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Abstract

The evolution of Unmanned Aerial Vehicles (UAVs), commonly known as drones,
in the last years has led to a real revolution in several areas, from surveillance to
military use, from photography to entertainment. The application fields in which
they can be employed are always expanding.
A research area of interest involves the flight control and in particular the flight
modes that UAVs can perform. As a consequence of the numerous existing modes,
it is necessary to manage the transitions between the different flight modes and
to facilitate the integration of new ones.
The purpose of the thesis is twofold: to design and implement a multi-mode set-
point generation system for UAV flight control based on the PX4 flight stack,
managing the flight modes and generating the setpoint based on the current flight
mode enabled; to modify the custom flight controller to allow the management
of the main flight modes: manual, altitude and position. This custom flight
controller has been developed at the Aerospace System and Control Laboratory
(ASCL) at Politecnico of Milan for education and research activities.
In order to achieve the first goal, a setpoint mapper system is designed and im-
plemented in Simulink. From the Simulink model, automatic code generation is
then exploited to integrate the system into a custom module in the PX4 firmware.
To fulfill the second goal, the flight controller interface is modified in order to run
the proper control law requested by the autopilot.





Sommario

L’evoluzione degli Unmanned Aerial Vehicles (UAV), comunemente noti come
droni, negli ultimi anni ha portato ad una vera e propria rivoluzione in diversi
settori, dalla sorveglianza agli usi militari, dalla fotografia all’intrattenimento.
I campi in cui possono essere impiegati sono in continua espansione.
Un’area di ricerca di interesse riguarda il controllo di volo ed in particolare le dif-
ferenti modalità che gli UAV possono eseguire. Come conseguenza alle numerose
modalità esistenti, è nata la necessità di gestire le transizioni tra le modalità di
volo e facilitarne l’integrazione di nuove.
Lo scopo della tesi è duplice: progettare e implementare un sistema per la gener-
azione di setpoint sulla base della modalità di volo abilitata; modificare il control-
lore di volo per consentire la gestione delle principali modalità di volo: manuale,
quota e posizione. Questo controllore è stato sviluppato presso l’Aerospace System
and Control Laboratory (ASCL) del Politecnico di Milano per attività didattiche
e di ricerca. Al fine di raggiungere il primo obiettivo, è stato progettato e imple-
mentato un sistema di mappatura dei setpoint in Simulink. Dal modello Simulink,
è stata poi sfruttata la generazione automatica di codice per integrare il sistema
nel firmware PX4. Per raggiungere il secondo obiettivo, sono state apportate
modifiche all’interfaccia del controllore di volo al fine di poter eseguire la legge di
controllo richiesta dall’autopilota.
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Chapter 1

Introduction

The evolution of Unmanned Aerial Vehicles (UAVs), commonly known as drones,
in the last years has led to a real revolution in several areas, from surveillance to
military use, from photography to entertainment. The application fields in which
they can be employed are always expanding.
A research area of interest involves the flight control and in particular the flight
modes that UAVs can perform. In order to manage the different flight modes,
UAVs are equipped with an autopilot software.
One of the most popular autopilots for UAVs is PX4, a widely used software both
in academic and industrial contexts. From an architectural point of view, PX4
firmware is composed by modules, each of them part of the system dedicated to
compute specific tasks. The most relevant modules are the commander and the
position controller.
The commander module is the core of the firmware and it is a very complex mod-
ule that manages many tasks, starting from what the vehicle should do to security
checks. It manages also the transitions between the different flight modes, reject-
ing a specific flight mode if some conditions are not satisfied.
The position controller module has a twofold role: it runs the position control law
if it is requested by the autopilot and acts as a setpoint generator based on the
enabled flight mode. In fact, based on the radio controller input, it generates the
setpoint depending on the current flight mode enabled.

Objectives

The main objective this thesis aims to fulfill is the design and implementation of a
system to manage the generation of setpoints based on the flight mode of interest
and on the commands provided from the RC controller and the ground control
station.
This custom component, besides mapping the setpoints, uses the information
coming from external commands to handle the management of the transitions
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between flight modes. Another objective this thesis aims to achive is to modify
the interface of the flight controller so that, based on the information related to
the currently active flight mode, the controller shall run the proper control laws.

Approach

This work starts from the analysis of the commander module to understand how
the current PX4 state machine has been implemented. The commander state
machine manages the switching between the flight modes and sets its state based
on the flight mode if the transition to that particular mode is not rejected.
The analysis of the state machine has been performed in terms of how the current
state is associated with respect to the enabled flight mode and how the transitions
between the states are managed. Subsequently, focus has been put on how the
position controller module manages the setpoint mapping.
A setpoint mapper system has been designed; it is composed of a state machine
which is in charge of managing transitions between modes, and a setpoint com-
putation system which generates the appropriate setpoint based on the current
mode. This system has been implemented in Simulink; subsequently, code has
been automatically generated from the model by means of the Embedded Coder.
The last part of the work consists in the firmware integration of the generated
code: the model subscribes and publishes the uORB topics in order to communi-
cate with the other modules of the PX4 firmware.

Thesis structure

The thesis is structured in the following way:

• Chapter 2 will present what is a multicopter, how it works and how it is
composed in terms of eletrical and mechanical components. Besides, it will
outline the adopted formalism, the flight modes and the implementation of
the PX4 firmware.

• Chapter 3 will present a detailed description of the setpoint mapper system
in terms of design and implementation. It will describe the architectural
choices, the software used to develop the mapper state machine and the
setpoint computation block, focusing on the mapping laws: for each flight
mode, it will describe how the setpoint are mapped and computed.

• Chapter 4 is dedicated to the testing part of the setpoint mapper system.
A formal testing procedure has been defined for the mapper state machine
using a specific verifier tool. Furthermore, it will report three experimental
results of in-flight testing.
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• Chapter 5 will analyze the implemented system and will present some ad-
vantages of the proposed solution, together with the description of some
possibilities to improve the system in future works.





Chapter 2

Multirotors and PX4

In this chapter we are going to introduce multicopters, how they work and how
they are composed in terms of electrical and mechanical components. Besides,
focus will be put on the PX4 autopilot and flight modes.

2.1 Introduction to multirotors and flight con-

trol

A multirotor or multicopter is an aerial vehicle with two or more rotors the mo-
tion of which is controlled by varying the relative speed of each rotor to change
the thrust and torque produced by each. Multicopters have very fast attitude
dynamics and require an on-board computer, the Flight Control Unit (FCU) for
flight stabilization: the flight controller controls the angular speed of each motor,
a task which would be overwhelming for human pilot.
The simplest type of multicopter is the quadcopter (or quadrotor) configuration,
which is composed by four motors, four Electronic Speed Controls (ESCs) to reg-
ulate the speed of the motors and four propellers to generate thrust. This is the
most common UAV configuration due to its simplicity (Figure 2.1).

Figure 2.1: Multicopter in quadrotor configuration.
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Each motor/propeller is spinning in the opposite direction from the two motors
on either side of it. As a result two motors rotate in clock-wise direction while
the other two in the counterclock-wise direction in order to balance the generated
torque.
A quadcopter can control its roll and pitch attitude by speeding up two motors on
one side and slowing down the other two. For example if the quadrotor wants to
roll right, it would speed up motors on the left side of the frame and slow down the
two on the right (Figure 2.2). Instead if the quadrotor wants to roll left, it would
speed up motors on the right side of the frame and slow down the two on the left
(Figure 2.3). Regarding the yaw, the copter can turn left or right by speeding up

Figure 2.2: Right roll rotation. Figure 2.3: Left roll rotation.

two motors that are diagonally across from each other and slowing down the other
two (Figure 2.4 and Figure 2.5). Altitude is controlled by speeding up or slowing

Figure 2.4: Left yaw rotation. Figure 2.5: Right yaw rotation.

down all motors at the same time. There are many types of multirotor such as bi-
copter, tricopter, quadcopter, pentacopter, hexacopter and octacopter, depending
the number of rotors they have. Out of all these copters hexa and octa copters are
considered to be the most stable drones and quadrotors have dynamically simple
and strong structure, so they are used widely for experimental purposes.
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2.1.1 Flight controller

The component that allows the flight is the flight controller, the real core of the
multicopters. The Flight Control Unit is dedicated to control RPM (revolutions
per minute) of each motor since the pilot is not able to control all motors at the
same time to keep the quadrotor balanced. Selecting the right board depends
on the physical constraints of the vehicle and the applications it is meant for.
The Aerospace System and Control Laboratory (ASCL) at Politecnico di Milano
has developed a number of multi-motor platforms dedicated to research and ed-
ucational activity; for the experimental validation part of this thesis, the ANT-1
prototype has been considered (Figure 2.6).

Figure 2.6: ANT-1.

The relevant parameters are reported in Table 2.1.

Variable Value
Frame Config. X
Propellers Gemfan Bullnose 3055 3 blade
Arm lenght b 80 mm
Take-off weight m 230 g
Motors QAV1306-3100kV brushless
ESC ZTW Spider series 18A
Battery Turnigy nano-tech 950mAh LIPO

Table 2.1: Main quadrotor parameters.

The quadrotor depicted in Figure 2.6 is a lightweight custom model with a dis-
tance of 160mm between opposite rotor axes and an overall take-off weight of
about 230g.
Another UAV platform used to educational and research purposes, is the tiltrotor
(Figure 2.7). The tiltrotor is a kind of quadrotor that has an over-actuated struc-
ture, in particular it has tilting rotor capabilities. Thanks to four servo-motors,
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each arm with motor plus propeller group can be tilted in order to produce not
only a vertical force, but also translational forces. This capability lets the tiltro-
tor to reach a full position/attitude decoupling: for example, it is able to hover
keeping non-null roll/pitch angles. This kind of platform paves the way for more
complex maneuvers and more operational scenarios, but also to more sophisti-
cated control strategies able to exploit the eight actuators to fully control the six
degrees of freedom of a rigid body in space [1]. A tiltrotor prototype has been
designed and realized in Micheli [2].

Figure 2.7: Tiltrotor.

The main parameters are reported in Table 2.2.

Dimensions 37x37x12 cm
Mass 1523 g
FCU PixHawk mini

Table 2.2: Tiltrotor features.
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The eletronic board on ANT-1 is the PixFalcon (board produced by Holybro,
Figure 2.8), which features sensors, such as 3-axes accelerometer, 3-axes gyroscope,
magnetometer and barometer, this board is based on the hardware standard[3].

Figure 2.8: PixFalcon FCU.

The features are listed in Table 2.3.

Dimensions 38x42x12 mm
Weight 15.8 g
Main Chipset STM32F427
CPU Cortex M4 core 168 MHz
RAM 256 KB SRAM (L1)

Table 2.3: PixFalcon FCU features.

The first version of the board was developed in 2008 by a team of students at
the ETH university in Zurich. During the same time the team also created the
MAVLink protocol, used for serial communication between Flight Control Unit
and companion computer, the PX4 firmware, which is the firmware supported
by PixFalcon and QGroundcontrol, the software used for PixFalcon configuration
and real time information.

2.1.2 Companion computer

The companion computer (Figure 2.9) is the part of the drone system used to
interface and communicate with PX4 on a PixFalcon using the MAVlink protocol.
It enables a broad range of functionality such as the possibility to execute processes
that require heavy CPU load. During the flight sessions arena, the companion
computer is used to receive drone position information from the Ground Station,
which is connected to a motion capture system, and to send the information
received to the FCU through the serial communication.
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Figure 2.9: NanoPi NEO Air.

In Table 2.4 are reported the main parameters.

Name CPU Quad-core Cortex-A7 1.2 GHz
RAM 512 MB
Wireless 2.4 GHz 802.11 b/g/n
Dimensions 40 x 40 mm
Weight 7.9 g
Power 5V-2A
Price 28 $

Table 2.4: NanoPi NEO Air features.

2.1.3 Radio controller

A RC system has a remote control unit that is used by the pilot to command the
drone. The remote controller has physical controls that can be used to specify
vehicle movements and to enable flight modes. On telemetry-enabled RC systems,
the remote control unit can also receive and display information from the vehicle
(e.g battery level, flight mode).
The remote control unit contains a radio module that communicates with a radio
module on the vehicle. The radio module is connected to the flight controller and,
based on the vehicle state and the current flight modes, drives the motor and the
actuators in a proper way.
A remote controller used to control aircraft must have at least 4 channels (roll,
pitch, yaw, thrust). An 8 or 16 channels transmitter has additional channels
used to control other mechanisms or activate different flight modes. A popular
remote controller for UAVs is FRrSky Taranis X9D. There are many possible
configurations for the control sticks, switches, etc. The most common layout is
“Mode” numbers. Mode 1 and Mode 2 differ only in the placement of the throttle:
Mode 1 has the throttle on the left side (Figure 2.10) while in Mode 2 is placed on
the right. A different configuration of the channels can be set at firmware level.
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Figure 2.10: Taranis X9D radio.

2.1.4 Position measurement system

Normally in order to retrieve a 3D position in the space, the system requires
GPS information, in the Aerospace System and Control laboratory at Politec-
nico of Milan there is a Motion Capture System (Mo-Cap) to achieve this task.
The system is composed by 12 Infra-Red (IR) sensitive Opti-Track [4] cameras
with incorporate IR flood lights. The cameras (Figure 2.11) are mounted on a
closed arena and they are fixed at calibrated positions and orientation so that the
measurement subject is within the field of view of multiple cameras. Thanks to
markers (Figure 2.12) sensitive to infrared light mounted on top of the drone, it is
possible to make it trackable and define its position into 3D space. To control the
motion capture system, the Motive software (installed in Ground Station) is used.
Motive is a software platform designed to control motion capture systems for var-
ious tracking applications. It not only allows the user to calibrate and configure
the system, but it also provides interfaces for both capturing and processing of 3D
data. The frequency with which the position information are sent to the drone
(cameras rate), can be changed from a minimum of 30 Hz up to a maximum of
240 Hz through Motive software. The accuracy of the position estimated by the
drone depends on the cameras frequency selected.

Figure 2.11: Infrared camera. Figure 2.12: Infrared markers.
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2.1.5 Ground Station

The Ground Station is the part of the system dedicated to send and retrieve
information from the quadcopter during a flight session. The main task of the GS
is to read the position information coming from motion capture system and send
them to the drone, besides it is also possible to define a trajectory to be followed
using specific waypoints and view telemetry data in real time.
The GS architecture is divided into two different OS’s: the main OS is Windows
10 [5] in which Motive is installed. The second OS is Linux OS (more precisely
Ubuntu 16.04 [6]) which is installed on a virtual machine and is used to execute
ROS [7]. The GS architectural division was necessarily done because Motive is a
Windows software while ROS integrates better in a Linux environment.

2.2 Formalism

In this section, some fundamental mathematical formalism used in the remainder
of the thesis will be given.

2.2.1 Reference frames and axes

The motion of a body in space is described thanks to reference systems that need
to be properly chosen. Many conventions are known in the literature. The NED
convention is chosen for the inertial frame. The Earth fixed frame, assumed to
be an inertial frame, is defined as FE ={OE, N,E,D}, where OE is a point on
the Earth surface. The N-axis and the E-axis are chosen to point respectively
North and East and the D-axis completes the right-hand rule pointing downward.
The second frame to be defined is the body frame FB ={OB, XB, YB, ZV }, where
OB corresponds to the body center of mass. The X-body axis lies in the plane
of symmetry and generally points forward. The Y-body axis points in the right
direction, normal to the plane of symmetry, and the Z-body axis points down.

2.2.2 Rotation matrices and Euler angles

A rotation matrix is a matrix ∈ SO(3)

SO(3) :=
{
R ∈ R3×3 : RRT = I3, det(R) = 1

}
. (2.1)

A rotation matrix could express three different meanings:

• the orientation of a frame with respect to another frame;

• the transformation that relates the coordinates of a point in two different
frames;

• the rotation of a vector in a coordinate frame.
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In order to rotate a vector around different axes many times, it is useful to define
the rotations around a coordinate axis and in particular:

Rx(α) =

1 0 0

0 cos(α) sin(α)

0 − sin(α) cos(α)

 (2.2)

Ry(β) =

cos(β) 0 − sin(β)

0 1 0

sin(β) 0 cos(β)

 (2.3)

Rz(γ) =

 cos(γ) sin(γ) 0

− sin(γ) cos(γ) 0

0 0 1

 . (2.4)

The rotation direction is considered positive counterclockwise, following the right-
hand rule. Since rotation matrices are orthonormal, the inverse rotation is ob-
tained by transposing it. In fact:

R−1x = RT
x (2.5)

R−1y = RT
y (2.6)

R−1z = RT
z . (2.7)

Many consecutive rotations could be performed multiplying rotation matrices,
noting that rotations performed in different order produce different results
(Rx(α)Ry(β) 6= Ry(β)Rx(α)). When a vector or a frame is rotated an arbitrary
number of times, the final attitude vector could be represented by a minimal
representation, that consists in performing just three consecutive rotations.
A minimal representation is a parameterization of the attitude with respect to
three parameters, called Euler angles Φ = [φ θ ψ]T which represent the three
angles of the rotations associated respectively with the matrices Rx, Ry, Rz, also
called roll, pitch, yaw. The rotation from the earth frame to the body frame can
be expressed in this form:

TBE(φ, θ, ψ) = RX(φ)RY (θ)RZ(ψ), (2.8)

where the subscripts B and E stand for “Body” and “Earth”, respectively.
Matrix TBE resolves an Earth-based vector to body axes. Expanding the indicated
matrix multiplication, the TBE matrix has these elements:

TBE(φ, θ, ψ) =

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcpsi sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcpsi cφcθ

 , (2.9)
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where the matrix (2.9) reported a short notation has been reported, which is
cθ = cos(θ), sθ = sin(θ) and tθ = tan(θ).
On the other hand, it is also possible to obtain the TEB (the rotation matrix from
“Earth” to “Body”) simply transposing TBE, by obtaining:

TEB = T TBE. (2.10)

Quaternions

A quaternion is a four-dimensional representation of the orientation of a rigid body
or a coordinate frame in three-dimensional space and are generally represented in
the form:

q =


q0
q1
q2
q3

 (2.11)

where q0, q1, q2, q3 are real numbers such that qT q = 1. The term q0 represents the
scalar part of the quaternion, while [q1, q2, q3]

T constitutes the vectorial part. An
alternative quaternion notation exists, in which the scalar term is located at the
bottom of the quaternion (i.e., q = [q1, q2, q3, q0]

T ). In the remainder of this work,
the first notation shall be employed (scalar term first). The quaternion elements
generate the following coordinate transformation:

TBE =

 q20 + q21 − q22 − q23 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q20 − q21 + q22 − q23 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q20 − q21 − q22 + q23

 . (2.12)

The Euler angles representation of qBE is defined by:

φ = tan−1
(
TBE(2, 3)

TBE(3, 3)

)
, (2.13)

θ = sin−1
(
TBE(1, 3)

)
, (2.14)

ψ = tan−1
(
TBE(1, 2)

TBE(1, 1)

)
. (2.15)

The quaternion conjugate, denoted by *, can be used to swap the relative frames
described by an orientation. For example, the attitude of frame B relative to frame
A can be represented by the quaternion qAB, and its conjugate q∗AB describes the
orientation of frame A relative to frame B (qBA). The conjugate of qAB can be
described by the following equation:

q∗AB = qBA =


q0
−q1
−q2
−q3

 . (2.16)
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The quaternion product, denoted by ⊗, can be used to define compound orien-
tations. For example, for two orientations described by qAB and qBC , the com-
pounded orientation qAC can be obtained in this way:

qAC = qBC ⊗ qAB. (2.17)

For two quaternions, a and b, the quaternion product can be determined using
the Hamilton rule:

a⊗ b =


a0
a1
a2
a3

⊗


b0
b1
b2
b3

 =


a0b0 − a1b1 − a2b2 − a3b3
a0b1 + a1b0 + a2b3 − a3b2
a0b2 − a1b3 + a2b0 + a3b1
a0b3 + a1b2 − a2b1 + a3b0

 . (2.18)

The quaternion product is not commutative, so a⊗ b 6= b⊗ a.
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2.3 PX4 autopilot architecture

PX4 is a professional autopilot developed by a world-class from industry and
academia, supported by a world wide community [8]. It is designed to drive a
large number of types of autonomous vehicles, including ground and aerial plat-
forms.
PX4 consists in two main layers: the flight stack and the middleware. The flight
stack is a collection of guidance, navigation and control algorithms for autonomous
drones, the middleware consists in device drivers for embedded sensors, commu-
nication with the external world and the uORB publish-subscribe message bus.
The detailed overview of the building blocks of the architecture of PX4 is shown
in Figure 2.13. The top part contains the middleware layer while the bottom the
components of the flight stack. The arrows show the most important connections
between the modules, there are however other arrows that are not shown (e.g the
parameters module is accessed by most of modules).
Modules communicates each others with a publishing/subscribing policy through
bus messages called uORB. The uORB scheme assures that:

• The system is reactive - it is asynchronous and will update instantly when
new data is available.

• All operations and communication are fully parallelized.

• A system component can consume data from anywhere in a thread-safe
fashion.

Modules use the information contained in the messages through data structure
defined internally: for each message they subscribe to, whenever an update oc-
curs, they copy the information in their own internal structs, then elaborate it
and publish the results. Typically the drivers define how fast a module updates.
Most of the IMU drivers sample the data at 1kHz, integrate it and publish at
250Hz.
The PX4 architecture uses an other protocol to manage the communication be-
tween PX4 and the ground station (Section 2.1.5) that is MAVLink. It is a very
lightweight messaging protocol that has been designed for the drone ecosystem.
Besides the ground station, MAVLink is used as the integration mechanism for
connecting to drone components outside of the flight controller (e.g companion
computers, MAVLink enabled cameras).
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Figure 2.13: PX4 architecture overview.
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2.3.1 Commander, position controller and attitude con-
troller

An overview of the core modules of the flight stack will be given.

• commander

• mc pos control

• mc att control

The commander is the core of the PX4 firmware, it is a very complex module that
manages many tasks, starting from what the vehicle should do to security checks.
The commander has an internal state machine to manage the information coming
from the Radio Controller: depending from the pilot commands it sets its state
and several flags for autopilot purposes. The role of the state machine is not only
regarding flight modes, but also for managing the arming phase of the vehicle: the
commander can reject a flight mode or an arming state if some safety conditions
are not satified. The initial state of the state machine is the manual flight mode
(refers to Section 2.4 for details). Moreover, it manages the status of the leds,
checks and resets (if needed) the position-velocity validity. Due to its complexity,
it is currently in a refactoring process.
The position controller module has a twofold functionality: it runs the position
controller law and acts as a setpoint generator based on the flight mode. For what
concerns the position control law, it features a standard cascaded proportional
loop for the position error and a PID loop for velocity error. Depending on the
mode, the outer (position) loop can be bypassed. The position loop is only used
when holding position or when the requested velocity in an axis is null.
The attitude controller module has two loops, a P loop for angular error and
PD loop for angular rate error. It subscribes to many messages of the position
controller. Besides the common subscriptions, the attitude controller subscribes
to many sensors messages and its publications goes directly to the mixer.
The mixer is the component in the PX4 architecture (in the flight stack layer) that
takes force commands (e.g. turn right) and translates them into individual motor
commands, while ensuring that some limits are not exceeded. This translation
is specific for a vehicle type and depends on various factors, such as the motor
arrangements with respect to the center of gravity, or the vehicle’s rotational
inertia.
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2.3.2 Flight controller module

The flight controller module is a custom module the Aerospace System and Con-
trol Laboratory (ASCL) at Politecnico of Milan has developed for research and
educational activity. Its role is to replace the position and attitude controllers
implemented in the PX4 firmware and to allow the execution of custom control
laws. Table 2.5 shows the interface of the module.

Parameters Description

q0A(φ0, θ0, ψ0) Desired attitude quaternion

p0 roll angular rate (rad/s)
q0 pitch angular rate (rad/s)
r0 yaw angular rate (rad/s)
ṗ0 roll angular acceleration (rad/s2)
q̇0 pitch angular acceleration (rad/s2)
ṙ0 yaw angular acceleration (rad/s2)
x0 X position (m)
y0 Y position (m)
z0 Z position (m)
v0x X velocity (m/s)
v0y Y velocity (m/s)
v0z Z velocity (m/s)
a0x X acceleration (m/s2)
a0y Y acceleration (m/s2)
a0z Z acceleration (m/s2)
ȧ0x X jerk (m/s3)
ȧ0y Y jerk (m/s3)
ȧ0z Z jerk (m/s3)
ä0x X snap (m/s4)
ä0y Y snap (m/s4)
ä0z Z snap (m/s4)

Table 2.5: Flight controller module interface.

In Section 2.6, the issues related to its implementation are described.
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2.3.3 uORB graphs

The following uORB graph describes all the topics which the multicopter position
controller subscribes or publishes:

mc_pos_control

position_setpoint_triplet

vehicle_local_position

vehicle_attitude

vehicle_land_detected

home_position

vehicle_status

manual_control_setpoint

vehicle_control_mode

vehicle_attutide_setpoint

mc_virtual_attitude_setpoint

vehicle_local_position_setpoint

Module	(gray	rounded	corners	box)

Topic	(coloured	rectangular	box)

Legend

subscribes

publishes

The	whole	uORB	graph	can	be	found	here

Please	Note:	Topics	that	are	subscribed/published	by	many	modules	such	as	parameter_update,	mavlink_log	and	log_message	are	not	represented.	

write- - - - - - - -

read

module

topic

�1

Figure 2.14: Multicopter position controller uORB graph.

The gray rounded corner box is the position controller module while the other
coloured rectangular boxes are the topics. The continuous lines represents the
subscribing process and the dashed lines the publishing one.
A detailed list of all subscribing topics used by the position controller module to
reach its double task follows:

• vehicle land detected is published by land detector module, it contains
some information related if vehicle is currently landed on the ground, if it
is in free-fall, if it has ground contact but is not landed and the maximum
altitude in [m] that can be reached.

• vehicle attitude contains the quaternion rotation from NED earth frame
to body frame.

• vehicle local position contains the information related to positions and
velocities in local NED frame.
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• vehicle control mode is published by the commander and it contains a
list of flags representing the autopilot activity, in particular which controller
should be activated with respect to the flight mode.

• manual control setpoint contains the input stick commands of the radio
controller, basically the pilot’s input, and the channels mapping.

• vehicle status is published by commander and represents the state of
the commander’s state machine, in term of arming and navigation state.
Moreover, it describes the status and the types of the vehicle.

• position setpoint triplet contains global position setpoint triplet in
WGS84 coordinates, it is used for offboard modes purposes.

The position controller uses these topics to correctly mapping the pilot’s input,
computes the setpoint and publishes its control action; the uORBs published are:

• vehicle attitude setpoint contains the desired quaternion for quaternion
control, the thrust and body angle in NED frame.

• vehicle local position setpoint contains the position, velocity and ac-
celeration resulting from the controller action.

• mc virtual attitude setpoint contains the same information of
vehicle attitude setpoint but it is used for VTOL (vertical take off and
landing).

The following uORB graph shows the topics which the multicopter attitude con-
troller subscribes or publishes.

mc_att_control

multirotor_motor_limits

sensor_correction

vehicle_attitude

vehicle_rates_setpoint

sensor_gyro

sensor_bias

battery_status

vehicle_status

manual_control_setpoint

vehicle_control_mode

vehicle_attutide_setpoint

actuator_controls_0

mc_virtual_rates_setpoint

actuator_control_virtual_mc

The	whole	uORB	graph	can	be	found	here

Module	(gray	rounded	corners	box)

Topic	(coloured	rectangular	box)

Legend

subscribes

publishes

Please	Note:	Topics	that	are	subscribed/published	by	many	modules	such	as	parameter_update,	mavlink_log	and	log_message	are	not	represented.	

Figure 2.15: Multicopter attitude controller uORB graph.
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2.4 Flight modes

Flight Modes define how the autopilot responds to user input and controls vehicle
movement. They are grouped into manual, assisted and auto modes, based on
the level/type of control provided by the autopilot. The pilot changes flight mode
using switches on the remote control or with a ground control station.
Not all flight modes are available on all vehicle types, and some modes behave
differently on different vehicle types. Finally, some flight modes make sense only
under specific pre-flight and in-flight conditions (e.g. GPS lock, airspeed sensor,
vehicle attitude sensing along an axis).
The system will not allow transitions to those modes until the right conditions
are met. For thesis purposes and for the research context in which the Aerospace
System and Control Laboratory works, focus has been put only on some flight
modes of the multirotors.

2.4.1 Manual/Stabilized mode

In manual mode the user has direct control over the vehicle via the RC controller.
When under manual control the roll and pitch sticks control the angle of the
vehicle (attitude) around the respective axes, the yaw stick controls the rate of
rotation above the horizontal plane, and the throttle controls altitude/speed.
The multicopter will level out and stop once the roll and pitch sticks are centered.
The vehicle will then hover in place/maintain altitude - provided it is properly
balanced, throttle is set appropriately, and no external forces are applied (e.g.
wind). The craft will drift in the direction of any wind and the pilot has to con-
trol the throttle to hold altitude.

Figure 2.16: Manual mode.

The pilot’s inputs are passed as roll and pitch angle commands and a yaw rate
command. Throttle is rescaled and passed directly to the output mixer. The
autopilot controls the attitude, meaning it regulates the roll and pitch angles to
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zero when the RC sticks are centered inside the controller deadzone. From a
PX4 firmware point of view, the commander performs some checks and if the
state related to the flight mode is not rejected, it sets its state in the internal
state machine. Besides, the commander sets another parameter that is the nav-
igation state (meaning what should the vehicle do, also in this case there is an
enumeration associated). Based on the information provided from the navigation
state parameter, it defines how the autopilot responds to user input, activating
some controllers. For the manual/stabilized mode, the altitude controller and the
position controller are disabled while the attitude controller is enabled.

2.4.2 Altitude mode

Altitude mode is a relatively easy-to-fly RC mode in which roll and pitch sticks
control vehicle movement in the left-right and forward-back directions (relative
to the “front” of the vehicle), yaw stick controls rate of rotation over the hori-
zontal plane, and throttle controls speed of ascent-descent. When the sticks are
released/centered the vehicle will level and maintain the current altitude. If the
wind blows the aircraft will drift in the direction of the wind. Altitude mode is
just like Manual mode but additionally locks the vehicle altitude when the sticks
are released.

Figure 2.17: Altitude mode.

When the sticks are centered (within the deadband):

• Roll, Pitch, Yaw sticks levels vehicle.

• Throttle (about 50 percent) holds current altitude steady against wind.

Outside the center:

• Roll/Pitch sticks control tilt angle in respective orientations, resulting in
corresponding left-right and forward-back movement.
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• Throttle stick controls up/down speed with a predetermined maximum rate
(and movement speed in other axes).

• Yaw stick controls rate of angular rotation above the horizontal plane.

The procedure to set the altitude mode in the PX4 firmware follows the description
given in the manual mode section. Regarding the autopilot, altitude and attitude
controller are both enabled while position controller is disabled.

2.4.3 Position mode

Position is an easy-to-fly RC mode in which roll and pitch sticks control speed
over ground in the left-right and forward-back directions (relative to the “front”
of the vehicle), and throttle controls speed of ascent-descent. When the sticks are
released/centered the vehicle will actively brake, level, and be locked to a position
in 3D space, compensating for wind and other forces. Position mode is the safest
mode and unlike Altitude and Manual/Stabilized modes the vehicle will stop when
the sticks are centered rather than continuing until slowed by wind resistance.

Figure 2.18: Position mode.

Roll, Pitch, Throttle sticks control speed in corresponding directions. Centered
sticks level vehicle and hold it to fixed position and altitude against wind. When
the sticks are centered (within the deadband):

• Hold x, y, z position steady against any wind and levels attitude.

Outside the center:

• Roll/Pitch sticks control speed over ground in left-right and forward-back
directions (respectively) relative to the “front” of the vehicle.

• Throttle stick controls speed of ascent-descent.
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• Yaw stick controls rate of angular rotation above the horizontal plane.

In the PX4 firmware context, the procedure to set position mode follows the de-
scription given in the previous section. Regarding the autopilot, altitude, attitude
and position controllers are enabled. The position measurement is performed by
a Motion Capture system, described in Section 2.1.4.

2.4.4 Offboard mode

The vehicle obeys a position, velocity or attitude setpoint provided over MAVLink.
The setpoint may be provided by a MAVLink API running on a companion com-
puter (and usually connected via serial cable or wifi).

• This mode requires position or pose/attitude information (e.g. GPS, optical
flow, visual-inertial odometry, mocap, etc).

• This mode is automatic (RC control is disabled by default except to change
modes).

• The vehicle must be already be receiving a stream of target setpoints before
this mode can be engaged.

• The vehicle will exit the mode if target setpoints are not received at a rate
larger than 2Hz.

Offboard mode is primarily used for controlling vehicle movement and attitude,
and supports only a very limited set of MAVLink commands (more may be sup-
ported in future). It can be used to:

• Control vehicle position, velocity, or thrust.

• Control vehicle attitude/orientation.

• Control vehicle pose.

An additional offboard pose setpoint type has been implemented, to control
position and attitude for platform in non-coventional configurations (e.g over-
actuated).



26 Multirotors and PX4

2.4.5 Commander state value

In the previous sections all the main flight modes have been presented, Table 2.6
describes how the commander state has been set with respect to the current flight
mode.

Shorthand Flight mode commander state

MAN manual 0
ALT altitude 1
POS position 2
OFF offboard 7

Table 2.6: Commander state value table.

2.5 Command style

For each flight mode explained in the previous section (attitude mode coincides
with the Manual/Stabilized mode), a combination of command style and hold
capability has been defined.

AH VH PH

RC

AC
Offboard attitude 
Offboard pose 
Attitude mode  

Altitude mode (xy)

VC Position mode 
Altitude (z)

PC Offboard position 
Offboard pose

�1

Figure 2.19: Command style/hold capability table.

The command style defines the way in which the vehicle responds to a displace-
ment of the pilot controls from the trim position. The hold capability is defined as
the ability of the system to return to its equilibrium value following a pulse input;
thus, it characterizes the capability of the system to reject external disturbance
(e.g wind gusts). In Figure 2.19 vertical axis represents the command style:

• RC, Rate Command

• AC, Attitude Command

• VC, Velocity Command
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• PC, Position Command

While horizontal axis represents the hold capabilty:

• AH, Attitude Hold

• VH, Velocity Hold

• PH, Position Hold

2.6 Issues related to the current firmware im-

plementation

This section is going to describe which are the problems identified in the PX4
firmware with reference to the subject of this thesis, and the limits of the current
system.

2.6.1 Comparison with firmware development status

PX4 firmware is constantly under development by an active worldwide community
and the customizability and ease of use of the PX4 firmware make it very popular
in the research field. In the Aerospace System and Control Laboratory (ASCL)
at Politecnico of Milan a customized version of the firwmare based on the 1.7.3
version is currently in use (the same release used and presented in this thesis),
so the last updates are not considered in this thesis (at the time of writing, the
current stable version is v.1.9.1). In particular, the flight task architecture intro-
duced in the latest releases is not considered. This feature aims at handling the
generation of setpoints which are then fed to the position controller itself.
The development of such a feature was motivated by very similar considerations
to the ones that are at the origin of this thesis (see the remainder of the chapter).
Regarding flight modes, a new feature has been implemented in the custom
firmware, concerning the offboard flight mode: the offboard pose mode (see Sec-
tion 2.4.4 and Section 2.5). Besides, the custom firmware has a flight controller
module containing the implementation of the controllers.

2.6.2 Modules issues

This section shows the identified problems related to position controller, comman-
der and flight controller modules in terms of implementation and functionalities.
In Sections 2.3.1 and 2.3.3 the position controller has been described in term of
its twofold role of running the effective position control laws and the task of set-
point generation and which are the topics it subscribes to and publishes. The
management of the setpoint generation based on the flight mode should be kept
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out of the controller because it exceeds its scope. The position controller module
subscribes to several topics that the commander publishes with the aim to com-
pute the setpoint based on the information provided from commander internal
state machine and the vehicle status. Among all the topics that subscribes, the
only information which needs in order to run its control law is related to which
flight mode is enabled and depending on this, it runs the position control law. For
reasons of modularity and separation of functions, the controller should receive
the setpoint and the generation of the setpoint should be managed externally.
The position controller without the internal setpoint mapping and computation
behaves in the same way of the attitude controller: it receives the setpoint and
runs its control law if is requested by the autopilot.
Regarding the commander module (Section 2.3.1), it is extremely complicated
to parse and to understand all the tasks that it covers, moreover the absence of
an official documentation make it harder to debug according to discussions in
the community forums [9]. This module should be refactored also to increase
the scalabily of the parts of the code related to the multicopter, fixed wing and
VTOL (vertical take off and landing) that are managed jointly. The current im-
plementation of the flight controller module allows only the management of the
offboard flight modes since both position and attitude controllers are always en-
abled. Currently this module has not the information about which flight mode
the multicopter performs and so which controllers to be enabled.



Chapter 3

Setpoint mapper design

The first step in the design and development of a new system is the formalization
of all the architectural choices that will concur in shaping the final system, in
order to provide a general idea on how we intend to tackle the identified problems
and solve them. In the following chapter the overview of the general architecture
of the system will be described and then focus will be put on the custom setpoint
mapper. Subsequently, a more in depth analysis of the components of the system
will be presented by defining the implementation details, the role they cover and
the software used to implement them.

3.1 High-level design decisions

Since the problems identified in the previous chapter are related to the commander
and the position controller modules, two approaches have been considered:

• Approach 1: refactor both commander and position controller modules;

• Approach 2: preserve the commander module and refactor the position con-
troller module;

Among the two approaches, it has been decided to use the second one. The reason
coming from the fact that is more safe to maintain the commander since it per-
forms several security checks. In addition, building the entire commander module
from scratch is a hard work.
The following step concerns the re-implementation of the position controller mod-
ule. Also in this case two approaches have been considered:

• Approach 2A: adopt a centralized architecture, keeping the setpoint mapper
and the flight controller module in a unique block;

• Approach 2B: adopt a de-centralized architecture, dividing the setpoint
mapper and the flight controller into two different modules;
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In the first approach, the resulting system should be able to compute the setpoint
and run the control laws based on the flight modes, this means to manage two
different tasks in the same system and integrate the flight control to the genera-
tion of the setpoint. On the other hand, using a de-centralized architecture would
guarantee that the two tasks are managed in different system components and
the flight controller as it is implemented should be modified without any major
changes. The choice among the presented approaches is straightforward. The re-
sulting de-centralized architecture will have two blocks: one block for the setpoint
generation and management of the flight mode and one block for control task.

Mapper
Flight 

Controller

RC input
Offboard 
selector

Commander 
state

Position

Setpoint

Control mode

AttitudeArming 
state

Offboard 
position

Offboard  
attitude

Offboard 
pose

�1

Figure 3.1: De-centralized system architecture.

In Figure 3.1 the whole system architecture is shown. The mapper block receives
the information in order to map and compute the setpoint properly with respect
to the enabled flight mode and it outputs the resulting setpoint values to the flight
controller block. The flight controller receives the setpoint and runs the position
and attitude control laws depending on the control mode enabled.

3.2 Setpoint mapper architecture

The aim of the setpoint mapper is a mapping procedure of the setpoint with
respect to the response mode (each state of the state machine represents a different
response mode, see Figure 3.4). From an architectural point of view: a two blocks
system has been considered (Figure 3.2). The first block manages the switching
among the flight modes with a state machine while the second block receives the
response mode and generates the setpoints for that particular mode.
While in Figure 3.2 an high-level architectural model is shown, Figure 3.3 shows
the implemented Simulink [10] model.



3.2 Setpoint mapper architecture 31

Offboard selector

Commander state Position

Setpoint

Attitude
Arming 
state

Offboard  
position

Offboard  
attitude

Offboard  
pose

State machine Setpoint computation

Current state

States flag

RC

�1

Figure 3.2: Setpoint mapper architecture.

Figure 3.3: Screenshot of setpoint mapper Simulink model.

The following sections will explain in detail the two system components.



32 Setpoint mapper design

3.3 Mapper state machine

The mapper state machine has the purpose to set the current flight mode based
on the information provided from the commander, the radio controller sticks and
the offboard mode selector. Each state of the state machine corresponds to a
different flight mode and each transition is managed by a commander action, a
movement of the roll, pitch, thrust stick or a command from the ground station.

3.3.1 Stateflow

For the purpose of this thesis Stateflow [11] is used to model and simulate the
mapper state machine. Stateflow is an add-on product to Simulink and it provides
a graphical language that includes state transition diagrams, flow charts, state
transition tables, and truth tables. It can be used to describe how MATLAB
algorithms and Simulink models react to input signals, events, and time-based
conditions. It is possible to model combinatorial and sequential decision logic
that can be simulated as a block within a Simulink model or executed as an
object in MATLAB. Graphical animation feature enables the analysis and debug
of the implemented logic while it is executing. Stateflow is complemented with a
set of tools for formal verification.

3.3.2 Mapper state machine states

As we can see in Figure 3.4 there are four macro-states that represent the main
flight modes presented in Section 2.4 and then some sub-states that represent the
response modes. States are summarized in Table 3.1.

State Description Enumeration
MAN Manual mode 0
ALT N Altitude mode thrust neutral 1
ALT D Altitude mode thrust deflected 2
Z N XY N Position mode thrust neutral, roll/pitch neutral 3
Z N XY D Position mode thrust neutral, roll/pitch deflected 4
Z D XY N Position mode thrust deflected, roll/pitch neutral 5
Z D XY D Position mode thrust deflected, roll/pitch deflected 6
POS OFF Offboard position mode 7
ATT OFF Offboard attitude mode 8
POSE OFF Offboard pose mode 9

Table 3.1: Mapper state machine states table.

The suffixes “ N” and “ D” in the states name in Table 3.1 mean respectively the
neutrality or deflection of a particular stick. To be considered neutral, the stick
should be inside the deadzone otherwise it is deflected (see Section 3.3.3).
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Figure 3.4: Setpoint mapper state machine.
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Each state sets its own enumeration in the current state parameter and a
boolean representing its child activity, the information related if it is active or
not. For example in Figure 3.5 it is reported the POS OFF state:

POS_OFF 
en: 
current_state=uint8(7); 
off_pos_on=logical(1); 
ex: 
off_pos_on=logical(0); 

�1

Figure 3.5: POS OFF state.

As soon as the state becomes active, the current state enumeration is set to 7
and its activity to 1 (entry condition), when an outgoing transition happens, the
flag off pos on will be set to 0 (exit condition). The parameter related to the
enumeration provides the information about which response mode is enabled, the
other parameter is used for reset purposes when a new response mode is activated.

3.3.3 Mapper state parameters and functions

This section is going to describe all the input/output parameters and the useful
functions the mapper state machine has in order to fulfill its goal.

Parameters Description Type
RC pitch Forward stick displacement input
RC roll Lateral stick displacement input
RC thrust Thrust stick position input
commander state State of the commander state machine input
offboard mode selector Selector of offboard mode input
current state Mapper state output
man on Bool: manual state is active output
alt n on Bool: alt neutral state is active output
alt d on Bool: alt deflected state is active output
z n xy n on Bool: pos neutral-neutral state is active output
z n xy d on Bool: pos neutral-deflected state is active output
z d xy n on Bool: pos deflected-neutral state is active output
z d xy d on Bool: pos deflected-deflected state is active output
off pos on Bool: offboard position is active output
off att on Bool: offboard attitude is active output
off pose on Bool: offboard pose is active output

Table 3.2: Mapper state machine input/output table.

The input parameters shown in Table 3.2 come directly from the PX4 firmware.
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The mapper state machine will subscribe to the topics containing the information
which needs. In order to do that, once the overall system has been developed
and the Simulink Embedded Coder (see Section 3.7) has been run, the generated
code will be integrated in the firmware in a custom setpoint mapper module. This
module will subscribe to the following topics:

• manual control setpoint.msg, it contains the value of the RC sticks;

• commander state.msg, it contains the value of the current state of the com-
mander state machine;

Besides the parameters, the mapper state machine has also two MATLAB function
to take into account the deflections of the radio controller sticks, the RC yaw stick
is not considered since it is not useful in the mapping procedure. The first function
takes as input parameter the thrust of the radio controller and outputs a boolean
value to represent the neutrality or deflection of the stick. The second function
takes as input two parameters, the pitch and the roll radio controller sticks and
outputs a boolean value to represent the neutrality or deflection of one of them
of both. To summarize:

∆z = 0.05

∆xy = 0.05

f zN(z) =

{
1 |z − 0.5| ≤ ∆z

0 otherwise
(3.1)

fxyN (x, y) =

{
1 |x| ≤ ∆xy ∧ |y| ≤ ∆xy

0 otherwise
(3.2)

The ∆z and ∆xy are set by default to 0.05, these values are not hardcoded and
they can be modified.

3.3.4 Mapper state machine transitions

The switching between states is managed by five input variables:

• commander state

• RC pitch

• RC roll

• RC thrust

• offboard mode selector
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For sake of simplicity, some defines have been used:

• X=RC pitch as the forward stick displacement;

• Y =RC roll as the lateral stick displacement;

• Z=RC thrust as the throttle stick displacement;

• R=RC yaw as the directional stick displacement;

The commander manages the transitions between the macro-states (so between
the main flight modes) based on the current state of its internal state machine, the
thrust stick manages the transitions between response modes when altitude mode
is enabled, the roll and pitch sticks together with the thrust stick manage the
transitions among response modes when the position mode is enabled, depending
on the neutrality of deflection with respect to the deadzone.
Finally the offboard mode selector manages the transitions between the response
modes of the offboard flight mode depending on the type of the MAVLink message
coming from the ground station related to the specific offboard mode.
In Tables 3.3, 3.4 and 3.5 all the possible transitions between the states and the
consequent action condition are listed. The last column represents the evalution
order from a state to the next one.

Current state Next state Conditions
Evaluation

order
ALT N ALT D NOT(f zN(Z)) -
ALT D ALT N f zN(Z) -
Z N XY N Z D XY D NOT(f zN(Z)) AND NOT(fxyN (X, Y )) 1
Z N XY N Z D XY N NOT(f zN(Z)) AND fxyN (X, Y ) 2
Z N XY N Z N XY D f zN(Z) AND NOT(fxyN (X, Y )) 3
Z N XY D Z D XY D NOT(f zN(Z)) AND NOT(fxyN (X, Y )) 1
Z N XY D Z N XY N f zN(Z) AND fxyN (X, Y ) 2
Z N XY D Z D XY N NOT(f zN(Z)) AND fxyN (X, Y ) 3
Z D XY N Z N XY N f zN(Z) AND fxyN (X, Y ) 1
Z D XY N Z D XY D NOT(f zN(Z)) AND NOT(fxyN (X, Y )) 2
Z D XY N Z N XY D f zN(Z) AND NOT(fxyN (X, Y )) 3
Z D XY D Z N XY N f zN(Z) AND fxyN (X, Y ) 1
Z D XY D Z N XY D f zN(Z) AND NOT(fxyN (X, Y )) 2
Z D XY D Z D XY N NOT(f zN(Z)) AND fxyN (X, Y ) 3

Table 3.3: Transitions managed by the RC sticks.
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Current
macro-state

Next
macro-state Conditions Evaluation order

MAN ALT commander state==1 1
MAN POS commander state==2 2
MAN OFF commander state==7 3
ALT MAN commander state==0 1
ALT OFF commander state==7 2
ALT POS commander state==2 3
POS MAN commander state==0 1
POS ALT commander state==1 2
POS OFF commander state==7 3
OFF MAN commander state==0 1
OFF ALT commander state==1 2
OFF POS commander state==2 3

Table 3.4: Transitions managed by the commander.

Current state Next state Condition Evaluation order
POS OFF ATT OFF offboard mode selector==1 1
POS OFF POSE OFF offboard mode selector==2 2
ATT OFF POSE OFF offboard mode selector==2 1
ATT OFF POS OFF offboard mode selector==0 2
POSE OFF POS OFF offboard mode selector==0 1
POSE OFF ATT OFF offboard mode selector==1 2

Table 3.5: Transitions managed by the offboard mode selector.

3.3.5 Offboard mode selector

The offboard mode selector has been implemented in the PX4 firmware for take
into account the type of the MAVLink messages coming from the ground control
station. In Table 3.6 offboard mode selector values are shown.

Shorthand Flight mode offboard mode selector

POS OFF offboard position 0
POS ATT offboard altitude 1
POS POSE offboard pose 2

Table 3.6: Offboard mode selector value table.
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3.4 Setpoint computation

The setpoint computation has the purpose to generate the setpoint according to
the response mode. The implementation of this component follows a switch/switch-
case/merge logic: it receives the information related to which response mode is
active from the mapper state machine (the value of the current state) and
it selects the corresponding switch-case block (the setpoint computation has a
switch-case block for each state of the mapper state machine that corresponds to
a specific response mode). Within the selected subsystem, the setpoint calcula-
tion is performed; the merge block selects the setpoint computed by the currently
active state and routes it to the output of the system.

Switch

 

 

 

. . .

Switch case 
      MAN

Switch case 
   ALT_N

Switch case 
OFF_POSE

.


.


.

Merge

Merge

Merge

current_state

state_on

att
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Figure 3.6: Setpoint computation block diagram.

Figure 3.6 shows the idea behind the block diagram implementation in a simple
case with three states and the three setpoint variables of attitude, angular rate
and the thrust for sake of simplicity.

3.4.1 Simulink

For the aim of this thesis, Simulink is used to model the setpoint computation
block. Simulink is an add-on product to MATLAB, it is a graphical programming
environment for modeling, simulating and analyzing multi-domain dynamical sys-
tems and it is developed by MathWorks. Thanks to a set of customizable block
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libraries, it enables rapid construction of virtual prototypes to explore design con-
cepts at any level of detail, with minimal effort. For the modeling part, Simulink
provides a GUI for building models as block diagrams simply using the drag-and-
drop operations. An interesting feature of Simulink is the possibility to generate
code in C, C++ and other languages starting from a dynamic model. The gener-
ated code can be integrated like a source code, static libraries or dynamic libraries
into application running outside of MATLAB and Simulink environment.
The idea is use this Simulink feature and integrate the generated code of the
setpoint mapper in the custom firmware.

3.4.2 Input variables

Table 3.7 shows all the signals and parameters the setpoint computation uses in
order to map and compute the setpoint properly.

Parameters Description
RC pitch Forward stick displacement
RC roll Lateral stick displacement
RC thrust Thrust stick displacement
RC yaw Yaw stick displacement
current state Mapper state
man on Bool: manual state is active
alt n on Bool: alt neutral state is active
alt d on Bool: alt deflected state is active
z n xy n on Bool: pos neutral-neutral state is active
z n xy d on Bool: pos neutral-deflected state is active
z d xy n on Bool: pos deflected-neutral state is active
z d xy d on Bool: pos deflected-deflected state is active
off pos on Bool: offboard position is active
off att on Bool: offboard attitude is active
off pose on Bool: offboard pose is active
pos(x) North position in NED earth-fixed frame
pos(y) East position in NED earth-fixed frame
pos(z) Down position in NED earth-fixed frame
is armed Bool: current arming state is armed
vehicle att q Attitude quaternion from NED to body frame
vehicle local position sp Local position setpoint in NED frame
vehicle attitude sp Quaternion-based attitude setpoint
vehicle pose sp Pose setpoint for fully-actuated UAV

Table 3.7: Setpoint computation block input parameters.

The last three parameters are send through offboard commands. For what con-
cerns the other parameters, they come from the output of the state machine and



40 Setpoint mapper design

from the PX4 firmware. Section 3.3.3 explained how the state machine subscribes
to the uORB messages and the setpoint computation follows the same idea. In
order to retrieve the information which needs, it can subscribe to:

• manual control setpoint.msg, it contains the value of the RC sticks;

• vehicle local position.msg, it contains the position and velocity of the
vehicle, this is estimated based on information coming from the Motion-
Capture system (see Section 2.1.4);

• vehicle status.msg, it contains the arming state information;

• vehicle local position setpoint.msg, it contains the setpoint for the
offboard position mode;

• vehicle attitude setpoint.msg, it contains the setpoint for the offboard
attitude mode;

• vehicle pose setpoint.msg, it contains the setpoint of the offboard pose
mode;
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3.4.3 Output variables

Table 3.8 shows the output variables of the setpoint computation block, that are
the setpoint signals which feed the flight controller.

Parameters Description

q0A(φ0, θ0, ψ0) Desired attitude quaternion

p0 roll angular rate (rad/s)
q0 pitch angular rate (rad/s)
r0 yaw angular rate (rad/s)
ṗ0 roll angular acceleration (rad/s2)
q̇0 pitch angular acceleration (rad/s2)
ṙ0 yaw angular acceleration (rad/s2)
x0 X position (m)
y0 Y position (m)
z0 Z position (m)
v0x X velocity (m/s)
v0y Y velocity (m/s)
v0z Z velocity (m/s)
a0x X acceleration (m/s2)
a0y Y acceleration (m/s2)
a0z Z acceleration (m/s2)
ȧ0x X jerk (m/s3)
ȧ0y Y jerk (m/s3)
ȧ0z Z jerk (m/s3)
ä0x X snap (m/s4)
ä0y Y snap (m/s4)
ä0z Z snap (m/s4)
T 0 Thrust

Table 3.8: Setpoint computation output variables.

The output of the setpoint computation block, together with the information
related to the state of the mapper state machine, constitutes the output of the
setpoint mapper system (the information related to the mapper state has been
used for testing purposes and it is not useful for the flight controller).
In order to feed the flight controller module, it has been created a uORB topic
which contains all the computed setpoint: flight controller setpoint.msg.
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3.4.4 Mapping laws

The role of the setpoint computation block is mapping the pilot and offboard com-
mands to the setpoint that will feed the flight controller. This mapping depends
on the current response mode and Table 3.9 explains how the radio controller
sticks have been mapped for the computation of the setpoint.

Current state X Y Z R
MAN θ0 φ0 T 0 ψ0

ALT N θ0 φ0 z0 ψ0

ALT D θ0 φ0 v0z ψ0

POS Z N XY N x0 y0 z0 ψ0

POS Z N XY D v0x v0y z0 ψ0

POS Z D XY N x0 y0 v0z ψ0

POS Z D XY D v0x v0y v0z ψ0

OFF POS - - - -

OFF ATT - - - -

OFF POSE - - - -

Table 3.9: Mapping laws table for RC modes.

The vertical axis represents the response mode while the horizontal axis the radio
controller sticks defined in Section 3.3.4. This mapping is consistent with the com-
mand style/hold capability associated with the flight modes, reported in Section
2.5.
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3.4.5 Radio setpoint computation

In the previous section it was presented how the sticks are mapped for the setpoint
computation, this section is going to describe how the setpoint has been computed.
Parameters used in the computation are defined in Section 3.5.

• longitudinal stick X ∈ [−1, 1] (positive up)

• lateral stick Y ∈ [−1, 1] (positive right)

• throttle stick Z ∈ [0, 1] (positive up)

• directional stick R ∈ [−1, 1] (positive right)

Thrust - T 0

T ′ =

{
2T̄Z Z < Z̄

T̄ + 2(1− T̄ )(Z − Z̄) Z ≥ Z̄
(3.3)

where T̄ represents the normalized thrust needed to maintain the UAV in hover.
The idea is that the Z stick should stay in the middle position Z̄ = 0.5 when
hovering; this is done by remapping the Z stick to thrust as a piecewise linear
function. In case T̄ = 0.5, the expression simplifies to T ′ = Z. Afterwards, a
re-scaling procedure follows.

T ′′ =

{
T ′ T ′ < MPC MANTHR MAX

MPC MANTHR MAX T ′ ≥ MPC MANTHR MAX
(3.4)

T 0 =

{
MPC MANTHR MIN T ′′ < MPC MANTHR MIN

T ′′ T ′′ ≥ MPC MANTHR MIN
(3.5)

Pitch angle - θ0

(positive nose up)

θ0 = −MPC MAN TILT MAX ·X (3.6)

Roll angle - φ0

(positive right wing down)

φ0 = MPC MAN TILT MAX · Y (3.7)



44 Setpoint mapper design

Yaw angle - ψ0

(positive clockwise from above)

r0 = MPC MAN Y MAX ·R (3.8)

ψ0(t) = ψ0(t0) +

∫ t

t0

r0(τ)dτ t ≥ t0 (3.9)

ψ0(t0) = ψ(t0) (3.10)

Vertical velocity - v0z

First, the throttle stick is remapped from [0,1] to up and down command [-1,1].

Z ′ = (Z − 0.5) ∗ 2 (3.11)

f(x) =


0 −∆ ≤ x ≤ ∆

x−∆

1−∆
∆ < x ≤ 1

x+ ∆

1−∆
−1 ≤ x < ∆

(3.12)

g(x) = (1− e)x+ x3 (3.13)

where

∆ =
MPC HOLD DZ

2

e = MPC Z MAN EXPO

v0z = −(g(f(Z ′)) (3.14)

In-plane velocity - v0x, v
0
y

vB,0x = V MAX
XY X (3.15)

vB,0y = V MAX
XY Y (3.16)

where the B superscript indicates velocity is expressed in body frame. The body
frame velocity setpoint is then rotated in inertial NED frame.[

v̄0x
v̄0y

]
= R(ψ)

[
vB,0x

vB,0y

]
(3.17)



3.4 Setpoint computation 45

where

R(ψ) =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
(3.18)

v0 =

[
g(f(v̄0x))
g(f(v̄0y))

]
(3.19)

h(v) =

 v |v| ≤ 1
v

|v|
|v| > 1

v ∈ R2 (3.20)

h(v0) =

[
v0x
v0y

]
(3.21)

Position - x0, y0, z0

(same for x0, y0, z0)

x0(t) = x0(t0) t ≥ t0 (3.22)

x0(t0) = x(t0) (3.23)

which means that the position measurement at time instant t0 is used as a constant
position setpoint from that time on.
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Figure 3.7 shows the switch-case setpoint computation block for the manual mode
as an example, the other subsystems follow the same structure.

Figure 3.7: Switch case: manual mode.

The block receives the information which needs to perfom the computation and
outputs the setpoint that are going to feed the flight controller.
The setpoint computation output of all the switch-case blocks is summarized
in Table 3.10 (the Att setpoint follows the formalism used in the other tables:
q0A(φ0, θ0, ψ0)).
For sake of simplicity, the setpoints which are not relevant or applicable to a
particular mode are set to zero.
Selecting the current signal value of a signal as a setpoint is equivalent to opening
the feedback loop on that particular signals (i.e. the tracking error is set to zero)
e.g. Z D XY D.
In order to compute a generic value at time t0 a custom Simulink component
named “Hold on rising” has been implemented that acts as follows: as soon as a
state becomes active and the flag related of its activity rises, the hold on rising
block has a detect rising block in order to perceive the rising activity.
Then, thanks to a memory block, it is able to read the value at time t0 and hold
the output at that value. The implementation is depicted in Figure 3.8.
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Setpoint MAN ALT N ALT D Z N XY N Z N XY D Z D XY N Z D XY D

Att

φ0

θ0

ψ0

φ0

θ0

ψ0

φ0

θ0

ψ0

φ0=0
θ0=0
ψ0

φ0=0
θ0=0
ψ0

φ0=0
θ0=0
ψ0

φ0=0
θ0=0
ψ0

Ang

rate
0 0 0 0 0 0 0

Ang

acc
0 0 0 0 0 0 0

Pos

x(t0)
y(t0)
z(t0)

x(t0)
y(t0)
z(t0)

x(t0)
y(t0)
z(t)

x(t0)
y(t0)
z(t0)

x(t)
y(t)
z(t0)

x(t0)
y(t0)
z(t)

x(t)
y(t)
z(t)

Vel 0 0

v0x=0

v0y=0

v0z

0

v0x
v0y
v0z=0

v0x=0

v0y=0

v0z

v0x
v0y
v0z

Acc 0 0 0 0 0 0 0
Jerk 0 0 0 0 0 0 0
Snap 0 0 0 0 0 0 0

Thrust T 0 0 0 0 0 0 0

Table 3.10: Setpoint computation output table for RC modes.

Figure 3.8: “Hold on rising” Simulink block.
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3.4.6 Offboard setpoint computation

Regarding the offboard modes, the computation of the setpoints has been managed
in a different way respect to RC modes. Basically in order to map these setpoint,
the setpoint computation should be able to read the content of the uORB messages
containing the setpoint of the offboard modes and pass them through to the flight
controller.
The topics related to the offboard setpoint are:

• vehicle local position setpoint.msg

• vehicle attitude setpoint.msg

• vehicle pose setpoint.msg

Table 3.11 shows how the offboard modes setpoint are mapped to the output
setpoint variables.

Setpoint OFF POS OFF ATT OFF POSE

Att q0A(0, 0, ψ0) q0A(φ0, θ0, ψ0) q0A(φ0, θ0, ψ0)

Ang rate 0 0

p0

q0

r0

Ang acc 0 0

ṗ0

q̇0

ṙ0

Pos

x0

y0

z0

x(t0)
y(t0)
z(t0)

x0

y0

z0

Vel

v0x
v0y
v0z

0

v0x
v0y
v0z

Acc

a0x
a0y
a0z

0

a0x
a0y
a0z

Jerk 0 0

ȧ0x
ȧ0y
ȧ0z

Snap 0 0

ä0x
ä0y
ä0z

Thrust 0 T 0 0

Table 3.11: Offboard setpoint computation table.
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Within all the switch-case offboard blocks a security check has been implemented
in order to manage the new messages coming from the MAVLink. Thanks to this
implementation, the vehicle is able to listen to new offboard messages only if it is
armed, starting from the time instant when entering the current state.
The Simulink block interfaces with the uORB messages coming from the firmware
through bus structures. A bus object has been created for each message reflecting
the structure of the corresponding uORB message and thanks to a bus selector
block, the information the block needs to generate the setpoint has been extracted.
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3.5 PX4 firmware parameters and constants

In order to compute the setpoint properly, the setpoint computation block uses
some PX4 parameters and constants. These parameters can also be found in PX4
firmware in the mc pos control module, precisely in mc pos control params.c.
They are defined externally from the Simulink model in a MATLAB file, named
Parameters.m, that is loaded whenever the Simulink block runs. Parameters are
shown in Table 3.12.

PX4 parameter Description
MPC MAN TILT MAX Max tilt angle in manual or altitude mode
MPC MAN Y MAX Max manual yaw rate
MPC THR HOVER Hover thrust
MPC MANTHR MIN Minimum manual thrust
MPC Z MAN EXPO Manual control stick vertical exponential curve
MPC XY MAN EXPO Manual position control stick exponential curve sensitivity
MPC HOLD DZ Deadzone sticks where position hold is enabled

Table 3.12: PX4 firmware parameters table.

Table 3.13 shows the minimum and maximum value the parameters can assume
and the default value set.

PX4 parameter Min Max Default
MPC MAN TILT MAX 0.0 90.0 35.0
MPC MAN Y MAX 0.0 400.0 200.0
MPC THR HOVER 0.1 0.8 0.5
MPC MANTHR MIN 0.0 1.0 0.08
MPC MANTHR MAX 0.0 1.0 0.9
MPC Z MAN EXPO 0 1 0.0
MPC XY MAN EXPO 0 1 0.0
MPC HOLD DZ 0.0 1.0 0.1

Table 3.13: PX4 parameters min/max table.

Other internally defined parameters are shown in Table 3.14.
In the Table 3.14 an interesting parameter is the sample time that represents the
sampling time of the system that is 250 Hz.
All these parameters are not hardcoded and they can be modified, for example
the hovering thrust of ANT-1 (see Section 2.6) is about 0.3.
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Constant Description
DEG TO RAD conversion grad to rad
RAD TO DEG conversion rad to grad
THRESH ARM Z threshold on thrust stick lower value during arming
THRESH ARM R threshold on yaw stick upper value during arming
sample time system sampling time

Table 3.14: Constants table.

3.6 Flight controller interface

In order to solve the issues related to the flight controller presented in Section
2.6, the interface of the flight controller module has been modified: in addition
to the setpoint listed in Table 2.5 the throttle setpoint has been included, so
the resulting interface will concide with the setpoint computation output. To
retrieve the information related to which controllers are to be enabled, the topic
vehicle control mode.msg has been considered. The flight controller module
subscribes to this topic published by the commander that contains the information
about which controllers to be enabled. These modification allow to expand the
management also to other flight modes.

3.7 PX4 firmware integration

This section describes how the integration to the custom PX4 firmware has been
performed. Once the Simulink model of the setpoint mapper system has been
developed and all the requirements has been defined, C++ code is automatically
generated by the Simulink Embedded Coder and the autogenerated code is ready
to be injected in the PX4 firmware. Once defined the I/O interface of the Simulink
setpoint mapper, the next step is to implement it also in the PX4 firmware. As
mentioned previously, PX4 is composed by different modules which correspond to
specific task in the firmware.
In this case the creation of a new module will be essential to handle the new
mapping system that will be imported from Simulink. The tasks of the new
module will be to subscribe to the needed topics (those listed in Section 3.3.3 and
3.4.2) and to publish a new topic for the flight controller module (Section 3.4.3).
The setpoint mapper PX4 module is provided with an interface consistent with
the one defined for the setpoint mapper Simulink model.





Chapter 4

Verification and Testing

This chapter will focus on testing setpoint mapper. A formal testing procedure
has been defined for the mapper state machine. The setpoint computation block
takes inspiration from the setpoint generation feature implemented in the PX4
position controller module; the more interesting part involves the test of the state
machine in order to verify all the possible transitions combination.
Besides the setpoint mapper system has been intensively tested in flight envi-
ronment with the ANT-1 multirotor UAV (Figure 2.6) and in this section some
experimental results are reported. Furthermore, a couple of experiments have
been conducted to show the new features involving tiltrotor (Figure 2.7) flight
modes.

4.1 Test harness

The first approach to test the mapper state machine was the test harness. A
test harness is a model block diagram that can be used to test, edit, or debug a
Simulink model. In the main model, a test harness can be executed with a model
component or the top-level model. It contains a separate model workspace and
configuration set; it is associated with the main model and can be accessed via
the model canvas. The test harness model is built around the component under
test and it can be generated for:

• A model component, such as a subsystem, library block, or model block. The
test harness isolates the component in a separate simulation environment.

• A top-level model, the component under test is a model block referencing
the main model.

For the purpose of this thesis the first option has been used: it has been isolated
the mapper state machine subsystem.
The test harness can be saved internally as a part of the model SLX or externally
in a SLX file. In order to test all the possible transitions five test harnesses have
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been defined and they are kept externally to the main model.

Figure 4.1: External test harnesses.

These test cases cover every possible transition of the state machine, in particular:

• the transitions involving the states within MAN, ALT and POS macro-states.

• the transitions involving the states within the OFF macro-state.

• the transitions involving the macro-states.

Figure 4.2 shows one of the three tests regarding the main flight modes, precisely
the transitions between the response modes (Section 3.2) of the POS macro-state.
The purpose of this test is verify, based on the sticks of the radio contoller and
the information of the commander state, that all the transitions between position
response modes are feasible. In order to build the test, a repeating sequence
stairs has been considered as input signal for RC pitch, RC roll, RC thrust and
commander state. In Table 4.1 are shown all the parameters used for this test.
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Figure 4.2: Test harness example.

RC pitch RC roll RC thrust commander state time current state

0 0 0.5 0 0 0
0 0 0.5 2 0.004 3
0.35 -0.4 0.5 2 0.008 4
0.55 0 0.75 2 0.012 6
0 0 0.8 2 0.016 5
0.5 0.35 0.5 2 0.020 4
0 0 0.5 2 0.024 3
-0.4 0.45 0.5 2 0.028 4
0 0 0.35 2 0.032 5
0.4 0.35 0.75 2 0.036 6
0 0 0.5 2 0.040 3
0 0 0.9 2 0.044 5
0 0 0.5 2 0.048 3
0.49 0.52 0.5 0 0.052 0
0 0.01 0.5 2 0.056 3
0 0.5 0.8 2 0.060 6
0 0.7 0.5 2 0.064 4
0 0 0.5 2 0.068 3
0 0 0.7 0 0.072 0

Table 4.1: Test harness parameters table.

For this test purpose, the offboard mode selector is useless and it is trivially
set to 0. The results of this test are consistent with the enumeration defined in
Section 3.3.2.
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4.2 Simulink design verifier

The second approach to test the mapper state machine was based on the Simulink
Design Verifier tool [12]. This tool uses formal methods to identify hidden design
errors in models. It detects blocks in the model that result in integer overflow,
dead logic, array access violations and division by zero. It can formally verify that
the design meets functional requirements. For each design error or requirements
violation, it generates a simulation test case for debugging.
Simulink Design Verifier generates test cases for model coverage and custom ob-
jectives to extend existing requirements-based test cases. These test cases drive
the model to satisfy condition, decision and custom coverage objectives.
The Design Verifier has been run for the mapper state machine and in Figure 4.3
the summary of the analysis has been reported.

�1

Figure 4.3: Summary of the Design Verifier analysis.

The results of the analysis show that there are six objectives proven unsatisfiable:
Simulink Design Verifier proved that there does not exist any test case exercising
for these test objectives. This often indicates the presence of dead-logic in the
model. Other possible reasons can be inactive blocks in the model due to param-
eter configuration or test constraints.
Figure 4.4 reports the six elements proven unsatisfiable. In fact a redundancy
has been identified in the transition conditions within the POS macro-state. This
redundancy comes to the fact that Stateflow assigns a priority for each transition
arrow (Section 3.3.4 and Table 3.3) and there are some conditions that are never
considered during the analysis because they are always true or false due to the
evaluating order of the state machine. However, in the case under exam it was ver-
ified that, whenever a state transition condition is highlighted by the verification
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�1

Figure 4.4: Objectives proven unsatisfiable.

tool, the redundancies involve only a part of the state transition condition, but
the overall condition is still guaranteed not to be affected by dead logic paths; in
particular, the expressions related to such conditions could be rewritten in order
to eliminate the redundancy and improve the efficiency of the system, but do not
jeopardize the coverage of the state machine graph.
As a consequence of the result of this analysis it has been decided not to remove
this redundancy in order to maintain clarity of the state transition condition ex-
pressions.
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4.3 Flight testing

In order to test the setpoint mapper, two different machines have been used:
ANT-1 and tiltrotor.

4.3.1 Test on ANT-1

Three different experiments were designed to test the management of the flight
modes and the consequent setpoint generation based on the current response mode
enabled. Figure 4.5 shows the different mapping of the throttle stick with respect
to the manual and altitude modes. As long as the manual mode is enabled (the
enumeration associated to the mapper state is 0), the thrust is mapped as T 0

that corresponds to a re-scaling of the input thrust stick value.
As soon as the altitude mode is enabled, specifically a deflection of the thrust
stick corresponds to the ALT D response mode of the mapper state machine
(mapper state is equal to 2), the thrust stick is mapped as a velocity command
in the vertical direction.
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Figure 4.5: Experimental results ANT-1 test 1.

The mapper state value equal to 1 corresponds to the ALT N response mode which
means the thrust stick within the deadband: v0z=0.
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Figure 4.6 shows the switching between the Z N XY N and Z N XY D response modes
within the POS macro-state focusing on the lateral stick mapping and the position
hold capability. When the Z N XY D response mode is enabled (the lateral stick is
deflected and the mapper state value is set to 4), the stick value is mapped as
velocity command in the lateral direction.
As soon as the Z N XY N response mode is enabled (the lateral stick within the
deadband and the enumeration associated of the mapper state is 3), the multi-
copter has the capability to hold the position at the time instant of the switching
to the current mode (Z N XY N). The position measurement at that time instant,
is kept as position setpoint y0.
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Figure 4.6: Experimental results ANT-1 test 2A.

Figure 4.7 describes a further experiment conducted to highlight the position hold
capability.
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Figure 4.7: Experimental results ANT-1 test 2B.

When the lateral stick is centered, the v0y is not considered anymore and the
position hold capability is enabled. In fact the position measurement at the time
instant of the switching to the Z N XY N response mode (∼87.7s) is kept as a
position setpoint y0 till a deflection of the lateral stick occurs.
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Figure 4.8 shows the experiment involving the switching between the offboard
mode and position mode and vice versa (precisely OFF POS and the Z N XY N re-
sponse modes). At time instant ∼43s the multicopter is in offboard position mode
(the enumeration associated to the mapper state is 7) which the position hold
capability is enabled. After few seconds a series of position setpoints representing
a trajectory is sent from the ground station and the vehicle according to the set-
point contained in the message, tracks the setpoint. Afterwards, a switching to a
position flight mode occurs and the Z N XY N response mode is enabled. As soon as
this new mode is enabled, the position measurement is kept as a position setpoint
y0 corresponding to the measured position at that time instant since the position
hold capability is enabled. Then, the offboard mode is enabled again. The vehicle
also in this case holds the setpoint corresponding to the position measurement at
the time instant of switching to the OFF POS response mode as a position setpoint
till a new series of setpoint commands is sent.
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Figure 4.8: Experimental results ANT-1 test 3.
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4.3.2 Test on tiltrotor

The setpoint mapper system was tested on tiltrotor. The developed system has
allowed to implement new features in terms of flight modes it can perform. In
fact, the tiltrotor was only able to perform trajectory based on the setpoint in
offboard pose mode sent by the ground control station. In addition of the offboard
modes, the setpoint mapper, together with a modification in the flight controller
module, has enabled the management of the main flight modes: manual, altitude
and position. The tiltrotor has an over-actuated structure and it is able to achieve
maneuvers that simple quadrotors are not able to perform. The next experiments
show the setpoint mapper system tested on the tiltrotor.
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Figure 4.9: Experimental results tiltrotor test 1.

Figure 4.9 shows the altitude mode that corresponds to hovering, keeping non-zero
roll/pitch angles (the tiltrotor has the capability to reach a full position/attitude
decoupling). Depending on the deflection of the X, Y sticks of the Radio Con-
troller, the tiltrotor performs its tilting capability; the φ and θ measurements
follow the setpoints.
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Figure 4.10: Experimental results in-plane tiltrotor test 1.

In Figure 4.10 is shown the in-plane position that tiltrotor performs according to
the experimental results presented in Figure 4.9.
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Figure 4.11 shows the switching between the Z N XY N and Z N XY D response
modes within the POS macro-state focusing on the lateral stick. When the Z N XY D

response mode is enabled (the lateral stick is deflected and the mapper state value
is set to 4), the stick value is mapped as velocity command in the lateral direction
and thanks to its tilting capability, the tiltrotor is able to maintain a zero roll
angle even when maneuvering at high speed. It can be noticed that the roll angle
reaches relatively large values in correspondence of braking maneuvers, when the
velocity setpoint suddenly goes to zero: the flight controller could be improved to
avoid this aggressive response. As soon as the Z N XY N response mode is enabled
(the lateral stick within the deadband and the enumeration associated of the
mapper state is 3), the setpoint velocity v0y is set to 0.
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Figure 4.11: Experimental results tiltrotor test 2.



Chapter 5

Conclusions

This thesis has involved the design and implementation of a flight mode man-
agement and setpoint generation system and also the modification of the custom
flight controller module.
The main objectives have been, on the one hand, to re-implement the setpoint
generation system managed by the position controller module in the PX4 firmware
in order to separate the setpoint generation from core PID control, on the other
hand, to modify the interface of the custom flight controller module in order to
extend the management of the main flight modes.
The developed system handles the setpoint generation based on the current flight
mode enabled; it is also important to notice that it facilitates the integration of
new flight modes.
In fact, from an architectural point of view, the choice of using a de-centralized
architecture related to the setpoint mapper and the flight controller, makes the
task of the integration of a new flight mode more straightforward.
Some possible developments are the following:

• refactor the setpoint computation block using a centralized architecture to
manage the computation of the setpoint within the mapping of the current
flight mode.

• improve the flight controller to avoid an aggressive response whenever the
roll angle reaches relatively large values in correspondence of braking ma-
neuvers, when the velocity setpoint suddenly goes to zero.
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