
POLITECNICO DI MILANO
School of Industrial and Information Engineering

Department of Electronics, Information and Bioengineering
Master of Science in Telecommunications Engineering

Machine Learning based QoE Prediction in Mobile

Cellular Networks

Supervisor: Prof. Alessandro E. C. Redondi
Co-Supervisor: Andrea Pimpinella, Ph.D.

Tesina of:
Jaya Ram Kollipara, 896254

Academic Year 2018-2019

I dedicate my work to my family and loved ones.

Acknowledgements

I would like to take this opportunity to express my profound gratitude and
deep regards to my supervisor Prof.Alessandro E.C. Redondi for the con-
tinuous support of my thesis and for his patience and motivation. Also,
special thanks to Mr. Andrea Pimpinella, Ph.D. for insightful comments and
encouragement through out my research period. And I am grateful to our
Institution Politecnico di Milano for providing me this opportunity.

Finally, I would like to thank the people who contribute the most to my
life, my family. Also, to my friends for their love and support. Without
them, none of this work would have been possible.

Sommario

Gli operatori di rete sono interessati a monitorare continuamente la soddisfa-
zione dei propri clienti per ridurre al minimo il tasso di abbandono: tuttavia,
raccogliere i feed-back degli utenti attraverso i sondaggi è un compito scomo-
do. In questo lavoro esploriamo la possibilità di prevedere la soddisfazione
dell’utente a lungo termine relativamente alla copertura della rete a partire
solo dalle misurazioni della rete lato utente. Utilizziamo i set di dati nazionali
per ingegnerizzare le funzionalità che vengono poi utilizzate per addestrare
modelli di apprendimento automatico supervisionati come le reti neurali. I
risultati ottenuti suggeriscono che, sebbene una certa correlazione sia visibi-
le e possa essere sfruttata dai classificatori, la previsione della soddisfazione
degli utenti a lungo termine dalle misurazioni della rete è un compito molto
impegnativo: pertanto, indichiamo possibili punti di azione da implementare
per migliorare i risultati di previsione.

i

Abstract

Network operators are interested in continuously monitoring the satisfaction
of their customers to minimise the churn rate: however, collecting user feed
backs through surveys is a cumbersome task. In this work we explore the
possibility of predicting the long-term user satisfaction relative to network
coverage starting from user-side network measurements only. We leverage
country-wide data sets to engineer features which are then used to train Su-
pervised Machine learning Models such as Neural Networks. The obtained
results suggest that, although some correlation is visible and could be ex-
ploited by the classifiers, long-term user satisfaction prediction from network
measurements is a very challenging task: we therefore point out possible
action points to be implemented to improve the prediction results.

ii

Contents

Sommario i

Abstract ii

1 Introduction 1

2 State of the Art 3
2.1 Estimate QoE of Video Transmission: 3
2.2 Youtube QoE in Cellular Networks: 5
2.3 Web Browsing QoE Monitoring System: 7
2.4 Summary: . 8

3 Datasets 10
3.1 User Side Measurements Data Set 10
3.2 User Satisfaction Data Set . 11
3.3 Binarize User Satisfaction Levels 12
3.4 Feature Description . 12
3.5 Feature Engineering: . 15

3.5.1 Missing Values Treatment 16
3.5.2 Log Transformation: 17
3.5.3 Relative Service and Session Times: 18
3.5.4 Average Throughput: 18
3.5.5 Discard Constant Features: 19
3.5.6 Normalization: . 19

4 Implementation 20
4.1 Introduction to Neural Networks 20

4.1.1 Building Block of Neural Network 21
4.1.2 Training a Neural Network: 24
4.1.3 Hyper Parameters of a Neural Network: 26
4.1.4 Loss Function: . 28
4.1.5 Cross validation: . 28
4.1.6 Evaluation Metrics: . 30
4.1.7 Neural Network in Practice 31

4.2 Prediction Pipeline . 34
4.2.1 Algorithm . 35
4.2.2 Summary: . 36

5 Results 37
5.1 Prediction results on Network Coverage: 38

5.1.1 Observations . 38
5.1.2 Benchmark Results: . 40
5.1.3 Consolidated Result 41

5.2 Prediction results for Video Streaming 43
5.2.1 Observations . 44
5.2.2 Benchmark Results: . 46
5.2.3 Consolidated Results: 47

6 Conclusions and Future Work 49

Bibliography 51

List of Figures

3.1 Satisfaction Vs Number of Users Before Thresholding 12
3.2 Satisfaction Vs Number of Users After Threshold 13
3.3 Data Frame imported using Pandas - Channel Related Mea-

surements . 13
3.4 Data Frame imported using Pandas- Service Time 14
3.5 Data Frame imported using Pandas - Video Streaming Data . 15
3.6 (%) of Non NaN Values per columns related to CQI 16
3.7 Propability Density Function of F and Transformed F 17

4.1 Example of a 2 Layer Neural Network 21
4.2 Non Linear Activation Functions 23
4.3 Loss Function and its derivative - Chain Rule 25
4.4 Gradient Descent . 26
4.5 K fold Cross Validation Scheme 29
4.6 Evaluation Metrics . 30

5.1 PCA on Network Coverage Data Set 38
5.2 ROC-AUC for 2 Layered NN - LTE Only 39
5.3 ROC-AUC for 3 and 4 Layered NN - LTE Only 40
5.4 Bench marked Results Network Coverage 41
5.5 Pearson Correlation Scores . 42
5.6 Performance Curve Past work Vs Present Work - Network

Coverage . 42
5.7 Learning Curve - Network Coverage 43
5.8 ROC-AUC for 2 Layered NN - Video Quality 44

5.9 ROC-AUC for 3 and 4 Layered NN 45
5.10 Learning Curve - Video Quality 46
5.11 Bench marked Results Video Quality 47
5.12 Performance Curve Past work Vs Present Work - Video Quality 48

Chapter 1

Introduction

According to recent Cisco estimates, by 2021 mobile cellular networks will
connect more than 11 billion mobile devices and will be responsible for more
than one fifth of the total IP traffic generated worldwide. Aware of these
facts, mobile network operators are constantly monitoring and improving
their access networks in order to give the best possible service to users and
reduce failures, with the final goal of generating profit. This goal can be
reached on the one hand by attracting as many new customers as possible
and on the other hand trying to minimise the churn rate, i.e., the percentage
of customers that, due to an unsatisfactory service, stop their subscriptions
and move to a different operator.

In order to monitor the level of satisfaction of their customers, network
operators often rely on surveys and questionnaires. Standard tools exist to
capture the level of satisfaction of users through general questions: as an
example the Net Promoter Score (NPS) survey asks users to indicate the
likelihood of recommending the network operator to a friend or colleague
on a scale from 0 to 10. In addition to such a generic survey, operators
often ask customers to reply on very specific questions related to the user
satisfaction relative to certain mobile network services (network coverage,
voice and video quality, etc.), which can better highlight possible problems
in the network. Based on the results of such surveys, operators have some
clues on which services should be boosted up and possibly where: as an

1

example, the operator can invest money to increase the bandwidth or the
output power available at a certain base station. Unfortunately, performing
customer feedback surveys is costly and cumbersome for operators, mainly
due to the generic poor cooperative attitude of customers.

At the same time, network operators has several ways of gathering objec-
tive measurements from their customers: radio statistics and channel quality
indicators can be obtained at the Radio Access Network (RAN), while ad-
vanced measurements such as throughput or latency can be measured with
deep packet inspection (DPI) devices and network probes nowadays com-
monly installed at the network gateways (GGSN in 3G networks or PGW for
4G networks). Additionally, operators may obtain network measurements
directly from the user terminals with specific applications running in back-
ground and installed under the user consent. Leveraging the renovated inter-
est in machine learning and artificial intelligence techniques, operators may
therefore attempt to predict the satisfaction of their customers starting from
network measurements only.

This work is an extension to existent predictive models developed by Dip.
Elettronica, Informazione e Bioingegneria, Politecnico di Milano Vodafone
Group, Network Engineering and Delivery. We present the prediction of
customer satisfaction relative to network coverage and video streaming using
robust machine learning models like Neural Networks. We focus here on long
term satisfaction. We base our study on country-wide data sets obtained from
Vodafone cellular network, containing both user-side activity measurements
and ground truth satisfaction feed backs.

We devise an optimal approach to develop a neural network model using
tensor flow and perform hyper parameter tuning using Bayesian optimization
technique. We also present some important concepts like cross-validation
techniques, missing value treatment, variable or feature transformations.

2

Chapter 2

State of the Art

The prediction of user satisfaction is quite helpful for the network operators
to provide better quality to its customers. In these scenarios we have very
few feed backs from the user and also imbalance is the binary labels. In
this chapter, we present few relevant work on the problem statement under
consideration.

2.1 Estimate QoE of Video Transmission:

In this research [1], the authors proposed a deep learning-based QoE assess-
ment approach with a large-scale QoE data set for mobile video transmission.
Each QoE metric is only related to a minority of the 89 network parameters.
Feature selection methods are applied to reduce the redundancy of the net-
work parameters for QoE assessment. The box-plot method is applied to
clean the raw data by removing outliers. Finally, a deep neural network
(DNN) is developed to learn the relationships between the network parame-
ters and the subjective QoE scores. Measurements are taken from the mobile
app and viewers are invited to view pre-installed videos. Size of the database
in 80k samples with 89 features. Score data set is Subjective scores range
from 1 to 5. whereas, 1 being the lowest, 5 being the highest. Score set of size
80k x 4. Where Users rate for Video Quality, loading, stalling and Overall
Quality.

3

Author presented bidirectional search to find the feature sub-
set.Bidirectional search is a graph search algorithm that finds the most re-
lated feature from an initial feature set to a goal subset in a directed graph.
The degree of quality is measured by Pearson Correlation coefficient and
Spearman correlation coefficient, 16 highest scores are selected in the feature
subset.

Proposed Neural Network architecture is a 3 layer topology with hidden
units 12, 48, 48 respectively. A logarithmic based loss function is used. It is
stated that the complex relationships between the data and the results can be
learned based on deep learning. The interactions between feature parameters
can be learned through full-connections of the hidden layers, for generating
the final QoE scores.The model is trained with the Adam optimizer. The
learning rate is set as 0.0001. The iteration number is set at 30000, and the
batch size is set at 128.

There was no proper approach in finalizing the topology of the neural
network, it is commented that ReLu activation function is chosen and the
best results were when the number of units in the II and III layer are 3 times
the I layer.

Remarks:

1. A huge database with ground truth values were populated by encour-
aging the user to use the mobile application and rate based on built-in
videos.

2. Neural Networks perform better than SVM, Decision trees.

3. There is no detail on hyper-parameter tuning. They assume that, if
Neural Network are tuned correctly for the specific case, can expect
more improvements.

.

4

2.2 Youtube QoE in Cellular Networks:

In this study [2], a analysis of QoE in cellular networks is addressed by using
QoE and distributed network measurements collected in real users smart-
phones via YoMoApp, a well-known tool for collecting YouTube smartphone
measurements and QoE feedback in a crowd sourcing fashion.

The data set is built from measurements collected with the YoMoApp
tool, an app that we have conceived in the past to monitor network
and QoE-relevant metrics related to YouTube directly at the smartphone.
YoMoApp is publicly available and can be directly installed through the
Google Play Store.Using YoMoApp, Measurements collected related to more
than 3000 YouTube sessions worldwide, streamed on 70 different cellular-
network providers to more than 360 different customers, between 2014 and
2018. The YoMoApp tool passively gathers multiple QoE relevant metrics
and network performance indicators related to YouTube, including measure-
ments at the player side (e.g., stalling events, changes in video resolution,
initial delay), the network side (throughput, downlink/uplink bytes, radio
access technology, etc.), as well as at the user side, retrieving user feedback
through QoE surveys displayed by the app after completion of a session.

The prediction of four QoE-relevant metrics, the prediction of the MOS
scores and the prediction of the user engagement , the corresponding pre-
dictors are built using machine-learning models, treating each problem as a
classification task, where targets are discretized. The targets are as follows:

• whether initial delays (ID) are above or below a predefined QoE-
relevant threshold – based on previous work on initial delay tolerance,
we set this value to 4 seconds

• Whether a video quality switch has occurred during the session or not.

• The number of stalling events (NS), considering three classes – zero-
stalling, mild-stalling: one or two stalling events, and severe-stalling:
more than two stallings

• The stalling frequency or re-buffering rate (RR)

5

The prediction of MOS Scores is considered as a binary classification
task, by threshold the score data set at score level 4. The prediction of
user engagement is composed into a three-class classification task, predicting
whether a user has watched less than 50% of the video, between 50% and
70%, or more than 70%. A random forest model with 10 trees through
10-fold cross validation prediction model is adopted. Simple bootstrapping
techniques are used to balance classes for learning purposes.

The full feature set encompasses 275 features, including information about
the received signal strength, the number of handovers, the number of network
switches, and multiple statistics about the incoming and outgoing traffic, ag-
gregated at different time windows of 1, 5, 10, 30, and 60 seconds. The traffic
is measured on three different levels: the total traffic transmitted/received
by the device, the traffic captured over the mobile network, and the traffic
sent/received by the application itself. Feature-selection techniques are used
to identify the most relevant features for each target.About 30 features out
of the 275 are filtered to obtain high accuracy.

For the prediction of user engagement and MOS scores, multiple models
are evaluated besides random forests, such as a single decision tree (DT),
SVM, k- nearest neighbors (KNN), and Naive Bayes(NB). Also considered
ensemble learning approaches, covering the three basic paradigms available
in the ensemble-learning domain: bagging, boosting (AdaBoost (ADA) and
gradient boosting (GRAD)), and stacking.

Remarks:

1. Relying on very rich and fairly large data set of QoE measurements
collected at users smartphones with YoMoApp monitoring framework.

2. Different machine learning models are presented especially, the perfor-
mances are higher for random forests classifier and its is assumed that
Neural Networks can deliver better results.

3. Multiple classifications are used to predict the QoE.

6

4. Measurements can be directly accessed through Andrioid API instead
of accessing application level KPI.

2.3 Web Browsing QoE Monitoring System:

In this work [3], the author has presented the prediction of QoE using Ma-
chine learning algorithms or deep learning approach in web browsing scenario.
This work proposes a novel QoE model based on ML algorithms, namely,
WBQoEM that estimate a MOS in web browsing service and predict how it
can be used to modify and adapt network parameters before sending a page
to the client.

Some of the dominant metrics measured are session length(that indicates
number of clicks on visited pages) per user, rate indicating that a user de-
cides to leave website just after the first page visit.Download and Upload
throughput, total duration of surfing. The subjective measures, MOS scores
are collected from the users, ranging from 0 to 5.

User rates the video played on a VLC over mininet to emulate video
streaming over the Software defined networks. Based on these MOS ratings,
the ML algorithm estimates the MOS and changes the real time video pa-
rameters in order to deliver the best quality to clients. With this approach
the author draws a relationship between QoE and Qos.

Log transformations are used to remove the skewness in the data. Large
data set is constructed by emulating a Software defined network. Correla-
tions with respect to the target variable are taken and subset of features are
selected. Out of all the features, the down link throughput is the highly
correlated with the target variable.User age, sex, level of education and em-
ployment are also considered but were not strong enough to add value to the
prediction. But, it is noted that user with age 22 to 25 years and good level
of education have contributed to the data set. Before, training the model,
the data set was binarized with a threshold of 4, where people who rated
above 4/5 are marked satisfied while the rest marked unsatisfied.

Multiple machine learning models experiments are presented such as, Gra-

7

dient Boosting, Linear Discriminant analysis, Logistic Regression, Random
Forest, K-nearest Neighbours, Neural Networks. The data set splitting ration
is Training(60%), Validation(20%) and Test(20%) and models are trained on
training set and validated with validation set and reported performances on
the test set. Out of which a binary Neural Network classifier gave the best
results. It is concluded that the neural network can show better results with
more data.

Remarks:

1. Relation between QoE and QoS is presented. It is commented that a
better prediction of QoE will help the Operator and the Service provider
to modulate the QoS.

2. The target variable, MOS scores are binarizeed and resulting data set
is imbalanced.

3. Results of Various Classifiers are presented. A simple Neural Network
has given best performances in terms of F1 score.

4. It is stated that, there is possibility to investigate in architecture
and hyper parameters of Neural Network for even more better per-
formances.

2.4 Summary:

In all the presented studies, [1], [2] and [3]. The major focus was on short
term prediction. Our approach takes into account the memory of the user.
Complex Non linear classifier such as gradient boosting, random forest were
explored.In all the works, the authors presented the choice of Deep Neu-
ral Networks is expected to do better. Predominantly, the focus for these
problems was made on amount of data set. Incentive based crowd sourcing
platforms were used to attract larger set of customers to provide feed backs.
In [3] it is clearly stated that, the performance of the classifiers will be better
if more number of samples were used.

8

The important KPI’s governing the prediction were discussed, out of
which, CQI, SINR, Throughput features had high correlation with the tar-
get variable. In studies [2] and [1] the user satisfaction is viewed as a multi
classification problem whereas in study [3], the MOS scores were threshold
and treated as binary classification problem. Though the Neural Networks
results were discussed by the authors in all the research papers. There is
no substantial study on hyper parameter tuning and techniques to select the
best Neural Network architecture.

In our current approach we present an approach to tune the hyper-
parameters of Neural Network using Bayesian optimization. We also choose
to use the long term behavior of a user within a cell of cellular network. As
stated in the majority of the research papers, we also deal with the imbal-
anced data set and use F1 score, Precision , Recall and AUC as evaluation
metrics for our performance.

9

Chapter 3

Datasets

This work uses two country-wide data sets coming from Vodafone, one of the
major European mobile operators. A user side network measurements data
set and a ground truth user satisfaction data set. Both data sets, in which
users details are anonymised, are relative to a period of five months from
May 2018 to November 2018

3.1 User Side Measurements Data Set

The first data set is obtained through a Vodafone-branded mobile application
installed on a subset of the operator customers’ equipment’s and running in
background under their consent. The application periodically logs several
active and passive network measurements relative to low-level network indi-
cators (e.g., average cell signal strength and channel quality indicators, daily
time spent by the user in full or limited service conditions, etc.) as well
as application level indicators (e.g., session downlink/uplink data volume,
duration and throughput) of different applications run in foreground by the
user. Beside the measurement itself, the application provides also additional
information, such as the measurement timestamp or the ID and location of
the base station to which the user is connected.
We are interested in measurements relative to (i) network coverage and (ii)
video streaming. Regarding the former, the following measurements are avail-

10

able for each day d and only for 4G Radio Access Technology(RAT):

• Daily Full Service Time: The total time in seconds a user has reported
full service in day d.

• Daily Limited Service Time : The total time in seconds a user has
reported limited service (emergency service only) during the day d.

• Daily No Service Time : The total time in seconds a user has reported
no service in day d.

• Signal to Noise Ratio (SNR)

• Reference Signal Received Quality (RSRQ)

• Channel Quality Index (CQI)

Regarding Video Streaming following measurements are considered:

• Data Session Volume(DL)

• Data Session Duration (DL)

• Peak Data Session Throughput(DL)

3.2 User Satisfaction Data Set

The second data set contains ground truth feed backs of a subset of the opera-
tor customers on their satisfaction relative to different aspects of the received
service (e.g. network coverage, video streaming quality, voice quality, data
speed, etc.). The feed backs, collected by the operator through individual
surveys, are reported in form of satisfaction grades on a scale from 0 (fully
dissatisfied user) to 10 (fully satisfied user), and each user gives a different
answer for each investigated network item. We extract from this data set
only the feed backs relative to network coverage and video streaming, creat-
ing two distinct data sets QC and QV. Considering the five months period of
analysis, QC contains 7045 survey responses for coverage and QV contains

11

(a) Network Coverage(QC) (b) Video Streaming Quality(QV)

Figure 3.1: Satisfaction Vs Number of Users Before Thresholding

6264 survey responses for video streaming, 3.1a and 3.1b shows the distribu-
tion of satisfaction grades for the two considered services. As one can see,
both distributions are highly skewed, with the majority of users reporting
positive feed backs.

3.3 Binarize User Satisfaction Levels

It is possible to discretise the grades into two classes, with respect to a
predefined satisfaction threshold T : users whose vote is less or equal than
T are grouped together as Unsatisfied users, while the opposite happens for
Satisfied users. According to [4], the best value of T is 6. Fig. 3.2a and 3.2b
shows the results of binarization. In both the services the percentage of users
unsatisfied is roughly 19%Ṫhe data set under test is Unbalanced data set.

3.4 Feature Description

From [4], to make the long term prediction, a memory length of 30 days is
taken. All the measurement per day is a new feature for our computations.
Inheriting the data sets from [4], we have the following features computed
on the raw data set. For the subset Network Coverage service measurement
(CQI, RSRQ, SNR):

12

(a) Network Coverage(QC) (b) Video Streaming Quality(QV)

Figure 3.2: Satisfaction Vs Number of Users After Threshold

• max_max: Maximum of the hourly maximum measures

• min_min: Minimum of the hourly minimum measures

• media_media: Median of the hourly median measures

• sd_max: Maximum in the hourly variations measures

• sd_min: Minimum in the houlry variations measures

• sd_media: Meadian of the hourly variations measures

Figure 3.3: Data Frame imported using Pandas - Channel Related Measure-
ments

There are 7045 entries of the users Network Coverage dataset. For each
user we have 3 x 6 = 18 features. In order to make the long term prediction,
we consider 30 days of all the measurements and we let the machine learning
model to select the best inputs. Thus we have a total of 3 x 6 x 30 = 540

13

features. More details on Missing Value treatment will be discussed in the
upcoming sections.
For the another subset of Network Coverage Measurements (Full/Lim/No),
There are data with respect to following network access technologies:

• UMTS - Universal Mobile Telecommunication System(3G)

• LTE - Long Term Evolution(4G)

Similar to channel measurements, from this paper [redondi], following fea-
tures are computed and made available for computations.

• cumulato: Cumulative Service time Ratio

• massimo: Maximum of the hourly Service time measures

• media: Median of the hourly Service time measures

• sd: Standdard Deviation in the hourly service time measures

• minimo: Minimum of the hourly Service time measures

For each user there are 3 x 2 x 5 x 30 = 900 features, where multiplication
factor 3 corresponds to Full/Lim/No Service times. Factor 2 corresponds to
Number of technologies i.e LTE + UMTS, factor 5 corresponds to type of
measurements per day and factor 30 corresponds to memory of the long term
prediction.

Figure 3.4: Data Frame imported using Pandas- Service Time

Beside network coverage, we focus also on predicting users satisfaction on
the QoE of YouTube streaming sessions. We assume that the satisfaction of

14

a user regarding video quality reported at day d is somehow correlated with
RAT-dependent features (3G/4G) analysed within the previous 30 days. To
give an example, it is reasonable to conjecture that a user that watched
videos under 4G reports higher levels of satisfaction compared to a 3G-only
user, since higher throughputs can be achieved with the former technology.
Therefore, for a given user memory of length 30. We have the following fea-
tures for 4G and 3G for the KPI’s described above(DL Session time, Session
Volume, Throughput).

• Cummulato

• massimo

Total Number of Samples: 6264
Total Number of Features: 360
For each user, 2 x 2 x 3 x 30 = 360 features, where factor 2 accounts for
number of access technologies in consideration, another factor 2 for number
of aggregate measurements i.e cumulato and massimo. Factor 3 corresponds
to KPI’s under consideration and factor 30 for memory of the prediction
pipeline.

Figure 3.5: Data Frame imported using Pandas - Video Streaming Data

3.5 Feature Engineering:

Feature engineering is the process of using domain knowledge of the data
to create features that make machine learning algorithms work. If feature
engineering is done correctly, it increases the predictive power of machine

15

learning algorithms by creating features from raw data that help facilitate
the machine learning process [5]. Though Feature engineering is the most
important art in machine learning which creates the huge difference between
a good model and a bad model, A optimal architecture of a neural network
can internally come up with those combination of features.

In any way, we perform some evident feature transformations so as to
increase performance of the neural networks.

3.5.1 Missing Values Treatment

In our raw dataset, there are approximately 80% of ’NaN’ values. We consider
one of the KPI’s. We consider CQI feature columns for visualisation of
presence of non-Null values.

Figure 3.6: (%) of Non NaN Values per columns related to CQI

In Fig.3.6, we observe that only approx. 80 out of 180 features(related to
CQI) corresponds to above 25% of non-null values out of 7045 samples. After
deep inspection, the dataset corresponding to days 1 to 20 has most number

16

(a) Original (b) Log Transformation

Figure 3.7: Propability Density Function of F and Transformed F

of NaN values, Before we treat the missing values, we slice out dataset from
30 days to last 10 days. We pick the maximum feature column with non
NaN values and perform missing value treatment. We drop all the rows cor-
responding to this feature column. In case of CQI, replacing ’NaN’ with zeros
or any other value is not the right choice, as the CQI is related to a network
measurement we cannot infer anything from the corrupted value, where as in
the case of Service times, if the user has not visited a cell generating a NaN
value can be replaced with zero service time. This step reduces the dataset
to 1789 samples. In the case of Video Streaming dataset, the NaN are safely
replaced with zeros. In this scenario, No data reduction is done.

3.5.2 Log Transformation:

It is important to check the statistical distribution of each computed feature,
as a large portion of machine learning methods assume that input features
are characterised by a Gaussian distribution. We observe that the channel
measurements features are already Gaussian distributed, while this is not
true for the service time ratios. According to [6] Log of a variable is a
common transformation method used to change the shape of distribution of
the variable on a distribution plot. It is generally used for reducing right
skewness of variables. Fig 3.7a represents the distribution of ’Full Service
Time KPI’ for LTE access type, We observe that the data is right skewed
and probably a log transformation is helpful to remove the skewness. Fig

17

3.7b shows the transformed version of this feature. Similarly we transform
all the Service time related features and insert to the dataframe.

3.5.3 Relative Service and Session Times:

We assume that computing the probabilities of service times can be effective.
This information gives the model about the percentage of time the user in a
cell experienced full/lim/No service times. We compute the following to find
the cumulative full service time ratio(Fn)

Fn =

∑30
n=1 fn∑30

n=1(fn + ln + zn)

Where fn, ln, zn are the full, limited and No service times. Similarly,
we compute the Cumulative Limited Service Time Ratio (Ln) and the Cu-
mulative No Service Time Ratio (Zn). These newly features are inserted to
our dataframe. Similar approach is also applied on the Video Streaming data
set. New feature columns are added with respect to relative download session
times with respect to LTE and UMTS. Relative Session Time Sn is given by

Sn =

∑30
n=1DLLTE∑30

n=1(DLLTE +DLUMTS)

3.5.4 Average Throughput:

Features corresponding to download volume and time are transformed to
compute the average throughput per access technology. The weighted
average(THRavg) is given by

THRavg =

∑30
n=1(THRLTE ∗DLLTE) + (THRUMTS ∗DLUMTS)∑30

n=1(DLLTE +DLUMTS)

18

3.5.5 Discard Constant Features:

After performing all the processing steps. Standard deviations are measured
in both row and columns wise. We find more number of features especially,
features with respect to UMTS in video streaming data set (QV) are constant.
We discard such columns. Users record with all zero information are also
discarded. In this case, the data for Video Streaming is reduced to 1140
Samples and Features to 160.

3.5.6 Normalization:

Normalization is a technique often applied as part of data preparation for ma-
chine learning. The goal of normalization is to change the values of numeric
columns in the dataset to a common scale, without distorting differences in
the ranges of values. For machine learning, every dataset does not require
normalization. It is required only when features have different ranges. In
our specific case, we have feature values corresponding to CQI, RSRQ, SNR
in dBm, Service times in seconds, Session DL volume in kb, Peak Session
Throuphput in kbps. Thus we normalize these feature vectors using mean
and standard deviation. Consider X as the dataset, by normalization we have

Xnorm =
X −mean(X)√

(V ar(X))

19

Chapter 4

Implementation

In this Chapter, we discuss about the improvements made to the previous
work of [4]. We will propose an optimal Neural Network that is expected to
give a better performance compared to other non-linear classifier. We use
Keras and tensor flow python packages to build our Prediction pipeline with
Neural networks.

4.1 Introduction to Neural Networks

The data set under consideration is non-linear and imbalanced. Neural Net-
work can be used to represent convex regions. In fact, there is a theoretical
finding from [7] that shows that a Neural Network with two hidden layers is
sufficient for creating classification regions of any desired shape.

The multi-layer perceptron [8] is a feed forward neural network consisting
of one input layer, at least one hidden layer, and one output layer. Feed
forward means that data move from the input to the output layer. This type
of network is trained by the back-propagation learning algorithm. MLP’s are
widely used for prediction, pattern classification, recognition, and estimation.
MLP can resolve problems which are not separable linearly. The principal
benefit of neural networks lies in an iterative learning process, in which the
data set is loaded to the network one at a time, and the weights associated
with the input values are changed each time.

20

During this learning stage, the network learns by calibrating the weights,
which allows us to predict the proper outcome of input samples. Advantages
of neural networks involve their adaptability to noisy data, as well as their
capability to classify patterns on which they have not been trained.

In this work, we present the implementation of designing a Neural Net-
work from scratch using tensor flow - keras API’s, hyper parameter tuning
for finding an optimal topology, Cross Validation techniques to train, vali-
date and test the model and criterion for selecting the relevant evaluation
metrics.

Figure 4.1: Example of a 2 Layer Neural Network

4.1.1 Building Block of Neural Network

The most important block of a Neural Network that is closely related to the
hypothesis space of the Neural Network classifier are Activation Functions.
Activation functions are mathematical equations that determine the output
of a neural network. The function is attached to each neuron in the network,
and determines whether it should be activated (“fired”) or not, based on
whether each neuron’s input is relevant for the model’s prediction. Activation
functions also help normalize the output of each neuron to a range between
1 and 0 or between -1 and 1. An additional aspect of activation functions

21

is that they must be computationally efficient because they are calculated
across thousands or even millions of neurons for each data sample. Modern
neural networks use a technique called back propagation to train the model,
which places an increased computational strain on the activation function,
and its derivative function.

Role of Activation Functions:

In a neural network, numeric data points, called inputs, are fed into the neu-
rons in the input layer. Each neuron has a weight, and multiplying the input
number with the weight gives the output of the neuron, which is transferred
to the next layer. The activation function is a mathematical “gate” in be-
tween the input feeding the current neuron and its output going to the next
layer. It can be as simple as a step function that turns the neuron output
on and off, depending on a rule or threshold. Or it can be a transforma-
tion that maps the input signals into output signals that are needed for the
neural network to function. Increasingly, neural networks use non-linear ac-
tivation functions, which can help the network learn complex data, compute
and learn almost any function representing a question, and provide accurate
predictions.

Non linear Activation Function:

Modern neural network models use non-linear activation functions. They al-
low the model to create complex mappings between the network’s inputs and
outputs, which are essential for learning and modeling complex data, such as
images, video, audio, and data sets which are non-linear or have high dimen-
sional. Almost any process imaginable can be represented as a functional
computation in a neural network, provided that the activation function is
non-linear. Non-linear functions address the problems of a linear activation
function: They allow back-propagation because they have a derivative func-
tion which is related to the inputs. They allow “stacking” of multiple layers of
neurons to create a deep neural network. Multiple hidden layers of neurons
are needed to learn complex data sets with high levels of accuracy.

22

(a) Sigmoid (b) ReLu

Figure 4.2: Non Linear Activation Functions

Sigmoid:

Sigmoid funcion in 4.2a looks like a ’S-shape’. The main reason why we
use sigmoid function is because it exists between (0 to 1). Therefore, it is
especially used for models where we have to predict the probability as an
output. Since probability of anything exists only between the range of 0 and
1, sigmoid is the right choice.

Relu:

The ReLU in 4.2b is the most used activation function. Since, it is used in
almost all the convolution neural networks or deep learning. The ReLU is
half rectified (from bottom). f(z) is zero when z is less than zero and f(z)
is equal to z when z is above or equal to zero. Range: [0 to infinity). The
function and its derivative both are monotonic.

One of the problems with ReLu is that, negative values become zero
immediately which decreases the ability of the model to fit or train from the
data properly. That means any negative input given to the ReLU activation
function turns the value into zero immediately in the graph, which in turns
affects the resulting graph by not mapping the negative values appropriately.
LeakyRelu is an extension of ReLu to address the above mentioned problem.

23

4.1.2 Training a Neural Network:

The process of fine-tuning the weights and biases from the input data is
known as training the Neural Network. Each iteration of the training process
consists of the following steps:

• Calculating the predicted output ŷ, known as feed forward

• Updating the weights and biases, known as back propagation

Loss function estimate the prediction error and back propagate the parame-
ters to modify the weights and biases.

Backpropagtion

This is the core step in functioning of neural network. After measuring the
error of our prediction (loss), we need to find a way to propagate the error
back, and to update our weights and biases. In order to know the appropriate
amount to adjust the weights and biases by, we need to know the derivative
of the loss function with respect to the weights and biases. Derivative of
the function is simply the slope of the function. If we have the derivative,
we can simply update the weights and biases by increasing/reducing with
it. This is known as gradient descent. However, the derivative of the loss
function can’t be directly calculated, with respect to the weights and biases
because the equation of the loss function does not contain the weights and
biases. Therefore, we need the chain rule to help us calculate it. The process
is shown in the Fig.4.3

24

Figure 4.3: Loss Function and its derivative - Chain Rule

Gradient Descent:

Gradient Descent is a process that occurs in the back-propagation phase
where the goal is to continuously re-sample the gradient of the model’s pa-
rameter in the opposite direction based on the weight w, updating consis-
tently until we reach the global minimum of function J(w). Refer to Fig.4.4.
The performance of the gradient descent depends on the initialization values,
this algorithm do not guarantee global minimum. The keras API provides
different optimizers that address this problem.

25

Figure 4.4: Gradient Descent

4.1.3 Hyper Parameters of a Neural Network:

A machine learning model is the definition of a mathematical formula with
a number of parameters that need to be learned from the data. That is
the crux of machine learning: fitting a model to the data. This is done
through a process known as model training. However, there is another kind of
parameters that cannot be directly learned from the regular training process.
These parameters express “higher-level” properties of the model such as its
complexity or how fast it should learn. They are called hyper parameters.
Hyper parameters are usually fixed before the actual training process begins.
Following are the hyper-parameters required to be tuned to maximize the
performance of the Neural Network.

1. Number of Layers: It must be chosen wisely. As a very high num-
ber may introduce problems like over-fitting, vanishing and exploding
gradient problems and a lower number may cause a model to have high
bias and low potential.

2. Number of Hidden Units per layer : Choose reasonably to find a
sweet spot between the high bias and variance.

26

3. Activation Function: Sigmoid/ReLu/Swish

4. Optimizer: It is the algorithm used by the model to update weights of
every layer after every iteration. Popular choices are SGD, RMSProp
and Adam. SGD works well for shallow networks but cannot escape
saddle points and local minima in such cases RMSProp could be a
better choice, AdaDelta/AdaGrad for sparse data whereas Adam is a
general favorite and could be used to achieve faster convergence.

5. Learning Rate: It is responsible for the core learning characteristic
and must be chosen in such a way that it is not too high wherein we
are unable to converge to minima and not too low such that we are
unable to speed up the learning process. Recommended values are in
powers of 10, specifically 0.001, 0.01, 0.1, 1.

6. Batch Size: It is indicative of number of patterns shown to the net-
work before the weight matrix is updated. If batch size is less, pat-
terns would be less repeating and hence the weights would be all over
the place and convergence would become difficult. If batch size is high
learning would become slow as only after many iterations will the batch
size change. It is recommend to try out batch sizes in powers of 2 (for
better memory optimization) based on the data-size.

7. Epochs: The number of epochs is the number of times the entire
training data is shown to the model. It plays an important role in
how well does the model fit on the train data. High number of epochs
may over-fit to the data and may have generalization problems on the
test and validation set, also they could cause vanishing and exploding
gradient problems. Lower number of epochs may limit the potential of
the model.

8. Drop Out Rate: The keep-probability of the Dropout layer can be
thought of hyper-parameter which could act as a regularizer to help us
find the optimum bias-variance spot. It does so by removing certain
connections every iteration therefore the hidden units cannot depend a

27

lot on any particular feature. The values it can take can be anywhere
between 0–1 and it is solely based on how much is the model over-fitting

4.1.4 Loss Function:

In statistics, the mean squared error (MSE) or mean squared deviation
(MSD) [9], of an estimator (of a procedure for estimating an unobserved
quantity) measures the average of the squares of the errors—that is, the
average squared difference between the estimated values and what is esti-
mated. The MSE is a measure of the quality of an estimator—it is always
non-negative, and values closer to zero are better.

The MSE is the second moment (about the origin) of the error, and thus
incorporates both the variance of the estimator and its bias. For an unbiased
estimator, the MSE is the variance of the estimator. Like the variance,
MSE has the same units of measurement as the square of the quantity being
estimated.

MSE =
∞∑
n=1

(y − y′)2

Where, y is the ground truth vales and y’ are the predicted class.

4.1.5 Cross validation:

Cross-validation [10] is a re-sampling procedure used to evaluate machine
learning models on a limited data sample. The procedure has a single param-
eter called k that refers to the number of groups that a given data sample is
to be split into. As such, the procedure is often called k-fold cross-validation.
When a specific value for k is chosen, it may be used in place of k in the ref-
erence to the model, such as k=10 becoming 10-fold cross-validation. Cross-
validation is primarily used in applied machine learning to estimate the skill
of a machine learning model on unseen data. That is, to use a limited sample
in order to estimate how the model is expected to perform in general when

28

used to make predictions on data not used during the training of the model.
It is a popular method because it is simple to understand and because it
generally results in a less biased or less optimistic estimate of the model skill
than other methods, such as a simple train/test split. The general procedure
is as follows:

• Shuffle the dataset randomly.

• Split the dataset into k groups.

• For each unique group:

– Take the group as a hold out or test data set

– Take the remaining groups as a training data set

– Fit a model on the training set and evaluate it on the test set

– Retain the evaluation score and discard the model

• Summarize the skill of the model using the sample of model evaluation
scores

Figure 4.5: K fold Cross Validation Scheme

29

(a) Precision and Recall (b) F1 Score

Figure 4.6: Evaluation Metrics

The results of a k-fold cross-validation run are often summarized with
the mean of the model skill scores. Figure 4.5 shows the scheme of cross
validation, for every fold the data set is split into training and test sets.

4.1.6 Evaluation Metrics:

Predictive accuracy [11], a popular choice for evaluating performance of a
classifier, might not be appropriate when the data is imbalanced and/or the
costs of different errors vary markedly

Reviewing both precision and recall is useful in cases where there is an
imbalance in the observations between the two classes. Specifically, there are
many examples of no event (class 0) and only a few examples of an event
(class 1). The reason for this is that typically the large number of class 0
examples means we are less interested in the skill of the model at predicting
class 0 correctly, e.g. high true negatives.
Key to the calculation of precision and recall is that the calculations do
not make use of the true negatives. It is only concerned with the correct
prediction of the minority class, class 1.
Precision is a ratio of the number of true positives divided by the sum of
the true positives and false positives. It describes how good a model is at
predicting the positive class. Precision is referred to as the positive predictive
value.
Recall is calculated as the ratio of the number of true positives divided by
the sum of the true positives and the false negatives. Recall is the same as
sensitivity.

30

A composite score that attempts to summarize precision and recall is F1-
score.(See 4.6a and 4.6b). In terms of model selection, F1 summarizes model
skill for a specific probability threshold, whereas average precision and area
under curve summarize the skill of a model across thresholds, like ROC AUC.

4.1.7 Neural Network in Practice

Keras [12] is a high-level API to build and train deep learning models. It’s
used for fast prototyping, advanced research, and production with three key
advantages:

• User friendly
Keras has a simple, consistent interface optimized for common use
cases. It provides clear and actionable feedback for user errors.

• Modular and composable
Keras models are made by connecting configurable building blocks to-
gether, with few restrictions.

• Easy to extend
Write custom building blocks to express new ideas for research. Create
new layers, loss functions, and develop state-of-the-art models.

Sequential Model:

In Keras [13], its about assembling layers to build models. A model is (usu-
ally) a graph of layers. The most common type of model is a stack of layers:
the tf.keras.Sequential model. To build a simple, fully-connected network
(i.e. multi-layer perceptron), we use the following piece of python code.

1 import t en so r f l ow as t f
2 de f keras_sequential_NN_model () :
3 model = Sequent i a l ()
4 # Layer 1
5 model . add (Dense (512 , input_dim = input_features . shape [1]))
6 model . add (Act ivat ion (’ r e l u ’))
7 model . add (Dropout (0 . 0 6))

31

8 # Layer 2
9 model . add (Dense (512))

10 model . add (Act ivat ion (’ s igmoid ’))
11 model . add (Dropout (0 . 0 17))
12 # Output Layer
13 model . add (Dense (1))
14 model . add (Act ivat ion (’ s igmoid ’))
15 # l r i s l e a rn i ng ra t e
16 adam = t f . keras . op t im i z e r s .Adam(l r =0.001)
17

18 model . compi le (opt imize r=’adam ’ ,
19 l o s s=t f . keras . l o s s e s . mean_squared_error ,
20 metr i c s =[’ accuracy ’])
21 re turn model

Hyper-parameters Tuning Using Bayesian Optimization:

Hyper-parameters with the lowest validation loss is always a mundane task.
Bayesian optimization is a probabilistic model based approach for finding the
minimum of any function that returns a real-value metric. Bayesian optimiza-
tion is a probabilistic model based approach for finding the minimum of any
function that returns a real-value metric. This function may be as simple as
f(x) = x², or it can be as complex as the validation error of a deep neural net-
work with respect to hundreds of model architecture and hyper-parameter
choices. Results from [14] suggest Bayesian hyper-parameter optimization
of machine learning models is more efficient than manual, random, or grid
search with:

• Better overall performance on the test set

• Less time required for optimization

Bayesian model-based optimization is intuitive: choose the next input
values to evaluate based on the past results to concentrate the search on
more promising values. The end outcome is a reduction in the total number
of search iterations compared to uninformed random or grid search methods.

32

Bayesian Optimization with Hyperopt:

Hyperopt [15] provides algorithms and software infrastructure for carrying
out hyper-parameter optimization for machine learning algorithms. Hyper-
opt provides an optimization interface that distinguishes a configuration
space and an evaluation function that assigns real-valued loss values to points
within the configuration space. Unlike the standard minimization interfaces
provided by scientific programming libraries, Hyperopt’s fmin interface re-
quires users to specify the configuration space as a probability distribution.
Specifying a probability distribution rather than just bounds and hard con-
straints allows domain experts to encode more of their intuitions regarding
which values are plausible for various hyper parameters.

Like SciPy’s optimize.minimize interface, Hyperopt makes the SMBO al-
gorithm itself an interchangeable component so that any search algorithm
can be applied to any search problem. We use algorithms Tree-of-Parzen-
Estimators (TPE) algorithm introduced in [16]. Formulating an optimization
problem in Hyperopt requires four parts:

• Objective Function: The objective function can be any function
that returns a real value that we want to minimize. In Hyperopt, the
objective function can take in any number of inputs but must return a
single loss to minimize. We try to minimize (1-f1Score) as we target to
find best model corresponding to best F1 Measure.

• Domain Space: The domain space is the input values over which we
want to search. As a first try, we can use a uniform distribution over
the range that our function is defined.

• Optimization Algorithm: We are using the Tree-structured Parzen
Estimator model, and we can have Hyperopt configure it for us using
the suggest method.

• Trails: This object saves the objective function loss , also supports
saving extra information alongside the trial loss.

Find below the python usage of the hyperopt.

33

1 from hyperopt import fmin , tpe , hp , STATUS_OK, Tr i a l s
2 t r i a l s = Tr i a l s ()
3 best_run = fmin (NN_model , search_space , a lgo=tpe . suggest ,

max_evals=35, t r i a l s=t r i a l s)

4.2 Prediction Pipeline

Neural classifier requires to optimize the hidden layer structure, by tuning
the number of neurons. To tune such hyper-parameters, we proceed with a
Bayesian optimized search on a set of candidate values as follows. First, ac-
cording to a Stratified k-fold cross-validation strategy with k = 5, the original
data set of 1780 observations and ground truth pairs is divided into five folds
with splitting ratios 80% (Training set) and a 20% (Test set). Secondly, we
focus on a given pair of Training Set and Test Set. We apply to the Train-
ing Set a further 10-fold cross-validation, such that it is divided into five
folds with splitting ratios 80% (Sub-Training Set) and 20% (Validation Set).
Each Sub-Training Set is then trained with each classifier’s hyper-parameters
candidate values.

Prediction performances are then evaluated on the corresponding Valida-
tion Set. At end of this (inner) cross-validation process, we can select the
classifiers’ best hyper-parameters (i.e. those maximising, per each classifier,
the prediction results on the Validation Set) that are used to train each model
in the outer cross-validation loop (i.e. the original Training Set). Finally, the
trained models prediction performances are tested on the Test Set. Note that
this procedure is repeated 5 times, one per each Training Set selected by the
outer cross-validation loop. The results we will show correspond to the aver-
age results across the different Test Sets. In particular, for each observation
of a given Test Set, the tested classifiers output the probability that the
observation belongs to the Unsatisfied class.

In our case, We set the objective function of Hyperopt as ’1-f1score’ and
minimize on it, there by finding a optimal search space with respect to the
above loss for every model under evaluation. We evaluate 50 models per
outer fold and for each model 10-Stratified fold f1-score is returned.

34

The Hyperopt selects the best performing model parameters out of 50
evaluated models and returns the corresponding parameters. The algorithm
builds the model with best performing parameters and evaluate on Test Set.
The model returns prediction class of probabilities. The algorithm, thresh-
olds to 100 levels between 0 and 1 with step size of 0.01. For every level,
Confusion matrix is calculated. True Positive rate, False positive rate, Pre-
cision and recall scores are recorded. Algorithm selects the best threshold
,that gives the maximum F1 score. The Receiver Operating Curve is also
plotted and corresponding ROC-AUC is calculated. This process is repeated
5 times, one for each outer-fold.

4.2.1 Algorithm

Initialize: Normalize the data set, drop all the columns that has very low
threshold of standard deviation and define search space for hyper parameters
of our model.

1. Split the data using a stratified K fold split (n_spilts=5)

2. For every outer k fold split.

• For every selection of hyper-parameters from search space using
Bayesian optimization.

– With max_evals=50

∗ Initialize the model

∗ Perform 10 fold Cross-validation

∗ Evaluate F1 Score

∗ Minimize 1-F1Score

– Return the Best Set of Hyper-parameters from the 50 evalu-
ated models.

• Initialize a NN model using parameters from above step.

• Fit the model to training set and predict on the test set.

• Evaluate the results using F1 score and ROC-AUC

35

3. Store the Results

4.2.2 Summary:

The prediction pipeline returns 5 best performing models one for each outer-
fold. Hyper parameters such as number of units per each layer, activation
function, drop-out rate, learning rate, optimizer function and evaluation met-
rics like maximum F1 score, Average precision and recall scores, AUC(recall
vs precision) and ROC-AUC in a .csv file. The end user can pick up an
average model out of 5 proposed models or perform majority voting or pick
a model with best F1 score or ROC-AUC or based on any evaluation metric
under consideration.

36

Chapter 5

Results

The features computed in Section 3 are fed into the prediction pipeline pro-
posed in Section 4. We compute True Positive Rate(TPR) and False Pos-
itive Rate(FPR). The TPR is defined as the fraction of correctly detected
Unsatisfied users, while the FPR is the fraction of Satisfied users which are
incorrectly labeled as Unsatisfied. Additionally, to summarise in a single
value the performances of each classifier, the Area Under the Curve (AUC)
is computed. Note that, for a random classifier, the AUC equals 0.5.

ROC curves help understand the performance of binary-classification
mod- els at all classification thresholds and show the different false positive
rates (FPRs) and true positive rates (TPRs).The ROC is for many different
levels of thresholds and thus it has many F score values. F1 score is appli-
cable for any particular point on the ROC curve. In the case of Unbalanced
data set F1 captures the class 1 label predictions as it depends on precision
and recall scores.

Before we present the results using proposed prediction pipeline. Feature
Selection process was implemented using principal component analysis(PCA)
[17] . In the case of Network coverage out of 480 features , 95 features capture
the 99.99% of the variances in the data set. See fig 5.1.

37

Figure 5.1: PCA on Network Coverage Data Set

We note that due to this feature reduction , there is drop in the F1 mea-
sure and ROC AUC in our experiments. So, we avoid this feature selection
process and proceed to feed the entire data set to our proposed production
pipeline.

5.1 Prediction results on Network Coverage:

We perform Grid search on the number of layers per model and Bayesian
optimization on other hyper-parameters of the neural network. Below are the
results of predictions made using 2-layered, 3-layered and 4-layered Neural
Network model.

5.1.1 Observations

A total of 481 features with 1780 samples are fed into the 2 layered NN
model. We plot best performing models and random classifier. We consider

38

features related to LTE only. UMTS features are found to have the weakest
correlations with the target variable.

Figure 5.2: ROC-AUC for 2 Layered NN - LTE Only

In Fig.5.2 the red curve represents the performance of the average model.
The Curves shown here are best performing model for each of the outer 5-fold
split of data set. The points on the curve are True Positive Rate And False
Positive rate computed by threshold the predicted probabilities between level
0 to 1 with step size of 1/100.

We observe that the curves are well above the random classifier with

39

(a) 3 Hidden Layers (b) 4 Hidden Layers

Figure 5.3: ROC-AUC for 3 and 4 Layered NN - LTE Only

Average AUC of 58.5% and Max F1 score of a working point on the average
curve 36.62%.

Similar results are observed for 3 and 4 hidden layered NN model. Refer
to Fig.5.3a and 5.3b

5.1.2 Benchmark Results:

From [4] Various classifiers were used out of which the Random forest classi-
fier was the best performing for the data set under observation. We take the
performance of the random classifier as the benchmark and plot our results
from our current work for better visualization.Results are shown in Fig. 5.4.
The benchmark F1 score is 33%.

40

Figure 5.4: Bench marked Results Network Coverage

5.1.3 Consolidated Result

From Random Forest Classifier was the best performing one with F1 measure
of 0.33 and AUC of 0.59. In case of AUC there are no considerable improve-
ments but in the case of F1 measure we have a improvement of approx 1%.
That means Neural Network classifiers are better in predicting the class 1
labels. Fig.5.6 shows the average performances of all the experiments and
compared with the previous work (i.e Blue Curve). The performance of the
Neural Network Model is also affected by the weak correlations with respect
to the labels. In Fig.5.5a and 5.5b we show the best 10 features with high
Pearson correlation coefficients, We observe low cross correlation scores on
the engineered features as well.

41

(a) Relative to Network Coverage (b) Relative to Video Quality

Figure 5.5: Pearson Correlation Scores

Figure 5.6: Performance Curve Past work Vs Present Work - Network Cov-
erage

42

From 5.6 we observe that stacking more number of layers worsens the
F1 score, this might be due to presence of less samples and at higher layer
topology are prone to over fitting. In Fig. 5.7 for less number of samples there
is over fitting problem, As the number of samples in the training increases,
the train and test error tends to converge at higher loss.

Figure 5.7: Learning Curve - Network Coverage

5.2 Prediction results for Video Streaming

Similar steps are applied on Video Streaming data set. We perform Grid
search on the number of layers per model and Bayesian optimization on other
hyper-parameters of the neural network. Below are the results of predictions
made using 2-layered, 3-layered and 4-layered Neural Network model.

43

5.2.1 Observations

A total of 160 features with 1140 samples are fed into the 2 layered Neural
Network model. We plot best performing models with respect to random
classifier.

Figure 5.8: ROC-AUC for 2 Layered NN - Video Quality

In Fig.5.8, the 2 layer network shows poor results, The final 5 models are
not stable and we do not notice reasonably decent performances. Two of the
proposed best models falls below the random classifier. Recorded Average
AUC of 0.51 and Best Working point F1 score is 0.3724

44

(a) 3 Hidden Layers (b) 4 Hidden Layers

Figure 5.9: ROC-AUC for 3 and 4 Layered NN

In the case of stacking more layers See Fig.5.9a and 5.9b, the stability in
the performance model is relatively better, there is a slight increase in the
overall AUC , but no improvements in the F1 score. It is observed that F1
score is slightly degraded. Average Curve AUC is 0.534 and 0.521 for 3 and
4 layers respectively.

Unlike the case of Network data set, we have more features to fit the model
with lesser number of samples compared to previous case. The Learning
curve experiments states that, the model is unstable and suffers with over
fitting.Refer to figure 5.8.

45

Figure 5.10: Learning Curve - Video Quality

5.2.2 Benchmark Results:

From[4] various classifiers were used. Out of all, the Random forest classifier
was the best performing for the data set under observation. We take the
performance of the random classifier as the benchmark and plot our results
from our current work for better visualization.Results are shown in Fig 5.11.
The benchmark AUC is 58% and F1 score is 37%.

46

Figure 5.11: Bench marked Results Video Quality

5.2.3 Consolidated Results:

The results in Fig.5.12 shows that, In this particular scenario, the Neural
Networks do not perform better than the bench marked classifiers. We do
not record better performances. We state that, the possible reasons for these
results are due to, weakly correlated features, Less number of samples to
train the model.

47

Figure 5.12: Performance Curve Past work Vs Present Work - Video Quality

48

Chapter 6

Conclusions and Future Work

In this work we have commented on the possibility of predicting the long-
term coverage and video satisfaction starting from user-side network mea-
surements. The results obtained demonstrate that the task is complex and
challenging, as the most robust machine learning classifiers such as Neural
Networks show quite poor performances.Nonetheless, a weak correlation be-
tween the engineered input features and user satisfaction feed backs could
be exploited and can be used from the operator as a starting point to iden-
tify possible problems in the network. Some interesting points can be raised
which might improve the performances

• Compared to short-term QoE estimation, long-term satisfaction predic-
tion looks like a much more challenging task. The most direct explana-
tion for this could lie in the way users reply to survey, which could be
affected by many factors (e.g., value for money or other user-dependent
standards) that network measurements alone cannot capture.

• Attracting more customers to provide feedback, implementation of in-
centive based approaches.

• A very less number of samples compared to number of features. Train-
ing a neural network causes over fitting. We observe that the developed
Neural Networks performs better on the training set and not as good
as on the test set.

49

• Using LSTM solutions as stated in[18], for long term prediction. This
choice also decrease the computational complexity.

• We must investigate other solutions to tackle the problem of having a
imbalanced smaller data set. Under Sampling and Over Sampling the
data could one of the choices.

• Use more granular search space for hyper-parameter tuning ,investi-
gate more on non linear activation functions and loss functions. Both
feature engineering and Optimal Machine learning model are linked to
get better performances.

50

Bibliography

[1] Xiaoming Tao et al. «Learning QoE of mobile video transmission
with deep neural network: A data-driven approach». In: IEEE Jour-
nal on Selected Areas in Communications 37.6 (2019), pp. 1337–
1348.

[2] Sarah Wassermann et al. «On the Analysis of YouTube QoE in
Cellular Networks through in-Smartphone Measurements». In: 2019.

[3] Asma Ben Letaifa. «WBQoEMS: Web browsing QoE monitoring
system based on prediction algorithms». In: International Journal
of Communication Systems (2019), e4007.

[4] Alessandro Redondi Andrea Pimpinella. «Towards Long-Term Cov-
erage and Video Users Satisfaction Prediction in Cellular Net-
works». In: 2019 12th IFIP Wireless and Mobile Networking Con-
ference (WMNC). IEEE. 2019.

[5] Ian H Witten et al. Data Mining: Practical machine learning tools
and techniques. Morgan Kaufmann, 2016.

[6] FENG Changyong et al. «Log-transformation and its implications
for data analysis». In: Shanghai archives of psychiatry 26.2 (2014),
p. 105.

[7] R. Lippmann. «An introduction to computing with neural nets». In:
IEEE ASSP Magazine 4.2 (1987), pp. 4–22. issn: 0740-7467. doi:
10.1109/MASSP.1987.1165576.

[8] Jaroslav Frnda et al. «A Hybrid QoS-QoE Estimation System for
IPTV Service». In: Electronics 8.5 (2019), p. 585.

51

https://doi.org/10.1109/MASSP.1987.1165576

[9] Zhou Wang and Alan C Bovik. «Mean squared error: Love it or
leave it? A new look at signal fidelity measures». In: IEEE signal
processing magazine 26.1 (2009), pp. 98–117.

[10] NA Diamantidis, Dimitris Karlis, and Emmanouel A Giakoumakis.
«Unsupervised stratification of cross-validation for accuracy estima-
tion». In: Artificial Intelligence 116.1-2 (2000), pp. 1–16.

[11] Nitesh V Chawla. «Data mining for imbalanced datasets: An
overview». In: Data mining and knowledge discovery handbook.
Springer, 2009, pp. 875–886.

[12] Keith Johnson. «Supervised Learning for Sequence Prediction Using
Keras Sequential Models». PhD thesis. California State University,
Northridge, 2019.

[13] Yeldar Toleubay and Alex Pappachen James. «Getting Started with
TensorFlow Deep Learning». In: Deep Learning Classifiers with
Memristive Networks. Springer, 2020, pp. 57–67.

[14] James Bergstra, Daniel Yamins, and David Daniel Cox. «Making a
science of model search: Hyperparameter optimization in hundreds
of dimensions for vision architectures». In: (2013).

[15] James Bergstra, Dan Yamins, and David D Cox. «Hyperopt: A
python library for optimizing the hyperparameters of machine learn-
ing algorithms». In: Proceedings of the 12th Python in science con-
ference. Citeseer. 2013, pp. 13–20.

[16] James S Bergstra et al. «Algorithms for hyper-parameter optimiza-
tion». In: Advances in neural information processing systems. 2011,
pp. 2546–2554.

[17] Ian Jolliffe. Principal component analysis. Springer, 2011.

[18] Yuxiu Hua et al. «Deep Learning with Long Short-Term Memory
for Time Series Prediction». In: IEEE Communications Magazine
(2019).

52

	Sommario
	Abstract
	Introduction
	State of the Art
	Estimate QoE of Video Transmission:
	Youtube QoE in Cellular Networks:
	Web Browsing QoE Monitoring System:
	Summary:

	Datasets
	User Side Measurements Data Set
	User Satisfaction Data Set
	Binarize User Satisfaction Levels
	Feature Description
	Feature Engineering:
	Missing Values Treatment
	Log Transformation:
	Relative Service and Session Times:
	Average Throughput:
	Discard Constant Features:
	Normalization:

	Implementation
	Introduction to Neural Networks
	Building Block of Neural Network
	Training a Neural Network:
	Hyper Parameters of a Neural Network:
	Loss Function:
	Cross validation:
	Evaluation Metrics:
	Neural Network in Practice

	Prediction Pipeline
	Algorithm
	Summary:

	Results
	Prediction results on Network Coverage:
	Observations
	Benchmark Results:
	Consolidated Result

	Prediction results for Video Streaming
	Observations
	Benchmark Results:
	Consolidated Results:

	Conclusions and Future Work
	Bibliography

