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Abstract

Video understanding involves problems such as video classification, which
consists in labeling videos based on their contents and frames. In many
real world applications such as robotics, self-driving car, augmented reality,
and Internet of Things (IoT), video understanding tasks need to be carried
out in a real-time manner on a device with limited memory resources and
computation capabilities, while meeting latency requirement.

In this context, whereas neural networks that are memory and computation-
efficient - i.e., that present a reasonable trade-off between accuracy and ef-
ficiency with respect to memory size and computational speed - have been
developed for image recognition tasks, studies about video classification
have not made the most of these networks. To fill this gap, this project
answers the following research question: how to build video classifica-
tion pipelines that are based on memory and computation-efficient convo-
lutional neural network (CNN) and how do the latter perform?

In order to answer this question, the project builds and evaluates video
classification pipelines that are new artefacts. This research involves tri-
angulation (i.e., is qualitative and quantitative at the same time) and the
empirical research method is used for the evaluation. The artefacts are
based on one of existing memory and computation-efficient CNNs and
its evaluation is based on a public video classification dataset and multi-
class classification performance metrics. The case study research strategy
is adopted: we try to generalize obtained results as far as possible to other
memory and computation-efficient CNNs and video classification datasets.
The abductive research approach is used in order to verify or falsify hy-
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potheses. As results, the artefacts are built and show satisfactory perfor-
mance metrics compared to baseline pipelines that are also developed in
this thesis and metric values that are reported in other papers that used the
same dataset. To conclude, video-classification pipelines based on mem-
ory and computation-efficient CNN can be built by designing and devel-
oping artefacts that combine approaches inspired from existing papers and
new approaches and these artefacts present satisfactory performance. In
particular, we observe that the drop in accuracy induced by memory and
computation-efficient CNN when dealing with video frames is, to some ex-
tent, compensated by capturing temporal information via consideration of
sequence of these frames.
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Italian abstract

La comprensione dei video è un termine che racchiude problemi come la
classificazione dei video, che consiste nell’etichettare i video in base al loro
contenuto e ai loro frame. In molte applicazioni del mondo reale come la
robotica, l’auto a guida autonoma, la realtà aumentata e l’Internet of Things
(IoT), le attività di comprensione dei video devono essere eseguite in tempo
reale su un dispositivo con risorse di memoria e capacità di calcolo limitate
rispettando dei requisiti di latenza.

In questo contesto, benché reti neurali efficienti in termini di memoria
ed tempo di computazione, ovvero che presentano un ragionevole compro-
messo tra accuratezza ed efficienza rispetto alle dimensioni della memoria
e alla potenza di calcolo, sono state sviluppate per compiti di riconosci-
mento di immagini, negli studi sulla classificazione video non si è riusciti
ad ottenere risultati paragonabili. Per colmare questa lacuna, questo pro-
getto risponde alla seguente domanda: come si possono costruire pipeline
di classificazione video basate su reti neurali convoluzionali (CNN) effici-
enti sia dal punto di vista computazionale che di memoria, e come prefor-
mano queste ultime?

Per rispondere a questa domanda, il progetto costruisce e valuta nuove
pipeline di classificazione video. Questa ricerca implica la triangolazione
(cioè, è qualitativa e quantitativa allo stesso tempo) e il metodo empirico è
usato per la valutazione. Le pipeline si basano sulle delle CNN esistenti ef-
ficienti nella memoria e nel tempo di calcolo e la sua valutazione si basa su
un set di dati di classificazione di video pubblici e metriche di prestazioni
di classificazione multiclasse. La strategia di ricerca del caso di studio è
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stata adottata: cerchiamo di generalizzare,per quanto possibile, risultati ot-
tenuti da altri CNN efficienti nella memoria usata e nella potenza di calcolo
richiesta e su certe basi di dati per la classificazione. L’approccio di ricerca
abduttiva è utilizzato per verificare o falsificare ipotesi. Come risultati,
gli artefatti vengono creati e mostrano prestazioni soddisfacenti rispetto a
quelli di base sviluppati anch’essi in questa tesi e metriche riportati in al-
tre ricerche che utilizzavano lo stesso insieme di dati. Per concludere, le
pipeline di classificazione video basate sulla CNN efficienti possono es-
sere costruite progettando e sviluppando artefatti che combinano approcci
ispirati a ricerche esistenti e a nuovi approcci, e che questi nuovi arte-
fatti presentano prestazioni soddisfacenti. In particolare, osserviamo che
il calo di accuratezza indotto dalla CNN efficiente in termini di memoria
e calcolo quando si gestiscono i frame del video è in parte compensato
dall’acquisizione di informazioni temporali attraverso la sequenza di questi
frame.
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CHAPTER1
Introduction

This chapter describes the specific problem that this thesis project addresses,
the context of the problem, the goals of this project, and outlines the struc-
ture of the thesis.

1.1 Background

Research in image understanding - involving problems such as image clas-
sification and object detection - has known accelerated improvement. More
and more complicated and deeper neural networks (NNs) intended for do-
ing image recognition with the highest possible accuracy - widely based
on Convolutional Neural Networks (CNNs) that can effectively extract fea-
tures from images [1] - emerged. AlexNet [2], VGG [3], ResNet [4], and
GoogleLeNet/Inception [5, 6], are examples of such networks, and proved
their power based on large and diverse image datasets, such as Pascal VOC
data sets [7] or ImageNet [8, 9].

However, that trend of NN models that became more and more compli-
cated and deeper decreased their efficiency regarding size and speed. In
many real world applications such as robotics, self-driving car, augmented
reality, and Internet of Things (IoT), the recognition tasks need to be carried
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Chapter 1. Introduction

out in a real-time manner on a device with limited memory resources and
computation capabilities, while meeting latency requirement. Therefore,
more recently, on the one hand, more memory and computation-efficient
(i.e., efficient with respect to memory size and computational speed) deep
learning (DL) models have been developed for image recognition. Mo-
bileNetV1 [10], MobileNetV2 [11], SqueezeNet [12] and ShuffleNet [13,
14] are examples of such networks. They allowed to do a less but enough
accurate and much faster image recognition tasks and they are lighter than
the previously mentioned complicated deep neural networks (DNNs) in
terms of memory. They present a reasonable trade-off between accuracy
and efficiency. Note that memory size of a model and its computational
speed are strongly related in DL; for example, a DL model that has less
parameters has obviously smaller memory size and involves linear combi-
nations that have less terms so that are faster. On the other hand, DL model
compression and acceleration techniques, based on quantization [15–18],
parameter pruning and sharing, low-rank factorization, transferred/compact
convolutional filters and knowledge distillation [19–21], have been studied.
Newer engineering tools that benefit from these studies have been devel-
oped, such as TensorFlow Lite [22].

Besides, video understanding involves problems such as video classifi-
cation, which consists in labeling videos based on their contents and frames.
Action recognition is an example of video classification, which consists in
labeling action videos. To a lesser degree than image classification, studies
have been carried out in order to deal with video classification problem.
Most of them used image features extracted from video frames based on
CNNs and/or optical flow, which is a local spatio-temporal feature that
is useful to extract motion information from succession of video frames.
Image features give spatial (appearance) information and their aggrega-
tion over time gives temporal (motion) information. Optical flow directly
captures motion information. [23, 24] proposed two-stream architectures
that extracted spatial information from single frame of a video based on
CNNs, dealt with motion information by computing optical flow and by
using CNNs in order to extract features from optical flow images, and then
aggregated results of these two approaches. [25] used CNNs to extract spa-
tial features from individual video frames then combined them in order to
capture temporal information, by using approaches such as Long-Short-
Term-Memory (LSTM). The study also used optical flow to have another
source of motion information. [26] labelled videos and extracted Inception-
v3 [27] features from their frames in order to create a large and diverse
video dataset and trained classifiers on it, by trying or not to integrate in-
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1.2. Problem

formation over time.

1.2 Problem

The studies about video classification have not made the most of the afore-
mentioned progress in image understanding regarding memory and computation-
efficient DNNs. Building of video classification pipelines based on them
deserves more attention, given the existence of numerous possible appli-
cations involving the analysis of video data at the level of devices with
limited memory resources and computation capabilities. This is one of the
points that motivate this thesis. The aforementioned studies leveraged fea-
ture extractions that are difficult to do in practice on these devices. The
computation of optical flow is costly in terms of execution time and mem-
ory [28, 29] thus became a bottleneck in [23]. Moreover, CNNs that are
used in the two-stream architectures [23, 24] that extracted features from
frames and optical flow images are deep and complicated CNNs that are
not designed to be memory and computation-efficient (CNN-M-2048 [30]
in [23]; VGG-M-2048 and VGG-16 [3,30] in [24]). [25] extracted features
from images by using AlexNet [2] and GoogleNet [5] and [26] extracted
features from images by using Inception-v3 [27]. All of these networks are
deep, complicated and not meant to be efficient in terms of memory and
computation. For our best knowledge, no studies about video classification
have used memory and computation-efficient CNNs such as MobileNets
or benefited from DL compression and acceleration techniques when deal-
ing with image feature extraction. This is the second point that motivates
this thesis. Moreover, regarding video classification based on memory and
computation-efficient CNN, whereas the latter is less accurate when con-
sidering individual video frames, this might be compensated by capturing
temporal information via consideration of sequence of these frames. This
is the third point that motivates this thesis.

1.3 Purpose

As mentioned in the previous section, the studies about video classifica-
tion have not made the most of memory and computation-efficient CNNs.
This thesis aims to address this problem by building video classification
pipelines that are based on memory and computation-efficient CNN. This
raises the following question: how to actually build these video classifica-
tion pipelines? To answer this question, as a case study, video classification
pipelines that are based on quantized MobileNetV2 are built. Specificities
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Chapter 1. Introduction

of this network are detailed in chapter 2. The reason for its use is that, in a
nutshell:

• MobileNetV2 is one of the NNs that are designed for image recogni-
tion tasks that presents the most effective trade-off between accuracy
and model efficiency in terms of model size (memory size) and com-
putational speed;

• Quantization is one of the most effective techniques that aims to re-
duce DL model size and computational speed

and they can be combined in order to obtain a highly memory and
computation-efficient and accurate enough DL image recognition model.
Quantized MobileNetV2 is chosen in this thesis as a representative of mem-
ory and computation-efficient CNNs that also include MobileNetV1, Mo-
bileNetV2, quantized MobileNetV1 and other networks. Indeed, exactly
same approaches as the approaches that are developed in this thesis can
be recycled when building video classification pipelines that are based on
one of these memory and computation-efficient CNNs. Therefore, the the-
sis first aims to design and build the pipelines that are indeed new arte-
facts. They are inspired from existing papers, but are different from the ap-
proaches they proposed. They should capture spatial information brought
by video frames and temporal information by considering sequences of
video frames.

Moreover, it is important to know how well the artefacts can perform.
Subsequently, this allows to be sure they correctly perform and to validate
them. This raises the following question: how well do the video classifica-
tion pipelines based on memory and computation-efficient CNN perform?
In order to answer this question, the built video classification pipelines’
performance is empirically measured and compared with other baseline
pipelines that are based on a deeper and more accurate image recognition
CNN (Inception-v3) and that are also built in this thesis following the same
design as the pipelines that are based on quantized MobileNetV2. Here
also, the use of quantized MobileNetV2 and Inception-v3 involves a case
study with a view to generalizing as far as possible obtained results.

Overall, by concatenating the two questions, this thesis answers the fol-
lowing research question: how to build video classification pipelines that
are based on memory and computation-efficient CNN and how do the latter
perform?

Along with answering this question, the thesis tries to first verify or fal-
sify the following hypothesis, based on the abductive research approach:
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1.4. Goal

the video classification pipelines that are based on quantized MobileNetV2
perform not as good as the baseline pipelines but they present similar per-
formance. If this is the case, it may indicate that the drop in accuracy in-
duced by the use of memory and computation-efficient CNN when dealing
with video frames can be compensated by capturing temporal information
via consideration of sequence of these frames. To support the latter, also
single-frame models that completely ignore temporal information are built
on top of both quantized MobileNetV2 and Inception-v3 and evaluated.
Moreover, performance metrics is measured based on an appropriate video
classification dataset that is collected. This dataset should serve as a repre-
sentative of video classification datasets, with a view to again generalizing
our results to other video classification datasets.

The purpose of this thesis is not to achieve a state-of-the-art result based
on the dataset. Instead, based on these metrics and the abductive research
approach, the second hypothesis that can be verified or falsified is that,
regarding the dataset, the video classification pipelines based on quantized
MobileNetV2 perform not as good as the state-of-the-art results presented
in other papers [23–25] based on very deep and complicated DNNs and/or
optical flow, but enough good to be considered acceptable.

1.4 Goal

As long-term goal, the completion of this work is a significant starting point
for video classification pipelines that are based on a bit less accurate but
memory and computation-efficient CNNs that can differ or not from quan-
tized MobileNetV2. As stated above, quantized MobileNetV2 is chosen
as representative of memory and computation-efficient CNNs that also in-
clude MobileNetV1, quantized MobileNetV1, MobileNetV2 and other net-
works. Measures of performance metrics, along with comparison with the
reference (baseline) pipelines, allows to have an idea about how well video
classification based on these networks can perform and validate them. In
the same perspective, the hypothesis about the drop in accuracy induced
by memory and computation-efficient CNN at video frame level that can
be compensated by capturing temporal information via consideration of
sequence of these frames is an interesting point to discuss. This thesis
can show potential utility of memory and computation-efficient CNN when
dealing with video classification, which is interesting for one who wants
to do video classification on a platform that is limited in terms of memory
and computation capabilities. The existence of numerous possible applica-
tions involving the analysis of video data at the level of devices with limited
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Chapter 1. Introduction

memory resources and computation capabilities strengthens the importance
of this work.

1.5 Methodology

Research method for this degree project is determined following the por-
tal presented in [31]. First of all, the positivism philosophical assumption
is made, i.e., the reality is objectively given and independent of the ob-
server and instruments. We conduct a qualitative and quantitative research,
which involves triangulation. Indeed, to answer the question, video clas-
sification pipelines which are indeed new artefacts are designed and nu-
merically evaluated. This is a qualitative research because this involves
development of new artefacts; this is also a quantitative research because
this involves measurement of numerical metrics. To answer the question,
video classification pipelines that are based on quantized MobileNetV2 that
is chosen as a representative of memory and computation-efficient CNNs
are designed, implemented and empirically evaluated based on the em-
pirical research method. Indeed, exactly same approach can be recycled
when building video classification pipelines that are based on other mem-
ory and computation-efficient CNNs, which allows generalization of the
conclusions from this thesis. Therefore here, we adopt the case study re-
search strategy. Performance metrics that are related to multiclass classi-
fication task are used for the evaluation. To have a reference (baseline)
for comparison, similar video classification pipelines, but this time based
on Inception-v3 are also developed and evaluated. The abductive research
approach is used in order to verify or falsify the hypotheses. Conclusions
are drawn from experimental results and observations based on a dataset.
The experiment and case study data collection is done to obtain the dataset.
The computational mathematics method is used with a view to analyzing
this dataset. Again, the pipelines in this study is based on quantized Mo-
bileNetV2 and the dataset, but we try to generalize as far as possible the
results to other memory and computation-efficient CNNs and other video
classification datasets.

1.6 Delimitations

Some aspects of the research question will not be considered. Regard-
ing the first part of it, there are many possibilities when building video
classification pipelines based on a CNN, even without dealing with opti-
cal flow. [26] proposes three frame-level features-based models and three
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video-level features-based models (those video-level features are obtained
from frame-level features). [25] proposes several feature pooling architec-
tures and a LSTM architecture that can use optical flow. [32] proposes four
fusion methods. This thesis does not deal with all of them, because of time
constraint. Instead, it designs video classification pipelines that are indeed
new artefacts that are different from but highly inspired from the LSTM-
based approaches that are presented in [25, 26].

Regarding the second part of the research question, "performance" is
an ambiguous term, because for a classification pipeline this can concern
several different aspects such as memory complexity, time complexity end
energy consumption. In this study only the performance metrics related to
the multiclass classification tasks are measured. Indeed, it is obvious that
the pipelines based on memory and computation-efficient CNN improve
performance in terms of memory size, energy consumption and computa-
tional speed.

Quantized MobileNetV2 is chosen in the case study research strategy as
a representative of memory and computation-efficient CNNs that also in-
clude MobileNetV1, quantized MobileNetV1, MobileNetV2 and other net-
works. We will only build video classification pipelines based on quantized
MobileNetV2 and the reference pipelines but conclusions are generalised
as far as possible to other memory and computation-efficient CNNs. The
same statement stands for datasets: conclusions drawn from observations
that are based on the selected and used dataset are generalized as far as
possible to other video classification datasets.

Finally, as already mentioned, the purpose of this thesis is not to achieve
a state-of-the-art result based on the dataset. Instead, a hypothesis that can
be verified or falsified is that, regarding the dataset, the video classification
pipelines perform not as good as the state-of-the-art results presented in
other papers based on very deep and complicated DNNs and/or optical flow,
but enough good to be considered acceptable.

1.7 Benefits, Ethics and Sustainability

As previously mentioned, this work can serve as a significant starting point
for video classification pipelines that are based on memory and computation-
efficient CNNs. Validation or non-validation of the hypothesis about the
drop in accuracy induced by memory and computation-efficient CNN at
video frame level that can be compensated by capturing temporal infor-
mation via consideration of sequence of these frames is an interesting point
from this perspective. This thesis can show utility of memory and computation-
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Chapter 1. Introduction

efficient CNN when dealing with video classification, which is interesting
for one who wants to do video classification on a platform that is limited in
terms of memory and computation capabilities.

However, the deployment of such video classification can violate one’s
privacy, by allowing him to be monitored without his consent. From this
point of view, the video classification and its mechanism can be abusively
used or modified for malicious intention. This project has been proposed
in order to only satisfy academic requirement. It is based on a public for
research and benchmark dataset, that is collected in an ethical way.

Besides, the use of memory and computation-efficient CNN when deal-
ing with video classification can significantly reduce power consumption,
as these CNNs require less memory and faster computations. The quanti-
zation technique allows to do computations on reduced number of bits. In
this sense, the artefacts that are designed and developed in this thesis are
sustainable.

1.8 Outline

Chapter 2 presents extended background. Chapter 3 details the research
method that is used in this project. Chapter 4 describes and discusses ob-
tained results. Chapter 5 concludes this thesis work and provides insight
for future work.
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CHAPTER2
Background

This chapter provides theoretical background of different concepts that need
to be understood by readers of this thesis.

2.1 Artificial Neural Networks and Deep Neural Networks

Artificial neural networks (ANN) are computing systems that are inspired
by the biological neural networks of brains. It is based on a set of connected
units or neurons. Each connection, similarly to the synapses in a biological
brain, transmits a signal from one neuron to another. A neuron that receives
a signal processes it and then sends signal to other neurons connected to it.
In ANN implementations, the signal is a real number, and the output of each
neuron is computed by applying non-linear function of the weighted sum
of its inputs. Indeed, neurons and connections between neurons (edges)
have a weight that adjusts as learning proceeds. The weight increases or
decreases the strength of the signal at a connection. Neurons may have a
threshold such that the signal is only sent if the weighted sum crosses that
threshold. Generally, neurons are aggregated into layers. Different layers
perform different transformations on their inputs. Signals travel from the
first layer (the input layer), to the last layer (the output layer), possibly
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Chapter 2. Background

after traversing the layers multiple times. A DNN is an ANN with multiple
layers between the input and output layers.

In the supervised machine learning context - given data points and their
associated outputs -, the goal of DL for a DNN is to learn the weights of its
edges, based on training.

The first six subsections in the following are highly inspired from [33].

2.1.1 Feedforward neural network

A Feedforward neural network (FNN) is an artificial neural network in
which connections do not form a cycle. The latter is composed of:

• One input layer

• One or more hidden layers

• One final output layer

Every layer except the output layer includes a bias neuron and is fully
connected to the next layer. The model is associated with a directed acyclic
graph describing how the functions are composed together. The length of
the chain gives the depth of the model. Figure 2.1 illustrates a FNN. Neu-
rons may have a threshold such that the signal is only sent if the weighted
sum crosses that threshold, as stated above. However, in most cases, they
are replaced by activation functions. Let x be the weighted sum which is
an input for a neuron, its output is y = activation(x). Examples activation
functions are:

• sigmoid(x) = 1
1+e(−x) .

• tanh(x) = e(x−)−e(−x)

e(x)+e(−x) .

• ReLU(x) = max(x, 0).

• LeakyReLUα(x) = max(αx, x), with α being a parameter.

Each activation function has its advantages and drawbacks.
Training of FNN is based on the backpropagation algorithm combined

with an optimisation algorithm (2.1.4).

10



2.1. Artificial Neural Networks and Deep Neural Networks

Figure 2.1: An illustration of a FNN [33]

2.1.2 Convolutional neural network

Convolutional neural network (CNN) is a type of deep neural networks, that
is mostly used in visual image analysis. They were inspired by biological
processes in the sense that the connectivity between neurons is similar to the
way the animal visual cortex works. Individual neurons respond to stimuli
only in a restricted region of the visual field, called the receptive field. The
receptive fields of different neurons partially overlap so that they cover the
entire visual field.

Indeed, tackling image understanding based on FNN faces difficulty in
recognizing objects, due to phenomena such as:

• Rotation

• Lighting: objects may look different depending on the level of exter-
nal lighting.

• Deformation: objects can be deformed in a variety of non-affine ways.

• Scale variation: visual classes often exhibit variation in their size.

• Viewpoint invariance.

A CNN can tackle these challenges, taking advantage of shape infor-
mation. It is composed of a stack of convolutional modules. Each module
consists of a convolutional layer followed by a pooling layer:

• Each neuron in a convolutional layer applies filters on its receptive
field: calculates a weighted sum of the input pixels in the receptive
fields, adds a bias, and feeds the result through its activation function
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Chapter 2. Background

Figure 2.2: An illustration of the filtering operation [33]

to the next layer. Figure 2.2 illustrates this filtering operation. The
amount of movement between applications of the filter to the input
image is called stride, and it is generally symmetrical in height and
width dimensions. The addition of pixels to the edge of the image is
called padding. The output of this layer are feature maps (activation
map). As input images are also composed of multiple sub layers -
one per color channel -, a convolutional layer simultaneously applies
multiple filters to its inputs.

• The pooling layer downsamples the image data extracted by the con-
volutional layers to reduce the dimensionality of the feature map in
order to decrease processing time.

The last module is followed by the flattening operation and one or more
dense layers that perform classification. Flattening converts the output of
the convolutional part of the CNN into a 1D feature vector. The final dense
layer contains a single node for each target class in the model, with a soft-
max activation function. Figure 2.3 illustrates the architecture of the CNN.
Its training is also based on the backpropagation algorithm (2.1.4).

2.1.3 Recurrent neural network

The idea behind Recurrent neural networks (RNN) is to deal with sequential
data: inputs (and outputs) are not independent of each other. Neurons in an
RNN have connections pointing backward, and RNNs have memory, which
captures information about past computations. Figure 2.4 illustrates a RNN
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Figure 2.3: An illustration of the CNN architecture [33]

Figure 2.4: An illustration of a RNN neuron [33]

neuron. Each recurrent neuron has three sets of weights: u, w, and v.

• u: the weights for the inputs x(t).

• w: the weights for the hidden state of the previous time step h(t−1).

• v: the weights for the hidden state of the current time step h(t).

To train an RNN, one should unroll it through time and then do the
backpropagation (2.1.4). This is called backpropagation through time. Fig-
ure 2.5 illustrates the network unrolling or unfolding.

By stacking multiple layers of cells, a deep RNN is obtained.

LSTM

RNNs presents problems:

• when the gap between the relevant information and the place that it’s
needed grows, RNNs become unable to learn to connect the informa-
tion.

• RNNs may suffer from the vanishing/exploding gradient problem (see 2.1.5
for its definition).
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Figure 2.5: An illustration of the RNN unfolding [33]

Long short-term memory (LSTM) [34] has been introduced in order to
solve these problems. In LSTM, the network can learn what to store and
what to throw away. Figure 2.6 illustrates the structure of a LSTM cell.
Without looking inside the box, the LSTM cell looks exactly like a basic
cell. Whereas the repeating module in a standard RNN contains a single
layer, the repeating module in an LSTM contains four interacting layers. In
LSTM state is split in two vectors:

• h(t) (h stands for hidden): the short-term state

• c(t) (c stands for cell): the long-term state. The LSTM can remove/add
information to the cell state, regulated by three gates: forget gate,
input gate and output gate.

The following steps summarize the LSTM Walk:

• A sigmoid layer, called The forget gate layer, decides what informa-
tion we are going to throw away from the cell state. It looks at h(t−1)

and x(t), and outputs a number between 0 and 1 for each number in the
cell state c(t−1) . 1 represents completely keep this, and 0 represents
completely get rid of this. We have: f (t)

= σ(uf
Tx

(t)
+ wfh

(t−1)
)

• A sigmoid layer, called the input gate layer, decides which values we
will update. A tanh layer creates a vector of new candidate values that
could be added to the state. We have: i(t) = σ(ui

Tx
(t)

+ wih
(t−1)

) and
c̃
(t)

= tanh(uTc̃ x
(t)

+ wih
(t−1)

). These the two layers overall decide
what new information we are going to store in the cell state.

• The old cell state c(t−1) is updated into the new cell state c(t). We
multiply the old state by f (t), forgetting the things we decided to forget
earlier. Then we add it i(t)

⊗
c(t). This is the new candidate. values,
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Figure 2.6: An illustration of a LSTM cell [33]

scaled by how much we decided to update each state value. We have
that c(t) = f (t)c(t−1) + i(t)c (t)

• The final step is the decision about the output. First, a sigmoid layer
decides what parts of the cell state we are going to output. Then,
the cell state is put through tanh and multiplied by the output of the
sigmoid gate (outputgate), so that it only outputs the parts it decided
to. We have that o(t) = σ(uo

Tx(t) + woh
(t−1)) and ŷ(t) = h(t) =

o(t)
⊗

tanh(c(t)).

GRU

A variation on the LSTM is the Gated Recurrent Unit (GRU), introduced
by [35]. It combines the forget and input gates into a single update gate and
merges the cell state and hidden state, along with some other changes. As a
result, the GRU model is simpler than LSTM models. Figure 2.7 illustrates
this cell. We have that:

• zt = σ(Wz · [ht−1, xt])

• rt = σ(Wr · [ht−1, xt])

• tanh(W · [rt · ht−1, xt])

• ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

2.1.4 Training DNNs

In the context of multiclass classification, with y being the ground truth
label and ŷ being the predicted label, the cost function (or the loss function)
is the cross-entropy between them:
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Figure 2.7: An illustration of the GRU cell [36]

J(w) = − 1

m

∑
i

∑
j

y
(i)
j log(ŷ

(i)
j )

This quantity quantifies the difference (error) between two probabil-
ity distributions. It is also mathematically equivalent to the negative log-
likelihood in probability theory.

The goal of DL is to find w that minimizes J(w). To do so, the basic
method to use is the gradient decent. Starting from a random point w0, one
repeats the following steps, until the stopping criterion is satisfied :

• Determine a descent direction δJ(w)
δw

.

• Choose a step size η.

• Update the parameters: w(next)
i = wi − η δJ(w)δwi

(simultaneously for all
parameters).

In DL, the computation of δJ(w)
δw

is based on the backpropagation training
algorithm. For each training instance x(i) the algorithm does the following
steps:

• Forward pass: make a prediction (compute ŷ(i) = f(x(i))).

• Measure the error (compute the cost function cost(ŷ(i), y(i))). In a
classification problem, the cost function is usually the cross-entropy.

• Backward pass: go through each layer in reverse to measure the error
contribution from each connection.
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• Tweak the connection weights to reduce the error (update the set of
weights W and the set of bias b) by calculating gradients. This last
step is the gradient descent step on all the connection weights in the
network, using the error gradients measured earlier.

2.1.5 Techniques used in training

There are several techniques that can be used during the training in order
to make the convergence faster, overcome overfitting and avoid vanishing/-
exploding gradient. Overfitting happens when norm of weights become
too large, which equivalently shows that the model is getting too complex.
Vanishing/exploding gradient happens when norm of gradient respectively
becomes too small/large when doing backpropagation at lower layers (those
that are closer to the inputs).

Early stopping

Early stopping is a technique used to avoid overfitting. It is based on the
dataset splitting into training, validation and test sets. As the training steps
go by, its prediction error on the training/validation set naturally goes down.
After a while the validation error stops decreasing and starts to go back
up. This shows that the model has started to overfit the training data. In
the early stopping, we stop training when the validation error reaches a
minimum.

Batch normalization

Batch normalization [37] is a technique to address the problem that the dis-
tribution of each layer’s inputs changes during training, as the parameters
of the previous layers change. It makes the learning of layers in the net-
work more independent of each other. The technique consists of adding
an operation in the model just before the activation function of each layer.
It’s zero-centering and normalizing the inputs, then scaling and shifting the
result. It first estimates the inputs’ mean and standard deviation of the cur-
rent mini-batch, then uses these estimated values in order to produce scaled
and shifted version of the inputs [37]. It is used in order to overcome the
vanishing gradient problem: indeed, the gradient traditionally tells how to
update each parameter, under the assumption that the other layers do not
change, whereas in practice, we update all of the layers simultaneously,
and unexpected results can happen. The technique prevents the latter.
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Dropout

Dropout [38] is a regularization technique used to avoid overfitting. At each
training step, each neuron drops out temporarily with a probability p:

• The hyperparameter p is called the dropout rate.

• A neuron will be entirely ignored during this training step.

• It may be active during the next step.

• Exclude the output neurons.

After training, neurons don’t get dropped anymore .

Adam optimisation

Adam optimisation is an optimisation algorithm that combines the ideas
of Momentum optimization and RMSProp. Like Momentum optimiza-
tion,it keeps track of an exponentially decaying average of past gradients.
Like RMSProp, it keeps track of an exponentially decaying average of past
squared gradients.

Momentum is a concept from physics: an object in motion will have a
tendency to keep moving. It measures the resistance to change in motion.
The higher momentum an object has, the harder it is to stop it. This is the
very simple idea behind momentum optimization(Figure 2.8):

• we can see the change in the parameters w as motion: w(next)
i = wi −

η δJ(w)
δwi

.

• we can thus use the concept of momentum to give the update process
a tendency to keep moving in the same direction.

• it can help to escape from local minimums.

Momentum optimization cares about what previous gradients were.At
each iteration, it adds the local gradient to the momentum vector m: mi =

βmi + η δJ(w)
δwi

with β being called momentum and being between 0 and
1. One then updates the weights by subtracting this momentum vector:
w

(next)
i = wi −mi

Besides, to further have a better optimization algorithm, one can keeps
track of a learning rate for each parameter, and adapts the learning rate over
time. To do so, parameters with large partial derivative of the cost have
a rapid decrease in their learning rate and parameters with small partial
derivatives have a small decrease in their learning rate. However, if the
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Figure 2.8: An illustration of momentum [33]

learning rate gets scaled down so much that the algorithm ends up stopping
entirely before reaching the global optimum.So one can only accumulate
the gradients from the most recent iterations (not from the beginning of
training). This is the idea behind RMSProp.

By combining these two ideas, Adam Optimization does the following:

• m(next) = β1m+ (1− β1)∆wJ(w)

• s(next) = β2s+ (1− β2)∆wJ(w)
⊗

∆wJ(w)

• m(next) = m
1−βT

1

• s(next) = s
1−βT

2

• w(next) = w − ηm�
√
s+ ε⊗

and� represents the element-wise multiplication and division. Steps
1, 2, and 5 are similar to both Momentum optimization and RMSProp. In
steps 3 and 4, since m and s are initialized at 0, they will be biased toward
0 at the beginning of training, so these two steps will help boost m and s at
the beginning of training.

2.1.6 Quantization of NNs

Quantization of DNNs is the reduction of precision representations of weights
and/or activations for both storage and computation [22]. Whereas real
values are usually represented by 32-bit floats in most deep learning frame-
works, thanks to quantization, DNNs can work with smaller data types with
less precision, such as 8-bit integers [15]. Advantages of this are:

• Arithmetic with lower bit-depth is faster. In general, operations with
32-bit floats are slower than 8-bit integers.
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Figure 2.9: Weights in a layer from AlexNet. The right sub-graph shows one quantization
using 4-bits (16 discrete values) [39, 40]

• Going from 32-bits to 8-bits, almost represents a 4× reduction in
terms of memory.

• Lower bit-widths allow data to be stocked into the same caches or
registers. This reduces number of accesses from RAM, which are
costly in terms of time and power.

• Float arithmetic is hard and is not always supported on some devices,
whereas integer arithmetic is readily supported.

Quantization is based on the fact that the weights and activations related
to a layer generally belong to a small interval, which can be estimated in
advance. This allows to concentrate fewer bits within the smaller interval.
To illustrate this, Figure 2.9 shows the distribution of the weights in a layer
from AlexNet [2], with a histogram of actual weights on the left [39]. One
can quantize the interval to only represent some of these values accurately,
and round the remaining values.

There are several levels of quantization:

• Post-training quantization: quantizes weights and activations post train-
ing, following a quantization scheme.

• Quantization-aware training: simulates quantization effects in the for-
ward pass of training as it will happen in the inference engine, by im-
plementing the rounding behavior of the quantization scheme. Back-
propagation still happens as usual.
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The following describes the 8-bit fixed point quantization scheme and
quantization-aware training presented in [15] and implemented in Tensor-
Flow Lite [22]. The latter study provided a quantization scheme that quan-
tizes both weights and activations as 8-bit integers, and bias vectors as 32-
bit integers. The latter established, by relying on two quantization param-
eters, the affine mapping between the bit representation of integer values q
(quantized values) and their interpretation as mathematical real numbers r
in order to allow efficient implementation of all arithmetic using only inte-
ger arithmetic operations on the quantized values. This scheme make use
of a single set of the two quantization parameters for all values within each
activations array and within each weights array. Different arrays use sepa-
rate quantization parameters. This quantization scheme follows the affine
equation:

r =
rmax − rmin

((2B − 1))− 0
× (q − z) = S × (q − z)

with r being the real value (generally float32), q being its quan-
tized representation as a B-bit integer (for example uint8 or uint32),
S (float32) and z (uint) being the factors by which we scale and shift.
z is the quantized ‘zero-point’ which will always map back exactly to 0.f
(see the following). This quantization scheme satisfies the following:

• It is affine, therefore the result of fixed-point calculations can map
back to real numbers.

• It always accurately represents 0.f. If one quantizes and dequantizes
any real value, only 256 (that is to say, 2B) of them will return the
exact same number, while all others will suffer from precision loss. If
one ensures that 0.f is one of these 256 values, it turns out NNs can be
more accurately quantized according to [15] that claims that this is be-
cause 0 has a special meaning in NNs, for example padding. Besides,
having 0 map to another number provokes a bias in the quantization.

Because the weights of a pre-trained network are constant, they can be
converted and stored in quantized form in advance, with their exact ranges
known.

The input to a layer - or equivalently the output of a preceding layer -
are also quantized with their own different parameters. While we ideally
want to know the exact range of values to accurately quantize them, results
of unknown inputs can still be expected to be in similar interval. We can
find the average output interval on a large number of training examples and
use this as a proxy to the output quantization parameters.
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Figure 2.10: Training with simulated quantization. Left: original graph. Right: modified
graph for quantization-aware training [15].

Regarding the function that computes the output of the layer, the results
of integer computations can overflow. Therefore results have to be stored in
larger integers (for example int32) and then requantized to the 8-bit output.
Some of the layers’ logic are changed: for example, the ReLU activation
function compares values against Quantized(0) instead of 0.f. As Tensor-
Flow Lite [22] uses gemmlowp (a type of Low-precision matrix multiplica-
tion) for matrix multiplication, which stores results of uint8 matrix mul-
tiplications in int32, the biases are quantized in higher precision, as int32.
In going from 32-bit to 8-bit, the expected quantization range is specified
after the next activation layer. This will implicitly compute activations and
also help the use the full quantization range in this layer.

To allow for quantization-aware training, TensorFlow Lite introduced
the “fake quantization” nodes. First, with the fake quantization nodes, the
rounding effect of quantization is simulated in the forward pass of the train-
ing as it would occur in actual inference. All quantities are still stored as
float during training, and backpropagation still works as usual. Second,
fake quantization nodes record the ranges of activations during training.
These nodes are placed in the training graph to exactly match wherever acti-
vations would change quantization ranges (input and output in Figure 2.10).
As the network trains, they collect a moving average of the ranges of float
values seen at that node. This is quantization-aware training.
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All this information is then taken by TensorFlow Lite’s TOCO (Tensor-
Flow Optimizing Converter) tool, which, along with other optimizations,
converts a neural network to the quantized form and specifies how to use
them in inference by TensorFlow Lite’s kernels.

2.2 CNN architectures

This section describes the families of NNs the two networks that are used
in this project belong to. It also explains how they are used, based on deep
transfer learning.

2.2.1 Inception-v3

GoogLeNet [5] was the winner of the ImageNet Large Scale Visual Recog-
nition Competition in 2014 [41]. It is also called Inception-v1, and there are
v2, v3 and v4 later on. In GoogLeNet, 1×1 convolution is used as a dimen-
sion reduction module to reduce the computation bottleneck, so that depth
and width can be increased. This technique was introduced in [42], and is
used with the ReLU activation function. This dimension reduction is illus-
trated in Figure 2.13. Main building blocks of GoogLeNet is the Inception
module that is based on is this dimension reduction (Figure 2.14). Nearly
at the end of network, global average pooling (see 2.2.3) is used: each fea-
ture map from 7 × 7 is averaged to 1 × 1, as in Figure 2.22. The overall
architecture is shown in Figure 2.15. There are 22 layers in total. The in-
termediate softmax branches are auxiliary classifiers that are only used at
training time in order to overcome gradient vanishing problem, along with
regularization [5].

Inception-v3 is the improvement of Inception-v2 which is in turn the
improvement of GoogLeNet. Both of them were presented in the same
paper [27].

Inception-v2 further reduced computational cost. 5×5 convolutions are
factorized into two 3 × 3 convolutions. Convolutions of filter size n × n
are factorized to a combination of 1 × n and n × 1. Then, to remove the
representational bottleneck, filter banks in the module are expanded (the
module is made wider instead of deeper).

To improve Inception-v2 without drastically changing the modules, Inception-
v3 incorporated all of the above features for Inception-v2, and in addition
used the following approaches:

• The use of RMSProp Optimizer.

• Factorization of 7x7 convolutions.
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Figure 2.11: Without 1× 1 convolution

Figure 2.12: With 1× 1 convolution

Figure 2.13: 5 × 5 convolution with the use of 1 × 1 convolution. Without the use of
1× 1 Convolution, number of operations = (14× 14× 48)× (5× 5× 480) = 112.9M .
With the use of 1 × 1 convolution: number of operations = Number of operations for
1 × 1 convolution + Number of operations for 5 × 5 convolution = (14 × 14 × 16) × ( 1
×1×480) + (14× 14× 48)× ( 5 ×5×16) = 1.5M + 3.8M = 5.3M << 112.9M [43].

Figure 2.14: Original Inception module with the dimension reduction based on 1 × 1
convolution [5]
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Figure 2.15: The architecture of GoogLeNet [5]

Figure 2.16: Inception module type 1 [27]

• The use of batch normalization in the auxiliary Classifiers.

• The use of label smoothing (a regularizing component that is added to
the loss function in order to prevent the network from becoming too
confident about a class, which prevents overfitting).

These approaches resulted in three different types of inception modules.
These modules are represented in Figures 2.16, 2.17 and 2.18 and the over-
all architecture of Inception-v3 is presented in Table 2.1.

2.2.2 MobileNets

MobileNets regroup image understanding deep learning models that make
effective trade-off between accuracy and efficiency in terms of memory and
computation. Two versions of them were successively proposed [10, 11].
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Figure 2.17: Inception module type 2 [27]

Figure 2.18: Inception module type 3 [27]
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type patch size/stride input size

conv 3× 3/2 299× 299× 3
conv 3× 3/1 149× 149× 32

conv padded 3× 3/1 147× 147× 32
pool 3× 3/2 147× 147× 64
conv 3× 3/1 73× 73× 64
conv 3× 3/2 71× 71× 80
conv 3× 3/1 35× 35× 192

3× Inception as in Figure 2.16 35× 35× 288
5× Inception as in Figure 2.17 17× 17× 768
2× Inception as in Figure 2.18 8× 8× 1280

pool 8× 8 8× 8× 2048
linear logits 1× 1× 2048

softmax classifier 1× 1× 1000

Table 2.1: The outline of the Inception-v3 architecture [27]. The output size of each
module is the input size of the next one.

MobileNetV1

Essential building block of MobileNetV1 is the depthwise separable convo-
lution, which is the factorization of a standard convolution into a depthwise
convolution and a pointwise convolution [10]. This reduces computation
and number of parameters. It does approximately the traditional convolu-
tion operation, but much faster. Let say a standard convolutional layer’s in-
put is aDF×DF×M feature map F and its output is aDF×DF×N feature
map G with DF being the spatial width and height of a square input fea-
ture map, M being the number of input channels,DG being the spatial width
and height of a square output feature map and N being the number of output
channel. Here it is assumed that F and G have the same spatial dimensions
as the input and both of them are square [10]. The standard convolution
involves parameters of convolution kernel K of size Dk × Dk × N ×M
with DK being the spatial dimension of the kernel (assuming it is square).
If stride one and padding are assumed:

Gk,l,n =
∑
i,j,m

Ki,j,m,nFk+i−1,l+j−1,m

and the standard convolution’s computational cost is:

Dk.Dk.M.N.DF .DF

.
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Depthwise convolution applies a single filter per each input channel and
pointwise convolution is a 1× 1 convolution. Depthwise convolution with
one filter per input channel is written as:

Ĝk,l,n =
∑
i,j

K̂i,j,mFk+i−1,l+j−1,m

with K̂ being the depthwise convolutional kernel of size DK×DK×M
where the mth filter in K̂ is applied to the mth channel in F to produce the
mth channel of the filtered output feature map Ĝ. This depthwise convolu-
tion has a computational cost of:

DK .DK .M.DF .DF

Depthwise separable convolution, which was introduced in [44] and
combines depthwise and pointwise convolutions, has, by summing the costs
of depthwise and pointwise convolutions, the following computational cost:

DK .DK .M.DF .DF +M.N.DF .DF

The ratio of the two above equations gives:

DK .DK .M.DF .DF +M.N.DF .DF

DK .DK .M.DF .DF

=
1

N
+

1

D2
k

which shows how much the computational cost is reduced.
MobileNetV1 [10] uses 3 × 3 depthwise separable convolution which

requires between 8 to 9 times less computations than standard convolution.
The full architecture of MobileNets consists of a regular 3× 3 convolution
as the very first layer, followed by 13 times the building block in 2.19.
There are no pooling layers between these depthwise separable blocks.
However, some of the depthwise layers have a stride of 2 to decrease the
spatial dimensions of the data. This also involves that the corresponding
pointwise layer doubles the number of output channels. If the input image
has the shape 224 × 224 × 3 then the output is a 7 × 7 × 1024 feature
map. The convolution layers are followed by batch normalization. In a
classifier based on MobileNets, there is typically a global average pooling
layer (see 2.2.3) at the very end, followed by a fully-connected classifica-
tion layer or an equivalent 1× 1 convolution, and a softmax.

As stated at the beginning, MobileNets are a family of NN architectures.
Two main hyperparameters define these architectures:
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Figure 2.19: Left: Standard convolutional layer with batch normalization and ReLU.
Right: Depthwise Separable convolutions with Depthwise and Pointwise layers followed
by batch normalization and ReLU. The latter is the building block of MobileNets [10].

• the depth multiplier α, also known as the “width multiplier”. This
changes how many channels are in each layer. Using a depth mul-
tiplier of 0.5 will halve the number of channels used in each layer,
which cuts down the number of computations by a factor of 4 and the
number of learnable parameters by a factor 3. It is therefore much
faster than the full model but also less accurate.

• the resolution multiplier ρ: we apply this to the input image and the
internal representation of every layer is subsequently reduced by the
same multiplier. In practice we implicitly set this hyperparameter by
setting the input resolution.

MobileNetV2

MobileNetV2 is an improvement of MobileNetV1. It still uses depthwise
separable convolutions. However, it also introduces two new features: lin-
ear bottlenecks layers and shortcut connections between the bottlenecks.
The basic structure of its building block is shown in Figure 2.20. There are
3 convolutional layers in this building block. The last two are a depthwise
convolution that filters the inputs, and operates a 1× 1 pointwise convolu-
tion. However, this time this pointwise convolution makes the number of
channels smaller, unlike in MobileNetV1 where the pointwise convolution
either kept the number of channels the same or doubled them. This layer is
also called a bottleneck layer. The first layer is also a 1× 1 convolution. Its
purpose is to expand the number of channels in the data before it goes into
the depthwise convolution. Therefore this expansion layer has more output
channels than input channels: it does the opposite of the bottleneck layer.
How much the data gets expanded is given by the hyperparameter expan-
sion factor. Its default value is 6. The input and the output of the block
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Figure 2.20: The building block of MobileNetV2, which is a bottleneck residual block.
Batch normalization is used after every layer [11].

are therefore low-dimensional tensors, while the filtering step that happens
inside block is done on a high-dimensional tensor [45].

The second new feature in MobileNetV2’s building block is the residual
connection. This works as in ResNet [4] and exists to help with the flow of
gradients. Formally, let say we have a neural network block, whose input
is x and we want to learn the true distribution H(x). The residual between
them is: R(x) = H(x)− x. We thus have H(x) = R(x) + x. In a residual
neural network bloc, there is an identity connection coming from x, and the
layers learn the residual R(x) in order to learn H(x).

The activation function used by MobileNetV2 is ReLU6:

y = ReLU6(x) = min(max(0, x), 6)

This is similar to the traditional ReLU, but it prevents activations from
becoming too big. Also, ReLU6 is more robust than standard ReLU when
using low-precision computation [10]. Moreover, the shape of this function
is similar to a sigmoid.

Each layer has batch normalization and the ReLU6 activation, except
the bottleneck layer which does not have an activation function. In fact,
this layer produces low-dimensional data, and using a non-linearity after
this layer destroys useful information according to [11].

The MobileNetV2 architecture is formed of 17 of these building blocks
(Figure 2.20) in succession. This is followed by a regular 1 × 1 convolu-
tion, a global average pooling layer (see 2.2.3), and a classification layer.
The very first block is slightly different, because it uses a traditional 3 × 3
convolution with 32 channels instead of the expansion layer.
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2.2.3 Deep transfer learning

Transfer learning [46] allows to build accurate models in a time-saving
manner [47]. With transfer learning, instead of starting the training from
scratch, the latter starts from patterns that have been learned when solv-
ing a different problem in order to leverage previous learning. In computer
vision, transfer learning usually consists of using DL models that are pre-
trained on a large and diverse benchmark dataset to solve a problem similar
to the one that we want to solve. The latter is based on the fact that DL
models used for image understanding can learn hierarchical feature repre-
sentations. This means that features learnt by the first layer are general and
can be reused in different problems, while features learnt by the last layer
are specific and depend on the dataset and task. According to [48]: "if first-
layer features are general and last-layer features are specific, then there
must be a transition from general to specific somewhere in the network".
As a result, the base CNN - especially its lower layers (those that are closer
to the inputs) - learn general features, whereas the classifier part, and some
of the higher layers of the base CNN, are related to specific features.

When a pre-trained model is used in the context of deep transfer learn-
ing, the original classifier is generally removed, then a new classifier that
fits the problem is added. Figure 2.21 illustrates this transfer learning. Fi-
nally, the model is fine-tuned according to one of three strategies:

• Train the entire model.

• Train some layers and leave the others frozen.

• Freeze the base CNN. The main idea is to keep the base CNN in its
original form and then use its outputs to feed the classifier. The pre-
trained model is used as a fixed feature extractor. This is particularly
useful when computational power for training is limited, the dataset is
small, or pre-trained model solves a problem very similar to the one
to solve.

Different approaches can be followed to build the classifier that is placed
on top of the feature extractor [50]. Some of them are:

• The use of fully-connected layers. For image classification problems,
the standard approach is to use a stack of fully-connected layers fol-
lowed by a softmax activation layer.

• The use of global average pooling. Proposed by [42], in this approach,
Instead of adding fully connected layers on top of the feature maps,
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Figure 2.21: Illustration of transfer learning in CNN [49]

we take the average of each feature map, and the resulting vector is
directly fed into the softmax layer. One advantage of global average
pooling over the fully connected layers is that it is more native to the
convolution structure by enforcing correspondences between feature
maps and categories (concepts). Thus the feature maps can be easily
interpreted as categories confidence maps. Another advantage is that
there is no parameter to optimize in the global average pooling thus
overfitting is avoided at this layer. Furthermore, global average pool-
ing sums out the spatial information, thus it is more robust to spatial
translations of the input. We can see global average pooling as a struc-
tural regularizer that explicitly enforces feature maps to be confidence
maps of concepts (categories).

• The use of linear Support Vector Machines. According to [51], train-
ing a linear SVM classifier on top of the extracted features improves
classification performance.

Figure 2.22 illustrates the first two approaches.

2.3 Related work

This sections summarize works that are related to this thesis.

2.3.1 Video classification

[23] proposed a two-stream architecture involving a spatial (appearance)
stream CNN and temporal stream CNN. The temporal stream took as input
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Figure 2.22: Fully connected layers and global average pooling in transfer learning [43]

Figure 2.23: Optical flow. (a),(b): a pair of consecutive video frames with the area around
a moving hand outlined with a cyan rectangle. (c): a close-up of dense optical flow in
the outlined area; (d): horizontal component dx of the displacement vector field (higher
intensity corresponds to positive values, lower intensity to negative values). (e): vertical
component dy . Note how (d) and (e) highlight the moving hand and bow. The input to a
CNN contains multiple flows [23].

stack of horizontal and vertical components of optical flow frames [28] to
deal with motion (temporal) information. Optical flow is a local spatio-
temporal feature that is useful to extract motion information. Let say that a
motion field encodes real world 3D motion, optical flow field is the projec-
tion of the motion field onto the 2D image. Therefore, it has two compo-
nents (vertical and horizontal). The optical flow field consists of a velocity
vector for each pixel that shows says how quickly is the pixel moving across
the image and in which direction it is moving. An optical flow field is re-
lated to two subsequent frames. To obtain it, one should, given two subse-
quent frames, estimate the apparent motion field between them. This is not
simple task, and several methods have been proposed for this [28,29,52,53].
Figure 2.23 illustrates optical flow.

[23] computed optical flow by using the method of [28], which for-
mulated the energy based on constancy assumptions for intensity and its
gradient, as well as smoothness of the displacement field. While in [23],
the two networks separately capture spatial and temporal information at a
fine temporal scale, [24] represents an improvement of this work by in-
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Figure 2.24: Approaches for fusing information over temporal dimension through the net-
work. Red, green and blue boxes indicate convolutional, normalization and pooling layers
respectively. In the Slow Fusion model, the depicted columns share parameters. White/-
grey rectangles are video frames [32].

vestigating on approaches to fuse the two networks over space and time.
[23] used CNN-M-2048 [30] on top of single video frames and optical flow
images; [24] used VGG-M-2048 and VGG-16 [3, 30] in the two streams.

[32] used CNNs in order to tackle the video classification problems
over the Sports-1M and UCF101 dataset. The study investigated several ap-
proaches to fusing information extracted by CNN from video frames across
temporal domain. These approaches are: single-frame, Early Fusion, Late
Fusion and Slow Fusion, and they are illustrated in 2.24.

[25] used AlexNet [2] and GoogLeNet (Inception-v1) [5] to extract fea-
tures from individual video frames then proposed to use either some feature
pooling methods or LSTM-based methods to combine image information
across a video. The study also used optical flow by computing it as in [52]
and performed late fusion similar to the two-stream method of [23].

[26] extracted Inception-v3 [27] features from each video frames and
proposed to do video classification by using either a Deep Bag of Frame
(DBoF) Pooling based approach or, similar to [25], a LSTM based ap-
proach. The study also used another approach that consisted of first com-
puting for each video its video-level features starting from frame-level fea-
tures of its frames and then using the video-level features to do some ma-
chine learning (ML) approaches (Logistic Regression, Hinge Loss and Mix-
ture of Expert).

2.3.2 CNN architectures

[10] introduced the class of efficient models MobileNets, as described
in 2.2.2. The study measured performance metrics of these networks with
the varying two hyper parameters based on some datasets for some tasks,
for example ImageNet for classification or the Stanford Dogs dataset [54]
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for fine grained recognition. The study even used Faster-RCNN [55] and
SSD [56] frameworks with MobileNets to perform object detection.

[11] proposed MobileNetV2, as described in 2.2.2. The study also
measured performance metrics on some datasets for some tasks as for Mo-
bileNetV1. The study also described the novel framework of object detec-
tion, SSDLite. The study finally demonstrated how to build mobile seman-
tic segmentation models through the novel Mobile DeepLabv3 framework.

[5] proposed the GoogLeNet (Inception-v1) architecture. The study
set the new state of the art for classification and detection in the ImageNet
Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).

[27] proposed the Inception-v2 and Inception-v3 architectures, and bench-
marked them on the ILSVRC 2012 classification challenge validation set
which allowed to demonstrate substantial gains over the state of the art.
The study also reported metrics on the official test set.

2.3.3 Deep transfer learning

[48] experimentally quantified the generality versus specificity of neurons
in each layer of a deep convolutional neural network in the context of com-
puter vision. The study found that transferability is negatively affected by
two distinct issues:

• the specialization of higher layer neurons to their original task at the
expense of performance on the target task, which the authors expected

• optimization difficulties related to splitting networks between co-adapted
neurons, which was not expected by the authors.

In an example network trained on ImageNet, the study demonstrated
that either of these two issues may dominate, depending on whether fea-
tures are transferred from the bottom, middle, or top of the network. The
study also documented that the transferability of features decreases as the
distance between the base task and target task increases, but that transfer-
ring features even from distant tasks can be better than using random fea-
tures. A final surprising result obtained by the paper was that initializing
a network with transferred features from almost any number of layers can
produce a boost to generalization that lingers even after fine-tuning to the
target dataset. Given an conclusion that LeNet, AlexNet, VGG, Inception,
ResNet are good chooses in network-based deep transfer learning.

[57] reused front-layers trained by CNN on the ImageNet dataset to
compute intermediate image representation for images in other datasets,
CNN are trained to learning image representations that can be efficiently
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transferred to other visual recognition tasks with limited amount of training
data.

[58] investigated the transferability of generic representation of an input
image at a certain layer of the network trained on a large labeled dataset and
the feed-forward units activation, with regard to several factors. It includes
parameters for training the network such as its architecture and parameters
of feature extraction. The study also showed that different visual recog-
nition tasks can be categorically ordered based on their distance from the
source task. The study finally indicated a clear correlation between the per-
formance of tasks and their distance from the source task conditioned on
proposed factors.

2.3.4 Quantization of NNs

[17] leveraged low-precision fixed-point arithmetic to accelerate the train-
ing speed of CNNs. [18] used 8-bit fixedpoint arithmetic to speed up infer-
ence on x86 CPUs. Inspired from these works, [15] proposed a quantization
scheme that is used in TensorFlow Lite [22] that focuses on improving the
inference speed vs accuracy trade-off on mobile CPUs.

[16] builds on [15] and presented an overview of techniques for quan-
tizing convolutional neural networks for inference with integer weights and
activations. The study found that:

• Per-channel quantization of weights and per-layer quantization of acti-
vations to 8-bits of precision post-training produces classification ac-
curacies within 2% of floating point networks for a wide variety of
CNN architectures.

• Model sizes can be reduced by a factor of 4 by quantizing weights
to 8bits, even when 8-bit arithmetic is not supported. This can be
achieved with simple, post training quantization of weights.

The study benchmarked latencies of quantized networks on CPUs and
DSPs and observed a speedup of 2×-3× for quantized implementations
compared to floating point on CPUs. Additionally, it observed speedups
of up to 10× on specialized processors with fixed point SIMD capabilities.
The study finally found out that:

• quantization-aware training can provide further improvements,reducing
the gap to floating point to 1% at 8-bit precision.

• quantization-aware training also allows for reducing the precision of
weights to four bits with accuracy losses ranging from 2% to 10%,
with higher accuracy drop for smaller networks.
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The study introduced tools in TensorFlow and TensorFlowLite for quan-
tizing convolutional networks and reviewed best practices for quantization-
aware training to obtain high accuracy with quantized weights and activa-
tions. The study finally concluded that it is preferable that per-channel
quantization of weights and per-layer quantization of activations be the
preferred quantization scheme for hardware acceleration and kernel opti-
mization and proposed that future processors and hardware accelerators for
optimized inference support precisions of 4,8 and 16 bits.
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CHAPTER3
Methodology

The purpose of this chapter is to provide an overview of the research method
that is used in this project. Research method for this degree project is de-
termined following the portal presented in [31].

3.1 Research method

First of all, the positivism philosophical assumption is made, i.e., the real-
ity is objectively given and independent of the observer and instruments. In
order to answer the research question, we conduct a qualitative and quan-
titative research, which involves triangulation. Indeed, to answer the ques-
tion, video classification pipelines which are indeed new artefacts, are de-
signed and numerically evaluated. They are inspired from existing papers
about video classification, but present some differences compared to ap-
proaches that are used in them. These differences and the reasons for them
are detailed in 4.1. This is a qualitative research because this involves de-
velopment of new artefacts; this is also a quantitative research because this
involves measurement of numerical metrics.

To answer the question, video classification pipelines that are based on
quantized MobileNetV2 that is chosen as a representative of memory and
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Figure 3.1: Accuracy and latency trade-offs for some popular image classification
CNNs [22].

computation-efficient CNNs are designed, implemented and evaluated. In-
deed, exactly same approach can be recycled when building video classifi-
cation pipelines that are based on other memory and computation-efficient
CNNs, which allows generalization in the conclusions from this thesis.
Therefore here, we adopt the case study research strategy. The reasons
for the use of quantized MobileNetV2 are that, in a nutshell:

• MobileNetV2 is one of the NNs that are designed for image recogni-
tion tasks that presents the most effective trade-off between accuracy
and model efficiency in terms of model size and computation speed;

• Quantization is one of the most effective techniques that aims to re-
duce DL model size and computation speed

and they can be combined in order to obtain a highly memory and
computation-efficient and accurate enough DL image recognition model.
Figure 3.1 and Table 3.1 show this: quantized MobileNetV2 is one of the
networks presenting very quick inference time and small model size while
being accurate enough.
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Model name Model size Top-1 accuracy Top-5 accuracy TF Lite inference time

Inception_V3 95.3Mb 77.9% 93.8% 1433 ms
Mobilenet_V2_1.0_224_quant 3.4Mb 70.8% 89.9% 80.3 ms

Table 3.1: Performance benchmarks of the pre-trained models optimized to work with
TensorFlow Lite. The model files include both TF Lite FlatBuffer and Tensorflow frozen
Graph. Performance numbers were benchmarked on Pixel-2 using single thread large core.
Accuracy numbers were computed using the TFLite accuracy tool based on ILSVRC 2012
(ImageNet Large Scale Visual Recognition Challenge) image classification task [8, 22].

The pipelines are empirically evaluated based on the empirical research
method: appropriate performance metrics are measured by using an appro-
priate dataset that is collected via experiment and case study data collection
method. The multiclass classification metrics explained in 3.3.1 are used.
While "performance" is an ambiguous term, because for a classification
pipeline this can possibly concern several different aspects such as mem-
ory complexity, time complexity end energy consumption, in this study
only the performance metrics related to the multiclass classification task
are measured. Indeed, it is obvious that the pipelines based on memory and
computation-efficient CNN improve performance in terms of memory size,
energy consumption and computational speed. The dataset should serve
as a representative of video classification datasets in order to generalize as
far as possible obtained results for these datasets and here again, we adopt
a case study research strategy. The computational mathematics method is
used in order to analyse this dataset. The data analysis, inter alia, proves
the validity of the used metrics.

To have a reference (baseline) for comparison, similar video classifica-
tion pipelines but this time based on Inception-v3 are also developed and
evaluated based on the same performance metrics and dataset. Indeed, [26]
created a novel, large and diverse video dataset based on Inception-v3 fea-
tures and tested classifiers based on it, and this study is considered as base-
line. The comparison between the performance metrics obtained for video
classification pipelines based on quantized MobileNetV2 and:

• the metrics obtained from the reference video classification pipelines

• the metrics that are reported in existing papers that used the same
dataset

allows to know how well the video classification pipelines based on
memory and computation-efficient CNN perform and to validate them. Here

41



Chapter 3. Methodology

too, this is a case study and conclusions obtained for quantized MobileNetV2-
based approaches and the dataset are generalized as far as possible to other
memory and computation-efficient CNNs and video classification datasets.

Moreover, also single-frame models (similarly to the approach men-
tioned in 2.3.1) are built on top of both quantized MobileNetV2 and Inception-
v3 and evaluated. These models completely ignore temporal information,
thus can be used for comparison to verify or falsify the hypothesis that the
drop in accuracy induced by the use of computation and memory-efficient
CNN at video frames level can be compensated by capturing temporal in-
formation via consideration of sequence of these frames. Indeed, based on
the metrics (observations) that are measured and collected and the abduc-
tive research approach, the first hypothesis that can be verified or falsified
is that, the video classification pipelines based on quantized MobileNetV2
perform not as good as the baseline pipelines but they present similar per-
formance and their gap in performance is smaller than the gap in perfor-
mance between Inception-v3-based and quantized MobileNetV2-based sin-
gle frame models. If this is the case, it may indicate that there is the afore-
mentioned compensation effect.

The second hypothesis that can be verified or falsified from the collected
observations based on the abductive research approach is that, based on the
dataset, the video classification pipelines perform not as good as the state-
of-the-art results presented in other papers [23–25] based on very deep and
complicated DNNs and/or optical flow, but enough good to be considered
acceptable.

There are some methodological limitations. The approaches presented
in this thesis do not deal with optical flow, because of its practical limitation
mentioned in 1.2. Also, the static frame-level features provide an excellent
baseline and constructing compact and efficient motion features is beyond
the scope of this thesis that aims to only deal with video frames. Finally,
for the same reason, even if some video data can contain sound data, this
project does not deal with audio features.

The following sections describe the method application, i.e., how the
research method is applied. This includes choice of datasets, softwares and
implementations.

3.2 Datasets

The project is based on the UCF101 [59] action recognition dataset that is
available online. This is a dataset of 101 action classes from videos up-
loaded by users on Youtube. They are unconstrained, realistic because con-

42



3.2. Datasets

tain camera motion, various lighting conditions, partial occlusion and low
quality frames, and contain row video data. It contains 13320 clips and 27
hours of video data, each clip belonging to one of the 101 classes. A class
also belongs to one of the following types (or categories): Human-Object
Interaction, Body-Motion Only, Human-Human Interaction, Playing Mu-
sical Instruments, Sports [59]. Figure 3.2 visualizes a frame of a clip for
each of the classes and indicates which category its class belongs to. Clips
of a class are separated into 25 groups, each group containing 4-7 clips that
share some common features, for example the background.

Authors of [24] made RGB frames extracted from the UCF101 dataset
available on their Github page [60]. This dataset, called the UCF101 RGB
frames dataset in all of the following parts, is collected via experiment data
collection method and used in this project. This is naturally useful when
dealing with frames. This dataset provides input for the video classification
pipelines.

Indeed, as it will be detailed in 4.1.1, the artefacts (video classification
pipelines) designed in this thesis involve video classification models put on
top of freezed CNNs (quantized MobileNetV2 and Inception-v3) that ex-
tract features from video frames. Here we exploit transfer learning 2.2.3.
Therefore, in order to train only these classification models, frame-level
features extracted from every video frames can be stored as .npy (NumPy
array) files [61]. By applying different feature extractions based on differ-
ent CNNs on every frames of the UCF101 RGB frames dataset, we obtain
datasets that we call UCF101 frame-level features datasets (they are in plu-
ral form because for each of the feature extractors - one based on quantized
MobileNetV2 and another one based on Inception-v3 - a frame-level fea-
tures dataset is collected). These datasets, collected via the experiment data
collection method, are input for the classifiers that are put on top of the
feature extractors.

The authors of [24] also provided on their Github page [60] the three
splits into training and test dataset of the UCF101 dataset that they used for
the study described in their paper. The split specified by "ucf101_splits/trainlist01.txt"
(train set) and "ucf101_splits/testlist01.txt" (test set) in this repository, re-
ferred as “split 1” in [24] and involving 9537 train clips (72% of the total
data) and 3783 test clips (28% of the total data), is used in this project. A
part in the train set is isolated in order to make it a validation set. Finally,
62% of the total data is used for training, 10% of the total data is used for
validation and 28% of the total data is used for testing. The UCF101 RGB
frames and UCF101 frame-level features datasets can naturally follow this
split.
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Figure 3.2: 101 classes of the UCF101 dataset. The color of frame borders species to
which action type they belong: Human-Object Interaction, Body-Motion Only, Human-
Human Interaction, Playing Musical Instruments, Sports [59].
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The UCF101 RGB frames and UCF101 frame-level features datasets are
hosted in the cloud computing platform Microsoft Azure [62], leveraging
Azure Blob Storage.

Computational mathematics method is used in order to analyse data, in
order to determine necessary data pre-processing and prove relevance of
the used metrics.

3.3 Evaluation

This section describes how classification pipelines are evaluated. This al-
lows to know how well the classification pipelines can perform and to vali-
date them.

3.3.1 Evaluation metrics

This section describes the performance metrics that are used in this
project in order to assess the classification task done by the pipelines.

Confusion matrix

In a classification problem, there exists a true output y and a model-generated
predicted output ŷ for each data point. The confusion matrix is K × K,
where K is the number of classes. It shows the number of correct and in-
correct predictions made by the classification model compared to the actual
outcomes in the data.

In the context of binary classification problem in which there are 2 pos-
sible classes (positive and negative classes), the results for each instance
point can be assigned to one of four categories:

• True Positive (TP): the label y is positive and prediction ŷ is also pos-
itive

• True Negative (TN) : the label y is negative and prediction ŷ is also
negative.

• False Positive (FP) : the label y is negative but prediction ŷ is positive
(type I error).

• False Negative (FN) : the label y is positive but prediction ŷ is negative
(type II error).

and the confusion matrix have the following form:
(
TP FN

FP TN

)
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In multiclass problems, a given row of the matrix corresponds to specific
value for the "truth". Moreover, one can normalize the confusion matrix by
dividing each value by the sum of values in the row the value belongs to.
In this way, each value is between 0 and 1. This is interesting in case of
class imbalance to have a more visual interpretation of which class is being
misclassified.

The following metrics are computed from confusion matrix without nor-
malization.

Accuracy

The accuracy measures how close the prediction is to the true value. We
have:

Accuracy =
TP + TN

TP + TN + FP + FN

in case of binary classification problem.
The generalization to multiclass problems is the ratio between number

of correctly predicted labels and total number of predictions.
A classifier usually gives a set of predicted labels in a decreasing order

of probability and the label with the highest probability is the predicted
label (for example a softmax classifier). The ratio between number of cases
in which correct labels are in the top k predicted labels and total number of
predictions is the top-k accuracy.

However, one should be aware that accuracy is not always a good metric,
in case a dataset is highly unbalanced. One can illustrate this based on
an example. Assume a highly unbalanced dataset where 95% of the data
points are not fraud and 5% of the data points are fraud. A naive classifier
that predicts not fraud, regardless of input, will be 95% accurate. For this
reason, considering other metrics such as precision, recall and f1-score is
also relevant.

Precision

For binary classification,

Precision =
TP

TP + FP

The generalization to multiclass problems is to consider columns of the
confusion matrix. Given that a given row of the matrix corresponds to
specific value for the "truth", we have:
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Precisioni =
Mii∑
jMji

and this is specific for a class i. Precision is the fraction of events where
we correctly declared i out of all instances where the algorithm declared i.

Recall

For binary classification,

Recall =
TP

TP + FN

Here again, the generalization to multiclass problems is to consider
columns of the confusion matrix. Given that a given row of the matrix
corresponds to specific value for the "truth", we have:

Recalli =
Mii∑
jMij

and this is specific for a class i. Conversely to Precision, recall is the
fraction of events where we correctly declared i out of all of the cases where
the true of state of the world is i.

f1-score

We have that:

f1-scorei = 2
Precisioni ×Recalli
Precisioni +Recalli

i.e., this metric is the harmonic mean of precision and recall.

3.3.2 Measurement of the evaluation metrics

Indeed, as it will be detailed in 4.1.1, the video classification pipelines in-
volve a feature extractor and a classifier on top of it. The artefacts designed
in this thesis involve quantized MobileNetV2 as feature extractor. The ac-
curacy and top-5 accuracy over the test set allow to evaluate the perfor-
mance of classification task for a combination of a feature extractor and
a classifier (after its training) on top of it. Four combinations of a feature
extractor and a classifier, as specified in 4.1.1, are subject to this evaluation:

• Quantized MobileNetV2 feature extractor and GRU classifier
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• Quantized MobileNetV2 feature extractor and LSTM classifier

• Inception-v3 feature extractor and GRU classifier

• Inception-v3 feature extractor and LSTM classifier

and these metrics are also computed for the single-frame models based
on both Quantized MobileNetV2 and Inception-v3 feature extractors. The
pipelines that use Inception-v3 as feature extractor are baselines for com-
parisons.

The measurement of the metrics is done based on Python. Based on ob-
tained values of these metrics, for some of these combinations, confusion
matrices based on the test set are plotted and classification reports based on
the test set, which shows precision, recall and f1-score for every classes, are
produced by using the Scikit-Learn’s [63] classification_report()
function.

3.3.3 Comparison

Metrics are compared between them. The quantized MobileNetV2-based
approaches and the reference Inception-v3-based approaches are compared.
As aforementioned, the hypothesis that can be verified or falsified based on
the abductive research approach is that, the video classification pipelines
based on quantized MobileNetV2 not as good as the baseline pipelines
in terms of the used metrics, but they present similar performance, and
this case may indicate that the drop in accuracy induced by quantized Mo-
bileNetV2 can be compensated by capturing temporal information via con-
sideration of sequence of these frames. To support the latter, also a single-
frame model is built and evaluated for each of the two feature extraction
methods.

The second hypothesis that can be verified or falsified based on the ab-
ductive research approach is that, based on the dataset, the video classifica-
tion pipelines perform not as good as the state-of-the-art results presented
in other papers [23–25] based on very deep and complicated DNNs and/or
optical flow, but enough good to be considered acceptable.

3.4 Video classification pipelines implementation

Indeed, as it will be detailed in 4.1.1, the artefacts (video classification
pipelines) designed in this thesis involve video classification models put
on top of freezed CNNs (quantized MobileNetV2 and Inception-v3) that
extract features from video frames.
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The designed video classification pipelines are implemented based on
Python API of Tensorflow Lite [22] and Keras [64]. TensorFlow Lite allows
to use quantized MobileNetV2 whereas Keras allows to use Inception-v3.
PIL (Python Imaging Library) [65] and Numpy [61] are used in order to
pre-process video clips. Keras is used in order to build and train the the
classifiers and the single-frame models on top of feature extractor.

In more details, for the video classification pipelines based on quan-
tized MobileNetV2, the frame-level feature extraction is implemented by
using TensorFlow Lite. A subnetwork of quantized MobileNetV2 (with
α = 1.0), pre-trained in a quantization-aware manner on ImageNet, is
used. To do so, the quantized TensorFlow GraphDef of MobileNetV2
with the corresponding two hyperparameters is downloaded from the web
page of TensorFlow Lite [22]. The name of the file to download is "Mo-
bilenet_V2_1.0_224_quant". It is "quantized" because it is a float model
with FakeQuant ops inserted at the boundaries of fused layers to record
min-max range information. This generates a quantized inference workload
that reproduces the quantization behavior that was used during its training
on ImageNet. A subgraph of this GraphDef is converted into a Tensor-
Flow Lite FlatBuffer for quantized inference. Its input layer is the layer
specified the name "input" and its output is the layer specified by the name
"MobilenetV2/embedding". As this output is a four dimensional numpy
ndarray, and it is not a flat feature vector, it then undergoes the global
average pooling, implemented based on the numpy function mean() [61].
The arithmetic means along the second and third axis are computed. This
produces a two dimensional numpy ndarray (with its first component
being a single-dimensional entry) of data type float32. The latter then
undergoes a normalization via division by 255. The final ndarray ob-
tained in this way, is the feature vector.

For the reference video classification pipelines, a subnetwork of the
"floating point" Inception-v3 is used. As it involves floating point inference
and not quantized inference, as stated above it requires that input RBG im-
age data be a numpy ndarray of data type float32, containing float
values between -1 and 1 and the output does not need further normaliza-
tion. A subnetwork of the Keras implementation of Inception-v3 is used.
The output already comes from the global average pooling operation so no
further processing is done.

To facilitate training of the models in the classification part on top of fea-
ture extraction, these steps are applied to every video frames in the UCF101
RGB frames dataset, and produced features are saved as the UCF101 frame-
level features datasets, as mentioned in 3.2. This is locally done for the
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quantized MobileNetV2 feature extraction, based on TensorFlow Lite. More
specifically, the TensorFlow devel Docker image tensorflow/tensorflow:nightly-
devel is used in order to cross compile and build TensorFlow Lite within a
Docker container using this image [22], and the feature extraction is done
within this container on a local machine. For Inception-v3 feature extrac-
tion, this is done in cloud (Microsoft Azure) by using a Virtual Machine
that has a GPU (Standard_NC6 VM) because if done locally the process
takes too much time.

The classifiers are trained leveraging Azure Machine Learning Service [66]
and Azure Machine Learning SDK for Python, based on the training sets
of the UCF101 frame-level features datasets. First, an Azure Machine
Learning Workspace is created. Then, an AmlCompute cluster of STAN-
DARD_NC6 GPU VMs is created and attached to the Workspace. Next, we
construct an azureml.train.dnn.TensorFlow estimator object, use the GPU
cluster as compute target, and pass the mount-point of the the Azure Blob
Storage to be used for training and the training code as parameters. The
estimator is submitted to the Azure ML experiment to kick off the train-
ing. All of the instanced resources on Microsoft Azure are located in the
same resource group and the same area (North Europe) in order to avoid
data transfer cost and overhead. The Visual Studio Enterprise subscription
has been provided. The trained models are saved and downloaded. This is
useful to further plot confusion matrices, compute other metrics over the
test set (see 3.3.2) and reconstruct the pipelines. Python is used for this.

3.5 Quality assurance

As the project involves some sources of randomness (weight initialization,
possible stochastic gradient descent. . . ), to ensure replicability of this work,
random number generators are seeded. The split into training and test sets
is detailed and explicitly showed so that the same split can be used. In this
chapter and the following chapter, engineering-related contents and all DL-
related parameters and hyperparameters are specified and detailed in order
to ensure this replicability. Regarding the use of Azure Machine Learning
service, the snapshot is also stored and downloaded as part of the experi-
ment in the workspace. In this way, all versions of used libraries are kept.
Also, regarding the feature extraction part, all versions of used libraries and
docker-related versioning are kept. All of the measurements use reliable
and valid deterministic functions.
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CHAPTER4
Results

This chapter provides, analyses and discusses results that are obtained.

4.1 Video classification pipelines building

In order to answer the research question, the project first aims to build the
artefacts: video classification pipelines that are based on quantized Mo-
bileNetV2. Also other reference (baseline) pipelines that are based on
Inception-v3 are built for comparison purpose. They attribute one of the
101 classes to a clip in the dataset. We have a multiclass classification
problem. This section describes how these video classification pipelines
are designed and built.

4.1.1 Overview

Figure 4.1 summarizes main components of the video classification pipelines.
They involves the following steps:

• input

• frame-level feature extraction
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Figure 4.1: Overview of the video classification pipelines

• classification.

The pipelines are composed of a feature extractor and a classifier on top
of it, similarly to the approaches used in [25, 26]. Four combinations of
a feature extractor and a classifier on top of it are built and used in this
project:

• Quantized MobileNetV2 feature extractor and GRU classifier.

• Quantized MobileNetV2 feature extractor and LSTM classifier.

• Inception-v3 feature extractor and GRU classifier.

• Inception-v3 feature extractor and LSTM classifier.

They are inspired from existing papers about video classification:

• [25] used AlexNet [2] and GoogLeNet (Inception-v1) [5] to extract
features from individual video frames then proposed to use either
some feature pooling methods or LSTM-based methods to combine
image information across a video. The study also used optical flow
by computing it as in [52] and performed late fusion similar to the
two-stream method of [23].

• [26] extracted Inception-v3 [27] features from each video frames and
proposed to do video classification by using either a Deep Bag of
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Frame (DBoF) Pooling based approach or, similarly to [25], a LSTM
based approach.

However, the pipelines designed in this thesis present some differences
from them:

• we intentionally not deal with optical flow, because the latter presents
practical limitation that are mentioned in 1.2 and we believe the static
frame-level features provide an excellent baseline. Constructing com-
pact and efficient motion features is beyond the scope of this thesis
that aims to only deal with video frames;

• given an input clip, the pipeline does not deal with all of its frames,
but instead samples some of them and those sampled frames undergo
following processing steps. This way, computational complexity is
reduced;

• the pipelines directly benefit from transfer learning (see 2.2.3) by us-
ing bottom layers of CNNs that are pre-trained on ImageNet and frozen.
This avoids from-scratch training of feature extractors, therefore make
training faster and prevents overfitting;

• finally, for our best knowledge, no study about video classification
used GRU. Given the fact that GRU presents less parameters than -
thus lighter in terms of memory size and faster in terms of compu-
tations than - LSTM, we think that GRU deserves to be used in or-
der to do video classification, especially in the context mentioned in
Chapter 1 where there are numerous possible applications involving
the analysis of video data at the level of devices with limited memory
resources and computation capabilities.

We recall that the purpose of this thesis is not to achieve a state-of-the-
art result based on the UCF101 dataset.

The following describes each component/step of the designed video
classification pipelines.

Input

Input is a set of video frames that are sampled from a video clip which is
then classified. M = 25 video frames that are uniformly distributed over
the clip duration are extracted from the clip. Because a CNN generally only
accepts input images having a certain size and having RGB pixel values
within a certain interval, sampled video frames are resized and undergo a
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pixel-normalization scheme in accordance with the later processing steps.
For the video classification pipelines based on quantized MobileNetV2, the
feature extractor requires that input RBG image data be a numpy ndarray
of data type uint8 (i.e., containing integer values from 0 to 255) and shape
(224, 224, 3). For the reference pipelines, the Inception-v3 feature extractor
requires that input RBG image data be a numpy ndarray of data type
float32, containing float values between -1 and 1 and shape (299, 299,
3). PIL (Python Imaging Library) [65] and Numpy [61] are used in order
to satisfy these requirements. Bilinear interpolation is used when resizing
the image.

Frame-level feature extraction

Each of the sampled frames in the input is passed to the same CNN that
is pre-trained on ImageNet, so that the latter extracts features from them,
based on transfer learning (see 2.2.3). These features bring spatial in-
formation by individually considering video frames. The memory and
computation-efficient CNN is derived from quantized MobileNetV2, that
is pre-trained in a quantization-aware manner on ImageNet [9]. The latter
has the same architecture as MobileNetV2 with α = 1 (see 2.2.2), except
that:

• at each layer a fake quantization node is added, in order to allow
quantization-aware training as described in 2.1.6 .

• the final classification layer is deleted thus the output comes from the
global average pooling layer.

The CNN used in the reference video classification pipelines is derived
from Inception-v3 that is pre-trained on ImageNet, as [26] extracted Inception-
v3 features from video frames to make a dataset of videos for classification
and this study is considered as baseline. An architecture similar to the one
of Table 2.1 is used, except that the last two layers are deleted and the pool-
ing layer - which is in reality a global average pooling layer - gives the
output.

Quantized MobileNetV2 requires an input RGB image size of 224×224
whereas Inception-v3 requires an input RGB image size of 299 × 299.
Therefore video frames are resized beforehand in accordance with this.
Also, RGB pixel values are normalized in accordance with what their im-
plementations expect (see 3.4).
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Classification

The frame-level features are aggregated in order to capture temporal infor-
mation and produce class prediction. In this project, for each of the two
feature extraction methods, two classification methods based on RNNs are
tested: the first one is based on LSTM, and the another one is based on
GRU. The choice of using LSTM comes from the fact that in [26] the best
performing approach was based on LSTM according to the metrics they
used. LSTM, by operating on frame-level CNN features, can learn how to
integrate information over time thus is capable of learning from temporally
ordered sequences by explicitly considering sequences of CNN features.
Since videos contain dynamic content, the variations between frames may
encode additional information which could be useful in making more ac-
curate predictions. GRU is based on the same idea, but it presents less
parameters than LSTM thus is less prone to overfitting and is more suitable
to deploy on a device with limited computation and memory capabilities.
For our best knowledge, no studies about video classification used GRU to
tackle video classification.

The two methods consist of putting either a LSTM or GRU layer as the
first layer on top of the feature extraction, and then putting additional layers
to do the classification. For both approaches:

• The second layer is a batch normalization layer.

• The third layer is a hidden dense layer with 512 neurons. At this level,
the activation is linear.

• The fourth layer is again a batch normalization layer.

• The fifth layer is the LeakyReLu activation function, with α = 0.3.

• The last layer is a dense layers with 101 neurons that does softmax
classification.

Between the last and the fifth layers, dropout with probability = 0.5 is
applied at training time. Batch normalizations are added before the activa-
tion function of the previous layer, in accordance with the original paper
that introduced the method [37].

Regarding the first layer, for both approaches, the dimensionality of
input is D and the length of input sequences is M = 25. D = 1280
when quantized MobileNetV2 is used as feature extractor; D = 2048 when
Inception-v3 is used as feature extractor. The dimensionality of the output
space is also D. At training time, 0.5% of the units are dropped out for
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the linear transformation of the inputs. Only the last output in the output
sequence is returned.

All other parameters for all layers are the default parameters that are
used in Keras. These architectures were empirically found to achieve enough
good accuracy while involving relatively small number of parameters and
inference time.

Besides, in order to help checking the hypothesis that the drop in ac-
curacy induced by the use of quantized MobileNetV2 when dealing with
individual frames can be compensated by capturing temporal information
via consideration of sequence of these frames, also a single-frame model
is tested for each of the two feature extraction methods. Indeed, single-
frame model only captures spatial frame-level information. If the gaps be-
tween performance of classifications based on the two feature extraction
methods are lower for the RNN-based classification approaches than the
single-frame models, this can support the validation of this hypothesis. The
single-frame model is a FNN that takes as input a frame-level feature from
a clip. It has the following architecture:

• The first layer is a hidden dense layer with 512 neurons. At this level,
the activation is linear.

• The second layer is a batch normalization layer.

• The third layer is the LeakyReLu activation function, with α = 0.3.

• The last layer is a dense layers with 101 neurons that does softmax
classification.

Here too, between the last layer and the third layer, dropout with prob-
ability = 0.5 is applied at training time. The other parameters are default
parameters that are used in Keras.

4.1.2 Model training

LSTM-based/GRU-based/single-frame models in the classification part are
trained, based on the training sets of the UCF101 frame-level features datasets.
For all models, categorical cross-entropy is chosen as loss function. Adam
optimizer with learning rate = 0.00001 and decay=0.000001 is used. Right
numbers of epochs are determined based on early stopping (see 2.1.5), by
using the validation set. The trained models are saved and downloaded.
This is useful to further compute metrics over the test set and plot confu-
sion matrices.
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4.2 Data Analysis

This section provides some results of the computational mathematics method-
based analysis of the UCF101 dataset. This analysis can be naturally ex-
tended for the UCF101 RGB frames and UCF101 frame-level features datasets.
Table 4.1 summarizes characteristics and statistics of the dataset, such as
minimum/maximum clip length, frame rate and resolution. Figure 4.2 shows
number of clips per class and the distribution of clip durations.

One can deduce from Table 4.1 that the minimum number of frames per
clip is b25 × 1.06c = 26. Therefore the choice of M = 25 in the previous
chapter is judicious. Regarding resolution, as the (quantized) MobileNetV2
architecture used in this project requires an input resolution of 224 × 224,
there is downsampling for the memory and computation-efficient feature
extraction. The Inception-v3 feature extraction requires an input resolution
of 299 × 299, so it involves horizontal downsampling and vertical upsam-
pling (via bilinear interpolation, as specified in 3.4).

Regarding Figure 4.2, in our project, only the number of clips per class is
relevant, as same number of frames is sampled from a clip to give it a class.
The distribution of numbers of clips per class gives hints about relevance
of performance metrics. From simple computations, one can infer that the
maximum and minimum numbers of clips per class are respectively 160
and 95 and roughly speaking, number of clips per class is evenly distributed
over the classes according to Table 4.1, which means all of the metrics that
are used in this project can be considered as relevant.

Actions 101
Clips 13320
Groups per Action 25
Clips per Group 4-7
Mean Clip Length 7.21 sec
Total Duration 1600 mins
Min Clip Length 1.06 sec
Max Clip Length 71.04 sec
Frame Rate 25 fps
Resolution 320 X 240
Audio Yes (51 actions)

Table 4.1: summary of the UCF101 dataset [59].
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Figure 4.2: Number of clips per class. The distribution of durations is illustrated by the
colors [59].
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Feature extractor Classifier Accuracy top-5 accuracy

Inception-v3 LSTM 0.7875 0.9422
Inception-v3 GRU 0.7961 0.9469

Quantized MobileNetV2 LSTM 0.7430 0.9117
Quantized MobileNetV2 GRU 0.7594 0.9297

Inception-v3 Single Frame 0.6969 0.8812
Quantized MobileNetV2 Single Frame 0.6425 0.8473

Table 4.2: Classification results

4.3 Classification results

This section describes the observations, i.e, the performance metrics related
to the classification task that are measured from the video classification
pipelines.

Table 4.2 shows accuracy and top-5 accuracy metrics that are obtained
for the four combination of feature extractor and classifier specified in 3.3.2.
According to it, GRU performs better than LSTM. GRU has less parameters
than LSTM thus is less prone to overfitting. Therefore in the context of
deployment of video classification pipeline on a computationally limited
platform, GRU should be preferred to LSTM and this result is in accordance
with this.

For the above reason, the combinations of GRU and the two feature ex-
traction methods are used in order to plot confusion matrices and compute
additional performance metrics (precision, recall and f1-score) over the test
set:

• Normalized confusion matrices for the combinations of GRU and each
of the two feature extraction methods are plotted (Figure 4.3 and Fig-
ure 4.4). Numbers of correct and incorrect predictions are also shown
in the confusion matrices without normalization in Appendix A. Fig-
ure 4.5 and Figure 4.6 are parts of these normalized confusion ma-
trices restricted to the 3 classes: ’ApplyEyeMakeup’, ApplyLipstick’
and ’Archery’.

• We also partly show in the following their classification reports, re-
porting precision, recall and f1-score for each of the 101 classes and
their average values over the 101 classes (page 64). Their entire con-
tents are available in Appendix A.
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Feature extractor Classifier Precision Recall f1-score

Inception-v3 Single-frame 0.67 0.67 0.66
Quantized MobileNetV2 Single-frame 0.62 0.61 0.61

Inception-v3 GRU 0.77 0.77 0.76
Quantized MobileNetV2 GRU 0.74 0.73 0.72

Table 4.3: Average precision, recall and f1-score over the 101 classes

Figure 4.3: Normalized confusion matrix (quantized MobileNetV2 feature extraction and
GRU classifier). Color depth indicates proportions of predictions.
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Figure 4.4: Normalized confusion matrix (Inception-v3 feature extraction and GRU clas-
sifier). Color depth indicates proportions of predictions.
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Figure 4.5: Normalized confusion matrix (quantized MobileNetV2 feature extraction and
GRU classifier) for the 3 classes: ’ApplyEyeMakeup’, ’ApplyLipstick’ and ’Archery’,
along with proportions of correct and incorrect predictions. Color depth indicates propor-
tions of predictions.

62



4.3. Classification results

Figure 4.6: Normalized confusion matrix (Inception-v3 feature extraction and GRU clas-
sifier) for the 3 classes: ’ApplyEyeMakeup’, ’ApplyLipstick’ and ’Archery’, along with
proportions of correct and incorrect predictions. Color depth indicates proportions of pre-
dictions.
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Partial classification report (quantized MobileNetV2 feature extraction and GRU
classifier)

precision recall f1-score support

ApplyEyeMakeup 0.67 0.64 0.65 44
ApplyLipstick 0.62 0.78 0.69 32

Archery 0.62 0.61 0.62 41
BabyCrawling 0.79 0.97 0.87 35

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .
avg / total 0.74 0.73 0.72 3783

Partial classification report (Inception-v3 feature extraction and GRU classifier)

precision recall f1-score support

ApplyEyeMakeup 0.86 0.73 0.79 44
ApplyLipstick 0.69 0.62 0.66 32

Archery 0.83 0.93 0.87 41
BabyCrawling 0.92 1.00 0.96 35

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .
avg / total 0.77 0.77 0.76 3783

4.4 Result analysis and discussion

Regarding the UCF101 dataset,

• The LSTM-based approach combined with the use of optical flow in
[25] achieved a maximum 3-fold accuracy of 88.6%.

• [23] achieved the 3-fold accuracy of 87.0% with its optical flow-based
two stream approach.

• [24] achieved a maximum 3-fold accuracy of 92.5% with its optical
flow-based two stream approach combined with its fusion method.
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and accuracy values obtained in this project seem to demonstrate glob-
ally lower performance (even if we only use one of the 3 splits that were
used in these studies). However, the above studies used optical flow, which
can be considered as so far the best descriptor giving motion informa-
tion. They also used some data augmentation strategies. Moreover, [25]
used video classification models that were pre-trained on the larger Sports-
1M dataset [32], and deeper and more complicated NN with five layers of
LSTM, which should have resulted in massive number of parameters. Last
but not least, all of these studies fine-tuned the feature extraction parts based
on the augmented UCF101 dataset whereas in this thesis the feature extrac-
tors were pre-trained on ImageNet and were not fine-tuned. What is worth
mentioning is that our approaches based on quantized MobileNetV2 fea-
tures gave satisfactory performance metrics that do not differ so much from
our reference approaches that are based on Inception-v3 features (Table 4.2
and the classification report in 4.3):

• For the GRU-based approaches, switching from Inception-v3 features
to quantized MobileNetV2 features caused 3.67% of decrease in the
accuracy and 1.72% of decrease in the top-5 accuracy. For LSTM-
based approaches, switching from Inception-v3 features to quantized
MobileNetV2 features caused 4.45% of decrease in the accuracy and
3.05% of decrease in the top-5 accuracy. For single-frame models,
switching from Inception-v3 features to quantized MobileNetV2 fea-
tures caused 5.44% of decrease in the accuracy and 3.39% of decrease
in the top-5 accuracy. Regarding the image classification based on
ImageNet, the difference in accuracy and top 5 accuracy between the
Inception-v3 and quantized MobileNetV2 are respectively about 8%
and 4% according to Table 3.1.

• For the three other metrics - precision, recall and f1-score - and the
GRU-based approaches, according to the classification reports in 4.3
and Table 4.3, their average values decrease of 3% for precision and
4% for the other metrics when switching from quantized MobileNetV2
feature extractor to Inception-v3 feature extractor. For single-frame
models, their average values decrease of 6% for recall and 5% for the
other metrics when switching from quantized MobileNetV2 feature
extractor to Inception-v3 feature extractor.

The gaps between the metrics obtained via the two feature extraction
methods (quantized MobileNetV2 and Inception-v3) are lower for RNN-
based approaches than single-frame models. This shows to some extent that
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the drop in accuracy induced by the use of quantized MobileNetV2 when
dealing with individual frames can be compensated by capturing tempo-
ral information via consideration of sequence of these frames. However,
this compensation is not enough so that video classifications based on the
two feature extractors perform same. Inception-v3 features-based approach
still globally present better performance. On the one hand, this should stem
from intrinsic gap in accuracy between these networks. On the other hand,
for the UCF101 dataset, spatial information already discriminate well dif-
ferent classes, because the dataset contains high quality data: short, well-
segmented videos of concepts that can typically be identified in a single
frame. This is evidenced by the already high performance of single-frame
models (Table 4.3). The same remark has been stated in [25].

Besides, more fine-grained analysis of the classification reports (in Ap-
pendix A) gives interesting results. Among the evaluated 303 metrics (pre-
cision, recall and f1-score for all of the 101 classes), 157 metrics are higher
when Inception-v3 is used as feature extractor whereas 109 metrics are
higher when quantized MobileNetV2 is used as feature extractor, and 37
metrics are equal. Among the 101 classes, there are 54 classes for which
at least one of the three metrics is higher when quantized MobileNetV2 is
used as feature extractor. Among them, there are 23 classes for which all
of the three metrics is either equal or higher when quantized MobileNetV2
is used as feature extractor than when Inception-v3 is used as feature ex-
tractor. Again among them, there are 15 classes for which all of the three
metrics is higher when quantized MobileNetV2 is used as feature extrac-
tor than when Inception-v3 is used as feature extractor and 7 classes for
which all of the three metrics are equal for both feature extractors. These
facts show that regarding the three metrics, the quantized MobileNetV2
feature-based approach can perform better than the Inception-v3 feature-
based approach for some classes. Figure 4.5 and Figure 4.6 illustrate the
latter: the Inception-v3 feature-based approach recognizes better the ac-
tions ’ApplyEyeMakeup’ and ’Archery’ - which was expected-, whereas
the quantized MobileNetV2-based approach recognizes better the action
’ApplyLipstick’.
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Conclusion and future work

To answer the research question, we try to generalize as far as possible
our case study. To answer the first part of the research question, video
classification pipelines based on memory and computation-efficient CNN
- quantized MobileNetV2 being used in our case study- can be built by
adopting the approach that is developed in this thesis: by adopting an ap-
proach similar to the ones in [25, 26], sampling video frames from video,
extracting features from them based on transfer learning and aggregating
them while capturing temporal information by using either GRU or LSTM
that are trained. In our case study, quantized MobileNetV2 is chosen as a
representative of memory and computation-efficient CNNs, but similar ap-
proaches can be recycled when building video classification pipelines that
are based on other memory and computation-efficient CNNs, such as Mo-
bileNetV1, MobileNetV2, quantized MobileNetV1 and others.

To answer the second part of the research question, our approaches
based on quantized MobileNetV2 globally achieve satisfactory performance
according the metrics that are used (accuracy, top-5 accuracy, precision,
recall and f1-score), which validate the artefacts. Based on the UCF101
dataset, that is used as a representative video classification datasets, our
pipelines based on quantized MobileNetV2 achieved satisfactory perfor-
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mance metrics that do not differ so much from our reference pipelines
that are based on Inception-v3. The gaps between metrics obtained via
quantized MobileNetV2 and Inception-v3 feature extraction methods are
lower for RNN-based approaches than single-frame models, which may,
to some extent, validate the hypothesis that the drop in accuracy induced
by the use of quantized MobileNetV2 when dealing with individual frames
can be compensated by capturing temporal information via consideration
of sequence of these frames. Regarding these results, video classifica-
tion pipelines that are based on other memory and computation-efficient
networks than quantized MobileNetV2 but that follow the same architec-
ture and transfer learning approach should record similar performance met-
rics and trends and bring similar conclusions. However, the aforemen-
tioned compensation is not enough so that the video classifications based
on a memory and computation-efficient CNN and larger and more accurate
CNN perform same. On the one hand, this should stem from intrinsic gap
in accuracy between these networks. On the other hand, for the UCF101
dataset, spatial information already discriminate well different classes, be-
cause the dataset contains high quality data: short, well-segmented videos
of concepts that can typically be identified in a single frame. This is evi-
denced by the already high performance of single-frame models. The same
remark has been stated in [25]. Therefore video classification based on an
accurate image recognition CNN should record better performance when
using the UCF101 dataset. To some extent, the case study should gener-
alise to other video classification datasets, show similar trends and bring
similar conclusions. Especially, the aforementioned gap should be reduced
when images in these datasets that bring spatial information present less di-
versity. The use of memory and computation-efficient CNNs may be very
effective in this case.

As pointed out in the last part of the previous chapter, there are non-
negligible numbers of classes for which average precision, recall or f1-
score are better when quantized MobileNetV2 is used as feature extractor
than when Inception-v3 is used as feature extractor. This fact pointed out in
this case study should be also observable when a memory and computation-
efficient CNN other than quantized MobileNetV2 is used as feature extrac-
tor. As future work, a deeper investigation on the possible reasons for this
phenomenon should be interesting.

The use of the artefacts that are developed in this thesis should obviously
be relevant when dealing with multi-class classification of videos. There-
fore the conclusions can carry over other applications of video classification
than action recognition, for example dynamic scene recognition. Besides,
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computation and memory-efficient CNN can be used for some tasks that
deal with video data but that are different from video classification, for ex-
ample video (temporal) segmentation. This is the process of partitioning
a video sequence into disjoint sets of consecutive frames that are homoge-
neous according to some defined criteria. Features extracted from compu-
tation and memory-efficient CNN can be used in order to tackle this task,
and this can be useful for one who wants to perform it on a computationally
limited platform.

By answering the research question, this thesis shows, via performance
metrics measured over the UCF101 dataset, the potential utility of mem-
ory and computation-efficient CNN when dealing with video classifica-
tion, which is interesting for one who wants to do video classification on a
platform that is limited in terms of memory and computation capabilities.
This work can serve as a significant starting point for video classification
pipelines that are based on memory and computation-efficient CNNs.

In this thesis work, pre-trained feature extractor is not fine-tuned. In the
future, one should try to fine-tune it in order to further increase performance
of video classification. Quantized feature extractor should be fine-tuned in
a quantization-aware manner. Besides, this thesis work does not use data
augmentation strategies. Some of them can be used in order to further
obtain better results.

The combination of quantized MobileNetV2 and a RNN - preferably
GRU - forms the video classification pipeline based on computation and
memory-efficient CNN in this thesis. However, this RNN classifier can
be further compressed, based on approaches such as knowledge distilla-
tion [20]. This is suitable for more effective deployment of video classifi-
cation pipeline on devices with limited memory and computational power,
because both GRU and LSTM still involves large number of parameters
(even if GRU has less parameters than LSTM). Currently, GRU and LSTM
are not supported by TensorFlow Lite for quantization. In the future, when
they will be, the video classification pipeline should be updated by doing
quantization-aware training of its classifier, in order to further compress it.

Also, the video classification pipeline can be improved by doing a knowl-
edge transfer from another video classification model that is trained on
larger and more diverse dataset. If one wants to leverage quantized Mo-
bileNetV2 features, Youtube-8m [26] may not be a good candidate as it
is a dataset of Inception-v3 features. Recently, IBM released a large-scale
human-annotated collection of one million short videos corresponding to
dynamic events unfolding within three seconds, the Moments in Time Dataset [67].
This dataset may be a good starting point for this knowledge transfer. In-
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deed, one of the major reasons for the delay in research improvement be-
tween image understanding and video understanding is that video under-
standing lacks enough diverse and large datasets that can be equivalent to
for example ImageNet in image understanding. In correlated way, unlike in
image understanding, there is lack of popular networks and benchmarking
studies in video understanding. This kind of datasets should be more devel-
oped and additional benchmarking studies should be done. The Moments
in Time Dataset seems to be a good starting point for this.

Finally, in this thesis, unlike in [26], video representation-based ap-
proaches using quantized MobileNetV2 features were not tested. They
can be interesting approaches to try in the future. However, in the con-
text of multiclass classification problem, they may not be memory and
computation-efficient enough to be deployed on a platform with limited
memory and computational capabilities, as they first require defining rigor-
ous framework of multiclass classification (for example, one versus one or
one versus all) that is less flexible than a softmax classifier.
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APPENDIXA
Classification results

This part shows entire contents of classification reports, reporting precision, recall and f1-score
for each of the 101 classes and their average values over the 101 classes for both of the GRU-
based approaches respectively based on quantized MobileNetV2 and Inception-v3 feature extraction.
We also subsequently shows confusion matrices without normalization for both of the GRU-based
approaches, along with numbers of correct and incorrect predictions (Figures A.1 and A.2 ).

Classification report quantized MobileNetV2 feature extraction GRU

precision recall f1-score support

ApplyEyeMakeup 0.67 0.64 0.65 44
ApplyLipstick 0.62 0.78 0.69 32

Archery 0.62 0.61 0.62 41
BabyCrawling 0.79 0.97 0.87 35
BalanceBeam 0.76 0.61 0.68 31
BandMarching 0.84 0.95 0.89 43

BaseballPitch 0.95 0.86 0.90 43
Basketball 0.47 0.91 0.62 35

BasketballDunk 0.97 1.00 0.99 37
BenchPress 0.85 0.96 0.90 48

Biking 0.97 0.97 0.97 38
Billiards 1.00 1.00 1.00 40

BlowDryHair 0.76 0.68 0.72 38
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BlowingCandles 0.66 0.94 0.78 33
BodyWeightSquats 0.19 0.13 0.16 30

Bowling 0.87 0.93 0.90 43
BoxingPunchingBag 0.92 0.45 0.60 49

BoxingSpeedBag 0.53 0.81 0.64 37
BreastStroke 0.53 0.96 0.68 28
BrushingTeeth 0.31 0.31 0.31 36
CleanAndJerk 0.61 0.70 0.65 33
CliffDiving 0.88 0.97 0.93 39

CricketBowling 0.36 0.39 0.37 36
CricketShot 0.41 0.27 0.32 49

CuttingInKitchen 0.91 0.94 0.93 33
Diving 0.96 1.00 0.98 45

Drumming 0.81 0.87 0.84 45
Fencing 0.71 0.85 0.77 34

FieldHockeyPenalty 0.62 0.45 0.52 40
FloorGymnastics 0.89 0.67 0.76 36

FrisbeeCatch 0.60 0.81 0.69 37
FrontCrawl 0.87 0.35 0.50 37
GolfSwing 0.52 0.87 0.65 39

Haircut 0.45 0.67 0.54 33
HammerThrow 0.83 0.64 0.73 45

Hammering 0.85 0.33 0.48 33
HandStandPushups 0.68 0.68 0.68 28
HandstandWalking 0.08 0.06 0.07 34

HeadMassage 0.47 0.78 0.59 41
HighJump 0.90 0.49 0.63 37

HorseRace 0.89 0.97 0.93 35
HorseRiding 0.96 1.00 0.98 49

HulaHoop 0.62 0.59 0.61 34
IceDancing 0.85 0.98 0.91 46

JavelinThrow 0.77 0.65 0.70 31
JugglingBalls 0.51 0.50 0.51 40

JumpRope 0.11 0.08 0.09 38
JumpingJack 0.79 0.62 0.70 37

Kayaking 0.83 0.69 0.76 36
Knitting 1.00 0.82 0.90 34
LongJump 0.75 0.54 0.63 39

Lunges 0.40 0.46 0.43 37
MilitaryParade 0.88 0.91 0.90 33

Mixing 1.00 0.62 0.77 45
MoppingFloor 0.65 0.71 0.68 34

Nunchucks 0.33 0.20 0.25 35
ParallelBars 0.85 0.92 0.88 37
PizzaTossing 0.48 0.42 0.45 33
PlayingCello 1.00 0.77 0.87 44
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PlayingDaf 0.89 0.80 0.85 41
PlayingDhol 0.70 0.88 0.78 49
PlayingFlute 1.00 0.85 0.92 48

PlayingGuitar 1.00 1.00 1.00 43
PlayingPiano 0.80 1.00 0.89 28
PlayingSitar 1.00 0.98 0.99 44
PlayingTabla 0.91 1.00 0.95 31

PlayingViolin 0.92 0.86 0.89 28
PoleVault 0.93 1.00 0.96 40

PommelHorse 0.86 0.51 0.64 35
PullUps 0.44 0.25 0.32 28

Punch 0.81 0.87 0.84 39
PushUps 0.68 0.57 0.62 30
Rafting 0.89 0.89 0.89 28

RockClimbingIndoor 0.93 1.00 0.96 41
RopeClimbing 0.72 0.68 0.70 34

Rowing 0.80 0.92 0.86 36
SalsaSpin 0.48 0.58 0.53 43

ShavingBeard 0.53 0.44 0.48 43
Shotput 0.61 0.59 0.60 46

SkateBoarding 0.68 0.66 0.67 32
Skiing 0.81 0.75 0.78 40
Skijet 1.00 1.00 1.00 28

SkyDiving 0.97 0.97 0.97 31
SoccerJuggling 0.43 0.41 0.42 39
SoccerPenalty 0.81 0.83 0.82 41

StillRings 0.97 0.94 0.95 32
SumoWrestling 0.94 1.00 0.97 34

Surfing 0.94 1.00 0.97 33
Swing 0.70 0.88 0.78 42

TableTennisShot 0.93 0.97 0.95 39
TaiChi 0.74 0.61 0.67 28

TennisSwing 0.46 0.24 0.32 49
ThrowDiscus 0.38 0.76 0.50 38

TrampolineJumping 0.79 0.94 0.86 32
Typing 1.00 0.91 0.95 43

UnevenBars 0.70 0.93 0.80 28
VolleyballSpiking 0.78 0.89 0.83 35

WalkingWithDog 0.70 0.78 0.74 36
WallPushups 0.46 0.31 0.37 35

WritingOnBoard 1.00 0.96 0.98 45
YoYo 0.80 0.56 0.66 36

avg / total 0.74 0.73 0.72 3783
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Classification report Inception-v3 feature extraction GRU

precision recall f1-score support

ApplyEyeMakeup 0.86 0.73 0.79 44
ApplyLipstick 0.69 0.62 0.66 32

Archery 0.83 0.93 0.87 41
BabyCrawling 0.92 1.00 0.96 35
BalanceBeam 0.51 0.61 0.56 31

BandMarching 0.72 0.98 0.83 43
BaseballPitch 0.74 0.81 0.78 43

Basketball 0.54 0.74 0.63 35
BasketballDunk 0.84 1.00 0.91 37

BenchPress 0.82 0.83 0.82 48
Biking 0.92 0.95 0.94 38

Billiards 1.00 1.00 1.00 40
BlowDryHair 0.84 0.71 0.77 38

BlowingCandles 0.89 1.00 0.94 33
BodyWeightSquats 0.47 0.23 0.31 30

Bowling 0.87 0.93 0.90 43
BoxingPunchingBag 0.74 0.80 0.76 49

BoxingSpeedBag 0.67 0.81 0.73 37
BreastStroke 0.56 0.71 0.63 28
BrushingTeeth 0.75 0.50 0.60 36
CleanAndJerk 0.75 0.73 0.74 33
CliffDiving 0.90 0.90 0.90 39

CricketBowling 0.35 0.31 0.33 36
CricketShot 0.48 0.45 0.46 49

CuttingInKitchen 0.73 1.00 0.85 33
Diving 0.94 0.98 0.96 45

Drumming 0.95 0.91 0.93 45
Fencing 0.94 0.88 0.91 34

FieldHockeyPenalty 0.74 0.80 0.77 40
FloorGymnastics 0.61 0.78 0.68 36

FrisbeeCatch 0.80 0.76 0.78 37
FrontCrawl 0.70 0.51 0.59 37
GolfSwing 0.64 0.59 0.61 39

Haircut 0.54 0.82 0.65 33
HammerThrow 0.55 0.69 0.61 45

Hammering 0.76 0.67 0.71 33
HandStandPushups 0.72 0.64 0.68 28
HandstandWalking 0.33 0.21 0.25 34

HeadMassage 0.87 0.83 0.85 41
HighJump 0.71 0.46 0.56 37

HorseRace 0.84 0.91 0.88 35
HorseRiding 0.94 1.00 0.97 49

HulaHoop 0.90 0.82 0.86 34
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IceDancing 1.00 0.98 0.99 46
JavelinThrow 0.58 0.45 0.51 31

JugglingBalls 0.74 0.88 0.80 40
JumpRope 0.17 0.05 0.08 38

JumpingJack 0.67 0.54 0.60 37
Kayaking 0.88 0.83 0.86 36
Knitting 1.00 0.82 0.90 34
LongJump 0.46 0.59 0.52 39
Lunges 0.71 0.41 0.52 37

MilitaryParade 0.90 0.82 0.86 33
Mixing 1.00 0.78 0.88 45

MoppingFloor 0.67 0.82 0.74 34
Nunchucks 0.35 0.31 0.33 35

ParallelBars 0.62 0.97 0.76 37
PizzaTossing 0.59 0.61 0.60 33
PlayingCello 1.00 0.68 0.81 44

PlayingDaf 0.89 1.00 0.94 41
PlayingDhol 1.00 1.00 1.00 49
PlayingFlute 0.95 0.85 0.90 48

PlayingGuitar 1.00 1.00 1.00 43
PlayingPiano 0.96 0.86 0.91 28
PlayingSitar 1.00 1.00 1.00 44
PlayingTabla 0.90 0.84 0.87 31

PlayingViolin 0.70 1.00 0.82 28
PoleVault 0.69 0.95 0.80 40

PommelHorse 0.93 0.74 0.83 35
PullUps 0.90 0.64 0.75 28

Punch 1.00 0.87 0.93 39
PushUps 0.79 0.73 0.76 30
Rafting 0.89 0.89 0.89 28

RockClimbingIndoor 0.98 0.98 0.98 41
RopeClimbing 0.65 0.71 0.68 34

Rowing 0.88 0.78 0.82 36
SalsaSpin 0.66 0.72 0.69 43

ShavingBeard 0.56 0.88 0.68 43
Shotput 0.70 0.50 0.58 46

SkateBoarding 0.67 0.75 0.71 32
Skiing 0.81 0.75 0.78 40
Skijet 0.97 1.00 0.98 28

SkyDiving 0.97 0.97 0.97 31
SoccerJuggling 0.48 0.59 0.53 39
SoccerPenalty 0.94 0.83 0.88 41

StillRings 0.88 0.72 0.79 32
SumoWrestling 0.83 0.88 0.86 34

Surfing 0.87 1.00 0.93 33
Swing 0.81 0.81 0.81 42
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Appendix A. Classification results

TableTennisShot 1.00 1.00 1.00 39
TaiChi 0.78 0.75 0.76 28

TennisSwing 0.68 0.43 0.53 49
ThrowDiscus 0.54 0.71 0.61 38

TrampolineJumping 0.69 0.97 0.81 32
Typing 1.00 0.81 0.90 43

UnevenBars 1.00 0.86 0.92 28
VolleyballSpiking 0.59 0.69 0.63 35

WalkingWithDog 0.72 0.86 0.78 36
WallPushups 0.56 0.43 0.48 35

WritingOnBoard 0.95 0.91 0.93 45
YoYo 0.74 0.64 0.69 36

avg / total 0.77 0.77 0.76 3783
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Figure A.1: Confusion matrix, without normalization (quantized MobileNetV2 feature
extraction and GRU classifier), along with numbers of correct and incorrect predictions.
Color depth indicates number of predictions.
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Appendix A. Classification results

Figure A.2: Confusion matrix, without normalization, (Inception-v3 feature extraction
and GRU classifier), along with numbers of correct and incorrect predictions. Color depth
indicates number of predictions.
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