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Abstract

In this work we present a strategy to generate broadband earthquake ground
motions from the results of three-dimensional physics-based numerical sim-
ulations (PBNS) based on employing Artificial Neural Networks (ANNs) al-
gorithms.
Physics-based simulated ground motions embody a rigorous seismic-wave
propagation model (i.e., including source, path, and site effects), which is
however reliable only in the long-period range (typically above 0.75–1 s),
owing to the limitations posed both by computational constraints and by in-
sufficient knowledge of the medium at short wavelengths. To cope with these
limitations, the proposed approach makes use of ANNs. These networks are
trained on a set of strong-motion records, in order to predict the response
spectral ordinates at short periods using as input the spectral ordinates at
long periods obtained by the PBNS.
This work focuses on an in-depth sensitivity and robustness analysis of the
proposed algorithm with respect to the input selection, hyperparameters
analysis, the use of optimization algorithms to set parameters, dataset han-
dling and the ”bootstrap aggregating” technique.
The capability of the final model to reproduce in a realistic way the engi-
neering features of earthquake ground motion is successfully proven on real
study cases, namely the L’Aquila (2009), Po Plain (2012) and Norcia (2016)
earthquakes.
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Introduction

Numerical simulations of seismic wave propagation phenomena are invalu-
able for many geophysical applications: to quantify the ground motion of
potential earthquakes [3, 16], to understand the seismic response of hydro-
carbon reservoirs [46, 72], and to estimate the unknown elastic properties of a
medium given its seismic response [70], for example. In particular, this thesis
focuses on an application in earthquake engineering, namely the prediction
of ground motion following an earthquake for a broad range of wavelenghts.
Boosted by the ever-increasing availability of parallel high-performance com-
puting, three-dimensional (3D) physics-based numerical simulations (PBNS)
are becoming one of the leading tools to obtain synthetic ground-motion time
histories, for which the use for seismic hazard and engineering applications
is subject to a growing attention [10, 54].
Physics-based numerical modelling already proved in the recent past to be
well suited for global [56, 43, 44, 32, 77] and regional-scale simulations [18,
1, 5, 53, 29, 23, 73], making potentially feasible the challenging problem of
a multiscale simulation from the seismic source to the structural response
within a single computational model [48, 38].

Being based on a detailed spatial discretization of the continuum and on
the numerical approximation of the elastodynamics equation, carried out ac-
cording to a numerical method (such as finite differences, finite element, or
spectral element methods), PBNS require a sufficiently detailed model of the
seismic source, of the fault rupture dynamics and of the Earth’s crustal lay-
ers.
The accuracy of the PBNS in the high-frequency range is limited, by both
the increased computational burden as the mesh gets finer and by the lack
of detailed knowledge to construct a geological model with sufficient details
for a broad range of wavelengths. Hence, accuracy achieved by PBNS is usu-
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ally limited up to 1–1.5 Hz [54] (for more details see the end of Section 1.3.3).

In recent years, deep learning models have achieved considerable success
in various tasks, such as computer vision, natural language processing and
reinforcement learning [45].
Positive results have been achieved by applying these techniques also to wave-
dynamics, such as using deep neural networks (DNNs) to generate realistic
wave fields in homogeneous and complex media [81], starting from ground
motion data. In this fashion DNNs could be used to provide less accurate
but faster solutions, which might be crucial also for model-based decision
making and planning in complex physical environments.
Speed-ups of these algorithms have been implemented for some specific cases,
such as horizontally layered media [52]. However, in general, the training
phase continues to be a bottleneck, since the training data must be pro-
cessed serially over thousands of individual training runs.
Hybrid approaches [54] have been explored, in order to compensate the re-
spective limitations of PBNS and NNs. In fact, since PBS are reliable only
in the long-period range, a neural network has been used to predict the re-
sponse spectral ordinates at short periods. This allows to portray in a more
realistic way the wave-field at broad-band frequencies, even though the ef-
ficient coupling procedure of the two models presents some open questions
that need to be addressed.
Finally, DNN and convolutional neural networks (CNNs) have been also used
to solve directly partial differential equations (PDEs) [79, 69, 35]. CNNs and
DNNs can be indeed viewed as piecewise linear functions [35][36], which
makes them suitable for approximating PDEs in the same fashion of finite
elements methods (FEMs). These networks can indeed represent complex-
shaped functions, without the need of basis functions like in the FEMs, mak-
ing them potentially well suited to represent complex solutions with an af-
fordable computational cost.
However, a solid mathematical workground on this topic is still under devel-
opment. A little light has been shed, understanding the expressive power of
these models based on analysing their approximation properties [36].
Very recently a unified model that simultaneously recovers some convolu-
tional neural networks (CNN) for image classification and multigrid (MG)
methods for solving PDEs has been proposed by [35]. As a result, how
and why CNN models work can be mathematically understood in a similar
fashion as for multigrid methods for which a much more mature and better
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developed theory [78]. Motivated from various known techniques from multi-
grid method, many variants and improvements of CNN can then be naturally
obtained.
In a different perspective, new multigrid methods for numerical PDEs can
be motivated by deep learning [39].
Moreover MG methods, which rely on the construction of a hierarchy of
finer grids in order to accelerate the convergence of the underlying iterative
scheme, have a massively parallel intrinsic structure that can be exploited
within HPC architectures [69]. Exploiting this dualism might allow to cope
better with the bottleneck of the training phase in NNs and with the limita-
tions of PBSs in the high frequency range.

The novel approach firstly proposed by Paolucci et al. [54] and further ex-
panded and analyzed inn this thesis, consists in generating broadband (BB)
ground motions, which couples the results of PBNS for a specific earthquake
ground-motion scenario with the predictions of an Artificial Neural Network
(ANN). Specifically we are interested in the spectral acceleration (SA) at
high frequencies, i.e. for short periods.
SA is the maximum acceleration during an earthquake of an object, mod-
elled as a damped, harmonic oscillator moving with one degree of freedom.
The SA as a function of the frequency is called response spectrum. Spectral
acceleration is related to the natural frequency of vibration of the building,
and it is used in earthquake engineering to have a more reliable approxima-
tion of the motion of a building during an earthquake than the peak ground
acceleration (PGA) value.
The basic steps of the algorithm can be summarized as follows:

1. the ANN is trained on a strong-motion dataset, to correlate short period
(T ≤ T ∗) spectral ordinates with the long-period ones (T > T ∗), being
T ∗ the threshold period beyond which the results of the PBNS are
supposed to be accurate;

2. the trained ANN is used to obtain the short-period spectral ordinates
of the physics-based earthquake ground motion for periods below T ∗;

3. the PBNS long-period time histories are enriched at high frequencies
with an iterative spectral matching approach, until the response spec-
trum matches the short-period part obtained by the ANN.
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Figure 1: Figure taken from [54]. Sketch illustrating the idea at the basis of
the Artificial Neural Network-based algorithm to generate broadband ground
motions. For a given ground motion, response spectral ordinates at short
periods, that is, for periods T ≤ T ∗, where T ∗ is the minimum period of
validity of the physics-based numerical model, are computed from the 3D
physics-based simulated response spectral ordinates at long periods. SA,
spectral acceleration; PBNS, physics-based numerical simulation.

14



In this thesis we will focus on a detailed analysis of the first two steps of
the algorithm, leaving the implementation of new matching approaches for
future developments.

Using as a starting point the workflow proposed by [54], in this thesis we
will propose and analyze new algorithms. More precisely, we will address the
following points:

1. improve the performance, to prove the validity of the proposed algo-
rithm in terms of practical results;

2. understand the key features of the model and why they are crucial, in
order to prove its generality.

The thesis consists of 9 chapters, that are briefly described in the following:

• Chapter 1: Principles of earthquake ground motion. In this chapter we
present the key notions of earthquake engineering, starting from the
definitions (such as peak ground acceleration (PGA), spectral acceler-
ation (SA), shear waves, ...), then focusing on the governing equations
of the physical problem and how to solve them numerically.

• Chapter 2: The Artificial Neural Network model. In this chapter we
recall the theoretical background on the ANN model, with focus on the
model structure, how to train it, i.e. how to set its parameters, and how
to evaluate performance, with focus on its application to earthquake
prediction.

• Chapter 3: Input Selection. Here, new variants of the original ANN
model of [54] are presented, specifically the use of additional informa-
tion concerning epicentral distance, magnitude, shear waves velocity
and soil conditions are discussed.

• Chapter 4: Optimization Algorithms. In this chapter we recall the
main algorithms for optimization, i.e. revising a set of methods to find
numerically the minimum of a function.

• Chapter 5: Training Algorithm Selection. In this chapter we report a
detailed analysis of the best suited optimization algorithms in terms of
CPU time and performance, for the selected ANNs.
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• Chapter 6: Training, Validation and Test Sets. This chapter deals with
the analysis of the optimal way to partition the dataset into training,
validation and test sets, in order to improve performance.

• Chapter 7: Predictions Using Data from Numerical Simulations. In this
chapter we employ the ANNs to real study cases, specifically Po Plain
(2012), L’Aquila (2009) and Norcia (2016), to test the effectiveness and
robustness of the proposed method.

• Chapter 8: Bootstrap Aggregating. Here the possibility of averaging
the output of more networks is explored, by using a technique called
bootstrap aggregating, in order to further improve stability and per-
formance.

• Chapter 9: Conclusions and Further Developments. In this chapter we
report a summary of the main results provided, and we discuss possible
developments, in line with the most recent approaches concerning the
solution of partial differential equations using ANNs.
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Chapter 1

Principles of Earthquake
Ground Motion

In this chapter we review the main ingredients in the field of earthquake
engineering that will be needed in the forthcoming chapters. Starting from
the main definitions, we then focus on the governing equations of the physical
problem and how to solve them numerically [3]. In the following we adopt
the notation and the presentation structure of [3, 25].

1.1 Main Definitions

An earthquake is the result of a sudden release of energy in the outer layers
of the Earth’s crust. The strain energy slowly accumulated over the time is
transformed into kinetic energy and radiated through the Earth’s layers. By
studying the main properties of motion, using suitable numerical techniques,
it is possible characterize those features of ground shaking, that can be em-
ployed to design seismic risk protection strategies.
In the following we report some useful definitions:

• hypocenter: also known as focus, is the point within the Earth where
an earthquake rupture starts (see Figure 1.1);

• epicenter: is the point directly above it at the surface of the Earth (see
Figure 1.1);

• epicentral distance (Repi): is the distance, along the Earth surface, of
a point of interest form the epicenter location;

17



Figure 1.1: Figure taken from [25]. Hypocenter and epicenter of an earth-
quake. The fault plane is the plane along which the rupture occurs.

• peak ground acceleration (PGA): is the maximum ground acceleration
that occurred during an earthquake at a fixed location on the earth
surface, often split into its horizontal and vertical components.

1.1.1 Magnitude

The magnitude is a measure of intensity of an earthquake, and can be quan-
tified with different scales. Let M0 be the seismic moment defined as

M0 = G∆uA, (1.1)

where G is the shear modulus of the crustal rocks of the fault where the
rupture occurs, ∆u is the average slip (displacement offset between the two
sides of the fault) and A is the fault area. The moment magnitude Mw, is
then defined as

Mw =
2

3
log10(M0)− 6, (1.2)

where M0 is measured in [Nm].
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site class Vs30 interval [m/s]

A 800 >
B 360 - 800
C 180 - 360
D 0 - 180

Table 1.1: Soil classification table using velocity of the shear waves in the
first 30 meters (Vs30).

1.1.2 Seismic Waves

Seismic waves can be classified into body and surface waves. Body waves
travel through the interior of the Earth and they are further split into pressure
(P) and shear (S) waves. P-waves generate a ground motion that is aligned
with the direction of the wave field, they can travel through all media (solids
and liquids) and are characterized by the highest wave velocities, typically
ranging from 0.5 to 6 km/s. S-waves are transversal waves that induce a
ground motion perpendicular to the direction of the wave field and, differently
from pressure waves, they can travel only through solid media. S-waves are
slower than P-waves, with a wider range of propagation velocities, typically
ranging from about 100 m/s to 3.5 km/s. The mean shear-wave velocity in
the top 30 m is known as VS30. This value can be used for soil classification,
as reported in Table 1.1. When body waves reach the Earth’s surface, they
generate surface waves, such as Love or Rayleigh waves, that induce a rolling
and a circular ground motion, respectively. Surface waves are characterized
by the slowest wave velocities and have a longer period of oscillation and a
larger amplitude with respect to body waves (see Figure 1.2).

1.1.3 Spectral Acceleration

Spectral acceleration (SA) is the maximum acceleration of an object during
an earthquake. It is usually modelled as a damped, harmonic oscillator
moving with one degree of freedom (see Figure 1.3). Specifically, let

• m be the mass of the oscillator;

• x(t) be the absolute displacement of the oscillator at time t;
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Figure 1.2: Figure taken from [25]. Graphical representation of the deforma-
tions induced by the travelling of different types of elastic waves propagating:
a) longitudinal wave (or P-wave); b) transversal wave (or S-wave); c) surface
wave, Love type; d) surface wave, Rayleigh type. P and S waves are the only
ones that can propagate in an homogeneous, elastic, unbounded medium.
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Figure 1.3: Figure taken from [25]. a) Scheme of an oscillator with one degree
of freedom. b) Forces acting on mass m.

• u(t) be the absolute displacement of the support, representing the
ground, at time t;

• k be the stiffness constant of the spring ( measured in [F]/[L]);

• c be the viscosity constant of the dumper (measured in [F][T]/[L]).

The dynamic equilibrium equation reads

mẍ(t) + cẏ(t) + ky(t) = 0, (1.3)

where y(t) = x(t) − u(t) is the relative displacement of the oscillator w.r.t.
the support. It is possible to rearrange the terms to obtain

mÿ(t) + cẏ(t) + ky(t) = −mü(t), (1.4)

and then
ÿ(t) + 2ωnζẏ(t) + ω2

ny(t) = −ü(t), (1.5)

where

ωn =

√
k

m
(1.6)

is the circular frequency of the oscillator and

ζ =
c

2mωn
=

c

ccr
(1.7)

is the damping ratio. For a given period T = 1
ω

the spectral acceleration is
defined as

SA (T, ζ) = max
t
|ẍ(t)|. (1.8)
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SA as a function of the frequency is called acceleration response spectrum.
SA is related to the natural frequency of vibration of the building, and it is
used in earthquake engineering to have a more reliable approximation of the
motion of a building during an earthquake than the peak ground acceleration
(PGA) value. By definition, in this case

PGA = max
t
|ü(t)|. (1.9)

For very stiff structures we have T → 0, hence we get

SA (T → 0, ζ) ∼= max
t
|ü(t)| = PGA. (1.10)

1.2 Physical Problem and Governing Equa-

tions

Consider a bounded domain Ω ⊂ R3 (representing the portion of the ground
where we study wave propagation), and assume that its boundary is decom-
posed into three disjoint portions ΓD, ΓN and ΓNR, where we impose the
values of displacement, of tractions, and of the fictitious tractions introduced
to avoid unphysical reflections, respectively. Considering a temporal inter-
val (0, T ], with T > 0, the dynamic equilibrium equation for a viscoelastic
medium subject to an external force can be modelled with the equations

ρü + 2ρζu̇−∇ · σ(u) + ρζ2u = f in Ω× (0, T ],

u = 0 on ΓD × (0, T ],

σ(u)n = t on ΓN × (0, T ],

σ(u)n = t∗ on ΓNR × (0, T ],

u = u0 in Ω× {0},
u̇ = v0 on Ω× {0},

(1.11)

where u = u(x, t) is the displacement field, σ(u) is the stress tensor, f =
f(x, t) is a given external load (representing e.g. a seismic source) and ρ is
the medium density. u0 and v0 are smooth initial values for the displacement
and the velocity field, respectively. On the boundary we impose a rigidity
condition on ΓD, a traction t = t(x, t) on ΓN and a fictitious traction t∗ =
t∗(x, t) on ΓNR. We assume that ρ is a uniformly bounded, strictly positive
function. In (1.11) the parameter ζ ≥ 0 (usually referred to as damping
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factor) is a decay factor with the dimension of the inverse of time and it is
supposed to be piecewise constant in order to model media with sharp elastic
impedance and damping behaviors.
For the stress tensor σ we use the following constitutive equation (Hooke’s
law):

σ(u) = λtr(ε(u))I + 2µε(u), (1.12)

where ε(u) = (∇u+∇Tu)/2 is the strain tensor, I is the identity tensor, λ =
λ(x) ∈ L∞(Ω) and µ = µ(x) ∈ L∞(Ω) are the first and second Lamé elastic
coefficients, respectively, and tr(·) is the trace operator. By introducing the
fourth order Hooke’s tensor D, relation (1.12) can also be written as

σ(u) = D ε(u), (1.13)

with D a uniformly bounded and symmetric and positive definite tensor.

1.3 Numerical Discretization

1.3.1 Weak Formulation

For an open, bounded, polygonal domain D ⊂ R3 and for a non-negative
integer s we denote by Hs(D) the L2 Sobolev space of order s and by ‖ · ‖s,D
and |·|s,D the corresponding norm and semi-norm. For s = 0, we write L2(D)
in place of H0(D). We set Hs(D) = [Hs(D)]3 and Hs(D) = [Hs(D)]3×3, and
denote by (·, ·)D and 〈·, ·〉∂D the corresponding L2 and L2 inner products.

Let V = {v ∈H1(Ω), v = 0 on ΓD}; the weak formulation of problem
(1.11) read as: ∀t ∈ (0, T ] find u(t) ∈ V such that

(ρü(t),v)Ω + (2ρζu̇(t),v)Ω + (ρζ2u,v)Ω +A(u(t),v) = F(v) ∀v ∈ V,
(1.14)

supplemented with the initial conditions u(0) = u0 and u̇(0) = v0, where

A(u,v) = (σ(u), ε(v))Ω, F(v) = (f ,v)Ω + 〈t,v〉ΓN
+ 〈t∗,v〉ΓNR

.

If ΓNR = ∅ and ζ = 0, the above problem is well-posed, see for instance [63,
Theorem 8.3-1].

23



1.3.2 Partitions and trace operators

We consider a (not necessarily conforming) decomposition TΩ of Ω into L
nonoverlapping polyhedral sub-domains Ω`, i.e., Ω = ∪`Ω`, Ω` ∩ Ω`′ = ∅ for
` 6= `′. On each Ω`, we built a conforming, quasi-uniform computational
mesh Th` of granularity h` > 0 made by open disjoint elements Kj` , and

suppose that each Kj` ∈ Ω` is the affine image through the map F j
` : K̂ −→ Kj`

of either the unit reference hexahedron or the unit reference tetrahedron K̂.
Given two adjacent regions Ω`± , we define an interior face F as the non-
empty interior of ∂K+ ∩ ∂K−, for some K± ∈ Th`± ,K

± ⊂ Ω`± , and collect all
the interior faces in the set F Ih . We also define FDh , FNh and FNRh as the sets
of all boundary faces where displacement, traction or fictitious tractions are
imposed, respectively. In this definition, it is implicit the assumption that
each boundary face can belong to exactly one of the sets FDh , FNh , FNRh . We
collect all the boundary faces in the set F bh. We now assume that for any
element K ∈ Th and for any face F ⊂ ∂K, it holds hK . hF (see [55, 30, 21,
22, 11, 12, 4] for details and variants).
Let K± ∈ Th`± ,K

± ⊂ Ω`± be two elements sharing a face F ∈ F Ih , and let
n± be the unit normal vectors to F pointing outward to K±, respectively.
For (regular enough) vector and tensor-valued functions v and τ , we denote
by v± and τ± the traces of v and τ on F , taken within the interior of K±,
respectively, and set

[[v]] = v+ � n+ + v− � n−, [[τ ]] = τ+ n+ + τ−n−,

{v} =
v+ + v−

2
, {τ} =

τ+ + τ−

2
,

(1.15)

where v � n = (vTn + nTv)/2. On F ∈ F bh, we set {v} = v, {τ} = τ ,
[[v]] = v � n, [[τ ]] = τn.

1.3.3 Discrete Formulation

We describe now the numerical approximation of the (weak formulation) of
(1.11) through a Discontinuous Spectral Element method, that couples Dis-
countinous Galerkin methods [66, 37, 20] with Spectral Elements [24, 24, 40,
71, 26, 60, 62, 41, 42, 13, 76, 14]. For time integration, we use leap-frog time
marching scheme [61, 5, 40, 15, 49].
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To each subdomain Ω` we assign a nonnegative integer N`, and introduce
the finite dimensional space

VN`
h`

(Ω`) = {v ∈ C0(Ω`) : v
∣∣
Kj

`

◦ F j
` ∈ [MN`(K̂)]3 ∀ Kj` ∈ Th`}, (1.16)

where MNk(K̂) is either the space PNk(K̂) of polynomials of total degree

at most Nk on K̂, if K̂ is the reference tetrahedron, or the space QNk(K̂)

of polynomials of degree Nk in each coordinate direction on K̂, if K̂ is the
unit reference hexahedron in R3. We then define the space VDG as VDG =∏

` V
N`
h`

(Ω`).
Let Fh(·) be defined as

Fh(v) =
∑
Ω`

(f ,v)Ω`
+ 〈t,v〉FN

h
+ 〈t∗,v〉FNR

h
v ∈ VDG, (1.17)

where we have used the short-hand notation 〈w,v〉FN
h

=
∑

F∈FN
h
〈w,v〉F and

〈w,v〉FNR
h

=
∑

F∈FNR
h
〈w,v〉F .

Let the bilinear form Ah(·, ·) be defined as

Ah(u,v) =
∑
Ω`

(σ(u), ε(v))Ω`
− 〈{σ(u)}, [[v]]〉FI

h
− 〈[[u]], {σ(v)}〉FI

h
+ 〈η[[u]], [[v]]〉FI

h
,

(1.18)
where, as before, 〈w,v〉FI

h
=
∑

F∈FI
h
〈w,v〉F .

Denoting by Ndof be total number of degrees of freedom, the vector U =
U(t) ∈ RNdof contains, for any time t, the expansion coefficients of the semi-
discrete solution uh(t) ∈ VDG in the chosen set of basis functions. Analo-
gously, M and A are the matrices representations of the bilinear forms∑

Ω`

(ρüh(t),v)Ω`
, Ah(uh(t),v),

respectively. Finally, F is the vector representation of the linear functional
Fh(·).
We subdivide the time interval (0, T ] into NT subintervals of amplitude ∆t =
T/NT and we denote by Ui ≈ U(ti) the approximation of U at time ti = i∆t,
i = 1, 2, . . . , NT . Whenever ζ = 0, i.e. no dumping is present and ΓNR = ∅,
then the leap-frog method reads as

MU1 = (M− ∆t2

2
A)U0 + ∆tMV0 +

∆t2

2
F0,

MUn+1 = (2M−∆t2A)Un −MUn−1 + ∆t2Fn, n = 1, ..., NT − 1,
(1.19)
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where U(0) = U0, U̇(0) = V0 and F(0) = F0 are suitable initial conditions.
We notice that (1.19) involves a linear system with the matrix M to be solved
at each time step.
According to the Courant, Friedrichs and Lewy (CFL) condition, the leap-
frog scheme is stable provided that the time step ∆t satisfies

∆t ≤ CCFLh, (1.20)

where h is the granularity of the computational grid. It can be proven that

CCFL .
1
√
ωh

(1.21)

where ωh be the numerical angular frequency representing the best approx-
imations of the angular frequencies of the a travelling wave [3]. Hence, at
high frequencies, or equivalently at long periods, the computational cost in-
creases.
If the numerical wave shows a phase leg with respect to the physical one we
have a dispersion effect. It can also be shown that the error due to dispersion
is proportional to ωh [3].
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Chapter 2

The Artificial Neural Network
Model

2.1 Introduction

The purpose of this chapter is to give a detailed description of the artificial
neural network model, how to handle the data at our disposal, and how to
how to measure the quality of the results. In the following, we adopt the
notation and presentation structure of [34] and [54].

2.2 Model Structure

Let p ∈ RR be a set of inputs , W ∈ RS×R be the weights, a ∈ RS be the
output, b ∈ RS, f : RS → RS be the transfer function. The transfer function
may be a linear or a nonlinear function. A particular transfer function is
chosen to satisfy some specification of the problem that the neuron is at-
tempting to solve.
A layer of neurons is simply a function of the form

a = f(Wp+ b). (2.1)
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Figure 2.1: Figure taken from [34] representing a layer of neurons. A neural
network can be composed of many layers, at least one.

If S = 1 we have a multiple-input neuron.

Figure 2.2: Figure taken from [34] representing multiple-input neuron. It is
the fundamental unit of a layer.

If we compare this model with a biological neuron, the weights corre-
sponds to the strength of a synapse, the cell body is represented by the sum
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and the transfer function, and the neuron output represents the signal on the
axon.
Finally a feed forward artificial neural network is the composition of more
layer functions of the form:

ai = f i(W iai−1 + bi) i = 1, ...N (2.2)

a0 = p. (2.3)

Figure 2.3: Figure taken from [34] representing a multiple-layer neural net-
work, i.e. the composition of more layer functions.

It is called ”feed forward” because the arcs joining nodes are unidirec-
tional and there are no cycles. A layer whose output is the network output
is called an output layer. The other layers are called hidden layers.

ANNs are generally used to estimate the nonlinear relationship between a
highly populated vector of input variables and a vector of output unknowns,
for the correlation of which fast and closed form rules cannot easily be ap-
plied. In fact, under mild mathematical conditions, any problem involving a
continuous mapping between vector spaces can be approximated to arbitrary
precision (i.e., within an error tolerance) by feed-forward ANNS, which are
the most often used type [17].
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Our purpose is to establish a correlation between long-period response spec-
tral ordinates, specifically the spectral acceleration (SA), and short-period
ones. Hence, we first need to define what we mean with long and short
periods. The idea is to selcet a threshold period T ∗ and declare periods T
such that T ≥ T ∗ ”long periods”, while if T < T ∗ we declare them as ”short
periods”. Since in practice there is a sampling of the response spectral ordi-
nates for some specific periods, the cardinality of periods we consider is finite.
Specifically the cardinality of the long-periods SA is indicated as NLP

SA , while
the cardinality of the short-periods SA is indicated asNSP

SA . Since to make
our predictions in practice we will use the long-periods SA coming from nu-
merical simulations, T ∗ should be chosen such that the selected long-periods
SA estimates are reliable. The value proposed in [54] is T ∗ = 0.75.
In the work of Paolucci et al. [54], the neural network is designed as a two-
layer feed-forward neural network with Nh

n sigmoid hidden neurons and a
linear output neuron. In particular, the hidden layer activation function is

ah = fh(n) = tansig(n) =
2

1 + e−2n
− 1, (2.4)

while the output activation function is the identity

ao = f o(n) = n, (2.5)

where n is the output a neuron before applying the activation function. Using
the structure defined before and these activation functions, the ANN takes
the name of multilayer perceptron [7, 6].
The number of nodes in the input layer, defined to be N i

n, equals the number
of input variables NLP

SA . The number of nodes in the output layer, called N o
n,

equals the number of target values NSP
SA .
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Figure 2.4: Figure taken from [54]. Logic scheme of the ANN training pat-
terns: the long-period spectral ordinates (in this case T ∗ = 0.75 s) represent
the teaching inputs, whereas the short-period ones are the outputs predicted
by the ANN. The number of neurons in the hidden layer is Nh

n = 30. PGA,
peak ground acceleration.

Due to the wide range of variability on the data, a logarithmic transforma-
tion of the SA is considered, as in [54]. Specifically, the NLP

SA input parameters

are {log10 [SA (Tk)]}
NLP

SA
k=1 , where SA is the acceleration response spectral ordi-

nates at period Tk, ranging from the threshold period T ∗ to 5 s. The outputs

are NSP
SA ground-motion parameters, specifically, {log10 [SA (Tk)]}

NSP
SA

k=1 , rang-
ing from zero up to T ∗. SA is the maximum acceleration of an object during
an earthquake, modelled as a damped harmonic oscillator with one degree
of freedom, cf Chapter 1. As the oscillation period tends to zero, the object
displacement tends to the displacement of the forcing term, i.e. the ground
displacement. For this reason, while the concept of SA needs to be related
to a period T > 0, in the limit as T → 0 we recover the peak ground accel-
eration (PGA). This is why as a convention we will use SA(T = 0) = PGA.
The ANN is designed to predict multiple outputs given multiple inputs:
specifically, considering T ∗ = 0.75s, as in this study, the number of out-
puts and inputs is 20 and 9, respectively. The input periods selected are
0.75s, 0.8s, 0.9s, 1.0s and from 1.25s up to 5.0s inclusive with step 0.25s.
The output periods are 0s, 0.05s and from 0.1s up to 7.0s inclusive with step
0.1s.
In the following we will keep this net structure, with the possibility of adding
some input neurons. Indeed, in this work the possibility of adding up to three
input neurons will be considered, in order to take into account also epicentral
distance (Repi), magnitude of the earthquake (Mw) and velocity of the shear
waves in the first 30 meters (Vs30).
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2.3 Training

2.3.1 Objective Function

To train a neural network means to set its parameters in order to obtain
the desired input-output relation. This is done by minimizing an objective
function, using a suitable optimization algorithm. Roughly speaking, the
objective function represents the distance of model from the data. A common
choice, which is the one considered in this work, is the mean squared error
(MSE). Specifically, let f : Rn → Rm be our ANN model. Let µ ∈ Rl be the
set of parameters of the ANN, so that our response variable is y = f(x;µ).
Given the training set {(xi, yi)}Ni=1 our goal is to minimize a performance
measure:

min
µ
MSE(µ) = min

µ

1

N

N∑
i=1

m∑
j=1

(yij − f(xi;µ)j)
2 (2.6)

where the subscript j indicates the j-th element of a vector.
Since many optimization algorithms make use of derivatives, it is useful to
have differentiable activation functions. When derivatives are computed us-
ing the chain rule we are talking about Backpropagation [67]: the idea is
to propagate the error signal, computed in single teaching step, back to all
connected neurons. In this work, the training will be done using a built-in
neural network fitting tool available in MATLAB, namely the package nftool.

2.3.2 Training, Validation and Test Set

When inputs and desired outputs are given as data, we are talking about
supervised learning. In our case, we dispose of a high-quality strong ground
motion dataset, denoted in the following by SIMBAD (Selected Input Mo-
tions for displacement-Based Assessment and Design) [74]. The SIMBAD
database presently consists of 467 three-component acceleration time his-
tories from 130 earthquakes worldwide. The main objective is to provide
records of engineering relevance for the most frequent design conditions in
Italy. For this reason, only records from shallow crustal earthquakes, at
epicentral distance Repi approximately less than 35 km, with moment mag-
nitude MW ranging from 5 to 7.3, are considered. These are the conditions
generally governing seismic hazard throughout Italy, for most return periods
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of practical interest.
Many information about each earthquake are present within the dataset,
among which we report the most significant for our analysis: event name
and date, area, MW , event latitude and longitude, station code and name,
station latitude and longitude, elevation, site class according to EC8, VS30

measurements, Repi.
Sites were classified into five ground categories according to the European
and Italian seismic norms: A (VS30 ≥ 800ms), B (360 ≤ VS30 < 800ms), C
(180 ≤ VS30 < 360ms), D (VS30 < 180ms) and E (site C or D with thickness
smaller than 20 m over rigid rock).
Usually the dataset is divided into three subsets: training, validation and
test. Their roles are:

• Training set: it is used to set the model parameters through opti-
mization algorithms.

• Validation set: it is supposed to be made of patterns different from
those of the training set and thus can be used to monitor the accuracy
of the ANN model during the training procedure.

• Test set: it is not used during the ANN training and validation, and
it is needed to evaluate the network capability of generalization in the
presence of new data.

This distinction helps limiting the problem of overfitting, which is a well
known shortcoming of ANN design. In fact, even though the error on the
training set is driven to a very small value, the network may fail in general-
izing the learned training patterns if the patterns of the training set do not
sufficiently cover the variety of possible realisations. A stopping criterion
during the training phase can be whenever the error on the validation set
starts growing.

2.3.3 Bootstrapping

According the data available in the training set and according other factors,
such as the starting point of the optimization algorithm, we might end up
in a local minimum of the objective function. Hence, it is necessary to train
multiple times the network with different settings. To obtain a new training
set we use the so called ”Bootstrapping” technique. In general terms, it is
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an algorithm that allows to simulate a random sampling when no new data
are available. It consists in resampling with replacement from the original
dataset, until the size of the new sample is equal to the one of the original
dataset.
The idea is that if the dataset is representative of the population, its distribu-
tion should be close to the real one. Hence, a sample from the dataset should
be, with a certain degree of approximation, analogous to a new sample from
the original population.
This algorithm has several advantages:

• it is simple to be implemented;

• allows to check the stability of the results;

• it does not require to know the original population distribution;

• increases the number of samples when the dataset is small.

2.4 Model Evaluation

A key point in the forthcoming analysis is to define suitable criteria to eval-
uate the goodness of our model.
The procedure described in [54] consists in training 50 different networks,
randomly splitting each time the SIMBAD dataset into training, validation
and test set, with ratios respectively 70%, 20% and 10% from 95% of the
total records. Then, on the remaining 5% set, which we will refer to as TST,
the MSE is calculated for each of the 50 networks. Finally the one attaining
the lowest MSE is selected. The same set TST can be used to evaluate the
goodness of all networks because it has not been used during the training
phase of any of them.
However, if we repeat the whole process multiple times, the MSE of the net-
work selected with this method is experimentally highly variable. Hence,
using the minimum MSE to estimate the goodness of our model produces
unstable, and hence unreliable, results. The reason is that we are testing
all of the networks against the same set TST, and this set has small size.
Indeed, due to its reduced dimension, it is not representative of the phe-
nomenon. With such small dimensions, there are considerable chances that
over 50 networks one of them has a training set similar to TST, leading to
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a low MSE value of equation (2.6). The more similar the training set is, the
lower the MSE is.
The values of the minimum MSE are probably reflecting this phenomenon,
rather than the actual goodness the neural network structure. Hence, either
we enlarge the TST set, or we change evaluation method. Unfortunately the
former is not possible in the immediate.
First of all, the TST set has been included in the training phase, meaning
100% of the dataset is now split into training, validation and test set. The
MSE on the test set of each network is a good performance indicator of its
generalization capabilities. Not only the test set is 10% of the dataset, i.e.
the size of the TST set is doubled, but it also changes each time for each
network, so that the probability of obtaining a test set similar to the training
set are lower. However, the test set of one network cannot be used to test an-
other network. This is because these sets are randomly extracted each time,
hence data used as test for one net might used as training for another one.
Not having a common meter of evaluation for all nets does not constitute an
issue, since they will be later compared on specific study cases.
At this point, the minimum MSE could still be the one of net with similar
training and test set, even though it is way less likely to happen. For this rea-
son, it is preferable to use a more stable indicator of goodness of the model,
that represents more the information coming from all of the trained networks.
Hence, we decided to use the mean µMSE and the standard deviation σMSE

of the MSE over the test set of all the 50 networks:

µMSE =
N∑
i=1

MSEi, (2.7)

σMSE =

√√√√ 1

N − 1

N∑
i=1

(µMSE −MSEi)2, (2.8)

where N = 50 is the number of networks, and MSEi is the MSE of the i-th
network on the its test set.
A low µMSE, which we will refer to also as bias, indicates the model is
performing well and that it is complex enough to capture the phenomenon
we are considering. A low σMSE indicates the model is stable and it is not
overfitting the original data, hence it is capable to generalize w.r.t a new
dataset.
For our analysis only the networks regarding the horizontal components of
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the SA will be considered, since long and short periods SA are more strongly
correlated than for the vertical component (for details see Paolucci et al.
(2018) [54]).
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Chapter 3

Input Selection

3.1 Introduction

The goal of our feedforward neural network is to estimate the spectral ac-
celeration (SA) for periods below T ∗ = 0.75s and the peak ground accelera-
tion (PGA). The information provided as input are the SA above T ∗, which
are strictly case specific and hence essential to produce meaningful outputs.
However we have at our disposal many other information like the epicentral
distance of each station (Repi), the magnitude of the earthquake (Mw) and
velocity of the shear waves in the first 30 meters of soil (Vs30). It is not so
clear whether these information can help to obtain better estimates, and the
purpose of this chapter is to investigate which inputs should be selected.

3.2 Evaluation Principles

Hyperparameters are parameters whose value is set before the learning pro-
cess, such as the number of neurons in the hidden layer. To interpret the way
bias and variance change when varying the hyperparameters, we will rely on
the following principles:

1. An input which carries a lot of information about the output might
decrease bias and/or variance, while on the contrary if it carries a few
information we might have an increase of bias/variance.

2. There is a bias-variance tradeoff: augmenting the number of hyperpa-
rameters leads to lower bias and higher variance. On the other hand,
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decreasing the number of hyperparameters can have the opposite effect.

3. The so called capacity is the ability of a model to fit a wide variety
of functions and it is determined by the number and the quality of
the hyperparameters. The optimal model capacity increases with the
amount of data.

3.3 Hyperparameters Analysis

To carry out an hyperparameter analysis, it is possible to proceed in three
different ways:

1. adding a combination of new inputs among Repi, Mw and Vs30;

2. training the net for soft and stiff soil separately, since very different SA
behaviours arise in the two cases;

3. varying the number neurons in the hidden layer.

Since the number of possible combinations grows too rapidly, we will proceed
heuristically, using the three principles stated in the previous section to guide
our analysis.

3.3.1 Inputs Analysis

As a first analysis we test all of the possible combinations of input. A stan-
dard value of 30 neurons in the hidden layer, suggested by Paolucci et al.
(2018) [54], was kept in all cases. In Table (3.1) we report the mean (defined
in (2.7)), also called bias, and the standard deviation (defined as in (2.8))
for the mean squared error (MSE) (defined as in (2.6)) of the 50 networks
generated with the procedure described in the Chapter 2, with all of the
possible combinations of additional inputs.
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additional input bias std

none 0.0668 0.0079
Repi 0.0633 0.0091
Mw 0.0659 0.0097
Vs30 0.0635 0.0093
all 0.0573 0.0083

Mw and Vs30 0.0607 0.0084
Repi and Vs30 0.0609 0.0088
Repi and Mw 0.0580 0.0083

Table 3.1: Mean squared error mean (bias) and standard deviation (std) for
networks generated with all of the possible combinations of additional inputs,
using 30 neurons.

Adding only one input results in a slight bias decrease and a slight vari-
ance increase, as expected from the bias-variance tradeoff (principle 2), com-
pared to the standard case with no additional inputs.
Adding all of the inputs results instead in a considerable decrease of the bias
while the standard deviation does not vary significantly. This is possibly due
to the fact that, although variance should increase with the number of hy-
perparameters (principle 2), the added informative content is high enough to
balance this effect and improve the performance (principle 1). As expected,
these numerical results suggest that the three familes of inputs carry com-
plementary information. This hypothesis is also confirmed by the fact that
adding only two of them further decreases the bias, with respect to the one
input cases, without increasing significantly the variance.
Adding all of the three inputs produces the same results as adding only Repi

and Mw. It might look like the information contained in Vs30 is already
contained in the other two variables but this is not true: adding one extra
variable should by itself increase the variance (principle 2) so keeping the
same bias and variance means that the input carries at least a little informa-
tion (principle 1). Also it is well known that soil condition strongly affects
the output so the fact there is no gain adding Vs30 is rather due to the fact
that there are no enough data for a model of such capacity (principle 3).
This hypothesis is further supported by the fact that Vs30 has a wide range
of variability (it is indeed used to classify the soil in macro categories), hence
a large amount of data are needed to exploit it properly.
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3.3.2 Soil Classification Analysis

Since Vs30 is used to classify the soil as stiff or soft, in principle it does not
make sense to explore the possibility of both training the network only on a
specific site class dataset and adding Vs30 as input.
The possibility of training the net for soft and stiff soil separately was ex-
plored by Gatti (2017) [28] using 30 neurons, with no significant variations
due to fact that the amount of data reduces too much (principle 3). However
we cannot a priori exclude that changing the inputs or the number of neurons
could indeed work better.
All of the combinations with Repi and Mw were considered for a fixed number
of 30 neurons.
In Table 3.2 we show the MSE bias and standard deviation for networks
trained on data relative to different site classes (soft, stiff or all data), and
with either the classical set of inputs (denoted by none) and additional
inputs(Repi, Mw and Repi and Mw).

additional input soft soil data stiff soil data all data

bias std bias std bias std
none 0.0655 0.0101 0.0673 0.0140 0.0678 0.0079
Repi 0.0642 0.0129 0.0646 0.0101 0.0633 0.0091
Mw 0.0629 0.0125 0.0653 0.0104 0.0659 0.0097

Repi and Mw 0.0584 0.0120 0.0634 0.0107 0.0580 0.0083

Table 3.2: Mean squared error mean (bias) and standard deviation (std) for
networks trained on data relative to different site classes (soft soil, stiff soil
or all data), and with either the classical set of inputs (denoted by none) and
additional inputs(Repi, Mw and Repi and Mw), using 30 neurons.

In all cases the variance increases, leading to a higher risk of overfitting.
The available dataset is too poor to balance the number of hyperparameters
(principle 3) leading to worse performance, which is what has been reported
also by Gatti (2017) [28]. Unexpectedly, the bias for the stiff soil in the two
inputs case increases significantly, possibly because:

• it is not a deterministic procedure;

• averaging on 50 networks might not be enough for a detailed analysis;
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• there are complex interaction we did not or cannot account for.

However for our heuristics considerations the above problem is of minor in-
terest. In conclusion, without additional data this option does not provide
good results.

3.3.3 Number of Neurons Exploration

Setting the number of neurons for the hidden layer is a procedure to tune
the model capacity. This is usually performed as the last part of the analysis
because:

• a reference number of 30 neurons is already available, cf [54];

• the number of all possible combinations varying this hyperparameter
is to high and hence it is better to select first which inputs to use;

• we expect that the performance improvement is less significant com-
pared to the variation attained choosing different inputs.

The most promising networks were: i) the one with all inputs; ii) the one
with only Repi and Mw. What we expect is that by increasing the number
of neurons the bias decreases and variance increases, while by decreasing
the number of neurons the bias increases and variance decreases (principle
2). However it is not obvious how bias and variance change as functions
of the number of neurons and hence both directions should be considered.
In Table 3.3 we show the mean squared error mean (bias) and standard
deviation (std) for different numbers of neurons, for a net with magnitude
(Mw) and epicentral distance (Repi) as input, and a net with in addition the
velocity of the shear waves in the first 30 meters (Vs30) (all inputs).
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neurons all inputs Repi and Mw

bias std bias std
20 0.0594 0.0073 0.0566 0.0079
25 0.0569 0.0068 0.0595 0.0075
30 0.0573 0.0083 0.0580 0.0083
35 0.0587 0.0079 0.0575 0.0070
40 0.0579 0.0069 0.0602 0.0060

Table 3.3: Mean squared error mean (bias) and standard deviation (std) for
different numbers of neurons, for a net with magnitude (Mw) and epicentral
distance (Repi) as input, and a net with in addition the velocity of the shear
waves in the first 30 meters (Vs30) (all inputs).

As expected the variations are much smaller then observed when selecting
the additional inputs. It seems that the optimum is attained with 25 and 35
neurons for the network with all the inputs and the one with only Repi and
Mw respectively. We know that the error as a function of the model capacity
should have a minimum which depends on the amount of data (principle 3).
Indeed three inputs might imply a too high capacity, which is why 25 neurons
appear to work better in this case, while two inputs might imply a too low
capacity, which is why 35 neurons appear to work better in the other case.

3.4 Conclusions

Training nets separately for different class sites appears not to work because
of a not rich enough dataset.
Two possible nets have been select, taking into account inputs significance
and amount of data available:

1. Net ALL: with 25 neurons in the hidden layer, using Repi, Mw and Vs30

as additional inputs.

2. Net RM: with 35 neurons in the hidden layer, using Repi and Mw as
additional inputs.

In Table 3.4 we show a summary of the elements characterizing net ALL,
net RM and net OLD, the latter being the net with the original settings (no
additional inputs, 30 neurons) described in Chapter 2.
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net inputs neurons bias std

OLD SA 30 0.0683 0.0101
RM SA, Mw, Repi 35 0.0575 0.0070
ALL SA, Mw, Repi, Vs30 25 0.0569 0.0068

Table 3.4: Summary of the elements characterizing net ALL, net RM and
net OLD, the latter being the net with the original settings (no additional
inputs, 30 neurons). More precisely we report the inputs used to train the
network (inputs), where SA is the spectral acceleration defined in Chapter
1, the mean squared error mean (bias) and standard deviation (std), and the
number of neurons (neurons).

Both the nets ALL and RM attain very similar performance and training
computational costs since net ALL has less neurons but one extra input.
Moreover having Vs30 as extra input in the net ALL looks in principle correct,
since soil conditions should be taken into account. However, simpler models
are usually more robust. Moreover, collecting precised enough information
might be problematic, since often even in the SIMBAD dataset only the site
class is provided, which corresponds to a range for the variable Vs30 and not
to its precised value. In our case, when only the site class was provided the
conversion in the table 3.5 was applied.

site class Vs30 interval [m/s] representative value [m/s]

A 800 > 900
B 360 - 800 580
C 180 - 360 270
D 0 - 180 90

Table 3.5: Average shear-waves velocity in first 30 meters (Vs30) representa-
tive values chosen for each site class.

Even though such approximation had to be applied for 16.58 % of the
data, the results obtained were satisfactory.
In conclusion both ANNs should be kept for further testings on meaningful
cases like L’Aquila, Po plain and Norcia, which will be done in the following.
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Chapter 4

Optimization Algorithms

4.1 Introduction

To train a neural network means to set its parameters in order to obtain
the desired input-output relation. This is done by minimizing an objective
function f(x), using an optimization algorithm. The purpose of this chapter
is to provide a brief description of some optimization algorithms that can be
used to train neural networks. In the following we adopt the notation and
the presentation structure of [34] and [50]. We will consider an objective
function f : Rn → R, f ∈ C2(Rn) to be minimized, i.e. we look for x∗ ∈ Rn

such that f(x∗) = min
x∈Rn

f(x).

4.2 Line Search Methods

In the line search strategy, the algorithm chooses a direction pk and searches
along this direction from the current iterate xk for a new iterate with a lower
function value. Given an initial guess x0 ∈ Rn, the step k has the form:

xk+1 = xk + αkpk, (4.1)

where xk, pk ∈ Rn and αk > 0. The distance to move along pk can be found by
approximately solving the following one dimensional minimization problem
to find a step length αk:

min
αk>0

f (xk + αkpk) , (4.2)
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By solving (4.2) exactly (exact linear search), we would derive the maximum
benefit from the direction pk, but an exact minimization may be expensive
and is usually unnecessary. Another possibility is to generate a limited num-
ber of trial step lengths until a step that loosely attained the minimum of
(4.2) is found (inexact linear search). At the new point, a new search direc-
tion and step length are computed, and the process is repeated.
Popular inexact line search conditions, called Wolfe conditions, state that αk
should give sufficient decrease in the objective function f without being too
small, as measured by the following inequalities:

f (xk + αkpk) ≤ f (xk) + c1αk∇fTk pk
∇f (xk + αkpk)

T pk ≥ c2∇fTk pk
(4.3)

for some constant c1 ∈ (0, 1), c2 ∈ (C1, 1). Here, we adopt the short-hand
notation ∇fk = ∇f(xk). In other words, the reduction in f should be pro-
portional to both the step length αk and the directional derivative ∇fTk pk.
Regarding the convergence of line search methods we have the following the-
orem [50].

Theorem 1. Consider any iteration of the form (4.1), where pk is a descent
direction and αk s atisfies the Wolfe conditions (4.3). Suppose that f is
bounded below in Rn and that f is continuously differentiable in an open set

N containing the level set L def
= {x : f(x) ≤ f (x0)}, where x0 ∈ Rn is the

starting point of the iteration. Assume also that the gradient ∇f is Lipschitz
continuous on N , that is, there exists a constant L > 0 such that

‖∇f(x)−∇f(x̃)‖ ≤ L‖x− x̃‖, for all x, |x̃ ∈ N (4.4)

then ∑
k≥0

cos2 θk ‖∇fk‖2 <∞, (4.5)

where

cos θk =
−∇fTk pk
‖∇fk‖ ‖pk‖

. (4.6)

4.3 The Steepest Descent Method

We consider the first-order Taylor series expansion of f(x) centered in xk,
i.e.

f (xk+1) = f (xk + αkpk) ≈ f (xk) +∇f(xk)
Tαkpk, (4.7)
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For f(xk+1) to be less than f(xk) it must hold

∇f(xk)
Tαkpk < 0. (4.8)

To satisfy the above condition we can set pk = −∇f(xk).
For quadratic functions of the form f(x) = 1

2
xTQx−bTx we then immediately

have

αk =
∇fkT∇fk
∇fTk Q∇fk

. (4.9)

The following theorem concerns the convergence rate of a steepest descent
method.

Theorem 2. Suppose that f : Rn → R is twice continuously differentiable,
and that the iterates generated by the steepest-descent method with exact line
searches converge to a point x∗ at which the Hessian matrix ∇2f(x∗) is pos-
itive definite. Let r be any scalar satisfying

r ∈
(
λn − λ1

λn + λ1

, 1

)
, (4.10)

where λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of ∇2f(x∗). Then for all k
sufficiently large, we have

f (xk+1)− f (x∗) ≤ r2 [f (xk)− f (x∗)] . (4.11)

In general, we cannot expect the rate of convergence to improve if an
inexact line search is used. Therefore, the above theorem shows that the
steepest descent method can have a very slow rate of convergence, even when
the Hessian is reasonably well conditioned.

4.4 The Newton’s Method

The Newton’s method is based on the second-order Taylor expansion of f
near the point xk + ∆Xk:

f (xk+1) = f (xk + ∆xk) ≈ f (xk) +∇fTk ∆xk +
1

2
∆xTk∇2fk∆xk, (4.12)

where ∇2fk = ∇2f(xk). The quantity ∆xk minimizing the expansion is given
by

pN
k = −∇2f−1

k ∇fk (4.13)
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Since the Hessian matrix ∇2fk might not always be positive definite, pN
k

might not always be a descent direction.
The following theorem provides sufficient conditions to ensure the local con-
vergence of the Newton’s method.

Theorem 3. Suppose that f is twice differentiable and that the Hessian ma-
trix ∇2f(x) is Lipschitz continuous in a neighborhood of a solution x∗ at
which ∇f(x∗) = 0, and that ∇2f(x∗) is positive definite. Consider the New-
ton iteration xk+1 = xk + pk, where pk = −∇2f−1

k ∇fk. Then

1. if the starting point x0 is sufficiently close to x∗, the sequence of iterates
given by the Newton’s method converges to x∗;

2. the rate of convergence of {xk} is quadratic;

3. the sequence of gradient norms {||∇fk||} converges quadratically to
zero.

While Newton’s method usually produces faster convergence than steep-
est descent, it is possible for the algorithm to oscillate or diverge.
Another problem with Newton’s method is that it requires the computation
and storage of the Hessian matrix, as well as its inverse.

4.5 The BFGS Method

The Broyden - Fletcher - Goldfarb - Shanno (BFGS) method [31] is a quasi-
Newton method, meaning the following quadratic model mk of the objective
function at the current iterate xk is used:

mk(p) = fk +∇fTk p+
1

2
pTBkp, (4.14)

where Bk is an n × n symmetric positive definite matrix that approximates
the Hessian matrix. Note that the function value and gradient of this model
at p = 0 match fk and ∇fk, respectively. The minimizer pk of this convex
quadratic model can be written explicitly as

pk = −B−1
k ∇fk. (4.15)
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Instead of computing Bk at every iteration, the idea is to update it in a
simple manner to account for the curvature measured during the most recent
step. Suppose we have generated a new iterate xk+1 and want to construct
a new quadratic model mk+1, of the form

mk+1(p) = fk+1 +∇fTk+1p+
1

2
pTBk+1p. (4.16)

One reasonable requirement is that the gradient of mk+1 should match the
gradient of the objective function f(·) at the last two iterates xk and xk+1.
Since ∇mk+1(0) is precisely ∇fk+1, the second of these conditions is satisfied
automatically. The first condition can be written as

∇mk+1 (−αkpk) = ∇fk+1 − αkBk+1pk = ∇fk. (4.17)

By rearranging the terms, we obtain

Bk+1αkpk = ∇fk+1 −∇fk. (4.18)

To simplify the notation it is useful to define the vectors

sk = xk+1 − xk = αkpk, yk = ∇fk+1 −∇fk, (4.19)

so that we get
Hk+1yk = sk. (4.20)

where we have Hk+1 = B−1
k+1. To identify Hk+1 uniquely we solve

minH ‖H −Hk‖
subject to H = HT , Hyk = sk

(4.21)

meaning that we look for the matrix Hk+1 closest to Hk. Choosing a suitable
norm (a weighted Frobenius norm) the solution is easily computable. Indeed
we get

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
. (4.22)

The next theorem concerns the convergence rate of the BFGS method, cf
[50].
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Theorem 4. Suppose that f : Rn → R is twice continuously differentiable.
Given an initial guess x0 ∈ Rn, consider the iteration xk+1 = xk + pk, where
pk = −B−1

k ∇fk. Let us assume also that {xk}k≥0 converges to a point x∗

such that ∇f(x∗) = 0 and ∇2f(x∗) is positive definite. Then the sequence
{xk}k≥0 converges superlinearly if and only if

lim
k→∞

‖(Bk −∇2f (x∗)) pk‖
‖pk‖

= 0. (4.23)

The BFGS method is robust, and its rate of convergence is superlinear,
which is fast enough for most practical purposes. Even though Newton’s
method converges more rapidly (that is, quadratically), its cost per iteration
usually is higher, because of the need for second derivatives and the solution
of a linear system.

4.6 The Levenberg-Marquardt Method

In least-squares problems, the objective function f has the following special
form:

f(x) =
1

2

m∑
j=1

r2
j (x), (4.24)

where each rj is a smooth function from Rn to R. We refer to each rj as a
residual. This is often the case satisfied by the training step in ANNs, where
the residual is a measure of the distance to the data.
Let

r(x) = (r1(x), r2(x), . . . , rm(x))T , (4.25)

and

J(x) =

[
∂rj
∂xi

]
j=1,2,...,m i=1,2,...,n

. (4.26)

Then, it immediately follows

∇f(x) =
m∑
j=1

rj(x)∇rj(x) = J(x)T r(x), (4.27)
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∇2f(x) =
m∑
j=1

∇rj(x)∇rj(x)T +
m∑
j=1

rj(x)∇2rj(x)

= J(x)TJ(x) +
m∑
j=1

rj(x)∇2rj(x).

(4.28)

In many applications, the first partial derivatives of the residuals and hence
the Jacobian matrix J(x) are relatively easy or inexpensive to be computed.
We can thus easily obtain the gradient∇f(x) and the first part of the Hessian,
using the above formulas (4.27) (4.28). Moreover, the second term of the
Hessian in (4.28) is often less important than the first one, either because
the residuals rj are close to affine near the solution (that is, ∇2rj(x) are
relatively small) or because of small residuals (that is, rj(x) are relatively
small).
The Gauss-Newton method has the general form

xk+1 = xk + αkp
GN
k , (4.29)

where in order to define pGNk we make use of this approximation solving the
following system to obtain the search direction pGN

k :

JTk Jkp
GN
k = −JTk rk, (4.30)

instead of solving the standard Newton equations ∇2f (xk) p = −∇f (xk).
One problem with the Gauss-Newton method is that the matrix Hk =
JT (xk)J(xk) might not be invertible. This can be overcome by using the
following modification to the approximate Hessian matrix

Gk = Hk + µkI. (4.31)

These Gk has the same eigenvalues of Hk shifted by µk. With a large enough
µk > 0, Gk is positive definite, hence invertible. Moreover, if Gk can therefore
be made positive definite, the solution pLMk of the following linear system

Gkp
LM
k = −JTk rk, (4.32)

is a descent direction. The Levenberg-Marquardt algorithm is therefore

xk+1 = xk − [JT (xk)J(xk) + µkI]−1J(xk)r(xk) (4.33)
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This algorithm has a number of useful features. Indeed as µk increases, it
approaches the steepest descent algorithm with small learning rate, i.e.

xk+1
∼= xk −

1

µk
JT (xk) v (xk) = xk −

1

2µk
∇f(x), for large µk. (4.34)

If µk tends to zero the algorithm becomes the Gauss-Newton method. The
algorithm starts with µk set to some small value. If a step does not yield
a smaller value for f , i.e. f(xk+1) ≥ f(xk), then the step is repeated with
µk multiplied by some factor ϑ > 1. As observed before, as µk gets larger
this algorithm approaches the steepest descent algorithm, which guarantees
to decrease the value of f(xk+1). On the contrary, if f(xk+1) < f(xk), then
µk is divided by ϑ for the next step, so that the algorithm will approach
Gauss-Newton algorithm, which features higher convergence rate.

4.7 The Conjugate Gradient Method

The conjugate gradient method is an iterative method for solving a linear
system of equations

Ax∗ = b (4.35)

where A is an n × n symmetric positive definite matrix. This problem can
be stated equivalently as the following minimization problem:

min
x∈Rn

φ(x), (4.36)

where

φ(x) =
1

2
xTAx− bTx. (4.37)

We recall that a set of nonzero vectors p0, p1, . . . , pl ∈ Rn is said to be con-
jugate with respect to the symmetric positive definite matrix A if

pTi Apj = 0, for all i 6= j. (4.38)

Given a starting vector x0 ∈ Rn and a set of conjugate directions {p0, p1, . . . , pn−1},
consider the sequence

xk+1 = xk + αkpk, k ≥ 0 (4.39)
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where

αk = − rTk pk
pTkApk

, (4.40)

minimizes the quadratic functional φ defined in 4.37, and

rk = Axk − b. (4.41)

The following results ensure convergence and key properties of the algorithm.

Theorem 5. For any x0 ∈ Rn the sequence {xk} generated by the conjugate
direction algorithm (4.39), converges to the solution x∗ of the linear system
(4.35) in at most n steps.

Theorem 6. Let x0 ∈ Rn be any starting vector and suppose that the se-
quence {xk} is generated by the conjugate direction algorithm. Then

rTk pi = 0, for i = 0, 1, . . . , k − 1. (4.42)

Moreover xk is the minimizer of φ(x) = 1
2
xTAx− bTx over the set

{x|x = x0 + span {p0, p1, . . . , pk−1}} . (4.43)

The conjugate gradient method is a conjugate direction method with a
particular property: in generating its set of conjugate vectors, it can com-
pute a new vector pk by using only the previous vector pk−1. It does not need
all the previous elements p0, p1, ..., pk−2 of the conjugate set; pk is automati-
cally conjugate to these vectors. This remarkable property implies that the
method requires little storage and computation.
In the conjugate gradient method, each direction pk is chosen to be a lin-
ear combination of the negative residual −rk (which is the steepest descent
direction for the function φ) and the previous direction pk−1. We write

pk = −rk + βkpk−1, (4.44)

By premultiplying by pTk−1A and imposing the condition pTk−1Apk = 0, we
find that

βk =
rTkApk−1

pTk−1Apk−1

. (4.45)

In practice, the conjugate gradient algorithm can be formulated as reported
in Algorithm 1.
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Given x0;
Set r0← Ax0;
while rk 6= 0 do

αk ←
rTk rk
pTkApk

; (4.46)

xk+1 ← xk + αkpk; (4.47)

rk+1 ← rk + αkApk; (4.48)

βk+1 ←
rTk+1rk+1

rTk rk
; (4.49)

pk+1 ← −rk+1 + βk+1pk; (4.50)

k ← k + 1; (4.51)

end
Algorithm 1: The Conjugate Gradient Method.

4.7.1 The Fletcher-Reeves Conjugate Gradient Method

An extension of the conjugate gradient method to nonlinear functions can
be provided by making simple changes in Algorithm 1. We first need to
perform a line search that identifies an approximate minimum of the non
linear function f along the direction pk. Second, the residual rk, which is
simply the gradient of φ(xk), must be replaced by the gradient of the non-
linear objective f . These changes give rise to the Fletcher-Reeves Conjugate
Gradient (FRCG) algorithm for nonlinear optimization, which is described
in Algorithm 2.
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Given x0;
Evaluate f0 = f (x0) ,∇f0 = ∇f (x0);
Set p0 ← −∇f0, k ← 0;
while ∇fk 6= 0 do

Compute αk and set xk+1 = xk + αkpk;
Evaluate ∇fk+1;

βFR
k+1 ←

∇fTk+1∇fk+1

∇fTk ∇fk
; (4.52)

pk+1 ← −∇fk+1 + βFR
k+1pk; (4.53)

k ← k + 1; (4.54)

end
Algorithm 2: Fletcher-Reeves Conjugate Gradient (FRCG) Method.

In FRCG algorithm is appealing for large nonlinear optimization problems
because each iteration requires only the evaluation of the objective function
and its gradient. No matrix operations are required for the steps (4.52)-
(4.54), and just a few vectors need to be stored.
The search direction pk may fail to be a descent direction unless αk satisfies
the strong Wolfe conditions:

f (xk + αkpk) ≤ f (xk) + c1αk∇fTk pk,∣∣∣∇f (xk + αkpk)
T pk

∣∣∣ ≤ −c2∇fTk pk,
(4.55)

where 0 < c1 < c2 <
1
2
.

4.7.2 The Polak-Ribière Conjugate Gradient Method

Many variants of the Fletcher–Reeves CG method exist. They differ from
each other mainly in the choice of the parameter βk. An important variant,
proposed by Polak and Ribière, defines this parameter as follows:

βPR
k+1 =

∇fTk+1 (∇fk+1 −∇fk)
‖∇fk‖2 (4.56)

It is identical to the FRCG algotirhm when f is a strongly convex quadratic
function and the line search is exact. When applied to general nonlinear
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functions with inexact line search, however, the behavior of the two algo-
rithms differs. Numerical experiments indicate that the Polak and Ribière
CG algorithm tends to be the more robust and efficient than the FRCG one.

4.7.3 The Scaled Conjugate Gradient Method

The Scaled Conjugate Gradient method [2] considers an update of the direc-
tion pk of the form

pk+1 = −θk+1gk+1 + βksk, k ≥ 0 (4.57)

where gk = ∇fk, sk = xk+1 − xk = αkpk and

βk =
(θk+1yk − sk)T gk+1

yTk sk
. (4.58)

Observe that if θk+1 = 1, then we get the classical conjugate gradient al-
gorithms according to the value of the scalar parameter βk. On the other
hand, if βk = 0, then we get another class of algorithms according to the se-
lection of the parameter θk+1. There are two possibilities for θk+1: a positive
scalar or a positive definite matrix. If θk+1 = 1 we have the steepest descent
algorithm. If θk+1 = (∇2fk)

−1, or an approximation of it, then we get the
Newton or the quasi-Newton algorithms, respectively. Therefore, we can see
that in the general case, when θk+1 6= 0 is selected in a quasi-Newton manner
and βk+1 6= 0, then we have a combination between the quasi-Newton and
the conjugate gradient methods.
If sTj ∇fj+1 = 0, j = 0, 1, . . . , k we get

pk+1 = −θk+1gk+1 +
θk+1y

T
k gk+1

αkθkgTk gk
sk, (4.59)

which is the direction corresponding to a generalization of the Polak and
Ribière formula. If additionally the successive gradients are orthogonal, then

pk+1 = −θk+1gk+1 +
θk+1g

T
k+1gk+1

αkθkgTk gk
sk, (4.60)

which is the direction corresponding to a generalization of the Fletcher and
Reeves formula. Therefore, (4.60) is a general formula for direction compu-
tation in a conjugate gradient manner including the classical Fletcher and
Reeves, and Polak and Ribière algorithms.
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4.8 The Resilient Backpropagation Method

In this section we desribe the so called ”resilient backpropagation method”.
Let ∆k+1 ∈ Rn be a vector of step lengths for every coordinate direction

∆i
k+1 =


η+∆i

k if ∇f ik∇f ik−1 > 0
η−∆i

k if ∇f ik∇f ik−1 < 0
∆i
k else

(4.61)

where 0 < η− < 1 < η+ and the apex i indicates the i-th element of a vector.
The adaptation rule works as follows: every time the partial derivative of
the corresponding xi changes its sign, which indicates that the last update
was too big and the algorithm has jumped over a local minimum, the update
value ∆i is decreased by the factor η−. If the derivative retains its sign,
the update value is slightly increased in order to accelerate convergence in
shallow regions.
If the partial derivative changes sign, i.e. the previous step was too large and
the minimum was missed, the previous weight update is reverted, i.e.

∆i
k+1 = −∆i

k if ∇f ik∇f ik−1 < 0. (4.62)

The derivative is supposed to change its sign once again in the following step.
In order to avoid a double punishment of the update value, there should be
no adaptation of the update value in the succeeding step. In practice this
can be done by setting ∇f ik = 0 in (4.61).
If ∇f ik∇f ik−1 ≥ 0, the update is analogous to the steepest descent method
but only the sign of the gradient is taken into account, while the step length
is the one determined above:

xik+1 = xik + sign(−∇f ik)∆i
k if ∇f ik∇f ik−1 ≥ 0. (4.63)

Multilayer networks typically use sigmoid transfer functions in the hidden
layers. Sigmoid functions are characterized by the fact that their slopes
must approach zero as the input gets large. Training these network with a
steepest descent algorithm causes small changes in their weights and biases,
even though the weights and biases are far from their optimal values, because
the gradient can have a very small magnitude.
The resilient backpropagation training algorithm [65] is particularly well
suited in these cases, since only the sign of the derivative can determine
the direction of the weight update and not their magnitude.
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Chapter 5

Training Algorithm Selection

5.1 Introduction

The best suited algorithm to train a neural network depends on many factors,
such as the number of data in the training set, the number of weights and
biases in the network and the error goal. The aim of this chapter is to
investigate which algorithm is best suited for net ALL and net RM.

5.2 Performance Measure and Overfitting

Let f : Rn → Rm be our ANN model. Let µ ∈ Rl be the set of parameters
of the ANN, so that our response variable is y = f(x;µ). Given the training
set {(xi, yi)}Ni=1 for N � n our goal is to minimize a performance measure,
representing the distance of the prediction to the real data, which we recall
that in our case is the mean squared error (MSE):

min
µ

1

N

N∑
i=1

m∑
j=1

(yij − f(xi;µ)j)
2 (5.1)

where the subscript j indicates the j-th element of the vector.
In order to avoid overfitting, a regularization term is usually added by pe-
nalizing large parameter values, i.e. (5.1) is replaced by

min
µ

1

N

N∑
i=1

m∑
j=1

(yij − f(xi;µ)j)
2 + γ||µ||22, (5.2)
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where γ > 0.
Another procedure to avoid overfitting is called ”early stopping” and consists
in stopping the training step when the error on the validation set starts
growing. In particular, the process stops whenever the error increases a fixed
amount of times Nfail.

5.3 Workflow Motivation

The reason why this kind of analysis is done only after fixing the net structure
is because the optimal net structure should be rather independent from the
training algorithm, while the opposite is not true. Indeed the information of
an input about the output is independent from the way you set the weights
of the net, even though the way you exploit this information depends on
the weights. Also, the number of neurons in the hidden layer should have a
stronger impact than the techniques in the training phase to improve gener-
alization, such as regularization and early stopping, even though all of these
have an impact on overfitting. In fact, the number of neurons acts macro-
scopically on the complexity of the functions the model can explain and can
both higher and lower the net capacity, while regularization and early stop-
ping are finer tuning procedures and can only lower capacity.
Finally, we point out that will not focus on setting the parameters of the
specific algorithm because:

• we expect in general the algorithm type to have a greater impact than
the parameters tuning;

• in case the number of data increase or the network structure changes,
this parameters should be reset.

5.4 Evaluation Principles

Since the minimum of the performance measure function is determined only
by the data, all of the optimization algorithms to find such minimum should
lead to setting very similar weights. Hence, we should be looking only for the
fastest algorithm. However, different algorithms handle overfitting in differ-
ent ways. For example, early stopping might not be effective with algorithms
converging in few iterations. This is why in [75] networks were trained us-
ing the Levenberg-Marquardt algorithm [33] with parameters values to slow
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down convergence.
Since net ALL and net RM have different structures from the standard
net trained by Gatti [75], we retrained our networks using the Levenberg-
Marquardt algorithm with its default parameters, that are reported in Ta-
ble 5.1.

net parameters of [75] default parameters

bias std bias std
ALL 0.0569 0.0068 0.0478 0.0077
RM 0.0575 0.0070 0.0486 0.0079

Table 5.1: Bias and standard deviation (std) for net ALL and net RM. Left:
parameters proposed in [tab:gatti param]; Right: default parameters for
the Levenberg-Marquardt algorithm.

In this case we have chosen the default parameters since the bias decreases
while the variance seems to remain constant, compared to the settings of 5.1.
This is possibly due to the fact that the two networks have a structure less
prone to overfitting, thanks to a careful setting of the model capacity, hence
diminishing the importance of early stopping in the procedure.
As it can be seen from Table 5.1, the performance can see performance can
change significantly using different parameter setting for the same algorithm.
Hence, to select the best suited algorithm, we will not only look at the exe-
cution time but also at bias and variance.
Moreover, there are different stopping conditions for every algorithm since
not always the desired error threshold is reached. Hence, looking at bias and
variance is imperative to see whether the training had success or not. Then,
for a more detailed analysis it is possible to look at which stopping criterion
has been satisfied.

5.5 Performance Analysis

As a first step, different training algorithms were tested in Matlab for both net
ALL and net RM. The execution (CPU) time are relative to a run of the whole
procedure, meaning the training of 50 networks with random initialization,
which is indeed a fair choice in order to have a more stable estimate of the real
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average execution time. In tables 5.2 and 5.3 are reported the CPU times for
training with different algorithms respectively net ALL and net RM. Since
these CPU times depend on the implementation and on the machine they
are run on, they should be used only for rough comparisons between each
other.

algorithm time [s] bias std

Scaled Conjugate Gradient 16,34 0.0490 0.0067
Resilient Backpropagation 20,21 0.0562 0.0069

Fletcher-Reeves Conjugate Gradient 29,94 0.0474 0.0057
Polak-Ribiére Conjugate Gradient 30,75 0.0502 0.0069

Gradient Descent 35,64 0.1816 0.0259
Levenberg-Marquardt 37,77 0.0478 0.0077
BFGS Quasi-Newton 193,24 0.0492 0.0075

Table 5.2: Execution time for different algorithms used to train net ALL
with error goal 10−3.

algorithm time [s] bias std

Scaled Conjugate Gradient 19.08 0.0504 0.0076
Resilient Backpropagation 23.02 0.0535 0.0065

Polak-Ribiére Conjugate Gradient 33.68 0.0499 0.0059
Fletcher-Reeves Conjugate Gradient 34.14 0.0496 0.0061

Gradient Descent 38.15 0.1876 0.0311
Levenberg-Marquardt 69.69 0.0486 0.0079
BFGS Quasi-Newton 447.94 0.0495 0.0061

Table 5.3: Execution time for different algorithms used to train net RM with
error goal 10−3.

We notice that the execution times reported in tables 5.2 and 5.3 are
higher in general for net RM than for net ALL: this is because net RM has
more neurons and hence more parameters to be set. In particular net ALL
has 634 parameters, while net RM has 849 parameters. Since the dimensions
of the two nets do not differ dramatically, the execution times are quite
similar in the two cases.
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Given the results reported in tables 5.2 and 5.3 we can draw the following
conclusions:

• Gradient Descent [34] attains very high values of bias and variance,
meaning the training was not successful. Indeed, the maximum num-
ber of iterations was reached, signaling that the algorithm is simply
too slow. This is reasonable, since gradient descent is a very simple
approach.

• BFGS Quasi-Newton [31, 19, 64, 9, 80, 8] is the slowest since the
approximate Hessian must be stored, and its dimension is n×n, where
n is equal to the number of weights and biases in the network. Few
iterations with high accuracy, hence computationally expensive, are
performed.

• Levenberg-Marquardt [33, 47, 34, 8] algorithm is also slow. It be-
haves similarly to a Newton’s method near a minimum. Hence, when
the number of parameters increases, the computations required increase
geometrically. Indeed, it performs better for net ALL, where the exe-
cution time is comparable with the one of the other algorithms, than
for net RM.

• Fletcher-Reeves [27, 34, 68] and Polak-Ribiéret [57, 59, 58] Con-
jugate Gradient appear to be equivalent, with execution times in the
middle range since they require a moderate memory storage.

• Scaled Conjugate Gradient [51, 2] and Resilient Backpropa-
gation [65] are the fastest, since many iterations with inexact line
search are performed, hence less computationally expensive, especially
in terms of memory storage.
Scaled Conjugate Gradient is the most performing because takes more
into account information about the gradient magnitude, which Resilient
Backpropagation does not account for, and the second derivative in
Newton-like way, contrary to the other conjugate gradient algorithms.

The networks have been trained once more by setting the same initial values
for the weights and the biases. Their initialization is indeed by default ran-
dom, in order to avoid converging to the same local minimum each time the
network is trained. This has been done in order to offer a more standardized
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comparison of the algorithms in terms of time, since the same initial condi-
tions are used. The results of this second set of experiments are reported in
Table 5.4.

algorithm time net ALL [s] time net RM [s]

Scaled Conjugate Gradient 20.5003 21.6899
Resilient Backpropagation 23.3590 28.619

Fletcher-Reeves Conjugate Gradient 29.0517 33.6469
Polak-Ribiére Conjugate Gradient 29.1224 33.7605

Levenberg-Marquardt 43.7960 68.2432
BFGS Quasi-Newton 218.9319 504.3658

Table 5.4: The execution time for different algorithms used to train net ALL
and net RM with non random initialization and error goal 10−3.

As we can see by comparing the results of tables 5.2, 5.3 and 5.4, the
execution times seems to be almost constant, suggesting that all of the above
considerations are independent from the initial set chosen.
In conclusion, since the number of net parameters is large, algorithms that
feature low memory storage and cheap iterations seems to perform better.

5.5.1 Test Set Analysis

Earthquake ground motion is a complex phenomenon and the associated
data can be highly variable. Minima of the ANN objective function are de-
termined from those data and hence they are variable as well. During the
ANN training we look for these ”data driven” minima. However, what we
are really looking for, i.e. the true minima, are the minima we would obtain
by using data from all the possible realization of the phenomenon. This dis-
crepancy depends on the data variability.
It makes sense to look for the minima of the objective function, since it is
the best guess of the true minima we can make. However, getting too close
to these minima might result in overfitting. Hence, when the variability is
high, it makes sense to sacrifice accuracy in the approximation of the objec-
tive function, in favour of other properties such as a solution with a reduced
computational cost. This is why Scaled Conjugate Gradient (SCG) performs
better than other algorithms, not only in terms of CPU time, but also in
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terms of bias and standard deviation.
Fletcher-Reeves and Levenberg-Marquardt appear to perform better than
SCG in terms of bias and standard deviation for net ALL and net RM re-
spectively. However, in this case the moderate gain in performance is not
comparable with the loss in terms of CPU time, w.r.t. SCG.
All the algorithms in general perform quite well on the test set. However, we
notice that even though the error goal has been set to 10−3 the computed µ
is always above this value. Indeed, the training phase always halts because
of early stopping. Possible reasons are:

• not enough data are available;

• a better tuning of the ANN model is needed;

• some data preprocessing is needed.

The above hypothesis do not exclude each other. The simplest approach
is probably some finer tuning of the model, which will be analyzed in the
following chapters.
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Chapter 6

Training, Validation and Test
Set

6.1 Minimum Error Goal

From now on we will use Scaled Conjugate Gradient, since, given the results
of Chapter 5, it appears to be the best suited training algorithm for our
application.
During the training, the bias is always above 10−2, due to early stopping. As
a further confirmation we propose Table 6.1, containing bias and standard
deviation for different error goals using Scaled Conjugate Gradient as training
algorithm.

error goal net ALL net RM

bias std bias std
10−1 0.1040 0.0130 0.1028 0.0087
10−2 0.0492 0.0071 0.0487 0.0066
10−3 0.0490 0.0067 0.0504 0.0076
10−4 0.0487 0.0077 0.0483 0.0068

Table 6.1: Bias and standard deviation (std) for different error goals, using
Scaled Conjugate Gradient as training algorithms for net ALL and net RM.

In Table 6.2 we show the execution times for different error goals using
Scaled Conjugate Gradient as training algorithms for net ALL and net RM.
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error goal net ALL time [s] net RM time [s]

10−1 9.73 12.47
10−2 16.38 19.12
10−3 17.63 19.17
10−4 17.70 18.61

Table 6.2: Execution time for different error goals, using Scaled Conjugate
Gradient as training algorithms for net ALL and net RM.

As we can see, from 10−2 and below bias and variance do not appear to
have decreasing trend. Moreover, the execution time stops increasing at the
same threshold.

6.2 Dataset Sliptting Strategy

The roles of training, validation and test set are:

• Training set: it is used to set the model parameters. Increasing its
size allows more precised predictions, also by highering model capacity.
We set it to be the 70% of the whole dataset.

• Validation set: it is supposed to be made of patterns different from
those of the training set and thus used to monitor the accuracy of the
ANN model during the training procedure. Increasing its size with
respect to the training set might lead to a more severe but precised
judgment of the model performance, causing early stopping to occur
sooner. A too small size would make this performance check highly
variable, hence unreliable. We set it to be the 20% of the whole dataset.

• Test set: a set, not used during ANN training and validation, but
needed to evaluate the network capability of generalization in the pres-
ence of new data. Increasing its size leads to more reliable estimates.
We set it to be the 10% of the whole dataset.

Since to decrease the bias we cannot increase our dataset, we can look for the
best strategy to split our set of data it into training, validation and test sets.
In fact, the training procedure depends on their relative dimensions, thus we
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can use them to tune our model. One could argue that it would be more
important to decide the relative dimensions of the training, validation and
test sets when deciding the net structure, since the model capacity depends
on the training set size. This is true, but, since by the training set is already
70% of the overall data we do not expect to obtain significant results varying
it. On the contrary, the validation set is 20%, thus it is possible to vary it
significantly with respect to its current size. This is exactly what we will test
in the following.

Before proceeding with some numerical experiments, we made the follow-
ing heuristic considerations:

1. Training set: it should be as big as possible, since precision keeps
improving, however only as far as validation and test set are big enough
to play their role properly.

2. Validation set: since it performs a check analogous to the one of
the test set, in principle it should not be smaller than the latter. It
should be also big enough to have early stopping working properly.
Since early stopping appears already to dominate the learning process,
we will attempt lowering it. Our hope is to lower the bias, since the
validation process would be less precised. Another option is to lower the
size of the validation set below the one of the test set, while increasing
Nfail, i.e. the number of times that the error on the validation set needs
to grow before halting the training in the early stopping procedure.

3. Test set: it should be big enough to give reliable estimates of the ANN
performance but not more, not to waste resources that could be used
in the other sets. It should be small compared to the training set.

In order to tune the relative dimensions of training, validation and test sets,
we will proceed in the following order:

1. find the minimum size of the test set;

2. tune the validation set size;

3. use all of the remaining data in the training set.

The reason to follow the above criterion is that we expect the minimum size
of the test set to be rather independent from the sizes of the training and
validation sets.

66



6.3 Numerical Results

In Table 6.3 we report the computed bias and standard deviation for net
ALL and net RM, when varying the relative sizes of training, validation and
test sets.

training validation test net ALL net RM

[%] [%] [%] bias std bias std
70 20 10 0.0490 0.0067 0.0504 0.0076
70 15 15 0.0493 0.0049 0.0509 0.0046
60 20 20 0.0502 0.0050 0.0508 0.0047
85 10 5 0.0506 0.0101 0.0507 0.0095

Table 6.3: Bias and standard deviation for net ALL and net RM, when
varying the relative sizes of training, validation and test sets, with Nfail = 6.

The ratios proposed in [75] are 70-20-10 % for the training, validation
and test set, respectively.
We can observe a significant decrease of the standard deviation when the size
of the test set varies from 10% to 15%, while it appears to remain constant
from 15% to 20%. Hence, 15% seems to be the optimal size.
The ratios 85-10-5 % reported in [54], designed for a network with no addi-
tional inputs, were also tested. However, this approach did not yield good
results.
Since the bias did not decrease when the validation size was reduced to 15%,
as mentioned before we are left with the option of lowering the validation
set size and increment Nfail. The results of such experiments are reported in
Table 6.4, where bias and standard deviation for net ALL and net RM, when
varying Nfail and the relative sizes of training, validation and test sets.
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Nfail training validation test net ALL net RM

[%] [%] [%] bias std bias std
6 70 15 15 0.0493 0.0049 0.0509 0.0046
6 75 10 15 0.0503 0.060 0.0518 0.0050
12 75 10 15 0.0484 0.048 0.0489 0.044
18 80 5 15 0.0481 0.051 0.0494 0.047

Table 6.4: Bias and standard deviation for net ALL and net RM, when
varying Nfail and the relative sizes of training, validation and test sets.

As clear from Table 6.4, decreasing the validation size to 10% and in-
creasing Nfail till 12 is the best compromise since the standard deviation is
not affected and the bias decreases. The decrease is not large, however at
least we expect the above results to be reliable, since the test ratio is now 15%.

Since the number of net parameters is large, algorithms that sacrifice ac-
curacy in favour of less memory storage and cheaper computations perform
better. Scaled Conjgated Gradient is the fastest, with great comprimse in
terms of performance on the test set.
An optimal ratio of 75-10-15 % for respectively the training, validation and
test set was found. A high number of failures on the validation test, in order
to halt the training in the early stopping procedure, was found optimal with
this kind of ratio. With the current dataset size, it does not look possible
improve performance of the ANN model in order to reach a bias on the test
set below 10−2.
In Table 6.5 we report bias, standard deviation and execution time of net
ALL and RM with respect to net OLD, whose settings are defined in [75].

net time [s] bias std

OLD 178.30 0.0683 0.0101
ALL 16,34 0.0484 0.0048
RM 19.08 0.0489 0.0044

Table 6.5: Comparison in terms of bias, standard deviation and execution
time of net ALL and RM with respect to net OLD.

In Table 6.6 we report the main settings of nets ALL, RM and OLD.
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net input neurons Nfail dataset ratios [%] training

OLD SA 30 6 70-20-10 LM
ALL SA, Repi, Mw, Vs30 25 12 75-10-15 SCG
RM SA, Repi, Mw 35 12 75-10-15 SCG

Table 6.6: The main settings of nets ALL, RM and OLD. LM is the shorthand
for Levenberg-Marquard, SCG for Scaled Conjugate Gradient.

As visible from Table 6.5, with respect to net OLD the new nets are ap-
proximately 10 times more fast to be trained, 1.4 times more accurate, i.e. in
terms of bias, and 2 times more precised, i.e. in terms of standard deviation.

69



Chapter 7

Predictions Using Data From
Numerical Simulations

7.1 Introduction

So far we obtained an estimate of net performance using a test set. How-
ever, what we are interested in is using the proposed ANN-based approach
starting from the data obtained from numerical simulations obtained with
the code SPEED [48] (SPectral Elements in Elastodynamics with Discontin-
uous Galerkin - http://speed.mox.polimi.it). SPEED is an open-source code
for the simulation of large-scale seismic events in three-dimensional complex
media, using discontinuous Galerkin Spectral Element methods for the ap-
proximate solution of the differential problem.
The networks input data we have at our disposal are not the real ones but
those obtained from the numerical simulations. To test the proposed ap-
proach for the generation of broad band ground motions and to verify the
accuracy of results comparing them with the data registered during recent
earthquakes, we consider in this chapter three real cases of interest. Specifi-
cally we will consider three earthquakes in Italy: L’Aquila 2009 (Mw = 6.3),
the Po Plain 2012 (Mw = 6.0) and the Norcia 2016 (Mw = 6.5) earthquakes.
These earthquakes are meaningful for validation purposes, because of the
availability of a significant number of near-source strong motion records,
some of which obtained at very short inter-station distances, as well as of
the good knowledge on the complex geologic setting, which enabled the con-
struction of a robust 3D numerical model.
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7.2 Quantification of the Error Induced by

Synthetic Ground-Motion Scenarios

What we are essentially interested in is to quantify the effect on our predic-
tions of the error introduced by synthetic ground-motion data. In Table 7.1
we report the mean squared error (MSE) for synthetic ground-motion data
generated with the code SPEED, calculated only for the SAs used as input
in the three study cases, and the number of stations.

case SPEED MSE number of stations

Po Plain 0.1961 11
L’Aquila 0.0813 6
Norcia 0.0628 18

Table 7.1: The mean squared error (MSE) for synthetic ground-motion data
generated with the code SPEED, calculated only for the SAs used as input
in the three study cases, and the respective number of stations.

As we can see from the results reported in Table 7.1, in all cases the
synthetic ground-motion MSE is higher than the MSE on the test set of our
nets that is reported in Table 6.5. While the synthetic ground-motion MSE
is comparable with the bias for L’Aquila and Norcia, it is much higher for
the Po Plain test case. Norcia test case appears to be the most reliable study
case, not only because it has the lowest MSE, but also because it has a much
greater number of stations and hence records.
Since neural networks are black box models, it is hard to predict the sen-
sitivity of the network, i.e. the error on the output knowing the error on
the input. Hence, we only reasonably expect to have higher errors in the Po
Plain test case. This is interesting for checking different levels of robustness
of our networks.
It is also important to consider that the error introduced by the synthetic
ground-motion is always due to an underestimate at short periods. This
might lead also to consistent underestimates of the net predictions. For fu-
ture works, this might suggest strategies to tackle the problem of coupling
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numerical simulations and neural networks in a more natural way: for in-
stance, it could be possible to penalize more underestimates in the training
phase of the networks, through a customized objective function.

While other earthquakes in the Po Plain and L’Aquila are still present in
the dataset this does not happen for the Norcia test case. The reasons why
we did not eliminate from the dataset all of the other records concerning the
Po Plain and L’Aquila cases are:

• these data represent approximately 11% of the data, hence the perfor-
mance decrease would be too large, especially in our case where more
data would be needed;

• we can observe better performance when data about previous earth-
quakes are available for a location.

Since no data at all about the earthquakes in Norcia have been used in
the training phase, we will consider it as the most representative of the
generalization capabilities of the broad band procedure. Moreover, this is
also the most recent case among the three.

7.3 Best Network Approach

The approach adopted by Paolucci et al. [54] consists in selecting, among
the 50 networks trained, the net attaining the lowest bias on the remaining
5% of the dataset. Indeed, that 5% has not been used in the training of
the nets, hence it can be used to evaluate these nets with a common meter.
However, as we have seen when setting the test set ratio to 15%, selecting a
net on the basis of 5% of the whole dataset might lead to unstable results.
Hence, we decided to select the net attaining the lowest bias on the test set,
which has indeed a reasonable dimension, and to use all of the available data
in the training phase. In other words we select the network with the best
generalization properties with respect to the test set, as it reasonably can be
considered to be representative of the phenomena.
We first apply our networks to the three study cases using the real data, as
a further confirm of the test set performance and in order to have a closer
idea of what to expect when using the synthetic ground-motion data.
In Table 7.2 performance on different study cases when using as input the
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real data, where the net attaining the lowest bias on the test set over 50
networks has been used.

net bias L’Aquila MSE Po Plain MSE Norcia MSE

ALL 0.0484 0.0532 0.0334 0.0848
RM 0.0489 0.0358 0.0345 0.0353
OLD 0.0683 0.0377 0.0359 0.0410

Table 7.2: The net attaining the lowest bias, reported in the table, on the
test set over 50 networks has been selected. In the table, performance on
different study cases when using as input the real data.

The analogous results based on employing synthetic ground-motion data
are repeated in Table 7.3.
As we can see from the results in Table 7.2, net RM and net OLD perform
well, with MSE below the one on the test set. Net RM appears to perform
slightly better in all cases. Net ALL instead performed better for Po Plain
and worse for L’Aquila and Norcia. This could be due to the fact that net
ALL makes use of more different inputs, hence could be less robust.
Notice that the MSE is higher for all nets in the Norcia test case, probably
because no data about that site were used in the training. The error difference
is evident for net ALL, which might lead us to think of an overfitting of the
data.
We now have a look at what happens when using synthetic ground-motion
data obtained by SPEED as input.

net L’Aquila MSE Po Plain MSE Norcia MSE

ALL 0.1367 0.2147 0.1859
RM 0.0695 0.2529 0.0992
OLD 0.0864 0.2736 0.1120

Table 7.3: The net attaining the lowest bias on the test set over 50 networks
has been selected. In the table, performance on different study cases when
using as input the synthetic ground-motion data.

These results are repoterd in Table 7.3. As expected the error grows con-
siderably in all case when using the data obtained by SPEED, in particular
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for Po Plain since the SPEED MSE is greater. The error grows in a super
additive way, with respect to the SPEED MSE and the MSE using the real
data. However, it remains difficult to estimate a trend.
This time the better performance of net RM are amplified by the error in-
troduced by SPEED. In conclusion, net RM appears to be not only more
performing than the other nets, but also more robust when considering con-
sistently biased input data.

74



Chapter 8

Bootstrap Aggregating
Algorithms

Selecting the network attaining the lowest bias on the test set ensures that it
generalizes well with respect to that set. The test set is supposed to be quite
representative of the phenomena. Hence, if the difference of bias between
nets is considerable, it is reasonable to select the one that attains the lowest
bias. When they are comparable however, there is no reason why we should
prefer the one with lowest bias, which might be actually overfitting the test
set. Moreover, since in any case many runs of training are needed to avoid
local minima, selecting only one network might not be the most effective
choice.
A common strategy that exploits more networks is called ”bagging”. It stands
for ”bootstrap aggregating” and consists in creating multiple nets through
bootstrapping, i.e. performing a random resampling of the data, and then
averaging their outputs. It improves precision and stability, since averaging
reduces the variability of the output, and allows to filter out the presence of
gaussian noise in the data. Since in our case the synthetic ground-motion
data obtained based one employing SPEED underestimate the real data, we
are interested in observing the effect it has on bagging and how relevant it is
with respect to gaussian noise.
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8.1 Net Selection

Selecting networks with low a test set error allows, in principle, to pick those
nets whose parameter values are as close as possible to the global ones. At the
same time averaging more nets further improves stability. We are interested
in observing the impact of the above effects on our nets, and analyze whether
there is an optimal trade off between the two. To check whether actually nets
with a low bias on the test set perform better than the ones with high bias,
we proceed as follows. We first measure the behaviour of each net in all of the
study cases. The vector of 50 nets was sorted according to the standardized
error on the test set. Given a vector x ∈ Rn its standardized vector z ∈ Rn

is biven by

z =
x− 1x

s
, (8.1)

where

x =
1

n

n∑
i=1

xi, (8.2)

s =

√√√√ 1

n− 1

n∑
i=1

(x− xi)2, (8.3)

and 1 = (1, 1, ...., 1) ∈ Rn.
To highlight possible trends, we consider also the moving average mi with
k = 5 elements of the standardized vector:

mi =
1

|Mi|
∑
j∈Mi

zj, i = 1...50, (8.4)

where zj is the j-th entry of the vector z defined in (8.1) and Mi is a set
defined as

Mi = {i− k − 1

2
, ..., i+

k − 1

2
} ∩ {1...50}, i = 1...50. (8.5)

In Figure 8.1 and 8.2 we report the MSE and 5 elements moving av-
erage in L’Aquila, Po Plain and Norcia test cases for net RM, using real
and synthetic input data, respectively. When using real input data (figure
Figure 8.1) in all of the three cases the MSE appears to be lower and less
variable for nets with a standardized error below -1. The same appears to
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be valid when using instead synthetic input data (Figure 8.2), even though
the trend is not so clear anymore because of the additional error introduced
that produces higher spikes.
We now investigate the MSE of the average output of the nets. We expect
that the MSE computed staring from the average output to be lower than
the average MSE of the nets since the MSE is a convex function.
We will gradually average from 1 to 50 networks staring from the ones with
a low bias on the test set, since as observed they seem to more robust when
performing on new datasets. In Figure 8.3 we plot the cumulative MSE as
a function of the error of the standardized error z defined in (8.1), i.e. the
MSE of the mean output of nets with standardized test set error smaller or
equal to z, both when using real and synthetic input data.
As expected, when using real input data, the minimum is clearly around -1
in all cases and the MSE values are lower than before. When using synthetic
input data the error grows and the trend is more hardly observable. The
minimum error appers to be reached around -1, more evidently for Po Plain
and L’Aquila test case, while the error looks rather constant for Norcia test
case.

We repeated the same analysis using net ALL and OLD. These results are
reported in figures 8.4-8.6 and 8.7-8.9, respectively. Concerning net ALL we
have very similar results. The only difference lies in the fact that the mini-
mum appears to be around -1.5 instead of -1.
Concerning net OLD instead, there appears to be minimum around -1.5 or
-1. However, in this case it looks reasonable to average all of the 50 nets,
with a further gain in stability.
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Figure 8.1: MSE and 5 elements moving average in L’Aquila, Po Plain and
Norcia test cases for net RM using real input data.
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Figure 8.2: MSE and 5 elements moving average in L’Aquila, Po Plain and
Norcia test cases for net RM using synthetic input data.
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Figure 8.3: Cumulative MSE(z), i.e. the MSE of the mean output of nets
with standardized test set error smaller or equal to z, for net RM using real
and synthetic data.
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Figure 8.4: MSE and 5 elements moving average in L’Aquila, Po Plain and
Norcia test cases for net ALL using real input data.
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Figure 8.5: MSE and 5 elements moving average in L’Aquila, Po Plain and
Norcia test cases for net ALL using synthetic input data.
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Figure 8.6: Cumulative MSE(z), i.e. the MSE of the mean output of nets
with standardized test set error smaller or equal to z, for net ALL using real
and synthetic data.
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Figure 8.7: MSE and 5 elements moving average in L’Aquila, Po Plain and
Norcia test cases for net OLD using real input data.
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Figure 8.8: MSE and 5 elements moving average in L’Aquila, Po Plain and
Norcia test cases for net OLD using synthetic input data.
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Figure 8.9: Cumulative MSE(z), i.e. the MSE of the mean output of nets
with standardized test set error smaller or equal to z, for net OLD using real
and synthetic data.
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8.2 Conclusions

In the following we report a summary of the effect of bagging on our nets for
the various test cases. In Tables 8.1 and 8.2 we report the effect of bagging
on nets of type RM when using real and synthetic input data, respectively.
The maximum standardized test set error is equal to -1, and 7 nets out of 50
are below this threshold.

MSE L’Aquila MSE Po Plain MSE Norcia bagging nets

0.0345 0.0405 0.0289 1
0.0333 0.0369 0.0275 7
0.0339 0.0393 0.0284 50

Table 8.1: Bagging effect on nets of type RM when using real input data.
Maximum standardized test set error equal to -1, selecting 7 nets out of 50.

MSE L’Aquila MSE Po Plain MSE Norcia bagging nets

0.0701 0.2545 0.0946 1
0.0677 0.2309 0.0888 7
0.0649 0.2331 0.0903 50

Table 8.2: Bagging effect on nets of type RM when using synthetic input
data. Maximum standardized test set error equal to -1, selecting 7 nets out
of 50.

We have repeated the same analysis for the nets of type ALL, whose re-
sults are reported in Tables 8.3 and 8.4, and for nets of type OLD, whose
results are reported in Tables 8.5 and 8.6.
Concerning net RM we can observe in general an improvement by using bag-
ging. The gain is not particularly large when using real input data, however
constant across the three study cases when using the 7 selected nets. The
fact that few nets in this case would be used for bagging may give worse
stability properties with respect to using 50 nets. However, this is just an
issue in terms of computational costs, since experimentally around 14% of
the nets of type RM trained have a test set error smaller than -1.
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The gain is more considerable when using synthetic input data. Using se-
lected nets appears to perform better, especially in the Norcia test case for
the reasons already discussed before.

MSE L’Aquila MSE Po Plain MSE Norcia bagging nets

0.0447 0.0440 0.0573 1
0.0386 0.0358 0.0470 3
0.0441 0.0343 0.0512 50

Table 8.3: Bagging effect on nets of type ALL when using real input data.
Maximum standardized test set error equal to -1.5, selecting 3 nets out of
50.

MSE L’Aquila MSE Po Plain MSE Norcia bagging nets

0.0901 0.2321 0.1510 1
0.0976 0.2442 0.1004 3
0.1347 0.2274 0.1514 50

Table 8.4: Bagging effect on nets of type ALL when using synthetic input
data. Maximum standardized test set error equal to -1.5, selecting 3 nets out
of 50.

Concerning net ALL, we have a more evident improvement form the use
of bagging, and in particular from the selection of nets. This not so valid
anymore when using synthetic input data. However, the performance seem to
be much better for the Norcia test case, which we consider more meaningful.
Another issue is the fact that this time the net selection is very small, only
3 nets. Hence, in this case it might be really helpful to train more nets in
order to enlarge the net selection.

88



MSE L’Aquila MSE Po Plain MSE Norcia bagging nets

0.0411 0.0432 0.0526 1
0.0328 0.0313 0.0352 9
0.0302 0.0287 0.0368 50

Table 8.5: Bagging effect on nets of type OLD when using real input data.
There is no maximum standardized test set error.

MSE L’Aquila MSE Po Plain MSE Norcia bagging nets

0.1021 0.3524 0.0978 1
0.0918 0.2790 0.1033 9
0.0925 0.2803 0.1007 50

Table 8.6: Bagging effect on nets of type RM when using synthetic input
data. There is no maximum standardized test set error.

Concerning net OLD we have in a general a considerable gain in using
bagging, which is more evident when using real input data. As already ob-
served there is no gain in making a net selection, which in this case was
tested with a maximum standardized test set error of -1, and 9 nets out of
50 are below this threshold.

In Tables 8.7 and 8.8 we report a comparison of nets ALL, RM and OLD
in terms MSE using real and synthetic input data respectively, and using
the optimal number of nets in the bagging procedure for each net type. In
conclusion using bagging seems to improve performance and, when possible,
a further smaller gain can be obtained by using a selected nets.

net MSE L’Aquila MSE Po Plain MSE Norcia bagging nets max std error

ALL 0.0386 0.0358 0.0470 3 -1.5
RM 0.0333 0.0369 0.0275 7 -1
OLD 0.0302 0.0287 0.0368 50 +∞

Table 8.7: Nets comparison using bagging with real input data.
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When using real data, net ALL appears to generalize worse than net RM
and net OLD, and net RM and net ALL appear to be comparable. Even
though net OLD performs better in the L’Aquila and Po Plain case, we
prefer net RM since it performs considerably better in the Norcia case.

net MSE L’Aquila MSE Po Plain MSE Norcia bagging nets max std error

ALL 0.0976 0.2442 0.1004 3 -1.5
RM 0.0677 0.2309 0.0888 7 -1
OLD 0.0925 0.2803 0.1007 50 +∞

Table 8.8: Nets comparison using bagging with synthetic input data.

When using synthetic input data, net ALL seems to perform slightly
better than net OLD, meaning the latter is less robust with respect to the
error due to synthetic data.
Net RM seems to be the most robust and it performs better in all cases.
Hence, we can conclude that using net RM would be the best choice to
generate broadband earthquake ground motions scenarios.
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Chapter 9

Conclusions and Further
Developments

9.1 Results

In this work we proposed and analyzed a family of extensions of the ANN
model proposed by [54], that is able to predict SA in the high frequency
range. The ultimate goal is to use this model to correct PBNS in the high
frequency range, since their accuracy is usually limited up to 1–1.5 Hz. This
would allow to obtain broad band ground motions, that is of primary impor-
tance in earthquake engineering.

Having to tune many ingredients of the model, in order to keep constrained
the exponential growth of combinations to be tested a downscale approach
was followed: elements with a greater impact on the others were tested first,
such as the hyperparameters for instance, although it should be kept in mind
that often all of the elements influence each other. Moreover, we did not fo-
cus on a fine tuning of all the parameters. This because in case of future
developments and enlarging of the dataset, only the macroscopic settings
would still remain effective.
At first, the net structure was chosen, by setting the hyperparameters:

1. epicentral distance, magnitude of the earthquake were found meaning-
ful for predictions, with the possibility of using also velocity of the shear
waves in the first 30 meters;

2. training different networks for different soil types was found ineffective,
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due to a a too large reduction of the dataset;

3. the optimal model capacity was found by adjusting the number of neu-
rons in the hidden layer.

As a second step, different training algorithms were then tested. Since the
number of net parameters is large, Scaled Conjugate Gradient was found to
be the fastest due to its compromise between accuracy, low memory storage
and inexpensive iterations. This algorithm turned out to be 10 times faster
than the Levenberg-Marquardt algorithm, employed in [75].
In order to further improve performance, it would be need to enlarge the
dataset. However, being this not possible in the immediate, a tuning of the
optimal dataset splitting into training, validation and test set was done. The
validation set was reduced, slightly increasing the risk of overfitting, in favour
of a larger training set, to push more on performance, and a larger test set,
to asses better the network generalization capabilities. Test set performance
are a key information when having to select which networks to use for pre-
dictions. When using real input data, the threshold 10−2 appears to be a
lower bound for the MSE.
L’Aquila, Po Plain and Norcia test cases were used for validation purposes,
because of the availability of a robust 3D numerical model.
Nets were shown to perform worse, due the error introduced on the data
by the numerical simulations. Net RM, using epicentral distance and earth-
quake magnitude, was shown to be the most robust.
Finally bagging was considered, further improving performance and stability.
Using the test set performance as a selection criterion, in order to identify
nets to average was found helpful in some of the analyzed cases.

In this work we have shown a possible way to improve performance and
efficiency of the training step, with respect to the previous approach. How-
ever, the main contribution of this work is to shed a light on some key aspects
that could be reused for further developments, such as inputs significance,
dataset dimensions, effects of net dimensions on the training algorithm, ro-
bustness when using data from numerical simulations.

Recent discoveries about neural networks could shed a light on how to obtain
broad-band numerical methods by coupling in a different and more natural
way PBNS with NNs algorithms.
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9.2 Further Developments

In order to produce reliable broad-band ground motion simulations, it is
important to be able to solve the elastodynamics equation and hence to deal
with its computational burden. However even disregarding this issue, due to
the complexity of the underlying phenomena, limitations are present because
of the lack of detailed knowledge of the site specific case. Thanks to the recent
discoveries, CNNs could potentially deal with both of these problems. By
using them to solve PDEs a lower computational cost might be attained, and
the same structure has shown to be able to perform well also when dealing
with uncertainty. In this sense there could be a natural hybridization: instead
of gluing NNs simulations and PBSs, it could be possible to use only one
model, for example simply by considering a CNN loss function that takes
into account simultaneously both the data and the wave equation.
Further developments of the present work include:

1. Explore if a further step in the hybridization of the procedure is possi-
ble. This would be realized by considering a CNN to solve the elasto-
dynamics equation that takes into account in its loss function also the
site specific the data, to better deal with the lack of detailed knowl-
edge.The aim is to obtain a simpler model and a more realistic wave
field.

2. Further explore the parallelism between CNN and MG methods, as
its importance is relevant not only applied to seismology, with a focus
in solving the elastodynamics equation. This would allow to possibly
build ad hoc procedures to solve the elastodynamics equation, such
as considering a suitable net structure for the application and specific
algorithms to fasten the training phase.

3. To use a CNN to solve the elastodynamic equation in real cases, that
could be benchmarks like L’Aquila, Po Plain and Norcia sites. This in
order to test the performance of the CNN, and observe possible advan-
tages and disadvantages compared to other approaches, such as discon-
tinuous Galerkin and spectral finite element methods [48]. Moreover, it
would be interesting to see if it is possible to have reliable simulations
also at the high frequency range.

This topic could bring important insights in both the fields of Artificial
Intelligence and Computational Sciences, especially considering the recent
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growing interest. The impact could be both from a theoretical point of view,
in the understanding of the current algorithms in order to build better ones,
and a practical one, which might be particularly well suited for Engineering
applications in the field of Seismology and Earthquake Engineering.

94



Bibliography

[1] “3D Physics-Based Numerical Simulations: Advantages and Current
Limitations of a New Frontier to Earthquake Ground Motion Predic-
tion. The Istanbul Case Study”. en. In: Geotechnical, Geological and
Earthquake Engineering.

[2] Neculai Andrei. “Scaled conjugate gradient algorithms for unconstrained
optimization”. In: Computational Optimization and Applications 38.3
(2007), pp. 401–416.

[3] Paola F Antonietti et al. “Numerical modeling of seismic waves by
discontinuous Spectral Element methods”. In: ESAIM: Proceedings and
Surveys 61 (2018), pp. 1–37.

[4] Paola F. Antonietti et al. “Review of Discontinuous Galerkin Finite El-
ement Methods for Partial Differential Equations on Complicated Do-
mains”. G.R. Barrenechea et al. (eds.), Building Bridges: Connections
and Challenges in Modern Approaches to Numerical Partial Differential
Equations, Lecture Notes in Computational Science and Engineering
114:279–307. 2016.

[5] Hesheng Bao et al. “Large-scale simulation of elastic wave propagation
in heterogeneous media on parallel computers”. In: Computer methods
in applied mechanics and engineering 152.1-2 (1998), pp. 85–102.

[6] Christopher M Bishop and CM Roach. “Fast curve fitting using neural
networks”. In: Review of scientific instruments 63.10 (1992), pp. 4450–
4456.

[7] Christopher M Bishop et al. Neural networks for pattern recognition.
Oxford university press, 1995.
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