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Chapter 1

Introduction

The service oriented architecture is transforming the fruition of information

systems, thanks to the cloud computing paradigm. Research in this field

however has not yet taken much care of the data management. There are

approaches who aim to provide a cloud database, but this is only a limited

aspect of the whole Data as a Service paradigm, since its goal is to take care

of the collection, storage, processing and publishing of the data, providing

an on demand access regardless of the location.

All these aspects can be particularly important in IoT environments, in which

the data is generated at the edge of the network and stored in the cloud, where

it can be processed and then supplied to the customer. The high resources of

the cloud should ensure high availability and scalability, but, since the data

is generated at the edge, the network can have a great influence on the qual-

ity of service, adding latency and diminishing the benefits of a cloud based

architecture.

A possible solution to mitigate the problem is to adopt the Fog Computing

paradigm, which merges the benefits of both the edge and the cloud. Pro-

cessing data directly on the edge can help to reduce the latency, while the

cloud can process a greater quantity of data more efficiently, while allowing

the information sharing across the network.

The two main foundations of Fog Computing, especially in data intensive
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CHAPTER 1. INTRODUCTION

applications, are the data movement, that covers the placement of the data

between edge and cloud, based on the needs of the customer, and the com-

putation movement, the way resources are allocated across the network in

order to meet the desired QoS.

The goal of this thesis is the validation of the Data and Computation Move-

ment in a test environment, when adopting Apache Spark as basic technology

for data analytics.

Spark is a cluster computing framework, that distributes the task among

different machines. We consider it a solution to implement a Fog Computing

architecture, especially for what concerns the two movement we focus on:

• the Computation Movement can be achieved thanks to the Spark engine

itself, by the reconfiguration of the cluster basted on the requirements

of the job, so we only need to find a way to integrate the system with

the requirements of Fog Computing.

• The Data Movement instead can be realized thanks to Spark’s com-

patibility with different file systems. Since Spark relies on external

data sources, we need to find the right solution to implement the Data

Movement, so in this document we confront different file systems, their

ability to meet our requirements and their performance, to elect the

best candidate.

The work done in the thesis consists in the realization of the fog environ-

ment with the help of Spark and the underlying file system and the test of

the architecture, through the execution of the movement actions in different

scenarios, the analysis of the performances and the collection of the results,

in order to validate the quality of the chosen solution.

The environment consists of several machines located in different continents,

to simulate a cloud-edge architecture and evaluate the latency of long-distance

data transfers and of the Spark cluster communication.

We will present the available resources, with their capabilities and limita-
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CHAPTER 1. INTRODUCTION

tions, how they bring the used tools to borderline cases, the consequent

choices made in the configuration of the architecture and in the design of the

tests, and then we will explain how to implement everything.

We will illustrate how the tests are performed, which kind of data we used,

and on what metrics they are focused, then the results will be shown and

discussed, aggregated and divided in three main categories.

1.1 Structure of the document

Chapter 2 explains the main terms and concepts necessary to understand the

work done, from Fog Computing to Apache Spark, to the file system taken

into consideration for the project.

Chapter 3 discusses how the Fog Computing paradigm is interpreted using

Apache Spark, and how the movement action can be implemented with this

solution. Chapter 4 covers the architecture of the environment in the con-

text of our tests, starting from the available resources, moving then on the

configuration choices, based on the given capabilities, regarding the imple-

mentation of the fog computing environment and the kind of tests to perform,

then illustrates all the steps necessary to set up the environment, from the

Spark deployment, to the file systems configuration, to the actual execution

of the tests. Chapter 5 enters in the details of the tests performed. The

results are grouped by the defined parameters, displayed with box plots and

then analyzed and commented.

Chapter 6 summarizes the results of this project, gives a final reasoning on

the work done and introduces the next steps to perform for further develop-

ments.
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Chapter 2

Background

This chapter provides the explanation of the key terms necessary for a com-

plete understanding of the document, from the background, to the tools used,

to the goal of the project.

2.1 Fog Computing

Fog Computing is an architecture which aims to provide a seamless integra-

tion of resources, data and functionality between the cloud and the edge of a

network. It is conceived as a way to improve the Cloud Computing paradigm,

especially in relation to IoT, where the latency caused by a vastly distributed

network might deteriorate the benefits given by the resources and the high

availability of the cloud.

In a cloud-edge architecture the edge nodes (e.g. sensors) have the task to

generate the data, which then is transferred to the cloud, where it can be

stored, computed and then served to the final user, which will communicate

only with the cloud. The benefits of this architecture are the scalability and

reliability provided by the cloud. Many users can access the centralized data

and computation power without the need of high resources from their side.

The main downside of this architecture is the necessity of a connection be-

tween the client and the cloud, since no information is stored locally. This
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makes the communication to the cloud the bottleneck for the Quality of

Service: the benefit of having a powerful and reliable cloud system is nulli-

fied if there is a weak network between to the client, and if the connection

is unavailable all the resources become inaccessible. The Fog Computing

paradigm aims to overcome these problems, by providing a continuum be-

tween the cloud and the edge nodes. It does so by decentralizing the work

done by the cloud moving it near the edge, which even in IoT application

is becoming more and more powerful, allowing to perform the computation

directly where the data is generated.

Fog and Edge Computing have some similarities: they both aim to make the

architecture less dependent on the cloud, but they are not to be confused.

The goal of Edge Computing is to perform the most possible part of the

work on the edge, while Fog Computing tries to provide the best solution for

different use cases. In fact the goal is to distinguish the request submitted:

if it is a time-sensitive job the computation and data is moved to the edge,

near the client, while the less time-sensitive jobs can be submitted to the

cloud, which can take care of more complex tasks, like big-data analytics.

According to the NIST definition [8] the following are the characteristics

that define the distinction between Fog Computing and other computing

paradigms.

• Contextual location awareness, and low latency

Fog Computing is specifically designed o provide low latency, thanks

to the nodes’ location awareness, that gives the possibility to move the

computation to reduce the cost of the communication between nodes.

• Geographical distribution

In contrast with the centralized Cloud Computing, Fog Computing

is based on a widely distributed network, although its nodes remain

geographically identifiable.

• Heterogeneity

The data collected and processed is of different form factor and different
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origins.

• Interoperability and federation

All the components must be able to interoperate.

• Real-time interactions

Rather than batch operations, Fog Computing often works with real-

time processing.

• Scalability and agility of federated, fog-node clusters

Fog Computing is able to adapt to different data loads, changes in the

network condition and composition of nodes.

Current Initiatives

In order to promote the interest and the developement of this technology, and

provide an official definition of Fog computing, Cisco Systems, ARM Hold-

ings, Dell, Intel, Microsoft, and Princeton University, founded the OpenFog

Consortium, which provided the reference architecture adopted by the IEEE

Standards Association.

Their definition of Fog Computing is:

A horizontal, system-level architecture that distributes computing, storage,

control and networking functions closer to the users along a cloud-to-thing

continuum. [2]

The consortium committed to formalize an open reference architecture, in

order to incentivize the diffusion of Fog Computing via a free, standard so-

lution. Their approach give these advantages over other solutions, grouped

under the acronym SCALE:

• Security: Additional security to ensure safe, trusted transactions

• Cognition: awareness of client-centric objectives to enable autonomy

• Agility: rapid innovation and affordable scaling under a common in-

frastructure

17
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• Latency: real-time processing and cyber-physical system control

• Efficiency: dynamic pooling of local unused resources from participat-

ing end-user devices

The OpenFog Reference Architecture is driven by eight principles, called

pillars, that describe the requirements that a system needs to meet to en-

sure an horizontal architecture that provides data, computation and control

distribution along the cloud-edge continuum. Here they are visualized.

Figure 2.1: OpenFog RA Pillars

Practical example

To help understand how Fog Computing can improve an IoT architecture we

give a practical example.

A good implementation in a fog environment is the traffic analysis and con-

trol: with the introduction of 5G and the recent improvement in the au-

tomotive industries, the communication between vehicles and sensor along

highways enables new capabilities in traffic control.

In a traditional cloud-edge infrastructure, the data collected by vehicles and

sensors is sent to the cloud, analyzed and then distributed to the requir-

ing nodes. This approach enables great computational capacities and data

sharing, since it is all stored in the cloud, which has theoretically infinite

resources.

On the downside, however, an instant response from this system is not guar-

anteed, given all the transferring time between the edge and the cloud, and
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all the architecture is dependent on the network connectivity: if the cloud

is unavailable, cars and other edge nodes have no data and decision-making

capacity to work independently.

On the other side, a solely edge architecture can provide low response time,

but does not have the capacity to store and process high quantities of data,

and cannot share them with other clients.

Using a Fog Computing approach the system can entrust the cars and the

sensors on premise to execute the time sensitive tasks, like live data analysis

in relation to autonomous driving, or live traffic control, giving them inde-

pendence from the cloud, while it can deal with the storage and processing

of historic data and the information sharing between all the edge networks.

Fog Computing in Data Intensive Applications

This thesis is focused on a particular application of the Fog Computing ar-

chitecture, the data intensive environments.

Previous work on this topic [10] tried to provide a definition of the two

main pillars of a fog architecture in this scenarios, the data movement and

the computation movement, and formalized a decision system, using a goal-

based model, that takes into account the requirements of the customer, along

with the metrics of data and computation movement, to analyze the job com-

missioned to the system and execute the right movement actions in order to

ensure a better QoS.

For example three factors for a high quality of service are the reliability, the

fast response and the data consistency, each then expanded in subfactors.

The objective is to validate how the data and computation movement can

affect these factors, like the duplication of some data can improve the relia-

bility by increasing the redundancy, while it might decrease data consistency

due to synchronization issues between copies.

Now we enter in the details of the two movements.
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Data Movement Data Movement takes into account all the actions taken

against the data across the network.

Despite the name, it does not only concern the movement, total or partial,

of data, but also its duplication and all the possible transformations.

The two main actions are Data Movement and Data Duplication, and each

can be divided in four categories: cloud-to-edge, edge-to-cloud, cloud-to-

cloud and edge-to-edge.

The Data Movement can occur for example if a set of data is mainly requested

by a specific region of the network, so it is moved closer to ensure a better

response time, maybe at the cost of a lower scalability. The Data Duplication

can be performed to provide a higher reliability or availability to the client,

while losing some consistency.

Along with the actions, some transformation can be applied:

Aggregation: when the client request summarized data, like average values,

maximum, minimum, it can be performed to save transferring cost and

time.

Encryption: if there is a necessity of a secure communication, the data may

be encrypted before being moved/copied, adding some computational

cost to the action.

Pseudonymization: to ensure privacy some fields of the data record can be

manipulated or removed to the data to be transferred.

In this thesis we focus on the actions, in their impact on the performance

and how they relate to the decision system to be implemented.

Computation Movement As the Data Movement takes care of the ac-

tions regarding the data, the Computation Movement focuses on how to

allocate the available resources to the tasks.

Instead of relying entirely on the computing power of the cloud, some tasks

can be assigned to the edge or to the nodes closer to the data to process, to

ensure (as in the Data Movement) a quicker response to the client. If a task
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is instead more complex, it needs more resources, and it can be granted more

resources, by assigning more edge nodes, or by moving the computation to

the cloud.

Like the Data Movement, the Computation Movement is divided in actual

movement and Computation Duplication, although they are not so distinct

and mutually exclusive.

The Computation Movement consists in the allocation of a task in a specific

node across the network. If the task is normally set to be processed in the

cloud and the client has strict time constraints, the computation can be re-

assigned to a closer edge node, if it has the capabilities, to ensure a faster

response time.

The Computation Duplication is the distribution of a task between multiple

nodes, to speed up the process. If a job assigned to the edge node requires

more resources, the system can add other nodes to the computation in order

to redistribute the load and improve performance. In this thesis we cover

both the movement and duplication of the computation.

2.2 Apache Spark

Apache Spark is a general-purpose cluster computing framework, used in a

wide variety of application, especially the data-intensive ones, for example

twitter data analysis [1]. It was built on top of Hadoop MapReduce to im-

plement different types of computation, like interactive queries and stream

processing. Hadoop has has been extensively used in the industry, since it

provides a simple programming model and it is a scalable, flexible, fault-

tolerant and cost effective solution. The main downside of Hadoop is the

ability to maintain performance with large datasets.

Apache Spark was developed with the objective of speeding up the compu-

tational time of Hadoop, while maintaining its strong points.

The main feature of Spark that contributes to its fast performance is the

in-memory cluster computing: instead of fetching the data from disk each
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time it is needed, Spark stores the data in memory, in its fundamental data

structure, the RDD [13]. This solution gives a much quicker response time

with respect to Hadoop and other cluster computing solutions.

History

Before Spark and Hadoop, Google needed a solution to handle the increas-

ingly massive volume of content on the web, so they developed MapRe-

duce [6], a resilient distributed computing framework, that enabled them

to distribute the load across a large cluster of servers. The Google strategy

consisted in 3 main concepts:

Data Distribution: when uploaded, the data is split across the nodes and

replicated among the cluster.

Computation Distribution: the map/reduce job is distributed across the clus-

ter: firstly a partial mapping and reduction is executed in the different

nodes across the cluster, then the partial results are aggregated and

computed to reach the final result.

Fault Tolerance: both data and computation are resilient to the failing of a

node, by the reallocation on another node.

A year after the publication of Google MapReduce, Apache Hadoop was

created, following the principle of the previous solution.

Finaly in 2009 Spark came to life as a project of the AMPLab at the Uni-

versity of California, Berkeley, as an attempt to keep the benefits of MapRe-

duce’s scalable, distributed, fault-tolerant processing framework, while mak-

ing it more efficient and easier to use. The project was then donated to

the Apache Software Foundation, where it became one of the most active

projects managed by the foundation, with the contribution of many multi-

national companies, like IBM and Huawei.

The main benefits of Spark with respect to MapReduce are:
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• much faster execution by caching data in memory across multiple par-

allel operations, whereas MapReduce involves more reading and writing

from disk..

• multi-threaded tasks inside of JVM processes allow faster startup, bet-

ter. parallelism, and better CPU utilization.

• richer funcional programming model, and wider support for different

computations.

• parallel processing of distributed data with iterative algorithms.

Spark Architecture

The spark framework is composed of a main component that provides the

basic functionalities, and other four components that expand the capabilities

in different use cases.

The Spark Core is the foundation of the project, it provides task manage-

ment, scheduling, I/O capabilities, and the fundamental structure of the

framework, the Resilient Distributed Datasets (RDD), explained in depth

further in this section.

The four other components are:

• Spark SQL provides a new data abstraction called DataFrame (im-

proved by DataSet), which provides support to structured and semi-

structured data, and SQL support.

• Spark Streaming takes advantage of the fast scheduling capabilities to

provide support to streaming analysis in addition to batch computa-

tion.

• MLib is a Machine Learning framework that, thanks to the distributed

memory-based architecture of Spark can be as nine time faster than

concurrent solutions, like Apache Mahout
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• GraphX is a graph-processing framework that provides APIs for graph

computation, based on RDD.

The main abstraction of the Spark framework, as previously mentioned, is the

RDD. It is a fault-tolerant (Resilient) collection of data (Dataset) that can

be computed in parallel across the cluster (Distributed). It is an immutable,

read-only collection, and the data is partitioned and distributed across the

cluster. It achieves its resiliency by duplicating the chunks across multiple

nodes, so if one fails, another one can take over. RDD operations are executed

with a lazy evaluation, which means that the various transformation are

queued and executed only when triggered by an action, such as the collection

of the results. It can be done to another key feature of Spark: the Directed

Acyclic Graph (DAG), a graph that collects and stores all the transformations

to be applied to the data, allows Spark to optimize the computation and

together with RDD gives fault tolerance.

Spark has a master/slaves architecture, summarized in the following dia-

gram.

Figure 2.2: Spark Cluster Architecture

In the master node resides the driver program, which runs the application.

The code written and submitted to Spark acts as the driver, and the object
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that coordinates the work and offers all the functionalities is the SparkCon-

text, through which all what is done within Spark goes.

The SparkContext and the driver take care of the job execution and its par-

titioning in the cluster, while the Cluster Manager has the job to control

the nodes and provide the resources requested by the driver to perform the

tasks submitted by the spark context. Everytime an RDD is created it is

distributed to the worker nodes and cached there.

The worker node have the solely job to execute the tasks assigned to them

on their partition of the data, and then send the results to the driver, which

will aggregate the partitions and compute the final result.

Now we see the complete workflow of a Spark application:

1. Firstly the client submits the application code to the spark cluster.

When the driver reads the code, it transforms all the actions and trans-

formations in the DAG, and performs some optimizations.

2. Then the DAG is converted in a physical execution plan, organized in

different stages. Each stage is divided in tasks, that are sent to the

cluster.

3. The driver then communicates with the cluster manager and requests

the resources. By the driver demand, the cluster manager launches the

executors on the worker nodes, and the driver sends the tasks to them,

according to the data locality. all the executors are registered with the

driver, which in this way can have a complete view of the job.

4. The driver monitors the execution of the tasks by the workers and

schedules the future tasks.

5. At the end of the execution, each task result is sent to the driver, that

performs the final aggregation and can save the final results to disk.

Spark is compatible with different cluster managers, like Apache Mesos,

Hadoop Yarn and Kubernetes, but is also deployed with its own standalone

cluster, which makes the configuration the system easier.
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File systems

In order for a Spark application to work properly, each node of the cluster

needs to have access to the data. To do so Spark offers a native compatibility

with the Hadoop Distributed File System (HDFS), a solution to store data

across a cluster of servers.

HDFS is composed of namenodes, which store the metadata, and datanodes,

which store the actuale chunks of data. When a file is uploaded to HDFS, it

is striped in fixed partitions, and distributed to the datanodes. Depending

on the configuration, other copies of the chunks are distributed as well, to

provide redundancy and fault tolerance.

In a Spark environment, HDFS is typically deployed on the same nodes on

which resides the Spark workers, in order to take advantage of the data lo-

cality. In fact the driver program of Spark automatically schedules the tasks

based on the proximity of the workers to the data, to reduce the access time

and latency.

This however is not the only solution to distribute the data, since Spark is

compatible with every file system which can be mounted by the operating

system, so virtually any kind of solution is adoptable.

To use Spark in a test environment it is even possible to copy the data on

the local file system of each machine of the cluster, although this is logically

an unfeasible solution in a working deployment.

Alternative solutions may include other distributed file systems, like Glus-

terFS of CephFS, which we cover in the dedicated section.

Why choose Spark

Among all the different reasons to choose Spark, we can provide three main

pillars:

• Simplicity: Spark provides a rich set of APIs, for different programming

languages, that, along with a standalone cluster, allows developers and

scientist to easily configure and run it.
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• Speed: Spark was built with this objective in mind. Its ability to

process in-memory data for interactive queries makes Spark as much

as 100 times faster as Hadoop MapReduce.

• Support: Spark supports a large number of programming languages,

has a wide integration with many storage solutions, has a vast commu-

nity all around the world, and a large number of companies is support-

ing and integrating it in their products.

Use Cases

Spark was conceived to be a general-purpose framework, was set to expand

the capabilities of Apache Hadoop, and provides extensive APIs for different

programming languages, namely Scala, Java, Python and R, so it can be

applied to a wide variety of use cases.

The different fields of application can be divided by the main components of

Spark.

Developers have to face increasingly more often with large streams of data,

like log files, or sensor readings, coming from different locations. While it

can be possible to store such data to be later computed in batches, it can be

necessary to process them as they arrive.

For example, the data streams related to a security system in an oil rig can be

processed in real time to instantly react to malfunctions and avoid a possible

disaster. The real-time processing can be achieved thanks to Spark Stream-

ing capabilities.

One of the most developing branches of computer science in the latest years

is machine learning, thanks to the availability of larger data pools to train

the software. Thanks to its in-memory processing and its dedicated libraries,

Spark is a great choice to implement machine learning algorithms, since it

can perform fast repeated queries, bringing to a quicker training of the model.

Spark’s ability to quickly respond and adapt to alterations allow data scien-

tist to implement interactive queries, that can take into account the response
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of the first query and then adjust it or study it in depth.

Spark, along with Hadoop, is often used to reduce the time of Extract, Trans-

form and Load processes (ETL), that consist in the collection of heteroge-

neous data from different systems, their cleaning and standardization in order

to be loaded in a separate system for data analysis.

Relevant Users

A large number of companies is adopting Spark to extend their big data

analytics to branches like machine learning and interactive querying.

IBM and Huawei have heavily invested in technologies to integrate Spark in

their solutions, and actively funt the Apache project, while many startups

are mostly dependent on Spark.

The team responsible for the creation of Spark went on to found Databricks,

an end-to-end data platform powered by Spark.

The principal Hadoop vendors have integrated in their solution a YARN-

based Spark; web-based companies rely on Spark, like the search engine

Baidu, the e-commerce platform Taobao, and the social network Tencent.

Even pharmaceutical companies use Spark, like Novartis, which relies on it

to reduce the time to retrieve modeling data for the researches.

2.3 File Systems

Every node of the Spark cluster needs to access the data source, therefore

we took into consideration several options to distribute the data.

For the goal of our project we are not looking for the typical criteria to

choose a suitable distributed file system, such as high availability, fault toler-

ance and location transparency, instead we have to be able to choose where

a file is located, and easily adjust the file system configuration to adapt to

the use cases, so this is not a thorough comparison between file systems, but

an analysis of some peculiar capabilities.

The first alternative, that does not require any prior architectural configura-
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tion, is to copy the files in advance on all the nodes, in the same path. This

is the simplest solution, but is not feasible, both in terms of performance

and flexibility: copying the required files on all the nodes adds a sensible

overhead to the computation, and the data duplication needs a significant

amount of space.

The second alternative is to rely on the recommended file system for Spark:

HDFS. This should the best solution in terms of performance, since the files

are partitioned and distributed across the nodes, and the cluster can take

advantage of the data locality (although it is not true, as proven in further

testing). However the file distribution does not allow us to decide where the

data is stored, so the data movement testing cannot be performed.

The third alternative is to use a different distributed file system, the two

most promising choices being GlusterFS and CephFS

CephFS is quite tedious to set up, has a more complex architecture with

respect to GlusterFS -it is more resource hungry-, so it is not the perfect

candidate. GlusterFS is easy to configure, in a matter of minutes you can

create a new volume and mount it on all the cluster nodes, it can be scaled

quickly and can run on a single machine with modest resources. Unlike HDFS

and CephFS, the data is not randomly scattered among the cluster nodes,

but, provided there is enough space, it is stored in a single node, so we can

upload a file and keep track of its location, and this is a fundamental aspect

for the data movement tests. To be thorough, however, we tested the per-

formance of the three file systems and, as shown in chapter 5.2.1, GlusterFS

resulted to be the quickest in most of the scenarios.

In the end, taking into account all the different capabilities and tests, the file

system that better suits our needs is GlusterFS.
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Fog environment with Spark

This chapter extends the previous definition of Apache Spark, its character-

istics, what are the connections with fog environments, why it is the right

choice for their implementation and how to realize that.

3.1 Spark architecture

Apache Spark, as introduced in chapter 2, is a framework for distributed com-

putation, and follows a master/slave architecture: the master node contains

the driver of the application, while the slaves contain one or more workers

each.

Spark is deployed on a cluster, i.e. Mesos, Yarn or its own standalone clus-

ter, which will handle the connection between machines, the creation and

deletion of slaves, the monitoring of the jobs.

Every node needs access to the data source, so it must be either replicated

on all the machines or provided by a distributed file system. Spark can in-

teract with virtually any kind of file system, and it has a native integration

with HDFS. Spark is highly tweakable, both at design time and at runtime,

and can scale from a simple single machine, single cpu configuration, to a

configuration with hundreds of multi-cpu slaves. This flexibility allows the

adaptation of the cluster to fit the requirements of each submitted job.
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3.2 Spark interpretation of Fog Computing

Fog Computing is a specific field of distributed computing, it is a paradigm

focused on the improvement of Cloud based architectures, through the redis-

tribution of the computation and its movement from the cloud closer to the

edge nodes, where the data is generated, or wher the final user resides

Since Spark is the most popular framework for distributed calculus, it is rea-

sonable to think that it is one of the best candidates also in fog environments.

Its flexibility and scalability pair well with the heterogeneity of a fog archi-

tecture. In fact each node can provide a different amount of resources (edge

vs cloud), and Spark can automatically adapt and partition the job to be

manageable by the given computational power. By communicating with the

cluster manager, the Spark driver program knows what are the available

resources, and can split the computation in a way that can be optimally dis-

tributed across the cluster.

This architecture is very useful for what concerns the computation move-

ment: the cluster can be reconfigured following the requirements and assign

the right resources to Spark, that will automatically adapt the program.

Spark compatibility with a wide variety of storage solution allows to explore

different possibilities in the Data Movement area: even if this action cannot

be performed strictly by Spark, we can choose the best distributed system

that will enable such capabilities.
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3.2.1 Computation Movement

Figure 3.1: Computation Movement with Spark

The Computation Movement consists in the choice of the best nodes of the

network to perform a job. It can simply be the movement of the processing

from the cloud closer to the data to reduce latency, or in the duplication of

the nodes to assign more resources and speed up a job.

To realize the Computation Movement in Spark, we have to rely on the

cluster manager’s capability of scheduling the job between the slaves.

As previously stated, to schedule the job the driver of a Spark program talks

with the cluster manager, which allocates the resources among the available

nodes and supplies them back to the driver, which in turn splits the job in

tasks and then sends them to the workers.

The best way to implement the Computation Movement in this architecture

would be to instruct the cluster manager at runtime to choose a specific set

of nodes, dictated by the requirements of the job, and provide them to the

Spark application.
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However we were not able to modify the Spark standalone cluster in such way,

so the alternative solution is to reconfigure the cluster beforehand. Prior to

the submit of the job, the required nodes are added to the cluster, which

assigns all of them to the application once it is launched, then at the end of

the job all the nodes are removed, leaving the cluster empty and ready for

another node reassignment.

This method seems too complex and time consuming, but thanks to the

scripts provided for the management of the cluster and a little bit of scripting,

we can add the chosen nodes and submit the job in a matter of seconds.

Although a complete knowledge of the physical configuration of the cluster

is necessary: in order to be able to correctly move the computation, we have

to know the geographical location of the nodes, the data and the client, and

the address of all the machines.

3.2.2 Data Movement

Figure 3.2: Data Movement with Spark and GlusterFS
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Since Spark relies on external file systems and the only data movement that

it performs internally is the aggregation of the results, it cannot technically

take charge of the Data Movement in a fog environment, but the task is re-

mitted to the underlying file system.

The driver program of a Spark application tries to optimize the task assign-

ment according to the data locality, so it automatically schedules a task on

a node closer to the physical data location.

This provides great performances in a distributed environment, but does not

allow to arbitrarily move the data across the cluster.

Thus to achieve the Data movement we need to find the right storage solu-

tion that will integrate well with Spark.

An obvious solution is to manually perform the Data Movement and Dupli-

cation on the local file system of each machine of the cluster, but this is only

feasible in a limited test environment, and not at all flexible and scalable.

Thanks to Spark’s compatibility with different distributed file systems, we

can explore these solutions and find the best one that fits the requirements.

The typical reason for the use of a distributed file system is the abstraction

of the physical layer: all the different disks and machines that compose the

cluster are made invisible by the logical file system.

This is convenient in standard use cases, but not by a Data Movement per-

spective. In fact, even if it might provide redundancy an thus enable the

Data Duplication, this architecture does not give the control on the physical

location of the data.

In order to find the right candidate to implement the Data Movement in

our environment, we included different solutions in our tests, as explained

in chapters 2.3 and 5.2.1, and we identified GlusterFS as the enabler of the

Data Movement. Its architecture and configurations allow to set up a cluster,

place a file on a specific machine without it being scattered among the other

nodes, and make it available to Spark for computation.

This ability of placing the data on a specific machine is the very definition

of Data Movement.
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The choice of a distributed file system can also give Data Transformation

capabilities, such as the encryption during transfer.

3.3 Implementation

Figure 3.3: Fog Architecture with Spark and GlusterFS

After reasoning on the relation between Spark and Fog Computing, how the

Data and Computation movement can be achieved, we now summarize how

to implement this system.

We identified Spark and GlusterFS the two enabler of a Fog environment in

a distributed system.

Provided a cluster of machines, which can comprise cloud servers, edge ma-

chines and IoT devices, we deploy a Spark cluster on all the wanted nodes,

placing the master node preferably on the cloud, given its centrality in the

network and its high resources.

The GlusterFS cluster is as well deployed on all the chosen nodes.

When a client submits a job, he communicates his location, the data re-

quested and some constraints. If a job consists in the computation of a
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large quantities of data, without latency constraints, the Spark cluster will

be configured to work in the cloud, which has more capabilities to handle big

volumes, but can be prone to latency caused by the distant location.

If instead the job is a computation of live data coming from a sensor, the

node closer to the sensor is added to the cluster to provide a more prompt

response.

If a piece of data is mainly requested by client located in a specific region, this

data can be moved to the closer GlusterFS node(s), to reduce the transfer

time.
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Chapter 4

Configuration of the test

environment

After the reasoning on how to implement fog environments using Spark,

in this section we enter in the specifics of the project and explain how we

actually realized the architecture using the available resources and how we

configured the test environment, with the goal of validating the goodness of

the solution we proposed.

4.1 Architecture

The architecture available for the tests is comprised of six machines, all

running Ubuntu, distributed across different continents, in order to test both

short and long distance communications:

• Provided by Cloudsigma:

– three machines in Frankfurt

– one machine in Miami

• Provided by AWS:

– one machine in Ohio
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• One remote machine in Italy

Since all the machines have limited resources (with the exception of the re-

mote one), our Spark instance is set up to work with a single worker per node,

with one cpu and 512MB of memory dedicated. This fact limits our possi-

bility in the tests regarding the scalability of resources, although by varying

the number of machines we can partially compensate for the restriction.

The available data source is a set of randomly generated blood tests, stored

in a JSON file, which needs to be formatted to conform to Spark require-

ments. Spark natively provides libraries for the reading and parsing of json

files into relational tables, on which we can perform queries, but the file has

to be formatted in the right way.

Our data is generated as an array of blood tests, but, in order to be correctly

partitioned, it has to be formatted such that the file is comprised of a single

JSON object per line [3] [12].

Because of the necessity of formatting the file once it is downloaded, and the

small computational power of the machines, we have to limit the file size,

otherwise the formatting would not be possible.

4.2 Configuration choices

We previously introduced the available machines, discussed about their lim-

itation and how they affect our choices, now we explain how the testing

environment is configured according to them, which test we perform, why we

choose them and how we collect the results.

Firstly, given the provided data set, the chosen test to perform consists in

calculating the average values of the blood tests. Each test has several fields,

so we compute the average value of each of them, discarding the null ones,

and display the final result on the client terminal

The data is comprised of 200000 blood tests, that are stored in a 800MB

JSON file; this particular size is chosen for a couple of reasons: as mentioned

in the previous section we are limited by the available resources, secondly we
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chose a value that would allow us to speed up the tests, which can take up

to 30 minutes for a single job, without flattening the results.

Moving on to the cluster configurations, given the available machines listed

in the previous section, the following are the configuration we consider to be

sufficient to evaluate all the possible data and computation movement. We

list them along with their relation to the fog architecture

-N.B. The master is always located in Frankfurt, which acts as the cloud-

• one slave on the master node, corresponding to the computation on the

cloud.

• one slave in Frankfurt, corresponding to the computation on an edge

node near the cloud.

• one slave in Miami, corresponding to the computation on an edge node

far from the cloud.

• one slave on AWS, corresponding to the computation on an edge node

far from the cloud, in a different network.

• one slave on the remote machine, corresponding to the computation to

a very remote edge node, with poor network capacity

• two slaves in Frankfurt, corresponding to the data duplication near the

cloud.

• three slaves in Frankfurt, corresponding to the computation duplication

near the cloud.

• four slaves on the Cloudsigma machines, corresponding to the compu-

tation duplication both on the cloud and on the edge.

To make a decision on the optimal filesystem to adopt, we took into account

three alternatives: HDFS, GlusterFS and CephFS. After some considerations

and testing, covered in chapter 2.3 and 5.2.3, The best one resulted to be

GlusterFS.
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To simulate different configurations of Data Movement, along with the com-

parison between file systems, the JSON file is distributed in four different

ways, and the tests for all the cluster configurations are repeated in each

data configuration. The four data sources are:

• a GlusterFS volume located on the master node, in Frankfurt, corre-

sponding to the file stored in the cloud.

• a GlusterFS volume located on the AWS machine, in Ohio, correspond-

ing to the data moved to an edge node.

• a HDFS cluster deployed on the four Cloudsigma machines, to confront

the performances between the storage solutions.

• a CephFS cluster deployed on the four Cloudsigma machines, to con-

front the performances between the storage solutions.

These configurations allow us to confront the performances of the different

file systems taken into consideration, in order to choose the best one, and to

evaluate how the computation time varies by moving the data closer to or

further from the computation node(s).

As previously mentioned, for each data source we run the tests in each of the

cluster configuration listed above, in order to have all the possible combina-

tion and make a comprehensive analysis of the architecture.

4.3 Environment setup

Now we briefly explain how the testing environment was set up, from the

spark cluster, to the various distributed file systems.

4.3.1 Spark cluster setup

Configuring Spark is quite straightforward [9], so we will briefly explain the

main steps to perform.
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In order to be able to communicate with the workers, the master node needs

passwordless ssh access to the slave nodes, so we need to generate a key pair

and distribute the public one to all the necessary machines.

Spark requires a Java and a Scala installation on every node to work, so we

have to install them on all the cluster machines.

Then we need to download the Spark binaries, extract them and place them

in the same path in all the nodes.

We now need to edit the configuration files. In the ./conf/slaves file in

the master node we will add all the machines used as worker nodes, while

in the ./conf/spark-env.sh file of every slave we will specify the resources

dedicated to the worker, in this case 1 cpu and 512mb of memory.

In the ./sbin folder are located the script used to start the cluster: start-

master.sh, launched on the master node, will start the Spark master, start-

slaves.sh, run on the master node, will launch all the slaves specified in the

./conf/slaves file, start-all.sh starts both the master and the slaves. To

start a single slave we have to launch start-slave.sh in the worker node, pass-

ing as a parameter the address of the Spark master. The cluster web interface

can be accessed at master-ip:8080.

Likewise we can use similar scripts to stop the various components: stop-

master.sh, stop-slaves.sh, stop-all.sh on the master, and stop-slave.sh on the

worker.

To be able to analyze the jobs submitted to the cluster after their com-

pletion, we need to enable the history server. On the master node, in the

./conf/spark-defaults.conf file we uncomment the line

spark.eventLog.enabled true and specify the log directory in the line

spark.eventLog.dir, and start the server with the script ./sbin/start-history-server.sh.

Now the history server can be access atmaster-ip:18080.

4.3.2 Filesystems setup

As previously explained, all the Spark workers need to access the data, and

we need a tool to implement the Data Distribution in our architecture, so we
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need to setup a distributed file system. Here is explained how to configure

the three chosen ones.

GlusterFS

Since we want the file placed in a specific location in order to simulate the

Data Movement correctly, we choose to deploy the GlusterFS volume on a

single machine each time, so we do not cover the set up of multiple nodes.

Again as with Spark, many resources are available online which explain in

detail how to set up the cluster [11].

To set up a GlusterFS volume we need to install the gluster-server package on

the cluster nodes. The gluster daemon needs to be started, then the volume

is created with the command

gluster volume create {volume-name} {node-ip}:/path/to/volume/folder

Then on all the client nodes we can install the cluster-client package and

mount the volume with the command:

mount -t glusterfs {server-ip}:{volume-name} /path/to/mount/folder

Now Spark can access the data stored in the Glusterfs volume via the mount

folder of each node, as if it were a local file.

CephFS

Setting up CephFS is a more cumbersome operation. An automated tool is

available, however we needed to manually execute some steps due to some

errors. Given the longer process, we will not explain it, but here is the official

documentation that covers in detail each step [4].

To mount the volume on the client nodes we use the mount.ceph command,

provided by the ceph package. The command syntax is:

mount.ceph {mon-ip}:/ /mnt/foo

Once the volume is mounted on the machines, Spark can access the files in

the same way as with GlusterFS
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HDFS

To install HDFS we need to download the binaries from the Apache foun-

dation site and extract it on all the desired cluster nodes [5]. Then we need

to edit the configuration files: in ./etc/hadoop/hadoop-env.sh we add the

correct Java path at the export JAVA_HOME line, in ./etc/hadoop/core-site.xml

we set the namenode location, while in in ./etc/hadoop/workers we add

all the datanodes we need. Then we format the file system with

./bin/hdfs namenode -format

and then start the HDFS with the command

./sbin/start-dfs.sh

Spark is able to access the file in HDFS via the following path format:

hdfs://{namenode-ip}:9000/path/to/file

4.3.3 Data set

To edit the data in the correct format we wrote a simple script that automat-

ically formats the JSON file, to make it optimized for the Spark partitioning.

The low resources available for the machines, however, limit the file size to a

maximum of about 1GB, as, if trying to format a bigger file, the script will

crash.

Once the file is downloaded and formatted, it is stored in the file system of

choice, following the corresponding method.

4.3.4 Test program

The testing program consists in the loading of the JSON file into a Spark

dataset, on which a query is performed, to calculate the average of all the

blood test values, and the result is then displayed in the terminal.

To provide an easy customization, some program configurations, like the app

name, the file location, the number of partitions, are loaded from an xml file,

45



CHAPTER 4. CONFIGURATION OF THE TEST ENVIRONMENT

stored in a GlusterFS volume.

The program is packaged in a jar file and then submitted to Spark via the

./sbin/spark-submit script.

4.3.5 Custom script

In order to speed up the testing process a custom script has been made. It

gives the possibility to start/stop one or more slaves directly from the master

node, it can perform multiple sumbits of a job, and allows a fully automation

of the process: with a single command we can start the slave(s), launch a

job a given amount of times, and automatically stop the slave(s) at the end

of the execution.

This script also allows to run a job without relying on a distributed file sys-

tem: a function is implemented, that takes the submitted files and distributes

them to all the slave nodes prior to the start of the Spark job.

This function however is only used in the early stages of the project, to test

the correctness of the Spark environment and of the test program, before the

configuration of the file systems, and it is not included in the tests.
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Validation Results

The testing process needs to evaluate two main parts of the Fog architecture,

the data movement and the computation movement, and how well they can

be executed with Spark.

Each combination of Spark configuration and data configuration is tested ten

consecutive time, the total times of the computations are fetched from the

Spark History Server, and the results are visualized via box plots.

In addition to the two main goals of the tests, we wanted to evaluate how

some Spark settings can impact on the performance, regardless of the external

factors.

The two settings we considered more relevant to the project, and therefore

tested, are the number of cpus allocated to a Spark worker and the number

of partitions of the data.

Since these two topics does not concern the Fog architecture and the main

goal of the thesis, only a couple of significant configurations have been tested.

5.1 Results aggregation

The results of the tests are aggregated in three main categories, the two key

aspects of the Fog architecture, Data movement and Computation Move-

ment, and a third category, which comprises the tests relevant to the config-
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uration of Spark, and how it can be tuned to improve the performance.

The first category is the Data Movement, which in this case is realized by

having different deployment, and choosing a different data source accordingly

to the cluster configuration.

The intuitive result is that having the data closer to the computation brings

better performance, and the tests aim to verify this hypothesis and to assess

how much the data location is influential among the overall setup.

The results are therefore aggregated by cluster configuration, in order to vi-

sualize the differences between all the data sources (chapter 5.2.1).

The Computation Movement aims to adapt the cluster configuration accord-

ing to the data submitted, realized in our implementation by either moving

or adding workers to the Spark cluster.

The tests aim to verify the influence of the location of a Spark slave (the

computation node) with respect to the master and to the data source, and

how much allocating more resources, i.e. adding nodes to the cluster, can

improve the performance

Thus the results are aggregated by data source, hence giving a visual com-

parison of the computational time of all the cluster configurations.

5.2 Results

In this section we display the final results of the tests performed and dis-

cuss them in relation of the scope of the thesis, grouped by the three afore-

mentioned categories: Data Movement, Computation Movement and Spark

settings. The results are displayed as box plots, which provide a quick view

of the average, maximum, minimum time and the consistency of the perfor-

mance, as well as a visual comparison between the configurations.

5.2.1 Results - Data Movement

The following graphs show the results of the Data Movement simulations:

each graph refers to a configuration of the Spark cluster, while each box plot
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refers to a different data source.
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Figure 5.1: Single slave on master node
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Figure 5.2: Single slave on Frankfurt 1 node
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Figure 5.3: Single slave on Miami node
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Figure 5.4: Single slave on AWS node
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Figure 5.5: Two slaves in Frankfurt
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Figure 5.6: Three slaves in Frankfurt
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Figure 5.7: 4 slaves

We can see that the data location has a significant impact on the perfor-

mance of the job. In fact, looking at the two files stored in GlusterFS -the

master one located in Frankfurt and the AWS one located in Ohio, USA- it is

evident that the closer the slave is to the data source, the quicker the job is.

In fact the nodes located in America have better performance when reading

from the AWS node, while the slaves in Frankfurt perform better with the

Frankfurt data source.

The configuration with a Frankfurt slave (Figure 2), however, shows an

anomaly, being faster reading from the AWS file.

Increasing the number of nodes we notice the expected results: with more

Frankfurt nodes the performance difference between the data sources remains

constant, while with the addition of the Miami node, in the test with 4 slaves,
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we have a slight improvement of the computation speed when reading from

the file in the AWS node, compared to the Frankfurt file, due to the proxim-

ity of the Miami node to the AWS data.

Moving on to the performance of the different filesystems, we notice that

GlusterFS is quicker in every configuration (if the data is close to the slave),

while CephFS and Hadoop have a slightly worse performance, similar be-

tween them, despite having both distributed the file across multiple nodes.

The configuration with the Frankfurt slave is an anomaly even in this case,

since it performed better with CephFS.

The anomalies shown by the computations with the Frankfurt slave may be

caused by a slow or unstable connection with the master node, or a different

configuration of the virtual machine.

5.2.2 Results - Computation Movement

The following box plots summarize the tests relevant to the computation

movement: the two graphs represent the tests performed reading from files

located in the master node, in Frankfurt, and in the AWS node, in America,

both stored in a GlusterFS volume.

Each box plot in the graph represents the test performed in a different spark

configuration.
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Figure 5.8: File stored in master node, Frankfurt, with GlusterFS
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Figure 5.9: File stored in AWS node, USA, with GlusterFS

As already evaluated in the data source testing, we see that the slaves

near the data source perform better than the further ones.

With the addition of a second slave, we notice a significant improvement in

the computation time. When we add a third and a fourth slave, however, we

do not see any more particular benefit, probably because the file size does

not take fully advantage of the additional resources.

In the graph 5.9 the computation with 4 slaves is noticeably quicker than

the computation with three slaves, but this happens due to the fact that the

fourth slave is located in Miami, closer to the data source.
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5.2.3 Results - Spark settings

These tests do not aim to evaluate either the Data or the Computation Move-

ment, but are useful to understand how we can tune Spark to achieve better

performance.

As mentioned previously in the document, we identified two particular set-

tings relevant to the architecture, so we divided them in the following sec-

tions, the data partitioning and the number of CPUs.

Data partitioning

The following graph summarize the tests performed to evaluate how changing

the number of partitions of the data affects the performance of a job.

We performed the tests in two scenarios: one with a single worker, located

in Miami to emphasize the different given the longer computation time, and

one with four slaves, to evaluate if Spark can perform a better distribution

of the tasks.
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Figure 5.10: File stored in master node, Frankfurt, with GlusterFS

Both the tests with the Miami node and with the 4 nodes highlight that

having an excessive number of partition causes a slight loss of performance,

probably due to the fact that each slave has a single CPU, which prevents

Spark to be able to compute more chunks of data in parallel.

We can then conclude that a number of partitions much higher than the

total number of CPUs only adds an overhead, without giving any advantage

in term of parallelism.

This results reflect the suggested partitioning for the data in a Spark job [7],

which is to partition the data in about two/three times the number of total

CPUs in the computation, while trying to maintain a small enough partition

size to be stored in memory.
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Number of CPUs

This test aim to calculate the influence that the number of CPUs has on the

computation time.

Since Spark takes advantage of the parallelization of the tasks, having multi-

ple CPUs per worker should yield a great advantage, similar to the addition

of a different machine to the cluster.

The only machine suitable for the test is the remote one, since all the others

are equipped with a single core, so we are limited to a single configuration of

the cluster.

6 8 10 12 14 16 18 20

remote

remote 2 cores

time (min)

sl
av

e

Figure 5.11: File stored in master node, Frankfurt, with GlusterFS

The two tests performed on the remote node show that, as it can be

expected, adding more cores to the computation gives a performance boost,

thanks to the higher parallelism of the tasks, although having double the
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number of CPUs does not make the job two times faster.

The time needed to transfer the data, in this case more influential due to the

slow internet connection of the remote node, combined with the initial start

time of Spark, might mitigate the benefits of such upgrade.

However we notice that the performance increase is similar to the addition

of a second slave (see section 5.2.2), so we can draw the conclusion that

a cluster configuration with one two-core worker will perform similar to a

configuration with two single-core workers.

5.3 Testing - Conclusions

From all the tests performed we can draw the following conclusions, relative

to the Spark configuration and its application in Fog environments.

We can affirm that both the Data Movement and the Computation Move-

ment are very effective in reducing the completion time of a job, in fact the

best way to improve the performance is to move the computation near the

data source, by choosing a close worker, or vice versa move the data near the

computation, i.e. moving the file to the closest GlusterFS volume.

This effectiveness of the movements is encountered in every scenario, with

every type of data source.

Adding more computation nodes can help, but only to a certain extent In

fact, after a certain number of slaves, the benefits start to decrease.

The reasons may be different: the more scheduling and communication

needed from the master can add an overhead greater than the benefits of

an additional worker, the network capacity of the data source can act as a

bottleneck and limit the performance, or the file is not large enough to fully

take advantage of the increased resources.

Finally, to get the best performance, Spark needs to be set up with a cou-

ple of partitions per node, bearing in mind that each partition must fit in

memory.
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5.3.1 Data Movement

From the Data Movement point of view, these tests show that the data lo-

cality plays a fundamental aspect in the performance of a job.

The distribution of the data between multiple nodes however does not im-

prove the performance, probably due to the added overhead of the commu-

nication between all the machines and to the file system.

Given these results, the Data Movement can be achieved with great perfor-

mance benefits in this architecture by moving the file in a different GlusterFS

volume, located close to the computation nodes.

The Data Duplication, although not tested, would simply consist in copying

the file in different GlusterFS volumes, but it would make necessary a manual

update of all the duplicates every time one of them is modified, since they

are not synchronized.

5.3.2 Computation Movement

Reasoning from a Computation Movement perspective,it consists in a recon-

figuration of the cluster, with the addition of the desired slaves prior to the

computation.

The greatest improvement can be obtained by choosing the workers closer to

the data source, brings the same benefits as the Data Movement.

The Computation Movement might be even more effective than the Data

Movement for a single job: even if the worker is placed far from the master,

the amount of data transferred between the two is typically far less than

the total raw data, and thus the total time of the computation should be

shorter than the time of the data transfer plus the computation after the

Data Movement.

In case of multiple computation this argument does not hold anymore, since

the initial Data Movement time is recouped in the following computations.

On the other hand, the Computation Duplication has to be accurately eval-

uated depending on the use case, since it emerged that the performance does
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not increase linearly with the number of slaves, but it may depend on the

data size, the network capacity and the data and computation distribution.
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Concluding Remarks

In this document we introduced the concept of Fog Computing and studied

how to realize an implementation using Apache Spark, focusing on its two

main paradigms: the Data Movement and the Computation Movement.

We performed different tests to evaluate the best way to configure the archi-

tecture and provide the desired Quality of Service.

Spark proved to be a suitable tool for our purposes, being easy and fast to set

up, highly customizable and scalable, useful to implement the Computation

Movement, and performed well with GlusterFS, which in turn was a great

solution for the implementation of the Data Movement.

In order to implement the Data Movement we relied on GlusterFS, deploying

volumes in different nodes and moving the file as needed. It emerges from

the results that the data locality is highly relevant in the computation time

of a job. In fact the best action to perform in order to speed up a job is to

move the data near the workers of the cluster, while the distribution of the

file among multiple nodes does not yield any significant improvement.

The Computation Movement is instead managed by the Spark cluster. Before

the execution of a job, the needed nodes are added to the cluster. The best

solution is to choose a worker node as near as possible to the data -which is

the same principle of the data movement-, while a computation duplication

seems to reach a limit after a while: adding more and more workers yields
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to a progressively smaller advantage.

All this information will be useful in future works, which now have insight

on the right tools to utilize, how to configure them, on what aspects it is

advised to focus on, and what are the areas to be improved.

The next step is to design an architecture which will implement the Data

Movement and the Computation Movement, in order to provide a decision

system to the client, based on the job submitted.

Its goal will be to recognize the location of the data and the client, analyze

the required resources and then perform the right movements to ensure the

best quality of service.

To realize this system using Spark, it will be necessary to dive into its me-

chanics to deeply understand how the cluster manager assigns the tasks to

the slaves, and exploit and manipulate this scheduling so that it is possible

to move the computation at will.

Before the actual implementation however it can be useful to perform further

testing in a more real-world scenario: it might be interesting to evaluate how

this solution scales, with an higher number of machines, possibly with more

resources, and how the architecture will handle a larger amount of data.

Other solutions can also be tested. Although Spark is the most popular

framework for cluster computing, in this project we did not explore other

possible candidates that may fit the requirements.

The way the data is provided to the cluster can be another topic to dive into.

We researched only three different file systems, and we did not explore all

their features, so there might be better solutions, or different configurations

in the already tested ones.

In addition, the current data management solution, the GlusterFS volumes,

does not allow to perform a Data Duplication that guarantees consistency

between the different copies, so it is necessary to study a method to imple-

ment the synchronization between the volumes, or a completely new solution.

In this thesis only the Movement actions have been taken into consideration,

but the goal-based model [10] takes into account also Data Transformations,

66



CHAPTER 6. CONCLUDING REMARKS

such as encryption and aggregation, so there is a need to find a way to provide

such functionalities.
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