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Abstract

We are moving into an era when telecommunication data analysis becomes
extremely important. The mobile traffic data collected in urban areas tends
to have repetitive patterns with spatio-temporal variations. Analyzing the
relationship between the repetitive patterns of traffic and the urban area can
play a vital role in traffic engineering, network design and urban planning.

In this work, we investigated the research field of pattern recognition to de-
rive an effective method to extract signatures from the mobile traffic data-set,
then to cluster the signatures based on their profiles.

The signature proposed in this work shows enhancement in clustering mobile
traffic, in comparison with the state of the art methods. The signature
extraction was based on non-negative matrix factorization, where we factorize
the dimension of two months of mobile traffic in 24 hours that reflects working
days and weekends. By applying clustering based on our model, we obtained
better coverage and entropy of land-usage inside the classes that represent a
specific traffic profile behaviour.
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Introduction

The aim of this thesis is to analyse mobile traffic in urban areas, to find
correlations between the traffic profiles and the landusage in the city. Due
to the repetitive behaviour in the traffic(the so-called tidal effect), we can
discover groups of similar traffic signatures within the mobile network. That
correlation in traffic signatures can help in both engineering and urban plan-
ning. Signatures represent the level of interaction of the users with the mobile
network and the urban area.

Signature is defined as the typical traffic profile that recurs in a specific area
of the mobile network in the city.

The goal is to propose a new method to extract signatures from the mobile
traffic data-set, then to cluster the signatures based on their profiles, which
are representative of distinct types of traffic associated with human activities
in the urban area.

The data-set we are using in this work is the result of a computation over the
Call Detail Records (CDR) generated by the Telecom Italia cellular network
over the city of Milan.The CDRs log the user activity for billing purposes
and network management. As described more in details in chapter three, the
CDR dataset contains the following records

• Received SMS: a CDR is generated each time a user receives an SMS

• Sent SMS: a CDR is generated each time a user sends an SMS

• Incoming Calls: a CDR is generated each time a user receives a call

• Outgoing Calls: CDR is generated each time a user issues a call

• Internet: a CDR is generated each time a user starts an internet con-
nection or a user ends an internet connection

The method we adopted to obtain the traffic signature is based on non-
negative matrix factorization (NMF), where we factorized CDR Matrix in
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order to reduce it into constituent parts that make it easier to extract the
signatures. We called the signature obtained from the NMF method, a
non-negative matrix factorization based signature (NMFS). We have applied
NMFS along with other state-of-the-art methods, to assess NMFS effective-
ness.

In order to validate the clustering, we made evaluation using the ground-
truth data-set. The ground-truth gives the geolocalized characteristic infor-
mation known as land-use for each area of Milan, such as: residential, office,
transportation, touristic, university, shopping and nightlife.

Finally, the results of the clustering obtained with different methods were
quantitatively compared using that land-use information. We were able to
estimate the density of each land-use category, for example, university or
office, inside all clusters. Another evaluation metric was to find the coverage,
which is defined as the percentage of each land-use category included within
those clusters. Then we obtained the entropy, which is the uncertainty of a
specific land-use category within a specific cluster, the lower is the entropy,
the higher is the precision of clustering. The last evaluation was the F-score
index which allows determining a single final score, by combining entropy
and coverage. The F-score index ranges in [0, 1], with 1 indicating the best
performance achievable by the given cluster set, with respect to land-use.

By comparing NMFS with other methods available in the literature on the
basis of the performance parameters introduced above, we were able to show
that the NMFS has several advantages.

0.1 Thesis structure
After the introduction, in the first chapter, we will explain the basic knowl-
edge needed to understand this thesis. Starting from what is machine learn-
ing and the branches of machine learning. Then we will focus on explaining
the unsupervised machine learning and why we used it. Afterward, we will
explain the clustering algorithm and we will focus on K-means. we will ex-
plain the state of the art methods that have been proposed for signatures
characterization for mobile network traffic.

The second chapter will explain the core of the thesis, i.e. the data-set
used in this thesis. We have two data-sets the first is CDR, consisting of
telecommunication activity records in the city of Milan. In our study, we
focused on mobile traffic data in the period of November, December 2013,
where the temporal unit is 1-hour interval. The city of Milan was divided
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into a 100x100 square grid each square 550 km2 with a side length of 235 m
in figure 2.2, this is the areal unit we use throughout the thesis, and we refer
to it as a “square”.

The second data set is the ground truth. it has been obtained by mapping
the geometry from "Population distribution data in Italy" to Milan grid
geometry. Where we have the land-use categorized as: residential, office,
transportation, touristic, university, shopping and nightlife per each area.

Finally we will explain the NMFS, the method used for the dimensional re-
duction of dataset and feature extraction. This method was used to extract
significant traffic signature using Non -negative matrix factorization. The
motivation is visualization, compressing the data, and finding a representa-
tion that is more informative for further processing.

The third chapter is dedicated to apply the state of the art and NMFS on
clustering algorithms and obtaining the clusters. Then performing the evalu-
ation methods between the clustered classes and the ground-truth data, have
some insights about the efficiency of the signatures clustering.

The fourth chapter is the conclusion about this thesis and the proposed sig-
nature characterization method NMFS. Then, in the end, we will talk about
future work in order to enhance signature characterization.

IX



Chapter 1

Background knowledge

In this chapter, we will explain the basic knowledge needed to understand this
thesis, starting from what’s machine learning and the branches of machine
learning. Then we will focus on explaining the unsupervised machine learning
and why we used it. Then we will explain the clustering algorithm and we
will focus on K-means. Then we will explain the state of the art methods
that have been proposed for signatures characterization for mobile network
traffic.

1.1 Machine learning
Machine learning is a subfield of computer science that evolved from the
study of pattern recognition and computational learning theory in artificial
intelligence. In 1959, Arthur Samuel defined machine learning as a Field
of study that gives computers the ability to learn without being explicitly
programmed. Machine learning explores algorithms that can learn from and
make predictions on data. Such algorithms operate by building a model to
make predictions or decisions, rather than following strictly static program
instructions. Machine learning tasks are typically classified into three differ-
ent categories :

1. Supervised learning

A computer is presented with inputs and their desired outputs, and the
goal is to learn a general rule that maps inputs to outputs, and able to
perform predictions.

2. Unsupervised learning
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No outputs are given to the learning algorithm, leaving it on its own
to find structure in its input. Unsupervised learning can be a goal in
itself, as discovering hidden patterns in data.

3. Reinforcement learning

A computer program interacts with a dynamic environment in which it
must perform a certain goal (such as driving a vehicle), without being
programmed to do so. Another example is learning to play a game
facing an opponent.

1.2 Clustering techniques
Clustering is the grouping of a particular set of objects based on their char-
acteristics, aggregating them according to their similarities.

There are several different ways to implement clustering, based on different
models. Different algorithms are applied to each model, differentiating its
properties and results. These models are distinguished by their organization
and type of relationship between them. The most important ones are:

• Connectivity models: As the name suggests, these models are based
on the notion that the data points closer in data space exhibit more
similarity to each other than the data points lying farther away. These
models can follow two approaches. In the first approach, they start
with classifying all data points into separate clusters then aggregating
them as the distance decreases. In the second approach, all data points
are classified as a single cluster and then partitioned as the distance
increases. Also, the choice of distance function is subjective. These
models are very easy to interpret but lack scalability for handling big
datasets. Examples of these models are hierarchical clustering algo-
rithm and its variants.

• Centroid models: These are iterative clustering algorithms in which
the notion of similarity is derived by the closeness of a data point to
the centroid of the clusters. K-Means clustering algorithm is a popular
algorithm that falls into this category. In these models, the no. of
clusters required at the end have to be mentioned beforehand, which
makes it important to have prior knowledge of the dataset. These
models run iteratively to find the local optima.
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• Distribution models: These clustering models are based on the notion
of how probable is it that all data points in the cluster belong to the
same distribution (For example: Normal, Gaussian). These models
often suffer from overfitting. A popular example of these models is the
Expectation-maximization algorithm which uses multivariate normal
distributions.

• Density Models: These models search the data space for areas of varied
density of data points in the data space. It isolates various different
density regions and assign the data points within these regions in the
same cluster. Popular examples of density models are DBSCAN and
OPTICS.

1.2.1 K-Means Clustering

The k-means algorithm searches for a predetermined number of clusters
within an unlabeled multidimensional dataset. It accomplishes this using
a simple conception of what the optimal clustering looks like:

• The “cluster center” is the arithmetic mean of all the points belonging
to the cluster.

• Each point is closer to its own cluster center than to other cluster
centers.

To run a k-means algorithm, you have to randomly initialize let’s take for
example in figure 1.1. let’s say we have three cluster centroids because we
want to group the data into three clusters. K-means is an iterative algorithm
and it does two steps: 1. Cluster assignment step 2. Move the centroid step.

In Cluster assignment step, the algorithm goes through each of the data
points and depending on which cluster is closer, whether the first cluster
centroid or the second cluster centroid or the third. It assigns the data
points to one of the three cluster centroids. In the move centroid step, K-
means moves the centroids to the average of the points in a cluster. In other
words, the algorithm calculates the average of all the points in a cluster and
moves the centroid to that average location.

This process is repeated until there is no change in the clusters (or possibly
until some other stopping condition is met). K is chosen randomly or by
giving specific initial starting points by the user.

K-means is usually run many times, starting with different random centroids
each time. The results can be compared by examining the clusters or by

3



Figure 1.1: Kmeans algorithm

a numeric measure such as the clusters’ distortion, which is the sum of the
squared differences between each data point and its corresponding centroid.
In cluster distortion case, the clustering with the lowest distortion value can
be chosen as the best clustering.

The K-means algorithm defined above aims at minimizing an objective func-
tion, which in this case is the squared error function.

J=
∑k
i=1

∑n
j=1 ||Xi − Vj ||2

(1.1)

||Xi − Vj || is the Euclidean distance between a point,Xi and a centroid
Vj , iterated over all k points in the ith cluster, for all n clusters.

1.2.2 Hierarchical clustering

Hierarchical clustering, an algorithm that builds a hierarchy of clusters. This
algorithm starts with all the data points assigned to a cluster of their own.
Then two nearest clusters are merged into the same cluster. In the end, this
algorithm terminates when there is only a single cluster left.

The results of hierarchical clustering can be shown using dendrogram

At the bottom in figure 1.2, we start with 25 data points, each assigned to
separate clusters. Two closest clusters are then merged till we have just one
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Figure 1.2: Dendrogram
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cluster at the top. The height in the dendrogram at which two clusters are
merged represents the distance between two clusters in the data space.

The decision of the number of clusters can be chosen by observing the den-
drogram. The best choice of the number of clusters is the no. of vertical lines
in the dendrogram cut by a horizontal line that can transverse the maximum
distance vertically without intersecting a cluster.

In the above example, the best choice of no. of clusters will be 4 as the red
horizontal line in the dendrogram below covers maximum vertical distance
AB.

1.2.3 Gaussian Mixture Models

The k-means clustering model explored is simple and relatively easy to un-
derstand, but its simplicity leads to practical challenges in its application.
In particular, the nonprobabilistic nature of k-means and its use of simple
distance-from-cluster-center to assign cluster membership leads to poor per-
formance for many real-world situations. The Gaussian mixture models can
be viewed as an extension of the ideas behind k-means, but can also, be a
powerful tool for estimation beyond simple clustering.

A Gaussian mixture model (GMM) attempts to find a mixture of multi-
dimensional Gaussian probability distributions that best model any input
dataset. In the simplest case, GMMs can be used for finding clusters in the
same manner as k-means.

Gaussian mixture model is very similar to k-means: it uses an expectation-
maximization approach which qualitatively does the following:

• Choose starting guesses for the location and shape

• Repeat until converged:

1. E-step: for each point, find weights encoding the probability of
membership in each cluster

2. M-step: for each cluster, update its location, normalization, and
shape based on all data points, making use of the weights

6



The result of this is that each cluster is associated not with a hard-edged
sphere, but with a smooth Gaussian model. Just as in the k-means expectation-
maximization approach, this algorithm can sometimes miss the globally op-
timal solution, and thus in practice, multiple random initializations are used.

1.3 Number of clusters initialization
we will mention some Proposed Measures that were mentioned in literature
and we used to obtain the initial number of clusters.

Since the k-means method aims to minimize the sum of squared distances
from all points to their cluster centers, this should result in compact clusters.
We can, therefore, use the distances of the points from their cluster center
to determine whether the clusters are compact. For this purpose, we use
the intra-cluster distance measure, which is simply the distance between a
point and its cluster center and we take the average of all of these distances,
defined as

intra =
1

N

K∑
i=1

∑
xεCi

|x− zi|2 (1.2)

where N is the number of signatures in CDR data-set, K is the number of
clusters, and zi is the cluster center of cluster Ci. We obviously want to
minimize this measure. We can also measure the inter-cluster distance, or
the distance between clusters, which we want to be as big as possible. We
calculate this as the distance between cluster centres and take the minimum
of this value, defined as

inter = min(|zi − zj |2) (1.3)

We take only the minimum of this value as we want the smallest of this
distance to be maximized, and the other larger values will automatically be
bigger than this value.

Since we want both of these measures to help us determine if we have a good
clustering, we must combine them in some way. The obvious way is to take
the ratio, defined as:

V alidity =
intra

inter
(1.4)
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Since we want to minimize the intra-cluster distance and this measure is in
the numerator, we consequently want to minimize the validity measure. We
also want to maximize the intercluster distance measure, and since this is in
the denominator, we again want to minimize the validity measure. Therefore,
the clustering which gives a minimum value for the validity measure will tell
us what the ideal value of K is in the k-means procedure.

1.3.1 Calinski Harabasz (CH)

Called sometimes variance ratio criterion (VRC), evaluates the cluster valid-
ity based on the average between and within-cluster sum of squares. Well
defined clusters have a large between-cluster variance and a small within-
cluster variance.

The score is higher when clusters are dense and well separated, which relates
to a standard concept of a cluster.

1.3.2 Davies-Bouldin (DB)

Davies Bouldin is based on a ratio of within-cluster and between cluster
distances. For each cluster C, the similarities between C and all the other
clusters are computed, and the highest value is assigned to C as its cluster
similarity. The index is obtained by averaging all clusters of similarities. So,
we are looking for the smallest index.

1.3.3 Silhouette Coefficient

The Silhouette Coefficient is calculated using the mean intra-cluster distance
(a) and the mean nearest-cluster distance (b) for each sample. The Silhouette
Coefficient for a sample is (b - a) / max(a, b). To clarify, b is the distance
between a sample and the nearest cluster that the sample is not a part
of. Note that Silhouette Coefficient is only defined if number of labels is 2
≤ Nlabels ≤ Nsamples− 1.

The best value is 1 and the worst value is -1. Values near 0 indicate over-
lapping clusters. Negative values generally indicate that a sample has been
assigned to the wrong cluster, as a different cluster is more similar.

1.4 Signature characterization
Since the tidal traffic has repetitive behavior for the activities of the mobile
network, we can extract a signature that represents the mobile traffic be-
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havior in a compact form called mobile traffic signature. The mobile traffic
signature is defined as the typical traffic profile that recurs in a specific area
of the mobile network.

we will explain the methods used in literature [15] [3] [2] to obtain signatures
mobile traffic data in an urban area.

Our study has been done using mobile traffic data provided by Telecom Italia
that will be explain in detail in chapter three. The data-set is the result of a
computation over the Call Detail Records (CDR) generated by the Telecom
Italia cellular network over the city of Milano. In next section we will show
the results of the state of the art signatures based on this data-set.

1.4.1 Soto

The Soto approach [15] considers mobile traffic signatures that correspond to
the average mobile traffic volume observed during (1) a working day, and (2)
a weekend day. We refer to these as average weekday-weekend signatures.
Formally, the set of days d is split into two sets dwd and dwe, which contains
all Mondays-to-Fridays, and all Saturdays and Sundays, respectively. Then,
the element associated to t in the signature of a unit area is :

Sa(wd, d) =
1

dwd

∑
dεdwd

va(d, t) (1.5)

for time slots t during working days, and

Sa(we, d) =
1

dwe

∑
dεdwe

va(d, t) (1.6)

for time slots t during weekends. The signature of a is then

Sa =‖dεd′ (‖tεt Sa(d, t)) (1.7)

In 1.7 d′ is the condensed set of days, which, in the case of Soto approach is
d′ = (wd,we) . Also, k indicates the concatenation of all elements in a set:
sa is thus the concatenation of all elements referring to the average working
day and to the average weekend day. Signatures then go through a standard
score normalization phase, where each time slot signature obtained in and
is normalized with respect to the mean and standard deviation of all those
referring to the same unit area. Formally, for the signature element of unit
area at time slot t
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Figure 1.3: Signature of Soto

Ŝa(we, d) =
Sa(we, d)− µ(Sa)

σ(Sa)
(1.8)

where dεd′ = (wd,we), whereas µ(Sa) and σ(Sa) denote the mean and stan-
dard deviation of the set of elements concatenated in the signature sa. Then,
the normalized signature Ŝa is simply obtained by concatenation of Ŝa(d, t)
for all dεd′ and tεt, as in 1.8 .

As far as distances between signatures are concerned, Soto considers the
Euclidean distance between the corresponding ordered vectors. Given the
signatures of two unit areas a and b, their distance is

dab =

√∑
dεd′

∑
tεt

(Ŝa(d, t)− Ŝb(d, t))2 (1.9)

Finally, the clustering of signatures is performed in Soto by running a k-
means algorithm over the set of ŝa,aεa using 1.9 as the k-means distance
measure. The algorithm requires the parametrization of k, the desired num-
ber of clusters: in Soto, k is selected according to the validity index pro-
posed in [13] and the metrics that were mentioned in 2.6. In their considered
dataset, the best results are obtained with k=8 that also equal to the number
of the landuse categories.
The figure 1.3, represents the signature obtained by applying Soto to the
CDR data-set.
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1.4.2 Cici

Cici applies a Fast Fourier Transform (FFT) to the signature in figure 2.1, so
as to clean it from irregular patterns. Specifically, once converted to the fre-
quency domain with FFT, only the highest power frequencies are kept, and
the time signal is reconstructed with an Inverse FFT (IFFT) from the se-
lected frequencies. The filtering returns the Seasonal Communication Series
(SCS) of the original signature. Normalization of whole time- series SCS-
filtered signatures are then performed using the standard-score approach in.
However, in the case of Cici, dεd, since signatures do not condense days, but
include the full-time series [3].

Figure 1.4: Decomposition of the CDR time series data

The Cici solution in [3] considers a whole-time-series signature for each unit
area. In other words, the signature of the area is
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Sa =‖dεd′ (‖tεt Sa(d, t)) (1.10)

and the number of elements that compose it is not bounded, but depends
on the timespan of the dataset D. In addition,Time series decomposition in-
volves thinking of a series as a combination of level, trend, seasonality, and
noise components.

The figure 1.4, represents the time series decomposition considered in Cici,
applied to the CDR data-set. We get rid of residual traffic that represent
noise and also the seasonality in traffic.

1.4.2.1 Time Series decomposition

Real-world data is messy and noisy. There may be additive and multiplica-
tive components. There may be an increasing trend followed by a decreasing
trend. There may be non-repeating cycles mixed in with the repeating sea-
sonality components.

There are two components within the time series data.

• Systematic

Components of the time series that have consistency or recurrence and
can be described and modeled.

• Non-Systematic

Components of the time series that cannot be directly modeled.

A given time series is thought to consist of three systematic components
including level, trend, seasonality, and one non-systematic component called
noise.
These components are defined as follows:

1. Level: The average value in the series.

2. Trend: The increasing or decreasing value in the series.

3. Seasonality: The repeating short-term cycle in the series.

4. Noise: The random variation in the series.
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1.4.3 Median week signature (MWS)

The Soto approach is based on a signature definition that is very compact
but omits too much information when confronted to the original data [15].
On the other hand, the signature employed in Cici has a number of ele-
ments equal to that of the original time series, and, intuitively, is a loss-less
representation of the same. However, when considering months of mobile
traffic activity, clustering Cici signatures incurs into the well-known curse of
dimensionality [3], and is in all cases very expensive from a computational
standpoint.

In [2] and [1] a novel signature model has been proposed that aims at com-
bining the advantages of Soto and Cici signatures while overcoming their
limitations. the median week signature (MWS) is based on two considera-
tions.

• First, it has been repeatedly shown that there exists a strong weekly
periodicity in human occupations [8]- [6], which implies that most of the
diversity in mobile traffic activity occurs within a one-week period. We
thus speculate that a signature describing the typical weekly behavior
of the mobile demand at one unit area contains the vast majority of
the significant information about the nature of that area. This allows
defining a compact, week-long signature that avoids the dimensional
problems of the Cici model, and does not lose important knowledge as
in Soto.

• Second, we deem the median to be a more reliable statistical measure
than others used in Soto or Cici (e.g., the average or the absolute
values), when it comes to assessing the typical activity in mobile traffic.
As a matter of fact, the median is much more robust to outliers, which
are frequent in mobile traffic due to special events of social, political,
sports, or cultural nature [11]- [5].

The MWS is computed according to these guidelines, as follows. The whole
set of days d is divided into seven sets, each containing elements of the dataset
D that refer to one day of the week, from Monday to Sunday. In other words,
dmon∪dtue∪dwed∪dthu∪dfri∪dsat∪dsun = d Then, the element associated
to time slot t in the signature of unit area a is

Sa(mon, t) = µ1/2({Va(d, t)|dεdmon}) (1.11)
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for time slots t corresponding to Mondays, and equivalently for all other days.
In 1.11, µ1/2 represents the median of the set within parenthesis.

Then, the MWS is defined as the concatenation in 1.7, where

d′ = {mon, tue, wed, thu, fri, sat, sun}is the condensed set of days. Tak-
ing the MWS model as a pivot.

First, we assess the impact of SCS filtering, proposed in [3] by considering
both the case where the MWS is passed through the FFT/IFFT and the case
where MWS is used as-is.

Second, we evaluate two different techniques to normalize MWS. One option
is the standard score normalization introduced above; in this case, MWS are
normalized according to 1.8, where d′ = {mon, tue, wed, thu, fri, sat, sun}.
The other option is daily normalization, where the signature element of unit
area a at time slot t

Ŝa(d, t) =
Sa(d,t)∑
tεt Sa(d,t)

(1.12)

where again dεd′ = {mon, tue, wed, thu, fri, sat, sun}. Thus, daily normal-
ization normalizes each element with respect to the total activity during the
weekday the element belongs to.

Third, we combine MWS with both distance measures used in Soto and Cici,
i.e., the Euclidean distance in 1.9 and the distance based on the Pearson cor-
relation coefficient; in both cases dεd′ = {mon, tue, wed, thu, fri, sat, sun}.

Finally, signature clustering is performed as in Cici, using the agglomerative
hierarchical algorithm.

1.4.4 Non-negative matrix factorization(NMF)

Non-Negative Matrix Factorization (NMF) is a set of algorithms in multi-
variate analysis and linear algebra and also one of the unsupervised machine
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Figure 1.5: Median week signature

learning algorithm that which we take in our account as a way to obtain the
signatures. NMF aims to extract useful features from the data and perform
dimension reduction, here a matrix X is factorized into two matrices W and
H, with non negative elements figure 1.6. The non-negativity is a useful con-
straint for matrix factorization that can learn a partial representation of the
data. The basic idea is to divide the matrix of observations X in a product
of two matrices:

Now, the W is composed of m rows w1, w2, ...wm and k rows w1, w2, ...wk
which represents the features, H is composed of m rows h1, h2, ...hm which
represents the weights.
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Figure 1.6: NMF concept

To find an approximate factorization X ≈ WH, we first need to define an
objective function that quantifies the quality of the approximation. Such a
the objective function can be constructed using a measure of the distance
between two non-negative matrices A and B. We can use the square of the
Euclidean distance:

||A−B||2 =
∑
ij

(Aij −Bij)2 (1.13)

The objective function is to minimize ||V −WH||2 with respect to W and
H, subject to the constraints W,H ≥ 0.

16



Figure 1.7: Signature based on NMF

There are plenty of techniques for numerical optimization that can be applied
to find local minima. One of these is the gradient descent, but convergence
can be slow. Other methods such as conjugate gradient have faster conver-
gence, at least in the vicinity of local minima, but are more complicated to
implement rather than gradient descent. The convergence of gradient-based
methods also has the disadvantage of being very sensitive to the choice of
step size, which can be very inconvenient for large applications.

We applied Coordinate descent from Sklearn [12], which is an optimization
algorithm that successively minimizes along coordinates directions to find
the minimum of a function. Coordinate descent updates one parameter at a
time, while gradient descent attempts to update all parameters at once. In
Coordinate descent, we minimize one coordinate of the w vector at a time
while keeping all others fixed. while gradient descent attempts to update all
parameters at once.

In coordinate descent, There is no step size hyper-parameter. A hyperpa-
rameter is a parameter whose value is used to control the learning process.
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The figure 1.7, represents the signature obtained by applying NMF to the
CDR data-set. We will explian in details in section 4.3 the characterization
of NMFS signature.

1.5 Evaluation metrics
In order to measure the quality of clustering, We evaluate the quality of
the unit area classification with respect to the available ground-truth data
according to the following metrics density, coverage, entropy and F-score as
mentioned in [2] [1].

1.5.1 Density

The density DG(c, c) is a measure of the frequency of ground-truth elements
of a given class G within a cluster cεc, where c is the set of clusters deter-
mined by the current urban fabric detection approach. Let us define as kG
the set of elements of class G (e.g., the set of universities) in the ground-
truth data; also, 1c(k) is an indicator function that is one if a ground-truth
element kkG ends up in unit areas belonging to cluster c, and zero otherwise.
Formally, the density is then defined, for a given clustering c as

DG(c, c) =
1

|c|
∑
kεkG

1c(k) (1.14)

where |c| denotes the size of the cluster cεc, i.e., the number of unit areas it
includes. The density allows comparing different clusters for the same class
G, so as to understand in which clusters elements of G are more frequent.

1.5.2 Entropy

The entropyHG(c) associated to a ground-truth class G for a given clustering
c allows estimating the dispersion of G across the clusters defined by c It is
defined as:

HG(c) = −
∑
cεc

PG(c) log(PG(c)) (1.15)
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In (1.5.3), PG(c) is the probability that a ground-truth element of class G
falls into cluster c, i.e.,

PG(c) =
1

KG

∑
kεkG

1c(k) (1.16)

Lower entropy is thus an indicator of a less random, i.e., more precise, as-
signment of ground-truth data of a given class to clusters defined by the
detection strategy.

1.5.3 Coverage

The coverage CGc) of G-class elements for a clustering c is defined as the
percentage of groundtruth elements of class G included within those clusters
of c that are the most relevant to G. Specifically, let us define a subset of
clusters CG ⊆ c that have higher than-average density for ground-truth class
G, Then, the coverage is defined as:

CG(c) =
∑
cεc PG(c)

(1.17)

Higher coverage indicates that the ground-truth data for a class G is better
matched by those clusters that are deemed considered meaningful for G.

1.5.4 F-score

The F-score index allows determining a single, final score to each detection
technique, by combining entropy and coverage for each class G, as follows

F̂G(c) =
1− ĤG(c) ∗ CG(c)
1− ĤG(c) + CG(c)

(1.18)

where ĤG(c) =
HG(c)
log(|c|) is the normalized Shannon entropy.

19



The F-score index ranges in [0, 1], with 1 indicating the best performance
achievable by the given cluster set, with respect to ground-truth class G.
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Chapter 2

Mobile metro traffic analysis

In this chapter, we will explain the mobile metro traffic analysis used to
develop this thesis. Explaining the data-sets used to perform the traffic
analysis. Introduce the adopted method based on NMF to obtain the traffic
signature.

The aim of this thesis is to analyse mobile traffic in urban areas, to find
correlations between the traffic profiles and the land-usage in the city. Due
to the repetitive behaviour in the traffic so-called tidal effect, we can discover
groups of similar traffic signatures within the mobile network. That corre-
lation in traffic signatures can help in both engineering and urban planning.
Signatures represent the level of interaction of the users with the mobile
network and the urban area.
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2.1 The Big Data Challenge

Figure 2.1: Time series CDR associated to a specific area

Our study has been done using mobile traffic data provided by Telecom Italia
Mobile as a part of the Big Data Challenge [10] competition. The dataset is
the result of a computation over the Call Detail Records (CDR) generated
by the Telecom Italia cellular network over the city of Milano. CDR logs
the user activity for billing purposes and network management. The CDR
contains the following records:

• Received SMS: a CDR is generated each time a user receives an SMS

• Sent SMS: a CDR is generated each time a user sends an SMS

• Incoming Calls: a CDR is generated each time a user receives a call

• Outgoing Calls: CDR is generated each time a user issues a call
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• Internet: a CDR is generated each time a user starts an internet con-
nection or a user ends an internet connection

CDR data-set measures the level of interaction of the users with the mobile
phone network.

The city of Milan was divided into a 100x100 square grid each square 550
km2 with a side length of 235 m in figure 2.2 and figure 2.3, this is the areal
unit we use throughout the thesis, and we refer to it as a “square”. figure 3.3
has size of 10000x1488, where the 10000 represents Milan grid squares and
the 1488 is the CDR values. The CDR values start from a 1st November
2013 at 12:00 am till 1 January 2014, where the temporal unit is 1 hour
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Figure 2.2: Milan grid

Each CDR activity value corresponds to the level of interaction of all the
users in the square with the mobile phone network. Our work has been
done with CDR for only mobile traffic activity which is a single value that
describes the total activity volume in a square.

24



Figure 2.3: Milan map
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Figure 2.4: Mapping Ground-truth to Milan grid

2.2 Ground Truth
The second data-set contains geographic locations of different land-use cat-
egories present in the territory, indicating: Milan-grid cell-id, geometry, and
land-use. The land-use information is critical to the accurate estimation of
clustering. The major activity types we have in the land-use categorized as:
residential in figure 2.8, office in figure 2.6, transportation in figure 2.5, touris-
tic in figure 2.9, university in figure 2.7, shopping in figure 2.10, and nightlife.

We used Qgis in order to map the two data-set in figure 2.4. we have our
raw ground-truth with nonuniform polygons represented as the blue squares,
then we have the Milan grid represented as grey squares in figure 2.4. We
mapped using Python the land-uses from the ground-truth to the squares
the have been matched in the Milan grid.

Population distribution data [7] It includes: population counts, a survey of
structural attributes, update and review of municipal. Anagraphical lists,
the number and structural features of houses and buildings. Specifically,
population counts are measured in terms of families, cohabitants, persons

26



temporarily present, domiciles, and other types of lodging and buildings, for
each administrative area. In our study, we will consider land-use data as
ground truth for clustering in the reference urban area.
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Figure 2.5: Transportation land-use

Figure 2.6: Office land-use

Figure 2.7: Education land-use
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Figure 2.8: Residential land-use

Figure 2.9: Touristic land-use

Figure 2.10: Shopping land-use
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2.3 Non-negative matrix factorization based sig-
nature(NMFS)

NMFS is the novel method proposed in this work, aims to extract traffic
signatures from the data and perform dimension reduction.

As described in detail in section 2.2.4. NMF aims to extract useful features
from the data and perform dimension reduction, here a matrix X that rep-
resents CDR data-set is factorized into two matrices W and H, with non
negative elements.

The W is composed of m rows w1, w2, ...wm and k rows w1, w2, ...wk which
represents the features, H is composed of m rows h1, h2, ...hm which repre-
sents the weights.

In section 3.1 we described the CDR data-set, we used it in order to apply
our approach for signature characterization. The CDR associated to each
area has a traffic for two months and one day. In order to find similarities
between 1488 hour of traffic, we reorganized the CDR data-set into (1) a
working day, and (2) a weekend day. The set of days d is split into two sets
dwd and dwe, which contains all Mondays-to-Fridays, and all Saturdays and
Sundays, respectively.

We performed that reorganization of the data-set, to separate the traffic
behaviour to weekdays and weekend as inspired by the work in [15], [2]

After obtaining the matrices with weekday-weekend, we factorized them us-
ing NMF method explianed in section 2.24.The result of the factorization is
Traffic signature for the weekday and another for the weekends. Finally we
concatenated the weekend and weekdays, which represent the signature for
each area shown in figure 2.11
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Figure 2.11: Area 1980 with office land-use for NMF signature
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Chapter 3

Experiments and results

In this chapter, we will discuss the data prepossessing we applied on the
CDR data-set and the ground-truth. Starting from, dealing with missed
data, timestamp the data. Then the ground truth mapping to the Milan
grid and how we performed it. Then signatures are clustered based on their
profiles. Afterward, we performed the evaluation methods between the clus-
tered classes and the ground-truth to have some insights about the efficiency
of the signatures clustering. Finally, we made a discussion about the perfor-
mance of our model in comparison with the state of the art methods.

Figure 3.1: workflow of this thesis
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3.1 CDR prepossessing

Figure 3.2: Data-sets size

CDR matrix in figure 3.3 has size of 10000x1488, where the 10000 represents
Milan grid squares and the 1488 is the CDR values. The CDR values start
from a 1st November 2013 at 12:00 am till 1 January 2014, where the temporal
unit is 1 hour. We first dealt with the missed data (NAN) and zeroes that
we have in our CDR data-set. otherwise, it will later cause a problem while
obtaining the signatures and performing clustering.

Figure 3.3: CDR data-set

3.1.0.1 Dealing with missed data

Data in the real-world are rarely clean and homogeneous. Typically, they
tend to be incomplete, noisy, and inconsistent. It is an important task of
prepossessing the data by filling missing values. It is important to be handled
as they could lead to wrong prediction or classification for any given model
being used.

In the CDR we dealt with that missed data using fillna from Panadas in
Python. Where we fill the missed data with the mean of the same column the
represent the same hour for all the areas.dataset.fillna(dataset.mean(), inplace =
True)
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3.1.0.2 Time stamping the data

In Sotto model for example we have to split CDR data into working-days
and weekends. On the other hand in MWS the whole set of days d is
divided into seven sets, each containing elements of the data-set D that
refer to one day of the week, from Monday to Sunday. In other words,
dmon ∪ dtue ∪ dwed ∪ dthu ∪ dfri ∪ dsat ∪ dsun = d .In order to apply
the state of the art approaches [15] [2] [3]. To do so, we have to stamp
our data-set that have CDR values, in order to differentiate different days
and hours. We used Pandads from Python to achieve that, by generated a
range of timestamps starting from 11/1/2013 generated each hour time =
pd.daterange(′11/1/2013′, periods = 1488, freq =′ H ′) Then by assign that
to the columns of the data dataset.columns = [time] in Figure3.4.

Figure 3.4: CDR data-sets timestamped

3.2 Ground-truth prepossessing
Figure 3.5 represents the data-set of "Population distribution comes from
the 2011 housing census in Italy by the national organization for statistics in
Italy, ISTAT". which we used the land-uses in that data as the ground-truth.
It originally have a size of 2798165x8 in figure 3.2. The 2798165 represents
polygons of all Lombardy. On the other hand, what we are interested in the
columns is the coordinates of the polygon and the land-use.

Figure 3.5: Population distribution ground-truth data-sets
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Figure 3.6: Milan grid coordinates

3.2.0.1 Mapping of the land-use

In order to build the ground-truth data-set based on the land-use of Popula-
tion distribution data-set, we need to make the coordinate system compatibl
for the ground-truth data-set and Milan grid. So we transformed the coordi-
nate system of Milano grid from the EPSG:4326 to EPSG:3003, using geopan-
das in python MilangridEPSG3003 = milanogrid.geometry.tocrs(epsg =
3003)

After having both coordinate systems compatible, we made a loop to find the
coordinates of the polygons of Milan grid within the ground-truth data-set
of Population distribution. Then we mapped the values of the land-use cate-
gories that matches Milan grid. At the end of that iteration we got 10000x4
matrix in figure 3.7 includes the cell ID, geometry of the grid, geometry of
the ground-truth of Population distribution and finally the land use.

Figure 3.7: Ground-truth matrix after the iteration

3.3 Results
All approaches for clustering from mobile traffic data rely on the same pro-
cessing chain, consisting of the following steps.

• Mobile traffic signature. First,a representation of the typical mobile
traffic observed at a unit area, as we introduced signature character-
istics in 2.7. This can map to the complete time series of traffic, or
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to a summary of this, a statistical measure or compressed representa-
tion. Also, since signatures need to be comparable, they are normalized
according to a normalization rule.

• Distance between signatures. Second, one computes how similar, or
different, each signature is from all other signatures in the data-set. To
that end, a signature distance measure is defined.

• Clustering of signatures. Third, having computed the distances among
all signatures, a clustering algorithm is run so as to separate groups
of signatures that have similar shapes, i.e., that are representative of
equivalent traffic activities.

3.3.1 Number of clusters analysis

In figure 3.8, the Silhouette Coefficient has been obtained for the CDR data
without obtaining signatures. We can notice that the Silhouette Coefficient
didn’t reach a maximum point and didn’t converge within the first 50 clusters.
We will see later after obtaining the signature we will have convergence within
the first 50 iteration of clusters.

Figure 3.8: Silhouette Coefficient for the whole CDR without signatures

In figure 3.9, the Calinski Harabasz score has been calculated for the MWS
signature. The higher value of the Calinski Harabasz score is 2 corsponds to
number of clusters equal to 6.That local maximum reflects that the clusters
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are dense and well separated.In figure 3.10 we calculated the number of clus-
ter index using the Davies-Bouldin index for the MWS,and its results in local
minimum corresponding to the lower value of the Davies-Bouldin index.

Figure 3.9: Calinski Harabasz for MWS

Figure 3.10: Davies-Bouldin index for MWS

In figure 3.11 is the result of the Silhouette Coefficient for the NMFS, the
number of clusters obtained is corresponding to the high value of the Silhou-
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Figure 3.11: Silhouette Coefficient for NMF

ette Coefficient local maximum equal 0.6 with number of clusters equal to
8.

3.3.2 Clusters analysis

In this work, we leverage the telecommunication traffic data itself to cluster
the traffic signatures based on their primary land-use. We employ MWS,
SOTO, CICI, and NMFS in order to find a correlation between traffic sig-
natures. Then signatures are clustered based on their profiles, which are
representative of distinct types of traffic associated with human activities.
When applied to our reference data-sets NMFS identifies seven major activ-
ity types: residential, office, transportation, touristic, university, shopping,
and nightlife.

The signatures obtained in 2.7 are clustered using K-means algorithm, based
on their profiles, and distances among all them.

The result of the clustering is a vector of the areas and the class that these
areas are most likely be available in. Each class has a high correlation in
terms of mobile traffic data.
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Figure 3.12: NMFS signature clustering result

Figure 3.12 represents the result of the clustering NMFS signature. It grouped
the signatures in classes, which has the highest signature correlation, we are
searching for the pattern that represents the geographical distribution of that
class with the city.

In table 3.1 is the percentage of the available land-uses in a specific class.
Class0 and class1 are significantly bigger than they other classes, they have
high percentage of residential land-use. Class0 also contains touristic land-
use but really small in compare with the class size. Class1 contains like 80
percent of the commuting land-use, that just represents 10 percentage of the
size of class1.

c0 c1 c2 c3 c4 c5 c6 c7
Education 20% 80% 50% 10%
Office 20% 40% 20%
Commuting 10% 20%
Touristic 40% 80% 100% 60%
Residential 80% 90% 50% 30%

Table 3.1: Percentage of the land-uses in each class

Class0 shown in figure 3.13b, has Parco Sempione identified as touristic land-
use. Also class0 includes area porta venezia, Palestro figure 3.13e. Via
22 Marzo,Porta romana, lodi and Brenta, Corvetto, foundation Prada was
all included as residential area in class0 3.13c. Along the red line of the
metro, Turro, Rovereto, shown in figure 3.13d and alone green metro line
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Romolo and Famagosta in figure 3.13a all was identified using ground truth
as residential areas.

(a) Romolo and Famagosta residential area (b) Parco Sempione identified as touristic
land-use

(c) Porta Romana, lodi and Brenta,
Corvetto areas

(d) Turro area

(e) Porta Venezia, Paslestro areas

Figure 3.13: Class0

Class1, shown in figure 3.14a represents the largest cluster contains the
biggest residential districts in the city. Figure 3.14b shows all the Commut-
ing areas in Milan that are also inside class1, for example, stazione Centrale,
Garibaldi, Sesto maggio Fs, lambrate, lampugnano and Pero.
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(a) Residential areas (b) Commuting areas

Figure 3.14: Class1

Class2, shown in figure 3.15b, includes China town via Sarp in figure 3.15c,
also area Moscova, Lanza, Turati, Brerea area. In figure 3.15a shows that
Pinacoteca Di Brera is included in the land-use category as education area.

(a) Pinacoteca Di Brera (b) Class2

(c) Chinatown district

Figure 3.15: Class2

Class3, contains the majority of the universities in Milan. Citta studi shown
in figure 3.16c. Polimi Bovisa show in figure 3.16a. Statale via festa del
perdono in figure 3.16e. Bocconi university in figure 3.16d. Università cat-
tolica del sacro cuore shown in figure 3.16b. Finally facoltà di scienza politica
shown in figure 3.16f.
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(a) Polimi Bovisa (b) università cattolica del sacro cuore

(c) Citta Studi (d) Bocconi university

(e) Universita Statale, via Festa Del Perdono

(f) Facoltà Di Scienza Politica

Figure 3.16: Class3
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In class4, we can find Bicocca university shown in figure 3.17a, also hospital
san raffael in figure 3.17c. In figure 3.17b we can see class4 include also a
part from Lanza area and piccolo teatro within the touristic land-use.

(a) Bicocca university (b) Lanza district

(c) San Raffele hospital

Figure 3.17: Class4

In class5 we can see in figure 3.18b the historical center of Milano represented
in Duomo, san Babila, montenapoleone, also we can find the central station
in figure 3.18a and porta garibaldi in figure 3.18c.
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(a) Central station (b) Historical center

(c) Porta Garibaldi

Figure 3.18: Class5

Class6, it’s only one area located in the center shown in figure 3.19a

(a) Class6

Figure 3.19: Class6

Class7, as shown in figure 3.20a, it represent Corso Buenos Aires and Loreto
and Lima all has residinatial land-use. In figure 3.20b show Corso Como and
China town. In figure 3.20c is the area of Porta Genova, Darsena, and via
Torino, via Ticinesi.
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(a) Corso Buenos Aires street (b) Corso Como

(c) Darsena, Porta Genova, Via Torino

Figure 3.20: Class7

3.3.3 NMFS signature results

Figure 3.21 represent the signatures of offices in different areas. The three
signatures have the same behaviour that can describe the behaviour of the
land-use. We notice a lower traffic profile in weekends than the working-days,
The traffic increases rapidly in the morning from around 6 am. Figure 3.22
represent a signatures of a residential areas. The signature has traffic profile
in the working days. We can notice a signicant peak in the traffic around
20:00 in the working-days signature. Figure 3.23 represents a commuting
area. These commuting areas 7621, 7220, are located in lampugnano bus
station. Figure 3.25 represents the signature of night-life area. Finally figure
3.24 represents the education signature.
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(a) Area 1980 office signature (b) Area 2047 office signature

(c) Area 2079 office signature

Figure 3.21: Office signature

(a) Area 2627 residential signature (b) Area 3934 residential signature

Figure 3.22: Residential signature
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(a) Area 7220 commuting signature (b) Area 7621 commuting signature

Figure 3.23: Commuting signature

(a) Area 2544 education signature

Figure 3.24: Education signature

(a) Area 3376 night-life signature

Figure 3.25: Night-life signature
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3.3.4 Evaluation results

In order to measure the quality of clustering, , We evaluate the quality of
the unit area classification with respect to the available ground-truth data
according to the following metrics mentioned in [2] [1]. We preformed this
evaluations between the proposed signature and the state of the art methods.

3.3.4.1 Entropy

The entropy figure 3.26 associated to a ground-truth class within given clus-
ters allows estimating the dispersion of the class.

Figure 3.26: Entropy of NMF with the state of the art

In figure 3.26, We can see the 7 land-usage and the entropy for each signature
technique. The NMFS has lower entropy than the other signatures.

Lower entropy is thus an indicator of a less random, i.e., more precise, as-
signment of ground-truth data of a given class to clusters defined by the
detection strategy.

3.3.4.2 Coverage

The coverage figure 3.27 is defined as the percentage of ground-truth elements
for example office included within those clusters.In figure 3.27 We can see
the 7 land-usage and the coverage for each signature technique. The NMFS
has higher coverage than the other signatures. Higher coverage indicates a
reduced level of randomness, and thus a more precise clustering
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Figure 3.27: Coverage for NMF and state of the art

3.3.4.3 F-score

The F-score index figure 3.28 allows determining a single, final score to each
detection technique, by combining entropy and coverage for each class of
clusters.

The F-score index ranges in [0, 1], with 1 indicating the best performance
achievable by the given cluster set, with respect to ground-truth.

We can see in figure 3.28 the 7 land-usage and the F-score for each signature
technique. The NMFS has a higher F-score than the other signatures. That
means that has higher coverage and lower entropy.

Figure 3.28: F-score for NMF with the state of the art
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Chapter 4

Conclusion

We addressed in this thesis finding typical correlated traffic pattern in the
mobile network by exploiting NMF. The main goal is to characterize the in-
ternet traffic in order to better describe the tidal effect that occurs in the
metro network.The aim to optimize the resources and better allocation of
resources and better traffic planning to avoid network congestion.

In the field of pattern recognition, the Non Negative Matrix Facorization is
one of the most used method. In [14] [4] [9],this method is widely studied.
They concluded that this kind of pattern extraction is useful for a large group
of data, from image to speech recognition. Therefore, thanks to the matrix
decomposition, it is possible to detect the traffic signatures in the metro net-
work.

We compared the four signature characterization methods solutions reported
in figure 3.28 and figure 3.26 and figure 3.27. Thus provide results in terms
of entropy, coverage and F-score for the state of-the-art approaches of Soto,
Cici , MWS as well as for our proposed approach NMFS.

The signature based on the NMFS attain a significantly lower entropy than
solutions based on the other signatures proposed by Soto and Cici and MWS.
This indicates a reduced level of randomness, and thus a more precise classi-
fication of unit areas with respect to the ground-truth data in Milan. Also,
the increased accuracy does not come at a cost in terms of coverage, in figure
3.27 . In fact, the entropy gain granted by NMFS is associated to an increase
in coverage, thus proving the higher effectiveness of NMF signatures of unit
areas.
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The result above is summarized in figure 3.28, which depicts the F-score that
is a single, final score considers both entropy and coverage. The F-score fur-
ther evidences that solution based on NMFS improve current state-of-the-art
techniques in the analysis of mobile network traffic in urban area. By com-
paring NMFS with other methods available in the literature on the basis of
the performance parameters introduced above, we were able to show that the
NMFS has several advantages.

The analysis of mobile traffic in an urban area could be improved by ag-
gregating other information coming from mobile providers and social media,
such as Facebook or Twitter. The collection of these information could be
used for many purposes, one of them is the prediction of the traffic load on-
demand avoiding bottlenecks and providing dynamic allocation of network.
Also to understand why the network experiences unexpected peaks of traffic
data during the day. resources [14].
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