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A B S T R A C T

The objective of this work is to detect structural damage in a simply
supported beam and helicopter rotor blades. In the simply supported
beam, the structural damage is modeled as localized bending stiffness
reduction, added mass, and added stiffness in the support. Displace-
ment time-series are obtained from numerical simulation using the free
general-purpose multibody solver MBDyn. Multivariable autoregres-
sive model from the displacement time-series is used as the parameter
to build the machine learning model. In the helicopter rotor blades,
damage due to localized torsional stiffness reduction is simulated.
Structural health monitoring algorithm is performed based on strain
measurement on the blades. Three algorithms are presented. They use
the information from the differences of strain measurement in all of
the four blades. Maneuvered flight is also performed to assess the
method outside steady flight condition. Mahalanobis squared distance,
auto-associative neural network, and singular value decomposition
are used as the machine learning algorithms.

xiii
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S O M M A R I O

L’obiettivo di questa tesi è identificare i danni strutturali in una trave e
rotore dell’elicottero. Nella trave, il danno strutturale è modellato come
riduzione localizzata della rigidezza alla flessione, massa aggiunta e
rigidità aggiunta nel supporto. Le serie temporali di spostamento sono
ottenute dalla simulazione numerica utilizzando il solver multibody
MBDyn. Il modello autoregressivo multivariabile della serie temporale
di spostamento viene utilizzato come parametro per costruire il mod-
ello di apprendimento automatico. Nel rotore dell’elicottero, viene
simulato il danno di riduzione localizzata della rigidità torsionale.
L’algoritmo di monitoraggio della salute strutturale viene eseguito
sulla base della misurazione della deformazione sulle pale. Vengono
presentati tre algoritmi. Viene inoltre eseguito un volo manovrato
per valutare il metodo al di fuori delle condizioni di volo stabili.
Mahalanobis squared distance, auto-associative neural network, e singular
value decomposition vengono utilizzati per il modello di apprendimento
automatico.

xiv
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1
I N T R O D U C T I O N

Science, my boy, is made up of mistakes, but they are mistakes which it is
useful to make, because they lead little by little to the truth.

— Verne Journey to the Center of the Earth 1957

1.1 structural health monitoring

Structural health monitoring (SHM) is the process of implementing
a damage detection strategy for aerospace, civil, and mechanical en-
gineering infrastructure (Figueiredo et al., 2010). The process uses
measurement from sensors, which can be strain, acceleration, or dis-
placement. Then, the data is analysed to observe the current state
and condition of the structure. The tap testing that was performed to
detect cracks in railroad wheels in the 1800s is the earliest references
to structural health monitoring (Farrar and Worden, 2013).

Damage detection technology for civilian and defence applica-
tions in aerospace began during the late 1970s and early 1980s (Farrar
and Worden, 2013). In one of the early work, sensors are used to count
load cycles. The evolution of structural health monitoring has pro-
duced several systems from research to application, which examples
are space shuttle modal inspection system (SMIS) and rotorcraft health
and usage monitoring system (HUMS). In rotorcraft industry, health
and usage monitoring system is implemented on UM-60M Blackhawk
helicopter to monitor the main rotor and gearbox components during
operation. These systems that use vibration data for predictive mainte-
nance can incrase rotor component life by 15%, reduce the frequency
of expensive periodic inspections which is around 25% of the operat-

1
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2 introduction

ing cost (Cronkhite, 1993), and increase flight safety. Federal Aviation
Administration (FAA) and the Civil Aviation Authority (CAA) have
approved the use of HUMS as part of maintenance strategy.

The development of composite materials gives new challenge
to the damage detection technology. Composite structures have dif-
ferent behaviour and failure mechanisms, such as delamination and
debonding which are not associated with metallic structures. Some
constraints on the sensing system are also present, for example weight
limitations or composite fuel tank where the sensing systems must not
provide a spark hazard. This has led to development of SHM based
on fibre optics, active pulse-echo, and pitch-catch wave approaches.

Structural health monitoring for aerospace application is driven
by both safety and economic issues. Economic benefits can be obtained
if the SHM system reduces the amount of maintenance required,
which prevents unnecessary overhaul of the mechanical and structural
components. In military application, combat asset readiness of the
aircraft can be increased by decreasing the maintenance time.

Data acquisition system is used to sense the states of the system
in operating condition. Optical and mechanical (e.g: strain and acceler-
ation) measurement are the most common used. Optical sensors have
several benefits which are lightweight, and free from spark hazard.
In rotorcraft application, optical sensors have several disadvantages
(Serafini et al., 2018). They can only monitor in-sight parts of the object
that has sufficient optical markers field. Operation conditions such as
the presence of water, ice, or direct sun combined with high speed
measurements and vibration lower the performance and accuracy
of the measurement. On the other hand, strain measurements are
preferred due to its simplicity.
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1.2 state of the art and literature review 3

1.2 state of the art and literature review

1.2.1 Multibody system

Multibody system is a collection of subsystems called bodies, com-
ponents, or substructures (Shabana, 2005). Different types of joints
are used to constrain the motion of the subsystems kinematically.
Large translations and rotational displacements may happen in each
subsystem or component.

Peaucellier mechanism displayed in figure 1.1 is an example of
a multibody system (Shabana, 2005). The mechanism is constructed
to create a straight-line path. Due to the constraints BC = BP = EC
= EP and AB = AE, points A, C, and P should always arraged on
a straight line. In case AD = CD, point C has a circular arc and
point P should go on a straight line. This is not the case when elastic
deformation of the links is taken into account. If the flexibility is
considered, the mechanism can be modeled as a multibody system of
rigid and deformable elements.

Figure 1.1: Peaucellier mechanism (Shabana, 2005)
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4 introduction

The dynamic equations of rigid bodies can be derived by as-
suming that the rigid body consists of a large number of particles.
The unconstrained three-dimensional motion of the rigid body can be
described using six equations: three translational equations and three
equations of body rotation. Together, they are called Newton-Euler
equations, which are expressed in terms of the accelerations and forces
acting on the body to characterize an arbitrary rigid body motion.

The Newton-Euler equations for body i in the multibody system
can be written as

miv̇i +miωi×vi = fi
ωi×J

iωi + Jiω̇i =Mi
(1.1)

where mi is the total mass of the rigid body, ai is a vector that
defines the absolute acceleration of the center of mass of the body, fi

is the vector of forces acting on the body center of mass, Ji is the mass
moment of inertia defined with respect to the center of mass, ωi is
the first derivative with respect to time of the angle that defines the
orientation of the body, and Mi is the moment acting on the body.

In multibody systems, the motion of the bodies is constrained
because of the mechanical joints, such as revolute, spherical, and
prismatic joints. Figure 1.2 shows the example of mechanical joints.

Figure 1.2: Example of mechanical joints. (a) Prismatic or translational, (b)
revolute, (c) cylindrical, (d) screw joint (Shabana, 2005)

The mobility of the system is reduced because the motion is
no longer independent due to specified trajectories of the mechanical
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1.2 state of the art and literature review 5

joints. Using a set of nonlinear algebraic constraint equations, the
mechanical joints and specified motion trajectories are described. The
number of system degrees of freedom is defined as the number of the
system coordinates minus the number of independent constraint equa-
tions. For an nb rigid body system with nc independent constraint
equations, the number of system degree of freedom is

DOF = 6×nb −nc (1.2)

Figure 1.2 shows some of the commonly used mechanical joints
that appear in many mechanical systems. The prismatic or transla-
tional joint allows only translation between two bodies. Five kinematic
constraints in Cartesian space are used to limit the motion in order
to describe the motion only along the joint axis. These equations are
constructed by using a set of algebraic equations that impose only
relative translation between two bodies along two axes.

The revolute joint allows only relative rotation between two
bodies around a revolute joint axis. Five constraint equations are used:
three equations that limit relative translation between the two bodies,
and two equations that constrain the relative rotation between the two
bodies.

The cylindrical joint allows only relative translation and relative
rotation between the two bodies along the joint axis.

1.2.2 Axioms of Structural Health Monitoring

The study in Structural Health Monitoring has arrived to the point
where several fundamental axioms can be written (Farrar and Worden,
2013). Axioms are used to represent the fundamental truth in the
methodology.

All material have inherent flaws or defects. It is well known
that a perfect periodic structure of a regular lattice of atoms has
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6 introduction

higher strength than those material samples that are experimentally
tested. In the real world, perfect material does not exist, since there are
defects at the microstructural level, such as vacancies, inclusions, and
impurities. In metals, the presence of microcracks and voids lowers
the strength of the material. In composites material, defects also occur
at the macrostructural level due to manufacturing processes. These
defects drop the strength of the material, therefore the mechanical
properties of a specific material are always given as a range of values.

A defect is always hidden inside all materials. Damage occurs
when the structure is not performing in its ideal condition, but possibly
in a suboptimal manner. Failure happens when the structure is not
operating satisfactorily with unacceptable reduction in quality.

Damage assessment requires a comparison between two system
states. In the pattern recognition method to structural health moni-
toring, a training data is required as a baseline. For novelty detection
approaches, the training set consists of samples that are obtained from
the normal condition of the structure. For higher levels of diagnosis,
such as damage type, location, and severity, the training data must
contain samples corresponding to various damage conditions.

Identifying the presence of damage can be done in unsuper-
vised learning mode, but identifying the type of damage ans severity
can be done in a supervised learning mode. Supervised leaning al-
gorithm learns the data that are obtained from both the undamaged
and damaged structures, while unsupervised learning learns only
from the undamaged structure. Novelty detection is an example of
unsupervised learning application.

In unsupervised learning mode, statistical analysis are used to
measure how different is the tested data with the reference undamaged
data. Damage sensitive feature extracted from the system response is
processed through the algorithm to produce a damage index that can
be compared to a predetermined threshold to conclude that damage is
present. Basically, this type of learning mode cannot tell the difference
between possible type and severity of damage.
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1.2 state of the art and literature review 7

In supervised learning mode, the training data consists of data
from known types and severity of damage. Finite element model is
one of the desired approach to simulate the condition of damage in
a structure. In order to have a reliable system, an accurate model of
structure must be available. These data can be used to build a machine
learning classification and regression models that can indicate the type
and level of damage, based on the previously learned data.

Sensor cannot measure the damage directly. It measures the
response of the system due to operational and environmental con-
dition. An algorithm is necessary to map sensor data into damage
information. As an example, one cannot measure stress directly using
a sensor. The measured quantity is the strain which is later mapped
to the stress using a certain function. The function depends on the
material and geometric properties of the structure.

Using the same analogy, in structural health monitoring with
machine learning approach, the function is estimated using known
observations from the data. The data can have high dimensionality. In
order to have an accurate representation of the model, more training
data is needed for increasing amount of dimension of the feature.
The first solution is to get enough amount of training sets, which
maybe impossible for some situations where the data are limited due
to cost and availability constraint. The second approach is to use
dimension reduction algorithm to lower the dimension of the data
until the available data are enough to make a reliable model. Principal
component analysis is one of the example of dimension reduction
algorithm.

The measured data depends both on the state of the damage
and the environmental and operational condition of the system. Tem-
perature is an example of the environmental condition. Generally, it
is desired to find a method to identify the change in damage, with
insensitivity from all other sources of environmental and operational
variability.

The length and time scales of the phenomena influence the
structural health monitoring sensing system. As an example, detection
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of foreign object impact on an unmanned aerial vehicle needs relatively
high sampling rates. Basically, sensor types, number and locations,
bandwidth, sampling intervals, data acquisition and systems need to
be properly chosen in order to sense the phenomena of the damage
condition.

Noise in the measured signal is always present during the
measurement process. The reduction of noise allows to have a more
accurate reading of the system. The level of noise in the measured
data must be reduced as much as possible, which can be performed
by various method such as analogue or digital filtering.

The size of damage that can be detected is inversely propor-
tional to the frequency range of excitation. In general, at high fre-
quency range it is easier to see the damage signal differences with the
baseline signal.

Damage increases the complexity of a structure. Most of the
time, nonlinear response is present in damaged structure. More com-
plex shape needs more information in order to represent it than a
simpler pattern. Feature selection is performed by defining the type
of damage and its properties.

1.2.3 Literature review

Serafini et al., 2019 developed an approach to structural health moni-
toring of helicopter rotors based on strain measurement on the blade.
The algorithms which are based on the analysis of the discrepancies
between damaged and undamaged blades.

A mass unbalance at the tip and a localized stiffness reduc-
tion are considered in the numerical simulation using multibody
dynamic solver for aeroelastic analysis of rotorcraft. Two algorithms
are presented: in time domain and in the frequency domain. The first
algorithm uses the autocorrelation signal of the discrepancies signal
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1.2 state of the art and literature review 9

while the second algorithm analyses the discrepancies signal using
the power spectral density.

Figure 1.3 shows the autocorrelation, while figure 1.4 displays
the power spectral density of the discrepancies signal from damaged
(10% stiffness reduction) and undamaged blades.

Figure 1.3: Autocorrelation of discrepancies signal from altered (10% flap-
ping stiffness reduction) and nominal blades (Serafini et al., 2019)

Figure 1.4: PSD of discrepancies signal from altered (10% flapping stiffness
reduction) and nominal blades (Serafini et al., 2019)

The methods work better in quasi-steady flight conditions,
while the accuracy decreases in aggressive maneuvered flight. Col-
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10 introduction

lective excitations of two 1-cos collective doublets are introduced as
perturbations.

Figueiredo et al., 2010 applied four machine learning algo-
rithms in order to detect structural damage in presence of operational
and environmental variations using vibration. Autoregressive model
is used to extract damage-sensitive features from time-series data of
accelerometers when the structure is in different state. The algorithms
presented are auto-associative neural network, factor analysis, Maha-
lanobis distance, and singular value decomposition. Each algorithm
produces a scalar output which is the damage indicator.

The experimental campaign is performed on three-story frame
structure to obtain time-series data from an array of accelerometers
under several structural state conditions. The damage is simulated by
introducing a bumper mechanism that induces a repetitive impact-
type nonlinearity. This mechanism simulates a crack that open and
closes under dynamic loads. Figure 1.5 shows the three-story frame
aluminum structure used in the experiment.

[ July 14, 2019 at 11:48 – version 1.0 ]



1.2 state of the art and literature review 11

Figure 1.5: Three-story test bed structure (all dimensions are in centimeter)
(Figueiredo et al., 2010)

Santos et al., 2015 presented four kernel-based algorithms for
damage detection, which are one-class support vector machine, sup-
port vector data description, kernel principal component analysis, and
greedy kernel principal component analysis. An autoregressive model
is built from acceleration time-series measurement from accelerome-
ters. In the test phase, the machine learning algorithm will map each
input feature vector into a damage indicator index. The classification
is performed using one-sided threshold.

Gul and Catbas, 2009 studied statistical pattern recognition
methodologies for structural health monitoring application to detect
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damages. Outlier analysis from the damage sensitive feature, obtained
from autoregressive model is used to detect the changes in the struc-
ture. The specimen is a simply supported steel beam, displayed in
figure 1.6. The time-response data is obtained by measurement of
accelerometers.

Figure 1.6: The beam test setup (Gul and Catbas, 2009)

The algorithm uses a modified methodology by applying the
random decrement method for normalizing the ambient vibration data.
Then, autoregressive model of the free responses are constructed. The
coefficients of the Autoregressive model are selected as the damage
sensitive features. Finally, the condition of different structures are
separated by implementing the Mahalanobis distance-based outlier
detection algorithm.

Three damage scenario are presented. The first is a case where
a pile loss is simulated by removing the roller support between the
grid and the column. The second damage case, restrained supports,
is simulated by fixing the end supports to create rigidity caused by
different phenomena such as corrosion. The third case simulates local
stiffness reduction where a connection plate is removed from the
structure.
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1.2 state of the art and literature review 13

Comparative analysis shows that using random decrement
gives better separation during the outlier detection process. The
methodology gave successful results, but some of the cases did not
show successful result, such as the reduced stiffness case.

Ruotolo and Surace, 1999 used singular value decomposition
for detecting damage in structure. The damage detection method is
based on the determination of the rank of a matrix. A numerical truss
structure is used to validate the damage detection algorithm, shown
in figure 1.7. The stiffness of element 4 in figure 1.7 is reduced to 10%,
30%, and 50%.

Figure 1.7: The beam test setup (Ruotolo and Surace, 1999)

Amplitude of the frequency response functions are used to
build the characteristic vectors. Noises generated from Gaussian distri-
bution with standard deviation equal to 10% of the mean is introduced
to the characteristic response function. The result shows that the in-
creasing damage index enable the damage to be detected.

Experimental tests are also performed to a cantilever beam,
illustrated in figure 1.8. Three conditions are simulated: concentrated
mass not connected to the beam, the lighter mass connected close to
free end, and the heavier mass connected close to the free end.
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14 introduction

Figure 1.8: The beam test setup (Ruotolo and Surace, 1999)

The frequency response functions are obtained from four sen-
sors for each different conditions. In the end, satisfactory results are
obtained.

1.3 objective

In this work, damage detection algorithm is implemented to two
different problems, which are simply supported structure and heli-
copter rotor blades. The simulations are performed numerically using
multibody dynamic solver MBDyn.

In the simply supported beam case, several types of damage are
considered, which are localized stiffness reduction, added mass, and
added stiffness in one of the support. The measurement of displace-
ment in two location on the beam is simulated using multibody solver
MBDyn. Multivariate autoregressive model is fitted to the time-series
displacement in order to identify the characteristic of the free response
signal. Then, Mahalanobis squared distance is used to distinguish
between data coming from damaged or undamaged model.

In the helicopter rotor blade, localized torsional stiffness reduc-
tion is introduced as a damage. Strain measurement in the blades are
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1.4 outline 15

used as to perceive the condition of the system. Three algorithms are
presented. They use the information from the differences of strain
measurement in all of the four blades. Maneuver is also simulated
to assess the methods outside steady flight condition. Mahalanobis
squared distance, auto-associative neural network, and singular value
decomposition are used as the machine learning algorithms.

1.4 outline

This article is organized in four parts. The first part is the introduction.
The second part describes the modeling and analysis in simply sup-
ported beam structure. The third part explains the structural health
monitoring process in helicopter rotor blades. The last part concludes
the work.
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2
S I M P LY S U P P O RT E D B E A M

Science knows no country, because knowledge belongs to humanity, and is
the torch which illuminates the world.

— Louis Pasteur

2.1 introduction

Structural health monitoring involves installations of sensors to collect
valuable data about the structure. Knowledge about the structure
can be obtained by observing the sensor data. The information and
knowledge gained from the sensor data is then used for evaluation of
the integrity of the structure and to schedule maintenance activities.

The goal of this work is to detect the presence of damage in
a simply supported beam. In this study, the structure is a simply
supported beam with damage in the middle and the simulation is
performed using a multibody model, generated using MBDyn. Next,
Multivariate Autoregressive model is used to collect damage-sensitive
features from time-series of displacement data when the structure is in
different condition. Then, Mahalanobis squared distance is used as the
machine learning algorithm for data normalization, to model the effect
of damage. Afterwards, the machine learning algorithm generates a
scalar damage index which should be small when the features are
obtained from a reference normal undamaged data. Finally, the scalar
damage index is compared to a given threshold to classify the tested
system if it is damaged or not.

17
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18 simply supported beam

Several types of damage are introduced to the system: bending
stiffness reduction, added mass, and added stiffness in the support.
They are intended as the effects on the response of an actual damage.
The bending stiffness reduction is simulated by dividing the beam
into two parts, connected with a rotational joint and a spring stiffness
at the damage location. It is intended to simulate fatigue crack. Added
mass in the system simulates an unwanted addition of mass that might
happen during the operational life of the system. The added stiffness
problem simulates some unintended rigidity at the supports due to
various reasons such as corrosion.

2.2 multibody model

MBDyn is the first and possible the only free general purpose Multi-
body Dynamics analysis software, released under GNU’s GPL 2.1. It
has been developed at the Dipartimento di Scienze e Tecnologie Aerospaziali
of the university Politecnico di Milano.

MBDyn features integrated multidisciplinary simulation of
multibody, multiphysics systems, including nonlinear mechanics of
rigid and flexible bodies (geometrically exact and composite-ready
beam and shell finite elements, component mode synthesis elements,
lumped elements) subjected to kinematic constraints, along with smart
materials, electric networks, active control, hydraulic networks, and
essential fixed-wing and rotorcraft aerodynamics. It is developed an
used in aerospace (aircraft, helicopters, tiltrotors, and spacecraft), wind
energy (wind turbines), automotive (cars, trucks), and mechatronic
fields (industrial robots, parallel robots, micro aerial vehicles (MAV))
for the analysis and simulation of the dynamics of complex systems.

Five types of model are used in this work. The first one is an
undamaged simply supported beam. The second model is a simply
supported beam with a rotational joint and spring stiffness in the
middle, which simulates crack. The third model is a whole undamaged
simply supported beam, with added mass, located at the middle of
the beam. The fourth model is an undamaged simply supported beam
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2.2 multibody model 19

with added mass located at the left quarter of the beam. The last
model is a simply-simply beam with undesired added stiffness at the
left support, which simulates unwanted increase of rigidity caused by
different reasons such as corrosion (Gul and Catbas, 2009).

(a) Undamaged beam

(b) Beam with spring in the middle

(c) Beam with added mass in the middle

(d) Beam with added mass in the left quarter

(e) Beam with added stiffness

Figure 2.1: List of the model used in the simulation

The damage in the middle of the beam is simulated using two
bodies, connected with a revolute joint and a linear elastic deformable
hinge. Two different constitutive laws for the deformable hinge are
used. The first one is linear isotropic law, while the second one is
nonlinear law. The nonlinear law is implemented to simulate the
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different behaviour of crack when it is opening or closing. A very
high stiffness value is used when the crack is closing and a reduced
stiffness value is used when the crack is opening.

The models have 16 beam element, which are built using 3

structural nodes for each element. The nodes at the end of the beam
are constrained in translational displacement and are allowed to rotate
in one degree of freedom using rotational joint.

The timestep used in the numerical simulation is dt = 2 ∗ 10−4s.
It corresponds to sampling frequency of 5kHz. Since the first natural
frequency of the problem is around 46Hz, the timestep dt = 2 ∗ 10−4s
is chosen in order to have more than 100 step for each period in the
multibody simulation.

The parameters used in model are displayed in table 2.1.

Table 2.1: Beam model’s parameters

Parameter value

Material

Density [kg/m3] 2780

Young’s modulus [GPa] 73.1

Shear modulus[GPa] 28

Geometry

Beam’s length [m] 1

Beam’s thickness [m] 0.02

Beam’s width [m] 0.05

In all of the model, two random zero-mean unit force are placed
at the middle and the quarter length of the beam from the left support
to simulate disturbances to the system. The load time-series are filtered
using 2nd order Butterworth’s filter with cutoff frequency 400Hz, in
order to remove the high frequency loads.
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The displacement of the nodes located at 1532L and 3
4L from the

left support are measured. The location of the damage is in the middle
of the beam. Therefore, two measurement from signal close to the
damage at 1532L and far from the damage 34L are used to represent the
system.

2.2.1 Damage simulation

The simulation of damage is realized as a localized reduction of bend-
ing stiffness. Two beams connected with a spring are used. The stiff-
ness profile of a beam with a localized stiffness reduction is equivalent
to the presence of spring with an elastic spring.

(a) Homogenous beam

(b) Beam with spring

Figure 2.2: Equivalent beam

The same behaviour is guaranteed if the bending moment M
passed through in the discontinuity is equal.

M = EIw(ξ) ′′ = k∆w(ξ) ′ (2.1)

where E is the Young’s modulus, I is the bending moment of
inertia, w is the vertical displacement of the beam, k is the stiffness of
the beam, and ξ is the longitudinal axis of the beam.
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Figure 2.3 shows the bending stiffness EI in case of stiffness
reduction of the homogenous beam with the equivalent beam.

(a) Homogenous beam

(b) Beam with spring

Figure 2.3: Stiffness profile of the equivalent beam

The value of the spring bending stiffness is evaluated by taking
into account the equivalence bending angle in equation 2.2.

∫r+Ld
2

r−
Ld
2

M

Sd
dx =

∫r−Ld
2

r−

M

Su
dx+∆w ′ +

∫r+Ld
2

r+

M

Su
dx , (2.2)

where M, Su, Sd, Ld are the bending moment, undamaged
stiffness, damaged blade stiffness, and length of damage, respectively.
Equation 2.2 is solved to obtain the spring stiffness, by assuming
constant bending moment in the damaged zone.
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Substituting equation 2.1 to equation 2.2 and assuming small
Ld, equation 2.3 is obtained.

M

Sd
Ld =

M

Su
Ld +

M

k
(2.3)

The value of k is obtained by solving equation 2.3.

K =

1
Ld

1
Sd

− 1
Su

(2.4)

2.2.2 Nonlinear model

The motivation to implement a nonlinear model is to simulate the
nonlinear behaviour of crack under bending load. The crack is simu-
lated using deformable joint with a given stiffness. Its behaviour in
stiffness changes depending whether the crack is opened or closed.
When the crack is opening, the decreased stiffness value is used, while
if the crack is closing, an infinite value of stiffness is applied. The
decreased stiffness is obtained as a function of the crack length by
using the relation in equation 2.4. For the infinite stiffness, a fixed
value of 109Nm/rad is used.

The nonlinear constitutive law is implemented in MBDyn by
using a continuous contact approach. The nonsmooth nature of contact
phenomena is approximated by using a smoothing approximation by a
regularization in the description of non-interpenetration and frictional
constrains. Stiff repulsion laws take effect when the two members of
the system is touching, to represent the non-interpenetrability con-
straints. The smooth non-impulsive contact force which is a function
of local deformability is integrated in the time-steps when contact
happens.
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Constitutive laws in MBDyn are expressed as f = f(ε, ε̇). They
define how the resulting force is applied to the model. Different
constitutive laws in elements can be implemented in MBDyn without
the need to hardcode it. It could be added as a loadable module
without altering the base code (Fancello, 2012).

The advantages of this contact model is its simplicity in terms
of implementation in multibody analysis. It adds a new stiff contact
forces to the Differential Algebraic Equations when contact takes place,
then it is integrated by the numerical solvers. The energy dissipation
in the collisions can be modeled by adding a damping terms in the
constitutive laws.

Several contact force models are available to be used in MBDyn:
Flores (Flores et al., 2011) , Hunt Crossley (Hunt and Crossley, 1975),
and Lankarani Nikravesh (Lankarani and Nikravesh, 1994). In this
work, the model of Flores is used. Flores’s contact force model consists
of an elastic term and a hysteresis damping parameter that takes into
account the energy dissipation phenomena during the contact process.

FN = Kδn +Kδn
8

5

1− e

e

1

˙δ−
δ̇ (2.5)

FN is the contact force, K is the stiffness, δ is the deformation
of the body, n is the exponent which is a function of the material
and geometric configuration. The value is set to 3

2 in cases where
there is parabolic distribution of contact stresses. δ− is the velocity at
the moment of impact, and e is the Newton coefficient of restitution
which ranges from 0 to 1. For a perfectly elastic contact, i.e. e = 1, the
damping term is set to zero, while for a perfectly plastic contact, i.e.
e = 0, the damping term goes to infinity.

In the crack model, the Newton coefficient of restitution is set
to 1 and the stiffness is set to 109Nm/rad to model an infinite stiffness
of the deformable hinge when the crack is closing.
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2.3 analytical solution and convergence study

2.3.1 Stiffness reduction in simply supported beam

It is possible to obtain analytical solution for this simply supported
beam problem. By studying the analytical solution, the phenomena of
stiffness and frequency reduction due to damage can be observed.

The analytical free vibration problem of the model can be solved
by exploiting the symmetry of the structure. Figure 2.4 displays the
half model that is going to be analyzed analytically.

Figure 2.4: Half model

The principle of virtual work for the half model is written as

∫ l/2
0

δw ′′EJw ′′dx+

∫ l/2
0

δwmẅdx+ δw ′(0)kw
′
(0) = 0 (2.6)

where w(x,t) represents displacement of the beam, E is the
Young’s modulus, J is the bending inertia, m is the mass per unit
length of the beam, and k is the rotational stiffness. Four boundary
conditions and one main equation are obtained after integrating by
part equation 2.6.

EJw ′′′′ +mẅ = 0 (2.7)
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Boundary conditions:

w ′′(l/2) = 0

−EJw ′′(0) + kw
′
(0) = 0

w(l/2) = 0

w ′′′(0) = 0

Assuming solution of w(x,t) = a(x)b(t) and substituting it to
equation 2.7, the following equation is obtained.

a(x) = Accos(
√
βωx)+Assin(

√
βωx)+Ape

√
βωx+Ane

−
√
βωx ,

(2.8)

where β =
√
m
EJ . Using γ = k

EJ , equation 2.8 is substituted to
the boundary conditions to obtain a system of equation.


−cos(

√
βω l2) −sin(

√
βω l2) e

√
βω l

2 e−
√
βω l

2

−
√
βω −γ −

√
βω− γ

√
βω+ γ

cos(
√
βω l2) sin(

√
βω l2) e

√
βω l

2 e−
√
βω l

2

0 −1 1 −1



Ac

As

Ap

An

 =


0

0

0

0


(2.9)

Finally, the frequency of the system can be obtained by solving
ω that makes the determinant of the matrix zero.

Figure 2.5 shows the relation between analytical frequency and
the reduced stiffness of the numerical model, which is obtained from
equation 2.4, the relation between crack thickness and the reduced
stiffness, and the analytical frequency as a function of the damage
thickness. In the third figure, it is observable that the local stiffness
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reduction reduces the frequency with small amount, which makes the
damage even harder to detect.
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(b) Damage thickness vs stiffness
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(c) Frequency vs damage thickness

Figure 2.5: Relation of damage thickness, reduced stiffness, and analytical
frequency
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Eigenvalues analysis is performed in the multibody model
in order to find the first natural frequency of the multibody model,
using MBDyn. Two types of model are used: 8 elements beam and 16

elements beam. For both of them, the natural frequency is computed at
several damage thickness value, which are 0.1%, 1%, 3%, 5%, 7%, and
10% damage. The result is compared with the first natural frequency,
obtained by solving the analytical equation by solving ω that makes
the determinant of the matrix zero, in equation 2.14.

Figure 2.6 shows the difference in first natural frequency of
the 8 elements beam, 16 elements beam, and the result of analytical
solution. As expected, all of them shows degradation of frequency
due to increase of damage. The frequency obtained by using infinite
stiffness in the analytical solution is 46.5046 Hz, which is the same
result obtained from the analytical frequency of simply supported
beam, shown in equation 2.10.

ω =

√
EJy

m
(
πi

l
)2 (2.10)
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Figure 2.6: Frequency vs damage thickness

It is visible in figure 2.6 that by increasing the number of
element used, the natural frequency is closer to the analytical solution
frequency. In terms of first natural frequency, the 8-elements beam
model has error around 0.13%, while the 16-elements beam has error
around 0.03%. In conclusion, the 16-elements beam multibody model
is enough to represent the problem.

The decrease in natural frequency is small when the percentage
of damage is small. This makes early damage detection rather diffi-
cult, if only the frequency is used. Furthermore, frequency domain
approaches based on modal shape analysis require more measurement
points, which increase cost and complexity of the problem (Serafini
et al., 2019).

From figure 2.6, it is evident that the lower the damage thick-
ness, the lower is the change of natural frequency of the structure. It is
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assumed that damage thickness less than 1% does not change the fre-
quency. Furthermore, small damage thickness can be present during
the manufacturing process of the structure. Therefore, the whole beam
model, 0.001%, and 0.1% damaged model will be used as undamaged
model for the machine learning algorithm.

2.3.2 Stiffness addition in simply supported beam

Corrosion damage in the left support is modeled as an undesired
stiffness addition. Figure 2.7 shows the picture of the problem.

Figure 2.7: Added stiffness in simply supported beam

The principle of virtual work for the problem is written as

∫ l
0

δw ′′EJw ′′dx+

∫ l
0

δwmẅdx+ δw ′(0)kw
′
(0) = 0 (2.11)

where w is the vertical displacement of the beam, E is the
Young’s modulus, J is the bending inertia, m is the mass per unit
length of the beam, and k is the stiffness. Four boundary conditions
and one main equation are obtained after integrating by part equation
2.11.

EJw ′′′′ +mẅ = 0 (2.12)
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Boundary conditions:

w(0) = 0

w(l) = 0

w ′′(l) = 0

−EJw ′′(0) + kw
′
(0) = 0

Assuming solution of w(x,t) = a(x)b(t) and substituting it to
equation 2.12, the following equation is obtained.

a(x) = Accos(
√
βωx)+Assin(

√
βωx)+Ape

√
βωx+Ane

−
√
βωx

(2.13)

where β =
√
m
EJ . Using γ = k

EJ , equation 2.13 is substituted to
the boundary conditions to obtain a system of equation.


1 0 1 1
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√
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√
βωl e−

√
βωl

−
√
βω −γ

√
βω− γ

√
βω+ γ



Ac
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Ap

An

 =


0

0

0

0


(2.14)

Finally, the frequency of the system can be obtained by solving
ω that makes the determinant of the matrix zero. The result from
MBDyn’s eigenanalysis is compared to the analytical natural frequency
in figure 2.8.
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Figure 2.8: Frequency vs added stiffness

In figure 2.8, it is observable that the structure behaves similar
to a simply supported beam in the range of small stiffness addition
and asymptotically goes to the natural frequency of clampled - simply
supported beam when the stiffness is increased.

2.4 multivariate autoregressive model

Multivariate Autoregressive model is a linear multivariate time series
model which characterises interregional dependencies within data, in
terms of the historical influence of each variables (Penny and Harrison,
2006). It is used to find the parameter that represents the model from
the time-series data of displacement, using two variables, which are
the displacement of the first and second nodes.

An Autoregressive model (AR) is a simple and effective ap-
proach for time series characterisation (Penny and Harrison, 2006).
Univariate time series data contains information about the process
that constructed it. In Autoregressive model, the order of the process
can be determined by modelling the current value of the variable as a
weighted sum of its previous value.
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In Multivariate Autoregressive model, the previous approach
is extended to multiple time series by expressing the vector of the
current values of the variables as a linear sum of the previous value.
A Multivariate Autoregressive model of order m forecasts the next
value of the d variables time series yn as a linear combination of
the m previous vector, added with a Gaussian zero mean noise en =

[en(1), en(2), ...., en(d)].

yn =

m∑
i=1

yn−1A(i) + en (2.15)

where yn = [yn(1), yn(2), ..., yn(d)] is the nth sample of a d-
dimensional time series and A(i) is a d-by-d matrix of coefficients of
the model.

The model in equation 2.15 can be written in standard form of
multivariate linear regression model.

yn = xnW + en (2.16)

where xn = [yn−1, yn−2, ...., yn−m] are the m previous mul-
tivariate time series samples and W is a (m x d)-by-d matrix of the
Multivariate Autoregressive model coefficients. The number of inde-
pendent coefficients are k= m x d x d coefficients.

For N samples in the time series, equation 2.17 can be written.

Y = XW + E (2.17)

where Y is an (N-m)-by-d matrix, X is an (N-m)-by-(m x d)
matrix, and E is an (N-m)-by-d matrix. The number of rows are N-m,
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because at time point before m, the model does not have sufficient
samples to predict forward.

Maximum likelihood estimation is used in order to find the
Multivariate Autoregressive model coefficients. The Maximum Likeli-
hood solution for the coefficients is obtained by solving a least-square
problem.

Ŵ = (XTX)−1XTY (2.18)

where Ŵ is a (m x d)-by-d matrix of the estimated Multivariable
Autoregressive coefficients. The parameters used for the machine
learning algorithm are the coefficients of matrix Ŵ.

2.5 mahalanobis squared distance

The process in novelty detection can be performed by assuming a
known shape of the probability distribution of the features that define
the normal condition. In this method, by using Gaussian distribution
assumption, the data can be represented by its first two statistical
moments, which are the mean and variance (or covariance for multidi-
mensional feature vectors). The drawback is that the assumption of
Gaussian distribution in the data is not always valid.

In statistics, the problem of novelty detection is in the context of
outlier analysis. The main idea is to compute an index for the data and
then compare it to a given threshold. If the index exceeds the given
threshold, the data of the index is labeled as an outlier. For univariate
data, the discordancy measures are based on statistics of the normal
condition data.

z =
|xζ − x̄|

Σx
(2.19)
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where xζ is the candidate outlier that is tested, and x̄ and Σx
are the mean and standard deviation of the reference data sample. The
measure in equation 2.19 is not restricted to a Gaussian distribution
condition, but it is a scaled distance from the mean of the reference
data.

Often in practice, multiple characteristics data are analyzed.
A measure of distance between groups in terms of multiple charac-
teristics is defined. The most often used measure is the Mahalanobis
distance, which is proposed in 1930 (Mahalanobis, 1930) in the con-
text of study of racial likeness (McLachlan, 1999). Since then, it has
been used in statistics and data analysis of multiple measurements in
many application, such as numerical taxonomy and statistical pattern
recognition, from archaeology to medical diagnosis to remote sensing
(McLachlan, 1999).

To check the damage index of a feature vector xi, equation 2.20

is used.

DIi = (xi − x̄)
T [Σ]−1(xi − x̄) (2.20)

where x̄ and [Σ] are the mean feature vector and covariance
matrix of the normal condition feature.

If a feature vector is obtained from damaged system, the dam-
age index will have high value. While if a feature vector is coming
from undamaged system, the damage index will have low value, be-
cause the equation used in 2.20 has been trained with the reference
undamaged data. The result from equation 2.20 is compared to a
threshold value to classify if the data comes from an undamaged or
damaged model. If the damage index is higher than the threshold,
then it is classified as damaged.
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2.6 results

The response of the model is computed using multibody solver MB-
Dyn. Displacement time-series data of the first and second nodes
located at 1532L and 3

4L are used to build the multivariable autoregres-
sive model. Then, the coefficients of the multivariable autoregressive
model are used as the features for the machine learning algorithm us-
ing Mahalanobis squared distance. To verify the result, the parameter
of the damaged model is tested on the machine learning model.

The training data matrix, obtained from the whole beam model,
0.001%, and 0.1% damage are used as the reference of the healthy
model. It contains 100 samples, which consist of 40 samples from
the whole model, 30 samples from 0.001% damaged model, and 30

samples from 0.1% damaged model. The training phase is performed
by calculating the mean feature vector and covariance matrix of the
training data set.

Four different types of damaged model are used: The crack
damage of 1%, 5%, and 10% of the thickness simulated with reduction
of spring stiffness with both linear and nonlinear constitutive law,
the beam model with the added mass in the middle of 0.01%, 0.1%,
and 1% of the total weight, the beam model with 0.1% added mass in
the left quarter, and the beam model with added stiffness in the left
support. Table 2.2 shows the list of structural state conditions.
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Table 2.2: List of structural state conditions

State Condition Description

1 Undamaged Reference

2 Damaged 1% damage

3 Damaged 5% damage

4 Damaged 10% damage

5 Damaged 1% nonlinear damage

6 Damaged 5% nonlinear damage

7 Damaged 10% nonlinear damage

8 Undamaged 0.01% added mass in the middle

9 Damaged 0.1% added mass in the middle

10 Damaged 1% added mass in the middle

11 Damaged 0.1% added mass in the left quarter

12 Damaged 10 Nm/rad added stiffness

13 Damaged 100 Nm/rad added stiffness

Each samples are collected from 50 second displacement mea-
surement of the first and second nodes. The ARX model is fitted to
the displacement time-series, then the coefficients of the ARX model
are stored as a feature vector. Three different order of the Multivariate
Autoregressive model are used: 4,5, and 6.

The threshold line decides if a sample is classified as damaged
or undamaged sample. A sample with damage index lower than the
threshold is classified as undamaged, while sample with damage
index higher than the threshold is classified as damaged.

Determining the threshold used is an important aspect in the
classification process. Some authors proposed Monte Carlo simulation
to determine the threshold (Gul and Catbas, 2009), while others set
a predefined value based on the percentage cut-off value over the
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training data. The threshold used in this work is 95 percentile of the
damage indicator of the training data set.

Figure 2.9,2.10, and 2.11 show the damage index of the reference
data and the test data, obtained from multivariate Autoregressive
model order 4, 5, and 6 respectively. Red-colored dots indicate data
that are classified as damaged, while black-colored dots are used for
data that are classified as undamaged.
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Figure 2.9: Damage indicator for ARX4 model
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Figure 2.10: Damage indicator for ARX5 model
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Figure 2.11: Damage indicator for ARX6 model

The same random loads are used for the nonlinear and linear
crack model. The nonlinear crack model shows lower damage index
compared to the linear stiffness model. In the nonlinear model, a very
high stiffness is used when the crack is closing and a reduced stiffness
is used when the crack is opening, while in the linear model, the
constitutive law applies the reduced stiffness for both condition. In
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terms of response, the behaviour of the nonlinear model is closer to
the reference undamaged data compared to the linear model.

The results show that the 10% damage both for linear and
nonlinear, 0.1% and 1% added mass, and 100Nm/rad added stiffness
model are identified correctly as damaged by all of the Multivariate
Autoregressive model.

The 0.01% added mass model are classified as undamaged data
by all of the Multivariate Autoregressive model, since the damage
index is below the threshold. Eigenanalysis shows that the first nat-
ural frequency of the model is 46.48 Hz, which is very close to the
reference model. It is safe to identify it as undamaged data, since the
addition of mass is small. Moreover, variability of the structure due to
manufacturing process may occurs in the structure.

The 0.1% added mass in the left quarter model display lower
damage index compared to the added mass in the middle. Location of
the added mass influences the result of the detection process. Added
mass in the middle gives more severe damage index.

The Multivariate Autoregressive model of order 4,5, and 6 show
confusion in detecting small damages of 1% and 5%. It happens due to
the similar response of the system, which makes the damage detection
process harder. For these sets of data, the different order model does
not show significant changes in the result.

Overall, the reduced stiffness model is the hardest to be identi-
fied. It happens due to the small differences in frequency that cannot
be identified by the algorithm.

To quantify the performance of the classifier, type I (false-
positive damage indication) and type II (false-negative damage in-
dication) error is calculated. Table 2.3 shows the type I and type II
error for each model.
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Table 2.3: Percentage of Type I and Type II errors for each algorithm

Type I error[%] Type II error[%]

State Description ARX4 ARX5 ARX6 ARX4 ARX5 ARX6

1 Reference 5 4 5

2 1% damage 50 70 50

3 5% damage 30 30 30

4 10% damage 0 0 0

5 1% nonlinear damage 50 70 50

6 5% nonlinear damage 30 30 30

7 10% nonlinear damage 0 0 0

8 0.01% added mass in the middle 10 0 10

9 0.1% added mass in the middle 0 0 0

10 1% added mass in the middle 0 0 0

11 0.1% added mass in the left quarter 20 20 20

12 10 Nm/rad added stiffness 10 10 10

13 100 Nm/rad added stiffness 0 0 0

In this work, different factors that might influence the results
such as temperature and humidity are not yet analysed. It is well
known that changes in temperature generates stresses that influences
the behavior of the structure in terms of frequency.
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H E L I C O P T E R R O T O R B L A D E S S H M

Nothing in life is to be feared, it is only to be understood. Now is the time
to understand more, so that we may fear less.

— Marie Curie

3.1 introduction

In this work, structural health monitoring algorithm is applied to
helicopter rotor blades based on measurement of strain in the blades.
Helicopter rotor blades are rotating flexible structure which are sub-
jected to multiple dynamic loads. They provide lift and control of the
helicopter and transmit loads to the rotor hub. They are one of the
most critical structure on the helicopter, since damages might lead to
loss of lift and control.

The damages in a helicopter rotor blades can be caused by
numerous reason. Some of them are delamination, debonding, corro-
sion, or local impact from accidental foreign object. The presence of
damage, combined with the extreme operating environment of high
velocity and load might trigger catastrophic failure of the structure. It
is important to detect and identify the damage before failure. When
the indicator shows presence of damage, the blade will be removed
and analysed for further inspection.

The simulation of the phenomena is performed numerically
using a multibody dynamic solver MBDyn for comprehensive aeroe-
lastic analysis of rotorcraft. The advantages of using the codes are
the possibility to modify the mechanical properties of the model and

43
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simulate the damage. Localized stiffness reduction is used to simulate
damage.

The damage detection algorithm uses the measurement of sig-
nals from strain sensors located on different blades. Three algorithms
are presented. They are based on the differences between the strains
on damaged and undamaged blades. The type of damage considered
is torsional stiffness reduction.

Three machine learning algorithms for novelty detection are
performed: Mahalanobis squared distance, auto-associative neural
network, and singular value decomposition. The training and test data
are obtained from the time-series output of MBDyn model. The time-
series of torsional shear strain measurement are copied and injected
with random noises to simulate in several experiments. The features
used are the mean value criterion of the differences signal.

3.2 rotor model

The rotor model used for this analysis is Bo105, developed in the field
of research GARTEUR HC AG-16 RPC, which consist of collaboration
between helicopter company and universities. It is a four-blade hin-
geless rotor, with radius of 4.9m, rotating at 44.4rad/s. It is flying on
a constant forward-flight at a constant advance ratio µ = 0.2, which
is the ratio of the forward velocity and the rotor blade tip velocity in
hovering. The blades have 0.23m offset from the hub with precone
angle 2.5o. From the end of the flexbeam element to the tip, the blades
are twisted linearly with value of −6.23o at the tip.

The placement of the sensors considers the value of signal to
noise ratio. Maximum signal to noise ratio can be obtained by placing
the sensors near the root. Based on that consideration, the strain
sensors are placed at 20% of the chord at 10% of the blade span. Blade
number 1 is subjected to damage modification.
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3.2.1 Damage simulation

The damage considered in the simulation is localized reduction of
torsional stiffness in the helicopter blade. Rather than introducing a
beam element with reduced stiffness, two beams connected with a
torsional spring are used which represent the equivalent beam.

Figure 3.1: Beam with torsional spring

Figure 3.2 shows the torsional stiffness profile of the equivalent
beam. G is the shear modulus, J is the torsional moment of inertia, Ld
is the longitudinal length of damage, and ξ is the longitudinal axis of
the beam.
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(a) Homogenous beam

(b) Equivalent beam

Figure 3.2: Torsional stiffness profile of the equivalent beam

To determine the spring constant, the equivalent torsional angle
is taken into account.

∫r+Ld
2

r−
Ld
2

Mt

GJd
dx =

∫r−Ld
2

r−

Mt

GJu
dx+∆φ+

∫r+Ld
2

r+

Mt

GJu
dx (3.1)

where φ is the torsional angle, Mt is the torsional moment,
GJu is the undamaged stiffness, GJd is the damaged stiffness.

Assuming small Ld with no discontinuity of torsional moment,
the spring constant value of the torsional spring is obtained.

K =

1
Ld

1
GJd

− 1
GJu

(3.2)

Figure 3.3 shows the reduction of the equivalent spring stiffness
as a function of the stiffness reduction, obtained from equation 3.2
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Figure 3.3: Equivalent spring stiffness

3.2.2 Strain displacement relation

Geometrically exact nonlinear beam finite elements (Ghiringhelli,
Masarati, and Mantegazza, 2000) is used in the rotor blades. The
strains are evaluated from the beam displacements using nonlinear
relations, proposed by Hodges and Dowell, 1974. The strain tensor E
is reported in equation 3.3.

E =

εξξ εξη εξζ

εξη −νεξξ 0

εξζ 0 −νεξξ

 (3.3)
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where ξ axis is tangent to the elastic axis, η and ζ are cross-
section principal axes. The strain-displacement are

εξξ = u ′ +
1

2
(v ′2 +w ′2) − λφ ′′ + (η2 + ζ2)(θ ′φ ′ +

φ ′2

2
)

−v ′′(ηcos(θ+φ) − ηsin(θ+φ)) −w ′′(ηsin(θ+φ) + ηcos(θ+φ))

(3.4)

εξη = −
1

2
(ζ+

∂λ

∂η
)φ ′ (3.5)

εξζ =
1

2
(η−

∂λ

∂ζ
)φ ′ (3.6)

where u, v, and w are axial, lag, and flap displacements of the
elastic axis, θ is the build-in twist angle, φ is the blade cross-section
elastic torsion, and λ is the section warping function. The warping
function λ will be neglected for the sake of simplicity. However, the
effect of the warping function can be included if necessary by following
some numerical finite element approach or experimental activity from
a known-displacement calibration test (Serafini et al., 2018).

For torsional type of problem, the shear strain signal is the most
relevant measurement. Only the shear strain signal in equation 3.5 is
used as an input to the structural health monitoring algorithm.

The first derivative of the torsional angle φ ′ is approximated
using central difference. It is expressed as a function of the torsional
angle of the nodes before and after the measured nodes, divided by
the longitudinal distance.

φ ′i =
φi+1 −φi−1
xi+1 − xi−1

(3.7)
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where φ is the torsional angle and x is the longitudinal location
of the nodes.

3.3 methodology

The algorithms are first proposed and developed by Serafini et al.,
2019. They use the difference between strain measurements from the
sensors on the i-th and j-th blades. Three algorithms are presented:
Autocorrelation criterion, Power Spectral Density criterion, and mean
value criterion.

Time signals from different sensors on different blades are
used to identify the behaviour of the blades. Considering a four-
bladed helicopter in stationary forward flight with identical blades,
the measured strain signals are periodic with phase shift 2π4 . In a
four-bladed rotor where there are differences in terms of stiffness or
mass in one of the blade, the measured signals will have different
characteristic.

First, the signal from each strain measurement are collected.
Then, the difference signal is obtained by calculating the difference
between each 4 signals, which results in 6 signals (1-2, 1-3, 1-4, 2-3,
2-4, and 3-4). All the difference signals ∆sij(t) are normalized with
the reference signal ∆srefij (t), which are obtained from a model with
no damage in all blades.

∆∆sij(t) = ∆sij(t) −∆s
ref
ij (t) (3.8)

The characterization of the reference delta signal ∆srefij requires
a calibration process of measuring the ∆sij after the track and balance
procedure, in different flight conditions. Several parameters like flight
level and weight might not be able to be considered during the cal-
ibration process, therefore the ∆∆sij signal may not be exactly zero
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for pairs of undamaged blades. However, if damage is present in the
blade, a significant increase in the ∆∆sij signal is expected.

3.3.1 Analysis in time domain

The resulting signals ∆∆sij(t) are analysed using autocorrelation. The
normalized autocorrelation signal between undamaged and undam-
aged blade contains only noise and transient response effect. When the
∆∆sij(t) signal involves a damaged blade, the autocorrelation signal
between damaged and undamaged blade will be periodic with higher
magnitude.

cij(τ) =
1

T

∫ T
2

− T
2

∆∆sij(t)∆∆sij(t+ τ)dτ (3.9)

3.3.2 Analysis in frequency domain

In frequency domain, one can identify in which frequency the dif-
ferences happen. Without the damage, the aeroelastic response of
the differences signal are similar. The power spectral density of the
differences signal is characterized by some peaks at the multiple of
the rotational velocity of the rotor Ω.

Welch algorithm is used to compute the power spectral density.
The parameters used in the algorithm are displayed in table 3.1.

Table 3.1: Pwelch parameters

Samples Sampling frequency [Hz] Windows overlap[%]

16000 160 10 - Blackman - Harris 50
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3.4 machine learning algorithms

The mean value criterion described of the differences signal is used as
the feature of the machine learning model. In order to construct a data
set of undamaged and damaged model, the time-series of shear strain
measurement is copied 100 times and each copy is corrupted with
Gaussian noise vector with deviation standard 10−8. The reference
data set contains the undamaged model, while the test data set is the
simulation of 5% torsional stiffness reduction in blade 1, 10% torsional
stiffness reduction in blade 2, and multiple damage of 5% and 1%
stiffness reduction in blade 1 and 2.

Three machine learning algorithms for novelty detection are
performed: Mahalanobis squared distance, auto-associative neural
network, and singular value decomposition. The discussion related to
Mahalanobis squared distance is already presented in chapter 2.

3.4.1 Auto-associative Neural Network

The artificial neurons were invented by McCulloch and Pitts, 1943.
Here, the neurons receive a set of inputs and produce a single output.
In McCulloch-Pitts (MCP) model, both the inputs and outputs are
only binary. The input values xi are multiplied by a weighted factor
wi before they go to the body of the neuron. An activation signal z is
obtained by summing the weighted inputs.

z =

n∑
i=1

wixi (3.10)

The signal z is then passed through an activation function
fβ, which maps the signal z to the output y. Figure 3.4 depicts the
MCP neuron structure which consists of two blocks: summation and
activation.
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Figure 3.4: McCulloch-Pitts neuron (Farrar and Worden, 2013)

In the MCP model, the activation function fβ is a hard threshold
function. The neuron fires an output 1 if the weighted sum z passed
some predefined threshold β, if

z > β (3.11)

and it does not fire an output (0), if

z 6 β (3.12)

The MCP alone has limited computational proficiency. Rosen-
blatt, 1957 proposed a model of artificial neural networks called the
perceptron which contains three-layered network. The first processing
layer is the associative layer, while the second layer gives output signal
of the model, displayed in figure 3.5. The name perceptron was given
due to its application in pattern recognition within an image.
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Figure 3.5: Rosenblatt’s perceptron (Farrar and Worden, 2013)

A learning algorithm for multilayer structures is not easily
defined, due to the use of hard threshold as an activation function
in the individual neurons. Therefore, solutions of replacing the hard
threshold function with a continuous function such as the sigmoid
function in 3.13 or hyperbolic tangent function in 3.14 are used.

y =
1

1+ e−z
(3.13)

y = tanh(z) (3.14)

The backpropagation rule which is a gradient descent algo-
rithm for optimisation is used as the learning algorithm. By using a
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continuous activation function in the neurons, the problem is solved
by using the chain rule of partial differentiation.

The first step of training a network is to estimate the correct
values of the weight wij. A set of known network inputs and outputs
are used to establish the model. For each training step, a set of input is
mapped through the model, resulting in outputs that can be compared
with the desired outputs. In backpropagation algorithm, the error
which is the difference between desired outputs yi(t) and mapped
outputs ˆyi(t) are passed backwards to adjust the weight in order to
reduce the error. For each training set, the network error J is

J(t) =
1

2

n(l)∑
i=1

(yi(t) − ˆyi(t))2 (3.15)

where n(l) is the number of output layer nodes and t is an
integer labels the order of the training sets. J is a function of the
network weight parameter. After presentation of a training set, the
descent algorithm adjust the parameters according to

∆wi = −η
∂J

∂wi
= −η∇iJ (3.16)

where ∇i is the gradient operator and η is the learning coeffi-
cient. If η is too small, convergence will be slow, while if η is too large,
the parameters may diverge.

An auto-associative neural network is a feedforward neural
network that maps the input to itself through a hidden bottleneck
layer (Farrar and Worden, 2000). By implementing a bottleneck layer,
which is a layer with fewer nodes than the input layer, the algorithm
will study the dependency of each input features.
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The network is trained using features from the undamaged
data. To calculate the damage index of a new feature vector, equation
3.17 is used.

DI = ||~y− ~̂y|| (3.17)

where ~y is the input feature vector and ~̂y is the output feature
vector of the neural network model. If the feature vector is coming
from an undamaged condition, the damage index will be close to zero,
while if a feature vector is coming from a damaged condition, the
damage index will be high.

3.4.2 Singular value decomposition

Singular value decomposition for damage detection works by factor-
ization of a rectangular matrix M. The implementation of singular
value decomposition for data normalization to detect the presence of
damage is first proposed by Ruotolo and Surace, 1999.

[M] = [U][Λ][V]H (3.18)

where [U] and [V] are two orthogonal matrices and [Λ] is a
diagonal matrix that contains the singular values of matrix [M].

First, the singular value of the training matrix [X] is computed
and stored in a vector sM. Second, a new matrix [M’] is formed by
augmenting [X] with the feature vector yi whose damage index is
going to be calculated.

[M ′] = [[X], yi] (3.19)
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Third, the singular value of matrix [M’] is calculated and kept
in a new vector sM ′ . Finally, the damage index is measured as the
Eucledian distance between the singular value vector of the training
undamaged data and the singular value vector of the concatenated
matrix in equation 3.19.

DI = ||sM − sM ′ || (3.20)

The process are repeated for all feature vector in the test data
set.

3.5 results

3.5.1 Autocorrelation, Power Spectral Density, and mean-value criterion

Four cases of damage are simulated. The first is 10% torsional stiffness
reduction in blade 1. The second is 5% torsional stiffness reduction
in blade 1. The third is 5% torsional stiffness reduction in blade 1

with maneuvered flight. Two 1 - cos collective doublet excitations
are imposed to the rotor in steady flight. They are separated by 4s
and characterized by π

2 and π
4 rad/s with 0.5o and 0.6o amplitude

respectively. The last case is 5% torsional stiffness reduction in blade 1

and 1% torsional stiffness reduction in blade 2. The localized damage
is located at 33% of the main rotor radius in all of the cases.

Figure 3.6 shows autocorrelation signals over 100 revolutions
in presence of 5% and 10% torsional stiffness reduction. The signals
which involves blade 1 have a triangular shape. The higher the amount
of damage, the higher is the peak in the autocorrelation signals. It
is visible that the autocorrelation signals are symmetric at zero. The
signals from 10% torsional stiffness reduction case show higher os-
cillation than the signals from 5% torsional stiffness reduction. The
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autocorrelation signals from pair of undamaged blades display low
amplitude compared to the signal from damaged - undamaged blade.

Figure 3.6: Autocorrelation signals of 10% and 5% stiffness reduction cases

Figure 3.7 shows the power spectral density of the ∆∆sij(t)
signals from the first and second cases, which are 10% and 5% torsional
stiffness reduction in blade 1. Large discrepancy is obtained at zero
frequency and the multiplication of the rotational speed of the rotor
from the signals that involve damaged blade. The peaks are higher for
the 10% torsional stiffness reduction case, compared to 5% case.
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Figure 3.7: Power spectral density of 10% and 5% stiffness reduction cases

Figure 3.8 shows the autocorrelation of the ∆∆sij(t) signals
with 5% torsional stiffness reduction in blade 1 on maneuvered flight.
The beats which appear are caused by the disturbance of collective ex-
citation. The amplitude of the damaged-undamaged signals are much
larger compared to the autocorrelation of signals between undamaged-
undamaged blade.
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Figure 3.8: Autocorrelation signals of 5% stiffness reduction with maneuver
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Figure 3.9 shows the power spectral density of the ∆∆sij(t)
signals in presence of 5% torsional stiffness reduction in blade 1

and maneuver. The effect of excitation makes the PSD less sharp.
Compared to the PSD of the signals from pair of undamaged blades,
the PSD of signals from damaged-undamaged blades show higher
magnitude. This means that the algorithm can identify the anomaly
even in presence of maneuver.
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Figure 3.9: Power spectral density of 5% stiffness reduction with maneuver

Figure 3.10 shows the autocorrelation of the differences signals
where the damage of 5% and 1% torsional stiffness reduction occur on
the first and second blade, respectively. The autocorrelation of signals
from blade 1 with blade 3 and 4 show higher oscillation, compared
to the other. It is expected because blade 1 has the largest amount of
damage. The autocorrelation of signals from blade 2 with blade 3 and
4 show larger oscillation compared to undamaged-undamaged blade
(3 and 4), however it is smaller in terms of magnitude compared to
the signals paired with blade 1.

[ July 14, 2019 at 11:48 – version 1.0 ]



60 helicopter rotor blades shm

-100 -80 -60 -40 -20 0 20 40 60 80 100

Time shift [rev]

-2

0

2

4

6

8

10

A
u

to
c
o

rr
e

la
ti
o

n

10-15 5% stiffness reduction in blade 1 and 1% stiffness reduction in blade 2

1-2

1-3

1-4

2-3

2-4

3-4

Figure 3.10: Autocorrelation of the signals with 5% stiffness reduction in
blade 1 and 1% stiffness reduction in blade 2

Figure 3.11 shows the power spectral density of the ∆∆sij(t)
signals with 5% torsional stiffness reduction in blade 1 and 1% stiffness
reduction in blade 2. The PSD coming from the damaged blades
gives higher value compared to the one from undamaged-undamaged
blades. The PSD of the signals that are paired with blade 1 has higher
magnitude compared to the PSD of the signal that are paired with
blade 2.
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Figure 3.11: PSD of the signals with 5% stiffness reduction in blade 1 and
1% stiffness reduction in blade 2

Figure 3.12 shows the mean of the ∆∆sij(t) signals in all of
the damage cases. The presence of damage is clearly visible in all the
bars involving the damaged blade, which is blade 1. Higher value of
mean is obtained from the case of 10% torsional stiffness reduction,
compared to the case of 5% torsional stiffness reduction. If the signal
does not involve a damaged blade, the mean value of the ∆∆sij(t)
signal shows magnitude smaller than damaged blade. The effect of
maneuver increases the mean value of the signals that involve dam-
aged blade, however the signals from undamaged-undamaged blades
remain low. In the last damage case, where blade 1 has 5% torsional
stiffness reduction and blade 2 has 1% reduction, an increase in the
mean value is obtained from the signals which involve blade 2. This is
expected due to the presence of damage introduced in blade 2.
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Figure 3.12: Mean of ∆∆sij(t) signals

The different methods displayed the ability to detect anomaly
in the blade. In order to have an accurate prediction of the system, a
baseline signal in different flight condition is needed. All the methods
work in presence of maneuver and in case off multiple damages in
different blade.

3.5.2 Machine learning algorithms

The data set of undamaged and damaged model, the time-series
of shear strain measurement is copied 100 times and each copy is
corrupted with Gaussian noise vector with deviation standard 10−8.
The reference data set contains the undamaged model, while the test
data set is the simulation of 5% torsional stiffness reduction in blade
1, 10% torsional stiffness reduction in blade 2, and multiple damage
of 5% and 1% stiffness reduction in blade 1 and 2. Table 3.2 shows the
structural state conditions.
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Table 3.2: List of structural state conditions

State Condition Description

1 Undamaged Reference

2 Damaged 5% stiffness reduction in blade 1

3 Damaged 10% stiffness reduction in blade 1

4 Damaged 5% and 1% stiffness reduction in blade 1 and 2

Figure 3.13 shows the autocorrelation of the ∆∆sij(t) when
noise is present in the measurement of torsional shear strain. The
effect of noise is making the autocorrelation to be less clear.
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Figure 3.13: Autocorrelation of ∆∆sij(t) signals, corrupted with noise

Figure 3.14 shows the power spectral density of the ∆∆sij(t)
when noise is present in the measurement of torsional shear strain.
The simulation from 10% stiffness reduction case has the highest peak
at 1/rev frequency.
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Figure 3.14: PSD of ∆∆sij(t) signals, corrupted with noise

The mean value criterion is selected as the feature for the
machine learning algorithm. It is a six-dimension vector which consists
of differences signal of blade 1-2, 1-3, 1-4, 2-3, 2-4, and 3-4.

The Mahalanobis squared distance algorithm is the simplest of
the three in terms of computational efforts, since it only needs to learn
the reference data by computing the mean and the covariance matrix.
Auto-associative neural network algorithm has advantages in terms of
discovering nonlinear relations of the features (Figueiredo et al., 2010).

Figure 3.15,3.16, and 3.17 show the damage detection result
using the algorithm of Mahalanobis squared distance, auto-associative
neural network, and singular value decomposition, respectively. An
auto-associative neural network with 5 hidden nodes is used, since the
input and the output layer have 6 nodes of neuron. The threshold used
in all of them is 95% percentile of the damage index of the reference
undamaged data.

The classification process works by comparing the damage
index to the threshold value. The red-colored dots are instances that
are identified as damaged, since they are above the threshold. The
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black-colored dots are identified as undamaged, because they are
below the threshold.
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Figure 3.15: Damage index using Mahalanobis squared distance
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Figure 3.16: Damage index using auto-associative neural network
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Figure 3.17: Damage index using Singular Value Decomposition

The overall accuracy of the algorithms are 98%, 92.25% ,and
98.25%. The 5% torsional stiffness reduction in blade 1 case has lower
damage index than the case of 10% reduction, which is expected.
Compared to the first case, the case of multiple damage does not show
significant increase in damage index.

The machine learning algorithms have been tested with satisfy-
ing result. They can separate the data of damaged from undamaged
cases. In terms of overall performance, the singular value decompo-
sition algorithm has the highest accuracy, followed by Mahalanobis
squared distance and auto-associative neural network.

It should be noted that the algorithms performed in this work
are only limited to the range of operation presented in the simulation.
It cannot guarantee a reasonable result if it is applied for different op-
erational or environmental condition such as different flight condition.
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C O N C L U S I O N S A N D F U T U R E W O R K

4.1 simply supported beam

Damage detection is performed on two different problems: simply
supported beam and helicopter rotor blades. The simulations are
performed through the multibody dynamics solver MBDyn.

In the simply supported beam, multivariable autoregressive
model is used on the displacement measurement. Mahalanobis squared
distance is used as the machine learning algorithm to identify outliers
in the data sets.

Several types of damages are presented: localized bending
stiffness reduction, added mass, and added stiffness. The methods are
able to identify the damage.

Future works might include a system that can predict the type,
location, and severity of the damage. Supervised learning algorithm
can be used in order to build such model.

4.2 helicopter rotor blades

Structural health monitoring on helicopter blades has been performed
using the autocorrelation of the difference strain signals among rotor
blades. The helicopter is flying in forward flight with a constant
velocity. The damage is simulated as a localized torsional stiffness
reduction in one of the blade.

67
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Three algorithm which use the differences signal of strain are
presented: autocorrelation criteria, power spectral density criteria, and
mean value criteria. All of them are able to identify the presence of
damage in the simulated systems.

The three machine learning algorithms, which are Mahalanobis
squared distance, auto-associative neural network, and singular value
decomposition are tested on the simulated data. The mean value
criteria is used as the feature for the machine learning algorithms.
They are able to identify damages that are presented in the simulation.

Future works might include application for different flight
conditions and maneuvers, placement of sensors, and type of damage
identification. A collection of baseline data is also needed for various
steady flight conditions.
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