

POLITECNICO DI MILANO

Facoltà di Ingegneria Industriale

Corso di Laurea in

Space Engineering

DEEP LEARNING SEMANTIC SEGMENTATION FOR VISION-BASED

HAZARD DETECTION

Relatore: Prof. Pierluigi Di Lizia

Co-relatore: Prof. Roberto Furfaro

Tesi di Laurea di:

Luca Ghilardi Matr. 875344

Anno Accademico 2018 - 2019.

Luca Ghilardi: Modello di Tesi di Laurea in LATEX
| Tesi di Laurea Magistrale in Space Engineering, Politecnico di Milano.
| Research in collaboration with University of Arizona (UA), Tucson(AZ).
c© Copyright Luglio 2019.

Politecnico di Milano:
www.polimi.it

Scuola di Ingegneria Industriale e dell’Informazione:
www.ingindinf.polimi.it

University of Arizona:
https://www.arizona.edu/

http://www.polimi.it
http://www.ingindinf.polimi.it
http://https://www.arizona.edu/

Ringraziamenti

Questa tesi è stata sviluppata presso l’Università dell’ Arizona a Tucson.
Primi fra tutti ringrazio i miei genitori e mio fratello Daniele del grande
supporto che mi hanno sempre offerto per questa esperienza.

Ringrazio di cuore anche il prof. Di Lizia per la grande occasione che
ci ha offerto e per avermi seguito con interesse per le fasi più critiche di
questa tesi.

Durante l’esperienza a Tucson vorrei prima di tutto ringraziare il prof.
Furfaro e la sua famiglia che ci hanno sempre accolto a casa loro. Il
professore sia dal punto di vista professionale che personale ci ha sempre
seguito e offerto preziosi consigli durante tutta la nostra permanenza negli
USA.

Ringrazio anche il mio collega di corso Emanuele e i ragazzi della stanza
36: Enrico, Mario, Andrea e Shain, con cui ho condiviso questa avventura.
La loro amicizia mi ha convinto a voler svolgere il dottorato a Tucson.

Ringrazio inoltre i miei amici di Lucca che mi hanno fatto sempre
sentire l’Italia vicina, non lasciandomi mai solo, e il mio amico Alessio a
Milano per i suoi preziosi consigli per ogni cosa. Una menzione speciale va
al mio eterno compagno di università Lorenzo, con cui ho condiviso tutte
le giornate di studio per gli esami sia della triennale che della magistrale, il
supporto che ci siamo dati l’un l’altro ha permesso di arrivare dove siamo
oggi.

Milano, Luglio 2019 L. G.

iii

Acknowledgements

This thesis was developed at the University of Arizona in Tucson. First
of all, I thank my parents and my brother Daniele for the great support
they have always offered me for this experience.

I also thank prof. Di Lizia for the great opportunity offered and for
having followed me with interest for the most critical phases of this thesis.

During my experience in Tucson, I would like first of all to thank prof.
Furfaro and his family who have always welcomed us to their home. The
professor from both a professional and personal point of view has always
followed us and offered valuable advice throughout our stay in the USA.

I also thank my colleague Emanuele and the boys from room 36: Enrico,
Mario, Andrea, and Shain, with whom I shared this adventure. Their
friendship convinced me to want to come back in Tucson for a doctorate.

I also thank my friends from Lucca, they have always made me feel
close to Italy, never leaving me alone, and my friend Alessio in Milan for
his valuable advice for everything. A special mention goes to my eternal
university friend Lorenzo, with whom I shared all the study days for both
the three-year and the master’s exams, the support we gave each other
allowed us to get where we are today.

Milano, Luglio 2019 L. G.

v

I do not fear computers. I fear the lack of them.
-Isaac Asimov-

Contents

1 Introduction 1
1.1 Work aim and Challenges 1
1.2 State of the Art . 2
1.3 Thesis Structure . 5

2 Machine Learning 7
2.1 Logistic Regression . 8

2.1.1 Inference . 8
2.1.2 Score Function . 8
2.1.3 Loss Function . 9
2.1.4 The Optimization Problem 11
2.1.5 Training Flow . 12
2.1.6 Overfitting . 13
2.1.7 Biological Interpretation 13

2.2 Deep Learning . 14
2.3 Convolutional Neural Network 15

2.3.1 Convolutional Layer 17
2.3.2 Activation Layer 17
2.3.3 Pooling Layer . 20
2.3.4 Fully Connected Layer 21

2.4 Semantic Segmentation . 21

3 Neural Network setup 25
3.1 Architecture . 25

3.1.1 Classes Balance . 28
3.2 Deep Learning Framework 28
3.3 Itokawa Hazard Detection 28

3.3.1 Hyperparamentes 28
3.4 Lunar Landing Hazard Detection 30

3.4.1 Hyperparamentes 30

ix

x CONTENTS

4 Dataset Setup and Training 31
4.1 Itokawa Hazard Detection 31

4.1.1 Data Set . 31
4.1.2 Labeling . 32
4.1.3 Image Pre-Processing 33
4.1.4 Training . 34

4.2 Lunar Landing Hazard Detection 34
4.2.1 Data Set . 35
4.2.2 Labeling . 37
4.2.3 Training . 38

5 Results 41
5.1 Evaluation Metrics . 41

5.1.1 Precision Vs. Recall 42
5.1.2 Intersection Over Union 43

5.2 Experimental Results: Itokawa Dataset 44
5.3 Lunar Landing . 48
5.4 Runtime Performance . 52

Conclusions and Future Works 55

6 Conclusions and Future Works 55
6.1 Future Works . 56

Acronyms 59

Bibliography 63
References cited . 63

Publications and Manuals 63
Additional sources consulted . 67

Publications and Manuals 67

List of Figures

2.1 Input space representation with decision boundaries of tree
classes with some data samples [F.-f. Li et al., 2017]. . . . 10

2.2 On the left plot is represented the input space x and data
samples from two classes (red and blue). On the right plot
shows the same data points but in the feature space after a
non-linear trasformation. The linear decision boundary is
the black line, which is a curve in the input space [M.Bishop,
2007]. 10

2.3 Flowchart of the general backpropagation algorithm to up-
date structural parameters [Fan et al., 2017]. 12

2.4 A real neuron and a graphical representation of a machine
learning neuron [Gupta, 2017]. 14

2.5 One of the first CNNs which was used to perform digits
recognition [Lecun et al., 1998] 15

2.6 Low (a), mid (b) and high (c) features taken from the
network during training [Zeiler and Fergus, 2014] 16

2.7 In this convolution demo, it is shown the iteration over
the output activations (green) and shows that each ele-
ment is computed by multiplying elementwise the high-
lighted input (blue)(i.e., an RGB image) with the filter
(red), summing it up, and then offsetting the result by the
bias. It is worth noticing that the third dimension of the
output volume is directly connected to the number of filters
[http://cs231n.github.io]. 18

2.8 Filters activation maps on the first CONV1 layer of a trained
AlexNet [http://cs231n.github.io]. Some filters are tuned
for high-frequency grayscale features and the other low-
frequency color features. 19

2.9 Most common activation functions. 20
1Convolutional layer

xi

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/understanding-cnn/

xii LIST OF FIGURES

2.10 Example of max pooling. 21

3.1 U-Net layers architecture 26

4.1 Example from the training dataset. The rocky terrain label
is represented in green, while the smooth terrain label in
the rust color. 33

4.2 Elevation heat map of the Apollo 16 landing site. The red
square represent the part of the map used for the training,
while the orange square is the crop used for the test. . . . 36

4.3 On the first row there are both DTM2 and rendered image
crops of the map used for the training, while in the second
row there are the crops used for the test. 37

4.4 Example from the training dataset. The class Hazard is
represented in blue, while the class Safe in the rust color. . 38

5.1 Normalized confusion matrix. 42
5.2 Two examples results of the Itokawa dataset, the rocky

terrain label is represented in green, while the smooth terrain
label in the rust color. 45

5.3 Focus on the smooth area of the example in Figure 5.2a.
The rocky terrain label is represented in green, while the
smooth terrain label in the rust color. 47

5.4 Normalized confusion matrix comparison. 47
5.5 Experiment results for lunar landing with the sun inclination

at 25◦ and 35◦. The class Hazard is represented in blue,
while the class Safe in the rust colour. The colors are not
uniform because the confidence map have been superimposed
to the test image. 49

5.6 Experiment results for lunar landing with the sun inclination
at 45◦ and 55◦. The class Hazard is represented in blue,
while the class Safe in the rust color. 50

5.7 Normalized confusion matrix comparison. 51
5.8 Crop of the right bottom corner of the test map. The class

Hazard is represented in blue, while the class Safe in the
rust color. 53

5.9 Runtime comparison between the differnt models for the
Itokawa dataset. 54

6.1 Example of image processing in a train image. 56

2Digital Terrrain Model

List of Tables

3.1 Feature map, with output size per patch. If we want the
output size for batch we must multiply it by the number of
patches in a batch. X and Y are the spatial size of the input
volume, while Nc is the number of channels. The abbrevia-
tions Batch Norm, UP-Conv and Concat. stands for batch
normalization, transposed convolution and concatenation
respectively. The indexes used represent [E: encoder, B:
bridge, D: decoder]-[depth number]-[layer number]. 27

3.2 Hyperparameters settings for the Itokawa Tile-Based algorithm 29
3.3 Hyperparameters settings for the Itokawa Resizing algorithm 29
3.4 Hyperparameters settings for the lunar hazard detection

algorithm . 29

5.1 Performance comparison of the proposed algorithms. . . . 46
5.2 Experimental results. 52

xiii

Sommario

Negli ultimi anni la computer-vision con il deep learning è sempre
più utilizzata in applicazioni dove sono necessarie assoluta precisione e
affidabilità. Specialmente nell’ambito medico e della guida autonoma. Essa
si basa sul far capire al computer il contenuto di un immagine, frammen-
tando i processi che noi facciamo involontariamente, come riconoscere la
ditribuzione dei colori oppure dei contorni e le forme. Tra le varie tecniche
di computer-vision la segmentazione semantica con il deep learning è tra
le più studiate e promettenti. Essa permette di classificare un’immagine
pixel per pixel, diventando lo stato dell’ arte in molte applicazioni.

In questa tesi proveremo la deep learning segmentazione semantica per
identificare caratteristiche territoriali pericolose come massi, crateri e aree
scoscese. I casi studiati sono due: nel primo verrà investigato l’utilizzo di
reti neurali su un corpo celeste di piccole dimensioni, come un asteroide. In
particolare l’asteroide Itokawa, le cui immagini ci sono state fornite dalla
sonda Hayabusa 1 lanciata nel 2014. Nel secondo caso, la rete neurale verrà
validata sull’area di atterraggio lunare dell’ Apollo 16. La rete verrà messa
alla prova sul riconoscimento di crateri, e aree a inclinazioni non sicure
per l’atterraggio. In questo caso le immagini saranno simulate partendo
da modelli del terreno.
Parole chiave: PoliMi, Tesi, Deep Learning, Semantic Segmentation,

Hazard Detection.

xv

Abstract

In recent years, computer-vision with deep learning is often used in
applications that require absolute precision and reliability. In particular, in
medical applications and autonomous driving. The aim of computer vision
is making the computer understand the content of an image, dividing the
processes, that we do involuntarily, such as characterize the distribution of
colors or edges and shapes. Among the various computer-vision techniques,
the semantic sectioning with deep learning is among the most studied and
promising. It allows classifying a pixel-by-pixel image, making it, state of
the art in many applications.

In this thesis, we will investigate the use of deep learning semantic
segmentation to identify hazardous territorial features such as boulders,
craters, and steep areas. Two study cases are addressed: in the first one,
the neural network will be tested on a small celestial body like an asteroid.
In particular, the asteroid Itokawa whose images were provided by the
Hayabusa 1 probe launched in 2014. In the second case, the neural network
will be tested on the Apollo 16 lunar landing area. Here the network will
be tested on the recognition of craters and areas with unsafe slopes for
landing standards. In this case, the images will be simulated, starting from
terrain models.
Keywords: PoliMi, Master Thesis, Deep Learning, Semantic Segmenta-

tion, Hazard Detection.

xvi

Chapter 1

Introduction

1.1 Work aim and Challenges

NASA and private companies like Blue Origin are aiming to expand
their business and exploration by sending new probes and even humans on
the moon surface. With this renewed interest in returning to the Moon,
the delicate problem of the lunar landing is more important than ever.
In the Apollo 11 mission, Neil Armstrong had to change with a manual
maneuver the landing site due to an unexpected crater. That maneuver
was incredibly risky and required much skill.

Today the engineers try to develop an efficient and robust algorithm
for the autonomous planetary landing, but usually, those algorithms lack
accuracy or computational efficiency for an On-Board use. On top of that,
other machine learning classifiers (perceptrons) have been developed to
tackle the problem of the safe landing hazard detection, but generally,
they need the user to import the valuable features [Lunghi et al., 2016].
Our approach aims to automate the features import by applying the deep
learning techniques of semantic segmentation to identify hazardous terrain
characteristics.

The drawback is that the semantic segmentation is still an unresolved
problem of computer vision. Even the state-of-the-art architecture do not
reach human-level performance. The human vision can recognize objects in
many different conditions of view-points, scale, illumination, or when they
are translated or rotated. In the landing problem, the human stereoscopic
vision is tricked by the large distances. We can distinguish a "safe" site
from a "hazardous" one if obstacle like boulders and craters are in the
area. However, for planetary landings, the requirements of a safe site rely

1

2 Introduzione

also on a maximum slope and roughness, which can not be easily identified
by the human eyes.

Our objectives are to develop neural networks for visual-based hazard
detection for two different scenarios:

Itokawa Safe Landing Site

On small celestial bodies, the detection of suitable landing sites is a
challenging problem due to the many light conditions, and the amount of
obstacle. In this thesis, we propose a deep learning approach to semantically
segment the Itokawa asteroid using only the real images provided by the
Hayabusa 1 mission.

Moon Safe Landing Site

As we said features as slope and roughness can not be easily detected
only with camera images on big celestial bodies. We propose a network
architecture that is capable of identifying those terrain features by analyzing
the same scene in different illumination conditions.

1.2 State of the Art

On 3 February 1966, the Luna 9 was the first spacecraft to achieve
a soft-land on the Moon. At that time, the landing site was previously
chosen before launch. The only instrument used in the landing was the
radar-altimeter to trigger the jettison of the side modules, the inflation of
the airbags and the firing of the retro rockets. Back in our days, the most
recent successful lunar landing was performed by the Chang’e 4 Chinese
lander. It is not easy today to find information about the Chang’e 4
hazard detection system, but we can study its predecessor, the Chang’e 3
spacecraft.

The Chang’e 3 was the first robotic spacecraft that adopted autonomous
hazard detection and avoidance technology but also is the spacecraft that
achieved the highest landing precision on the Moon to date. The first
Chang’e 3’s hazard detection design included only the visual-based hazard
detector, but it failed to pass validation tests. The final state of the system
had a combination of two-dimensional (2-D) optical gray-image-based
coarse hazard avoidance and three-dimensional (3-D) laser-elevation-image-
based [Wei et al., 2018; S. Li et al., 2016].

1.2. State of the Art 3

The vision-based hazard detection was used to perform a coarse hazard
detection from ∼ 2.4km to ∼ 100m. Coarse avoidance aimed to exclude
hazardous large-scale obstacles (craters and boulders larger than 1 meter)
and to provide potential safe landing regions for the following precise avoid-
ance. At around 100 meters the lander performed a hovering maneuver,
which is needed to scan the surrounding area with a LiDAR1 instrument.
Next, the on-board guidance-navigation and control (GNC) system de-
tected craters larger than 20 cm and slopes steeper than 8 deg (10 m
baseline) and determined the nearest safe landing site.

We already introduced that in this thesis, we are also going to asses
the hazard detection problem on asteroids. Until now just a few missions
tried to land payloads on such small bodies, and almost all of those just
performed a touch and go. The Hayabusa 1 mission managed to land for a
small amount of time on the asteroid Itokawa, and soon the OSIRIS-REx
spacecraft will perform a touch and go to collect a sample from the Bennu
asteroid. The Hayabusa 2 mission deployed two rovers on the Ryugu
surface, but they were dropped from a safe altitude. All these spacecrafts
mount a LiDAR to measure the distance from the objective and to build
a 3-D map of the celestial body, coupled with an autonomous optical
navigation system [Hashimoto et al., 2010; Lorenz et al., 2017]. The main
aim of both instruments is to recover the spacecraft state.

The OSIRIS-REx autonomous optical navigation system is called Natu-
ral Feature Tracking (NFT) and was developed as a backup for the LiDAR
[Lorenz et al., 2017]. It is designed to perform autonomous high-precision
orbit determination by tracking the location of known features on the
surface of small bodies such as Bennu. NFT predicts which features it
expects to see in the image, renders the expected appearance of these
features and finally matches these predictions to the actual image data.
The locations of these matches are used to update the on-board knowledge
of where the navigation camera is and how it is oriented. It is worth
noticing that also the OSIRIS-REx laser altimeter (OLA) is used to build
a shape model, with a resolution below 3 cm/pixel.

For lunar landers and asteroid landers, the vision-based systems are
used as a backup for the LiDARs since their performances are strictly related
to the illumination conditions of the objective. However, for vast distances
from the target, they are still a reliable option to detect terrain features,
thanks to the high resolution of the navigation cameras. Furthermore, the

1Light Detection and Ranging

4 Introduzione

LiDARs resolution drops drastically with the distance from the reflective
surface.

In this work, we are going to present a deep-learning algorithm for
vision-based hazard detection, instead of the current state of the art k-
means clustering algorithms. The k-means clustering, which is a type
of unsupervised learning (Section 2), aims to partition the observations
into k-clusters. The observations are the features that characterize the
hazards like the shape, the edges, and the shadows. In order to collect these
features, filters are manually applied to the images. The deep learning
network instead is based on supervised learning, and from the training set,
it learns which features are essential for the inference. In this work, we
do not directly compare our network with a k-clustering algorithm, but
nowadays, for classification problems, supervised learning is the standard
choice due to its superior performances.

1.3. Thesis Structure 5

1.3 Thesis Structure
This work is structured as follows:

Chapter 2 In this chapter, we build the basis for understanding the later
chapters. The basis of the machine learning and deep learning will
be explained with a focus on the computer vision problem.

Chapter 3 In this chapter, we define the architectures adopted in the
thesis. In addition, we list the hyperparameters adopted for the
training.

Chapter 4 In this chapter, we describe how we build the dataset used
for the Itokawa and lunar problem, and we show how the labeling
was done.

Chapter 5 In this chapter, we present the metrics adopted to evaluate
the models, and we show the results for each model. The chapter is
completed with a brief runtime analysis of the models.

Chapter 6 Finally, in the last chapter, we summarize our findings and
give an outlook of the possible future development.

Chapter 2

Machine Learning

In this chapter there is a brief introduction to machine learning and its
sub-category: the deep learning. The definition "without being explicitly
programmed" is often attributed to Arthur Samuel, who coined the term
"machine learning" in 1959. The term means the study of algorithms and
statistical model which are able to perform specific tasks without any
specific instruction given by the user. Instead, it relies on the patterns
and inference based on sample data known as training data. How this
mathematical model is built can be divided in three categories:

• Supervised learning: The training data are provided and correctly
classified by the user. The principle behind this method is that the
network should recognize patterns and features that link the raw
training data to the respective labels.

• Unsupervised learning: No labels are given to the learning algo-
rithm, therefore the system tries to learn without a teacher. In this
case, the network tries to find structures in the inputs.

• Reinforcement learning: The learning system observes the envi-
ronment through certain actions, and from this actions gets rewards
or penalties in return and improves and learn the best strategy which
is called policy.

Depending on the required output of the task, further categorizations of
supervised learning algorithms can be made. Typically, we differentiate
between classification and regression tasks. The goal of classification is to
assign a category label, whereas in regression the targets are specified via
real numbers.

7

8 Chapter 2. Machine Learning

2.1 Logistic Regression
The goal of the classification problem is to take an input vector x and

to assign it to one of the K discrete classes ζk for k = 1, . . . , K [M.Bishop,
2007]. The input space is divided in decision regions delimited by decision
boundaries or decision surfaces. In this thesis we consider the classifier
known as logistic regression, and we will explain how to perform inference
with this model.

The “classic” application of logistic regression model is binary classifica-
tion. However, we can also use variants of logistic to tackle multi-class clas-
sification problems, e.g., using the One-vs-All or One-vs-One approaches.
It is used when classes are linearly separable, but as we shall see, many
data sets can not be discriminated linearly.

2.1.1 Inference

In the context of machine learning the inference is the task to predict
unknown data based on some data samples. In the classification problem
it means assigning a category label to a given feature. The features might
be images or any other kind of data that can be represented in a feature
space.

As we said the logistic regression makes use of hyper-planes as decision
boundaries in the feature space to distinguish between classes. In the case
of linear classification we can define a linear discriminant function called
score function.

2.1.2 Score Function

To compute the score function our input data are a set of images
xi ∈ <D where each element of the vector ([D× 1]) represents the value of
each pixel of the image flatted out, and the associated labels yi. The index
i = 1 . . . N means the number of images in input, while yi ∈ 1 . . . K the
number of labels. We will now define the score function as f : <D −→ <K :

f(xi,W,b) = Wxi + b (2.1)

The matrix W ([K ×D]) and the vector b ([K × 1]) are the parameters of
the function, respectively the weights and the bias vector. The value of the
function for a specific class fk = Wkx + bk represents the point distance
from the hyper-plane k [M.Bishop, 2007]. So the decision boundary between

2.1. Logistic Regression 9

the two classes yk and yi is given by fk = fi = 0 and hence corresponds to
a hyper-plane defined by:

(Wk −Wi)x + (bk + bi) = 0 (2.2)

For a more intuitive point of view in the Figure 2.1 we can consider
each image as a point in the graph and since we defined the score of each
class as a weighted sum of all image pixels, each class score is a linear
function over this space, which represents a graphical interpretation of the
decision boundaries. Tuning the rows of the parameter W we can rotate
the different lines while modifying the bias b we translate them.

Unfortunately most of the times the input data can not be linearly
classified, to solve this problem we introduce the basis functions Φ(x).

f(xi,W,b) = WΦ(xi) + b (2.3)

These functions perform a non-linear transformation of the input features
into the feature space, where the features are linearly separable, (Figure 2.2).
In this thesis we use convolutional neural networks (CNN1s) to perform a
non-linear transformation.

2.1.3 Loss Function

Once the score function is computed, we need a measure of how different
the results are from those desired, for this purpose in the literature two
main classifiers are used which their own loss function, the Multiclass
Support Vector Machine (SVM2) and the Softmax classifier. In this thesis
the latter is adopted because of the small performance difference between
the two and the easier probabilistic interpretation that we will explain later.
The Softmax classifier is the generalization of the binary logistic regression
in multiple classes, the score function stays unchanged f(xi,W,b) =
Wxi, but we now interpret these scores as the un-normalized logaritmic
probabilities for each class and then we introduce a cross-entropy loss
that has the form:

Li = − log

(
efyi∑
j e

fj

)
(2.4)

where the function gi(f) = efyi∑
j e

fj
is called softmax function. In the notation

adopted fj is the j-th element of the class score vector f , while the term fyi
1Convolutional Neural Network
2Support Vector Machine

10 Chapter 2. Machine Learning

Figure 2.1: Input space representation with decision boundaries of tree classes
with some data samples [F.-f. Li et al., 2017].

Figure 2.2: On the left plot is represented the input space x and data samples
from two classes (red and blue). On the right plot shows the same
data points but in the feature space after a non-linear trasformation.
The linear decision boundary is the black line, which is a curve in
the input space [M.Bishop, 2007].

is the score for the correct label. As can be seen, the softmax function is a
normalized probability assigned to the label yi; we are therefore minimizing
the negative log likelihood of the correct class.

2.1. Logistic Regression 11

2.1.4 The Optimization Problem

We saw that the loss function measures how good the correct classes
are classified, to maximize the performances we need to minimize the loss
function L(W) by changing the weights W. To find the best path to reach
the minimum, the most common way is the gradient descent method, which
involves taking steps in the negative direction of the gradient ∇L(W).
Than the models parameters are iteratively update with the following
equation:

Wτ+1 = Wτ − α∇L(Wτ) (2.5)

Where α represents the step size of the update step. Convergence occurs
when the estimated loss function does not decrease anymore.

In hiking analogy [F.-f. Li et al., 2017], this approach roughly corre-
sponds to feeling the slope of the hill below our feet and stepping down
the direction that feels steepest. The steps that we take in that direction
are called learning rate; it is one of the fundamental hyper-parameters
for the neural network training. A small learning rate allows us to find
the minimum of the function with high precision, but it comes at the
cost of the training time, which increases considerably. At the opposite
side, an high learning rate allows a faster training but with the risk to
“overstep” missing the minimum of the function. This method is called
gradient descent and can be computationally expensive with large models
to compute the loss function for thousands of examples.

This optimization phase is the training of the neural network. Usually,
it requires much time, especially for big networks. To save computational
power, we divide the training set in batches. Then the parameters update
is done computing the loss function and gradients on the batch, instead
of the whole training set. In this case, we talk about Stochastic Gradient
Descent (SGD3), which is a variant of the classic gradient descent method,
that computes on a small subset of a random selection of data examples.

In the literature, there is another popular optimization algorithm, the
Adaptive Moment Estimation (ADAM4), which is used in this thesis. It
combines the advantages of two SGD extensions: the root mean square
propagation and the adaptive gradient algorithm, and then computes
individual adaptive learning rates for different parameters [Kingma and
Ba, 2014]. ADAM is known to achieve good results fast.

3Stochastic Gradient Descent
4Adaptive Moment Estimation

12 Chapter 2. Machine Learning

2.1.5 Training Flow

In the previous section 2.1.4 we said that the optimization phase is the
training of the network, here we show the work-flow. The objective of the
process is to find a set of weights that minimize the loss function, and it is
done by an iterative procedure called backpropagation, (Figure 2.3).

Initially, the weights are randomly chosen, then there is what is called
Forward Pass. The input data batch, in our specific case, a set of images,
is cast through the network to the output. The output is compared with
the respective labels to compute the loss function.

The Backward pass where the weights that have contributed the most
to the loss are determined. Lastly, the weights are updated in the negative
direction of the loss function gradient.

Figure 2.3: Flowchart of the general backpropagation algorithm to update
structural parameters [Fan et al., 2017].

2.1. Logistic Regression 13

2.1.6 Overfitting

Ideally when the loss functions reaches its minimum the network should
be at the maximum performances, but it is not always true. The really
common problem is the overfitting of the learnable parameter to the
training set, especially if it is small and with a small variety of data.
When this happens the network behaviour is really good with the training
data, but if the test data are a little different the network accuracy drops
drastically. This happens because the network does not learn the more
general features that bonds the training set and test set, but more specific
ones to the training set. To avoid this problem the common approches are
early stopping, regularization and data augmentation.

• Early stopping: we use a validation dataset to provide an unbiased
evaluation of a model fit on the training dataset while tuning the
model’s weights. Then we stop training when the error on the valida-
tion dataset increases, as this is a sign of overfitting to the training
dataset.

• Regularization: it is a term added to the loss function to avoid
extreme parameters value usually by including in the loss function
the norm of the weight values, known as L2 regularization [F.-f. Li
et al., 2017].

L =
1

N

∑
i

Li + λ||W||2 (2.6)

N is the number of training samples and λ is a weight hyperparameter.
In other words, we wish to encode some preference for a certain set
of weights W. The most appealing property is that penalizing large
weights tends to improve generalization, because it means that no
input dimension can have a very large influence on the scores all by
itself.

• Data augmentation: it is a series of transformations applied to
the training set to increase the number of training data. In the case
of a data set of images they can be randomly rotated or flipped.

2.1.7 Biological Interpretation

The names neural networks, neurons are adopted to describe the archi-
tecture of the machine learning and its mathematical operations, because
they resemble the human brain. In biology, the neurons receive inputs

14 Chapter 2. Machine Learning

from their dendrites, and then an output signal is transmitted through
a axon, which is single for each neuron. As is shown in Figure 2.4 we
can compare the mathematical flow to compute the activation function,
explained shortly after, as the firing rate of the neurons, which is their
embedded filter of the inputs signals. All these neurons combined create a
network, similar to our brain. However, the artificial neural networks are
not even close to the computational power of a real brain, as explained in
[Brunel et al., 2014]. The real dendrites are not just a single weight; they
are a complex non-linear dynamical system.

Figure 2.4: A real neuron and a graphical representation of a machine learning
neuron [Gupta, 2017].

2.2 Deep Learning

Nowadays many of the devices of our daily life use some deep learning
algorithms, such as image/sound recognition [Claesson and Hansson, 2014]
features that we can find in the modern smartphones or self-driving cars.
Deep learning is a branch of machine learning that tries to mimic the
structure and the activity of the brain, it was developed in the 80s, but
due to its high demands of computational power, it has only recently been
actively used. Today state of the art deep learning models [L.-C. Chen

2.3. Convolutional Neural Network 15

et al., 2015; He et al., 2015; Krizhevsky et al., 2017] can classify objects
for specific tasks equally or better than humans.

These nets are denominated “deep” because their structure is made of
many layers, in Figure 2.5 is shown the architecture of one of the first deep
learning methods to recognize digits. The layers between the input and
the output layer are called hidden layers, and their role is to project the
input data into the feature space where they can be linearly classified.

The feature can be distinguished in three main categories: low, medium
and high level features [Zeiler and Fergus, 2014], Figure 2.6 are shown how
the features change during the training. Each category has been taken at
different "depths" of the network. The low-level features are extracted by
the firsts convolutional layers while the higher level features comes from
deeper layers.

Figure 2.5: One of the first CNNs which was used to perform digits recognition
[Lecun et al., 1998]

2.3 Convolutional Neural Network

The CNN is the most common algorithm used in the fields of object
recognition. It has many similarities with other deep learning networks. It
is based on neurons with learnable weights and biases depending on the
loss function [Lecun et al., 1998]. The main reasons why it is so largely
spread are:

• Automatic features detection and extraction

• State of the art recognition results

• Flexibility of the models to suit different tasks

16 Chapter 2. Machine Learning

(a) Low-level feature (b) Mid-level feature (c) High-level feature

Figure 2.6: Low (a), mid (b) and high (c) features taken from the network
during training [Zeiler and Fergus, 2014]

The last point means that we can build our custom CNN easily from scratch
or use what is called transfer learning. The transfer learning is a machine
learning method, where a model developed for a task is reused as the
starting point for a model on a second task. The selected model trained
on a large and challenging data-set has to be tuned by modifying the last
layers to suit the new task. At this point, the model is subjected to a brief
re-training with our data. The advantage is the precision of a large and
complex model with the minimum training effort.

If instead, we decide to design a custom model from scratch, the basic
architecture is made of blocks. The first one is the input layer, which has
the role in holding the image for the next layers and in performing a data
normalization. Then the convolutional part of the network follows, where
the information is extrapolated. Usually, this block is made of a sequence of
three organic layers: the convolutional layers, the activation layers
and the pooling layers. These layers are labeled as the “hidden” part of
the network, and each one of them will be described more deeply. The last
block of the chain is the one where the information processed are collected
and classified. The main layer here is the fully connected layer, which
deals with different combinations of features in order to make the final
decisions, but other layers can be added depending on the application and
performance desired.

2.3. Convolutional Neural Network 17

2.3.1 Convolutional Layer

The convolutional layers (CONV) are the one responsible for the most
computationally intensive part of the network. The input data of a CONV
layer can be a 2 or 3-dimensional array of values. The learnable parameters
consist of a set of filters, that will extend through the full depth of the
input volume. A set of hyper-parameters characterizes the filters:

• the spatial dimensions of the filters: define how many pixels are
processed by the filter, also called receptive field

• the number of filters: characterize the depth of the output

• the stride: characterize the sliding of the filters.

As we slide the filter over the width and height of the input volume, we
will produce a 2-dimensional activation map that gives the responses of
that filter at every spatial position. Intuitively, the network will learn
filters that activate when they see some visual feature such as an edge of
some orientation or a blotch of some color on the first layer, or different
kind of patterns on higher layers of the network. From the Figure 2.7 can
be seen that there is another hyper-parameter called zero-padding (the
gray contour of the input volume). This parameter helps us to control the
spatial size of the output volume by adding rows and columns of zeros.
The output volume size follows this formulation:

W − F + 2P

S
+ 1 (2.7)

The symbols W , F , S are respectively the spatial input volume size, the
filter receptive field and the stride of the filter. Besides the symbol, P are
related to the zero-padding and can be related to the other parameters
with P = (F − 1)/2 for S = 1 to ensures that the input volume and output
volume will have the same size spatially. For example with an input size
of W = 10× 10, a receptive field of F = 3× 3 and a stride S = 1, without
any zero-padding, the output spatial volume would be (10− 3)/1 + 1 = 8.
Adding a two column and rows at the beginning, and at the end of the
matrix, the spatial size of the output would be the same as the input.

2.3.2 Activation Layer

If we consider a neuron, the activation function has the role in deciding
if the score should be “fired” or not, or rather let us say “activated” or not.

18 Chapter 2. Machine Learning

Figure 2.7: In this convolution demo, it is shown the iteration over the output
activations (green) and shows that each element is computed by
multiplying elementwise the highlighted input (blue)(i.e., an RGB
image) with the filter (red), summing it up, and then offsetting the
result by the bias. It is worth noticing that the third dimension of
the output volume is directly connected to the number of filters
[http://cs231n.github.io].

Several activation functions can be used, but all of them must have a non-
linear nature. A linear activation function like f(x) = cx looks promising
to discriminate the score values, but there are two problems. Because the
derivative of the function is a constant, the weight update due to back-
propagation does not depends on the change of the input x. The second
reason is that linear functions make multiple layers structures completely
useless because at the end the final activation layer is nothing more than
a linear function of the input of the first layer. We can demonstrate it

http://cs231n.github.io/convolutional-networks/

2.3. Convolutional Neural Network 19

Figure 2.8: Filters activation maps on the first CONV layer of a trained AlexNet
[http://cs231n.github.io]. Some filters are tuned for high-frequency
grayscale features and the other low-frequency color features.

mathematically:

f(X) = c1(W1X + b1)

g(X) = c2(W2f(X) + b2)

g(X) = c2(W2c1(W1X + b1) + b2)

g(X) = c2c1W2W1X + c2c1W2b1 + c2b2

collecting the terms: W = c1W2W1 and b = c1W2b1 + b2. Now we can
rewrite g(X) as g(X) = c2(WX + b), which is practically the same of the
first activation layer. Now that we understood why the functions should
be non-linear, we can introduce the most common activation functions.
In Figure 2.9 are shown the most common activation functions. In this
thesis, we use the ReLU, because it can speed up the network training.
The gradient computation is straightforward (either 0 or 1 depending on
the sign of x, as shown in Figure 2.9). Also, the computational step of a
ReLU is easy: any negative elements are set to zero; no exponentials, no

http://cs231n.github.io/understanding-cnn/

20 Chapter 2. Machine Learning

multiplication or division operations.

f(x) = max(0, x) (2.8)

df(x)

dx
=

{
0, if x < 0

1, if x ≥ 0
(2.9)

Gradients of logistic and hyperbolic tangent networks are smaller than
the positive portion of the ReLU. This means that the positive portion
is updated more rapidly as training progresses. However, this comes at a
cost. The zero gradient on the left-hand side has its problem, called "dead
neurons," in which a gradient update sets the incoming values to a ReLU
such that the output is always zero; modified ReLU units such as ELU
(i.e., Leaky ReLU, or PReLU) can reduce this problem. We still chose the
ReLU because, in our tests, the not relevant difference was found.

Figure 2.9: Most common activation functions.

2.3.3 Pooling Layer

Pooling layers are common after one or more CONV layers. Their role is
to reduce the number of parameters in the network, by reducing the spatial
size of the features map, but at the same time maintaining the important
features. The resizing can be done with a fixed dimension sliding window
on the features map and selecting only the maximum value of the window
(Figure 2.10), or with an average of them. It is worth noticing that this
operation works at the cost of the spatiality of the information, which
could be a problem for pixel level classifications.

2.4. Semantic Segmentation 21

Figure 2.10: Example of max pooling.

2.3.4 Fully Connected Layer

Fully connected layers (FCL) connect every neuron in one layer to
every neuron in another layer. Its role is to collect the information of the
previous layers in order to evaluate them. The FCL is similar to a CONV
layer, the main difference between the two is that in the CONV layer the
neurons are connected only to a local region in the input and that many
of the neurons in a CONV volume share parameters.

2.4 Semantic Segmentation

Looking at the big picture, semantic segmentation is one of the high-
level task that leads towards complete scene understanding. Semantic
segmentation with deep learning algorithm associates a label or category
with every pixel in an image. Someone can confuse it with an object
detection algorithm, but the semantic segmentation networks (SSN5) can
detect objects of irregular shapes or that span in multiple areas. Instead
in the object detection networks, the targets must be inside a bounding
box, so the precision of the SSN is overall superior.

The most common architectures for SSN are based on CNN, divided

5Semantic Segmentation neural network

22 Chapter 2. Machine Learning

in an encoder part, and a decoder one, this kind of architecture is called
SegNet. The Encoder part of the network has the task to extract the
important features from the input image. Like in a normal CNN, this
operations are also called Down-Sampling. This usually comes at the
cost of the spatiality of the information, so to classify the image pixel
by pixel, we must retrieve those information. The decoder part of the
network basically is the reflection of the encoder, but instead of CONV
layers, there are up-convolutional (UP-CONV) layers, in this phase we
have the operation of Up-Sampling.

The architecture of the decoder may be very different in the various
networks, but usually the UP-CONV layers are always present. The UP-
CONV layers are based on the transposed convolution operation, which
takes the each single value coming from the input volume and multiplying it
for an array of weights similar to filters. After this operation the values are
disposed spatially, taking into account the padding and striding parameters
like in Figure 2.11. Also the UP-CONV layers have learnable parameter,
so the network try to re-build the image in order to minimize the loss
function.

The encoder-decoder architecture is many times more efficient than a
sliding window architecture that classifies pixel by pixel, but it suffers of
a drawback. In the Figure 2.11b we can notice that in the overlapping
area of the receptive fields, the values that come out from this convolution
operation are summed up. This can cause what is called "chess board"
artifacts. In case of information in really small neighborhood this problem
may introduce errors in the training and classification of the network.

2.4. Semantic Segmentation 23

(a) Convolution

(b) Transposed convolution

Figure 2.11: In this figure we have the representation of how
the CONV and UP-CONV layers works. The red
and blue boxes represent a sliding 3 × 3 filter.
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

Chapter 3

Neural Network setup

In the computer vision problem, the infer subject is of primary im-
portance, because it reflects on the whole design of the architecture. In
this chapter will be present the neural network architectures adopted with
relative parameters specifically tuned to solve the specific landing problem.

3.1 Architecture
Both models are based on the U-Net [Ronneberger et al., 2015] archi-

tecture, due to its good behaviour with small training sets and flexibility to
be modified accordingly to the task. The name comes for the characteristic
"U" shape as can be seen in Figure 3.1. We can distinguish two main parts
of this architecture: the contracting path and the expansion path. This
series of CONV layers and pooling layers define what is called "depth"
of the network. It determines the number of times an input image is
downsampled or upsampled as it is processed.

In the contracting path, the image will pass through convolutional
layers and max-pooling layers that will extract the features of the image,
but as explained in the Section 2.4 the spatial size of the data changes, with
consequent loss of spatial information. The semantic segmentation should
give an accurate spatial classification of the image, so to solve this problem
we also have a concatenation of feature maps (gray arrows), that are with
the same level to communicate the spacial information to the up-sampling
part of the network, before any max-pooling layer. The expansive path
recovers the original size of the image, but now the features are assigned to
the corresponding pixels, which will be classified by a final softmax layer.

In this thesis, a 4 step encoder/decoder depth U-Net has been chosen

25

26 Chapter 3. Neural Network setup

Figure 3.1: U-Net layers architecture

because it gives the best compromise between performances and training
time. Higher depths are generally used for tasks with many classes because
the model can collect more high-level features from the images. In our case
we found that the accuracy improvement is negligible, since the hazard
and safe areas are discriminable with low-level features, such as edges and
pixels intensity standard deviation.

In Table 3.1 we have a list of the layers in the model. The role of
the convolutional layers, maxpooling layers and transposed convolutional
layers has been already explained in the Sections 2.3 and 2.4.

The drop-out layer means dropping out some neurons of the neural
network to avoid over-fitting. It happens when many parameters are
concentrated in a few layers, and hence, neurons develop co-dependency
among each other during training, which curbs the individual power of
each neuron leading to over-fitting of training data. Shutting down some
neurons, we force the network to learn more robust features that are useful
in conjunction with many different random subsets of the other neurons.

The concatenation layers are characteristic of the encoder/decoder
structures. Their role is to concatenate the information on a specific
dimension. Combining the location information from the downsampling
path with the contextual information in the upsampling path is useful to

3.1. Architecture 27

Table 3.1: Feature map, with output size per patch. If we want the output size
for batch we must multiply it by the number of patches in a batch.
X and Y are the spatial size of the input volume, while Nc is the
number of channels. The abbreviations Batch Norm, UP-Conv and
Concat. stands for batch normalization, transposed convolution
and concatenation respectively. The indexes used represent [E:
encoder, B: bridge, D: decoder]-[depth number]-[layer number].

Layers Output Size

Input (X × Y ×Nc)
Batch Norm (X × Y ×Nc)
Conv (E1.1) (X × Y × 64)
Conv (E1.2) (X × Y × 64)
MaxPooling (X/2× Y/2× 64)
Conv (E2.1) (X/2× Y/2× 128)
Conv (E2.2) (X/2× Y/2× 128)
MaxPooling (X/4× Y/4× 128)
Conv (E3.1) (X/4× Y/4× 256)
Conv (E3.1) (X/4× Y/4× 256)
MaxPooling (X/8× Y/8× 256)
Conv (E4.1) (X/8× Y/8× 512)
Conv (E4.2) (X/8× Y/8× 512)
Dropout (X/8× Y/8× 512)
MaxPooling (X/16× Y/16× 256)
Conv (B1) (X/16× Y/16× 1024)
Conv (B2) (X/16× Y/16× 1024)
Dropout (X/16× Y/16× 1024)

Layers Output Size

UP-Conv(D1) (X/8× Y/8× 512)
Concat.(C4.2) (X/8× Y/8× 1024)
Conv (D1.1) (X/8× Y/8× 512)
Conv (D1.2) (X/8× Y/8× 512)
UP-Conv(D2) (X/4× Y/4× 256)
Concat.(C3.2) (X/4× Y/4× 512)
Conv (D2.1) (X/4× Y/4× 256)
Conv (D2.2) (X/4× Y/4× 256)
UP-Conv(D3) (X/2× Y/2× 128)
Concat (C2.2) (X/2× Y/2× 256)
Conv (D3.1) (X/2× Y/2× 128)
Conv (D3.2) (X/2× Y/2× 128)
UP-Conv(D4) (X × Y × 64)
Concat (C1.2) (X × Y × 128)
Conv (D4.1) (X × Y × 64)
Conv (D4.2) (X × Y × 64)
Fully Connected (X × Y × 2)
Softmax (X × Y × 2)

28 Chapter 3. Neural Network setup

finally obtain a general information combining localization and context,
which is necessary to predict a good segmentation map.

3.1.1 Classes Balance

Due to the large difference of number of pixels associated to each class,
to avoid a biased training we used the inverse class frequency weighting [V.
Wang et al., 2012] to balance the two classes. This method promotes the
underrepresented classes by computing the class frequency over the training
set and then set the weights as the inverse of the relative frequency. These
updated weights must be substitute to the ones in the pixel classification
function in the softmax layer.

3.2 Deep Learning Framework

For both problems we implemented the U-Net in the MATLAB deep
learning framework. The framework supports GPU acceleration, which
lower the training time significantly when running on NVIDIA GPUs.

3.3 Itokawa Hazard Detection

In case of the Itokawa landing problem we explore two different algo-
rithms to feed the network, which consequently reflects on the architecture.
The first approach is based on resizing the images at a lower resolution.
While the second one is a tile based approach. It consists in extracting
crops of the images. Both methods are required to save GPU memory.

3.3.1 Hyperparamentes

In this section we discuss all parameters characterizing the training
data set, there are certain parameters required for setting up a network
and training it. In Tables 3.2, 3.3 are listed the hyperparameters adopted,
many of which were already explained in the Section 2.1. The gradient
clipnorm is a gradient threshold to avoid that the gradient explodes, which
can occur when the weights update in one step is very large. As can be
seen from the last layer in Table 3.1 we used a softmax classifier with
cross-entropy loss.

3.3. Itokawa Hazard Detection 29

Table 3.2: Hyperparameters settings for the Itokawa Tile-Based algorithm

Hyperparameter Setting

Input Resolution 256× 256
Number of Channels 3 (RGB)
Activation ReLU
Stride 1
Kernel Size (3× 3)
Dropout Rate 50%

Hyperparameter Setting

Optimizer ADAM
Initial Learning Rate 10−4

Batch Size 8
Epochs 50
Weights Regularization L2 - 0.005
Gradient Clipnorm 0.1

Table 3.3: Hyperparameters settings for the Itokawa Resizing algorithm

Hyperparameter Setting

Input Resolution 512× 512
Number of Channels 3 (RGB)
Activation ReLU
Stride 1
Kernel Size (3× 3)
Dropout Rate 20%

Hyperparameter Setting

Optimizer ADAM
Initial Learning Rate 10−4

Batch Size 4
Epochs 200
Weights Regularization L2 - 0.005
Gradient Clipnorm 0.1

Table 3.4: Hyperparameters settings for the lunar hazard detection algorithm

Hyperparameter Setting

Input Resolution 512× 512
Number of Channels 4
Activation ReLU
Stride 1
Kernel Size (3× 3)
Dropout Rate 50%

Hyperparameter Setting

Optimizer ADAM
Initial Learning Rate 10−4

Batch Size 4
Epochs 50
Weights Regularization L2 - 0.005
Gradient Clipnorm 0.1

30 Chapter 3. Neural Network setup

3.4 Lunar Landing Hazard Detection
For the lunar landing problem due to the size of the maps, only a

tile-based approach has been adopted. This allows us to have a more
various dataset with the implementation of data augmentation techniques,
but it will be described more in detail in the next chapter.

The backbone of the network architecture is the same as Table 3.1,
but this time, we use four channels instead of three. We noticed that the
performances of the model improve if we add at the three color channels
(RGB) another layer with the sun inclination angle in degrees [R. Liu et al.,
2018].

We also explored more exotic architectures, in order to feed the sun
angle directly into the features space of the network. In addition to that,
we tried new loss functions based on the IoU1 metric (Section 5.1.2) with
promising results, but not near the performances of the more simple, yet
effective, model chosen in this thesis.

3.4.1 Hyperparamentes

The list of parameters for this model are in Table 3.4. The batch
size is small to respect the GPU memory requirements, due to the large
dimensions of the patches. Because we still use the same U-Net backbone
for this model too, we use a softmax classifier with cross-entropy loss.

1Intersection over Union

Chapter 4

Dataset Setup and Training

This chapter is organized as follows. The dataset used for the training
is described. We continue by explaining how the labeling was performed.
A description of the training process with the adopted algorithms follows.

The first model analyzed is the Itokwa hazard detection model. For
this case, we will see the image processes adopted to ensure a more uniform
and consistent training set. Then we show the two algorithms adopted for
the training.

The last model described is the lunar model. We will explain how
the dataset images were simulated and which parameters were taken into
account for the labeling process. To complete the chapter, the training
procedure is explained.

4.1 Itokawa Hazard Detection
The dataset adopted is based on real images of the asteroid Itokawa,

provided by the Hayabusa 2 mission launched in 2014. Then we modify
the dataset following two different approaches. In the first, we re-size every
image to feed the network for the training, while in the second one, we
take crops of every image to enlarge the dataset.

4.1.1 Data Set

The provided images refer to the approach phase and orbit phase of
Hayabusa 2. They were taken with the spacecraft on-board camera. The
illumination source is the sun, and the images are RGB and with normalized
illumination. The whole data-set counts more than 1500 images taken

31

32 Chapter 4. Dataset Setup and Training

at various distances and illumination conditions, but for our purposes a
selection of around 40 images has been adopted. Because the images are
at the fixed resolution of 1024 × 1024 pixels, only the ones taken at a
certain distance from Itokawa can be used, to avoid that the meaningful
information are collected only in few pixels.

The limited number of images for the dataset is given by the large
amount of time require to correctly label the images. The size of the
dataset has a big impact on multiple aspects of the deep learning approach.
With a small training-set the network may over-fit easily due to the lack
of differentiation between the data. This can cause serious classification
errors if the test-set is slightly far from the training one. Besides to avoid
overfitting the training time can not be very long with a consequent impact
on the overall accuracy of the network.

4.1.2 Labeling

Two labels have been taken into account: smooth terrain - rocky terrain.
The smooth label identifies all the terrain portion visible in the images
with fine sand, while the rocky label is assigned to the terrain with many
boulders and irregularities, (Figure 4.1). The slopes on such small bodies
are usually defined as the angle between the total gravitational acceleration
plus centripetal acceleration vector and the surface normal. However, due
to the lack of a shape model of the asteroid, the terrain slope was not
taken into account.

The image labeling has been done manually with the Image Labeler
app in the MATLAB suite; this method is not ideal because it suffers from
the human error, but for this application is acceptable given that it doesn’t
have much influence in the learning of the characteristic, if it is limited to a
few pixels. It means that not every pixel in the image is classified correctly
in the ground truth label, but automatic methods, with the application of
filters, fail to give a satisfactory result. The main reason is due to the small
dimensions of the body; the brightness of the illuminated areas varies a lot
with the body curvature. Besides, the parameters update in the network
is dependent on the number of pixels of each class, so small errors have a
low impact on the network training.

4.1. Itokawa Hazard Detection 33

(a) Image (b) Ground truth

Figure 4.1: Example from the training dataset. The rocky terrain label is
represented in green, while the smooth terrain label in the rust
color.

4.1.3 Image Pre-Processing

To achieve better model learning, the training set of images has been
modified by removing as much as possible the background and the shadow
cast by the spacecraft solar panels. The main reason to remove as much
background as possible is that many pixels are without class so they
can bias the training. Especially in a tile-based algorithm, that will be
introduce shortly after, some patches could contain only the background,
which would be a waste of computer resources and time. To remove it first,
we convert the image in HSV1 where the third channel gives the value of the
lightness of each pixel. We filter out any value under a certain threshold
to remove the darkest regions. Then the image has been cropped around
the region of interest. With this process, we also removed the part of the
asteroid shadowed by the spacecraft.

1Hue, Saturation, Value

34 Chapter 4. Dataset Setup and Training

4.1.4 Training

The entire set of images has been divided in training set, validation
set, and test set. Respectively: 22 images for the training set, 5 for the
validation and 11 for the test set.

Two different training algorithms have been tested: the Resize Algorithm
and the Tile-Based Algorithm. The respective training hyperparameters
are in Section 3.4.1.

Resize Approach

This script takes the images and resize them at a fixed resolution
of 512 × 512 pixels. This was done to fulfill the GPU memory limit.
The downside of this method is the loss of resolution and therefore of
information, but the network was still capable of extracting the important
features from the images. Due to the small number of images for the
training, we also applied on the training set a data augmentation procedure,
which modified the images in order to make them look different to the
network. This is a good method to partially overcome the lack of data
for the training. The data augmentation algorithm randomly rotates the
images between −20 and +20 degrees, and it randomly mirrors the image
with respect to the X axis.

Tile-based Approach

In this variant, the images instead of being re-sized are kept at their
original size, then the data set is built on fixed size random crops of the
images. This method is often applied for medical semantic segmentation
or satellite imaging segmentation, and it allows us to have a large dataset
with a few images. For the training set, we get 20 patches of size 256× 256
per image. Instead for the validation set, we extract 10 patches for image.
On both datasets, data augmentation has been applied with the same
options described above.

4.2 Lunar Landing Hazard Detection

In the case of moon maps we simulate the images using digital terrain
models (DTMs) found on (http://lroc.sese.asu.edu), instead of using real
images. We choose this approach because it allows us to change the resolu-
tion and illumination conditions. One more advantage is the possibility to
easily make the DTM and the rendered image coincide, by modifying the

http://lroc.sese.asu.edu

4.2. Lunar Landing Hazard Detection 35

camera position in the rendering software, which is fundamental to create
precise masks to label the model.

4.2.1 Data Set

The images are generated with a ray-tracing program, POV-Ray2. The
program traces each light ray generated by the light sources. Then it
computes the rays reflections on every object inside the considered domain.
In our case, the object is a DTM of the Apollo 16 landing site. This area
has been selected for a large number of suitable landing sites.

The DTM is a grayscale representation for the elevation of the terrain.
The terrain elevation is measured with respect to the mean value of the
Moon radius. It is worth noticing that the terrain models have been taken
with a Lunar Orbiter Laser Altimeter (LOLA3) with a root mean square
error (RMS) of 3.93m at 12 different LOLA orbit tracks. This value can
give a measurement of the vertical and horizontal accuracy of the model.

Figure 4.2 illustrates the two squares from which the training set and the
test set have been taken. The red one has been used to train the network,
while the orange one to test it. The red box covers an approximate area
of 4× 4 km, instead the orange box around 16× 16 km. Given that the
images have a fixed resolution of 4096× 4096 pixels, it means that in the
train set the resolution is 1 m/pixel while in the test set is 4 m/pixel.
This resolution is acceptable for most landers to detect a safe landing
site, and because it is easier for the network to recognize hazard terrain
characteristics. In our tests, higher resolutions did not bring any real
advantages but instead had a big impact on the GPU memory. We can
notice that the same area of the DTMs does not have the same brightness
in the two cases, that is because each image is normalized on its maximum
elevation excursion. For the training square, the elevation varies between
around 10 and -160 m, while for the test square, between around 300 and
-160. Both test set and training set images are rendered at four different
sun inclinations: 25◦, 35◦, 45◦ and 55◦. This gives us a total of four 16
megapixel images for the training set and for the test.

The other important role of the DTMs is to compute the safe index
parameters. In [Ge et al., 2016] is shown that the safe index can collect
many constraints, like the fuel consumption expressed as a propellant mass

2The Persistence of Vision Ray Tracer
3Lunar Orbiter Laser Altimeter

36 Chapter 4. Dataset Setup and Training

fraction (PMF4). However, we just considered landing safety. The landing
safety index gathers the maximum slope and roughness requirements for
the landing. We adopted a maximum of 8 degrees for the slope and 5% as
maximum terrain roughness. Both values are similar to the requirements
of the Chang’e 3 lander [X. Liu et al., 2019].

Figure 4.2: Elevation heat map of the Apollo 16 landing site. The red square
represent the part of the map used for the training, while the
orange square is the crop used for the test.

4Propellant Mass Fraction

4.2. Lunar Landing Hazard Detection 37

(a) Training DTM (b) Training rendered image

(c) Test DTM (d) Test rendered image

Figure 4.3: On the first row there are both DTM and rendered image crops of
the map used for the training, while in the second row there are
the crops used for the test.

4.2.2 Labeling

Differently from the Itokawa case, where the images were manually
labeled, here, we develop an algorithm to have an high accuracy labeling.
The first step is to import the DTM of the selected area and compute
the slope pixel-wise as the gradient of the DTM. Also the roughness can
be computed by finding the normalized standard deviation of the pixel
intensity with respect the nearby pixels [Höfle and Hollaus, 2010]. At this

38 Chapter 4. Dataset Setup and Training

point we defined the classes: Safe terrain and Hazardous terrain. A pixel
to be classified as Safe must meet three requirements: both slope and
roughness must be less or equal of the respective thresholds, and the point
must not be in shadow. If one of these points is not respected, the pixel is
classified as hazard. In Figure 4.4 we can see the superimposition of the
label on the camera image.

(a) Image (b) Ground truth

Figure 4.4: Example from the training dataset. The class Hazard is represented
in blue, while the class Safe in the rust color.

4.2.3 Training

The training procedure is similar to the one described in Section 4.1.4.
We used the area in the red square shown in Figure 4.2, and then we
extracted from it random crops of fixed dimension: 512× 512 pixels. The
patches have such large size to be able to fit the larger craters inside it,
which helps the network to detect terrain characteristics. Because the crops
are taken randomly in such large area, they are used also for the validation
of the network. For the training set we used 100 patches per image, while
for the validation 30 per image, which gives us a total of 400 patches for the
training and 120 for the validation. Then each dataset is subject to a data
augmentation process like in the cases already described. Besides random
rotation and mirroring we also used a random image re-scaling between
0.5 and 2.0. The re-scaling allows the network to see terrain features with
different size, like craters, more easily. The hyperparameters adopted for

4.2. Lunar Landing Hazard Detection 39

the training are listed in Section 3.4.1

Chapter 5

Results

This chapter is organized as follows. The metrics adopted for the
evaluation are described. We continue by studying the quantitative and
qualitative results of the suggested approaches. At last, the chapter is
completed with a runtime analysis of the CPU and GPU implementation.

The first experiment discussed herein is about the Itokawa asteroid
hazard detection. The performances will be evaluated on both algorithms:
image crops and re-sized images. Furthermore, we present the results of
the pre-processed dataset with haze reduction filters.

The last experiment in this chapter examines the performances of the
network on the lunar landing hazard detection problem. Then we compare
those results with a random forest classifier trained on specific image
features.

5.1 Evaluation Metrics

Before diving into the evaluation methods we need to introduce some
terminology:

• TP = true positive, data points labeled as positive that are actually
positive.

• TN = true negative, data points labeled as negative that are actually
negative

• FP = false positive, data points labeled as positive that are actually
negative

41

42 Chapter 5. Results

• FN = false negative, data points labeled as negative that are actually
positive

Figure 5.1: Normalized confusion matrix.

This nomenclature is often used in confusion matrices, (Figure 5.1), which
is an intuitive graphical representation of algorithm performance in a
semantic segmentation problem.

In this thesis we refer to TP for the safe pixels correctly classified as
safe, on the other hand TN are those hazard pixels correctly classified as
hazardous. Consequently, FP are hazard pixels incorrectly classified as
safe, and at last FN are the safe pixels classified as hazardous.

The metrics adopted for the proposed experiments of semantic seg-
mentation are the precision vs. recall and the intersection over union
(IoU).

5.1.1 Precision Vs. Recall

This method is more suitable than the global accuracy metrics for
semantic segmentation because it will yield misleading results if the data

5.1. Evaluation Metrics 43

set is unbalanced. The accuracy takes into account only the correct
classifications, not the relevance of each class:

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

In our case is fundamental that the hazardous terrain is correctly classified
rather than the safe one, because any hazard can lead to the mission
failure. So in case of an image with a vast safe area, if the model classifies
everything as safe, the resultant global accuracy will be high.

Recall refers to the percentage of total relevant results correctly classified
by the algorithm, and it is computed as:

Recall =
TP

TP + FN
(5.2)

Precision refers to the percentage of the results that are relevant:

Precision =
TP

TP + FP
(5.3)

As we said earlier the FP are extremely important, because they can lead
to mission failure, so we need high precision. Nevertheless the recall can
not be extremely low, otherwise we can not identify any safe landing site.

However, in cases where we want to find an optimal blend of precision
and recall, we can combine the two metrics using what is called the F1
score [Goutte and Gaussier, n.d.]. The F1 score is the harmonic mean
of precision and recall taking both metrics into account in the following
equation:

F1 = 2
Recall ∗ Precision
Recall + Precision

(5.4)

5.1.2 Intersection Over Union

The intersection over union score, also known as Jaccard index, is often
used to compare multi-class semantic segmentation methods. It is defined
as follows:

IoU =
TP

TP + FP + FN
(5.5)

Compared to precision and recall, the IoU is a strict metric, because it
considers TP , FP and FN all together. Which means that the IoU score
results in lower scores, since every missclassified pixel has a considerable
impact on the overall score. We compute the IoU score for each class
separately and, afterwards, compute the mean of all class scores.

44 Chapter 5. Results

5.2 Experimental Results: Itokawa Dataset

In this section, we evaluate our proposed algorithms on the Itokawa
test dataset. For the experimental evaluation, we selected eleven unique
images from the dataset of all the available Itokawa images, making sure
that they are not present in the training set. The main challenge of this
test is the small size of the objective, which leads to a high pixel intensity
standard deviation even on smooth terrains, and a un-uniform distribution
and shape of the shadows cast by the boulders.

The algorithms proposed are two: a images resize algorithm and a
tile-based algorithm. A manual features extraction algorithm is also showed
to make a comparison with non-deep-learning models. As for the training
data, the resize algorithm fixes the resolution of the test images at 512×512
pixels.

In the tile-based algorithm each image is cropped into tiles of size
256× 256. Afterward, each patch is processed by the network. After the
class labels have been inferred, the images are reassembled. Padding is
used to reduce artifacts at tile-borders, so the patches overlap each other.

In the manual feature extraction algorithm (MFE1), the features are
extracted from the images applying defined filters, which is similar to how
CNN works, but with 3 diffent window sizes: 3× 3, 9× 9 and 15× 15. The
main difference is that in the MFE, we define a set of filters: mean value,
mean, standard deviation, Laplacian of Gaussian filter, and Prewitt filter
[Roushdy, 2006]. With these filters, we project the dataset features into
the features space, then we use a random forest classifier to infer each class
label. To train the classifier, we used the same dataset used to train the
neural network.

We want to stress that the metrics results on Table 5.1 can not be
used as a reliable source to assess the absolute performance of the models
because the ground truth was manually labeled. Which means that the
ground truth itself suffers from the human error. They can be used instead
to compare the behavior of the different models.

In Table 5.1 are collected the scores for each model, and we can notice
that the resize algorithm seems to outperform the other ones. But as
we said in Section 5.1.1, the scores must be interpreted according to the
scenario. In Figure 5.2 the resize algorithm confidence area covers most
of the smooth class, but it also gives more false positive results. The

1Manual Features Extraction algorithm

5.2. Experimental Results: Itokawa Dataset 45

(a) Test Image (b) Ground Truth (c) Resize

(d) Tile-based (e) MFE

(f) Test Image (g) Ground Truth (h) Resize

(i) Tile-based (j) MFE

Figure 5.2: Two examples results of the Itokawa dataset, the rocky terrain
label is represented in green, while the smooth terrain label in the
rust color.

46 Chapter 5. Results

Table 5.1: Performance comparison of the proposed algorithms.

Algorithm Precision Recall F1 Score Mean IoU Class IoU

Resize 0.6988 0.6831 0.6908 0.72212 Rocky 0.91657
Smooth 0.52768

Tile-
based 0.9325 0.4493 0.6064 0.68119 Rocky 0.92719

Smooth 0.43518

MFE 0.7788 0.4372 0.5600 0.6583 Rocky 0.9276
Smooth 0.3889

tile-based approach on the other hand is more "cautious". It recognizes
correctly almost all the rocky terrain as can be seen in Figure 5.4b. The
tile-based even worst image result have a precision of 0.9176 and a IoU on
the rocky class of 0.88734. It means that even in the worst-case scenario
tested the model unlikely misclassified a hazardous terrain as safe.

If we look at Figure 5.4 separating the impact of each class on a real
mission; the resize model is overall superior to the tile-based. The FP
are not significantly more than the tile-based one; the TP and the FN
difference is significant.

The resize approach was trained with the whole pictures of Itokawa in
different light conditions, due to sun positioning or objective curvature. It
explains why in Figures 5.3 the smooth area is correctly classified to the
very edge of the asteroid. The patches have the advantage that they did
not lose information by scaling the resolution, so the network can analyze
even the smaller boulders, which edges can be blurred at lower resolutions.
We can now explain the excellent performance of the tile-based approach
to classify the rocky class. Both models also classify as rocks smaller
boulders in the smooth terrain which are incorrectly in the ground truth
smooth area, so their real performance metrics are likely superior to the
ones shown in this thesis.

In Table 5.1 and Figure 5.2 it is also shown the clear performance
improvement of both models with respect to the MFE algorithm. This is
also due to the fact that the MFE model used was not originally designed
for this kind of classification problem. Anyhow, it helps to understand
what are the features that the deep learning models are considering for
classes inference.

5.2. Experimental Results: Itokawa Dataset 47

(a) Ground Truth (b) Tile-based

(c) Resize (d) MFE

Figure 5.3: Focus on the smooth area of the example in Figure 5.2a. The rocky
terrain label is represented in green, while the smooth terrain label
in the rust color.

(a) Normalized confusion matrix Resize
algorithm

(b) Normalized confusion matrix Tile-
based algorithm

Figure 5.4: Normalized confusion matrix comparison.

48 Chapter 5. Results

5.3 Lunar Landing

In this section, we use our model to recognize possible safe landing sites,
on a simulated Apollo 16-like landing area. The experiment dataset has
four images of the test area is represented in Figure 4.3d at different sun
inclination conditions: 25◦, 35◦, 45◦ and 55◦. The sun angle is provided as
an additional channel for each test image because it has been noticed a clear
improvement in the network performance. In Itokawa hazard detection
problem, the human eye could easily distinguish between the two classes,
but in case of a lunar vertical landing terrain features like slopes can not
be easily recognized. This test aims to prove that the neural network can
collect features not visible to humans, and elaborate them efficiently.

Due to the large size of the area, 16 × 16 km, with a resolution of
4096 × 4096 pixels a resize algorithm would lose too many information.
The conventional approach in the semantic segmentation satellite imagery
field is the tile-based approach, similar to the Itokawa tile-based approach
already described in the previous section. We crop from each image
patches of size 512× 512, and then, we feed them into the network. The
patch dimensions selected to fulfill the GPU memory requirements, and it
allows to collect entirely also the more prominent craters inside it, since
also the shapes of the terrain characteristics are essential features for the
classification.

In this case, no MFE algorithm has been used to assess the network
performances because of the total inability of the model to classify hazards
in this scenario. Another limitation is the extended run-time required for
the elaboration of an image at this resolution. The MFE requires hours
while the neural network can do it in less than ten seconds.

Similarly to the training ground truth, the test ground truth has been
made by computing the slope and roughness for each pixel from the DTM
of the selected area. The safe class must respect all the three conditions
already used for the training set: slope ≤ 8◦, roughness ≤ 5%, and not in
shadow. If one of these conditions is not respected, the pixel is labeled as
a hazard.

In Figure 5.5, 5.6 are represented the network experiment results. Since
the ground truth take into account the shadow areas it changes with the
sun angle. The ground truth maps and the network confidence maps shown
are superimposed at the test images, (Figure 5.5a, 5.5b, 5.6a and 5.6b).
This helps us to visualize which terrain characteristic the network is looking

5.3. Lunar Landing 49

(a) 25◦ Image (b) 35◦ Image

(c) 25◦ Ground Truth (d) 35◦ Ground Truth

(e) 25◦ Predicted (f) 35◦ Predicted

Figure 5.5: Experiment results for lunar landing with the sun inclination at 25◦ and 35◦.
The class Hazard is represented in blue, while the class Safe in the rust colour.
The colors are not uniform because the confidence map have been superimposed
to the test image.

50 Chapter 5. Results

(a) 45◦ Image (b) 55◦ Image

(c) 45◦ Ground Truth (d) 55◦ Ground Truth

(e) 45◦ Predicted (f) 55◦ Predicted

Figure 5.6: Experiment results for lunar landing with the sun inclination at 45◦ and 55◦.
The class Hazard is represented in blue, while the class Safe in the rust color.

5.3. Lunar Landing 51

(a) (b)

(c) (d)

Figure 5.7: Normalized confusion matrix comparison.

52 Chapter 5. Results

for.
As we can clearly see in Figure 5.7 and Table 5.2 the results change

significantly with the sun angles. We can notice that in brighter scenes like
in Figure 5.6e and 5.6f only the dark side of the alrger craters is correctly
predicted. Instead, with darker scenes like in Figure 5.5e and 5.5f also the
brighter side is correctly classified. We can deduce that the network infer
the slope and roughness from the pixels intensity with respect to the mean
value of the map. A proof of this is visible in Figure 5.8. With the sun
inclination at 35◦, the confidence map is more accurate outside the craters,
with respect to the scene with a sun inclination at 45◦.

Table 5.2: Experimental results.

Sun Angle Precision Recall F1 Score Mean IoU Class IoU

25◦ 0.8173 0.9596 0.8828 0.65155 Safe 0.79013
Hazard 0.51297

35◦ 0.8868 0.8753 0.8810 0.65652 Safe 0.78729
Hazard 0.52575

45◦ 0.8514 0.8950 0.8727 0.60044 Safe 0.77407
Hazard 0.4268

55◦ 0.8279 0.9624 0.8901 0.59244 Safe 0.80196
Hazard 0.38292

5.4 Runtime Performance

Runtime performances for an autonomous hazard detection model is
critical since if we want to use high-resolution cameras, the amount of
data to process is enormous. For real space applications, the standard
resolution for the cameras are around 1024 × 1024 pixels. Yet, cameras
are not used for a complete vision-based landing.

Performances were recorded from a desktop PC with a GPU NVIDIA
GTX 1070 with 8 GB of memory, while the CPU is an AMD Ryzen 5 2600
with 6 cores and 12 threads. The RAM is a dual-channel DDR4 with 16
GB. All the test were done on MATLAB with the GPU acceleration enabled.

In the Itokawa dataset, the resize algorithm requires 0.101 seconds for
a 512× 512 image, while the tile-based algorithm requires 0.303 seconds to

5.4. Runtime Performance 53

(a) 35◦ Image (b) 45◦ Image

(c) 35◦ Ground Truth (d) 45◦ Ground Truth

(e) 35◦ Predicted (f) 45◦ Predicted

Figure 5.8: Crop of the right bottom corner of the test map. The class Hazard
is represented in blue, while the class Safe in the rust color.

process and rebuild the image. Each patch of size 256× 256 is processed
in around 0.0183 seconds. For tile-based algorithm in the Lunar landing
case the time to process and rebuild an image is high (around 8 seconds)
due to the large density of pixels (4096× 4096 pixels). Each patch of size
512× 512 is processed in around 0.110 seconds.

Even if this work was not done with the intention of optimizing the
runtime performances, we can see in Figure 5.9 that the deep neural
network with encoder/decoder architecture is several orders of magnitude

54 Chapter 5. Results

faster than the MFE algorithm. The reason is the long time required to
extract the features from the images with 3 different window sizes. While,
as we said in Section 2.4 the encoder-decoder architecture is really efficient.

Figure 5.9: Runtime comparison between the differnt models for the Itokawa
dataset.

Chapter 6

Conclusions and Future Works

In this work, we tested the latest deep learning semantic segmentation
models applied to the autonomous landing hazard detection problem.
Because this technique is based on camera images, it only works in certain
illumination conditions. It means that this method was never meant to
substitute the current state-of-the-art hazard detection systems, which
involves the use of LiDARs. Instead, this new method can be adopted as a
backup option or used on very small and light landers in special conditions,
thanks to its reduced computational cost and the lightness of modern
cameras.

In Section 5, in this preliminary test, we showed that to detect hazards,
like boulders, on small celestial bodies, the deep learning approach is a
reliable option. The most concerning false positive errors are limited in
the tile-based approach. Also, in the worst possible scenario, the precision
with this model is above 91%. It is worth noticing that the test was done
on a network explicitly trained on the Itokawa asteroid. Many asteroids
like Bennu of the OSIRIS-REx mission does not have bright, smooth areas
like Itokawa. Luckily the latest missions, Hayabusa 2 and OSIRIS-REx
took many pictures of the individual asteroids allowing us to build more
massive and improved datasets. For what concern the computational cost
as we already wrote, the model was not designed with efficiency purposes,
so much improvement can be made to enable the real time execution of all
the processes.

The lunar landing hazard detection is a challenging task for the deep
learning semantic segmentation. Terrain features like the slope are highly
dependent on the illumination conditions, as we can see from the results
in Table 5.2, the metrics vary very much with the sun angle. Under 45◦

55

56 Conclusions and Future Works

of sun inclination, the model was able to recognize craters consistently,
even the smaller ones. However, large areas with a hazardous slope were
not correctly classified due to the lack of recognizable features. Above
the 45◦ angle, the majority of the classification errors are linked to the
overexposure of the scene, which saturates the colors.

It is worth mentioning that the model used is in a preliminary develop-
ment phase for the deep learning lunar landing hazard detection. In fact,
we did not perform neither the training nor the test on real images. The
quality of the dataset has a fundamental impact on the model performances.
In the next section, we are going to discuss some improvements that can
be implemented.

6.1 Future Works
As we anticipated, our models are not optimized in terms of runtime;

there is room for improvement. We think that changing the framework
environment form MATLAB to Keras will boost the runtime of all our models.
Thanks to the larger machine learning community working with python,
it is easier to find better optimized functions. Another option is to use
lossless data compression like the run-length encoding to store the labels
as a single data value and count, rather than as the original run.

(a) Image un-processed (b) Image with haze reduction

Figure 6.1: Example of image processing in a train image.

For the Itokawa hazard detection model, some image processing tech-
niques were tested. The best results were obtained using haze reduction
filters on the images, (Figure 6.1), which granted a slight improvement

6.1. Future Works 57

in the overall precision. However, it comes at a high cost of the recall
metric, and it has a significant impact on the computational cost of the
model, around 0.3 seconds more per image. That is because this process
is based on the same method of the MFE algorithm. The idea is to try
to feed the network with both datasets, processed and unprocessed, to
make the network update the filters inside the convolution layers to do
this image processing automatically. A fundamental step is to improve the
dataset with many other images of different asteroids now that more high
definition images are available, like the Ryugu asteroid of the Hayabusa 2
mission and the Bennu asteroid of OSIRIS-REx.

For future works on the lunar landing hazard detection, a couple
of possible improved models were found. A promising model is a U-
Net built on the backbone of a pre-trained ResNet50 classifier, with the
training divided into two parts. In the first, we could train with the
standard cross-entropy loss; then there can be another training phase
using a Lovàsz Loss [Berman et al., 2018]. This technique is the state-of-
the-art for many semantic segmentation challenges that can be found on
[https://www.kaggle.com].

Another possible option is in the work of Cheng Huang and Hongmei
Wang [Huang and H. Wang, 2018]. They used spatiotemporal convolutional
networks for a vision based hazard detector. The spatial part of the two-
stream branch carries information about contents and scenes, and the
temporal part conveys the motion and edge information.

In the previous section, we said that the dataset is the foundation on
which the network is built. For the future works, we will try to build
a dataset with real high-quality images, or to render pictures as much
photo-realistic as possible.

https://www.kaggle.com

Acronyms

POV-Ray The Persistence of Vision Ray Tracer

The Persistence of Vision Ray Tracer, or POV-Ray, is a ray
tracing program which generates images from a text-based
scene description, and is available for a variety of computer
platforms.
https://en.wikipedia.org

DTM Digital Terrrain Model

A digital elevation model (DEM) is a 3D CG representation
of a terrain’s surface – commonly of a planet (e.g. Earth),
moon, or asteroid – created from a terrain’s elevation data.
A "global DEM" refers to a Discrete Global Grid. DEMs
are used often in geographic information systems, and are
the most common basis for digitally produced relief maps.
While a DSM may be useful for landscape modeling, city
modeling and visualization applications, a DTM is often
required for flood or drainage modeling, land-use studies,
geological applications, and other applications, and in plan-
etary science.
https://en.wikipedia.org

LOLA Lunar Orbiter Laser Altimeter

The Lunar Orbiter Laser Altimeter (LOLA) provides a pre-
cise global lunar topographic model and geodetic grid that
serves as the foundation of essential lunar understanding.
This aids future missions by providing topographical data
for safe landings and enhance exploration-driven mobility
on the Moon. LOLA also contributes to decisions as to
where to explore by looking at the evolution of the surface.
LOLA fully achieves three LRO measurement objectives
and addresses two other. LOLA will provide all the data

59

https://en.wikipedia.org/wiki/POV-Ray
https://en.wikipedia.org/wiki/Digital_elevation_model

60 Acronimi

necessary to select intriguing, safe landing sites, while pro-
viding the reference system needed to navigate to those sites.
LOLA builds on extensive spaceflight heritage, including
the Mercury Laser Altimeter (MLA) and the Mars Orbiter
Laser Altimeter (MOLA). The LOLA measurement team
has 15 years of altimetry experience that includes providing
MOLA data to the Mars Exploration Rover site-selection
teams.
https://lola.gsfc.nasa.gov

LiDAR Light Detection and Ranging

LiDAR is a surveying method that measures distance to a
target by illuminating the target with pulsed laser light and
measuring the reflected pulses with a sensor. Differences in
laser return times and wavelengths can then be used to make
digital 3-D representations of the target. LiDAR is com-
monly used to make high-resolution maps, with applications
in geodesy, geomatics, archaeology, geography, geology, geo-
morphology, seismology, forestry, atmospheric physics,laser
guidance, airborne laser swath mapping (ALSM), and laser
altimetry. The technology is also used in control and navi-
gation for some autonomous cars.
https://en.wikipedia.org

PMF Propellant Mass Fraction

In aerospace engineering, the propellant mass fraction is the
portion of a vehicle’s mass which does not reach the destina-
tion, usually used as a measure of the vehicle’s performance.
In other words, the propellant mass fraction is the ratio
between the propellant mass and the initial mass of the
vehicle. In a spacecraft, the destination is usually an orbit,
while for aircraft it is their landing location. A higher mass
fraction represents less weight in a design. Another related
measure is the payload fraction, which is the fraction of
initial weight that is payload.It can be applied to a vehicle,
a stage of a Vehicle or to a Rocket Propulsion System.
https://en.wikipedia.org

CNN Convolutional Neural Network
In deep learning, a convolutional neural network (CNN, or ConvNet) is
a class of deep neural networks, most commonly applied to analyzing

https://lola.gsfc.nasa.gov/index.html
https://en.wikipedia.org/wiki/Lidar
https://en.wikipedia.org/wiki/Propellant_mass_fraction

Acronimi 61

visual imagery. Convolutional networks were inspired by biological
processes in that the connectivity pattern between neurons resembles
the organization of the animal visual cortex. Individual cortical neurons
respond to stimuli only in a restricted region of the visual field known
as the receptive field. The receptive fields of different neurons partially
overlap such that they cover the entire visual field.
https://en.wikipedia.org

ADAM Adaptive Moment Estimation
An algorithm for first-order gradient-based optimization of stochastic
objective functions, based on adaptive estimates of lower-order mo-
ments.
Kingma and Ba, 2014

SGD Stochastic Gradient Descent
Stochastic gradient descent (often abbreviated SGD) is an iterative
method for optimizing an objective function with suitable smoothness
properties (e.g. differentiable or subdifferentiable). It is called stochas-
tic because the method uses randomly selected (or shuffled) samples
to evaluate the gradients, hence SGD can be regarded as a stochastic
approximation of gradient descent optimization.
https://en.wikipedia.org

SVM Support Vector Machine
In machine learning, support-vector machines are supervised learning
models with associated learning algorithms that analyze data used for
classification and regression analysis. Given a set of training examples,
each marked as belonging to one or the other of two categories, an
SVM training algorithm builds a model that assigns new examples to
one category or the other, making it a non-probabilistic binary linear
classifier.
https://en.wikipedia.org

HSV Hue, Saturation, Value
HSL (hue, saturation, lightness) and HSV (hue, saturation, value) are
alternative representations of the RGB color model, designed in the
1970s by computer graphics researchers to more closely align with the
way human vision perceives color-making attributes. In these models,
colors of each hue are arranged in a radial slice, around a central axis
of neutral colors which ranges from black at the bottom to white at
the top. The HSV representation models the way paints of different
colors mix together, with the saturation dimension resembling various
shades of brightly colored paint, and the value dimension resembling
the mixture of those paints with varying amounts of black or white
paint.
https://en.wikipedia.org

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/HSL_and_HSV

62 Acronimi

FCN Fully Convolutional Network
The Fully Convolutional Network is a typology of convolutional neural
network that is used for semantic segmentation tasks. It consist in
several convolutional layers and a de-convolutional layer that retrieve
the spacial information of the image from the input layer.
https://towardsdatascience.com

IoU Intersection over Union
The Jaccard index, also known as Intersection over Union and the
Jaccard similarity coefficient (originally given the French name coeffi-
cient de communauté by Paul Jaccard), is a statistic used for gauging
the similarity and diversity of sample sets. The Jaccard coefficient
measures similarity between finite sample sets, and is defined as the
size of the intersection divided by the size of the union of the sample
sets.
https://en.wikipedia.org

MFE Manual Features Extraction algorithm

The algorithm is explained in Section 5.2.

CONV Convolutional layer
In deep learning, a convolutional neural network (CNN, or ConvNet) is
a class of deep neural networks, most commonly applied to analyzing
visual imagery.

CNNs are regularized versions of multilayer perceptrons. Multilayer
perceptrons usually mean fully connected networks, that is, each neuron
in one layer is connected to all neurons in the next layer. The "fully-
connectedness" of these networks makes them prone to overfitting data.
Typical ways of regularization include adding some form of magnitude
measurement of weights to the loss function. However, CNNs take a
different approach towards regularization: they take advantage of the
hierarchical pattern in data and assemble more complex patterns using
smaller and simpler patterns. Therefore, on the scale of connectedness
and complexity, CNNs are on the lower extreme.
https://en.wikipedia.org

SSN Semantic Segmentation neural network
Semantic segmentation neural network is a general nomenclature used
for deep neural network architectures for image segmentation. Image
segmentation is one of the fundamentals tasks in computer vision along-
side with object recognition and detection. In semantic segmentation,
the goal is to classify each pixel of the image in a specific category
https://sergioskar.github.io

https://towardsdatascience.com/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://sergioskar.github.io/Semantic_Segmentation/

Bibliography

References cited

Publications and Manuals

Berman, Maxim, Amal Rannen Triki, and Matthew B. Blaschko
2018 The Lovasz-Softmax Loss: A Tractable Surrogate for the Op-

timization of the Intersection-Over-Union Measure in Neural
Networks, tech. rep., pp. 4413-4421. (Cit. on p. 57.)

Brunel, Nicolas, Vincent Hakim, and Magnus Je Richardson
2014 “Single neuron dynamics and computation”, Current Opinion

in Neurobiology, 25, pp. 149-155, http://dx.doi.org/10.
1016/j.conb.2014.01.005. (Cit. on p. 14.)

Chen, Liang-Chieh, George Papandreou, Iasonas Kokkinos, Kevin P. Mur-
phy, and Alan Loddon Yuille

2015 “Semantic Image Segmentation with Deep Convolutional
Nets and Fully Connected CRFs”, undefined, https://www.
semanticscholar.org/paper/Semantic-Image-Segmenta
tion-with-Deep-Convolutional-Chen-Papandreou/0690
ba31424310a90028533218d0afd25a829c8d. (Cit. on p. 14.)

Claesson, Linnéa and Bjorn Hansson
2014 “Deep Learning: Methods and Applications [Preview]”, Foun-

dations and Trends R© in Signal Processing, 7, 3-4, pp. 197-387,
issn: 1932-8346, http://nowpublishers.com/articles/
foundations-and-trends-in-signal-processing/SIG-
039. (Cit. on p. 14.)

Fan, Fenglei, Wenxiang Cong, and Ge Wang
2017 “General Backpropagation Algorithm for Training Second-

order Neural Networks” (Aug. 2017), http://arxiv.org/
abs/1708.06243. (Cit. on p. 12.)

63

http://dx.doi.org/10.1016/j.conb.2014.01.005
http://dx.doi.org/10.1016/j.conb.2014.01.005
https://www.semanticscholar.org/paper/Semantic-Image-Segmentation-with-Deep-Convolutional-Chen-Papandreou/0690ba31424310a90028533218d0afd25a829c8d
https://www.semanticscholar.org/paper/Semantic-Image-Segmentation-with-Deep-Convolutional-Chen-Papandreou/0690ba31424310a90028533218d0afd25a829c8d
https://www.semanticscholar.org/paper/Semantic-Image-Segmentation-with-Deep-Convolutional-Chen-Papandreou/0690ba31424310a90028533218d0afd25a829c8d
https://www.semanticscholar.org/paper/Semantic-Image-Segmentation-with-Deep-Convolutional-Chen-Papandreou/0690ba31424310a90028533218d0afd25a829c8d
http://nowpublishers.com/articles/foundations-and-trends-in-signal-processing/SIG-039
http://nowpublishers.com/articles/foundations-and-trends-in-signal-processing/SIG-039
http://nowpublishers.com/articles/foundations-and-trends-in-signal-processing/SIG-039
http://arxiv.org/abs/1708.06243
http://arxiv.org/abs/1708.06243

64 Bibliography

Ge, Dantong, Ai Gao, and Pingyuan Cui
2016 “Online Landing Site Selection Considering Maneuverability

Constraint during Mars Powered Descent Phase”, 5, pp. 1-9.
(Cit. on p. 35.)

Goutte, Cyril and Eric Gaussier
n.d. “A Probabilistic Interpretation of Precision, Recall and F-

Score, with Implication for Evaluation Deep k-means clus-
tering View project BioASQ View project A Probabilistic
Interpretation of Precision, Recall and F-score, with Impli-
cation for Evaluation”, https://www.researchgate.net/
publication/226675412. (Cit. on p. 43.)

Gupta, Disha Shree
2017 Fundamentals of Deep Learning - Activation Functions and

their use, https://www.analyticsvidhya.com/blog/2017
/10/fundamentals-deep-learning-activation-functio
ns-when-to-use-them/. (Cit. on p. 14.)

Hashimoto, Tatsuaki, Takashi Kubota, Jun’ichiro Kawaguchi, Masashi Uo,
Kenichi Shirakawa, Takashi Kominato, and Hideo Morita

2010 “Vision-based guidance, navigation, and control of Hayabusa
spacecraft - Lessons learned from real operation -”, IFAC
Proceedings Volumes, 43, 15, pp. 259-264, issn: 14746670,
https://linkinghub.elsevier.com/retrieve/pii/S147
4667015318504. (Cit. on p. 3.)

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun
2015 Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification, tech. rep., pp. 1026-1034,
https://www.cv-foundation.org/openaccess/content_
iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_
paper.pdf. (Cit. on p. 15.)

Höfle, B and M Hollaus
2010 ISPRS Technical Commission VII Symposium, 100 Years IS-

PRS – Advancing Remote Sensing Science, Vienna, Austria,
July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7B, tech. rep.,
pp. 281-286, http://www.biosphaerenpark-wienerwald.
org. (Cit. on p. 37.)

https://www.researchgate.net/publication/226675412
https://www.researchgate.net/publication/226675412
https://www.analyticsvidhya.com/blog/2017/10/fundamentals-deep-learning-activation-functions-when-to-use-them/
https://www.analyticsvidhya.com/blog/2017/10/fundamentals-deep-learning-activation-functions-when-to-use-them/
https://www.analyticsvidhya.com/blog/2017/10/fundamentals-deep-learning-activation-functions-when-to-use-them/
https://linkinghub.elsevier.com/retrieve/pii/S1474667015318504
https://linkinghub.elsevier.com/retrieve/pii/S1474667015318504
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
http://www.biosphaerenpark-wienerwald.org
http://www.biosphaerenpark-wienerwald.org

Bibliography 65

Huang, Cheng and Hongmei Wang
2018 “Vision-Based Hazard Detection with End-to-end Spatiotem-

poral Networks for Planetary Landing”, p. 12023. (Cit. on
p. 57.)

Kingma, Diederik P. and Jimmy Ba
2014 “Adam: A Method for Stochastic Optimization”, pp. 1-15,

http://arxiv.org/abs/1412.6980. (Cit. on pp. 11, 61.)

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton
2017 “ImageNet Classification with Deep Convolutional Neural

Networks”, COMMUNICATIONS OF THE ACM, 60, 6, htt
p://code.google.com/p/cuda-convnet/.. (Cit. on p. 15.)

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner
1998 “Gradient-based learning applied to document recognition”,

Proceedings of the IEEE, 86, 11, pp. 2278-2324, issn: 00189219,
http://ieeexplore.ieee.org/document/726791/. (Cit.
on p. 15.)

Li, Fei-fei, Justin Johnson, and Serena Yeung
2017 “Lecture 11 Detection and Segmentation”, CS231n: Convo-

lutional Neural Networks for Visual Recognition. (Cit. on
pp. 10, 11, 13.)

Li, Shuang, Xiuqiang Jiang, and Ting Tao
2016 “Guidance summary and assessment of the Chang’e-3 pow-

ered descent and landing”, Journal of Spacecraft and Rockets,
53, 2, pp. 258-277, issn: 00224650. (Cit. on p. 2.)

Liu, Rosanne, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank,
Alex Sergeev, and Jason Yosinski

2018 “An Intriguing Failing of Convolutional Neural Networks and
the CoordConv Solution” (July 2018), http://arxiv.org/
abs/1807.03247. (Cit. on p. 30.)

Liu, Xu, Shuang Li, Xiuqiang Jiang, and Xiangyu Huang
2019 “Planetary landing site detection and selection using multi-

level optimization strategy”, Acta Astronautica, issn: 00945765,
https://doi.org/10.1016/j.actaastro.2019.01.004.
(Cit. on p. 36.)

http://arxiv.org/abs/1412.6980
http://code.google.com/p/cuda-convnet/.
http://code.google.com/p/cuda-convnet/.
http://ieeexplore.ieee.org/document/726791/
http://arxiv.org/abs/1807.03247
http://arxiv.org/abs/1807.03247
https://doi.org/10.1016/j.actaastro.2019.01.004

66 Bibliography

Lorenz, David A., Ryan Olds, Alexander May, Courtney Mario, Mark E.
Perry, Eric E. Palmer, and Michael Daly

2017 Lessons learned from OSIRIS-REx autonomous navigation
using natural feature tracking, tech. rep., https://ntrs.
nasa.gov/search.jsp?R=20170002016. (Cit. on p. 3.)

Lunghi, Paolo, Marco Ciarambino, and Michèle Lavagna
2016 “A multilayer perceptron hazard detector for vision-based

autonomous planetary landing”, Advances in the Astronau-
tical Sciences, 156, pp. 1717-1734, issn: 00653438. (Cit. on
p. 1.)

M.Bishop, Christopher
2007 Pattern Recognition and Machine Learning, tech. rep. 3,

pp. 366-366, http://users.isr.ist.utl.pt/~wurmd/
Livros/school/Bishop%20-%20Pattern%20Recognition%
20And%20Machine%20Learning%20-%20Springer%202006.
pdf. (Cit. on pp. 8, 10.)

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox
2015 “U-net: Convolutional networks for biomedical image seg-

mentation”, Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 9351, pp. 234-241, issn: 16113349.
(Cit. on p. 25.)

Roushdy, Mohamed
2006 Comparative study of edge detection algorithms applying

on the grayscale noisy image using morphological filter 3D
Reconstruction of Brain Tumors using MRI View project
Vision-Based Topological SLAM for Autonomous Robots View
project, tech. rep., http://cis.shams.edu.eg. (Cit. on
p. 44.)

Wang, Vivienne, Elias G. Carayannis, Vivienne Wang, and Elias G. Carayannis
2012 Inverse-Category-Frequency based Supervised Term Weight-

ing Schemes for Text Categorization, tech. rep., pp. 1-15,
https://arxiv.org/ftp/arxiv/papers/1012/1012.2609.
pdf. (Cit. on p. 28.)

https://ntrs.nasa.gov/search.jsp?R=20170002016
https://ntrs.nasa.gov/search.jsp?R=20170002016
http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%202006.pdf
http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%202006.pdf
http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%202006.pdf
http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%202006.pdf
http://cis.shams.edu.eg
https://arxiv.org/ftp/arxiv/papers/1012/1012.2609.pdf
https://arxiv.org/ftp/arxiv/papers/1012/1012.2609.pdf

Bibliography 67

Wei, Ruoyan, Jianwei Jiang, Xiaogang Ruan, and Jianke Li
2018 “Landing Area Selection Based on Closed Environment Avoid-

ance from a Single Image During Optical Coarse Hazard
Detection”, Earth, Moon and Planets, 121, 3 (July 2018),
pp. 73-104, issn: 15730794. (Cit. on p. 2.)

Zeiler, Matthew D. and Rob Fergus
2014 “Visualizing and understanding convolutional networks”, Lec-

ture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 8689 LNCS, PART 1, pp. 818-833, issn: 16113349.
(Cit. on pp. 15, 16.)

Additional sources consulted

Publications and Manuals

Badrinarayanan, Vijay, Alex Kendall, and Roberto Cipolla
2017 “SegNet: A Deep Convolutional Encoder-Decoder Architec-

ture for Image Segmentation.” IEEE transactions on pattern
analysis and machine intelligence, 39, 12, pp. 2481-2495,
issn: 1939-3539, http://www.ncbi.nlm.nih.gov/pubmed/
28060704.

Chen, Liang Chieh, George Papandreou, Iasonas Kokkinos, Kevin Murphy,
and Alan L. Yuille

2018 DeepLab: Semantic Image Segmentation with Deep Convolu-
tional Nets, Atrous Convolution, and Fully Connected CRFs,
tech. rep. 4, pp. 834-848, https://arxiv.org/pdf/1412.
7062.pdf.

Csurka, Gabriela, Diane Larlus, and Florent Perronnin
2013 What is a good evaluation measure for semantic segmenta-

tion?, tech. rep.

Cui, Pingyuan, Dantong Ge, and Ai Gao
2017 “Optimal landing site selection based on safety index dur-

ing planetary descent”, Acta Astronautica, 132, July 2016,
pp. 326-336, issn: 00945765, http://dx.doi.org/10.1016/
j.actaastro.2016.10.040.

http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://www.ncbi.nlm.nih.gov/pubmed/28060704
https://arxiv.org/pdf/1412.7062.pdf
https://arxiv.org/pdf/1412.7062.pdf
http://dx.doi.org/10.1016/j.actaastro.2016.10.040
http://dx.doi.org/10.1016/j.actaastro.2016.10.040

68 Bibliography

Dumoulin, Vincent and Francesco Visin
2016 “A guide to convolution arithmetic for deep learning”, pp. 1-

31, http://arxiv.org/abs/1603.07285.

Glasmachers, Tobias, Yung-Kyun Noh, and Min-Ling Zhang
2017 Limits of End-to-End Learning, tech. rep., pp. 17-32, http:

//proceedings.mlr.press/v77/glasmachers17a/glasma
chers17a.pdf.

Krähenbühl, Philipp and Vladlen Koltun
2011 Efficient inference in fully connected crfs with Gaussian edge

potentials, tech. rep., http://papers.nips.cc/paper/
4296-efficient-inference-in-fully-connected-crfs-
with-gaussian-edge-potentials.pdf.

Monien, Burkhard, Robert Preis, and Stefan Schamberger
2007 “Approximation algorithms for multilevel graph partitioning”,

Handbook of Approximation Algorithms and Metaheuristics,
pp. 60-1.

Nolan, Michael C., Christopher Magri, Ellen S. Howell, Lance A.M. Benner,
Jon D. Giorgini, Carl W. Hergenrother, R. Scott Hudson,
Dante S. Lauretta, Jean Luc Margot, Steven J. Ostro, and
Daniel J. Scheeres

2013 “Shape model and surface properties of the OSIRIS-REx
target Asteroid (101955) Bennu from radar and lightcurve
observations”, Icarus, 226, 1 (Sept. 2013), pp. 629-640, issn:
00191035.

Schmidhuber, Jürgen
2015 “Deep Learning in neural networks: An overview”, Neural

Networks, 61, pp. 85-117, issn: 18792782, http://dx.doi.
org/10.1016/j.neunet.2014.09.003.

Serrano, Navid
2006 “A Bayesian framework for landing site selection during

autonomous spacecraft descent”, IEEE International Confer-
ence on Intelligent Robots and Systems, pp. 5112-5117.

Silburt, Ari, Mohamad Ali-Dib, Chenchong Zhu, Alan Jackson, Diana
Valencia, Yevgeni Kissin, Daniel Tamayo, and Kristen Menou

2019 “Lunar crater identification via deep learning”, Icarus, 317,
July 2018, pp. 27-38, issn: 10902643.

http://arxiv.org/abs/1603.07285
http://proceedings.mlr.press/v77/glasmachers17a/glasmachers17a.pdf
http://proceedings.mlr.press/v77/glasmachers17a/glasmachers17a.pdf
http://proceedings.mlr.press/v77/glasmachers17a/glasmachers17a.pdf
http://papers.nips.cc/paper/4296-efficient-inference-in-fully-connected-crfs-with-gaussian-edge-potentials.pdf
http://papers.nips.cc/paper/4296-efficient-inference-in-fully-connected-crfs-with-gaussian-edge-potentials.pdf
http://papers.nips.cc/paper/4296-efficient-inference-in-fully-connected-crfs-with-gaussian-edge-potentials.pdf
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/j.neunet.2014.09.003

Bibliography 69

Sugawara, Etsuko and Hiroshi Nikaido
2014 978-0387-31073-2, 12, vol. 58, pp. 7250-7, isbn: 978-0387-

31073-2.

Wang, Qiong and Jizhong Liu
2016 “A Chang’e-4 mission concept and vision of future Chinese

lunar exploration activities”, Acta Astronautica, 127 (Oct.
2016), pp. 678-683, issn: 00945765.

Wurm, Michael, Thomas Stark, Xiao Xiang Zhu, Matthias Weigand, and
Hannes Taubenböck

2019 “Semantic segmentation of slums in satellite images using
transfer learning on fully convolutional neural networks”,
ISPRS Journal of Photogrammetry and Remote Sensing, 150,
May 2018, pp. 59-69, issn: 09242716, https://doi.org/10.
1016/j.isprsjprs.2019.02.006.

Zhang, Yiheng, Zhaofan Qiu, Ting Yao, Dong Liu, and Tao Mei
2018 “Fully Convolutional Adaptation Networks for Semantic

Segmentation”, Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
pp. 6810-6818, issn: 10636919.

https://doi.org/10.1016/j.isprsjprs.2019.02.006
https://doi.org/10.1016/j.isprsjprs.2019.02.006

	Colophon
	Ringraziamenti
	Dedica
	Contents
	List of Figures
	List of Tables
	Sommario
	Abstract
	Introduction
	Work aim and Challenges
	State of the Art
	Thesis Structure

	Machine Learning
	Logistic Regression
	Inference
	Score Function
	Loss Function
	The Optimization Problem
	Training Flow
	Overfitting
	Biological Interpretation

	Deep Learning
	Convolutional Neural Network
	Convolutional Layer
	Activation Layer
	Pooling Layer
	Fully Connected Layer

	Semantic Segmentation

	Neural Network setup
	Architecture
	Classes Balance

	Deep Learning Framework
	Itokawa Hazard Detection
	Hyperparamentes

	Lunar Landing Hazard Detection
	Hyperparamentes

	Dataset Setup and Training
	Itokawa Hazard Detection
	Data Set
	Labeling
	Image Pre-Processing
	Training

	Lunar Landing Hazard Detection
	Data Set
	Labeling
	Training

	Results
	Evaluation Metrics
	Precision Vs. Recall
	Intersection Over Union

	Experimental Results: Itokawa Dataset
	Lunar Landing
	Runtime Performance

	Conclusions and Future Works
	Conclusions and Future Works
	Future Works

	Acronyms
	Bibliography
	References cited
	Publications and Manuals

	Additional sources consulted
	Publications and Manuals

