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Abstract

SMART-SED is a project aimed at developing an innovative framework for
the numerical simulation of sediment motion in river catchments, intended to
be used by local territorial management institutions and professionals to design
proper strategies for the mitigation of hydrogeological instability. Uncertainty
analysis is an intrinsic feature of models simulating natural processes. In order
to perform an effective uncertainty quantification, it is necessary to properly
identify the variability of the input parameters and to design stochastic sim-
ulation methods able to provide realistic realisations, based on the available
data. This thesis focuses on the use of digital soil maps for the prediction and
stochastic simulation of terrain-related quantities used for the estimation of the
input parameters of the SMART-SED model. The digital maps are obtained
from SoilGrids, a system for automated soil mapping based on state-of-the-art
spatial predictions methods. Innovative approaches are introduced to account
for the limitations of SoilGrids data (low resolution, inaccuracy) and for the
specificities of the variables in exam. Although the focus is on the SMART-
SED project, the methods proposed can be generally used for geostatistical
modelling at a local scale using auxiliary coarse information obtained through
remote sensing or from previously fitted digital maps.
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Introduction

SMART-SED (Sustainable MAnagement of sediment transpoRT
in responSE to climate change conDitions) is a project having for ob-
jective the development of a modelling framework allowing for the numerical
simulation of soil erosion and sediment motion over a catchment. It will serve
as a support tool for local authorities, allowing to design proper strategies for
the prevention and control of damages from hydrogeological calamities.

The SMART-SED model relies on a more coherent approach with respect to
preexisting methods and implements a more efficient and robust discretisation
technique, a detailed explanation of the model is available in [6].

An important aspect of SMART-SED is Uncertainty Quantification
(UQ). In fact, it has become a standard practice for any numerical simulations
of real-world phenomena to provide an extensive analysis of the uncertainty
of the outputs related to the variability of the inputs. The classical methods
to perform this task include Monte Carlo (MC) simulations and/or metamod-
elling techniques such as multi-fidelity Co-Kriging ([37], [27]). A crucial aspect
of UQ is the analysis of the variability of the input parameters. A probabilis-
tic analysis of the of the outcomes of the model cannot be made without first
identifying the range of the possible inputs and their likelihood. The impor-
tance and the difficulty of this task increases with the number of parameters
involved and their complexity.
The SMART-SED model aims at a more coherent approach for the simulation
several hydrological phenomena occurring in a basin. For it to produce realistic
and informative result, quantitative and qualitative information on the physi-
cal properties of the soil is required. In particular, there are two properties of
the terrain that allow to properly characterise its hydrological response: soil
thickess, meaning the depth of the permeable layer of soil from its surface to
the underlying bedrock, and soil texture, which is determined by particle-size
fractions, i.e. the relative percentages, in terms of soil composition, of clay,
silt and sand (the three categories in which grains of fine earth are divided
depending on their size, [1]). To obtain useful results, a proper estimation
of these physical quantities that accounts for their variability over the whole
domain is needed.
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Obviously it would be impossible to directly measure the above-mentioned
quantities in every location of the domain. When some sparse samples are
available, geostatistical techniques such as Kriging can be used to interpolate
the available observations and obtain estimates and their associated uncer-
tainty.

Unfortunately, direct observations are not always available over the whole
area. Measuring soil properties is expensive and time consuming since it re-
quires costly devices and specialised professionals to operate them. One of
the ambitions of SMART-SED is to reduce to a minimum the request of local
surveys by using public databases of soil properties already available online.

Recently, the IRSIC (Word Soil Information) started a very ambitious
project called SoilGrids. The latter is a public database containing world-
wide estimations for numerous standardised soil properties with a resolution
of 250 meters. These estimations were obtained using state-of-the-art machine
learning algorithms trained with hundreds of thousands observations of hun-
dreds of covariates [34]. SoilGrids is a public project still in progress: the
precision of the estimations increases as new data are added to training sets.
At present (2019) the level of accuracy is already largely satisfactory for many
soil properties.

SoilGrids data have already been extensively used by many researchers,
mainly for analysis at a large scale, some examples including [75] and [18].
Because of their coarse resolution and their limited accuracy, SoilGrids maps
have not received the same attention when dealing with local scale analysis.
The goal of this thesis is to show that SoilGrids data can prove useful even
at local scales, and to provide a statistical framework for the prediction and
stochastic simulation of soil-related quantities (in particular particle-size frac-
tions and soil thickness) at a finer scale using coarse resolution information,
a problem usually referred-to as statistical downscaling. The case study
considered in this work involves the hydro-graphic basin of the river Caldone
in the Northern Italy city of Lecco (Fig. 1).

Traditional downscaling procedures do not take into account the composi-
tional nature of particle-size-fractions. An innovative approach is proposed to
perform downscaling of particle-size fractions based on the application Area-
to-Point Kriging [39] and derived techniques in the context of theAitchison
geometry [3] through the use of isometric log-ratio transformations [17], in
order to fully account for the particular structure of the sample space in a
coherent and efficient way.

As regards to soil thickness, downscaling is done with a different method
called dissever [44, 68]. Soil thickness strongly depends on slope, elevation
and other topographic variables whose measured values are generally available
up to very fine resolutions (few meters): dissever uses this fine-scale secondary
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Figure 1: Picture of the river Caldone in the city of Lecco, overflowing after
heavy rainfalls

information to perform the downscaling.
Several proposals are made on how to integrate SoilGrids data and direct

measurements to improve the accuracy of the estimations and better quantify
their variability.

The statistical analysis has been done in R-3.6 [64] using libraries gstat [60,
30] for Area-to-Point Kriging and geostatistical simulation; dissever [44], for
the homonymous algorithm; compositions [7] for the analysis of compositional
data. In particular, the procedure of variogram deconvolution described in [23]
was implemented.

This thesis is organised as follows. In Chapter 1, a list of the main param-
eters involved in the SMART-SED model is presented; it is also shown how to
properly estimate them using soil properties. In chapter 2, SoilGrids is intro-
duced and an exploratory analysis of the variables of interest is carried out.
Chapter 3 contains the detail of the geostatistical techniques used for down-
scaling and simulation. In this chapter a novel approach for the downscaling
of compositional data is proposed. The presented methods are then applied
to SoilGrids maps of soil thickness and particle-size fractions, the results are
shown in Chapter 4. The last chapter contains a discussion on the results and
how to use them for UQ in the SMART-SED model, along with some proposals
on how to integrate direct measurements from field surveys in the analysis.
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Chapter 1

Soil properties and
SMART-SED parameters

This chapter is organised as follows: first, the SMART-SED project is
introduced and an overview of the case-study area is made. The SMART-SED
model equations are then presented, the main parameters are listed and their
link to soil properties is highlighted. The last two section are dedicated to the
introduction of soil texture and soil thickness, the two variables which will be
the object of the geostatistical analysis in the next chapters.

1.1 SMART-SED

Hydrogeological instability is and has always been a major concern for in-
habited areas due to its negative consequences as a natural hazard for people
and infrastructures. In recent years, all the processes typically included in
this broad definition have been receiving increasing attention in light of the
growing occurrence of calamitous events that is frequently explained with a
climate-changing context. Nowadays, "smart cities" manage to prevent and/or
control natural hazards by implementing sustainable strategies via advanced
technology and innovation. Remarkably, many smart cities located in flood or
landslide-prone areas still lack an appropriate consideration of hazards related
to sediment instabilities and consequent problems.SMART-SED (Sustain-
able MAnagement of sediment transpoRT in responSE to climate
change conDitions) is a project financed by Cariplo foundation that aims
at filling this gap by providing local territorial management institutions with
an advanced decision-making support tool regarding hydrogeological hazards.

In practical terms, the goal of the project is the development of a freeware
containing a distributed model for sediment motion along a river catchment.
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The SMART-SED model aims at improving the pre-existing tools thanks
to the following characteristics:

1. ability to incorporate several physical processes in a coherent way;

2. a numerical scheme rigorously conserving mass;

3. automatic recognition of slope and drainage locations;

4. computational efficiency;

5. an extensive uncertainty analysis.

In the context of numerical simulation of real-world phenomena, the sources
of uncertainty are numerous. The main ones can roughly be divided in three
different categories ([69], [76]):

• Structural uncertainty : this includes the errors and approximations at-
tributable to the model assumptions.

• Numerical uncertainty : the approximation error due to the discretisation
for the numerical computation. This is the only error term that can be
directly estimated with a certain accuracy, and the one with the least
impact on the overall uncertainty of the outcomes.

• Parametric uncertainty : input data are seldom constant and known, in
most cases they have an intrinsic variability, this is generally the main
source of uncertainty of the simulations.

Uncertainty quantification (UQ) of computer codes is the process of
identifying the possible outcomes and their likelihood depending of the vari-
ability of the parameters and on the other sources of error. UQ is a key aspect
of simulation tools used in the decision-making process regarding matters of
public safety. This thesis will focus on the estimation of the variability of
soil-related input parameters of the model, which is a vital step in UQ.

1.1.1 Case study: the Caldone basin

For the case study the investigators of the project have chosen the hydro-
graphic basin of the river Caldone near the town of Lecco, Northen Italy.
Lecco is crossed by three streams (the Bione, Caldone, and Gerenzone) that
have the typical characteristics of torrents in a pre-Alpine area. The Caldone
has been already object of a field investigation in 2016. The hydro-graphic
basin of this water course is 24 km2 wide, with an altitude ranging from 197
m a.m.s.l. to 2118 m a.m.s.l. at the top of Grigna Meridionale mountain.
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Figure 1.1: Aerial view of the study area

Geologically, the basin is characterised by rocky outcrops in the higher
part (mainly limestone and clastic rock), while downstream towards the city
the river flows through a floodplain. The average precipitation over the city
of Lecco is about 1400 mm/y. The Caldone river flows from Mount Resegone
and, just before entering the city, receives the water from the Grigna torrent.
From that point on, the river flows through the town, mostly within artificial
banks. Waters are withdrawn by industries in the surroundings (mostly for
cooling machinery) and by residential buildings. On the other hand, the stream
receives a significant amount of water from the sewer network that drains the
(mostly impermeable) town area. In its last kilometer before the outlet into
the Lario lake, the Caldone flows within a culvert that passes below the town
centre. The combination between a short hydrologic time of response, high
slope, intense sediment transport and flow within a densely urban area makes
the Caldone river a suitable case study for hydro-geological instability and
hazard. Two sediment retention basins (Fig. 1.2) are present in the last 5
km of the river, with volumes of around 8000 m3 each. Quantitative data is
available on the sediment-supplied volumes during short or large time spans,
this information along with periodic surveys of the bathymetry of the retention
basins allows to validate the modelling tools developed by SMART-SED.
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Figure 1.2: Retention Basin on Caldone River, topped up in three years

Figure 1.3: Main features of the Caldone river basin
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1.1.2 Model equations

SMART-SED equations model the variation in time of different layers of the
terrain (including surface water) induced by precipitation phenomena, a re-
duced version of the model containing the most relevant equations for this
thesis work is hereby presented. The complete model and all the references
can be found in [2, 28].

Consider a domain Ω = [0, Lx]× [0, Ly] which contains a basin subdomain
Ωb ⊂ Ω, defined by geometric considerations, and a drainage subdomain Ωd ⊂
Ωb, whose extension varies in time and which is only implicitly defined as the
portion of Ωb where the depth of the surface water layer H is above a minimum
threshold. For x ∈ Ωd, we model the motion of the surface water layer by the
Saint-Venant equations:

∂H

∂t
= −∇ · (Hu) + (1− µ)P + E − I

∂u

∂t
= −g∇η − u · ∇u− γ(u)u (1.1)

Here b denotes the topographic profile, η is the height of water-free surface,
so that H = η − b x ∈ Ωd, u is the surface water velocity, γ(u) is the
friction coefficient. Concerning the source term, P is the precipitation intensity
in [m/s], µ is a non-dimensional parameter that takes the value of 1 if the
ground temperature is lower or equal than the melting temperature Tm and 0
if it is higher. E and I are the ground exfiltration and infiltration terms,
respectively. They represent the mass exchanges of water between the surface
layer and the gravitational layer, to be defined in the following. It is assumed
that the topographic profile is not changing in time, so that

∂H

∂t
=
∂η

∂t
.

This simplification is justified in the limit of thin sediment layers.
The model is completed by a number of equations for the time evolution of

the equivalent depths of other two-dimensional, vertically averaged water and
sediment layers, all of which are defined for x ∈ Ωb,
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more specifically:

• a snow layer with equivalent depth hsn;

• a sediment layer with equivalent depth hsd;

• a gravitational layer with equivalent depth hg.

For each of these layers, conservation of mass is assumed. For the the mass
exchanges among layers and for the horizontal mass fluxes, relatively simple
models are employed. Each of these could be replaced by more sophisticated
approaches. The model equations read

∂hsn
∂t

= µP − S

∂hsd
∂t

= −∇ · fs(Hu) +W

∂hg
∂t

= −∇ · fg(hg) + S + I − E

Each equation is now discussed in greater detail, starting from the topmost
layer, the models employed to compute the exogenous source terms are also
reviewed.
The atmospheric component is not modelled directly, but is instead assumed to
be a reservoir of infinite capacity. Water leaves this reservoir through precipi-
tation (snow or rain), which is characterised by intensity, duration and spatial
distribution.

Precipitation can take the form of rain or snow, depending on the surface
temperature. Rain occurs if the temperature is higher then the melting thresh-
old of Tm = 2◦C. In this case, water is assumed to end up in the surface run-off
layer. In the opposite case, precipitation takes the form of snow and is being
accumulated at the surface until temperature reaches values high enough to
cause melting. The snow layer height in [m] is denoted by hn. S is the snow
melting rate [m/s], computed according to the Degree-Day approach:

S = δ(T − Tm),

where δ is a parameter that determines the amount of snow that melts in one
day at a given temperature T .
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The sediment flux depends on the presence of run-off and on its discharge
fsd(Hu). This correlation is expressed in the Grass formula [26] for x and y
direction, respectively:

fsdx = asu|u|bs fsdy = asv|v|bs ,
where as is an empirical coefficient that depends on the grain diameter (usu-
ally a value between 0 and 1 is taken). The exponent bs is also empirical and
takes value between 0 and 3. In the Grass model, the critical shear stress is
set to zero, so the sediment movement begins simultaneously with the water
movement. The sediment source termW, expressed in [m/s], is defined accord-
ing to the Gavrilovic approach [13]. It corresponds to the rate of sediment
production due to erosive processes as a result of precipitation, computed as:

W = π(1− µ)PτgZ
3/2.

The term τg is the temperature coefficient and is given by the following
formula:

τg = [(T/10) + 0.1]1/2,

where T is the mean annual temperature of the basin. The term Z is the
erosion coefficient and can be computed as follows

Z = XY (ξ + S1/2). (1.2)

X, Y and ξ are respectively the soil protection coefficient, the erodi-
bility coefficient and the kind and extent of erosion coefficient. These are
empirical parameters that depend on the soil coverage and its composition,
they are usually considered constant on the whole catchment. Although the
Gavrilovic method gives results on yearly basis, it is assumed that it is also
valid for shorter periods in which W will be seen as an intensity.

The gravitational layer is the soil portion in which water can move due to
gravitational forces. This movement is governed mainly by the permeability of
the soil and the horizontal fluxes are modelled in terms of the terrain slopes. hg
is the water content in gravitational zone [m], which is limited by the maximum
value hg,max, a spatially variable quantity that depends on soil thickness.
fg are the horizontal fluxes that are formed inside the gravitational zone that
govern the movement of water mass [m2/s]. They are defined as

fg(hg) = hgug,

where ug represents the water velocity vertically averaged over the layer. This
velocity is modeled as ug = βg(hg, x, y)n, where βg is a function of the soil
characteristics and of the water level in the layer, while n is the unit vector
determined by the terrain slope b direction n = ∇b

‖∇b‖ .
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The gravitational layer exchanges mass directly with the surface layer. This
process is represented by the ground exfiltration and infiltration terms E and
I, respectively. Exfiltration occurs when the maximum water storage capacity
in gravitational zone is reached and the excess becomes run-off:

E = 0 if hg ≤ hg,max

E =
∂(hg − hg,max)

∂t
if hg > hg,max. (1.3)

The infiltration rate I [m/s] from the surface run-off to the gravitational layer
describes how fast water can enter terrain from surface. It mainly depends on
the first layer of terrain features, in particular soil texture, vegetation cover
and actual saturation degree. The infiltration rate in dry soil is denoted f0,
infiltration in saturated soil is denoted fc. Transition from f0 to fc is managed
by SMART-SED model using the SCS-CN (Soil Conservation Service - Curve
Number) modified method [49]. As suggested by the name, the SCS-CN method
relies on the Curve Number (CN), a spatially varying empirical value that
depends on soil coverage and soil texture. As the CN , the parameters f0 and
fc depend on soil texture, in particular the fc value is equal to the Darcy
permeability, used to model underground flow.

To sum up, many of the "free" parameters depend on the soil characteris-
tics, especially soil texture (Y, ξ, βg, f0, fc, CN), some of them depend on soil
coverage (X, CN) and the (crucial) parameter hg,max is linked to soil thick-
ness. The following three sections are devoted to the presentation of these
three very important soil characteristics.

1.2 Soil coverage

Soil coverage generally refers to the land use and/or the type and the quantity
of vegetation covering the topmost layer of the terrain. There is no universal
codification for the possible types of soil coverage, since the relevant aspects
depend on the context, so that different categories are defined in different
applications.

Table 1.1 contains the reference values for the soil protection coefficient
of the Gavrilovic method, used in the formula (1.2) (cf. [14] ); these val-
ues are linked to the type and density of vegetation cover of the soil. The
Curve Number also depends on soil coverage.
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Soil protection coefficient X
Mixed and dense forest 0.05-0.2
Low density forest with grove 0.05-0.2
Coniferous forest with little grove, scarce bushes,
bush prairie 0.2-0.4

Damaged forest and bushes, pasture 0.4-0.6
Damaged pasture and cultivated land 0.6-0.8
Areas w/o vegetation cover 0.8-1.0

Table 1.1: Table of soil protection coefficient X

For the Italian region of Lombardy, a geographical database which classifies
the territory based on the principal types of use and coverage is available. The
database is kept up-to-date and is usually referred to by the name DUSAF
(Destinazione d’Uso dei Suoli Agricoli e Forestali). DUSAF soil coverage clas-
sification is based on five levels, from more general to more specific.

LIVELLI DUSAF
I II III IV V CODE

Antropizzato Urbanizzato Tessuto Continuo Denso 1111
Antropizzato Urbanizzato Tessuto Discontinuo Residenziale 1121
Antropizzato Urbanizzato Tessuto Discontinuo Sparso Cascine 11231
Antropizzato Produttivo Grandi impianti servizi Insediamenti e annessi Agricoli 12112
Antropizzato Produttivo Grandi impianti servizi Grandi impianti cimitero 12124
Antropizzato Verde non agricolo Urbano Parchi /giardini 1411

Agricolo Seminativo Seminativo Orto familiare 2115
Agricolo Coltura permanente Frutteti 222
Agricolo Prati permanenti Prati permanenti Alberi e arbusti e sparsi 2312

Seminaturale Boscato Latifoglie Media e alta densità 31111
Seminaturale Boscato Latifoglie Media e alta densità 31112
Seminaturale Vegetazione arbustiva/erbacea Prateria d’alta quota No alberi e arbusti 3211

Table 1.2: Example of DUSAF classes of soil use

In 2004 Rosso [67] produced a reference table which assigns to any codi-
fied type of soil coverage of the DUSAF database four possible values of the
CN parameter, depending on the hydrogeological properties of the underlying
topsoil. The DUSAF classes can also be easily matched to the classes of the
Gavrilovic reference table for the soil protection coefficient, allowing to identify
the tabulated value for the area.

Raster maps with resolution of 5m containing the value of the DUSAF code
at each point are available for the whole Lombardy region, and hence for the
case study area. Figure 1.4 shows the different areas corresponding to different
DUSAF codes thus having a different soil coverage. These data are used for
the determination of the Gavrilovic parameter X, although the information is
not sufficient for the determination of CN maps, since additional information
on soil texture is required. The following section explains how the texture of
the soil is determined.
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Figure 1.4: Map of DUSAF classes on Lecco area
The map shows the whole catchment in exam, different colours correspond
to different DUSAF classes. Green colours are associated to wooded areas,
whereas grey/brownish colours are associated to urbanised zones.
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Figure 1.5: Example of soil texture

1.3 Soil texture

Soil texture is a classification instrument used to determine soil classes based
on their physical texture [1]. More specifically, soil texture is quantitatively
determined on the basis of the relative fractions of the fine particles of different
sizes that compose the terrain. Soil particles under 2 mm are divided in three
groups:

• clay: particles with a diameter less than 2 µm;

• silt: particles with a diameter comprised between 2 µm and 50 µm;

• sand: particles with a diameter comprised between 50 µm and 2 mm.

Fractions of clay, silt and sand are usually indicated with the acronym psf
(particle-size fractions). Soil texture classes are determined by the relative
percentages of clay/silt/sand, according to a standard that may vary depending
on the country.

The most common classification is the one used by the United States De-
partment of Agriculture (USDA), which distinguishes twelve major soil texture
classes shown in Figure 1.6. The classes are typically named after the primary
constituent particle-size or a combination of the most abundant particles sizes,
e.g. sandy clay or silty clay. A fourth term, loam, is used to describe equal
proportions of sand, silt, and clay in a soil sample, and leads to the naming of
even more classes, e.g. clay loam or silt loam.
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Figure 1.6: Soil texture triangle
Soil texture classification according to the USDA classification system, based

on relative fractions of clay, silt and sand.

Soil texture is of paramount importance for the characterisation of the
hydrological properties of the soil.

As mentioned in the previous section, Rosso [67] created a reference table
for the estimation of the Curve Number. For each type of soil coverage, the
table provides four possible values associated to the four classes of soil shown
in Table 1.3.

A

Soils with high infiltration rates in moist conditions and low runoff potential, includes
deep sand, loamy sand, sandy loam (with very low proportion of clay and silt) and
gravel. Highly permeable soils with transmission rates over 7.6 mm/h. Very high
infiltration capacity at saturation

B

Soils with moderate infiltration rates in moist conditions and moderate runoff poten-
tial, includes most sandy soils sufficiently deep and drained (less deep than group A),
with moderately fine and moderately coarse texture. Transmission rates between 3,8
and 7,6 mm/h. High infiltration capacity at saturation.

C

Soils with low infiltration rates in moist conditions and moderately high runoff poten-
tial, includes sandy clay loam with elevate proportion of clay and silt and generally a
fine texture. Transmission rate between 1,3 and 3,8 mm/h. Low infiltration capacity
at saturation.

D
Soils with very low infiltration rates in moist conditions and high runoff potential,
includes shallow clay, clay loam, sandy clay and silty clay. Very low transmission
rate (0 - 1,3 mm/h). Very low infiltration capacity at saturation.

Table 1.3: Table of the four hydrological categories defined by Rosso
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As a consequence, information on soil texture at each point of the area in
exam would allow to better estimate the CN number.

In a similar way, the Gavrilovic parameters Y and ξ have reference tabu-
lated values (Table 1.4); information on the texture of the topsoil would prove
useful for a better identification of the relevant values for the basin.

Soil erodibility coefficient Y
Hard, erosion-resistant rock 0.2-0.6
Rock with moderate erosion resistance 0.6-1
Weak rock, stabilised 1-1.3
Sediments, moraines, clay and other rock with little
resistance 1.3-1.8

fine sediments and soils without erosion resistance 1.8-2
Coefficient of type and extent of erosion ξ
Little erosion on watershed 0.1-0.2
Erosion in waterways on 20-50% of the catchment
area 0.3-0.5

Erosion in rivers, gullies and alluvial deposits, karstic
erosion 0.6-0.7

50-80% of catchment area affected by surface erosion
and landslides 0.8-0.9

Whole watershed affected by erosion 1

Table 1.4: Table of Gavrilovic parameters

Particle-size fractions are used to estimate soil permeability, for instance
using the Kozeny-Carman equations ([47], [80]), permeability is necessary to
estimate the SMART-SED parameters βg, f0, and fc.

In order to measure particle-size fractions it is necessary to collect samples
from the ground and to perform laboratory tests on the soil particles. The
collection can be made using the equipment shown in Figure 1.7 (double ring
infiltrometer). Soil texture measurement is a costly, time-consuming operation
which requires on-field surveys with specialised devices and laboratory analysis;
for this reason it is only possible to provide information on few locations of the
basin area. Usually, only a limited number of observations are collected and
subsequently used to infer soil texture on the whole domain through the use of
geostatistical estimation techniques such as Kriging, which will be presented
in chapter 3.
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Figure 1.7: Double ring infiltrometer

1.4 Soil thickness

One of the critical parameters of the SMART-SED model is hg,max, namely
the maximum quantity of water storable in the gravitational soil. This pa-
rameter depends on soil porosity and on its thickness, meaning the depth of
the permeable layer of fine earth (also called active layer) over the underlying
bedrock (also called R horizon).

Measuring soil thickness is a difficult process that requires the use of drills
or other expensive equipment; for this reason in some cases a constant value is
considered for the whole catchment [73]. This might be justified on particularly
homogeneous planar areas, but catchments with a complex topography (like
the one we are examining) are characterized by greatly varying soil depths.

When direct measurements are possible there are two types of approaches
that can be chosen to infer soil thickness on the whole basin:

• A model-based approach: soil is mobile and undergoes transportation
phenomena driven by topographical variables. Physical models of these
geo-morphological processes properly calibrated by the means of dedi-
cated measurements can be used to estimate the thickness of the active
layer, an example is given in [61].

• A statistical approach: regression techniques could be used instead, the
covariates considered are generally topographical variables such as eleva-
tion, slope, aspect and curvature. A relevant example is the work [56],
who identified a significant linear relationship between soil thickness and
curvature. Other authors such as [41] compared several machine learning
methods and used seven terrain variables, all related to the topography.
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Figure 1.8: Absolute depth to bedrock, censored depth to bedrock, probability
of occurrence of R horizon. Source: [71]
Schematic explanation of the depth to bedrock. The R-horizon is the dashed

line at the interface with the hard rock or bedrock.

Soil thickess is a critical parameter in many applications, so the problem
of its estimation has received a lot of attention in the literature. Accurate
soil thickness maps are difficult to obtain, especially in mountain areas with
steep slopes, peaks and valleys, since in these cases soil thickness presents a
great spatial variability with very high values in the valleys (even hundreds of
meters) and values close to 0 m in steep locations and on the hilltops. This
leads to bimodal distributions with an high, narrow peak around zero and
the second broad peak (or more) at high values. This makes soil thickness
hard to estimate using traditional statistical regression techniques or spatial
interpolation methods.

For this reason, instead of just considering the absolute depth to bedrock,
which is another name of soil thickness, other two variables are considered: a
censored depth to bedrock up to a threshold value, typically 2 meters
(standard soil description depth), and the probability of occurrence of the
R horizon within that threshold (cf. Figure 1.8).
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Chapter 2

Explorative analysis of
SoilGrids data

This chapter contains a presentation of SoilGrids and its limitations. Following,
an overview of SoilGrids predictions on the study area for six variables of
interest (clay/silt/sand percentages, absolute and censored depth to bedrock
and probability of occurrence of R horizon).

2.1 Digital soil mapping

Having reliable quantitative geographical information on the physical and chem-
ical properties of the terrain is fundamental in agriculture and in civil and
environmental engineering. Before the computer era, the only possible way to
determine the soil properties over an area consisted in (i) dividing it in separate
zones sufficiently homogeneous, (ii) collecting samples and making measure-
ments for each of these sectors, and (iii) inferring the properties on each zone
by taking averages or by the means of more sophisticated statistical methods
like spatial interpolation.

With the advent of the computer, Geographic Information Systems (GIS)
where created to process digital geographic information. These systems made
it easier to store, process and share geographical information in the form of
raster, a data format that allows to store maps of values associated to ge-
ographical coordinates. Databases of soil information collected in different
corners of the world started circulating on the web and became available to
public and private institutions. At the same time, satellite technologies com-
bined to GIS allowed to collect a great amount of additional remote-sensed
information relative to the Earth surface.
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Figure 2.1: Digital Elevation Model of the Caldone basin (raster data format)

For example, Digital Elevation Models (DEMs) are now available for
the whole Earth surface up to a resolution of few meters, and consequently it
is possible to obtain a complete characterisation of the topography of an area.
The DEM of the Lecco area is shown in Figure 2.1.

All these factors paved the way to the birth of Digital soil mapping, the
process of generating rasters containing information on the properties of the
terrain by applying statistics and machine learning to the data collected by
direct measurements and remote sensing.

The first review of digital soil maps techniques was compiled in 2003 by
McBratney [46]; since then, the ever increasing volume of public data issued
from on field surveys and remote imaging, combined with the development of
statistical methods and machine learning has led to the creation of increasingly
accurate and detailed maps.
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Figure 2.2: Digital soil mapping
This image is taken from the site of the United States Department of

Agriculture (USDA) and shows a simple conceptual map of the process of
digital soil mapping

2.2 SoilGrids: global gridded soil information

In 2014 ISRIC (International Soil Reference and Information Centre) - World
Soil Information, a non-profit organisation funded by the Dutch government re-
leased SoilGrids, a system for automated digital soil mapping based on state-of-
the-art spatial predictions methods. SoilGrids predictions are based on globally
fitted models using soil profile and environmental covariate data [35]. When
first released, SoilGrids.org served a collection of updatable soil properties and
class maps of the world at 1 km spatial resolutions produced using automated
soil mapping based on statistical regression models. In 2017, the resolution has
been increased to 250 m and the accuracy of the predictions has been greatly
improved by using machine learning algorithms instead of the previously em-
ployed linear regression [34]. SoilGrids.org aims at becoming the analogue of
OpenStreetMap and/or OpenWeatherMap for soil data. SoilGrids data are
available publicly under the Open DataBase License.

The numbers and figures reported in this section are taken from [35] and
[34], where a detailed presentation of SoilGrids can be found.
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Figure 2.3: Statistical framework used for generating SoilGrids

SoilGrids predictions are based on ca. 150,000 soil profiles used for train-
ing and a stack of 158 remote sensing-based soil covariates (primarily derived
from MODIS (Moderate Resolution Imaging Spectroradiometer) land prod-
ucts, SRTM (Shuttle Radar Topography Mission) DEM derivatives, climatic
images and global landform and lithology maps), which were used to fit an
ensemble of machine learning methods — random forest, gradient boosting
and/or multinomial logistic regression — as implemented in the R packages
ranger, xgboost, nnet and caret. The data-driven statistical framework used
for generating SoilGrids maps is shown in 2.3.

Among the predicted variables there are clay, silt and sand percentages at
different soil depths, absolute and censored depth to bedrock and probability of
occurrence of R horizon. Table 2.1 shows the prediction accuracy for particle-
size fractions and absolute depth to bedrock, based on 10–fold cross-validation.
For particle-size fractions the amount of variation explained exceeds 70% and
the RMSE doesn’t exceed 13%. The good level of accuracy of SoilGrids pre-
dictions for clay/silt/sand content is testified by the plots in Figure 2.4.

22



Variable name N MAE RMSE R-squared
Sand content (%) 616,762 9.0 13.1 76.6%
Silt content (%) 613,750 6.7 9.8 79.4%
Clay content (%) 625,159 6.6 9.5 72.6%
Depth to bedrock (cm) 1,580,798 678 835 54.0%

Table 2.1: SoilGrids average prediction error for key soil properties based on
10–fold cross-validation. N = number of samples used for training,
MAE = mean absolute error, RMSE = root mean square error. Source: [34]

Figure 2.4: Correlation/density plots of particle-size fractions (10–fold cross-
validation). Source: [34]

The problem of estimation of soil thickness is addressed in a dedicated
article by some of the authors of SoilGrids [71].

As explained in the last section of chapter 1, estimation of absolute depth to
bedrock (soil thickness) is a complex issue since the range of values goes from 0
m (outcrops) to thousands of meters. In many applications (in particular for
the SMART-SED model) sometimes what matters is not a precise estimation
of the depth to bedrock when this exceeds a few meters, but rather identifying
the locations in which soil thickness is thin (< 2 m) and estimating the depth
to bedrock in these points.
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Figure 2.5: Correlation plot of absolute depth to bedrock result of 10–fold
cross-validation. Source: [34]

Figure 2.5 shows that SoilGrids predictions of absolute depth to bedrock
tend to significantly overestimate soil thickness for values < 2 m, this tells us
that considering only absolute depth is not advisable, especially when analysing
mountain catchments where one would expect several outcrops and steep areas
covered by thin soil. Fortunately, SoilGrids provides accurate estimations of
the probability of occurrence of R horizon: the area under the ROC curve is
0.87 [71]. Censored observations (up to 2 m) of soil depth are also provided,
for this variable the fitted model explains 35% of the total variability, with an
RMSE of 50 cm [71].
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Figure 2.6: Fine resolution Vs coarse resolution
The two images show the slope (in radians) of a sector of the study area. The

one on the left has a resolution of 5 m, the one on the right 250 m. This
figure shows the inability of a low resolution raster to capture the local

variability and the effect of reduction of the range of values

2.3 The issue of coarse resolution

SoilGrids data are predictions obtained from machine learning algorithms,
therefore, they inevitably contain an error term which is hard to characterise
and quantify in the absence of hard data from direct measurements. Apart
from this, SoilGrids data present another issue which makes them not par-
ticularly suited - as they are - for analyses at local scales: their resolution is
relatively low (about 250 m), and the variability within the pixels is unknown.
When modelling a phenomena at a much finer scale (for instance SMART-SED
should be able to model the basin up to a 5 m resolution), SoilGrids data could
be interpreted as averages over square areas (comprised of several geographical
units). The actual values at each location might greatly vary and go out of the
range of the predictions (this is particularly true for soil thickness and will be
discussed in the last section of this chapter). The problem of passing from a
particular geographical resolution to another is called change of support [24],
in particular, passing from a lower (or more coarse) resolution to a higher one
is called downscaling, whereas upscaling is the inverse process. The most
appropriate methods to deal with this issue will be presented in the following
chapters.
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Figure 2.7: Aerial view of the region

2.4 Clay, silt and sand fraction predictions in the
study area

In this section we explore the SoilGrids predictions for the percentages of clay,
silt and sand in the region of interest for the SMART-SED case study. Instead
of just considering the 24.2 km2 of the Caldone basin (whose geometry is shown
in Figure 1.3) we consider a broader square region containing the v-shaped
catchment area, since convexity is preferred in a geo-statistical context.

We report in Figure 2.7 the aerial view of the region for a better visual
interpretation of the maps.

SoilGrids provides fractions of clay/silt/sand at seven standard soil depths:
0 cm, 5 cm, 15 cm, 30 cm, 60 cm, 100 cm and 200 cm.

In this thesis the values considered are those referred to the topsoil (depth
of 0 cm). As suggested in [34], averages over standard depth intervals, e.g.
0-5 cm or 0-30 cm can easily be derived by taking a weighted average of the
predictions within the depth interval using numerical integration, such as the
trapezoidal rule [62]:

1

b− a

∫ b

a
f(x)dx ≈ 1

2(b− a)

N−1∑
k=1

(xk+1 − xk)(f(xk) + f(xk+1)),

where the xk are the different depths.
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(a)

(b)

(c)

Figure 2.8: SoilGrids prediction of the fraction of clay (a), silt (b) and sand
(c) in the topsoil of the study area. There is no available data on the lake.
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min max average sd
Clay fraction (%) 14% 24.14% 19.68% 1.64%
Silt fraction (%) 31% 44.69% 40.03% 2.11%
Sand fraction (%) 34.15% 51% 40.28% 2.88%

Table 2.2: Summary statistics for clay, silt and sand percentages

Maps in Figure 2.8 show, in order, the fraction of clay, silt and sand (in
percentage) in the topmost layer of soil of the study area. Values are not
provided on the lake (white areas). The overall fractions distributions are also
shown.

The summary statistics for the three variables are contained in Table 2.2.
As we can see, there is not much variation in the overall composition of the

soil in terms of relative fractions of the three particle-size ranges, the standard
deviation is only 1.64 % for clay and does not exceed 3% even for the most
variable of the three psf.

Clay fractions are almost normally distributed with a mean of about 20
%, silt fractions present a small tail for lower values but most observations are
centered around 40 %, as are sand fractions, although for sand percentages the
distribution is slightly bimodal with a second peak around 44-45 %.

Comparing the maps of clay/silt/sand % with the aerial view (Figure 2.7)
and with the digital elevation model (Figure 2.1) there seems to be a correlation
between elevation and soil composition, in particular in the clay and silt content
seems lower in the valleys and on the mountaintops (consequently the sand
content is higher). This aspect will be analysed and discussed in Chapter 4.

From a visual inspection of the maps there seems to be a negative cor-
relation between clay and sand fractions, an intuition which is confirmed by
the scatter plots in Figure 2.9: the values in the upper triangular part of the
matrix are the Pearson correlation coefficients of the variables: it is apparent
that a strong negative correlation exists between clay and sand content (-0.69),
and between silt and sand content (-0.81).
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Figure 2.9: Scatter plot of particle-size fractions

This correlation is most likely spurious, i.e., it is probably due to the con-
straints on the data in exam. In fact, the variables we are considering represent
percentages of different components of a unit (the soil), so they have to respect
the following particular properties: let z1(x), z2(x) and z3(x) respectively rep-
resent the percentage of clay, silt and sand in the soil of a particular location
x of the spatial domain D, then:

3∑
i=1

zi(x) = 100, zi(x) > 0 ∀x ∈ D. (2.1)

Data that have to respect these constraints are called compositional
data. The sample space of compositional data is called the simplex, in the
case of psf it is 3-dimensional and is defined as:

S3 = {(z1, z2, z3) : z1, z2, z3 > 0, z1 + z2 + z3 = 100} (2.2)

Since the sum of the three variables is fixed, when the values of z1 and z2 are
known so is the value of z3, hence the 3D-simplex is in fact a 2D subset of R3.
The constrained nature of these variables induces a spurious correlation in the
data, not determined by an actual causal relation but rather by their intrinsic
nature. This mathematical relationship is called spurious correlation of
ratios [38].
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Figure 2.10: Cloud of data in the soil texture triangle (USDA classification)

Finally, we determine soil texture based on clay, silt and sand content. In
Figure 2.10 data points are plotted on the soil texture triangle. We observe
that the soil of almost the whole study area (except for very few locations with
lower sand content) falls into the loam category of the USDA classification
system. Loam is soil composed mostly of sand and silt and a smaller amount
of clay (40–40–20%). The term "loam" generally refers to soil types that are
not predominantly sand, silt, or clay. Loam is part of the group B of Table
1.3, of fairly permeable soil with moderate infiltration rates and moderate
runoff potential. Some locations are characterised by a clay/silt/sand content
in between loam and sandy loam, a type of soil slightly more permeable which
may fall in the group A of Table 1.3. On top of that, SoilGrids data have a
limited resolution (∼ 250m) and are not entirely accurate, so that some areas
might actually be characterised by different types of soils like sandy clay loam
or clay loam, a proper characterisation of the incertitude should account for
this possibility.
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2.5 Absolute and censored depth to bedrock, proba-
bility of occurrence of R horizon

Soil thickness exerts a first-order control on the hydrologic response of upland
watersheds. Relatively thin soils are more prone to saturated overland flows
compared to thicker soils which have greater water storage potential. SoilGrids
provides estimates for three variables related to soil thickness: absolute depth
to bedrock in meters, which from now on will be indicated with the acronym
ADB, censored depth up to 200 cm (CDB), and finally the probability that
the soil depth is lower than 2 m, namely the probability of occurrence of the
R horizon (other name for bedrock) within 200 cm from the surface (PRH).

ADB predictions are based on over 1,500,000 observations worldwide, with
values ranging from 0 to 1,250 meters (cf. Table 2.1), the percentage of ex-
plained variance of SoilGrids predictions is 54%, considerably lower with re-
spect to particle-size fractions (almost 80% for sand percentage). In particular,
SoilGrids tend to overestimate soil thickness in some locations, for instance
consider the map of ADB for the study area, reported in Fig. 2.11.

Figure 2.11: SoilGrids prediction of absolute depth to bedrock (in meters) in
the study area

Values range from ∼ 1000 m to 3500 m. Even on hilltops and in very
steep locations ADB is estimated to be over 1000 m, whereas a basic visual
inspection of the aerial view shows that many areas present visible outcrops
(i.e., ADB = 0, cf. Figure 2.7). On the contrary, very high values of ADB in
the valleys are justified and might even be underestimated.
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(a) (b)

Figure 2.12: SoilGrids prediction of the fraction of CDB (a) and PRH (b)

As stated in Chapter 1, knowing the exact value of ADB in the valleys or in
general in the areas where soil thickness is expected to be very high (hundreds
of meters) is not of primal importance. Instead, a proper identification of area
with outcrops and thin soil is more useful for a numerical simulation of sediment
transport. Figure 2.12 shows the maps of CDB and PRH, the white areas in
the CDB map are locations in which CDB hits the censoring threshold (soil
depth > 2 m). As one would expect, the two quantities are highly (negatively)
correlated: locations with higher PRH have a lower predicted CDB. The values
of CDB are still relatively high for the whole area and almost never go under
130 cm, on the same page PRH hardly ever exceeds 60%, despite the visible
outcrops. PRH also never goes below 10%, even at locations with an estimated
ADB of 2000+ meters, this inaccuracy might be due to the low resolution of the
data and the consequent possible heterogeneity inside the "pixels" or "blocks"
of ∼ 250 meters side. The objective of this thesis is to downscale from a
low resolution to a higher one using fine-resolution secondary information and
special techniques specifically designed for this task.
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(a) (b)

Figure 2.13: (a) 5 m-resolution digital elevation model (DEM) of the study
area (b) Absolute slope in radians computed with the finite differences method

The relation between soil thickness and topographical variables is intu-
itively obvious and well documented ([61], [41]). Just from a simple visual
inspection of the maps of ADB, CDB and PRH in comparison with the eleva-
tion and slope maps in Figure 2.13, it is apparent that mountain peaks and
steeper areas are those with the lowest estimated ADB and CDB, and those
with highest PRH. Fine-resolution maps of topographical variables will be used
in Chapter 4 to perform statistical downscaling of CDB and PRH through the
dissever method.
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Chapter 3

Mathematical framework

This chapter contains the mathematical formalisation of the problem of down-
scaling and prediction/simulation of regionalised variables, and a presentation
of the statistical techniques that will be used to perform these tasks.

3.1 Kriging

Clay/silt/sand percentages, ADB, CDB and PRH are all regionalised vari-
ables, meaning that they vary in space, so that, if we call D the geographical
domain of the study area (in our case a square in the two dimensional Euclidean
space) each of them could be represented by a field over the area {z(x), x ∈ D},
where x is a generic point or location of the domain. In practice, points are
identified by minimal geographical units or "pixels", although in the abstract
model the domain is still considered as a continuum. Since we don’t know the
exact values of the variables in exam at each point x, we place ourselves in a
statistical context and we model the variables as random fields. A random
field over a domain D is a stochastic process characterised by a collection of
random variables {Z(x), x ∈ D} over a probability space (Ω,F ,P).

The branch of statistics that focuses on regionalised variables is called geo-
statistics. Generally speaking the main purpose of geostatistics is making
inference on the distribution of a random fields using a finite number of obser-
vations in some fixed locations of the domain. Kriging is the most common
and widely used technique in geostatistics. There, we present briefly the basic
concepts of the Kriging model, more detailed information can be found in [36].
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Suppose we have N observations {z(xi), i = 1, ..., N} in N different lo-
cations of the domain D. The goal is to use this data to predict the value
of z(x0) on an unobserved location x0. Since the random variables Z(xi) are
correlated, the known values z(xi) (usually indicated with zi) constitute an
unique observation of a random vector, and in principle cannot be used to
estimate any statistic. To overcome this limitation, certain assumptions are
made:

1. First order stationarity (constant mean):

E[Z(x)] = m ∀x ∈ D,

2. Second order stationarity: suppose xj − xi = h, then

C(Z(xi), Z(xj)) = C(Z(xi), Z(xi + h)) = C(h),

i.e., the correlation between two random variables solely depends on the
spatial distance between them, and is independent of their location.

3. Isotropy: let |h| = h,
C(h) = C(h),

i.e., the spatial correlation only depends on the absolute distance and
not on the angle.

Under these assumptions we have:

V ar(Z(x)) = C(Z(x), Z(x)) = C(0)

V ar(Z(x)− Z(x+ h)) = V ar(Z(x)) + V ar(Z(x+ h)) + 2C(Z(x), Z(x+ h)) =

= 2C(0)− 2C(h).

Based on this property we define the (semi)variogram:

γ(h) = C(0)− C(h) =
1

2
V ar(Z(x)− Z(x+ h)).

The empirical (semi)variogram can be computed with the formula

γ̂(h) =
1

2|N(h)|
∑

i,j:(xi,xj)∈N(h)

(z(xi)− z(xj))2, (3.1)

where for a certain lag ∆h:

N(h) = {(xi, xj) : h−∆h ≤ |xi − xj | ≤ h+ ∆h}.

The common practice in geostatistics consists in choosing a parametric
model for the variogram and fitting it to the empirical variogram.
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Figure 3.1: Variogram model fitted to some empirical observations

Variogram models are typically characterised by three parameters:

• the nugget τ2: it is the value of the variogram at distance 0, if it is
positive it accounts for uncorrelated white-noise in the data; variation at
microscales smaller than the sampling distances will appear as part of
the nugget effect;

• the sill, which is the limit of the variogram as d→∞; it is equal to the
nugget τ2 plus a positive quantity σ2, called partial sill;

• the range a; it is the distance at which the difference of the variogram
from the sill becomes negligible. In models with a fixed sill, it is the
distance at which this is first reached; for models with an asymptotic
sill, it is conventionally taken to be the distance when the semivariance
first reaches 95% of the sill (i.e., the practical range).
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Some commonly used variogram models are:

• Exponential variogram

γexp(h) = σ2
(

1− exp(−α · h
a

)

)
+ τ2,

• Spherical variogram

γsph(h) = σ2
((

3h

2a
− h3

2a3

)
1[0,a) + 1(a,∞)

)
+ τ2,

• Gaussian variogram

γgauss(h) = σ2
(

1− exp(
−α · h2

a2
)

)
+ τ2.

In both the exponential and the gaussian variogram the parameter α de-
pends on the definition of range.

Once the covariance structure has been identified, it is possible to perform
spatial interpolation with Kriging. Assuming the mean m of the process is
known, the Simple Kriging (SK) prediction of the value of Z for an unob-
served location x0 is:

z∗SK(x0)−m =
N∑
i=1

λi · (zi −m). (3.2)

The parameters λi are determined by imposing two constraints:

1. unbiasedness constraint: E[Z∗SK(x0)] = E[Z(x0)];

2. optimality criterion: λ = argminE[(Z∗SK(x0)− Z(x0))
2];

so that the Kriging predictor becomes the Best Linear Unbiased Predictor
(BLUP).

Under all the previous assumptions, the vector of λ’s can be computed by
solving the Simple Kriging system

Σ · λ = σ0, (3.3)

where Σ = [C(Z(xi), Z(xj))]i,j=1,...,N and σ0 = [C(Z(x0), Z(xi))]
T
i=1,...,N . It is

also possible to compute the variance of the prediction error:

σ2SK = V ar(Z∗SK(x0)− Z(x0)) = λT ·Σ · λ+ C(0)− 2λT · σ0. (3.4)
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If m is unknown, we remove m from the equation, the resulting formula is
known as Ordinary Kriging (OK) Prediction:

z∗OK(x0) =

N∑
i=1

λi · zi, (3.5)

to guarantee unbiasedness, we add an additional constraint on the weights λ,
namely

N∑
i=1

λi = 1,

so that

E[Z∗OK(x0)] = E[

N∑
i=1

λi · Z(xi)] =

N∑
i=1

λi · E[Z(xi)] = m ·
N∑
i=1

λi = m.

The vector of λs can then be computed by solving the Ordinary Kriging
system [

Σ 1
1T 0

] [
λ
µ

]
=

[
σ0
1

]
, (3.6)

where µ is a Lagrangian multiplier, 1 is an N-dimensional vector of 1’s, and
the terms Σ and σ0 are the same as before.

The variance of the prediction error can be computed as

σ2OK(x0) = V ar(ẐOK(x0)− Z(x0)) = λT · σ0 + µ. (3.7)

It is important to note that no additional assumption (other than first and
second order stationarity and isotropy) needs to be made on the distribution
of the random field Z(x) in order for the Kriging estimator to be the BLUP.
Kriging is sometimes called Gaussian Process (GP) regression. The reason
for this is the following: assuming the random field in exam is distributed
as a GP with mean m and covariance structure identified by variogram γ
(i.e., Z(x) ∼ GP (m, γ) ), then the Kriging predictor for z(x0) is equal to the
conditional expectation of Z(x0) given the observations, namely

z∗OK(x0) = E[Z(x0)|Z(x1) = z1, ..., Z(xN ) = zN ]. (3.8)

Additionally, the variance computed with the formula in (3.7) is the conditional
variance of Z(x0). For this reason, z∗OK and σ2OK are sometimes referred to as
conditional Kriging mean and variance.
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3.1.1 Regression Kriging (RK)

There exist several extensions of the Kriging method that allow to relax some
of the assumptions and to incorporate secondary information into the model.
In particular, the assumption of first order stationarity (constant mean over the
domain) is often excessively strict: regression Kriging (RK) allows to relax
this assumption by modelling the regionalised variable in exam as the sum of
a trend component m(x) (associated directly to the coordinates or to other
auxiliary regionalised variables) and the residual component e(x), modelled as
a stationary random field.

Translated into a formula, the assumption of RK is that

Z(x) = m(x) + e(x) = f(u1(x), ..., uL(x)) + e(x). (3.9)

The residual random field e(x) has 0 mean and unknown covariance structure
C, f is an unknown function of the L auxiliary variables u1, ..., uL, which vary
in space and are known at each x ∈ D.

Regression Kriging can be performed in two steps:

1. Fit of a regression model to estimate f̂(u1, ..., uL);

2. Kriging on the residuals: let u(x) = (u1(x), ..., uL(x)), residuals are ob-
tained by subtracting the (estimated) trend from the original data:

e(xi) = zi − f̂(u(xi)), i = 1, ..., N,

the variogram model is fitted to the obtained residuals e(x1), ..., e(xN ),
simple Kriging is performed on them.

Although this general formulation of RK allows for any regression method
to be used at step 1, linear regression (LR) is the default method.

When LR is used, the RK estimation becomes

z∗RK(x0) =
L∑
l=1

β̂l · ul(x0) +
N∑
i=1

λi · e(xi). (3.10)

Since the residuals are spatially correlated, β parameters should be es-
timated through a Generalised Least Squares (GLS) fitting procedure. This
would require to know the correlation of the residuals in advance, which in
turn requires the knowledge of the β’s to be estimated. An iterative procedure
could be used to overcome this problem. However, several authors have shown
that this procedure does not improve alter significantly the results obtained
from Ordinary Least Squares (OLS) fit [48], [33].
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3.1.2 Co-Kriging (CoK)

Co-Kriging (CoK) can be considered the multivariate extension of Kriging.
For the sake of simplicity, suppose we have two regionalised variables Z1(x) and
Z2(x), and that we have N observations of Z1 and Z2 at the same number of
different locations in a study area. The CoK predictor of Z1 at the unobserved
location x0 is given by:

z∗CoK(x0) =
N∑
i=1

λi · z1(xi) +
N∑
i=1

ηi · z2(xi). (3.11)

The λi and ηi can be obtained solving a linear system equivalent to the one in
(3.3), only this time the covariance matrix contains all the cross-covariances
C(Z1(xi), Z2(xj)). To estimate the covariance, usually a Linear Coregionaliza-
tion Model (LCM) is assumed (cf. [25]). Along with the variogram of each
individual variable, a cross-variogram is also identified by fitting a model to
the empirical cross-variogram

γ̂12(h) =
1

2|N(h)|
∑

i,j:(xi,xj)∈N(h)

(z1(xi)− z1(xj)) · (z2(xi)− z2(xj)). (3.12)

More information is provided in Section 7.3 of the appendix.
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3.2 Area-to-Point Kriging (ATPK)

Kriging is used when the available observations are located in some precise
points of the domain x1, ..., xN , but as we have seen in chapter 2, in our case
data have a lower resolution with respect to the one required and can be there-
fore considered as areal data or block data that express an average value
over a region.
The problem we are dealing with is the downscaling of coarse raster data.
Although it might seem different from the problem of spatial interpolation of
sparse point observations, the mathematical abstraction of Kriging is perfectly
suited for dealing with it. In fact, one of the classical downscaling methods is
Area-to-Point Kriging (ATPK), and it is conceptually not different from
Kriging. Some basic concepts of ATPK will be presented in this section, all
the theoretical aspects are exhaustively presented in [39].

In ATPK coarse resolution data (from now on also called block data) to be
downscaled are assumed to be (weighted) averages over the coarse grid cells
or blocks to which they are assigned. Let Z(x), x ∈ D, be a random field over
a geographical domain D, Z representing the regionalised variable of interest
with constant meanm and covariance C(Z(xi), Z(xj)) = C(|xi−xj |) identified
by a variogram γ(h).

Let νk denote the support of areal region k. The k − th observed areal
datum zk is assumed to be a realisation of random variable Zk, defined as the
average of Z(x) over the support νk :

Zk = Z(νk) =
1

|νk|

∫
x∈νk

Z(x)dx ≈ 1

Pk

Pk∑
i=1

Z(xi), xi ∈ νk, (3.13)

where, in the discrete case, Pk denotes the number of points within support
νk. The supports ν1, ..., νK are also called blocks and in our case are square
cells.

SupposeK areal data zk, k = 1, ...,K, are available; just as Kriging, ATPK
consists in predicting z(x0) as a linear combination of the observed areal data:

z∗ATPK(x0) =

K∑
k=1

λk · zk. (3.14)
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(a) (b)

Figure 3.2: Approximate block-block (a) and block-point (b) covariance com-
putation

Under the usual assumptions, by imposing the unbiasedness and optimality
constraints it is easy to derive the system[

Σ 1
1T 0

] [
λ
µ

]
=

[
σ0
1

]
, (3.15)

µ is the Lagrangian multiplier used to impose the unbiasedness constraint.
This time, Σ = [C(νk, νl)]k,l=1,...,K and σ0 = [C(x0, νk)]

T
k=1,...,K

The term C(νk, νl) denotes the regularised covariance between Z(νk) and
Z(νl), also called the block-block covariance, and is computed as:

C(νk, νl) = C(Z(νk), Z(νl)) =
1

|νk|
1

|νl|

∫
x∈νk

∫
x′∈νl

C(Z(x), Z(x′))dxdx′ ≈

≈ 1

P̃k

1

P̃l

P̃k∑
i=1

P̃l∑
j=1

C(|xj − xi|), xi ∈ νk, xj ∈ νl.

(3.16)

Analogously, C(x0, νk) is the block-point or point-block covariance, given
by the formula:

C(x0, νk) = C(Z(x0), Z(νk)) =
1

|νk|

∫
x∈νk

C(Z(x0), Z(x))dx ≈

≈ 1

P̃k

P̃k∑
i=1

C(|x0 − xi|), xi ∈ νk.
(3.17)
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3.2.1 The problem of variogram estimation in ATPK

The implementation of ATPK is fairly straightforward, although it requires the
knowledge of point support covariance of the regionalised variable, identified
by the variogram γ(h). In the presence of punctual observations, the vari-
ogram can be estimated by fitting a model to the empirical values, as shown
in Equation (3.1). However, when the only available information is given by
the areal data, this simple procedure cannot be applied. It is still possible to
compute an empirical variogram from low resolution gridded data by simply
considering these values as localised in the centroids of their respective areas.
The empirical variogram so computed, denoted γ̂ν(h), is an approximation of
the regularised variogram. Assuming all blocks have the same size and shape
(which is the case in most remote-sensing scenarios, and for SoilGrids data)
and following [36], the point support and regularised variograms are related by
the general formula:

2γν(h) = 2γ(ν(x), ν(x+ h))− γ(ν(x), ν(x))− γ(ν(x+ h), ν(x+ h))

which, under the assumption of stationarity, becomes:

γν(h) = γ(ν, νh)− γ(ν, ν). (3.18)

The block-to-block variogram γ(ν, νh) represents the average value of the
point support variogram between an arbitrary point in the support ν and
another in the translated support νh. The second term, γ(ν, ν) is the within-
block variogram value, independent from the block in the case of regular grids.

The problem of inferring the point-support variogram from its regularised
version is called variogram deconvolution. It is an ill-posed inverse problem,
therefore the only way to tackle it is through an empirical procedure paired
with the Occam’s razor. In [36], Journel and Huijbregts proposed a general
approach without explicitly presenting an implementable algorithm. A similar
approach was proposed by [10] in the context of remote sensing, yet they didn’t
clearly discuss the parameter estimation.

In 2008 Goovaerts developed a standard procedure for variogram deconvo-
lution, applicable in general contexts [23], which is hereby presented:

1. Compute the experimental variogram γ̂ν(h) from low-resolution (areal)
data and fit a model γexpν (h), where ”exp” stands for "experimental",
using weighted least-square regression [11] (each lag is weighted to assign
more importance to the fitting of variogram values at short distances).
The model that yields the smallest deviation between the experimental
and modelled curves is selected.
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Figure 3.3: Example of the regularisation effect when lowering resolution by
taking average values

2. As an initial point support model γ(0)(h), use the model fitted to areal
data, γexpν (h).

3. Regularise γ(0)(h) according to the expression (3.18) to obtain γ(0)ν (h).

4. Quantify the deviation between the experimental and the regularised
variograms using the average relative difference over L lags hl:

D(0) =
1

L

L∑
l=1

|γ(0)ν (hl)− γexpν (hl)|
γexpν (hl)

. (3.19)

5. Consider the initial point support model, its regularisation and the asso-
ciated difference statistic as "optimal" at this stage

γopt(h) = γ(0)(h), γoptν (h) = γ(0)ν (h), Dopt = D(0).

6. For each lag hl, compute experimental values for the new point sup-
port variogram through a re-scaling of the optimal point support model
γopt(h)

γ̂(1)(hl) = γopt(hl)× w(1)(hl), with w
(1)(hl) = 1 +

(γexpν (hl)− γoptν (hl)

s2exp
√
iter

,

(3.20)
where s2exp is the sill of the model γexpν (h), iter is the number of the
iteration (at this step 1).
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Figure 3.4: Variogram deconvolution of the field in Figure 3.3 using the
Goovaerts’ method implemented in R

7. Fit a model γ(1)(h) to the re-scaled values using weighted least-square
regression (same procedure as in step 1).

8. Regularise the model according to (3.18) and obtain γ(1)ν (h).

9. Compute the difference statistic (3.19) for the new regularised model
γ
(1)
ν (h)

• If D(1) < Dopt, use the point support model γ(1)(h) and the associ-
ated statistic D(1) as new optimum, repeat stage 6 through 8.

• If D(1) ≥ Dopt repeat steps 6 through 8 using the same optimal
model but the new re-scaling coefficients computed as

w(2)(hl) = 1 +
(w(1)(hl)− 1)

2

10. Stop the iterative procedure after the i-th iteration whenever one of the
following three criteria is met: (1) the difference statistic reaches a suf-
ficiently small value; or (2) the maximum number of allowed iterations
has been reached; or (3) a small decrease in the difference statistic D was
recorded a given number of times;
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3.2.2 Area-to-Point Regression Kriging (ATPRK)

Simple ATPK is basically a smoothing technique. In the absence of additional
information at a finer scale it is hardly possible to do better than this. How-
ever, when auxiliary variables correlated with the one to be downscaled are
exhaustively sampled at high resolution, it is possible to use this information
to increase the precision of the downscaling procedure.

One of the possible ways to do this is through Area-to-Point Regression
Kriging (ATPRK). Unsurprisingly, the formulation of ATPRK is almost
identical to RK:

z∗ATPRK(x0) =

L∑
l=1

β̂l · ul(x0) +

K∑
i=1

λi · e(νk). (3.21)

This time, as in ATPK, instead of having N residuals e(x1), ..., e(xN ), each
one assigned to a point-location xi, we have K areal residuals associated to
each block. The difference is in how we fit the linear regression model for the
trend component and how we compute the areal residuals.

The basic assumption is that we dispose of K block data z1, ..., zK and
of high resolution maps of the auxiliary variables u1(x), ..., uL(x). We also
assume that

E[Z(x)] =

L∑
l=1

βl · ul(x) ∀x ∈ D. (3.22)

We don’t know any value z(xi) so we cannot fit the model in the classical
way, but from Equation (3.13) we derive

E[Z(ν)] = E
[

1

|ν|

∫
x∈ν

Z(x)dx

]
=

1

|ν|

∫
x∈ν

E[Z(x)]dx, (3.23)

since E and
∫
symbols can be exchanged as long as the expected value is finite.

Combining Equation (3.23) with the formula in (3.22), we get

E[Z(ν)] =
1

|ν|

∫
x∈ν

(
L∑
l=1

βl · ul(x)

)
dx =

=
L∑
l=1

βl ·
(

1

|ν|

∫
x∈ν

ul(x)dx

)
=

=

L∑
l=1

βl · ul(ν).

(3.24)
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Figure 3.5: Upscaling of the digital elevation model

As a consequence, by computing ul(νk), l = 1, ..., L, k = 1, ...,K, we are
able to fit a linear model and obtain the β̂l using the areal data z1, ..., zK and
subsequently find the residuals

e(νk) = zk −
L∑
l=1

βl · ul(νk). (3.25)

The procedure then follows the same steps as in Section 3.1.1.
The block averages of the auxiliary variables are computed as follows:

ul(νk) =
1

Pk

Pk∑
i=1

ul(xi), (3.26)

where Pk is the total number of high resolution pixels (minimal geographical
units) xi contained in the block νk. This procedure is called upscaling, an
example is shown in Figure 3.5.

Equation (3.24) holds true only because the relation between Z and the
auxiliary variables ul is assumed to be linear, otherwise any model fitted using
the zk and ul(νk) will not be coherent with the regression Kriging assumption.
It is however still possible to fit a model representing a nonlinear relation
between Z and the ul using linear regression; this can be done by increasing
the number of features with nonlinear transformations of the original auxiliary
variables, like it is done in polynomial regression.
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3.3 Dissevering

ATPRK is an effective method for downscaling soil information when auxiliary
variables are available. However, it has some limitations: block data zk, k =
1, ...,K are not directly compatible with the high resolution maps of auxiliary
variables ul(x), l = 1, ..., L, so it is not directly possible to fit a generic re-
gression model to identify a relation of the kind E[Z(x)] = f(u1(x), ..., uL(x)).
The auxiliary variables can be made compatible by performing upscaling and
computing the average value over each block (Equation (3.26)); however, this
only allows to fit a linear regression. In fact, Equation (3.24) is only valid
because of the linearity of the model, but in general:

1

|ν|

∫
ν
f(u(x))dx 6= f

(
1

|ν|

∫
ν

u(x)dx

)
. (3.27)

When the relation E[Z(x)] = f(u1(x), ..., uL(x)) is nonlinear, it is preferable
to consider more sophisticated regression methods. A possible solution would
be to increase the number of covariates by taking powers or transformations of
the auxiliary variables ul(x), for instance u2l (x), or log(ul(x)) thus increasing
the number of available features. However, the number of available models
remains limited.

Another problem of ATPRK is variogram estimation of the residuals. In
the absence of point observations, the variogram can only be obtained by
deconvolution.

On top of that, when upscaling is performed on the covariates, some of the
original information is lost. In particular, upscaling narrows the range of the
variable averaged and eliminates all the local variations (cf. Figures 3.3 and
3.5). The reduction of the range can limit the effectiveness of the regression.

Lastly, ATPRK respects the so called pycnophylactic ormass-preserving
property, meaning that if z∗(x) is the downscaled map obtained applying
ATPK to coarsely gridded data z1, ..., zK , then ∀k :

Pk∑
i=1

ẑ(xi) = zk. (3.28)

The implicit assumption is that block data have no uncertainty associated to
them, which is rarely the case, especially when the coarsely gridded data are
the result of digital soil mapping algorithm, like SoilGrids.

48



In 2012, McBratney, Malone et al. came up with a general method to per-
form downsacling of coarse maps of soil information using available fine gridded
covariate data that does not present the aforementioned issues of ATPK. The
algorithm is called dissevering and is implemented in the R package dissever
[44].

Let zk, k = 1, ...,K, be the target variable values at each coarse resolution
grid cell (or block) and ẑi, i = 1, ..., P, denote the estimate of the target
variable at each grid cell at fine scale (corresponding to the scale of the available
covariates). In the spatial context, there are many i encapsulated by each k,
the number of which is determined by the resolution of i and is not necessarily
consistently equal for each block. The number of i encapsulated by block k is
denoted Pk.

Dissever algorithm has two stages, namely initialisation and iteration:

• Initialization. The iteration counter t is set to 0, each ẑ0i is set equal to
the value of its encapsulating target variable zk. A nonlinear regression
model between ẑ0i and the suite of available covariates u1, ..., uL is fitted
to all the grid cells (or a subset, for computational feasibility)

ẑ0i = f̂0(u1, ..., uL).

Potentially any regression method could be used;

• Iteration. At iteration t, in order to make the average of ẑti estimates of
fine resolution grid cells equal to the value of their encapsulating coarse
resolution grid cell (zk), ẑt−1i are updated to ẑti using equation

ẑti = ẑt−1i × zk

ẑt−1k

,

where ẑt−1k is the average of ẑt−1k estimates over block k : (1/P̃k)
∑
ẑt−1i

With the newly adjusted values a new nonlinear regression model f̂ t can
be fitted. Iterations proceed until the total variation of the estimations
between two consecutive time steps decreases below a given threshold ε :

1

P̃

P̃∑
i=1

|ẑti − ẑt−1i |, P̃ = number of used cells.
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Figure 3.6: Example of application of the dissever algorithm for the downscal-
ing of a Soil Organic Carbon (SOC) concentration map. Source: [44]

In the original article [44] generalised additive models (GAM) [32]
were used in the dissevering procedure to fit a non-linear model for the down-
scaling of a coarse resolution map of Soil Organic Carbon (SOC) concentration
(Figure 3.6). GAMs are not the only option, dissever allows to fit any non-
linear (or linear) regression model for the estimation on the target variable
at fine scale using high resolution covariates. Some of the regression methods
which are generally used when applying the dissevering procedure are GAMs,
Random Forest (RF) and Cubist, a rule-based model which is an extension of
Quinlan’s M5 model tree [63]. Cubist in particular has proven very effective for
the spatial regression of soil properties, and has been used for downscaling in
combination with ATPRK ([5]) and dissever ([68]). Cubist is implemented in
the homonymous R package, more information on the algorithm is presented
in Section 7.5 of the appendix.

Although Dissever has many advantages, it does not take into account the
spatial correlation of the target variable, something that ATPRK does instead.
In light of the characteristics of the two methods, it is possible to establish a
rule of thumb for deciding which one of them to use:

• When the variability of the target variable is mostly explained by its
spatial correlation, and its relation with high resolution covariate maps
is secondary, use ATPRK.

• When the variability of the target variable is mostly explained by its
(possibly non-linear) relation with covariates available at fine scale, and
the spatial correlation is secondary/hard to estimate, then use dissever.
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3.4 Sequential simulation

Kriging interpolation allows to quantify the uncertainty of the predictions.
However, in order to analyse how the uncertainty propagates to the output of
a numerical simulation we need to be able to generate stochastic maps that
honours the probabilistic model of the variables in exam and the actual ob-
servations. This can be done through conditional simulation. It is hard to
overstate the importance of conditional simulation in geostatistics, especially
in reservoir modelling. In fact, several simulation algorithms have been devel-
oped, each of them having a specificity making it more effective for a particular
problem. Among these algorithms, those based on sequential simulation
stand out for their incredible flexibility and their ability to handle very large
maps. Sequential simulation exploits the Bayes theorem: let Z(x), x ∈ D be
a random field with a generic covariance structure, let Z1, ..., ZN represent the
values of Z at N different points of the domain and let L(Z1, ..., ZN ) indicate
their joint probability distribution, then

L(Z1, ..., ZN ) = L(Z1)L(Z2|Z1)L(Z3|Z1, Z, 2)...L(ZN |Z1, ..., ZN−1)

From an algorithmic point of view, this allows to sequentially simulate a
random field on each point of a gridded map (raster), by conditioning at each
step to the observed points and the previous simulations. As long as the range
of the correlation function is limited, the conditional simulation at a point
only takes into account its neighbourhood, so that the computation time for
each individual simulation does not increase with the number of previously
simulated points. This key aspect grants good scalability properties.

Sequential simulation relies on Kriging to reproduce the spatial correlation.
Typically (in particular in the absence of additional information on the dis-
tribution of the random field) an assumption of multi-Gaussianity is made,
i.e. the random field in exam is assumed to be a Gaussian Process (GP) with
given mean and covariance. In this case, the algorithm is called Sequential
Gaussian Simulation (SGS) and works as follows:

1. Define a random path visiting all the N nodes (cells of the grid).

2. For each node xi, i = 1, ...N, compute the Kriging conditional mean
and variance, given the original information and all the i− 1 previously
simulated values z(xj), j = 1, ..., i− 1.

3. Draw z(xi) from a normal distribution with mean and variance equal to
those computed in step 2.
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When the observations are not punctual but averages on blocks, it is still
possible to perform conditional sequential simulation, the only difference re-
garding step 2., where, instead of Kriging, a combination of Kriging Area-to-
point Kriging is performed. This allows to condition to both areal data and
previously simulated values, so that the Kriging estimate becomes:

z∗(x0) =

n(x0)∑
i=1

λi · z(xi) +

n(x0)+K∑
j=n(x0)+1

λj · z(νj) (3.29)

where n(x0) and K are the numbers of surrounding point and areal data, re-
spectively, and νj , j = 1, ..., n(x0) + K represent the areal supports. This
is basically the same as ATPK, where point values are considered as "degen-
erate" areal values with infinitesimally small support. The point covariance
is computed in the standard way, whereas the covariance between blocks and
between points and blocks can be approximated using Equations (3.16) and
(3.17) (cf. figure 3.2). The computation of block covariances is computation-
ally intensive and particularly time-consuming. For this reason, even though
conceptually the algorithm is the same, a specific implementation is required
for fast computation of block-covariances [40], [42]. SGS conditioned to block
data is called Block Sequential Gaussian Simulation (BSGS).

The multi-Gaussian assumption does not necessarily require the data to
be normally distributed. This because samples from a realisation of a random
field do not necessarily reflect the point probability distribution of Z(x) ([36],
[72]), this is shown in Figure 3.7.

However, there might be some cases in which the normality assumption
would be unjustified, for instance when the histogram of the samples presents
very heavy tails or when data present some constraints like in the case of
particle-size fractions which are positive and with constant sum. The next
section focuses on a method to deal with this kind of data.
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Figure 3.7: Example of block sequential gaussian simulation
The block data were originated from a Gaussian random field using uncon-
ditional sequential gaussian simulation on a coarse grid. Notice that the his-
togram of block data does not have the typical "bell" shape, this is because
in conditional simulation the distribution from which each singular point is
simulated is not necessarily reproduced at the field scale.
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3.5 Compositional data

Particle-size fractions (psf) are compositional data which means they have
to respect particular constraints (cf. Equation (2.1)).

Because of the range limitation and the spurious correlation of ratios, tra-
ditional Kriging and simulation techniques might not be suited for the spatial
prediction of psf, although some authors have chosen to implicitly ignore this
aspect (like [12]). The authors of [77] tried to account for the particular nature
of regionalised variables expressing relative fractions by proposing an exten-
sion of Kriging called Compositional Kriging (CK). CK predictions respect
the constraints of positivity and fixed sum. However, CK algorithm is based
on practical considerations rather than a coherent probabilistic model, and is
therefore not suited for stochastic simulation.

The standard approach to the statistical analysis of compositional data is
the one proposed by Aitchison in the 1980s [3], and is based on the particular
geometry of the simplex. An n-dimesional simplex Sn is defined as:

Sn = {(z1, ..., zn)T : z1, ..., zn > 0, z1 + ...+ zn = c}. (3.30)

In the Aichison’s view, the information contained in a set of compositional data
is given by the ratios between components, so the information is preserved
under multiplication by any positive constant. Therefore, the sample space
of compositional data can always be assumed to be a standard simplex, i.e.
c = 1. Normalisation to the standard simplex is called closure and is denoted
by C(·) :

C(z) =

(
z1∑n
i=1 zi

, ...,
zn∑n
i=1 zi

)T
∀z = (z1, ..., zn)T ∈ Sn . (3.31)

Points in a (real) simplex of dimension n have coordinates in Rn but given
n − 1 coordinates z1, ..., zn−1, then the last one zn is equal to c −

∑n
i=1 zi, so

they actually can be uniquely determined by n− 1 coordinates.
Aitchison (1986) [4] defined a group of operations that give the simplex the

structure of a real vector space, namely:

• Perturbation (sum):

x⊕ y =

(
x1y1∑n
i=1 xiyi

, ...,
xnyn∑n
i=1 xiyi

)T
∀x,y ∈ Sn (3.32)

• Powering (product with a scalar):

α� x =

(
xα1∑n
i=1 x

α
i

, ...,
xαn∑n
i=1 x

α
i

)T
∀α ∈ R, ∀x ∈ Sn (3.33)
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• Inner product:

〈x,y〉a =
1

2n

n∑
i=1

n∑
j=1

log
xi
xj
· log yi

yj
∀x,y ∈ Sn (3.34)

The defined inner product induces a norm || · ||a :=
√
〈·〉a, which in turn

induces a distance da(x,y) = ||x	 y||a, x,y ∈ Sn, where x	 y denotes the
perturbation of x with the reciprocal of y, i.e., x	y = x⊕(−1)�y. The vector
space structure identified by these operations is called Aitchison geometry,
or Aitchison simplex and it is a finite Hilbert space [15].

The statistical approach proposed by Aitchison consists in analysing com-
positional data in the context of the Aitchison geometry. Fortunately it is
not required to directly use the previously defined operations. Instead, the
standard procedure consist in transforming the original data by applying an
isomorphism from the n-dimensional Aitchison simplex to the classical Eu-
clidean space Rn−1, make all the required assumptions and perform the sta-
tistical analysis on the transformed data and, and finally back-transform the
results in the original space to ease interpretation.

There are three well characterised isomorphism from Sn to Rn or Rn−1 that
satisfy linearity:

• Additive log-ratio transformation (alr): Sn → Rn−1

alr(z) =

(
log

z1
zn
, ..., log

zn−1
zn

)T
(3.35)

• Centered log-ratio transformation (clr): Sn → U ⊂ Rn

clr(z) =

(
log

z1
g(z)

, ..., log
zn
g(z)

)T
, g(z) =

 n∏
j=1

zj

 1
n

(3.36)

• Isometric log-ratio transformation (ilr): Sn → Rn−1
let 〈...〉a denote the inner product in the Aitchison simplex and e1, ..., en
be an orthogonal basis of Sn, then

ilr(z) = (〈z, e1〉a , ..., 〈z, en−1〉a)
T (3.37)

Differently from alr, clr and ilr transformations are isometries, so they pre-
serve distances and angles. However, clr maps the simplex Sn into a linear
subspace U of Rn, whereas ilr maps the simplex directly into Rn−1.
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Figure 3.8: This figure shows how circles in the 3D Aichison simplex are trans-
formed in circles of the Euclidean plane through isometric log-ratio transfor-
mation. Source: [17]

An algorithm for the ilr will be presented in the appendix, for an in-
depth presentation of the isometric log-ratio transformations please refer to
the articles of Egozcue, Pawlowsky-Glahn et al. [17], [59].

Figure 3.8 shows an example of ilr applied to a 3D simplex. The dashed
lines represent the coordinates of the orthogonal base used for the transfor-
mation, the figure allows to visualise how circles look like in the Aitchison
simplex.

In statistics, compositional data are often transformed in order to operate in
the context of the Aichison geometry, the analysis is then performed on the new
dataset and the results are back-transformed using the inverse transformations
(alr−1, clr−1 or ilr−1).

In the context of spatial prediction, Kriging of compositional data trans-
formed through one of the formulas (3.35), (3.36) or (7.4) is sometimes called
log-ratio Kriging [79], and is denoted with different acronyms depending on
the transformation used. The most common notation uses the name of the
log-ratio transformation in capital letters with a subscript indicating the type
of Kriging method, for instance for Ordinary Kriging (OK): ALROK , CLROK
and ILROK . Often when comparing different methods, Kriging on the original
compositions is denoted is a similar fashion: UTOK , where "UT" stands for
"Un-Transformed".
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Several authors have addressed the problem of spatial prediction of particle-
size fractions and have tried to compare different approaches by evaluating the
prediction accuracy. Odeh et al. (2003) [50], compared the results of Composi-
tional Kriging (CK), ALROK , UTOK and co-Kriging (CoK) for the prediction
of psf in the Australian soil. Wang (2017) considered also CLROK and ILROK .
These studies show that none of the methods consistently outperforms the oth-
ers; however, UTOK almost always under-performs.

ilr has some important theoretical advantages: consider the three region-
alised random variables Z1, Z2, Z3 representing, respectively, the fraction of
clay, silt and sand. Suppose we dispose on N observations for each fraction
and we want to perform a statistical analysis in the Aitchison geometry. By
applying alr we would obtain two meaningful transformed variables

alr1 = log(Z1/Z3),

alr2 = log(Z2/Z3).

The values obtained depend on which variable is chosen to be the last one,
the one that would be discarded in the analysis. If, for instance, we choose to
consider the clay fraction as Z3, the result might change with respect to the
one obtained with the initial assumption. The main problem of alr, however,
is that it is not an isometric transformation from the simplex, with the Aitchi-
son metric, onto the real alr-space, with the ordinary Euclidean metric. As
a consequence, when one does not take into account the absence of isometry,
the interpretation of transformed data is not intuitive at all, as results occa-
sionally do not match properties expected in the simplex [45]. Although clr
is more symmetric, there is still an arbitrary choice on the variable that will
be discarded in the analysis (since the clr-transformed variables are linearly
dependent and sum up to 0).

Isometric log-ratio transformations do not have this problem, since they
reduce the dimensionality of the original data, so that the result won’t change
based on an arbitrary assumption. Another important advantage of ilr is that
it allows to choose the reference orthogonal base e1, ..., en−1 of the Aitchison
simplex to be used in the transformation. The choice of the base does not
influence the results of the analysis, but can lead to practical advantages, de-
pending on the problem at hand. For instance, the basis could be chosen in such
a way to grant independence (in terms of correlation) of the resulting trans-
formed data, or in a way that allows to consider particular sub-compositions
independently [17].
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3.6 Downscaling of compositional data: Isometric
Log-Ratio Area-to-Point Kriging

The problem of downscaling of compositional data is still unexplored; [65] used
Area-to-Point Kriging to downscale particle-size fractions data transformed
with additive-log ratio (alr), using the silt fraction as a reference for the ra-
tios. The alr was used as a practical solution to account for the compositional
nature of the data, but the modelling assumptions were not explicitly stated,
and the results were interpreted only in terms of prediction accuracy with re-
spect to a given test set. In this section, a general method for the statistical
downscaling and simulation of compositional data based on the application of
ATPK in the context of the Aitchison simplex is proposed. The method is
called Isometric Log-Ratio Area-to-Point Kriging (ILRATPK), and, as
suggested by the name, it uses ilr to allow to operate within the Aitchison
geometry without having to modify the classical statistical techniques based
on the Euclidean metric. The emphasis is put on the model assumptions and
on the interpretation of the results.

In order to formalise the problem of ATPK in the Aitchison simplex, we
must first formalise the statistical concepts of mean, variance and covariance
and the integral operator in the simplex embedded with the Airtchison geom-
etry.

Let (Ω,F ,P) be a probability space and X : Ω → Sn be a random vector
of compositions over (Ω,F ,P). Following the approach of Fréchet (1948) and
[16], who generalised the expected value operator for generic metric spaces, we
provide the following definitions.

• The Aitchison variance around ξ ∈ Sn is the expected value of the
squared Aitchison distance between X and ξ :

V ara(X, ξ) := E[d2a(X, ξ)].

• The (Aitchison) centre of the distribution of X is the element ξ ∈ Sn
which minimises V ara(X, ξ), and is denoted Cen(X).

• The Aitchison variance around the centre, simply calledAitchison vari-
ance is denoted

V ara(X) := V ara(X, Cen(X)) = E[d2a(X, Cen(X))].

The square root of the AItchison variance is the Aitchison standard
deviation denoted stda.
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• The Aitchison trace-covariance of two random vectors of composi-
tions X1,X2 over the same probability space is defined as

Ca(X1,X2) := E[〈X1 	 Cen(X1),X2 	 Cen(X2)〉a].

As shown in [16], explicit formulas can be derived for the centre and the
Aitchison variance. In particular, the abstract centre defined according to
the Fréchet’s approach correspond to the original definition of centre of a ran-
dom vector of compositions X (Aitchison, 1997), which is equal to the closed
geometric mean:

Proposition 1.

Cen(X) = C(exp(E[log(X1)]), ..., exp(E[log(Xn)]))T , (3.38)

whereas the Aitchison variance can be expressed as

Proposition 2.

V ara(X) =
1

2n

n∑
i,j=1

V ar

(
log

Xi

Xj

)
=

n∑
i=1

V ar

(
log

Xi

g(X)

)
, (3.39)

where g is the geometric mean g(X) =
(∏n

j=1Xj

) 1
n
.

These operators of centre, Aitchison variance and covariance have all the
properties of the classical corresponding operators, but with respect to the
Aitchison geometry operations. In particular, they can be estimated with the
common statistics computed in the Aitchison simplex. So, for instance, the
following holds [57]:

Proposition 3. The best estimator for the centre of a random composition
E[X] = θ given a sample of realisations x1, ...,xN is the sample mean in the
Aitchison simplex or the sample centre:

θ̂ =
1

N
�

N⊕
i=1

xi, (3.40)

where the symbols ⊕ and � represent the Aitchison geometry operations of
perturbation (3.32), corresponding to the sum in the Euclidean geometry, and
powering (3.33), corresponding to the multiplication by a scalar.
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With a straightforward computation it is easy to show that the sample
centre corresponds to the closure of the geometric mean of the sample:

Proposition 4.

θ̂ =
1

N
�

N⊕
i=1

xi = C(g1, ..., gn),

with gj =

(
N∏
i=1

xij

) 1
N

, j = 1, ..., n.

(3.41)

Basically, as the sum operation in the simplex (perturbation) corresponds
to the closure of the product, the arithmetic average corresponds to the closed
geometric mean.
Consistently, the integral of a function x : T → Sn, with values in the simplex,
over a set τ ⊂ T is defined as follows:

∫ ∗
τ

x(t)dt = C
(

exp

(∫
τ
log(x1(t))dt

)
, ..., exp

(∫
τ
log(xn(t))dt

) )T
.

(3.42)
In particular, the quantity 1

|τ | �
∫ ∗
τ x(t)dt is called the centre of x(t) over τ,

and can be approximated by

1

|τ |
�
∫ ∗
τ

x(t)dt ≈ 1

M
�

M⊕
i=1

x(ti), for M big enough. (3.43)

Now it is possible to formalise ATPK in the Aitchison simplex. Suppose
we have a dataset of regionalised compositional areal data{

zk = (zk1, ..., zkn)T , k = 1, ...,K
}
,

each datum zki representing the relative fraction of the i-th component (of n
considered) for the k-th block, or the area of support νk according to the ATPK
notation. The objective is to predict/simulate the values of the compositional
random field Z(x) ∈ Sn over a geographical domain D - typically covering the
extent of the available areal data - at a much finer scale. This time, the areal
data are assumed to be the centres of the unknown regionalised compositions
over the blocks to which they are assigned. Hence, the k − th observed areal
composition zk is assumed to be a realisation of random vector of compositions
Zk, defined as
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Zk = Z(νk) =
1

|νk|
�
∫ ∗
x∈νk

Z(x)dx ≈ 1

Pk
�

Pk⊕
i=1

Z(xi), xi ∈ νk. (3.44)

Pk denoting the number of points (fine-resolution pixels) within block νk.
The assumptions on the multi-variate random field Z(x) are equivalent to

those of standard Kriging (cf. Sections 3.1 and 7.3), but with respect to the
Aitchison geometry:

1. Fist order stationarity (constant centre):

Cen(Z) = ξ, for a fixed ξ ∈ Sn . (3.45)

2. Second order stationarity and isotropy:

Ca(Z,Z(x+ h)) = Ca(|h|), ∀x,h s.t. x, x+ h ∈ D. (3.46)

The ATPK prediction of z(x0) in the Aitchison simplex is given by:

z∗ATPKa(x0) =
K⊕
k=1

λk � zk. (3.47)

In order for the predictor to be the BLUP, two constraints have to be imposed
allowing for the determination of the λs:

• unbiasedness:
Cen(Z∗ATPKa(x0)) = Cen(Z(x0)); (3.48)

• optimality:
λ = argminV ara (Z∗ATPKa(x0)	 Z(x0)) . (3.49)

This formulation fully accounts for the special nature of the areal data in
exam, allowing to avoid all the possible issues listed in Chapter 2 and in the
previous section. Fortunately, it is not necessary to implement a specific algo-
rithm to solve for λ in the context of the Aitchison simplex. In fact, applying
an isometric transformation from the Aitchison simplex into a classical Eu-
clidean space allows to obtain an equivalent formulation of the problem that
can be solved using the standard ATPK presented in section 3.2, thanks to the
following results (detailed in [16]).

Let X ∈ Sn be a random vector of compositions, and h : Sn → Rm be a
linear isometry from the Aitchison simplex to the m-dimensional real space,
m being either equal to n− 1 or n. In the latter case, the image of h is a linear
subspace of Rn. Then
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Proposition 5.
Cen(X) = h−1(E[h(X)]). (3.50)

Proposition 6. If h(X) = Y ∈ Rm, then

V ara(X) =
m∑
i=1

V ar(Yi). (3.51)

More specifically, consider an isometric log-ratio transformation ilr. The
choice of isometric log-ratio over centered log-ratio is motivated by the the-
oretical advantages of the former, detailed in the previous section. We set
Y(x) := ilr(Z(x)) ∀x ∈ D, and we apply ilr to the original areal data, obtain-
ing the dataset

{yk = (yk1, ..., yk(n−1))
T , k = 1, ...,K},

such that
(yk1, ..., yk(n−1))

T = ilr( (zk1, ..., zkn)T ) ∀k.

Proposition 7. All the standard ATPK model assumptions (cf. Section 3.2)
made on Y(x) and on the yk imply the previous model assumptions in the
Aitchison geometry, and the ATPK predictor for Y(x0) is equal to the ilr-
transformed predictor for Z(x0) in the Aitchison simplex (cf. Eq. (3.47)):

y∗ATPK(x0) = ilr(z∗ATPKa(x0)) (3.52)

Proof. Areal data as centres of the blocks. The yk are assumed realisations of
variables Yk = 1

|νk|
∫
x∈νk Y(x)dx. This implies that the zk are realisations of

variables ilr−1(Yk). Since ilr is a linear isometry, so is ilr−1, therefore they
can be interchanged with integral or summation operators (as long as the sums
are finite) [15], hence

ilr−1(Yk) = ilr−1
(

1

|νk|

∫
x∈νk

Y(x)dx

)
=

1

|νk|
�
∫ ∗
x∈νk

ilr−1(Y(x))dx =

=
1

|νk|
�
∫ ∗
x∈νk

Z(x)dx = Zk.

(3.53)

So, property (3.44) is respected.
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First and second order stationarity, isotropy. The first order stationar-
ity condition (constant mean) for Y(x) is equivalent to the constant centre
condition for Z(x) thanks to Proposition 5:

E[Y(x)] = m ∈ Rn−1 ⇒ Cen(Z(x)) = ilr−1(m) = ξ ∈ Sn, m fixed.

As for the Aitchison trace-covariance Ca, we recall that since ilr is a linear
isometry, denoting 〈·, ·〉 the inner product in Rn−1 we have [16]:

〈X1,X2〉a = 〈ilr(X1), ilr(X2)〉, X1,X2 ∈ Sn,

then, applying Eq. (3.50) we get

Ca(Z(x),Z(x+ h)) = E[〈Z(x)	 ξ,Z(x+ h)	 ξ〉a] =

= E[〈Y(x)− ilr(ξ),Y(x+ h)− ilr(ξ)〉] = Tr(C(Y(x),Y(x+ h))),

namely, the Aitchison trace-covariance is equal to the trace of the covariance
matrix of the transformed vectors of compositions, hence its name. Second
order stationarity and isotropy of the covariance of Y(x) implies second order
stationarity and isotropy of Ca. Since in the Aitchison geometry formulation of
ATPK no assumption is made on the covariance structure of the field of com-
positions, other than the two hypothesis previously stated, then the covariance
structure can be estimated directly in the isometric log-ratios setting using the
standard techniques presented in the chapter. In particular, if needed, a linear
co-regionalization model could be assumed (cf. Section 7.3).

Equivalence of the predictor and of the problem constraints. The ATPK
predictor for Y(x0) is

y∗ATPK(x0) =
K∑
k=1

λk · yk =
K∑
k=1

λk · ilr(zk) =

= ilr

(
K⊕
k=1

λk � zk

)
,

(3.54)

once again we used the fact that ilr is a linear isometric transformation to bring
it out of the summation operator. Equation (3.54) entails that if the optimal
lambdas are the same as those obtained imposing the constraints (3.48) and
3.49, then the thesis holds. In the context of the standard formulation, if the
mean m is unknown, the unbiasedness condition can be imposed by setting
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∑K
k=1 λk = 1. In the Aitchison formulation, this entails

Cen

(
K⊕
k=1

λk � zk

)
=

K⊕
k=1

λk � Cen(zk) =

K⊕
k=1

λk � ξ =

= C
(
ξ
∑K

k=1 λk
1 , ..., ξ

∑K
k=1 λk

n

)
= C(ξ) = ξ,

hence the unbiasedness constraint is the same. Finally, Proposition 6 and
Equation (3.54) entail that

V ara (Z∗ATPKa(x0)	 Z(x0)) = V ar (Y∗ATPK(x0)−Y(x0)) ,

so the optimality constraints of the problem in the isometric log-ratio setting
is equivalent to the one in the Aitchison geometry, hence the thesis.

We have shown that by applying an isometric log-ratio transformation on
a dataset of compositional areal data it is possible to perform downscaling
through Area-to-Point Kriging in the Aitchison simplex setting without having
to make a specific implementation. Working directly on the isometric log-ratios
leads to consistent results to the initial assumptions in the Aitchison setting.

In particular, it is also possible to perform stochastic simulation through
block sequential simulation. Also in this case, the assumptions on the distri-
bution from which to generate the simulations can be made on the isometric
log-ratios. In fact, because of the properties of ilr, any geometric assump-
tion made on the isometric log-ratios in the standard Euclidean space directly
translates to an equivalent geometric property in the simplex. For instance,
normality of the ilr-transformed data entails normality of the compositions in
the Aitchison simplex [15].

An important property of ILRATPK is that, considering the original com-
positions, since the assumptions are made with respect to the Aitchison geom-
etry the mass-preserving property does not hold:

zk 6=
1

Pk

∑
xj∈νk

z∗(xj). (3.55)

Instead, since the predictions respect the assumption of Equation (3.44), the
following centre-preserving property property holds:

zk ≈
1

Pk
�
⊕
xj∈νk

z∗(xj), (3.56)

Applying Proposition 3 in Equation (3.56) we get:
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zk ≈
1

Pk
�
⊕
xj∈νk

z∗(xj) = C


 Pk∏
j=1

z∗1(xj)

 1
Pk

, ...,

 Pk∏
j=1

z∗i (xj)

 1
Pk

 , (3.57)

namely, instead of expecting the areal data to be arithmetic averages of the
fine-scale predictions, one should expect them to be the closure of the geomet-
ric mean of the predicted/simulated values, in accordance with the choice to
operate in the context of the Aitchison simplex.

This fact could pose some problems only in the situation in which block-
data are known to be the arithmetic average of several observations collected
in the area, which are somehow no longer available. In this situation it would
be required to apply a bias correction to the areal data (based on asymptotic
estimates of the difference between the mean and the centre of a sample of
compositions). Since it is common practice in statistics to treat compositional
data within the Aitchison geometry setting, this situation rarely arises.

When the block-data are the results of digital soil mapping at coarse reso-
lution (like the case of SoilGrids), a priori there is no reason to require mass-
preservation over centre-preservation, but using log-ratio transformations in-
volves all the theoretical advantages listed.

In Chapter 4, the techniques presented will be used for the downscaling
and simulation of SoilGrids data.
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Chapter 4

Results

This chapter is divided in two parts: in the first part, the results of the sta-
tistical downscaling of SoilGrids predictions of particle-size fractions and soil
thickness are presented. In the second part, some approaches are proposed to
integrate hard data (information obtained from local surveys) in the downscal-
ing procedures.

4.1 Statistical downscaling of particle-size fractions

In this chapter particle-size fractions are downscaled from the SoilGrids raster
resolution of ca. 250 m to a resolution of 5 m using isometric log-ratio Area-to-
Point Regression Kriging (ILRATPRK) (cf. Section 3.6). The 5 m resolution
digital elevation model (DEM) is used as auxiliary variable for the ATPRK.
ilr was chosen over the other log-ratios transformations for the theoretical
advantages exposed in the previous chapter (see Section 3.5). We define:

z1(x) = clay % at location x of the domain D;

z2(x) = silt % at location x of the domain D;

z3(x) = sand % at location x of the domain D.

A "point" x of the map corresponds to a 5 m resolution pixel (the highest reso-
lution considered, to which coarse data have to be downscaled); hence, the area
in exam is represented by a finite number of points of a grid xi, i = 1, ..., N (=
3654342). Maps of SoilGrids predictions over the area only have K = 2, 440
pixels, with a resolution slightly lower than 250 m (cf. Fig. 2.8), which are
considered to be square areal supports or blocks νk, k = 1, ...,K. Although
not all blocks have the same area (some blocks at the borders are smaller), the
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Figure 4.1: Maps of the isometric log-ratios obtained from the original clay,
silt and sand fractions

majority of blocks contain ca. P = 1500 fine scale pixels. To simplify notation,
all blocks will be considered identical and containing P points.

The basic assumption is that that SoilGrids predictions zk1, zk2 and zk3
represent the centres (in the Aitchison geometry sense) of the respective vari-
ables over the block (= coarse pixel) k to which they are associated, i.e.:

zki ≈
1

P
�

P⊕
j=1

zi(xj), i = 1, .., 3; k = 1, ...,K,

so that applying log-ratio ATPK will lead to consistent results.
SoilGrids predictions of particle-size fractions are then transformed using

the R function ilr of the package compositions [7]. The base used for the
transformation is the one introduced in the original article [17], based on the
partition of the vector of compositional variables in two sub-compositions, the
first consisting of z1 and z2 and the second containing only z3 (cf. Section 7.4).

The result is two raster maps of regionalised variables

(ilrk1, ilrk2) = ilr( (zk1, zk2, zk3) ), k = 1, ...,K,

shown in Fig. 4.1. This time, quantities ilrk1 and ilrk2 correspond to the mean
values of the unknown regionalised variables ilr1(x) and ilr2(x) over the block
k, i.e.:

ilrki ≈
1

P

P∑
j=1

ilri(xj), i = 1, .., 2; k = 1, ...,K.
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There is no direct physical interpretation of the quantities ilr1 and ilr2, they
just represent z1(x), z2(x) and z3(x) in the Aitchison simplex.

min max average sd

ilr1 0.275 0.880 0.507 0.103

ilr2 0.019 0.451 0.289 0.065

Table 4.1: Summary statistics for ilr1 and ilr2

Table 4.1 contains the summary statistics for ilr1 and ilr2. The average
values are respectively, 0.507 and 0.289, roughly corresponding to to the fol-
lowing composition on terms of psf: 20% clay, 40% silt and 40% sand. This is
the centre of the SoilGrids predictions for the area in exam, corresponding to
a loam type of soil, consistent with Fig. 2.10. The variability (in bold font) is
very low for both quantities, but especially for the map of ilr2.

In general, before performing ATPRK or block sequential simulation, one
should check if auxiliary information is available at fine resolution that might
be related to the variables to be downscaled. The use of ATPRK instead of
simple ATPK usually improves the precision of the predictions.

In Chapter 2, a link between elevation and soil composition was hypothe-
sised, this intuition is confirmed by the scatter plots in Figure 4.2. In order to
study the correlation between the variables the digital elevation model was up-
scaled to match the resolution of ilr1 and ilr2 maps, according to the standard
ATPRK procedure.

Both ilr1 and ilr2 seem correlated to the elevation, in particular ilr2
presents a concave parabolic behaviour, with lower values in correspondence
of peaks and valleys and higher values on the slopes and in general at medium
elevations. The behaviour of ilr1 is reversed, although the correlation with the
DEM is lower.

The correlation between ilr1 and ilr2 depends on the basis used in the
transformation. In this case, the isometric log-ratios obtained from the projec-
tion on the basis of the Aitchison simplex defined in [17] show no significative
correlation and no particular trend. This does not necessarily imply that the
isometric log-ratios are not spatially cross-correlated. However, in practical
terms, when the variables at the same locations are uncorrelated one would
expect no spatial cross-correlation either.
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Figure 4.2: Scatter plots and histograms of the isometric log-ratios and the
(upscaled) digital elevation model

On the basis of the previous considerations, the unknown maps ilr1(x)
and ilr2(x) are assumed to be realisations of spatially correlated random fields
ILR1(x) and ILR2(x), which are modelled as follows:

ILR1(x) = β
(1)
0 + β

(1)
1 ·DEM(x) + β

(1)
2 ·DEM

2(x) +RES1(x),

ILR2(x) = β
(2)
0 + β

(2)
1 ·DEM(x) + β

(2)
2 ·DEM

2(x) +RES2(x),
(4.1)

where the β(i)j , i, j = 1, 2 are unknown regression parameters characterising
the trend component related to the digital elevation, and the terms RES1
and RES2 are residual spatially correlated 2nd order stationary random fields,
characterised by unknown variograms γ1 and γ2.

The term DEM2(x) was also considered to account for the parabolic be-
haviour relating the ilr and the digital elevation observed in Fig. 4.2. A linear
regression model was fitted using coarse maps ilri, i = 1, 2, as target variables,
and the upscaled digital elevation model (DEM) and DEM squared (DEM2)
as covariates. The fitted values are plotted against the observed values in
Figure 4.3. The R2 index is 0.10 for ILR1 and 0.46 for ILR2.
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Figure 4.3: Scatter plots of the observed values Vs the fitted values of the
regression models in Equation (4.1). In red, the line of equation y = x.

Figure 4.4: Scatter plot and histograms of the residual maps
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Figure 4.5: Graph of the normalised empirical variograms and of the cross-
variogram of ilr1 and ilr2

Subtracting the identified trend component from the maps ilr1 and ilr2 we
obtain the residual coarse maps res1 and res2. The distribution of the residuals
are shown in Figure 4.4. Comparing with Figure 4.2, the distributions of the
residuals are less skewed, in particular res2 is almost normal. Moreover, there
is no correlation between the two residual components, i.e., the feeble negative
correlation (-0.20) between the isometric log-ratios disappears when removing
the DEM-related trend component from both variables.

To proceed with the second step of ATPRK, the spatial correlation struc-
ture of the residuals RES1(x) and RES2(x) has to be estimated. This can
be done applying the deconvolution procedure described in Chapter 3 to the
empirical variograms obtained from the coarse maps res1 and res2.

First, the empirical variograms γ̂1, γ̂2 and the empirical cross-variogram γ̂12
estimated from the coarse maps are considered. In order to evaluate the mag-
nitude of the cross correlation, the variograms have been normalized (divided
by the relative variance) and are plotted in the same graph (Fig. 4.5). As ex-
pected from the fact that no correlation between res1 and res2 was observed,
the cross-variogram is negligible, so each variable is considered individually.
The model better suited to represent γ̂1 is the spherical one, whereas γ̂2 shows
an exponential behaviour.
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(a)

(b)

Figure 4.6: Results of the Goovaerts’ deconvolution procedure applied to the
empirical variograms (a) γ̂1 and (b) γ̂2
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Variograms are then deconvoluted using the Goovaerts’ procedure, which
has been implemented in R using package gstat [60], [30] for variogram fitting
and variogram regularisation. The results are shown in Figure 4.6.

Now that the regression parameters and the variograms of the residuals
have been estimated, it is finally possible to downscale the ilr maps using
ATPRK:

ilr∗1(xi) = β̂
(1)
0 +

2∑
l=1

β̂
(1)
l ·DEM

l(xi) +
K∑
k=1

λ
(1)
k · resk1, i = 1, ..., N,

ilr∗2(xi) = β̂
(2)
0 +

2∑
l=1

β̂
(2)
l ·DEM

l(xi) +
K∑
k=1

λ
(2)
k · resk2, i = 1, ..., N.

(4.2)

The λ(i) are computed by solving the ATPK system. The computation was
performed using the function krige of the package gstat. Results of the down-
scaling are shown in Figure 4.7.

ATPK prediction have the effect of smoothing the initial coarse maps.
The real importance of the probabilistic model of Equation (4.1) is that it
allows to perform stochastic simulations of the residual fields conditional to
the available data. The stochastic simulations can be used in a Monte Carlo
setting to analyse how the uncertainty related to the soil properties affects the
SMART-SED model and propagates to the output.

Since the distributions of res1 and res2 do not present any characteristic
that would dismiss the multy-Gaussianity hypothesis (there are no very heavy
tails nor multi-modal behaviour), the residual fields are assumed to be Gaussian
processes respecting the properties previously mentioned and having covariance
structures identified by γ1 and γ2, i.e.:

RES1(x) ∼ GP (0, γ1),

RES2(x) ∼ GP (0, γ2).

Block Sequential Gaussian Simulation is performed using function krige
of package gstat (the same function used for ATPK). An example of realisa-
tion is shown in Figure 4.8. We notice how the simulated values respect the
data distribution. The simulations depicts more realistic scenarios on how the
fine scale maps would look like (with respect to the smooth map obtained by
simple prediction). The results are back-transformed into clay, silt and sand
percentages in Figure 4.9.
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(a)

(b)

Figure 4.7: Results of the downscaling through ATPRK of the coarse resolution
maps ilr1 (a) and ilr2 (b)
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(a)

(b)

Figure 4.8: Block Sequential Gaussian Simulation (BSGS) applied to maps (a)
ilr1 and (b) ilr2. The original histograms are reproduced by the simulations

75



(a)

(b)

(c)

Figure 4.9: Simulated isometric log-ratios are back-transformed, obtaining
stochastic realisations at high resolution of (a) clay, (b) silt and (c) sand per-
centages in the topsoil
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Maps ilr1 and ilr2 are SoilGrids predictions obtained using Machine Learn-
ing algorithm, and therefore they do not reflect the exact composition of the
soil, but contain an additional error term ε(x). In the absence of supplementary
information (for example hard data), the spatial distribution of the SoilGrids
error ε(x) cannot be properly characterised.

Possible ways to add more noise to the simulations when no direct mea-
surements are available are the following:

• Add a white noise to SoilGrids predictions. The value of the variance
can be decided on the basis of expert considerations.

• Use a sub-sample of SoilGrids data for the conditional simulations.

At present, SoilGrids does not provide an estimation of the prediction vari-
ance for its maps. However, next versions will most likely provide confidence
intervals, as it is a stated objective of the authors of the project [34]. With this
information it will be possible to adjust the simulations in order to account for
the additional error.

In the context of the SMART-SED model, soil composition is used to com-
pute several variables (CN, Y, η, permeability and porosity cf. Chapter 1).
The advantage of analysing the variability and performing simulations of the
soil texture, instead of each variable considered singularly, is that in doing so
the result are more coherent with the model assumptions [54].
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Figure 4.10: Map an histogram of curvature values computed with the McNab
method [31]

4.2 Statistical downscaling of soil thickness

In the previous chapters it was explained how soil thickness can be described
by three variables: Absolute Depth to Bedrock (ADB), Censored Depth to
Bedrock (CDB) and Probability of occurrence of the R Horizon (PRH). The
standard censoring threshold for PRH and CDB is 2 m, according to the lit-
erature [71], and it is generally set as the maximum depth of the gravitational
soil (cf. Chapter 1). In the context of SMART-SED, soil thickness is used to
compute the maximum quantity of water storable in the gravitational layer of
the soil, therefore information of ADB when the thickness is estimated to be
over 2 m is not relevant, only variables CDB and PRH will be considered.

Soil thickness is strongly related to topography. The dependence from
topography is so relevant that often geostatisticians choose regression tech-
niques with topographic covariates over Kriging, since the spatial correlation
becomes a secondary aspect ([56], [41]). In particular, the two topographic
variables that correlates the most with soil thickness are the elevation and the
(absolute) slope, which here is intended as the angle (in radians) between the
gradient of the DEM and the horizontal plane.

Another variable which is generally associated to soil thickness is the sur-
face curvature, that can be computed as the second derivative of the DEM.
Although some authors found a consistent relationship between curvature and
depth to bedrock ([56]), there exist some issues related to the variable.
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Curvature is a complex terrain derivative to compute, since it is sensible to
noise in the data [20]. The best results for the computation of curvature in
the study area are obtained with the method described in [31]. However, they
still present some problems. In particular, most values are around 0, with the
exception of very few sparse locations that present curvatures relatively much
higher in absolute terms. A map is shown in Figure 4.10. This alters signifi-
cantly the regression results, therefore curvature is not considered among the
covariates.

The objective is to identify relationships of the kind:

PRH = f(DEM, slope),

CDB = g(DEM, slope).
(4.3)

The use of ATPRK would limit the choice of possible models to the linear
ones, but since we might expect nonlinear behaviour this would impact on the
accuracy of the result.

Differently from particle-size fractions, for the variables in exam spatial
correlation cannot be estimated from SoilGrids maps: in a catchment charac-
terised by a rough surface like the one in exam, one would expect low-range
spatial correlation (at most few hundred meters), especially when considered
areas with thin soil; this kind of correlation cannot be estimated from coarse
maps with a 250 m resolution.

For these reasons, the dissever algorithm, presented in the last section of
Chapter 3 is used instead.

The procedure will follow these steps:

1. Downscaling of PRH using dissever combined with the cubist regression-
tree method (cf. Section 3.3 and Section 7.5).

2. Use of the downscaled PRH as a classification tool to identify areas with
thin soil.

3. Downscaling of CDB.

4. Prediction and unconditional stochastic simulations of CDB at the loca-
tions identified at step 2.

Cubist was chosen for its flexibility and because it shows results compara-
ble to bagging methods such as random forest, but with significantly shorter
execution times.
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Figure 4.11: Result of the dissever algorithm with the cubist regression tree
method for the statistical downscaling of PRH using the digital elevation and
the derived slope as fine resolution covariates
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(a)

(b)

Figure 4.12: SoilGrids prediction of the fraction of CDB (a) and PRH (b)
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The results of the downscaling of PRH are shown in Figure 4.11. DEM
and slope maps are reported, to ease the interpretation of the results. Dissever
is an iterative procedure; the evolution of the RMSE at different iterations is
shown in Figure 4.12, along with the scatter plots of the fitted Vs observed
values for a subset of the samples used for the training. The performance of
the cubist regression method is compared to that of the linear model (lm).

As expected, areas with steep slopes and/or at high elevations have higher
values of PRH. Dissever allows to exploit fine scale topographic information
to derive local probabilities at 5 m resolution in an effective way, considering
both the accuracy of the fitted model with respect to the original coarse maps
and heuristic considerations based on aerial views of the catchment (Fig. 2.7).

Considering how hard and expensive it is to measure soil thickness in moun-
tain areas, the result obtained with the downscaling of the PRH map provided
by SoilGrids are very promising. In fact, PRH is one of the predicted variables
of SoilGrids with best estimated accuracy (AUC = 87%).

Now that a fine scale map with the probabilities of occurrence of the
bedrock within the first 2 m is available, it is possible to use the map to
classify the different locations into one of the two categories:

• A: soil thickness < 2m;

• B: soil thickness > 2m.

In order to do that, a possible method is to choose a threshold τ, indicating
the minimum probability at which a location is considered to belong to group
A. The choice of the threshold depends on the weight attributed to the two
types of possible misclassification errors. Another possible way to choose τ is
to consider the aerial view of the basin and set the threshold in such a way
that most visible outcrops fall under the A category. Following this heuristic
method, the threshold is set at 35% of probability, the resulting map is shown
in Figure 4.13.

Now that the locations of group A have been identified, it is necessary to es-
timate the (censored) soil thickness of those areas and evaluate the uncertainty
of the estimations.

This time, cubist regression does not seem the be the best choice for the
task. Differently from PRH, SoilGrids predictions of CDB are significantly
less accurate, they explain only 35% of the total variability of the data used by
SoilGrids for the fitting, with an RMSE equal to 1/4 of the total range (50 cm).
The advantage of using sophisticated regression methods when dissevering is
that the results honour more accurately the coarse maps downscaled. However,
when the original low resolution data are intrinsically inaccurate, this aspect
becomes less relevant.
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Figure 4.13: Distinction between areas with PRH > 35% (group A, and areas
with PRH ≤ 35% (group B)

Downscaled values obtained using dissever+cubist for CDB exceed the thresh-
old of 2 m on several locations, often conflicting with PRH predictions.

For the enumerated reasons, the choice is to use a simpler linear regression,
fitted using the un-censored observations, to derive a relation of the kind

CDB∗(x) = β0 + β1 ·DEM(x) + β2 · slope(x) + res(x) + ε(x),

CDB(x) =

{
CDB∗(x) if CDB∗(x) < 2 m

2 m otherwise

(4.4)

In (4.4), res(x) is the residual of the linear regression for the block to which
point x belongs; ε is an additional Gaussian error term, which is assumed to be
spatially uncorrelated. The model resembles the one used for the isometric log-
ratio transformations of particle-size fractions (cf. Equations (4.1)). However
this time the residual term in not modelled as a spatially correlated random
field, but rather as a white noise with varying means over the blocks (res+ε(x)),
since the spatial correlation cannot be estimated from the coarse map, having
a range inferior to the resolution.
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(a)

(b)

Figure 4.14: Results of the downscaling of CDB on the areas of group A: (a)
maps of the estimated terms of Equation (4.4); (b) scatter plot of fitted Vs
observed data, histograms of the block residuals and of the additional error ε

The downscaled maps obtained fitting model (4.4) are shown in Figure 4.14,
where only locations of group A are considered. The hats over the variables
indicate that the values are estimates obtained through linear regression using
SoilGrids data. Stochastic simulations can be generated by simulating error
maps of ε(x).

Obviously, the precision of the estimates obtained under these model as-
sumptions strongly depends on the precision of SoilGrids predictions. In the
presence of direct measurements it would be possible to adjust the models and
increase the accuracy. SoilGrids maps, in particular PRH provides informa-
tion on the areas which are more likely to present thin soil, helping to choose
the locations at which conduct local surveys. The observations obtained could
be easily integrated in the models presented. Next chapter contains several
suggestions on how to carry out this integration.
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Chapter 5

Discussion of the results and
their use in SMART-SED

In this chapter results are discussed and some proposals are made on how to
use them for the Uncertainty Quantification in the SMART-SED model. Some
strategies for the integration of direct measurements in the analysis are also
proposed.

5.1 Accuracy of the results and integration of hard
data

SoilGrids predictions are the result of spatial regression techniques at a very
broad scale, they cannot fully capture the variability at a local scale, let alone
provide very accurate estimates of soil properties at fine resolution. This as-
pect has to be taken into consideration when SoilGrids data are used in the
context of numerical simulations for risk assessment, especially when the re-
sults are involved in the decision making processes of local authorities. For
instance, SoilGrids predictions can hardly be used to estimate a realistic spa-
tial correlation structure for the variables at local scale. In particular, SoilGrids
predictions have a smoother spatial variation than one would expect from data
collected with direct measurements, resulting in variograms with greater ranges
and lower sills. Variogram deconvolution only accounts for the coarse nature
of the data, but not for the fact that they are average predictions, and thus
filter out an additional noise component. Moreover, an important limitation
of variogram deconvolution is that it does not allow to infer the nugget effect
in the correlation [23]. This is a problem especially for the censored depth to
bedrock (CDB), and is one of the reasons because spatial correlation of CDB
was not considered in Chapter 4. The choice of using SoilGrids maps with

85



variogram deconvolution for the estimation of the covariance of psf, is due to
the fact that SoilGrids predictions for psf are more accurate with respect to soil
thickness (cf. Table 2.1 in Chapter 2), and variograms with (relatively) high
range and low sill are also more realistic in the case of psf [12]. Furthermore,
the objective of this work is not to provide extremely accurate high resolution
maps of soil properties, but rather to present a mathematical framework for the
variability assessment of soil-related quantities that minimises the dependence
on direct measurements and expert intervention, but uses easily accessible and
widely used online databases. The procedures described in this thesis can also
be applied to remotely sensed images, rather than Digital Soil Maps. In this
context variogram deconvolution is a powerful and widely used technique [52].

An alternative to variogram deconvolution, when prior knowledge of the
area in exam is available, consists in using a Bayesian approach through ex-
pert elicitation of prior spatial structure information [74]. This approach has
an important advantage: the additional parameter uncertainty considered con-
tributes largely to Area-to-Point Kriging Uncertainty, which is a desirable prop-
erty in Uncertainty Quantification (UQ).

Another alternative presents itself when hard data obtained from local mea-
surements are available. In this case, the variogram structure can be estimated
directly using the punctual ”hard” observations. Since direct measurements of-
ten require costly interventions, the number of observations from measurements
are most of the times limited in number. For this reason, the use of Digital Soil
Maps can prove really useful even when hard data are available. An advantage
of the downscaling and simulation methods presented in this thesis is that they
easily allow for the integration of coarse resolution digital maps and precise
punctual observations, without having to modify the algorithms. The process
of integration of SoilGrids maps with direct measurements is even suggested
by the authors of SoilGrids as an effective way to improve the accuracy of the
estimations and the variability assessment (cf. Fig. 5.1). Possible ways to
implement the integration are presented in the next subsections.

5.1.1 Combining areal and point data in geostatistical inter-
polation and simulation

In Chapter 3 it is shown how to combine Kriging and Area-to-Point Kriging
(Eq. (3.29)) when dealing with both areal and point data. The procedure was
formalised by Goovaerts ([22], [21]), and can be used for prediction and for
Block Sequential Simulation (BSS). Unfortunately, at the moment there isn’t
any R package allowing to perform this task. One of the best open source soft-
wares allowing to combine areal and point data for geosatatistical interpolation
and simulation is SGeMS (Stanford Geostatistical Modeling Software)
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Figure 5.1: SoilGrids can be considered the coarsest component of the global
soil variation "signal" curve. Source: [34]

[66]. In particular, SGeMS provides a function to perform fast block sequential
simulation (conditioning to both point and areal data) that does not require
the multi-Gaussianity assumption, and can reproduce any given point distri-
bution [43].
The function uses the algorithm devised by Soares (2001) called Direct Sequen-
tial Simulation (DSS) [72], and is the first choice in geostatistics whenever the
normality assumption is not valid. The algorithm has been optimised in or-
der to be able to handle numerous block data by using specialised methods
to compute the block covariances. Another interesting aspect of the BSS al-
gorithm implemented in SGeMS, is that it allows to account for a noise in
the block-data conditioning the simulation. This is done by adding a diagonal
matrix containing the variances of the errors associated to each block to the
covariance matrix when solving the ATPK system (3.15) at each node.

[53] proposed a more sophisticated two-stage geostatistical integration ap-
proach, aiming at downscaling of coarse scale remote sensing data. First, down-
scaling of the coarse scale secondary data is implemented using Area-to-Point
Kriging. This result is used as trend components in the second integration
stage: simple Kriging with local varying means that integrates sparse precise
observation data with the downscaled data is applied to generate thematic
information at a finer scale. This approach not only can account for the sta-
tistical relationships between precise observation and secondary data acquired
at the different scales, but also to calibrate the errors in the secondary data
through the integration with precise observation data.
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Figure 5.2: Scheme of the two-stage geostatistical approach presented by Park.
Source: [53]

Dissever with inclusion of point data

Dissever derives point values from areal observations and subsequently updates
them at each iteration, by fitting a regression model to the point data previ-
ously obtained. The integration of precise point information in the algorithm
is straightforward: point values at known locations can be set equal to the
observed data and kept constant through out the iterations. On top of that,
the known values can be weighted more in the regression phase, increasing the
accuracy of the estimation.

This approach was suggested by the authors of dissever [51] (cf. Fig. 5.3).
At the moment, the R package dissever does not allow to integrate point
observations, the extension of the function could be the subject of future work.
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Figure 5.3: Figure taken from [51] showing the effectiveness of the integration of
precise point data in the dissever procedure. The results for the downscaling
of Soil Organic Carbon (SOC) content in the soil are compared to those of
Universal Kriging (other name for Regression Kriging)
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5.2 Uncertainty propagation in the SMART-SED model

The analysis of the variability of soil thickness and soil texture is part of
the Uncertainty Quantification (UQ) process of the SMART-SED numerical
model. In particular, this thesis covers the study of the parametric uncertainty
(cf. Chapter 1), for the model parameters related to the properties of the soil,
namely the parameters of the Gavrilovic model (X, Y and ξ), the infiltration
rates in dry and saturated conditions (f0, fc), and the Curve Number of the
SCS-CN method.

An important part of UQ is relating the probability distribution of the
outputs of the model to the distribution of the input parameters. Consider
for instance a computer code performing a numerical simulation of a physical
model that takes as input parameters x1, ..., xn and generates an output y.
Since the simulation is deterministic, each set of parameters x1, ..., xn leads to
an unique output, which therefore is related to the inputs through an unknown
(”black-box”) function

y = f(x1, ..., xn).

If the inputs are random variables X1, ..., Xn over a probability space
(Ω,F ,P), so is Y = f(X1, ..., Xn). As long as a method exits allowing to
generate N stochastic realisations x(i)1 , ..., x

(i)
n , i = 1, ..., N of X1, ..., Xn from

their original distribution, then this would allow to obtain N samples of Y :

y(1) = f(x
(1)
1 , ..., x(1)n ),

y(2) = f(x
(2)
1 , ..., x(2)n ),

...

y(N) = f(x
(N)
1 , ..., x(N)

n ),

by solving the numerical modelN times. The samples could be used to infer the
distribution of the output associated to the uncertainty of the inputs, or just
to approximate the average response ŷµ = 1

N

∑N
i=1 y

(i) ≈ E[Y ] associated to
the variable input parameters (which, in general, is different from the response
associated to the average inputs) and its variance σ̂2 = 1

N−1
∑N

i=1(y
(i) − ŷµ)2.

This procedure allows to study how the uncertainty of the inputs propagates to
the outputs of a deterministic computer code, and since it allows the numer-
ical approximation of an expected value through random simulations (like in
Monte-Carlo methods) it is called Monte-Carlo Uncertainty Propagation
[70]. The advantage of this method is that, given a proper characterisation of
the probabilistic distribution of the inputs, it allows not only to approximate
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the average output, but also to characterise its distribution. However, often
the computations involved in the solution of the numerical models are exceed-
ingly time-consuming to allow to generate a sufficient number of realisations
of Y. Moreover, this procedure does not provide any insight on the nature of
function f, relating inputs and output. Alternative methods have been devised
allowing to directly approximate function f. These methods are called meta-
modeling techniques [78], since their goal is to construct a model of the
model Y = f(X1, ..., Xn). Some of the most common metamodeling methods
are based on Co-Kriging. In particular these methods can be applied when-
ever fast approximations of the computer code in exam are available, which
is the case of the SMART-SED model (for instance by considering coarser
discretisation grids). The input parameters x1, ..., xn are interpreted as loca-
tions of an n-dimensional Euclidean space. A (relatively) large number N of
values y(1)lf , ..., y

(N)
lf corresponding to the same number of different locations

x(i) = (x
(i)
1 , ..., x

(i)
n ), i = 1, ..., N is computed by running the fast approxima-

tion available, where lf stands for low-fidelity, since those outputs are resulting
from an approximation of the model. On a subset of M << N of these lo-
cations, the (slow) computer code is run to obtain the high-fidelity outputs
y
(1)
hf , ..., y

(N)
hf . Cokriging is then performed, using the y(i)lf as secondary infor-

mation, to derive an approximation of the function f. This technique is called
Multi-Fidelity Co-Kriging (MFCoK) and was first proposed by [37], a
particular formulation allowing for a fast and reliable implementation of the
method was proposed by [27]. The method has been extended to the case of
multivariate outputs by [55], and finally to the case of an output in a generic
Hilbert space (even infinite-dimensional) by [29]. Multi-fidelity Co-Kriging
works well when the number of input parameters and their range is contained
[37], [27]. However, in the case of the SMART-SED model, the input pa-
rameters are maps of soil properties Z(x), x ∈ D, varying over a domain
possibly composed of millions of pixels, therefore MFCoK cannot be used di-
rectly. Nevertheless, the approach could be used when considering ulterior
hyperparameters, for instance, the range and the sill of the variograms of
particle-size fractions or of soil thickness. These parameters are uncertain,
therefore, instead of providing a punctual estimation, it could be more appro-
priate to identify some ranges and study how the model responds to different
values in those ranges, by performing simulations of the input maps using the
variograms identified by the hyperparameters and applying Monte-Carlo un-
certainty propagation, thus combining the two techniques presented in this
final section.
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Conclusions and future
developments

In this thesis, some methods were proposed to use SoilGrids maps for the
analysis of the variability of soil properties at local scales. These approaches
can be extended to any source of soil information in the form of coarse reso-
lution maps, be it satellite images or aggregated data from radars and other
data-collection devices. In particular, a novel procedure for the downscaling
of compositional data has been presented. Possible future developments could
involve the study of the bias introduced when the centre preserving property
is not valid, and the introduction of a possible correction.
Another obvious improvement would be the extension of the methods pre-
sented through the integration of hard data in the analysis, as suggested in
Chapter 5. In particular, this feature could be added to the R packages gstat
and dissever.
The next versions of the SoilGrids maps will likely contain confidence intervals
for the predictions [34], this information would allow a better characterisation
of the variability of the soil properties and could be used to add more noise
when performing stochastic simulations.

Regarding the SMART-SED model, the variability of soil-related inputs
have been studied, and a probabilistic model allowing to simulate maps of the
parameters has been established. The next step for the Uncertainty Quan-
tification is the analysis of the propagation of the variability of the inputs
to the outputs, through Monte Carlo (MC) simulation and/or metamodelling
techniques.
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Appendix

7.3 Linear Coregionalization Model

This sections contains a presentation of the general framework for the esti-
mation of covariance structures in Co-Kriging with multiple variables. The
model presented is explained in detail in [25]. Suppose that we have measured
the values of p variables at N different locations of a domain D ⊂ R2. This
gives us a set of p-dimensional vectors, we assume these vectors as a part of
a realisation of multivariate random field Z(x) = (Z1(x), ..., Zp(x))T with the
following properties:

E[Z(x)− Z(x+ h)] = (0, ..., 0)T ;

C(h) =
1

2
E[(Z(x)− Z(x+ h))(Z(x)− Z(x+ h))T ] =

s∑
k=1

Sk · γk(|h|),
(7.1)

where the γk(h) = γk(|h|) are known variograms, the Sk are unknown non-
negative matrices and s denotes the number of structures. Each matrix Sk can
be though of as a scalar product matrix between variables. The primary aim is
to estimate the unknown matrices Sk. In order to do that, we must first guess
what the theoretical basic functions γk are. This could be done heuristically
by inspecting the sampling matrix visually and obtaining a first approximation
of the matrices Sk, as suggested in [25]. The estimation is then carried out
through an iterative procedure:

1. Compute the empirical cross-covariance matrix Ĉ(h) :

Ĉ(h) =
1

2|N(h)|
∑

(xi,xj)∈N(h)

(Z(xi)− Z(xj))(Z(xi)− Z(xj))
T ,

where N(h) = {(xi, xj) : h−∆h ≤ |xi − xj | ≤ h+ ∆h}.
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2. Choose a criterion to measure the goodness of fit between a model C(h)
and Ĉ(h). Typically, an Euclidean-like distance is used: let V be a pos-
itive definite matrix and w(hj), j = 1, ...,m be positive weights, then

WSS =
m∑
j=1

w(hj) · Tr
((

V(C(hj)− Ĉ(hj))
)2)

.

WSS stands for Weighted Sum of Squares, the weights w are generally
proportional to the number of pairs used in the estimate of Ĉ(h), and V
is generally the diagonal matrix of inverse variances, to avoid favouring
variables with larger variances.

3. Estimate the Sk by minimising WSS when C(h) is assumed to be of the
form S1γ1(h) + ... + Ssγs(h). A minimisation algorithm is described in
[25].

Choosing a correct number and proper models for the basic structures γk
is crucial for a "good" estimation of the model. Two situations may arise after
a first estimation:

• The plot of the non-parametric covariogram estimates and of their theo-
retical fitted models shows that the fit is poor. Then, at least one basic
structure must be modified or another basic structure must be added
into the model.

• The plot shows the model fits well. In this case, it may be worth checking
if some basic structure can be omitted, since too many basic structures
can cause instability in the estimation results, thus leading to false in-
terpretations.
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7.4 Isometric log-ratio transformations

Isometric log-ratio transformations (ilr) are a class of linear isometries from
the n-dimensional real simplex

Sn = {(z1, ..., zn)T : z1, ..., zn > 0, z1 + ...+ zn = c},

embedded with the Aitchison geometry into Rn−1 with the standard Euclidean
structure. This class of transformations was first introduced in 2003 by Egozcue
and Pawlowski-Glahn [17].Since their introduction, ilrs have been one of the
most common mathematical instrument for the statistical analysis of compo-
sitional data, allowing to operate in the context of the Aitchison geometry
without modifying the standard statistical techniques. ilr exploits the fact
that the simplex embedded with the Aitchison geometry is a finite Hilbert
space, so it is possible to find an orthonormal basis B = {e1, ..., en}. Ap-
plyng an ilr on an element z ∈ Sxn simply consists in projecting z on the basis
B using the inner product in the Aichison simplex:

ilr(z) = (〈z, e1〉a , ..., 〈x, en−1〉a)
T ,

thus obtaining a vector of n− 1 coordinates y ∈ Rn−1.
Any valid orthonormal basis can be used. Although the Graham-Schmidt

algorithm could be used to obtain one, explicit methods exist allowing to de-
termine orthonormal basis with specific properties for any dimension. In par-
ticular, in [17] a special class of orthonormal basis is introduced. The idea is to
associate the basis to a partition of the of the compositional vector z ∈ Sn into
two subcompositions, z = (r, s), where C(r) ∈ Sr, C(s) ∈ Ss, n = r + s, r ≥
2, s ≥ 2. Note that for r = n − 1 we get s = 1, which corresponds to a de-
generate case in the sense that we have a subcomposition with only one part.
In the nondegenerate case, we look for an orthonormal basis such that the
compositions of the form

C(r, cs) =

z1, z2, ..., zr, c, c, ..., c︸ ︷︷ ︸
s components

 ,
C(c∗r , s) =

c∗, c∗, ..., c∗︸ ︷︷ ︸
r components

, zr+1, zr+2, ..., zn

 ,
can be expressed by using r − 1 elements of the orthonormal basis, de-

noted by h1,h2, ...,hr−1 for the first one,and s − 1 elements, denoted by
hr+1,hr+2, ...,hn−1, for the second one. In this way, we associate the first
r − 1 elements of the basis with the subcomposition C(r) and the last s − 1
with the complementary subcomposition C(s).
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To complete the orthonormal basis, we need an additional orthonormal
vector, which we call balancing element and denote by hr; the orthogonal
projection—within the Aitchison geometry— of z on this element defines the
mass ratio between the subcompositions r and s to reconstruct z. Such an
Aitchison-orthonormal basis can be defined as follows [17].

Proposition 8. Let r ≥ 2, s ≥ 2, be such that n = r+ s. The compositions in
Sn defined as

hi = C

exp


√

1

i(i+ 1)
, ...,

√
1

i(i+ 1)︸ ︷︷ ︸
i elements

,−

√
1

i(i+ 1)
, 0, ..., 0


 , (7.2)

for i = 1, ..., r − 1,

hr = C

exp

√ s

n · r
, ...,

√
s

n · r︸ ︷︷ ︸
r elements

,−
√

r

n · s
, ...,−

√
r

n · s︸ ︷︷ ︸
s elements


 , (7.3)

and, for j = 1, 2, ..., s− 1,

hn−j = C

exp

0, ..., 0,−

√
j

j + 1
,

√
1

j(j + 1)
, ...,

√
1

j(j + 1)︸ ︷︷ ︸
j elements


 , (7.4)

are Aitchison-orthonormal and constitute a basis of Sn associated with a par-
tition into two orthogonal subcompositions with, respectively, r and s compo-
nents.

Proposition 8 is still valid in the degenerate case r = n − 1, s = 1. The
orthonormal basis consists then of those vectors given in Equations (7.2) and
(7.3), whereas the vectors given by Equation (7.4) do not appear at all. Note
that the dashed lines in Figure 3.8 represent an orthogonal base corresponding
to the degenerate case r = 2, s = 1, the straight dashed axis (in an Euclidean
sense) corresponding to the balancing element and the other axis associated to
the subcomposition (z1, z2). The result can be generalised to more than two
subcompositions.
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Thus, the main consequence of Proposition 8 is that any z ∈ Sn can al-
ways be decomposed into three orthogonal parts: two of them in orthogonal
subspaces associated with two subcompositions and a balancing one. In par-
ticular, it is possible to derive an explicit expression for the ilr transformation
using the basis defined in Proposition 8: let us define

h = C

exp

 1

r
, ...,

1

r︸ ︷︷ ︸
r elements

,
1

s
, ...,

1

s︸ ︷︷ ︸
s elements

, 0, ..., 0︸ ︷︷ ︸
t elements


 , r + s+ t = n.

It can be shown that

〈z,h〉a
||h||a

=

√
rs

r + s
log

(
g(z1, ..., zr)

g(zr+1, ..., zr+s)

)
(7.5)

where g(·) denotes the geometric mean. The elements of the basis (7.2)-(7.4)
have the form ||h||−1a �h; then, ilr transformations with respect to these bases
can be expressed using Equation (7.5).

The default basis used by function ilr of the R package compositions is the
one in (7.2)-(7.4). The same basis in the degenerate case r = 2, s = 1 has
been used for the isometric log-ratio transformation of particle-size fractions
in Chapter 4.

Other methods to derive possible bases can be found in [19], [58].
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7.5 Cubist

Cubist is an empirical learning method based on regression trees [8]. It
implements an extended version of the M5 method by Quinlan [63]. The exact
algorithm behind the cubist method is proprietary to the author (Quinlan) [9],
but the main ideas behind the M5 method are provided in [63]. M5 builds tree-
based models but, whereas classical regression trees have values at their leaves,
the trees constructed by M5 have multivariare linear models; these model trees
are thus analogous to piecewise linear functions.

Suppose we have a collection of T training cases (statistical observations),
specified by a set set of p values corresponding to the same number of (discrete
or continuous) attributes, and the value of the associated target variable. The
aim is to construct a model relating the target variable to the attributes, using
the information contained in the training cases. The worth of the model is
generally measured by the accuracy with which it predicts the target values of
a test set of cases. Tree-based models are constructed by iteratively splitting
the training set T into subsets using a particular splitting criterion or test. The
first step in building a regression tree is to compute the standard deviation of
the target values of cases in T . Every potential test used to split T is evaluated
by determining the subset of cases associated with each of its outcomes. Let
Ti denote the subset of cases that have to i-th outcome of the potential test.
If we treat the standard deviation sd(Ti) of target values of cases in Ti as a
measure of error, the expected reduction in error resulting from this test is

∆error = sd(T )−
∑
i

|Ti|
|T |
× sd(Ti).

After examining all possible tests, the one that maximises the expected error
reduction is chosen. This procedure is proper of every regression-tree method,
the innovations of the M5 method come into play after the initial tree has been
grown:

• Error estimates. To estimate the error of a model derived from a set
of training cases, M5 first determines the average residual (difference
between prediction and actual target value) of the model on the training
cases. This will generally underestimate the error on unseen cases, so
M5 multiplies the value by (n + ν)/(n − ν), where n is the number of
training cases and ν is the number of attributes used in the model.This
increases the estimated error of models with few training cases and many
attributes.
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• Linear models. A multivariate linear model is constructed for the cases at
each node of the model tree using classical regression techniques. Instead
of using all attributes, only those which are referenced by tests or linear
models somewhere in the subtree at this node are used. M5 compares the
accuracy of a linear model with the accuracy of a subtree, limiting the
attributes ensures a level playing field in which the two types of models
use the same information.

• Simplification of linear models. After each linear model is obtained as
above, it is simplified by eliminating attributes to minimise its estimated
error. Although the attribute reduction causes the average residual to
increase, it also reduced the multiplicative factor (n+ ν)/(n− ν), so the
estimated error can decrease.

• Pruning. Each non-leaf node of the model tree is examined, starting
near the bottom. M5 selects as the final model for this node either the
simplified linear model discussed above or the model subtree, depending
on which has the lowest estimated error. If the linear model is chosen,
the subtree at this node is pruned to a leaf.

• Smoothing. When the value of a case is predicted by a model tree, the
value given by the model at the appropriate leaf is adjusted to reflect
the predicted values at nodes along the path from the root to that leaf.
M5’s smoothed predicted value is backed up from the leaf to the root as
follows: (i) the predicted value at the leaf is the value computed by the
model at that leaf. (ii) If the case follows branch Si of subtree S, let ni
be the number of training cases at Si, PV (Si) the predicted value at Si
andM(S) the value given by the model at S. The predicted value backed
up to S is given by:

PV (S) =
ni × PV (Si) + k ×M(S)

ni + k

where k is a smoothing constant. Smoothing has the most effect on cases
when the models along the pact predict very different values.
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7.6 Software

In this section, the functions implemented in R and used for the analysis are
reported. In particular, a function implementing the variogram deconvolution
procedure of Goovaerts (2008), presented in Section 3.2.1, one implementing
the linear regression step of the Area-to-Point Regression Kriging procedure,
and finally a function implementing Area-to-Point Kriging using the Kyriakidis
method (it is essentially a wrapper for gstat function krige). The full script
used for the analysis is available on github at the link: https://github.com/
NiccoloTogni/Downscaling_SoilGrids_SMART_SED.

1 variogram_deconvolution = function(coarse_raster, vg_type = "Sph", nnblocks = 4,
2 maxiter = 100, cutoff = "default", tol1 = 1e-2, tol2 = 1e-6) {
3
4 ##### Variogram deconvolution procedure (Goovaerts, 2008)
5 ##### This is a special version for regular grids (raster data)
6
7 require(gstat)
8 require(fields)
9

10 ########### Arguments: ##########################################
11
12 # coarse_raster = coarse resolution raster.
13 # vg_type = type of variogram to be fitted.
14 # nblocks = the regularized variogram is computed using R function vgmArea,
15 # but only at short distances. nblocks is the number of adjacent blocks
16 # that are considered near enough to require vgmArea.
17 # maxiter = maximum number of iterations.
18 # cutoff = cutoff. If = "default" it is set equal to half the raster extent.
19 # tol1 = tolerance for Di/D0, if the value is lower the iterations stop.
20 # tol2 = tolerance for abs(D_i-D_opt)/D_opt.
21
22 ################################################################
23
24 # Borders and extent of the raster map.
25 xmin = coarse_raster@extent@xmin
26 xmax = coarse_raster@extent@xmax
27 ymin = coarse_raster@extent@ymin
28 ymax = coarse_raster@extent@ymax
29 coarse_res = res(coarse_raster)
30 x_extent = xmax - xmin
31 y_extent = ymax - ymin
32
33 if (cutoff == "default") {
34 cutoff = min(c(x_extent,y_extent))/2
35 # half the raster extent by default.
36 }
37
38 # Change the name to a generic "z".
39 names(coarse_raster) = ’z’
40
41 # Convert the raster to a list of square polygons corresponding to the coarse pixels
42 poly_coarse = rasterToPolygons(coarse_raster, fun=NULL, n=16, na.rm=TRUE,
43 digits=12, dissolve=FALSE)
44
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45 # 1. Compute empirical variogram on areal data and fit a model.
46 gamma_v_hat = variogram(z ~ 1, data = poly_coarse, cutoff=cutoff, width = min(coarse_res)/2)
47 gamma_v_exp = fit.variogram(gamma_v_hat, vgm(mean(tail(gamma_v_hat$gamma),10), vg_type,
48 cutoff/2, min(gamma_v_hat$gamma)))
49
50 # 2. Initial variogram.
51 gamma_0 = gamma_v_exp
52
53 # 3. Variogram regularization using ’vgmArea’ for low distances, and Journel approximation
54 # for high distances. This procedure is specific for regular grids and allows to significantly
55 # speed up the algorithm, avoiding the repeated computation of block covariances,
56 # or the computation of block covariances at great distances, which can be approximated
57 # using the Journel formula (Journel, 1978).
58
59 new_xmax = xmin + nblocks*coarse_res[1]
60 new_ymin = ymax - nblocks*coarse_res[2]
61 inrange = crop(coarse_raster, extent(c(xmin,new_xmax,new_ymin,ymax)))
62 poly_ref = polygons(rasterToPolygons(inrange, fun=NULL, n=16, na.rm=TRUE, digits=12,
63 dissolve=FALSE))
64 # Now poly_ref contains a square of blocks, given the regularity of the problem,
65 # we can drop the upper part of the square, since the covariance only depends
66 # on the distance of the blocks.
67 polygon_indexes = upper.tri(matrix(1:(length(poly_ref)),nrow = nblocks, ncol = nblocks),
68 diag = TRUE)
69 polygon_indexes = as.vector(polygon_indexes)
70 poly_ref = poly_ref[polygon_indexes]
71 # Compute gamma^(v,v_h) for small lags.
72 gamma_A_0 = vgmArea(x = poly_ref[1],y = poly_ref, vgm = gamma_0, covariance = FALSE)
73 gamma_vv_0 = gamma_A_0[1] # gamma(v,v), unique since the grid is regular.
74 coords_ref = as.matrix(coordinates(poly_ref))
75 short_dist = as.vector( rdist(t(coords_ref[1,]),coords_ref[2:nrow(coords_ref),]) )
76 # Distances of neighboring blocks.
77 drop_duplicates = !duplicated(short_dist)
78 # Drop distance duplicates (the block covariance only depend on distance).
79 short_dist = short_dist[drop_duplicates]
80 ordered = order(short_dist)
81 short_dist = short_dist[ordered]
82 gamma_v_0 = as.vector( gamma_A_0[2:length(gamma_A_0)] )
83 gamma_v_0 = gamma_v_0[drop_duplicates]
84 gamma_v_0 = gamma_v_0[ordered] # Values of regularized variogram for small distances
85 # Add lags (greater distances).
86 dist_tail = seq(short_dist[length(short_dist)]+max(coarse_res),cutoff,max(coarse_res))
87 ref_dist = c(short_dist, dist_tail)
88 gamma_v_0_tail = variogramLine(gamma_0,dist_vector=dist_tail)$gamma
89 gamma_v_0 = c(gamma_v_0,gamma_v_0_tail)
90 gamma_v_0 = gamma_v_0 - gamma_vv_0 # Regularize
91
92 # 4. Quantify deviation.
93 D_0 = ( 1/length(ref_dist) ) *
94 sum( abs(gamma_v_0-variogramLine(gamma_v_exp,dist_vector=ref_dist)$gamma)/
95 variogramLine(gamma_v_exp,dist_vector=ref_dist)$gamma )
96
97 # 5. Define initial optimal variograms.
98 gamma_opt = gamma_0
99 gamma_v_opt = gamma_v_0

100 D_opt = D_0
101 rescaling_flag = 0
102
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103 # Start loop.
104 for (i in 1:maxiter){
105 print(paste0("iter: ", i))
106
107 # 6. Compute experimental values for the new point support semivariogram
108 # through a rescaling of the optimal point support model.
109 if (!rescaling_flag){
110 w = 1 + ( 1/(gamma_v_exp$psill[2]* (i^(1/2)) ) )*
111 (variogramLine(gamma_v_exp, dist_vector=ref_dist)$gamma - gamma_v_opt)
112 }
113 else {
114 w = 1+(w-1)/2
115 rescaling_flag = 0
116 }
117
118 # Empirical values to which a variogram model must be fitted.
119 gamma_hat_i_values = variogramLine(gamma_opt,dist_vector=ref_dist)$gamma * w
120 gamma_hat_i = gamma_v_hat[1:length(ref_dist),]
121 gamma_hat_i$np=rep(1,length(ref_dist))
122 gamma_hat_i$dist = ref_dist
123 gamma_hat_i$gamma = gamma_hat_i_values
124 gamma_hat_i$dir.hor[is.na(gamma_hat_i$dir.hor)] = 0
125 gamma_hat_i$dir.ver[is.na(gamma_hat_i$dir.ver)] = 0
126 gamma_hat_i$id[is.na(gamma_hat_i$id)] = gamma_hat_i$id[1]
127
128 # 7. Fit a new model.
129 gamma_i = fit.variogram(object = gamma_hat_i, vgm(mean(tail(gamma_hat_i$gamma),2),
130 vg_type, cutoff, min(gamma_hat_i$gamma)))
131
132 # 8. Regularize gamma_i.
133 gamma_A_i = vgmArea(x = poly_ref[1],y = poly_ref, vgm = gamma_i, covariance = FALSE)
134 gamma_vv_i = gamma_A_i[1]
135 gamma_v_i = as.vector( gamma_A_i[2:length(gamma_A_i)] )
136 gamma_v_i = gamma_v_i[drop_duplicates]
137 gamma_v_i = gamma_v_i[ordered]
138
139 gamma_v_i_tail = variogramLine(gamma_i,dist_vector=dist_tail)$gamma
140 gamma_v_i = c(gamma_v_i,gamma_v_i_tail)
141 gamma_v_i = gamma_v_i - gamma_vv_i
142
143 # 9. Compute D_i.
144 D_i= ( 1/length(ref_dist) ) *
145 sum( abs(gamma_v_i-variogramLine(gamma_v_exp,dist_vector=ref_dist)$gamma)/
146 variogramLine(gamma_v_exp,dist_vector=ref_dist)$gamma )
147
148 # 10. Stopping criteria.
149 if ( (D_i/D_0 < tol1) || abs(D_i-D_opt)/D_opt < tol2) break
150 if (D_i < D_opt) {
151 gamma_opt = gamma_i
152 gamma_v_opt = gamma_v_i
153 D_opt = D_i
154 }
155 else {
156 rescaling_flag = 1
157 }
158 }
159 return(gamma_opt)
160 }
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161 ATPlm = function(coarse_raster, covariates_stack){
162
163 ### Area-to-Point Linear Regression.
164 ### Remark: the target coarse resolution raster and the covariate maps must have
165 ### the same coordinate system, and must overlap.
166 ### The function returns an object containing a fine resolution map
167 ### (matching the resolution of the covariates) of the fitted target variable,
168 ### and an lm-type object containig the regression results.
169
170 df = as.data.frame(coarse_raster[[1]])
171 xnames = names(covariates_stack) # Covariate names.
172 yname = names(coarse_raster)[1] # Name of target variable to be used in the formula.
173 nx = length(xnames)
174 # Upscale covariate maps for the regression.
175 for (i in 1:nx){
176 df[xnames[i]] = values( resample(covariates_stack[[i]],coarse_raster, method = "bilinear") )
177 }
178 f <- as.formula( paste(yname, "~ .") )
179 LM = lm(formula = f, data = df)
180 predicted = predict(LM, as.data.frame(covariates_stack))
181 map = covariates_stack[[1]]
182 values(map) = predicted
183 out = list(map = map, LM = LM)
184 return(out)
185 }
186
187 ATPK = function(coarse_raster, fine_raster, variogram, npoints = 8, frac = 1.0, nsim = 0,
188 beta = NA, nmax = 10){
189
190 ### Area-to-Point kriging for the downscaling of coarse raster data.
191 ### Converts the coarse pixels into spatial polygons and uses ATPK (Kyriakydis, 2004).
192 ### The function also performs Block Sequential Gaussian Simulation (BSGS).
193 ### Returns the downscaled map or a stack of the simulations.
194
195 require(gstat)
196
197 ### Arguments:
198 # coarse_raster = coarse resolution raster to be downscaled.
199 # fine_raster = fine resolution raster covering the extent of the coarse raster.
200 # It will be used to define the target resolution for the downscaling.
201 # frac = fraction of coarse data to use when performing block sequential simulation
202 # npoints = number of oints used to approximate the blocks (coarse pixels). Can be 4,8 or 16.
203 # For the other parameters consult the documentation of ’krige’ function - help(krige)
204
205 # If simulations are required, cosnider only the specified fraction of areal data.
206 if (nsim > 0){
207 drop = 1.0-frac
208 ndrops = floor(drop*length(coarse_raster))
209 values(coarse_raster)[sample(1:length(coarse_raster),ndrops,replace = FALSE)] = NA
210 }
211
212 BlockMap = rasterToPolygons(coarse_raster, fun=NULL, n=npoints, na.rm=TRUE, digits=12,
213 dissolve=FALSE)
214 names(BlockMap) = "Z"
215 d_new <- SpatialPoints(coordinates(fine_raster), proj4string = crs(BlockMap))
216 if(is.na(beta)) {
217 downscale = krige(Z~1, BlockMap, newdata = d_new, model = variogram, nmax = nmax, nsim=nsim)
218 } else {
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219 downscale = krige(Z~1, BlockMap, newdata = d_new, model = variogram, nmax = nmax,
220 nsim=nsim, beta = beta)
221 }
222 if (nsim == 0) {
223 downscaled_map = fine_raster
224 values(downscaled_map) = downscale$var1.pred
225 return(downscaled_map)
226 } else {
227 sim_data = downscale@data
228 sims = stack(replicate(nsim,fine_raster))
229 for (i in 1:nsim) values(sims[[i]]) = sim_data[,i]
230 return(sims)
231 }
232 }
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