be n since all quantities are considered at their dimen-

sional minimum and a n is intended as the number of layers considered depending

on the modi�cation of P1. The worst case is not totally de�ned, I didn't calculated

rigorously all the contribution to the memory computational complexity, what I can

say is that the memory computational complexity is function of structures of one,

two and three dimensions. The asymptotically complexity is based on the worst case

and is O(n3).

In P2 the input variables are de�ned reading values from a Json, passed as func-

tion argument. Also in P2 are present variable of various dimension, essentially the

con�guration is the same of P1. What is missing in P2 is the building of the structures

to reduce the number of arguments to some functions. Since the function involved,

according to the di�erent structure in P1, is just one I chose to avoid this redundancy

saving some memory space, even if the saving is relatively small. P2 anyway has a

construction that consume more memory respect to P1: the class sphere has impact

in the memory consumption since storage the information of the layers in an object

inside an array. This particularity has another small impact on the memory, since

the number of stored variables is the same of P1 if the layers considered are the same

and the memory in excess is just to store the pointer relations. To populate the class

sphere is needed an array which dimension is de�ned at run time since it depends

on the number of layers unknown before the execution. Another aspect that might

a�ect the memory is the calculation of the B11
M,N coe�cient. P2 and the various

modi�cation of P1 calculate the coe�cient in two di�erent way. Modi�cation load in

memory a quite big expression all at once, in particular the nine layers version has a

total of 513 divisions and 510 addictions to keep track in the memory. P2, with the

recursive solution presented in listing 2.5, should result lighter since the operation

are performed separately so the usage of registers is di�erent. Matlab, in particular,

clear the workspace of an ended function, so at every recursion the previous one is

reallocated. The variables which impact on the memory usage are, again, the number

of layers, the number of coils, the value of mode expansions and the dimension of

the FOV and the derived variables are the same of P1. All the reasoning and suppo-

sition expressed for P2 anyway can a�ect more or less the coe�cient of the memory

computational complexity, but the situation can't change deeply. The complexity of

P2 indeed will be:
Ω(1)

O(an3 + bn2 + cn+ d)
. (3.3)

This time the best case i 1 since the lower number of possible layers is one. The

asymptotically complexity is based on the worst case and is O(n3) also for P2.
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Comparing the two sets of memory computational complexity is possible to realize

that in the worst case P2 and the versions of P1 have the same complexity since it

does not depend just on the layers. For what concern the best case instead, P1

modi�cations has a lower bound dependent on the number of layers considered, so

P2 is more performing in all situation di�erent from the lower bound of P1 version

(average case).

Considering P1' instead, since it group all the modi�cations of P1, can have the

best case of the one layer version:

Ω(1)

O(an3 + bn2 + cn+ d)
. (3.4)

So P1' has orientatively the same memory computational complexity of P2 and

also the same asymptotic computational complexity O(n3) of P2.

3.3 Execution time performances evaluation

The comparisons concerning the time execution performances are made repro-

ducing tests similar to the test executed for the validation of the code. Since P1 and

P2 are not di�erent from what concerns the code execution non dependent from the

number of layers and layers features, is reasonable to suppose that their execution

times are equal for that part of code, supposition con�rmed by the tests. According

to this assumption, I chose a setting with a single coil, a standard FOV showing one

single voxel in the middle of the sphere, EM �eld at 5T and a �xed number of mode

expansion (lmax=50 exactly to guarantee the convergence). For what concern the

sphere instead, is chosen a sphere with inner radius of 1cm and every other layer with

a radius increment of 0,02cm, dielectric constant and conductivity are simulated for

a generic tissue (ε 6= 1, σ 6= 0) and for the empty space (ε = 1, σ = 0). On P1 and

its modi�cations, lower number of layers is performed theoretically merging layers

choosing for all the merged layers the same EM features. Tests for every version of

P1 and P2 are repeated several time in order to produce an average value of the

execution time. Tests are repeated 20 times each.

According to the expectation, every version of P1 should have constant aver-

age time execution since, even if some layers are not signi�cant, the calculation has

to be performed entirely also on non signi�cant layers. P2 instead, since can skip

completely the calculation of meaningless layers just not inserting them in the in-

put, should terminate quicker. The only situation where P2 should have the same

execution time of a version of P1 is when they are processing the same number of

layers. Obviously when P2 simulate a number of layer greater than the possibility of

a version of P1 the execution time will be higher than the execution time of the P1

modi�cation, but this result is not meaningful for the test since. Theoretically, can
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Figure 3.1: Average execution times on a sphere of two layers of up to two generic
tissues with a single coil, single voxel in the FOV and mode expansion lmax=50

be supposed a version of P1 which perform the calculation for that number of layers

then, comparing the execution time with the one from P2, notice that the execution

times would be equal. Those supposition are based on the operation which consume

the most time of execution. Algorithm in listing 1.4, is the leech of the program.

P2 can avoid it not specifying the meaningless layers, action impossible to do for P1

modi�cations. Following graphics show the suppositions are veri�ed comparing the

execution time.

As shown in �g.s 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8, is clear that P2 has better per-

formances since can avoid the modes' noise covariance matrix if possible. Anyway

the worst cases are equal for all the versions of P1 and P2. P2 result slightly faster

than P1's modi�cations due to some code cleaning and optimization which reduce

the time execution of a small amount.

P1' has average execution times for each layer equal to the execution time of the

respective modi�cation of P1 so, again, it has the same best and worst time of P2

(�g. 3.9).

The asymptotic time computational complexity can be analyzed in general or

considering just the limitation to a generalization of layers, putting apart the rest

of the variables. In both cases anyway, what in�uence the execution time the most

are the number of layers, the number of coils, the value of mode expansions and the

dimension of the FOV. If we consider the number of layers as only factor of work, the

asymptotic time computational complexity is O(n). From a general point of view

instead all the other factors have an important in�uence on the execution, so the
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Figure 3.2: Average execution times on a sphere of three layers of up to three generic
tissues with a single coil, single voxel in the FOV and mode expansion lmax=50

Since

Figure 3.3: Average execution times on a sphere of four layers of up to four generic
tissues with a single coil, single voxel in the FOV and mode expansion lmax=50
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3.3. Execution time performances evaluation

Figure 3.4: Average execution times on a sphere of �ve layers of up to �ve generic
tissues with a single coil, single voxel in the FOV and mode expansion lmax=50

Figure 3.5: Average execution times on a sphere of six layers of up to six generic
tissues with a single coil, single voxel in the FOV and mode expansion lmax=50
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Figure 3.6: Average execution times on a sphere of seven layers of up to seven generic
tissues with a single coil, single voxel in the FOV and mode expansion lmax=50

Figure 3.7: Average execution times on a sphere of eight layers of up to eight generic
tissues with a single coil, single voxel in the FOV and mode expansion lmax=50
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Figure 3.8: Average execution times on a sphere of nine layers of up to nine generic
tissues with a single coil, single voxel in the FOV and mode expansion lmax=50

Figure 3.9: Average execution times on a sphere from one to nine layers of up to
nine generic tissues with a single coil, single voxel in the FOV and mode expansion
lmax=50 using P1' and P2.
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asymptotic complexity become O(n4). The reasoning on the asymptotic complexity

are valid for both P1 and P2.

3.4 Precision performances evaluation

Analyzing P1 and P2 precisions might be an excess of zeal. Both codes are

validated, P1 with previous valid works and P2 with P1, so both provide an accurate

result of the SNR with an acceptable approximation for research usage. Also does

not exists experimental or theoretical standard or tables to compare the calculation

result with a "considered perfect" value of SNR. Therefore, is impossible to make

an evaluation of the absolute precision of P1 and P2. What can be done is analyze

a relative precision: the di�erence in values according to the e�ect the calculation

have on them. The con�gurations of the experiments are the same of the ones used

for the execution time. P1 and P2 are not di�erent from what concerns the code

execution non dependent from the number of layers and layers features also in the

case of the precision. According to this assumption, is chosen again a setting with a

single coil, a standard FOV showing one single voxel in the middle of the sphere, EM

�eld at 5T and a �xed number of mode expansion (lmax=50 exactly to guarantee

the convergence). For what concern the sphere instead, is chosen a sphere with inner

radius of 1cm and every other layer with a radius increment of 0,02cm, dielectric

constant and conductivity are simulated for several generic tissues (ε 6= 1, σ 6= 0)

and for the empty space (ε = 1, σ = 0). On P1 and its modi�cations, lower number

of layers is performed theoretically merging layers choosing for all the merged layers

the same EM features. Contrary to execution time, the tests are performed one time

per con�guration since the approximation, even if depending from the machine, is

�xed once the environment is determined. The tests are grouped by con�guration

and each con�guration is performed for all the versions of P1 and for P2. Then every

result of P1 is subtracted to the one of P2 respective to the same con�guration. The

analysis will be based on the di�erences in the results.

From the results of the test emerges that the values produced by versions of P1

and by P2 have some extremely small di�erencies. Since the calculator can't handle

a perfect zero, it is approximated if the computation is dealing with really small

values. The quantities the calculation of SNR bight be around the order of 10−5, so

the approximation is present for sure. Those approximation a�ect the calculation

according to the number of operation executed.

The �rst di�erence emerged by the approximation is that results of P2 minus

the version of P1, on a con�guration where the number of layers is the best the

version of P1 can manage, result to be approximately constant and equal to an unit

of 2, 6389 · 10−23 per layer considered. The unit number is calculated in the average

of the di�erences, keeping �xed the number of layers and changing radii and EM
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3.4. Precision performances evaluation

Figure 3.10: Average di�erence SNR(P2)-SNR(P1(1)) on a sphere of up to one layers
of up to one generic tissues with a single coil, single voxel in the FOV and mode
expansion lmax=50 for the contribution of the DGF coe�cient calculation.

features. This behavior is present because P1 perform several "useless" operations,

a trivial example is deriving the radii from the sum of inner radius plus an increment

or some division performed as a× (1/b) instead than a/b.

Also computing the coe�cient B11
M,N in a di�erent way produce some di�erences

in the results. The computation of a one big expression made by several operation

from an approximation point of view is di�erent from performing a sequence of small

and simple operations. According with this, can be noticed the di�erences of values

from P2 and P1 deriving from this issue is, on average, is 7, 9623 · 10−23, multiplied

by the number of layers considered minus one. Make an exception the version for one

layer of P1, since it practically perform the same operations of P2, so the di�erence in

the approximation is zero. Fig.s 3.10,3.11,3.12,3.13,3.14,3.15,3.16,3.17,3.18 show the

trend of growth of the average di�erence of the results. Notice P1 is always more af-

fected by approximation. The last factor that a�ect the results is the modes' noise

covariance matrix, which is the most onerous calculation in the algorithm. Anyway

here the trending is directed in an opposite direction. Indeed the di�erence caused

by the approximation is high when a modi�cation of P1 is performing a calculation

on a sphere with low number of layers respect to its limit, but, incrementing the

number of layers, P2 start to perform the modes' noise covariance matrix calculation

as much as P1 reducing the di�erence. This time the average unitary approximation

is bigger than the contribution given from the other two previous analysis. This time
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Figure 3.11: Average di�erence SNR(P2)-SNR(P1(2)) on a sphere of up to two layers
of up to two generic tissues with a single coil, single voxel in the FOV and mode
expansion lmax=50 for the contribution of the DGF coe�cient calculation.

Figure 3.12: Average di�erence SNR(P2)-SNR(P1(3)) on a sphere of up to three
layers of up to three generic tissues with a single coil, single voxel in the FOV and
mode expansion lmax=50 for the contribution of the DGF coe�cient calculation.
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Figure 3.13: Average di�erence SNR(P2)-SNR(P1(4)) on a sphere of up to four layers
of up to four generic tissues with a single coil, single voxel in the FOV and mode
expansion lmax=50 for the contribution of the DGF coe�cient calculation.

Figure 3.14: Average di�erence SNR(P2)-SNR(P1(5)) on a sphere of up to �ve layers
of up to �ve generic tissues with a single coil, single voxel in the FOV and mode
expansion lmax=50 for the contribution of the DGF coe�cient calculation.

57



3. Performance Analysis

Figure 3.15: Average di�erence SNR(P2)-SNR(P1(6)) on a sphere of up to six layers
of up to six generic tissues with a single coil, single voxel in the FOV and mode
expansion lmax=50 for the contribution of the DGF coe�cient calculation.

Figure 3.16: Average di�erence SNR(P2)-SNR(P1(7)) on a sphere of up to seven
layers of up to seven generic tissues with a single coil, single voxel in the FOV and
mode expansion lmax=50 for the contribution of the DGF coe�cient calculation.
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Figure 3.17: Average di�erence SNR(P2)-SNR(P1(8)) on a sphere of up to eight
layers of up to eight generic tissues with a single coil, single voxel in the FOV and
mode expansion lmax=50 for the contribution of the DGF coe�cient calculation.

Figure 3.18: Average di�erence SNR(P2)-SNR(P1(9)) on a sphere of up to nine layers
of up to nine generic tissues with a single coil, single voxel in the FOV and mode
expansion lmax=50 for the contribution of the DGF coe�cient calculation.
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Figure 3.19: Average di�erence SNR(P2)-SNR(P1(1)) on a sphere of up to one layers
of up to one generic tissues with a single coil, single voxel in the FOV and mode
expansion lmax=50 for the contribution of the modes' noise covariance matrix.

the di�erence is 1, 3878 · 10−17. In �g.s 3.19,3.20,3.21,3.22,3.23,3.24,3.25,3.26,3.27 is

shown the trend, the contribution of the �rst two observations is not visible since rel-

atively quite small. Also this time P1 versions are most a�ected by approximations.

Taking now into account the version P1', it takes the best cases of each P1

version. The result is that the di�erence from the approximation by the modes'

noise covariance matrix is always zero since it is calculated the same number of time

for every number of layers for both the algorithms. Anyway the di�erence in precision

of the two algorithms is still not equal to zero, because the approximation given by

the writing choice and those concerning the calculation of B11
M,N coe�cient are still

present (�g 3.28). So there is an actual di�erence between P1' and P2 because P1'

is more a�ected by the approximation performed by the machine.

Even if in the entire section talks about approximation, is important to remember

and notice that the order of magnitude of the di�erences between the results of the

code are extremely low compered to the e�ective result. The percentage of those

di�erences is around the 0,000001%, therefore both algorithms can be considered

equivalent.
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Figure 3.20: Average di�erence SNR(P2)-SNR(P1(2)) on a sphere of up to two layers
of up to two generic tissues with a single coil, single voxel in the FOV and mode
expansion lmax=50 for the contribution of the modes' noise covariance matrix.

Figure 3.21: Average di�erence SNR(P2)-SNR(P1(3)) on a sphere of up to three
layers of up to three generic tissues with a single coil, single voxel in the FOV and
mode expansion lmax=50 for the contribution of the modes' noise covariance matrix.
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Figure 3.22: Average di�erence SNR(P2)-SNR(P1(4)) on a sphere of up to four layers
of up to four generic tissues with a single coil, single voxel in the FOV and mode
expansion lmax=50 for the contribution of the modes' noise covariance matrix.

Figure 3.23: Average di�erence SNR(P2)-SNR(P1(5)) on a sphere of up to �ve layers
of up to �ve generic tissues with a single coil, single voxel in the FOV and mode
expansion lmax=50 for the contribution of the modes' noise covariance matrix.
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Figure 3.24: Average di�erence SNR(P2)-SNR(P1(6)) on a sphere of up to six layers
of up to six generic tissues with a single coil, single voxel in the FOV and mode
expansion lmax=50 for the contribution of the modes' noise covariance matrix.

Figure 3.25: Average di�erence SNR(P2)-SNR(P1(7)) on a sphere of up to seven
layers of up to seven generic tissues with a single coil, single voxel in the FOV and
mode expansion lmax=50 for the contribution of the modes' noise covariance matrix.
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Figure 3.26: Average di�erence SNR(P2)-SNR(P1(8)) on a sphere of up to eight
layers of up to eight generic tissues with a single coil, single voxel in the FOV and
mode expansion lmax=50 for the contribution of the modes' noise covariance matrix.

Figure 3.27: Average di�erence SNR(P2)-SNR(P1(9)) on a sphere of up to nine layers
of up to nine generic tissues with a single coil, single voxel in the FOV and mode
expansion lmax=50 for the contribution of the modes' noise covariance matrix.
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Figure 3.28: Average di�erence SNR(P2)-SNR(P1') on a sphere from two to nine
layers of up to nine generic tissues with a single coil, single voxel in the FOV and
mode expansion lmax=50 for the contribution of the DGF coe�cient calculation.

3.5 Dataset for the experiments

Tissue Radius (m) Dielectric constant ε Conductivity σv (1/(Ω*m))

Cerebellum 0,01 40 0,4

White Matter 0,04 32 0,2

Grey Matter 0,1 45 0,2

Water 0,11 80,2 0,005

Skull 0,115 18 0,7

Fat 0,116 3 0,1

Muscle 0,116 50 0,2

Skin 0,117 39 0

Hair 0,12 15 0

Void / 1 0

Data of this table are from [3].

Coil Data

Rotation in X Rotation on Y Radius (m) Copper Conductivity σv (1/(Ω*m))

-180,+180 -180,+180 0,0125 58x10^6

65



3. Performance Analysis

Figure 3.29: Graphical representation of the tests settings

3.6 Performances evaluation summary

The testing executed in this chapter are aimed to see if P2 would be able to bring

some increment in performances respect to P1. Appeared clear from the beginning

that the the general version of the algorithm would have been more performing than

a speci�c one since it can be adapted to the con�guration. From the experiments

emerged that P2 is more performing in the best and in the average cases in all memory

consumption, execution time and precision, especially in the �rst two categories. This

statement is true for every version of P1 specialized for the calculation of a speci�c

number of layers. The version to calculate the SNR for just one layer might be

considered an exception, since the best case and the worst case coincide for this

algorithm resulting as performing as P2.

Even if P2 outclass separate versions of P1, those versions can be grouped in

a single algorithm P1'. P1', speaking about performance, is the assemblage of all

the best cases of the various versions of P1. Under this assumption, the di�erence

in performance between P2 and P1' are no more so di�erent. Both algorithms are

general so the can handle the calculation in similar way and this obviously comport

also similar performances. Indeed, P1' result very similar to P2 in all memory con-

sumption, execution time and precision. Very similar anyway is not equal since some

di�erences are present, especially for what concern the memory, but very small so

they can be ignored. Even if ignored, those di�erences are all in favor of P2, so we

can say that is "in�nitesimally" better than P1'.

The summary of the analysis is therefore that P2 does not provide a considerable
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increment of performances, but at least a little one. This just from the point of view

of memory consumption, execution time and precision. P2 is still better than P1'

about generalization, because P1' can't be a real solution since all the expression

to calculate B11
M,Nhas to be written in the code compile time, and this is not a real

possibility. Also, even if the memory of storage of the compiled algorithm is not

an issue anymore, it would be a problem for a complete version of P1' because it

would need of in�nite memory for the storage and for the execution, instead P2 is

dependent just from the execution memory consumption.

3.7 Technology used for the development and testing

All the codes are written in Mathlab, both for P1 and P2. The choice for P1

were made in 2005 by Professor Lattanzi. Matlab was at that time the most used

framework for mathematical and physical simulations in the Radiology department of

New York University, therefore Professor Lattanzi was quite familiar with it. Another

reason is that Matlab has an integrated library ready to perform calculation for EM

applications like the Bessel's or the Henkel's functions. Matlab has also an integrated

way to generate and display windows and graphics, very useful for a research point

of view. The last motivation is because it makes easy comparing results with other

works on the same topic, still written in mathlab. The entertainment in P2 of the

Matlab framework is done for the same reasons of Professor Lattanzi. Since P2 has

to be validated, having the possibility to save workspaces and directly comparing

them was quite useful. Another reason is the possibility to reuse the code when no

signi�cant changes were produced.

To help the code writing was used Brackets as text editor. It was useful for

write the Jsons needed for validations and tests, and for input in general. The

various versions of the equations to compute B11
M,N in the modi�cations of P1 where

computed following the algorithm 3.1 logic, coping and pasting what was needed on

Brackets to speed up the operations.

To storage data from the test and to make graphics to display them was used

Excel. Was possible also on Mathlab but I am more familiar with Excel so I chose

to speed up and simplify the work with the Excel framework.

All the tests were performed on my personal computer. The processor is an intel

core i7 and the operative system is Windows 10. It is important to specify since the

execution time1 and the precision of the algorithms are dependent from the machine.

The e�ect on the precision does not in�uence the result of the algorithm practically,

but, since the machine has to approximate the zero, output values might be a�ected

by some approximations which depends from the machine and operative system used.

1The time computational complexity is obviously not dependent from the machine, indeed here

I'm referring to the e�ective time of execution of the code.
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No data are taken from simulation on other machines.
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Conclusions

In the �eld of modeling EM �elds for the design of e�cient coils, able to produce

MR images with high quality, having the possibility to perform fast but rigorous

simulation is, as shown, fundamental.

In this work is presented a software that use mode expansions with DGFs to

characterize the fullwave EM �eld in a dielectric sphere. Thanks to this program

is possible to perform quick simulations for scans of three layers sphere with any

number of coils. Given the lack of generality of the program, is presented also a

solution based on the same theory and algorithm that, thanks to an object based

approach and a recursive solution, allows simulation also with any number of layers.

The two algorithms are then compared from a performance point of view, analyzing

memory consumption, execution time and precision.

Form a research point of view, since the SNR is strictly dependent from the ge-

ometry and EM features of coils and body, the result is quite useful since the solution

presented allows fully general simulation. Results from the performance point of view

are also good, the modi�cation of the original software is more performing under any

point of view. Anyway, supposing a version of the system made by grouping several

versions of P1 specialized in di�erent number of layers, the performances become

quite similar, with P2 presenting an really small advantage. The bene�ts proposed

by P2 anyway are relevant even comparing it with P1'.

Future developments on this subject are essentially in�nite. From a software

engineering point of view, it can be uploaded in a web application and start collecting

data useful for the coil design. From a biomedical engineering or medical point of view

instead an interesting development can be expand the calculation also to cylinders

based on existing theory [19, 23, 24] in order to make possible the simulation of an

entire body.
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