
politecnico di milano

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Master of Science in

Computer Science and Engineering

Beyond Maximum Likelihood Model
Estimation in Model-based Policy Search

Supervisor:

prof . marcello restelli

Assistant Supervisors:

dott. alberto maria metelli

dott. andrea tirinzoni

dott. matteo papini

Master Graduation Thesis by:

pierluca d’oro

Student Id n. 893751

Academic Year 2018-2019

All’Etna.

R I N G R A Z I A M E N T I

Desidero ringraziare innanzitutto il Prof. Marcello Restelli, la cui disponibilità e la
cui passione per la ricerca mi hanno profondamente ispirato e donato una nuova
prospettiva su come sia possibile condurre attività scientifica di alta qualità. Ringrazio
anche il Dott. Tirinzoni e il Dott. Papini per il loro fondamentale contributo a questo
lavoro, ed in particolar modo il Dott. Metelli, il cui talento mi ha illuminato numerose
volte sul valore di una matematica rigorosa, creativa ed elegante.

Ringrazio Alessia, che mi è stata accanto nei momenti più incerti e difficili di questi
due anni.

Vorrei anche ringraziare Ennio, con cui ho condiviso progetti, gioie e dolori acca-
demici, ma anche molti sorrisi, e gli amici della Residenza Galileo.

Infine, vorrei riconoscere quanto importante sia stato l’aiuto datomi dalla mia
famiglia, che nonostante la distanza è sempre stata presente e di supporto.

v

C O N T E N T S

Abstract xi
1 introduction 1

1.1 Contributions 3

1.2 Overview 3

2 reinforcement learning 5

2.1 Markov Decision Processes 5

2.2 Reinforcement Learning Algorithms 8

2.2.1 Model-free and Model-based 8

2.2.2 Value-based and Policy-based 8

2.2.3 On-policy and Off-policy 9

2.3 Model-Free policy Gradient 10

2.3.1 Policy Gradient 11

2.3.2 The Policy Gradient Theorem 12

2.3.3 The score function 13

2.3.4 REINFORCE 14

2.3.5 Improvements over REINFORCE 14

2.3.6 Actor-Critic Methods 15

3 model-based reinforcement learning 17

3.1 Overview 17

3.1.1 Motivation 17

3.1.2 A definition for MBRL 18

3.1.3 Overview on modern generative models 19

3.2 Which model class to use 20

3.2.1 Dealing with uncertainty 20

3.2.2 Single-step and multi-step dynamics modeling 21

3.2.3 Locally-accurate models 21

3.3 How to learn the model 22

3.3.1 Decision-unaware MBRL 22

3.3.2 Decision-aware MBRL 23

3.4 How to use the learned model 24

3.4.1 Online planning 25

3.4.2 Offline planning 25

3.5 Model-based Policy Gradient 27

3.5.1 Overview 27

3.5.2 Fully-Model-based Gradient 27

3.5.3 Model-Value-based Gradient 28

3.6 Comparison among gradients 29

vii

4 gradient-aware model-based policy search 31

4.1 Analysis of the Model-Value-based Gradient 31

4.1.1 Decision-Aware Bound 31

4.1.2 Maximum Likelihood Bound 33

4.2 Gradient-Aware Model-based Policy Search Algorithm 34

4.2.1 Learning the transition model 34

4.2.2 Computing the value function 35

4.2.3 Estimating the policy gradient 36

4.3 Theoretical Analysis 37

4.3.1 Assumptions 38

4.3.2 Finite-sample bound 39

5 experiments 43

5.1 Two-areas Gridworld 43

5.1.1 Properties of Gradient-Aware Model Learning 45

5.1.2 Performance in Policy Improvement 47

5.2 Minigolf 49

6 conclusions 51

6.1 Summary and additional insights 51

6.2 Current Limitations and Future Work 52

6.2.1 Extension to the online setting 52

6.2.2 Other techniques for estimating Q 53

6.2.3 Deeper Theoretical Analysis 53

6.2.4 Other gradient-aware MVGs 54

bibliography 55

a proofs and derivations 67

a.1 Various proofs 67

a.1.1 Proofs of Section 4.1 67

a.1.2 Proofs of Section 4.2 69

a.1.3 Proofs of Section 4.3 72

a.2 Gradient-Unaware Model Learning 76

a.3 Weighted KL divergence 77

a.4 Details about the Assumption 78

b details on the algorithm 81

b.1 Alternative derivation 81

b.2 Time complexity 82

b.3 A connection with reward-weighted regression 83

viii

L I S T O F F I G U R E S

Figure 2.1 Scheme representing the interactions occurring in a Markov
Decision Process (MDP). 5

Figure 3.1 Scheme for the standard Model-Based Reinforcement Learning
(MBRL) approach. 24

Figure 5.1 Gridworld representation. The goal state is G and the possible
initial states are µ. The two areas with different dynamics are
represented with different colors and the black bars remark
that is not possible for the agent to reach the lower area once it
is left. 43

Figure 5.2 Normalized values of the empirical state-action distribution
δ
π,p
µ . Each grid represents every state of the environment for

the two most representative actions. 45

Figure 5.3 Normalized values of the gradient-aware weighting factor ηπ,pµ .
Each grid represents every state of the environment for the two
most representative actions. 46

Figure 5.4 GAMPS performance in gridworld using 50 trajectories. 48

Figure 5.5 GAMPS performance in gridworld using 10 trajectories. 48

Figure 5.6 GAMPS performance in gridworld using 100 trajectories. 48

Figure 5.7 Performance of GAMPS in terms of average return using a 50

trajectories dataset on the minigolf environment (10 runs, mean
± std). 50

L I S T O F TA B L E S

Table 3.1 Qualitative comparison of estimations for Model-Free Gradient
(MFG), Fully Model-based Gradient (FMG) and Model-Value-
based Gradient (MVG) in terms of bias and variance. 29

Table 5.1 Estimation performance on the gridworld environment compar-
ing Maximum Likelihood estimation (ML) and our approach
(GAMPS). 1000 training and 1000 validation trajectories per
run. Average results on 10 runs with a 95% confidence inter-
val. 46

ix

Table 5.2 Hyperparameters used for algorithm comparison in the differ-
ent environments. The apexes model and policy indicate the pa-
rameters employed in optimizing the two using the Adam [50]
optimizer. Clearly, hyperparameters concerning the estimation
of the forward model are ignored in model-free algorithms.
The hypeparameters, except for q and γ, were chosen by trial
and error from a range of (0.001, 0.9). 47

A C R O N Y M S

RL Reinforcement Learning

MDP Markov Decision Process

MBRL Model-Based Reinforcement Learning

PGT Policy Gradient Theorem

ML Maximum Likelihood

MVG Model-Value-based Gradient

MFG Model-Free Gradient

FMG Fully Model-based Gradient

GAMPS Gradient-Aware Model-based Policy Search

x

A B S T R A C T

Reinforcement Learning allows an agent to learn behaviors for solving sequential
decision making problems. When learning such control policies, an algorithm can take
advantage of a learned model of the dynamics of the environment. This is the rationale
behind Model-Based Reinforcement Learning (MBRL), in which the agent learns, and
then employs, estimated models. MBRL approaches present several advantages, for
instance in terms of sample efficiency, compared to the ones, known as model-free,
that learn a control policy without explicitly representing the dynamics. However, the
dynamics of the environment can be extremely complex and very hard to model using
few data, endangering the promise of data efficiency that underlies MBRL. Fortunately,
in many interesting application domains, perfectly modeling the dynamics of the
whole environment is not necessary for a model to be effectively used by a learning
agent. Instead, it is possible to use simpler model classes, whose estimation requires
few interactions with the environment, and focus their limited expression capability
where it is more needed for control purposes. Nonetheless, most MBRL methods learn
the model by maximum likelihood estimation, judging the relative importance of
environment dynamics just upon visitation, and completely ignoring the underlying
decision problem. This thesis proposes Gradient-Aware Model-based Policy Search
(GAMPS), a novel model-based algorithm for policy improvement that, by leveraging
a weighting scheme on the loss function, learns a model focused on the aspects of
the dynamics that are most relevant for estimating the policy gradient. GAMPS uses
the Model-Value-based Gradient, a newly formalized approximation for the policy
gradient that employs collected trajectories together with an estimated value function.
The empirical evaluation for the method, carried out on simple yet illustrative tasks,
both in discrete and continuous domains, shows that it is able to outperform standard
model-free policy gradient methods and model-based methods based on maximum
likelihood model estimation.

xi

S O M M A R I O

L’Apprendimento per Rinforzo consente a un agente di imparare i comportamenti
necessari per risolvere problemi che richiedono sequenze di decisioni. Durante
l’apprendimento di una politica di controllo, un algoritmo può far uso di un mod-
ello stimato delle dinamiche dell’ambiente. Questa caratteristica contraddistingue
gli approcci di Apprendimento per Rinforzo basato su modelli, che apprendono ed
impiegano modelli stimati a beneficio dell’agente. Questi approcci presentano diversi
vantaggi, per esempio in termini di efficienza, in confronto ai metodi non basati su
modelli, che apprendono una politica di controllo senza rappresentare esplicitamente
le dinamiche. Ciononostante, le dinamiche dell’ambiente possono essere estremamente
complesse e molto difficili da apprendere, minando la promessa di efficienza degli
approcci basati su modelli. Fortunatamente, in molti domini applicativi di generale
interesse, apprendere perfettamente la dinamica nell’intero ambiente non è necessario
affinché un modello possa essere usato in maniera proficua da un agente che apprende.
Invece, è possibile usare classi di modelli più semplici, che possono dunque essere
stimati con meno campioni, e concentrare la loro limitata capacità di rappresentazione
dove più è necessaria in termini di controllo. Pur tuttavia, la maggior parte degli
approcci esistenti impara la dinamica dell’ambiente per massima verosimiglianza,
implicitamente giudicando importante la sola frequenza di visita a determinati stati,
ed ignorando completamente il problema decisionale che si desidera risolvere. Questa
tesi propone Gradient-Aware Model-based Policy Search (GAMPS), un algoritmo
innovativo basato su modelli per migliorare una politica di controllo che, sfruttando
una pesatura sulla funzione di costo, apprende un modello accurato sugli aspetti
delle dinamiche ambientali che più sono rilevanti per stimare il gradiente della po-
litica. GAMPS fa uso del Model-Value-based Gradient, una nuova formalizzazione
per un’approssimazione del gradiente della politica, che usa traiettorie collezionate
nell’ambiente insieme ad una funzione di valore stimata. La valutazione empirica
del metodo, eseguita su problemi semplici ma illustrativi, sia in domini discreti che
continui, mostra come sia capace di sorpassare le prestazioni di algoritmi standard
che usano il gradiente della politica senza alcun modello ma anche quelle di algoritmi
basati su modelli addestrati per massima verosimiglianza.

xii

1
I N T R O D U C T I O N

Being able to solve sequential decision making problems is at the core of what human
beings define as intelligence. An intelligent agent must be able to tackle such problems
in order to accomplish its goals or, in other terms, to maximize its utility. Reinforcement
Learning (RL) offers a very general approach for formalizing and solving sequential
decision making problems: the agent is provided with a reward signal and its goal
is to maximize the total amount of reward that it collects. Problems in reinforcement
learning are conveniently modeled using the concept of Markov Decision Process
(MDP), assuming transitions in the world only depend on the previous state of it and
the action executed by the agent. The objective is usually to find an optimal policy to
be used in the environment.

One of the most important challenges in reinforcement learning is the strive for
sample efficiency: the agent must reach satisfying performance using as little experi-
ence as possible. Humans, the best example of intelligent being that is known to us,
acquired outstanding tools for solving sequential decision making problems using
very little data, through years of hardware (i.e., of the body, including the brain) and
software (i.e., of the mind) evolution. One of the most important of these tools that
are available to us is, roughly speaking, anticipation: during most of the interactions
of a human with any familiar environment, the mind is able to anticipate how the
world will evolve, naturally or in response to actions of the human being herself. This
capability can be leveraged in several, powerful, ways: a baseball player can predict
what the trajectory of a ball will be; an expert musician can predict which the effect of
playing a certain sequence of notes over a chord will be; an expert hiker can imagine
which its arriving time will be by looking at a trail from above; an athlete can watch a
video of one of its performances and learn from it by counterfactually predicting what
the alternative outcome of its movements could have been. Such examples of internal
world models can be incredibly useful to humans, guiding them towards performing
optimal actions or learning how to do so.

Drawing inspiration from this kind of human mental simulation, Model-Based
Reinforcement Learning (MBRL) [107, 74] approaches were proposed. Instead of directly
letting the agent learn from the experience what the optimal behavior is, an internal
world model (sometimes called forward model or just model) is constructed and used
for planning or learning in the environment. A world model can be desirable for
other properties than the sole sample efficiency. As in the case, for instance, of human
intuitive knowledge of physics, an agent that can leverage a good approximation of
the dynamics of the environment can transfer it across different tasks that have it

1

2 introduction

in common; or it can use the uncertainty of its own world model to know where
to explore, in a similar manner with respect to human curiosity. Moreover, using a
model of the world (or system) dynamics for control is deeply linked with the classical
control literature and planning-based artificial intelligence: MBRL offers an interesting
gateway for combining the machine learning approach with ideas from these other
two, perhaps more mature, research fields.

The MBRL approach looks promising. However, model-free RL, that does not use
any world model, is still the standard technique to solve many sequential decision
making problems. This mainly happens because trying to model the dynamics of
the environment in a thorough way can be extremely complex and, thus, require
the use of very powerful model classes and considerable amounts of data, betraying
the original goal of MBRL and often yielding unfavorable comparisons with model-
free techniques. Fortunately, in many interesting application domains (e.g., robotics),
perfectly modeling the dynamics across the whole state-action space is not necessary
for a model to be effectively used by a learning agent [1, 75, 59].

Stemming from these ideas, an approach that is wiser than a pure brute-force
learning of the complete dynamics consists in using simpler model classes, whose
estimation requires few interactions with the environment, and focus their limited
capacity on the most relevant parts of the environment. These parts could present
a local dynamics that is inherently simpler than the global one, or at least easier to
model using prior knowledge.

The vast majority of MBRL methods employs a maximum likelihood estimation
process for learning the model [21]. In other words, the importance of any aspect
of the dynamics of the world is only determined based on how much it can be
observed in the available data. Nonetheless, this completely ignores the underlying
decision problem, the control approach, and, importantly, the policy played by the
agent. For instance, suppose a learning agent acts deterministically in a certain region
of the environment, possibly thanks to some prior knowledge, and has no interest
in changing its behavior in that area; or that some regions of the state space are
extremely unlikely to be reached by an agent following the current policy. There
would be no benefit in approximating the corresponding aspects of the dynamics,
since that knowledge cannot contribute to the agent’s learning process. Therefore,
with a limited model expressiveness, an approach for learning the world model that
explicitly accounts for the current policy and for how it will be improved can be more
powerful than the traditional maximum likelihood estimation.

As an additional example, suppose we wish to update the controller of a robotic arm
from an inefficient hand-crafted algorithm to one using MBRL. We can reuse previously
collected data to learn the dynamics. However, many of such transitions could be very
unlikely, at a given iteration, to be visited by the policy: instead, we would like to
be able to automatically discriminate among useless and useful data, improving the
learned policy.

1.1 contributions 3

The idea of capturing the underlying decision problem into the way a world model
is learned is known as decision-awareness [29] and can be leveraged in different ways.
The most direct approach consists in accounting for the performance of a policy that
uses the learned model into the loss function used for learning the model itself [44,
7]. More sophisticated methods [76, 101, 29, 28] consider how the control policy is
derived from the model. In particular, existing decision-aware approaches focus on
value-based RL, in which the policy is obtained by using a value function for assessing
how promising being in a given state is for the agent.

contributions

In this thesis, we focus our attention on direct policy search, proposing the first model-
based policy search [21, 109] method that leverages awareness of the current agent’s
policy in the estimation of a forward model, used to perform policy optimization.
Unlike existing approaches, which typically ignore all the knowledge available on the
running policy during model estimation, we incorporate it into a weighting scheme
for the objective function used for model learning. We focus on a widespread class of
policy search methods, the ones based on the policy gradient, that uses gradient ascent
for improving a control policy belonging to a space of differentiable and stochastic
parametric policies. We choose to focus on this class of approaches because their main
advantages, clearly stated in the rest of this thesis, make them amenable for a use in
solving real world problems, for instance in the field of robotics.

The contributions of this thesis are theoretical, algorithmic and experimental. First,
we provide a novel categorization of existing policy gradient approaches through
the formalization of the concepts of model-free gradient, fully-model-based gradient and
model-value-based gradient. We analyze the latter type of gradient, proving that model
learning by maximum likelihood is not the best option when leveraging this type
of approximation. Starting from this analysis, we derive a novel model-based policy
improvement algorithm, that we name Gradient-Aware Model-based Policy Search
(GAMPS), the first that incorporates information about the policy gradient into the
objective used for model estimation. We analyze the algorithm on a theoretical level,
formally confirming the effectiveness of a decision-aware approach to model-based
reinforcement learning. Lastly, we compare against common baselines on benchmark
domains both the performance of our approach for model learning and of the overall
GAMPS algorithm, showing favorable results.

overview

We now outline the general structure of the thesis. In Chapter 2, we formally define
the reinforcement learning problem and the notion of Markov Decision Process. We
first present a set of general mathematical tools used when dealing with sequential

4 introduction

decision making problems. Then, we outline a taxonomy of approaches, focusing on
the classifications that are particularly useful for further analysis in the following
chapters. We reserve particular attention to model-free policy gradient methods,
presenting some of the details of the most common algorithms.

In Chapter 3, we review the state of the art in model-based reinforcement learning.
We first give a high-level view of existing approaches by analyzing the most important
decisions in the design of a model-based reinforcement learning algorithm, concerning
the choice of the model class to be used, the approach taken for learning the model
from data and the technique through which the agent derives a policy from the
learned model. Then, we present model-based policy gradient approaches. In doing
so, we employ an original categorization for the previous literature, categorizing
existing approaches under the umbrella of two possible formulations of a model-based
approximation for the policy gradient. We formalize these two approximations and
give some insights about their advantages and drawbacks.

Chapter 4 is devolved to the derivation and analysis of our algorithm. We start by
analyzing the error of one of the policy gradient approximations described in the
previous chapter. Directly inspired by this analysis, that suggests the potential of a
decision-aware loss function to be used in a model-based policy gradient approach, we
derive and describe GAMPS. We break the presentation of GAMPS following the three
main steps that occur at each one of its iterations: first, we derive a gradient-aware
loss function to be used for model learning; then, we outline the available approaches
for obtaining a value function starting from the learned model, in both discrete and
continuous domains; lastly, we show how the computed value function can be used
for estimating the policy gradient and improving the policy.

Chapter 5 contains an analysis of the empirical performance of the algorithm, that is
compared against a model-based baseline that is not using gradient-awareness as well
as against commonly-employed model-free approaches. First, we test the performance
of both our gradient-aware loss function and the overall policy optimization algorithm
on a small and discrete gridworld domain, that allows a precise analysis of the features
of the approach (e.g., an accurate comparison between the real gradient and the one
provided by the different algorithms). Then, we show the capabilities of GAMPS also in
a continuous environment, namely a simulated minigolf domain.

In Chapter 6, we summarize the most important contributions of the thesis, together
with the current limitations of the proposed approach. Then, we suggest some future
work that can stem from our results.

The proofs of the results included in the main text of the thesis are reported in
Appendix A. Additional details regarding the algorithm, as well as an alternative
derivation for our gradient-aware loss function for model learning, are reported in
Appendix B.

2
R E I N F O R C E M E N T L E A R N I N G

In this chapter, we introduce the basics of reinforcement learning, formalizing the
mathematical and algorithmic tools, and their related notation, that will serve as
building blocks for the rest of the thesis. In Section 2.1, we introduce the formalism
regarding the Markov Decision Process (MDP), a common framework used to model
sequential decision making problems. In Section 2.2, we provide a general overview of
commonly employed algorithms, while in Section 2.3 we focus on the specific family
of model-free policy gradient approaches, whose details will be useful in the following
chapters. Refer to [107, 85] for an extensive introduction to the field.

markov decision processes

Markov Decision Processes [85] provide a mathematical framework that can be used
to model a vast class of problems in which an agent acts with an environment with
the aim of collecting as much reward as possible. At each time instant, the agent must
decide, by observing the current state, what is the action that it wants to execute;
this action will determine a transition in the environment, that, in the general case, is
stochastic. A pictorial representation of this cycle of interactions is shown in Figure 2.1.
The fundamental property of any MDP, hence contained in its name, is the Markov
property: the transition from a state of the environment to another does not depend
on what the previous states were but only on the current state and executed action.
This property can appear to be rather limiting, since in many interesting problems,

Agent

Environment

Observation,	
Reward

Action

Figure 2.1: Scheme representing the interactions occurring in a MDP.

5

6 reinforcement learning

it is difficult to imagine the environment to be memory-less. However, the Markov
property is a formally useful assumption that can always hold, provided a redefinition
of the states that considers all the possible histories. For the rest of the thesis, we
assume, for simplicity of presentation, that the environment dynamics cannot change
over time (i.e., we make a stationarity assumption) and that the agent can observe a
complete state of the environment during its interaction (i.e., we make a complete
observability assumption).

Formally, a discrete-time MDP [85] is described by a tuple M = (S,A, r, p, µ, γ),
where:

• S is the space of possible states.

• A is the space of possible actions.

• r : S×A→ [−Rmax, Rmax] is the reward received by executing action a in state s,
uniformly bounded by Rmax > 0.

• p(·|s, a) is the transition model, providing the distribution of the next state when
performing action a in state s.

• µ(s0) is the distribution of the initial state.

• γ ∈ [0, 1) is a discount factor, that penalizes rewards that are later in time.

The behavior of an agent is described by a policy π(·|s) that provides the distribution
over the action space for every state s. In general, p is assumed to be unknown. Instead,
the knowledge of r depends on the domain: while it is sometimes impossible to infer,
in other cases (e.g., when learning is applied to robotics [20, 59]) a direct representation
of the performance of an agent according to the preferences of who is implementing a
control system is available. Think for instance to the case of a robotic arm that must
reach a target position: in that case, the reward given to an agent that is controlling
the arm can simply be the known distance from the target. An agent interacting with
the environment generates a set of trajectories of the form τ = (s0, a0, s1, a1, ..., sT , aT).
If we consider an episodic setting, in which the agent interacts with the environment
during finite-length runs, a trajectory can correspond to a whole episode. When
required for simplicity of presentation, we can consider the maximum length of an
episode H, the horizon. Moreover, it is useful to consider the distribution over the
trajectories, characterized by a probability density function ζπ,pµ (τ), defined, thanks to
the Markov property, by factorization into single-steps transition probabilities:

ζπ,pµ (τ) = µ(s0)

T−1∏
t=0

p(st+1|st, at)π(at|st). (2.1)

In describing an MDP, it is useful to quantify how good is for the agent to be in
a given state or execute a certain action. With this aim, the action-value function

2.1 markov decision processes 7

Qπ,p : S×A → R provides a way to express the cumulative expected reward that
follows the execution of action a in state s, when policy π is followed in an MDP with
underlying model p. The action-value function, or Q-function [107], can be recursively
defining by means of the Bellman equation, as:

Qπ,p(s, a) = r(s, a) + γ

∫
S

p(s ′|s, a)

∫
A

π(a ′|s ′)Qπ,p(s ′, a ′)ds ′da ′. (2.2)

This definition is rooted in dynamic programming [10]. Similarly, the state-value function,
or V-function, can be defined starting from it as:

Vπ,p(s) = E
a∼π(·|s)

[Qπ,p(s, a)]. (2.3)

The goal of the agent is to find an optimal policy π∗, i.e., a policy that maximizes the
overall expected return:

Jπ,p = Es0∼µ [V
π,p(s0)] . (2.4)

In the definition of all these quantities, we made explicit the dependency on both
the policy π and the model p. This will be useful in following chapters: Vπ,p(s)
corresponds, for instance, to the expected cumulative reward obtained starting from
state s in an MDP defined by the tuple (S,A, r, p, µ, γ), and following policy π.

We can further define two useful distributions. The first one is the state distribution
[109] under policy π and model p, defined as:

dπ,pµ (s) = (1− γ)

+∞∑
t=0

γt Pr(st = s|M, π). (2.5)

In an equivalent way, we can define the state-action distribution δπ,pµ as:

δπ,pµ (s, a) = (1− γ)

+∞∑
t=0

γt Pr(st = s, at = a|M, π). (2.6)

These distributions model the probability of incurring in the different states and
actions when policy π is run into the MDP. Note that δπ,pµ (s, a) = π(a|s)dπ,pµ (s). We
can now rewrite in a different, easily manageable, way the performance of the policy:

Jπ,p =
1

1− γ

∫
S

∫
A

δπ,pµ (s, a)r(s, a)dsda. (2.7)

When S and A are finite and small sets, a simple tabular representation can be
used for learning value functions and policies. When this case, commonly defined as
tabular scenario, is not applicable, V , Q, π and any other function of interest must be
modeled through the use of appropriate function approximators. Common choices
are linear models, for which more theoretical guarantees are available [107], or neural
networks [94, 58], whose potentially huge number of parameters, together with
compositionality assumptions, yield high representation capabilities.

8 reinforcement learning

reinforcement learning algorithms

In this section, we present a non-exhaustive classification of the different approaches
to solve RL problems that have been studied in the literature. The taxonomy we will
present is focused on the categories that are relevant in the further discussion contained
in the rest of this work. In particular, we will discuss about the distinction between
model-free and model-based, value-based and policy-based, on-policy and off-policy
approaches. Algorithms combining different choices among the three categories exist.
Moreover, the three categorizations are not dichotomies: there exist algorithms that
combine elements from both approaches for each of them.

Model-free and Model-based

A first high-level classification of RL methods can be done considering whether an
estimated model of the dynamics of the environment is used or not. The first type
of approaches, commonly known as model-free, learns a policy π without explicitly
considering the underlying dynamics of the environment in which the agent is acting.
Model-Based Reinforcement Learning (MBRL) approaches, instead, employ an internal
world model p̂ for choosing how to act [93, 105]. Several strategies exist for obtaining a
policy from an estimated model: a discussion and analysis of some of them will be
the topic of the following chapters.

These two types of approaches are related to inherent aspects of human intelligence.
Intuitively, following a parallel with behavioral science [46], the model-free approach
is similar to instinctive fast-thinking, while model-based methods are more related to
complex reasoning, slow-thinking. Recent studies supported this connections, suggest-
ing that both the systems cohabit in the human brain [24] or employing ideas from
MBRL as a thorough model for human creativity [95].

Value-based and Policy-based

Another important categorization of existing RL algorithms concerns how the policy
is obtained. Value-based methods use the interaction with the environment to learn a
value-function, from which a policy is derived. This can be done, for instance, in a
greedy way, by setting

π(·|s) = arg max
a∈A

Q(s, a). (2.8)

Policy-based approaches search, instead, directly in the space of possible policies.
Although value-based approaches are often more effective in some domains (e.g., [70]),
learning an explicit policy is more practical, mainly because:

• prior knowledge can be integrated in an easier way;

2.2 reinforcement learning algorithms 9

• for many parameterization choices (e.g., neural networks), small perturbations
to the state result in small changes in the probabilities of actions, a fact that is
not true for value-based approaches, where instead a small state perturbation
can yield the execution by the policy of a completely different action;

• the policy can flexibly have different degrees of stochasticity;

• for some problems, directly modeling the optimal behavior can be substantially
easier than modeling the value of each state, for instance, if an agent is driving a
car that is going towards a wall, knowing that the optimal action is to steer away
is more direct than trying to infer the action from the value of being in that state.

On-policy and Off-policy

In a RL method, the policy that is improved by the algorithm, called target policy π, is
not necessarily the same as the one used for collecting the data, referred to as behavior
policy πb. When the target and behavior policy coincides, the approach is said to be
on-policy, while an algorithm that learns to improve a policy by using data collected by
means of a different behavior is said to be off-policy. There exist both value-based [120,
72] and policy-based [98, 62] off-policy methods. Learning off-policy is potentially
more data-efficient than a strict on-policy approach, that must actually forget all
previous interactions with the environment every time the policy is improved.

Pushing to the limit off-policy learning, we obtain a setting commonly known as
batch reinforcement learning [56, 27]. In this setting, πb generates a dataset

D =
{
τi
}N
i=1

=
{(
si0, a

i
0, s

i
1, a

i
1, ..., s

i
Ti−1

, aiTi−1, s
i
Ti

)}N
i=1

(2.9)

of N independent trajectories τi, each composed of Ti transitions, and further interac-
tions with the environment are not allowed.

In off-policy estimation [84], we have to take into account that policy π is different
from the policy πb that generated the data. To correct for the distribution mismatch, a
common solution is to employ importance sampling [45, 79], re-weighing the transitions
based on the probability of being observed under the policy π. Namely, we can define
the importance weight relative to a subtrajectory τt ′:t ′′ of τ, occurring from time t ′ to
t ′′, and to policies π and πb as:

ρπ/πb(τt ′:t ′′) =
ζ
π,p
µ (τt ′:t ′′)

ζ
πb,p
µ (τt ′:t ′′)

=

∏t ′′−1
t=t ′ p(st+1|st, at)π(at|st)∏t ′′−1
t=t ′ p(st+1|st, at)πb(at|st)

=

t ′′−1∏
t=t ′

π(at|st)

πb(at|st)
.

(2.10)

Note that the importance weight can be computed without knowledge of the tran-
sition model p, since the ratios of probabilities depending on it can be simplified.

10 reinforcement learning

Importance sampling can provide an unbiased estimate for the quantities of interest
to be computed for policy π, using the data sampled from πb.

In the general case, we wish to estimate the expected value of a function f under
a probability distribution P by drawing N samples from a probability distribution
Q, both defined on a measurable space. Considering a characterization provided by,
respectively, two density functions p and q, the importance sampling estimator is
defined as:

µ̂P/Q =
1

N

N∑
i=1

p(xi)

q(xi)
f(xi) =

1

N

N∑
i=1

ρP/Q(xi)f(xi). (2.11)

The assumption required for using this estimator is that P � Q, P is absolutely
continuous w.r.t. Q. Formally, this means that there exist a function f such that dP =

fdQ. In other words, we require that, whenever q(xi) = 0, also p(xi) = 0.
The price to pay for using an importance sampling estimator instead of directly

sampling from P is an increase in variance. Intuitively, this price becomes larger as the
mismatch between P and Q increases. In [66], an upper bound on the variance of the
estimator is provided, by quantifying the dissimilarity between P and Q in terms of
the exponentiated Rényi divergence [87, 116] dα(P‖Q) = exp (Dα(P‖Q)), where:

Dα(P‖Q) =
1

α− 1
log
∫
X

(
dP
dQ

)α
dQ =

1

α− 1
log
∫
X

q(x)

(
p(x)

q(x)

)α
dx. (2.12)

We restate here the result for completeness.

Lemma 2.1 (Variance of the importance sampling estimator [66]). Let P and Q be
two probability measures on the measurable space (X,F) such that P � Q. Let x =

(x1, x2, . . . , xN)
T i.i.d. random variables sampled from Q and f : X → R be a bounded

function (‖f‖∞ < +∞). Then, for any N > 0, the variance of the importance sampling
estimator µ̂P/Q can be upper bounded as:

Var
x∼Q

[
µ̂P/Q

]
6
1

N
‖f‖2∞d2 (P‖Q) . (2.13)

This upper bound suggests that the variance is smaller when more samples are
collected, the function f whose expected value is being estimated is bounded by a
small constant or P is very similar to Q.

In the context of reinforcement learning, this implies that we should trust less the
estimation provided by importance sampling when the behavior policy πb is very
different from π (i.e., they induce two trajectory distributions with high d2 (·‖·)).

model-free policy gradient

In this section, we present an overview of fundamental model-free policy gradient
techniques. This will build the foundations for the presentation of the model-based
policy search approaches, that are treated in the following chapter.

2.3 model-free policy gradient 11

Policy Gradient

An important class of policy-based RL algorithms are the one based on the policy
gradient. The general idea behind these approaches is to consider a parametric space of
policies ΠΘ = {πθ : θ ∈ Θ ⊆ Rd} and to learn a policy πθ by following improvement
directions in this space. Generally, stochastic policies are considered, in order to natu-
rally induce exploration. The policy is improved by using a gradient ascent approach,
assuming that the policy is differentiable w.r.t. its parameters θ. Starting from some
estimate of the gradient of the performance of a policy ∇̂θJ(θ), an improvement step
of the form:

θ← θ+α∇̂θJ(θ) (2.14)

is repeatedly applied. α is a non-negative step size, that determines how much the
parameters are changed at each update. The pseudocode for a general policy gradient
algorithm is illustrated in Algorithm 2.3.1.

Algorithm 2.3.1: Policy Gradient meta-algorithm

Input: Initial policy parameters θ, step size α

while stopping condition not reached do
obtain an exploratory policy πb from πθ (e.g., πb ← πθ)
collect trajectories with policy πb
obtain an estimate ∇̂θJ(θ) of the policy gradient
θ← θ+α∇̂θJ(θ)

end while

In each iteration of this meta-algorithm, a behavior policy πb is obtained and
possibly run in the environment for collecting trajectories. The exploratory policy
πb to be used in a given iteration can be retrieved in several ways. Perhaps the
most common choice is to set πb = πθ, thus leaving the whole responsibility of
exploration to the stochasticity of policy πθ. Another alternative, when the action
space A is discrete, is to use a uniformly random policy πr for collecting the data, or a
mixture πb = απr + (1−α)πθ between the random and the current policy (using any
α ∈ [0, 1]). Approaches [62] that learn a deterministic policy πθ(s) usually obtain the
behavior as πb = π(s) +N, by perturbation of the current policy by means of noise,
for instance white or obtained from an Ornstein-Uhlenbeck process [114] to alleviate
low-pass filter effects over the control variables in robotics.

In the second step of Algorithm 2.3.1, an arbitrary number of trajectories is obtained
by running πb in the environment. The step as a whole can be skipped in some
of the iterations for off-policy policy gradient algorithms. In batch approaches, the

12 reinforcement learning

step is actually executed only for the first iteration and all the policy improvements
of subsequent iterations are done by starting from that initial batch of collected
experience.

After enough data has been collected, an estimate for the policy gradient is com-
puted, for instance with a method described in this section or in Section 3.5, and the
policy is updated. The procedure is repeated until a stopping condition is reached,
usually determined by the convergence to a local optimum (i.e., ‖∇̂θJ(θ)‖ ' 0).

The Policy Gradient Theorem

The Policy Gradient Theorem (PGT) [109] provides an expression connecting the
gradient of the performance of a policy with the value function. We present the
theorem in a form that is more adapt to the following discussion, obtained starting
from the original formulation by using a substitution known as the log-derivative
trick [121] (i.e., by trivially observing that ∇θπ(a|s) = π(a|s)∇θ logπ(a|s)). We now
state and comment the result.

Theorem 2.2 (Policy Gradient Theorem [109]). In a Markov Decision Process, the gradient
of the policy performance w.r.t. to the parameters of a policy πθ can be written as:

∇θJ(θ) =
1

1− γ

∫
S

∫
A

δπ,pµ (s, a)∇θ logπ(a|s)Qπ,p(s, a)dsda.

The factor ∇θ logπ(a|s) is called score function. It is connected to the possibility for
each one of the parameters in θ to be changed by a policy update: if a state-action pair
is well-visited and has an high score in a component of a θ, the gradient will point in
the parameter space to the direction favoring an increase of the probabilities of the
actions that lead to greater values of the Q-function. Both δπ,pµ (s, a) and Qπ,p are, in
general, unknown quantities. Model-Free Gradient (MFG) approaches use the direct
interaction with the environment for obtaining a Monte Carlo estimate for both of
them.

An estimator for the gradient in the form provided by Theorem 2.2 can have large
variance. One of the sources of this variance is rather clear: if the Q-function is always
positive, the gradient will suggest to increase the probabilities of all the actions, even
the ones that are very bad compared to the others. A common way to solve this issue
is the use of a control variate called baseline b(s), a quantity to be subtracted from the
estimate for the Q-function. In this case, the policy gradient can be rewritten as:

∇θJ(θ) =
1

1− γ

∫
S

∫
A

δπ,pµ (s, a)∇θ logπ(a|s) (Qπ,p(s, a) − b(s))dsda. (2.15)

2.3 model-free policy gradient 13

For the PGT to still hold, b(s) must not depend on the action. In fact:

E
s,a∼δ

π,p
µ

[∇θ logπ(a|s)b(s)] = E
s∼d

π,p
µ

[π(a|s)∇θ logπ(a|s)b(s)]

= E
s∼d

π,p
µ

[∇θπ(a|s)b(s)]

=

∫
S

dπ,pµ (s)b(s)∇θ
∫
A

π(a|s)dads

=

∫
S

dπ,pµ (s)b(s)∇θ1ds = 0.

(2.16)

Thus, no bias is introduced, and a Monte Carlo estimator that uses a baseline remains
unbiased.

The score function

It is useful to consider the expression of the score function for commonly employed
policy classes. When the action space A is discrete, a Boltzmann (or softmax) policy is
a common choice. Given φ(s, a), some feature representation for a state-action pair,
the probability of an action is computed as:

π(a|s) =
eφ(s,a)∑

a∈A e
θTφ(s,a)

. (2.17)

The corresponding score for this class of parameterized policy is given by:

∇θ logπθ(a|s) = φ(s, a) −
∑
a∈A

πθ(a|s)φ(s, a). (2.18)

Boltzmann policies can only be used for discrete action spaces. In the general case of
continuous S and A, a common choice is to use Gaussian policies. In particular, when
a small parameterization is enough, policy linear in a representation of the state are
usually considered. For instance, considering a parameterization for the mean of the
policy:

πθ(a|s) =
1√
2πσ2

exp

(
−
1

2

(
a−θTφ(s)

σ

)2)
. (2.19)

In this case, the score is given by:

∇θ logπθ(a|s) =

(
a−θTφ(s)

)
φ(s)

σ2
(2.20)

An interesting result about the score is highlighted in the following proposition.

Proposition 2.3. The expected value of the score in any state s ∈ S is:

E
a∼π(·|s)

[∇θ logπθ(a|s)] = 0. (2.21)

Of course, the variance of the score is instead in general different from zero.

14 reinforcement learning

REINFORCE

REINFORCE [121] is perhaps the first MFG algorithm based on the likelihood ratio
that was proposed in the RL literature. The underlying idea is simple: in an episodic
setting, the Q-function can be estimated by looking at the return obtained by running
the policy in the environment. REINFORCE uses the cumulative return from the start
to the end of the episode as an estimate for the Q-function, resulting, considering N
trajectories indexed by i, in the following estimator:

∇̂MFGθ JRF(θ) =

〈
H−1∑
t=0

∇θ logπ(ait|s
i
t)

(
H−1∑
l=0

γlr(sil, a
i
l)

)〉
N

, (2.22)

where we indicate by 〈·〉N an average over trajectories and we use an apex to highlight
that it is an estimator for the MFG.

The name of the algorithm derives from the behavioral psychology inspiration: the
agent must increase the probability of, or reinforce, the actions that lead to a greater
cumulative reward. An optimal baseline w.r.t. the minimization of the variance is
available thanks to [82], that can be estimated using the following expression:

bRF =

〈(∑H−1
t=0 ∇θ logπ(ait|s

i
t)
)2 (∑H−1

l=0 γ
lr(sit, a

i
t)
)〉

N〈(∑H−1
t=0 ∇θ logπ(ait|s

i
t)
)2〉

N

. (2.23)

Improvements over REINFORCE

The basic algorithm we presented in Section 2.3.4 considers the cumulative reward
collected during a whole episode when reinforcing any action. However, since the
agent is acting in a world rooted in causal relationships, this is not sound, and
pointlessly increases the variance of the estimation: the fact that an action can lead
to potentially good consequences (i.e., high reward) must be inferred only from the
rewards that came after it. This can be also easily seen in the use of the Q-function
in the expression of the policy gradient provided by Theorem 2.2: the value function
only deals with future rewards and rewards collected in the time instants that precede
a particular action are irrelevant for the policy gradient, only leading to increased
variance if used in an estimator.

Therefore, a more reasonable model-free estimate for Q(sit, a
i
t) is the reward-to-go of

the state-action pair, consisting in the discounted cumulative reward collected starting
from time instant t. This directly derives from Theorem 2.2, and leads to the following

2.3 model-free policy gradient 15

PGT estimator, which has in most cases less variance [122] than the one provided by
REINFORCE:

∇̂MFGθ JPGT (θ) =

〈
H−1∑
t=0

∇θ logπ(ait|s
i
t)

(
H−1∑
l=t

γlr(sil, a
i
l)

)〉
N

. (2.24)

In a way that is equivalent from an estimation perspective but with a different
algorithmic formulation [82], we can also define the G(PO)MDP [9] estimator:

∇̂MFGθ JG(PO)MDP(θ) =

〈
H−1∑
t=0

(
H−1∑
l=0

∇θ logπ(ail|s
i
l)

)
γlr(sit, a

i
t)

〉
N

. (2.25)

As in the case of REINFORCE, also the PGT estimator admits an optimal baseline [82],
that is this time step-dependent. It can be computed using the following estimator:

bPGTl =

〈(∑t
l=0∇θ logπ(ail|s

i
l)
)2
γlr(sit, a

i
t)

〉
N〈(∑t

l=0∇θ logπ(ail|s
i
l)
)2〉

N

. (2.26)

Actor-Critic Methods

In actor-critic methods [53], a parameterized policy πθ (the actor) is learned together
with a parameterized value function V̂ω or Q̂ω (the critic). In some sense, these
techniques are on the border between the value-based and the policy-based worlds:
learning the value function is instrumental for estimating the policy gradient, then
used as in actor-only methods to improve the policy by gradient ascent. The difference
between actor-only and actor-critic methods is not completely neat, since an estimate
of the value function can be used as a valid baseline in methods such as REINFORCE.
The rationale of [107] is to refer to actor-critic methods as the ones using some form
of bootstrapping [106] in learning the value function. When using bootstrapping, the
estimate of the value function is updated partially based on a previous estimate.
For instance, if we consider only one step, actor and critic can be updated based on
temporal difference error computed on a transition (st, at, rt, st+1), namely:

δt ← r(st, at) + γV̂ω(st+1) − V̂ω(st). (2.27)

This quantity can then be used for updating the value function:

ω←ω+βγtδt∇ωV̂ω(st), (2.28)

with a learning rate β > 0 and the policy:

θ← θ+αγtδt∇θ logπθ(at|st) (2.29)

16 reinforcement learning

This basic scheme is at the root of most recent actor-critic algorithms, subject to
various extensions. For instance, deep deterministic policy gradient [62] modifies it to
learn a deterministic policy while acting with a stochastic one; Asynchronous Advantage
Actor-Critic [69] adapts the basic actor-critic procedure to a heavily-parallel setting; Soft-
Actor-Critic [40] encourages exploration by incorporating an entropy regularization
term into the objective. For a detailed survey of more traditional actor-critic techniques
refer to [38].

3
M O D E L - B A S E D R E I N F O R C E M E N T L E A R N I N G

In this chapter, we review the state of the art of model-based reinforcement learning.
First, in Section 3.1, we present a general overview of MBRL. Then, we discuss three
central issues in MBRL, concerning the choice of the model class to be used for
approximating the dynamics (Section 3.2), the loss function to be minimized for
obtaining the estimated model (Section 3.3) and the different techniques for making
use of the learned model for improving or running a control policy (Section 3.4). Lastly,
in Section 3.5, we focus our attention on model-based policy gradient approaches,
outlining a taxonomy that will be useful in the further discussion of Chapter 4.

overview

Motivation

In recent years, the RL research community was able to obtain outstanding results.
Superhuman level was reached by novel algorithms in tasks that are generally judged
challenging, such as playing a vast range of diverse videogames [70, 117], or even
ancestrally complex, like excelling at the game of Go [99]. However, even if the
available hardware seems to be ready for it [31], current RL algorithms struggle in
performing very basic sensorimotor-intensive tasks. Learning interactions that are
trivial even for the smallest human child is incredibly hard for most current algorithms;
on the other hand, performing tasks that seem impossible for most humans (e.g.,
playing Go or Chess at top level) is now possible to be done by an algorithm using
reasonable computational resources. This counterintuitive fact is commonly known as
the Moravec’s paradox [71].

The Moravec’s paradox is due to evolutionary reasons: the sensorimotor intelligence
of human beings had about 3.7 billions years [77] to develop to the final form that is
known to us, but the rational intelligence required to perform tasks such as playing
complex games is no more than 300.000 years old [91]. Therefore, it is fairly easier to
engineer a system that overtakes the performance of a simpler mechanism. However,
those very basic, sensorimotor-related tasks are among the most useful in the real
world, thinking, for instance, to industrial or daily applications.

Model-based reinforcement learning offers a powerful solution for alleviating the
effects that contribute to the existence of the Moravec’s paradox. It has been empirically
studied by neuroscientists and behavioral psychologists that humans make extensive
use of an internal world model to run mental simulations or to predict the effects of

17

18 model-based reinforcement learning

their own actions [48, 32, 8, 41]. The attitude to learn and use an internal model of the
dynamics of the environment was thus encoded into humans by evolution: artificial
agents using MBRL try to apply the same principle, using an estimated model to decide
how to act.

The promise of MBRL is to address important issues affecting model-free reinforce-
ment learning. Namely, among the most important advantages of using a model of
the dynamics of the environment inside an RL algorithm, we can count:

• Sample-efficiency. For many problems, learning a model to be used for policy
improvement is easier than directly learning a policy [5]. A reduced amount of
experience can be therefore used by an agent to obtain satisfying performance.

• Easier transfer. Once it has learned to perform a task, it is easier for an agent
to learn to perform a related task. This comes naturally from the fact that, if
the environment dynamics remains similar, but the task has changed (e.g., the
reward function was modified), an agent can still reuse the same world model.

• More effective exploration. Estimating a model of the dynamics can be useful for
knowing where to explore. For instance, an agent could try to explore regions of
the environment where its own internal world model is more uncertain.

• Safety. A world model that is accurate enough can be used for off-policy policy
evaluation [107], estimating the performance and understanding the behavior of
a policy without running it into the actual environment.

A definition for MBRL

A precise definition of MBRL is not easy to give. In the most general case, a MBRL

approach is any RL approach that uses a model of the dynamics of the environment in
the learning or control algorithm. This definition comprises both the approaches that
use either the real model of the environment or an estimate of it. The former class
requires that the model of the environment in its exact form is available. For instance,
for a board game such as Go or Chess, the model would be just the complete set of
its rules; for a generic dynamical system, the model can be an extremely accurate
writeup of the physical laws that determine its evolution. Approaches based on this
precious, albeit often unaccessible, kind of knowledge are closely related to state-space
search [99, 100, 97] or classical control [60].

For the rest of the thesis, we will focus on the second type of approaches, that
create an internal world model by observing the dynamics of the environment and,
in general, we refer just to them when using the term MBRL. More precisely, an MBRL

algorithm wants to find an approximately optimal policy π ≈ π∗ through the use of a
learned model of the dynamics p̂ ≈ p.

3.1 overview 19

Three important questions are central in MBRL and help in categorizing existing
approaches:

1. Which is an appropriate model class to be used for representing the dynamics?

2. Which loss function should be minimized for learning the model?

3. How can the learned model be used by the agent?

These three questions will be the subject of the discussion in the following sections.
For simplicity of presentation, prior to answering these questions, we provide a

general overview on recent generative models, the basic tool used for obtaining a
world model, both discussing model classes and loss functions. Next, we will focus
the discussion to RL.

Overview on modern generative models

The dynamics of an environment are, in the general case, stochastic. Therefore, the
problem of approximating the probability distribution implied by p is a density
estimation problem [102]. Density estimation is performed with the use of generative
models, either in an explicit way, for instance by defining a parameterized estimated
density p̂φ, or implicitly, by being able to sample from p̂. A common approach consists
in maximizing the log-likelihood of the data, or, equivalently, to minimize DKL(p‖p̂),
the Kullback–Leibler divergence between the real and the estimated distributions.
Nonetheless, this objective is usually intractable and simplifying assumptions are
needed.

There are three main categories of likelihood-based methods that explicitly learn
p̂(x): fully observed, flow and variational methods. Fully observed models do not employ
any latent variables to explain the hidden factors of the data. Two examples are
Gaussian processes [86], that model functions as collections of normally distributed
random variables, and autoregressive approaches, that try to make the problem tractable
using a factorization of the kind p̂(x) =

∏T
t=0 p(xt|x0, ..., xt−1), corresponding to

the generation, for each sample, of a single feature at a time [37, 78, 115]. Flow
methods leverage invertible transformations of random variables [22, 23, 51]. Variational
methods [52, 88] try to learn an approximate density by maximizing a computable
surrogate objective L(x; θ) subject to the evidence lower bound L(x; θ) 6 log p̂(x; θ);
a common approach is to train a variational autoencoder (VAE), using −L(x; θ) as a
loss function. A VAE is composed of an encoder that maps the input data into a
latent representation and a decoder, able both to reconstruct the encoded data and to
generate new samples, decoding points sampled from the prior distribution of the
latent variables. Generative adversarial networks (GANs) are implicit density models that
provide a way to sample from p̂(x): in GAN training, we look for a Nash equilibrium in
the game between a generator G, producing samples resembling the real ones, and

20 model-based reinforcement learning

a discriminator D, which learns to distinguish the samples drawn from the dataset
from the ones produced by G. Several value functions were devised for this game,
each of which leads to an equivalent minimization of a divergence between p(x) and
p̂(x) (e.g., Jensen-Shannon [36], Wasserstein [3], Pearson χ2 [64]). Refer to [35] for a
more exhaustive taxonomy of recent generative models.

which model class to use

The choice of a model class P is the first, important, step for any model-based approach.
We now briefly discuss the critical aspects relevant for the RL problem, mentioning
which are the approaches that are commonly employed.

Dealing with uncertainty

A fundamental problem in MBRL is called model bias. An implicit assumption of many
methods is that the learned world model accurately reflects the real dynamics of the
environment. However, with limited data, this assumption can be very problematic,
since the bias introduced by the use of an imperfect world model can severely hurt the
performance of the resulting policy. A solution for alleviating model bias is to consider
uncertainty about the prediction of the dynamics, by means of different model classes
and techniques. Intuitively, a model-based algorithm should rely less upon its world
model when the uncertainty of its prediction is higher.

A quite effective approach has been proposed within the framework named proba-
bilistic inference for learning control (PILCO) [20]. The basic idea is to leverage the fact
that Gaussian processes are able to output the uncertainty about their predictions.
The approach has demonstrated good empirical performance, albeit the intrinsic
limitations of Gaussian processes, a non-parametric method that struggles in scaling
to high-dimensional state spaces, limit its applicability.

Another alternative for incorporating uncertainty estimation into an approximate
forward model is to use Bayesian neural networks [33, 63]. Bayesian neural networks
are able to augment traditional neural networks with the possibility of obtaining a
degree of uncertainty from model predictions, by modeling a distribution over the
parameters of the network instead of a simple point estimate. Perhaps one of the
most straightforward approaches, proposed in [33], consists in the use of the dropout
regularization technique [103], which allows to perform approximate inference by
running multiple forward passes of the same model. These techniques were originally
used for MBRL by integration into the PILCO framework [34], but have been also
employed in different scenarios [49, 17].

A third viable alternative for estimating uncertainty in MBRL consists in the use
of ensembles of forward models. For instance, multiple models can be part of an
ensemble obtained by bagging [13], where each model is fitted to slightly different sets

3.2 which model class to use 21

of environmental transitions, created by sampling with reinsertion from the original
dataset of transitions. Intuitively, if all models agree on the prediction of the next
state, then the uncertainty is low; if, instead, the members of the ensemble give very
different predictions, uncertainty is high. This type of estimation has been used in
MBRL both for control [55, 14] and to improve exploration [96].

Single-step and multi-step dynamics modeling

Another core issue in MBRL is the model’s compounding error. For a model to be
particularly useful for an agent, it must be able to predict the long-term future.
However, if a model p̂(·|s, a) is used for estimating the dynamics of the environment,
the only option to be used for predicting the effects of the actions of an agent over
multiple future time steps is to unroll this prediction several times. This compounds
the error that the model commits on average in a single time step in a way that
is exponential w.r.t. to the planning horizon. Recently, leveraging recent progress
in generative modeling led by deep learning techniques, it has been proposed as
a solution to instead model the probability distribution ζπ,pµ of whole trajectories.
In particular, existing approaches [68, 18] use trajectory-level world models based
on variational autoencoders for control. Naturally, the benefits of modeling whole
trajectories come with some disadvantages, namely:

• There is a reduced amount of data to be used for training the world model
because, obviously, there are way more transitions than trajectories.

• For many problems, modeling ζπ,pµ can be significantly harder than modeling
p(·|s, a).

For these reasons, single-step forward models are still the most common approach in
MBRL.

Locally-accurate models

The dynamics of an arbitrary environment can be extremely complex. Therefore, it
is easy to think that very powerful model classes are required for a MBRL approach
to work in an effective way. Nonetheless, the estimation of a high-capacity model
requires considerable amounts of data, betraying the promise of sample-efficiency of
MBRL.

Fortunately, in many interesting application domains (e.g., robotics), perfectly
modeling the dynamics across the whole state-action space is not necessary for a
model to be effectively used by an agent. This intuition is the foundation of the
classical control technique of linearizing a dynamical system [67, 61]: in order to
control a complex nonlinear system around an equilibrium point, it can be sufficient
to use a local linear approximation of its dynamics.

22 model-based reinforcement learning

It is reasonable, in MBRL, to use simple model classes and focus their limited capacity
only on some parts of the environment. This reduces the amount of data needed
for learning the model, in the hope that the bits of the dynamics that are better
approximated are the ones that are more relevant for control purposes.

For instance, the approach proposed in [1] improves a policy using a model that
is constrained to be fully consistent with the trajectories observed while acting in
the environment. This is done by assuming a deterministic environment and using a
parametric model class. Model updates for the estimated deterministic forward model
f have the following form:

fk+1(st, at)← fk(st, at) + s
i
t+1 − f

k(sit, a
i
t). (3.1)

The model f thus perfectly predicts observed trajectories, eliminating a source of error,
despite being, of course, only a local approximation.

Other approaches use multiple local models in order to overcome the scalability lim-
its of Gaussian processes [75]. In [59], inspired by work in trajectory optimization [111],
time-varying linear dynamics models are used together with a guided policy search
approach to learn a control policy: the authors show that such simple models are
sufficient to solve contact-rich robotics tasks that have discontinuous dynamics.

how to learn the model

Decision-unaware MBRL

Considering the traditional Maximum Likelihood (ML) estimation procedure, model
learning is performed in most MBRL approaches by solving an optimization problem
affine to the following one:

p̂ = arg min
p∈P

E
s,a∼δ

πb,p
µ

[DKL(p(·|s, a)‖p(·|s, a)] , (3.2)

where we denote by DKL the Kullback-Leibler divergence [54]. For continuous state
spaces, a common choice is to minimize the mean squared error between predicted
and observed states:

p̂ = arg min
p∈P

E
s,a∼δ

πb,p
µ

ŝ∼p(·|s,a),s ′∼p(·|s,a)

[
‖ŝ− s ′‖2

]
. (3.3)

This approach is decision-unaware, in the sense that it is completely agnostic of the
decision problem that is being solved by the agent that will use the estimated model.
The advantage of this method for model learning is its ease of use and applicability:
any of the general density estimation techniques discussed in Section 3.2 can be used
for obtaining the world model, without any further modification. When the actual

3.3 how to learn the model 23

model of the dynamics p belongs to the model class P that has been selected for its
estimation, the maximum likelihood guess in P corresponds to p. However, as we
discussed in Section 3.2.3, it is often convenient to employ a simpler albeit misspecified
model class in place of a very powerful one. Although theoretical guarantees exist for
this to be addressed by ML-based approaches [90], it is likely that the best model in P

according to the ML objective is not the most effective to be used by a policy to solve
the control problem.

Decision-aware MBRL

The observation that, under misspecified model classes, the dynamics of the en-
vironment must be captured foreseeing the final task to be performed led to the
development of model-learning approaches that are decision-aware [29]. One of the
first examples in machine learning was a financial application [11], in which, to train
a model for generating financial time series, a financial criterion together with a
differentiable control module is used in place of a prediction error (e.g., mean squared
error).

In the reinforcement learning setting, decision-awareness consists of incorporating,
in addition to the effect of the actual model of the environment p on the trajectory
and next-state distributions, one or more of these elements into the loss function used
for model learning:

• The reward function r

• The policy π that will use the estimated model

• The policy πb that collected the data

The idea was introduced into MBRL [44, 7] and the related adaptive optimal control
literature [83] by considering evaluations of a control policy in the environment as
a performance index for model learning. For instance, in [44], the model is updated
through the computation of the gradient of the return obtained by a control policy, in
a similar manner w.r.t. policy gradient approaches.

Recently, a theoretical framework called value-aware MBRL [29] was proposed.
The rationale of this value-based method is that some aspects of the dynamics are
irrelevant for estimating the optimal value function maxπ

{
Vπ,p

}
. The loss function

is obtained by minimizing the expected error on the Bellman optimality operator,
explicitly considering that the estimated forward model is then used in an approximate
value iteration [12] algorithm. Thus, the model is obtained by minimizing an empirical
version of the following loss function:

L(p, p) = E
s,a∼δ

πb,p
µ

[
sup
Q∈F

∣∣∣∣∫ [p(s ′|s, a) − p(s ′|s, a)]maxaQ(s, a)ds ′
∣∣∣∣2 dsda

]
(3.4)

24 model-based reinforcement learning

Value/Policy

Experience

Model Acting

Learning

Planning

Figure 3.1: Scheme for the standard MBRL approach.

given a class F of Q-functions. It can be noted that this is a worst-case formulation,
since the supremum of F is considered.

Starting from [29], further theoretical considerations and approaches have been
proposed. For instance, an iterative version of the original algorithm [28] has been
developed, with the aim of alleviating its overly conservative treatment of the value
function. In [4], the authors prove that, in Lipschitz MDPs, the use of the value-aware
loss from [29] is equivalent to employing the Wasserstein metric as a loss for model
learning.

Awareness of the final task to be performed has been also incorporated into stochas-
tic dynamic programming [25] and, albeit implicitly, into neural network-based
works [76, 101], in which value functions and models consistent with each other
are learned.

how to use the learned model

Once a model class and a loss function for model learning are selected, the remaining
central question in MBRL concerns how to use the world model. Although one of the
possible uses of a learned model is for exploration purposes (e.g., [92, 112, 80, 104, 15,
2, 96]), in the rest of this section and of the thesis we will focus on the most common
use case: planning. There are essentially two possible options, to which we refer to as
online and offline planning. In both cases, a policy is derived from a model that has
been learned from experience; the policy can be then used to collect new experience
into the environment and restart the cycle. This standard [108] scheme, describing an
high-level general view of MBRL, is depicted in Figure 3.1.

3.4 how to use the learned model 25

Online planning

Using the model for online planning consists in obtaining a control policy on-the-fly,
by unrolling the estimated model into the future every time the execution of an action
is required, without any explicit parameterization of a policy. This is also known under
the name of trajectory optimization [118] in the optimal control literature and, in the
case of discrete action spaces, it is closely related to classical [42] and modern [16]
search algorithms.

These approaches have been successfully applied in MBRL, for instance using
trajectory-level world models [68] or particle methods [17] to perform trajectory
optimization, or unrolling a generative adversarial network to adapt the very effective
algorithm of Monte Carlo Tree Search to an approximate case [6].

However, we are more often interested in learning an explicit policy πθ, to increase
the generality of the control law that can be derived from the learned model.

Offline planning

Offline planning constitutes perhaps the most used class of MBRL approaches. Pseu-
docode outlining how it works, from an high-level perspective, is given in Algo-
rithm 3.4.1.

26 model-based reinforcement learning

Algorithm 3.4.1: Model-based RL meta-algorithm

Input: Empty dataset D, initial policy π, initial model p̂

while π is not satisfactory do
πb ← exploratory_policy(π)
. Interact with the environment
s ∼ µ

while not enough data is collected do
a ∼ πb(·|s)
s ′ ∼ p(·|s, a)
r = r(s, a)

D← D∪ (s, a, s ′, r)
s← s ′

end while
. Obtain model from collected data
p̂← obtain_model(p̂, π,D)

. Obtain a new policy using the model
π← obtain_policy(p̂, π,D)

end while

In every iteration of the algorithm, a behavior policy πb is first obtained from the
current policy π. For instance, we can have πb = π, πb being a randomly uniform
policy or πb being a mixture between a randomly uniform policy and π [90]. Then,
we let πb interact with the environment and we add the transitions resulting from
these interactions to a dataset D. Afterwards, we estimate a forward model p̂. Note
that the pseudo-procedure obtain_model(·) takes three parameters: the first one, the
current estimation p̂, is useful for performing some form of online learning; the second
one, the policy π, is usually ignored, but can be used by decision-aware approaches
to model learning; the third one, the dataset of transitions D, is of course used by
all MBRL algorithms. The last step in an iteration of the general algorithm is where
planning happens: policy π is updated using p̂ and, potentially, the dataset D.

This meta-algorithm is followed by several methods, ranging from the classical
value-based method Dyna-Q [105] to the recently proposed recurrent world models [39],
which use modern generative models and evolutionary techniques to perform policy
search. In general, an enormous range of techniques can be used as instantiation of
the obtain_policy(·) step in Algorithm 3.4.1: the policy can be, for instance, obtained
by temporal difference learning [108] or by imitation of locally learned policies [59].
In the rest of the thesis, we focus our attention to a particular type of policy search
techniques: the ones using the gradient of the performance of policy with respect to
its parameters for improving it.

3.5 model-based policy gradient 27

model-based policy gradient

Overview

Although any policy search approach can be in principle adopted in MBRL, making
use of the policy gradient usually yields faster convergence and better scalability.

There are essentially two possible strategies for estimating the policy gradient in a
model-based approach:

• Sampling. The world model is used for sampling trajectories and then the policy
gradient is estimated using any technique affine to the model-free ones presented
in Section 2.3.

• Gradient Propagation. Given a differentiable reward function, policy and world
model, gradients of the performance of the policy are computed by chain-rule-
based propagation.

Gradient-propagation approaches clearly have lower variance and are computationally
appealing. Nonetheless, they usually require very strong assumptions, especially in the
case of stochastic environments. For instance, in PILCO [20], the distribution of states
is assumed to be approximately Gaussian and moment matching approximations are
used.

Regardless of the use of the sample-based or propagated gradient, a further distinc-
tion on existing model-based policy gradient approaches can be made, depending on
which element of the policy gradient is derived from the estimated model and which
one from the observed transitions.

Fully-Model-based Gradient

A first option for leveraging a world model in approximating the policy gradient
is to use it for generating trajectories (or imagination rollouts) and then use them for
a sampling-based estimate or for propagating the gradient. We can interpret this
technique under the light of the PGT and give it a formal definition.

Definition 3.1. Given a Markov Decision Process M, let ΠΘ be a parametric space of
stochastic policies, P a class of transition models. Given π ∈ ΠΘ and p̂ ∈ P, the Fully
Model-based Gradient (FMG) is defined as:

∇FMG
θ J(θ) =

1

1− γ

∫
S

∫
A

δπ,p̂µ (s, a)∇θ logπ(a|s)Qπ,p̂(s, a)dsda. (3.5)

As highlighted in the definition, the estimated model p̂ is used for providing an
approximation of both the state-action distribution δπ,pµ and the action-value function
Qπ,p.

28 model-based reinforcement learning

This is by far the most used approach for model-based policy gradient. For in-
stance, PILCO and its extensions [20, 34] alternate the collection of experience in
the environment with gradient updates obtained by unrolling the estimated model.
Other works try to replicate the model-free policy gradient approaches and inte-
grating them in MBRL, with the use of tabular models [119], least-squares density
estimation techniques [110], specifically-designed video predictors [47] or ensembles
of models [55].

Model-Value-based Gradient

A different gradient approximation, less common w.r.t. the FMG, is the Model-Value-
based Gradient (MVG), defined as follows, again following the same perspective
adopted by the PGT.

Definition 3.2. Let p be the transition model of a Markov Decision Process M, ΠΘ a
parametric space of stochastic policies, P a class of transition models. Given π ∈ ΠΘ and
p̂ ∈ P, the Model-Value-based Gradient (MVG) is defined as:

∇MVG
θ J(θ) =

1

1− γ

∫
S

∫
A

δπ,pµ (s, a)∇θ logπ(a|s)Qπ,p̂(s, a)dsda. (3.6)

Thus, the MVG employs experience collected in the real environment under the
model p, i.e., sampling from δ

π,p
µ (s, a), and uses the generative power of the world

model p̂ in the computation of an approximate action-value function Qπ,p̂ only.
The MVG finds a compromise between a FMG, in which the experience is directly gen-

erated from δ
π,p̂
µ [20, 21], and a Monte Carlo estimator for the MFG (e.g., GPOMDP [9])

in which also the Q-function is computed from experience collected in the real envi-
ronment.

The idea of grounding the computation of a model-based policy gradient on real
trajectories was first introduced for deterministic policies and world models using
gradient-propagation [73, 1]. Along these lines, [43] extends the approach to stochastic
policies and environments, by differentiating the Bellman equation thanks to the
reparameterization trick [52].

Other MVG approaches compute the gradient by sampling. For instance, the ones
based on model-based value expansion [30, 14] use a fixed-horizon unrolling of an
estimated forward model for obtaining a better value function in an actor-critic setting.
In order to do so, they assume to have a model whose performance is trusted to be
satisfying when unrolled for a limited horizon H. Starting from this consideration,
when computing the targets for critic learning, H steps of rewards are simulated
and used in the Bellman equation, in place of the immediate next value of the value
function or of a Monte Carlo return. This improves the approximation of the value
function and, consequently, the performance of the resulting policy.

3.6 comparison among gradients 29

comparison among gradients

We have seen three different types of policy gradients: MFG, FMG and MVG. It is worth
comparing the advantages and disadvantages of these three approaches.

On the one hand, a model-free estimation of the policy gradient is usually unbiased.
However, this has a huge cost in terms of variance, especially in an off-policy setting,
thus requiring substantial amounts of data and leading to poor sample efficiency.

On the other hand, the FMG, employing trajectories generated by p̂ for estimating
both the distribution of states and the value function, suffers from the full influence of
the bias introduced by a world model. This, for complex and stochastic environments,
can have a non-negligible impact on the performance of a policy trained by using this
gradient approximation.

The MVG, instead, limits the bias effect of p̂ to the Q-function approximation Qπ,p̂,
reducing the compounding of errors due to p̂. At the same time, it enjoys a smaller
variance w.r.t. a Monte Carlo estimator, as the Q-function is no longer estimated from
samples but just approximated using p̂.

A summary of the advantages of these three general approaches for computing the
policy gradient is provided in Table 3.1.

It is worth noting that when the environment dynamics can be approximated locally
with a simple model, or some prior knowledge on the environment is available,
selecting a suitable approximator p̂ for the transition model is easier than choosing an
appropriate function approximator for a critic in an actor-critic architecture. Therefore,
it is reasonable, in Definition 3.1 and Definition 3.2, to write an approximation for the
Q-function in a model-based form (as Qπ,p̂) in place of a generic Q̂.

Table 3.1: Qualitative comparison of estimations for Model-Free Gradient (MFG), Fully Model-
based Gradient (FMG) and Model-Value-based Gradient (MVG) in terms of bias and
variance.

MFG FMG MVG

Bias Zero Potentially high Potentially moderate

Variance Potentially very high Potentially high Potentially moderate

4
G R A D I E N T- AWA R E M O D E L - B A S E D P O L I C Y S E A R C H

This chapter is devoted to deriving and presenting a novel decision-aware model-based
policy search approach. In Section 4.1, we analyze the MVG, providing a relationship
between the error made in model estimation and the one made in approximating the
policy gradient. Starting from this result, in Section 4.2, we derive the first decision-
aware approach that explicitly considers information about the gradient of the current
policy in the loss function used for model learning and integrate it into a batch
policy search algorithm. Then, in Section 4.3, we provide a theoretical analysis of the
proposed algorithm.

analysis of the model-value-based gradient

Decision-Aware Bound

A central question concerning Definition 3.2 is how the choice of p̂ affects the quality
of the gradient approximation, i.e., how much bias an MVG introduces in the gradient
approximation. To this end, we bound the approximation error by the expected
KL-divergence between p and p̂.

Theorem 4.1. Let q ∈ [1,+∞] and p̂ ∈ P. Then, the Lq-norm of the difference between the
policy gradient ∇θJ(θ) and the corresponding MVG ∇MVG

θ J(θ) can be upper bounded as:

∥∥∇θJ(θ) −∇MVG
θ J(θ)

∥∥
q
6
γ
√
2ZRmax

(1− γ)2

√
E

s,a∼η
π,p
µ

[DKL(p(·|s, a)‖p̂(·|s, a))],

where

ηπ,pµ (s, a) =
1

Z

∫
S

∫
A

δπ,pµ (s ′, a ′)
∥∥∇θ logπθ(a ′|s ′)

∥∥
q
δ
π,p
s ′,a ′(s, a)ds

′da ′

is a probability distribution over S×A and

Z =

∫
S

∫
A

δπ,pµ (s ′, a ′)
∥∥∇θ logπθ(a ′|s ′)

∥∥
q

ds ′da ′

is a normalization constant, both independent from p̂.1

1 We need to assume that Z > 0 in order for ηπ,pµ to be well-defined. This is not a limitation, as if Z = 0,
then ∇θJ(θ) = 0 and there is no need to define ηπ,pµ in this case.

31

32 gradient-aware model-based policy search

Intuitively, Theorem 4.1 suggests that the quality of an MVG approximation is
intimately linked to the quality of the estimated model p̂. However, the relative
importance of the performance of the world model is not uniform across the whole
S×A space, nor it is uniquely determined upon the state-action visitation implied
by δπ,pµ as assumed in previous MVG-based, decision-unaware, approaches. Instead,
the expected value of the distribution mismatch between real and estimated model,
quantified by the Kullback-Liebler divergence DKL, is taken under the distribution
η
π,p
µ .
In order to understand how the weighting distribution ηπ,pµ enlarges the relative im-

portance of some transitions with respect to others, we define an auxiliary distribution
ν
π,p
µ as:

νπ,pµ (s ′, a ′) =
1

Z

∥∥∇θ logπ(a ′|s ′)
∥∥
q
δπ,pµ (s ′, a ′), (4.1)

where Z, as defined in Theorem 4.1, is a normalization constant required for νπ,pµ
to be a well-defined probability distribution. Z can be seen as the expected score
magnitude in the MDP M under policy π. The distribution νπ,pµ is high for states and
actions that are both likely to be visited executing π and corresponding to high
norm of its score. Intuitively, a low magnitude for the score is related to a smaller
possibility for policy π to be improved. However, the connection between the score-
magnitude for states and actions and the relative importance of those states and
actions for minimizing the approximation error caused by the MVG is not direct. In
other words, it is not possible to say that the most important transitions to be learned
for a model to be good for an MVG approach are the ones featuring the largest score
magnitude and frequently encountered by the policy (i.e., νπ,pµ is not the correct
weighting distribution). Nonetheless, νπ,pµ plays an important role in defining the
whole weighting distribution ηπ,pµ . In fact, it can be rewritten as:

ηπ,pµ (s, a) =

∫
S

∫
A

νπ,pµ (s ′, a ′)︸ ︷︷ ︸
gradient magnitude

distribution

δ
π,p
s ′,a ′(s, a)︸ ︷︷ ︸
state-action
reachability

ds ′da ′ = E
s ′,a ′∼νπ,pµ

[
δ
π,p
s ′,a ′(s, a)

]
. (4.2)

Under the interpretation suggested by Equation 4.2, ηπ,pµ can be seen as the expected
state-action reachability under the gradient magnitude distribution. δπ,ps ′,a ′(s, a) is the state-
action distribution of (s, a) after executing action a ′ in state s ′. It is equivalent to the
state-action distribution δπ,pµ in an MDP where

µ(s) =

1 s = s ′

0 otherwise
,

and the first action executed by the agent is always a ′. Each state-action couple (s ′, a ′)

with high score magnitude that precedes (s, a) brings a contribution to the final
weighting factor for (s, a).

4.1 analysis of the model-value-based gradient 33

Summarizing, the most relevant (s, a) pairs for propagating the model error to the
MVG error are those that are likely to be reached from the policy starting from high gradient-
magnitude state-action pairs. If, for instance, (s, a) is only encountered after low score-
magnitude state-action pairs, corresponding transitions of the type (ŝ, â, ŝ ′ ∼ p(·|ŝ, â))
contribute less in propagating the error of the model p̂ to the bias induced by the MVG.

Maximum Likelihood Bound

Theorem 4.1 shows that the state-action distribution is not the only factor to give
attention to when learning a model employed in an MVG. However, existing approaches
(e.g., [73, 1, 43, 30, 14]) employ a maximum likelihood objective for estimating the
forward model: is this a theoretically sound approach? We answer this question by
stating the following proposition.

Proposition 4.2. Let q ∈ [1,+∞] and p̂ ∈ P. If ‖∇θ logπ(a|s)‖q 6 K for all s ∈ S and
s ∈ A, then, the Lq-norm of the difference between the policy gradient ∇θJ(θ) and the
corresponding MVG ∇MVG

θ J(θ) can be upper bounded as:

‖∇θJ(θ) −∇MVG
θ J(θ)‖q 6

γ
√
2ZRmax

(1− γ)2

√
E

s,a∼η
π,p
µ

[DKL(p(·|s, a)‖p̂(·|s, a))]

6
γ
√
2KRmax

(1− γ)2

√
E

s,a∼δ
π,p
µ

[DKL(p(·|s, a)‖p̂(·|s, a))].

This proposition gives motivation to both the common maximum likelihood ap-
proach and the decision-aware one suggested by Theorem 4.1. We can derive two
insights from it: the first is that minimizing Es,a∼δπ,pµ [DKL(p(·|s, a)‖p̂(·|s, a))], (i.e.,
learning the model by maximum likelihood) can therefore minimize an upper bound
on the error of the approximation provided by the MVG; the second, however, is
that finding a minimizer for the expectation of the KL-divergence under δπ,pµ gener-
ally leads to a worse MVG approximation than the one provided by minimizing the
expected KL-divergence under ηπ,pµ .

To understand how much the bound provided by Theorem 4.1 is actually tighter,
we can analyze the case in which the magnitude of the gradient is a constant value,
such that ‖∇θ logπ(a|s)‖q = K0. In this case, we observe that:

Z =

∫
S

∫
A

δπ,pµ (s ′, a ′)
∥∥∇θ logπθ(a ′|s ′)

∥∥
q

ds ′da ′ = K0
∫
S

∫
A

δπ,pµ (s ′, a ′)ds ′da ′ = K0

(4.3)

and that:

ηπ,pµ (s, a) =
1

K0

∫
S

∫
A

K0δ
π,p
µ (s ′, a ′)δπ,ps ′,a ′(s, a)ds

′da ′ = δπ,pµ (s, a). (4.4)

34 gradient-aware model-based policy search

Picking a value of K = K0, we can notice that, in the case of constant gradient-
magnitude, the last inequality presented in Proposition 4.2 holds therefore as an
equality. Thus, a maximum likelihood approach for model learning would lead to
the same result w.r.t. a decision-aware one. Intuitively, as the magnitude of the score
starts to vary in a range that is large enough, and K � Z, the bound provided by
Theorem 4.1 can become significantly tighter, especially if this variation occurs in
states and actions that are frequently visited by the policy π.

Related considerations were previously stated for other forms of decision-aware
MBRL. In particular, it has been shown that, despite being less effective than value-aware
model learning [29], maximum likelihood estimation can be used for minimizing the
error induced by a world model on the Bellman operator.

gradient-aware model-based policy search algorithm

Inspired by Theorem 4.1, we propose a policy search algorithm that employs an MVG

approximation, combining trajectories generated in the real environment together with
a model-based approximation of the Q-function obtained with the estimated transition
model p̂. The algorithm, Gradient-Aware Model-based Policy Search (GAMPS), consists
of three steps: learning the forward model p̂ (Section 4.2.1), computing the action-value
function Qπ,p̂ (Section 4.2.2) and updating the policy using the estimated gradient
∇̂θJ(θ) (Section 4.2.3).

Learning the transition model

To learn p̂, we aim at minimizing the bound in Theorem 4.1, over a class of transition
models P, using the trajectories D collected with ζ

πb,p
µ . However, to estimate an

expected value computed over ηπ,pµ , as in Theorem 4.1, we face two problems. First,
the policy mismatch between the behavioral policy πb used to collect D and the
current agent’s policy π. This can be easily addressed by using importance sampling.
Second, given a policy π we need to be able to compute the expectations over ηπ,pµ
using samples from ζ

π,p
µ . In other words, we need to reformulate the expectation over

η
π,p
µ in terms of expectation over trajectories. To this end, we provide the following

result.

Lemma 4.3. Let π and πb be two policies such that π� πb (π is absolutely continuous w.r.t.
to πb). Let f : S×A→ Rk be an arbitrary function defined over the state-action space. Then,
it holds that:

E
s,a∼η

π,p
µ

[f(s, a)] =
(1− γ)2

Z
E

τ∼ζ
πb,p
µ

[
+∞∑
t=0

γtρπ/πb(τ0:t)

t∑
l=0

‖∇θ logπ(al|sl)‖q f(st, at)
]

.

To specialize Lemma 4.3 for our specific case, it is sufficient to set f(s, a) =

DKL(p(·|s, a)‖p̂(·|s, a)). Note that Z is independent from p̂ and thus it can be ig-

4.2 gradient-aware model-based policy search algorithm 35

nored in the minimization procedure. Furthremore, minimizing the KL-divergence is
equivalent to maximizing the log-likelihood of the observed transitions. Putting it all
together, we get to the objective:

p̂ = arg max
p∈P

1

N

N∑
i=1

Ti−1∑
t=0

ωit logp
(
sit+1|s

i
t, a

i
t

)
,

ωit = γ
tρπ/πb(τ

i
0:t)

t∑
l=0

∥∥∇θ logπ(ail|s
i
l)
∥∥
q

.

(4.5)

The factors contained in the weight ωit accomplish three goals in weighting the
transitions for the model. The discount factor γt encodes that later transitions are
exponentially less important in the gradient computation. The importance weight
ρπ/πb(τ

i
0:t) is larger for the transitions that are more likely to be generated by the

current policy π. This incorporates a key consideration into model learning: since the
running policy π can be quite different from the policy that generated the data πb,
typically very explorative [21, 90], an accurate approximation of the dynamics for the
regions that are rarely reached by the current policy is not useful. Lastly, the factor∑t
l=0

∥∥∇θ logπ(ail|s
i
l)
∥∥
q

prefers the transitions that occur at the end of a subtrajectory
τ0:t with a high cumulative score-magnitude. This score accumulation resembles the
expression of some model-free gradient estimators, such as G(PO)MDP [9]. Intuitively,
the magnitude of the score of a policy is related to its opportunity to be improved, i.e.,
the possibility to change the probability of actions. Our gradient-aware weighting
scheme encourages a better approximation of the dynamics for states and actions
found in trajectories that can potentially lead to the most significant improvements
to the policy. We provide an alternative derivation for this gradient-aware weighting
scheme in Appendix B.1.

Computing the value function

The estimated transition model p̂ can be used to compute the action-value function
Qπ,p̂ for any policy π. At this stage, we need to consider the reward function r of M.
For the rest of the presentation of our algorithm, we assume r is known. This is not
a strong assumption in many domains, as discussed in Chapter 2. However, when
it is not directly available, the actual reward function can be replaced by the use of
an estimated reward function r̂ : S×A→ R, obtained, for instance, by using an ML

approach.
Computing the action-value function amounts to evaluating the current policy using

p̂ instead of the actual transition probability kernel p. In the case of finite MDPs, the
evaluation can be performed by finding the fixed point of the Bellman equation

Q̂(s, a) = r(s, a) + γ E
s ′∼p̂(·|s,a),a ′∼π(·|s ′)

[
Q̂(s ′, a ′)

]
, (4.6)

36 gradient-aware model-based policy search

either in closed form or in an iterative manner via dynamic programming [10, 107].
For continuous MDPs, Qπ,p̂ cannot, in general, be represented exactly. A common

approach consists of employing a parameterized function approximator Q̂ω ∈ Q and
apply approximate dynamic programming [12]. The regression targets to be used
for learning these parameters must be derived from the estimated model, in order
to inject the learned knowledge into another stage of estimation: it can be done by
choosing an arbitrary amount of unrolling of p̂ before performing bootstrapping
by temporal difference, using the the model-based value expansion approach [30]. For
instance, with one step of model unrolling, the state-action value function could be
found by iteratively solving the following optimization problem:

Q̂ = arg min
Q

∑
τ

∑
t

Q(st, at) −

r(st, at) + γ E
st+1∼p̂(·|st,at)
at+1∼π(·|st+1)

[Q(st+1, at+1)]

2

,

(4.7)

where we used a lighter notation for indicating summations over trajectories (with
index τ) and time steps of these trajectories. The expected value in Equation (4.7)
can be approximated by sampling from the estimated model p̂ and the policy π. In
practice, a further parameterized state-value function V̂(s) ≈ Ea∼π(·|s)

[
Q̂(s, a)

]
can

be learned jointly with the action-value function.
However, this method requires a proper choice of a functional space Q and the

definition of the regression targets, which should be derived using the estimated
model p̂ [27, 89], possibly introducing further bias.

For our algorithm, we instead encourage the use a different approach, that consists
in the use of p̂ as a generative model for the sole purpose of approximating Qπ,p̂.
Recalling that we will use Q̂ to estimate the policy gradient from the available
trajectories, we can just obtain a Monte Carlo approximation of Qπ,p̂ on the fly, in
an unbiased way, averaging the return from a (possibly large) number of imaginary
trajectories obtained from the estimated model p̂:

Q̂(s, a) =
1

M

M∑
j=1

Tj−1∑
t=0

γtr(sjt, a
j
t), τj ∼ ζπ,p̂s,a . (4.8)

This approach has the advantage of avoiding the harsh choice of an appropriate model
complexity Q and the definition of the regression targets, while providing an unbiased
estimate for the quantity of interest.

Estimating the policy gradient

After computing Qπ,p̂ (or some approximation Q̂), all the gathered information can be
used to improve policy π. As we are using a model-value-based gradient, the trajectories

4.3 theoretical analysis 37

we will use have been previously collected in the real environment. Furthermore, the
data have been generated by a possibly different policy πb, and, to account for the
difference in the distributions, we need importance sampling again. Therefore, by
writing the sample version of Equation (3.6) we obtain:

∇̂θJ(θ) =
1

N

N∑
i=1

Ti−1∑
t=0

γtρπ/πb(τ
i
0:t)∇θ logπ(ait|s

i
t)Q

π,p̂(sit, a
i
t). (4.9)

For performing batch policy optimization, we iteratively repeat the three steps
presented in this section using the data collected by the behavior policy πb. At each
iteration, we fit the model with the weights relative to the current policy, we employ it
in the computation of the state-action value function and we then improve the policy
with one or more steps of gradient ascent. The overall procedure is summarized in
Algorithm 4.2.1.

Algorithm 4.2.1: Gradient-Aware Model-based Policy Search

Input: Trajectory dataset D, behavior policy πb,
initial parameters θ0, step size schedule (αk)

K−1
k=0

for k = 0, 1, ..., K− 1 do
. Learn the model (Section 4.2.1)
ωit,k ← γtρπθk/πb

(τi0:t)
∑t
l=0 ‖∇θ logπθk(a

i
l|s
i
l)‖q

p̂k ← arg maxp∈P
1
N

∑N
i=1

∑Ti−1
t=0 ω

i
t,k logp(sit+1|s

i
t, a

i
t)

. Estimate the value function (Section 4.2.2)
Generate M trajectories for each (s, a) using p̂k
Q̂k(s, a) =

1
M

∑M
j=1

∑Tj−1
t=0 γ

tr(sjt, a
j
t)

. Improve the policy (Section 4.2.3)

∇̂θJ(θk)← 1
N

∑N
i=1

∑Ti−1
t=0 γ

tρπθk/πb
(τi0:t)

×∇θ logπθk(a
i
t|s
i
t)Q̂k(s

i
t, a

i
t)

θk+1 ← θk +αk∇̂θJ(θk)
end for

theoretical analysis

In this section, we provide a finite-sample bound for the gradient estimation of
Equation 4.9, assuming to have the exact value of Qπ,p̂. This corresponds to the
analysis of a single iteration of GAMPS.

The objective of this analysis, carried out considering the actual action-value function
under the estimated model p̂, is to extend the insights provided by Theorem 4.1 to the

38 gradient-aware model-based policy search

case where the MVG is estimated, instead of computed exactly. The result we provide
is a PAC learning bound, including a model approximation error, depending on the
model class used for the world model, and an estimation error, influenced by the
available data.

Note that it should be possible, albeit not straightforward, to extend our single-
iteration analysis to multiple iterations of GAMPS, in order to understand how the
propagation of the error occurs. Likewise, our analysis could be extended to the case
in which Qπ,p̂ and r are not assumed to be available, incorporating the error made in
their estimation into the final result.

Assumptions

We now present the assumptions that are required for our theoretical analysis of
GAMPS. First, we define two useful functions. Let τ be a trajectory, π ∈ ΠΘ and p ∈ P.
We define

lπ,p(τ) =

+∞∑
t=0

ωt logp (st+1|st, at) , (4.10)

gπ,p(τ) =
+∞∑
t=0

γtρπ/πb(τ0:t)∇θ logπ(at|st)Qπ,p(st, at). (4.11)

Using these functions, we can state the following assumptions.

Assumption 1. The second moment of lπ,p and gπ,p are uniformly bounded over P and ΠΘ.
In this case, given a dataset D = {τi}Ni=1, there exist two constants c1, c2 < +∞ such that:

sup
p∈P

sup
π∈ΠΘ

max

{
E

τ∼ζ
πb,p
µ

[
lπ,p(τ)2

]
,
1

N

N∑
i=1

lπ,p(τi)2

}
6 c21,

sup
p∈P

sup
π∈ΠΘ

max

{∥∥∥∥∥ E
τ∼ζ

πb,p
µ

[
gπ,p(τ)2

]∥∥∥∥∥∞ ,
∥∥∥∥∥ 1N

N∑
i=1

gπ,p(τi)2
∥∥∥∥∥∞
}
6 R2maxc

2
2.

Assumption 2. The pseudo-dimension of the hypothesis spaces
{
lπ,p : p ∈ P, π ∈ Π

}
and{

gπ,p : p ∈ P, π ∈ Π
}

are bounded by v < +∞.

Assumption 1 is requiring that the overall effect of the importance weight ρπ/πb , the
score ∇θ logπ and the approximating transition model p preserves the finiteness of
the second moment. Clearly, a sufficient (albeit often unrealistic) condition is requiring

4.3 theoretical analysis 39

all these quantities to be uniformly bounded. Assumption 1 is equivalent to require
that there exists two finite constants c1 < +∞ and c2 < +∞ such that:

E
τ∼ζ

πb,p
µ

(+∞∑
t=0

γtρπ/πb(τ0:t)

t∑
l=0

‖∇θ logπ(al|sl)‖q logp(st+1|st, at)

)2 6 c21,
(4.12)

E
τ∼ζ

πb,p
µ

(+∞∑
t=0

γtρπ/πb(τ0:t)∇θj logπ(at|st)Qπ,p(st, at)

)2 6 R2maxc
2
2, j ∈ [1..d].

(4.13)

Assumption 2 concerns the capacity of the model classes used for learning the
estimated model p and the policy π. This capacity, quantified by means of the
pseudo-dimension of the hypothesis spaces for lπ,p and gπ,p, must be bounded.
This assumption is required to state learning theory guarantees.

Arguably, it is not easy to understand which are the conditions that the policies π
and πb, together with the transition models p (the real one) and p (the approximating
one) should satisfy in order to fulfill Assumption 1. Thus, we decouple the assumption
into two separate conditions, more intelligible, through the following result.

Corollary 4.4. Assumption 1 is satisfied if there exist three constants χ1, χ2 and χ3, with
χ1 <

1
γ .

sup
π∈ΠΘ

sup
s∈S

E
a∼πb(·|s)

[(
π(a|s)

πb(a|s)

)2]
6 χ1,

sup
π∈ΠΘ

sup
s∈S

E
a∼πb(·|s)

[(
π(a|s)

πb(a|s)
‖∇θ logπ(a|s)‖2q

)2]
6 χ2,

sup
p∈P

sup
s∈S
a∈A

E
s ′∼p(·|s,a)

[(
logp(s ′|s, a)

)2]
6 χ3.

In such case, Equation (A.23) and Equation (A.24) are satisfied with constants:

c21 =
χ3χ2(1+ γχ1)

(1− γ)(1− γχ1)3
, c22 =

χ3χ2
(1− γ)3(1− γχ1)

.

The first two inequalities impose a condition on the policies πb and π, while the
last concerns the models p and p.

Finite-sample bound

Under the assumptions stated in the previous section, we are now ready to present
the main result. It employs the learning theory tools of [19].

40 gradient-aware model-based policy search

Theorem 4.5. Let q ∈ [1,+∞], d be the dimensionality of Θ and p̂ ∈ P be the maximizer of
the objective function in Equation (4.5), obtained with N > 0 independent trajectories {τi}Ni=1.
Under Assumption 1 and 2, for any δ ∈ (0, 1), with probability at least 1− 4δ it holds that:

∥∥∥∇̂θJ(θ) −∇θJ(θ)∥∥∥
q
6
γ
√
2ZRmax

(1− γ)2
inf
p∈P

√
E

s,a∼η
π,p
µ

[DKL(p(·|s, a)‖p(·|s, a))]︸ ︷︷ ︸
approximation error

+ 2Rmax

(
d
1
q c2ε+

γ
√
2Zc1ε

1− γ

)
︸ ︷︷ ︸

estimation error

,

given

ε =

√
v log 2eNv + log 8(d+1)δ

N
Γ

√
v log 2eNv + log 8(d+1)δ

N

 ,
Γ(ξ) :=

1

2
+

√
1+

1

2
log

1

ξ
.

The theorem justifies the intuition behind the gradient estimation based on the
MVG. A model p is good when it achieves a reasonable trade-off between the errors in
approximation and estimation.2

With a huge amount of data (i.e., N → ∞), the second term, concerning the
estimation error, becomes negligible, since ε ≈ 0. Thus, it is better to select a powerful
model class P, such that the best model contained in it is able to reach a very low
approximation error.

However, in the much more frequent case of scarce data (i.e., small N), it is conve-
nient to choose a low-capacity model class P in order to reduce the error-enlarging
effect the pseudo-dimension v, and, consequently, the second term in the bound.
Naturally, this carries the risk of being unable to approximate the original model.
Nonetheless, the gradient-aware nature of GAMPS is reflected into the behavior of the
first term of the bound: the approximation error depends, in fact, on an expected value
under ηπ,pµ . Thus, even a model class that would be highly misspecified w.r.t. an ex-
pectation computed under the state-action distribution δπ,pµ can, perhaps surprisingly,
lead to an accurate gradient estimation using our approach.

This is a direct incarnation of the rationale behind decision-aware MBRL approaches:
if not enough data is available (i.e., N is not large enough), the best choice is to pick
a fairly simple model class and employ the limited capacity for approximating the
bits of the dynamics that are most important for the learning algorithm, in the case of
GAMPS a policy gradient method based on the MVG.

2 It is worth noting that the estimation error is Õ(N− 1
4).

4.3 theoretical analysis 41

In the bound presented in Theorem 4.5, other factors play a role. For instance,
the dimensionality of the parameter vector of the policy space ΠΘ has an effect on
the estimation error. This happens because estimating the gradient for a policy that
features a small number of parameters is intuitively easier, albeit the policy might not
be able to reach satisfying performance on a given problem.

5
E X P E R I M E N T S

In this chapter, we present an experimental evaluation of GAMPS, whose objective
is two-fold: assessing the effect of our weighting scheme for model learning and
comparing the performance in batch policy optimization of our algorithm against
model-based and model-free policy search baselines.

two-areas gridworld

This experiment is meant to show how decision-awareness can be an effective tool
to improve the accuracy of policy gradient estimates when using a forward model.
The environment, depicted in Figure 5.1, is a 5× 5 gridworld, divided into two areas
(lower and upper) with different dynamics: the effect of a movement action of the
agent is reversed in one area w.r.t. the other. Once the agent gets to the lower area, it
is not possible for it to go back in the upper one.

More precisely, the gridworld we use in our experiments features two subspaces of
the state space S, to which we refer to as S1 (lower) and S2 (upper). The agent can choose
among four different actions: in the lower part, a sticky area, each action corresponds
to an attempt to go up, right, down or left, and has a 0.9 probability of success and
a 0.1 probability of causing the agent to remain in the same state; in the upper part,
the four actions have deterministic movement effects, all different from the ones they
have in the other area (rotated of 90 degrees). Representing as (p1

⇑
, p2
⇒
, p3
⇓
, p4
⇐
, p5
<
) the

probabilities p1, p2, p3, p4 and p5 of, respectively, going up, right, down, left and

G μ

μ

μ

μ

μμμμμ

Figure 5.1: Gridworld representation. The goal state is G and the possible initial states are µ.
The two areas with different dynamics are represented with different colors and
the black bars remark that is not possible for the agent to reach the lower area
once it is left.

43

44 experiments

remaining in the same state, the transition model of the environment is defined as
follows:

s ∈ S1 : p(·|s, a) =

(0
⇑
, 0.9
⇒
, 0
⇓
, 0
⇐
, 0.1
<

), if a = 0

(0
⇑
, 0
⇒
, 0.9
⇓
, 0
⇐
, 0.1
<

), if a = 1

(0
⇑
, 0
⇒
, 0
⇓
, 0.9
⇐
, 0.1
<

), if a = 2

(0.9
⇑
, 0
⇒
, 0
⇓
, 0
⇐
, 0.1
<

), if a = 3

,

s ∈ S2 : p(·|s, a) =

(1
⇑
, 0
⇒
, 0
⇓
, 0
⇐
, 0
<
), if a = 0

(0
⇑
, 1
⇒
, 0
⇓
, 0
⇐
, 0
<
), if a = 1

(0
⇑
, 0
⇒
, 1
⇓
, 0
⇐
, 0
<
), if a = 2

(0
⇑
, 0
⇒
, 0
⇓
, 1
⇐
, 0
<
), if a = 3

.

There is a reward of −1 in all states apart a single absorbing goal state, located on
the upper left corner, that yields zero reward. The initial state is uniformly chosen
among the ones on the low and right border and the agent cannot go back to the
sticky part once it reached the second area, in which it passes through the walls to get
to the other side.

As policy class ΠΘ, we use policies linear in the one-hot representation of the current
state. The policy outputs a Boltzman probability distribution over the four possible
actions. In the lower part of the environment, we initialize the policy as deterministic:
the agent tries to go up as long as it can, and goes left when a wall is encountered.
Being the policy deterministic for these actions, the corresponding score is zero. We
collect experience with policy πb that is randomly initialized in the upper area. πb is
also used as initial policy for the learning algorithm.

As model class P, we employ the one in which each p̂ ∈ P is such that p̂(m|s, a) =

softmax(1TaW), where W is a matrix of learnable parameters, 1a is the one-hot rep-
resentation of the action and m ∈ {⇑,⇒,⇓,⇐,<} is a movement effect. This model
class has very little expressive power: the forward model is, in practice, executing a
probabilistic lookup using the current actions, trying to guess what the next state is
without even looking at the current one.

5.1 two-areas gridworld 45

0 1 2 3 4

0

1

2

3

4

Action 2

0 1 2 3 4

0

1

2

3

4

Action 3

0.00

0.02

0.04

0.06

0.08

0.10

E
m

p
irical

δ
π
,p

µ
(s,a

)

Figure 5.2: Normalized values of the empirical state-action distribution δπ,pµ . Each grid repre-
sents every state of the environment for the two most representative actions.

Properties of Gradient-Aware Model Learning

As stated above, the first goal of this experiment is to show that, with the use of
gradient-awareness, even an extremely simple model class can be sufficiently expres-
sive to provide an accurate estimate of the policy gradient. The considered model
class cannot perfectly represent the whole environment dynamics at the same time,
as it nonlinearly changes between the two areas. However, given the nature of policy
π, this is not necessary, since only the modeling of the upper area, which is indeed
representable with our model, would be enough to perfectly improve the policy.
Nonetheless, this useful information has no way of being captured using the usual
maximum likelihood procedure, which, during model learning, weights the transi-
tions just upon visitation, regardless the policy. To experimentally assess how our
approach addresses this intuitive point, we generate 1000 trajectories running πb in the
environment, and we first compare the maximum likelihood and the gradient-aware
weighting factors, δπ,pµ (s, a) and ηπ,pµ (s, a). The results (Figure 5.2 and Figure 5.3)
show that our method is able, in a totally automatic way, not to assign importance to
the transitions in which the policy cannot be improved.

In order to further understand the properties of our method for model learning, we
compare the maximum likelihood model (ML) and the one obtained with GAMPS, in
terms of accuracy in next state prediction and MSE with the real Q-function w.r.t. to
the one derived by dynamic programming; lastly, we use the computed action-value
functions to provide two approximations to the sample version of Equation 3.6. The
intuitive rationale behind decision-aware model learning is that the raw quality of
the estimate of the forward model itself or any intermediate quantity is pointless: the
accuracy on estimating the quantity of interest for improving the policy, in our case its

46 experiments

0 1 2 3 4

0

1

2

3

4

Action 2

0 1 2 3 4

0

1

2

3

4

Action 3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

E
m

p
irical

η
π
,p

µ
(s,a

)

Figure 5.3: Normalized values of the gradient-aware weighting factor ηπ,pµ . Each grid repre-
sents every state of the environment for the two most representative actions.

gradient, is the only relevant metric. The results, shown in Table 5.1, illustrate exactly
this point, showing that, although our method offers worse performance in model
and Q-function estimation, it is able to perfectly estimate the correct direction of the
policy gradient.

Table 5.1: Estimation performance on the gridworld environment comparing Maximum
Likelihood estimation (ML) and our approach (GAMPS). 1000 training and 1000

validation trajectories per run. Average results on 10 runs with a 95% confidence
interval.

Approach p̂ accuracy Q̂ MSE ∇̂θJ cosine similarity

ML 0.765± 0.001 11.803± 0.158 0.449± 0.041
GAMPS 0.357± 0.004 633.835± 12.697 1.000± 0.000

We now present a clear definition of the metrics used for making the comparison,
computed over an hold-out set of 1000 validation trajectories. The model accuracy for
an estimated model p̂ is defined as:

acc(p̂) =
1

|D|

∑
(s,a,s ′)∈D

1(s ′ = arg max
s

p̂(s|s, a)). (5.1)

5.1 two-areas gridworld 47

The MSE for measuring the error in estimating the tabular Q-function is computed by
averaging the error obtained for every state and action. Lastly, the cosine similarity
between the real gradient ∇θJ(θ) and the estimated gradient ∇̂θJ(θ) is defined as:

sim(∇θJ(θ), ∇̂θJ(θ)) =
∇θJ(θ) · ∇̂θJ(θ)

max(‖∇θJ(θ)‖2‖ · ∇̂θJ(θ)‖2, ε)
, (5.2)

where ε is set to 10−8.

Performance in Policy Improvement

We further investigate the performance of GAMPS compared to batch learning with
the maximum likelihood transition model (ML) and two classical model-free learning
algorithms REINFORCE [121] and PGT [109]. To adapt the latter two to the batch
setting, we employ importance sampling in the same way as described in Equation 4.9,
but estimating the Q-function using the same trajectories (and importance sampling as
well). We learn both the policy and the models by minimizing the corresponding loss
function via gradient descent, using the hyperparameters reported in Table 5.2. Note
that in stating the results the results presented in Chapter 4 we made no assumption
on the norm to be used on the score for the gradient-aware weights: thus, it is an
additional hyperparameter available for GAMPS. In practice, given ‖∇θ logπ(a|s)‖q,
we employ q = 2.

Table 5.2: Hyperparameters used for algorithm comparison in the different environments. The
apexes model and policy indicate the parameters employed in optimizing the two
using the Adam [50] optimizer. Clearly, hyperparameters concerning the estimation
of the forward model are ignored in model-free algorithms. The hypeparameters,
except for q and γ, were chosen by trial and error from a range of (0.001, 0.9).

Environment αmodel βmodel
1 βmodel

2 αpolicy β
policy
1 β

policy
2 q γ

Gridworld 0.01 0.9 0.999 0.2 0.9 0.999 2 0.99

Minigolf 0.02 0.9 0.999 0.08 0 0.999 2 0.99

The results obtained by collecting different numbers of trajectories and evaluating
on the environment are shown in Figure 5.5, Figure 5.4 and Figure 5.6. Note that, in
batch learning, performance degradation when the current policy π becomes too far
from the behavioral policy πb is natural due to the variance of the importance weights.
To avoid this effect, a stopping condition connected to the effective sample size [79]
could be employed.

As the evaluation shows, REINFORCE is generally affected by severe variance, and
thus struggles in reaching satisfying performance with any amount of trajectories; the

48 experiments

0 2 4 6 8 10 12 14

Number of iterations

−14

−12

−10

−8

−6
A

ve
ra

ge
R

et
u

rn

Figure 5.4: GAMPS performance in gridworld using 50 trajectories.

ML GAMPS REINFORCE PGT

0 2 4 6 8 10 12 14

Number of iterations

−14

−12

−10

−8

−6

A
ve

ra
ge

R
et

u
rn

Figure 5.5: GAMPS performance in grid-
world using 10 trajectories.

0 2 4 6 8 10 12 14

Number of iterations

−14

−12

−10

−8

−6

A
ve

ra
ge

R
et

u
rn

Figure 5.6: GAMPS performance in grid-
world using 100 trajectories.

5.2 minigolf 49

reduction of the variance provided by the PGT algorithm improves its performance,
that are even superior than the ones of the version of GAMPS not using the gradient-
aware weights. Generally, all the algorithms benefit from the increasing number of
trajectories. However, it is worth noting that, with any amount of data we tested, the
GAMPS learning curve is consistently above the others, showing superior performance
considering the best iteration of any algorithm.

minigolf

In the minigolf game, the agent hits a ball using a putter, with the goal of reaching a
hole in the minimum number of trials. This problem was originally proposed for RL

in [57], but we employ the dynamics of the more realistic model developed by [81].
More precisely, the goal of the agent is to shoot a ball with radius r inside a hole
of diameter D, using a putter of length l. We assume that the ball moves along a
level surface with a negative acceleration d = 5

7ρg, where ρ is the dynamic friction
coefficient between the ball and the ground and g is determined by gravity. Given
the distance x0 of the ball from the hole, that constitutes the state seen by the agent,
an angular velocity ω must be determined for the putter. This, in turn, determines
the initial velocity v0 = ωl to put the ball. For each distance x0, the ball falls in the
hole, yielding success for the agent, if its initial velocity v0 ranges from vmin =

√
2dx0

to vmax =
√
(2D− r)2 g2r + v

2
min. The ball is placed at random at the beginning of

each episode, far from the hole between 0 and 2m. Given an action a executed by the
agent, the angular velocity of the putter is computed as follows: ω = al(1+ ε), where
ε ∼ N(0, 0.3). This implies that the stronger the action chosen the more uncertain its
outcome will be. Thus, the agent is discouraged to attempt to score in a single shot
when it is away from the hole and, if equipped with a policy near to the optimal one,
will prefer to perform a sequence of low-intensity shots. Refer to [113] for a complete
description of the dynamics of the environment. We divide the state space into two
parts: the first one, bigger twice the other, is the nearest to the hole and features
ρ1 = 0.131; the second one is smaller and has an higher friction with ρ1 = 0.19. Hence,
the effect of each action significantly changes between these regions.

We use a linear-Gaussian policy that is linear on six equally-spaced radial basis
function features. Four of the basis functions are therefore in the first area, while two
are in the other one. The parameters of the policy are initialized equal to one for the
mean and equal to zero for the standard deviation.

As a model class, we use parameterized linear-Gaussian models that predict the
next state by difference with respect to the previous one, as often done in MBRL [20].
We enforce the fact that the next state is always to the left w.r.t. the current state by

50 experiments

0 10 20 30

Number of iterations

−30

−25

−20

−15

A
ve

ra
ge

R
et

u
rn

ML

GAMPS

REINFORCE

PGT

Figure 5.7: Performance of GAMPS in terms of average return using a 50 trajectories dataset
on the minigolf environment (10 runs, mean ± std).

using a rectifier function. The overall prediction of the next state by the model is given
by

ŝt+1 = st − max(0, ε), ε ∼ N(Vµ[st, at], Vσ[st, at]), (5.3)

where Vµ and Vσ are two learnable parameters and [·, ·] is the concatenation operator.
We evaluate GAMPS against the same baselines employed for the previous experi-

ments. We collect a dataset of 50 trajectories using an explorative policy. For training
the model used by GAMPS and GAMPS-ML, we minimize the MSE weighted through
our weighting scheme. For the estimation of the Q-function, we use the on-the-fly
procedure outlined in Section 4.2.2, with an horizon of 20 and averaging over 10

rollouts. More details on the used hyperparameters are reported in Table 5.2.
The results, shown in Figure 5.7, show that GAMPS is able to reach a good per-

formance, corresponding to a policy that allows the ball to reach the hole most of
the times. The other algorithms, instead, are prone to overfitting after the optimized
policy has become too different from the one that generated the data.

6
C O N C L U S I O N S

summary and additional insights

In this thesis, we presented our theoretical, algorithmic and experimental contributions
to model-based reinforcement learning. MBRL has the potential to make the generality
and flexibility of reinforcement learning scale to real world scenarios. This family of
approaches presents advantages in terms of data efficiency, transfer, incorporation
of prior knowledge, safety: all these features are extremely appealing when dealing
with complex domains in the wild. Moreover, MBRL can be a point of conjunction
for more traditional and well-established methods such as classical planning and
optimal control, at the same time unleashing them to the next level, by injecting the
fundamentally important ability to learn. However, although MBRL methods are in
this sense highly promising, there are still several open challenges to be solved before
they can show their true capabilities in these hard scenarios. These challenges touch
many levels in the formulation of MBRL methods, concerning both how to learn the
model of the dynamics and how to use it for obtaining a control policy.

Given the promising results achieved in the last years, a good research direction
to look at concerns the use of policy gradient methods. In Chapter 3, we interpreted
existing approaches through a novel lens, outlining a taxonomy and defining the
FMG, MFG and MVG. The latter family of approaches, that combines the knowledge
contained in a learned model with the one contained in the interaction data collected
from the environment, can help in mitigating model bias, one of the crucial problems
affecting MBRL.

As we discussed, most existing methods in MBRL ignore the question concerning
the choice of an appropriate loss function to be used for learning about the dynamics
of the environment from interaction data. In this thesis, we argued that this is instead
a fundamental problem and that specific solutions are needed for taking advantage of
all the information that is available about a task. In particular, Section 4.1 presented
an analysis of the bias of the MVG, showing how it is related to the error introduced
in the model learning phase. Interestingly, as Theorem 4.1 shows, this bias is not
indiscriminately determined by the error in the whole state-action space, nor state-
action couples are weighted only depending upon their visitation; instead, information
about the policy followed by the agent, for instance provided by the magnitude
of its score, greatly contributes in shaping the bias of the MVG. Note that, since
different MVG-based algorithms have been recently shown to perform well in practice,
Theorem 4.1 is of independent interest w.r.t. the algorithm proposed in Chapter 4.

51

52 conclusions

A main contribution of this thesis is summarized by Proposition 4.2, which shows
that, despite policy gradient methods are widespread in the MBRL community, their
common choice of using maximum likelihood model estimation is not the optimal
one when learning a model of the dynamics.

In Chapter 4, we built upon our theoretical analysis of the MVG to derive GAMPS, a
practical model-based policy improvement algorithm designed for the batch setting.
Although we focused on one specific instantiation, that unrolls the learned model
for estimating the value function used then in the policy gradient estimation, our
algorithm has an open ended nature and could be interpreted as a general framework.
The finite-sample analysis of GAMPS provides additional insights, showing that, in
case very few data is available, a good approach consists in using a tiny model class
together with a decision-aware loss function.

Through the experiments presented in Chapter 5, we were mainly interested in
proving two points. On the one hand, we reinforced the rationale behind MBRL, show-
ing that the performance in prediction of the next state or any intermediate quantity
is not an indicator of how useful a model will be for a learning algorithm. The only
meaningful metric to be used for measuring the quality of a learned model in rein-
forcement learning should assess the resulting accuracy on the actual quantity used for
improving the policy (in our case, the policy gradient). On the other hand, we showed
that the decision-aware nature of GAMPS allows it to surpass the performance of
both standard model-free methods and model-based approaches based on maximum
likelihood estimation.

We argue that GAMPS, apart from being a decision-aware MBRL approach, can be
interpreted as a form of meta-learning. If we consider the combination of model and
policy to be part of a same agent, the model-learning step in GAMPS corresponds
indeed to an update of an internal component (the model) as a function of the other
component (the policy), with the help of the training data. The overall objective of this
update is to make one module more helpful for learning another internal module: this
is aligned with the meta-learning paradigm, in which an agent is aware of its own
learning process and can intervene on it.

current limitations and future work

The contributions presented in this thesis are open to several extensions and improve-
ments. In this section, we outline the ones we believe being particularly interesting.

Extension to the online setting

Our proposed method is made for a batch reinforcement learning setting. However,
there is no theoretical limitation nor practical barrier to an extension to the online case.
Therefore, future work could focus on adapting GAMPS to the interactive scenario, for

6.2 current limitations and future work 53

instance mixing on-policy and off-policy experience, in order to make the algorithm
scale on complex high-dimensional environments. We feel that an interesting problem
concerns the correct way to mix on-policy and off-policy experience. In particular,
since GAMPS makes use of importance sampling for leveraging off-policy data, the in-
formation on the variance of the importance weights could be used for understanding
when to stop the exploitation of a given set of collected experience and start to collect
new trajectories.

Other techniques for estimating Q

As briefly mentioned during the presentation of the algorithm, unrolling model, policy
and reward function on the fly is not the only way to obtain an estimate of the
action-value function to be used in computing the policy gradient. Although with the
disadvantages implied by the choice of both a functional space and reasonable targets,
a parametric estimate for the Q-function can be trained, as commonly done in many
modern reinforcement learning algorithms.

In some sense, especially if we use an explicit function approximator for approxi-
mating the value function, GAMPS can be seen as an actor-critic algorithm, where the
critic incorporates the gradient-awareness induced in the model.

Deeper Theoretical Analysis

As clearly shown in the formulation given by the Policy Gradient Theorem (Theo-
rem 2.2), three factors determine the policy gradient. The first two, the state-action
distribution induced by the policy and the score, only depend on the policy and the
environmental dynamics. The third factor, consisting in the action-value function,
also depends on the reward function. In our analysis of the MVG, we bounded the
value function using the maximum reward, actually loosing the information about
the reward function. This also propagates to our gradient-aware loss function, that
is therefore reward-agnostic. While not being a problem in case of smooth reward,
incorporating such an information to cope with arbitrary, possibly sparse, rewards
can be a promising direction for future work.

Moreover, some refinements to our finite-sample analysis of GAMPS are possible.
For instance, instead of assuming the actual action-value function under the estimated
model, we could consider its estimation error in terms of unrolling horizon for the
model; or, instead of assuming to have a way to evaluate the reward function without
interaction with the environment, we could consider also the estimation error induced
by the use of a trained function approximator in place of the actual reward.

54 conclusions

Other gradient-aware MVGs

Another possible direction for future work consists in the generalization of our
gradient-aware loss function to a totally different algorithm based on the MVG. For
instance, it would be interesting to design a modified version the model-based Stochas-
tic Value Gradient algorithm [43], also known as SVG(∞), that computes the policy
gradient by backpropagating through the value function. The modification can in
principle occur only on the objective function used for model learning, without any
further modification to other aspects of the algorithm.

B I B L I O G R A P H Y

[1] Pieter Abbeel, Morgan Quigley, and Andrew Y Ng. “Using inaccurate models
in reinforcement learning.” In: Proceedings of the 23rd international conference on
Machine learning. ACM. 2006, pp. 1–8 (cit. on pp. 2, 22, 28, 33).

[2] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey
Levine. “Learning to poke by poking: Experiential learning of intuitive physics.”
In: Advances in Neural Information Processing Systems. 2016, pp. 5074–5082 (cit. on
p. 24).

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein Generative
Adversarial Networks.” en. In: International Conference on Machine Learning. July
2017, pp. 214–223 (cit. on p. 20).

[4] Kavosh Asadi, Evan Cater, Dipendra Misra, and Michael L Littman. “Equiva-
lence between wasserstein and value-aware model-based reinforcement learn-
ing.” In: arXiv preprint arXiv:1806.01265 (2018) (cit. on p. 24).

[5] Christopher G Atkeson and Juan Carlos Santamaria. “A comparison of direct
and model-based reinforcement learning.” In: Proceedings of International Con-
ference on Robotics and Automation. Vol. 4. IEEE. 1997, pp. 3557–3564 (cit. on
p. 18).

[6] Kamyar Azizzadenesheli, Brandon Yang, Weitang Liu, Emma Brunskill, Zachary
C Lipton, and Animashree Anandkumar. “Sample-Efficient Deep RL with Gen-
erative Adversarial Tree Search.” In: arXiv preprint arXiv:1806.05780 (2018)
(cit. on p. 25).

[7] Somil Bansal, Roberto Calandra, Ted Xiao, Sergey Levine, and Claire J. Tomlin.
“Goal-driven dynamics learning via Bayesian optimization.” In: 2017 IEEE 56th
Annual Conference on Decision and Control (CDC) (2017), pp. 5168–5173 (cit. on
pp. 3, 23).

[8] Christopher Bates, Peter Battaglia, Ilker Yildirim, and Joshua B Tenenbaum.
“Humans predict liquid dynamics using probabilistic simulation.” In: CogSci.
2015 (cit. on p. 18).

[9] Jonathan Baxter and Peter L Bartlett. “Infinite-horizon policy-gradient estima-
tion.” In: Journal of Artificial Intelligence Research 15 (2001), pp. 319–350 (cit. on
pp. 15, 28, 35).

[10] Richard Bellman et al. “The theory of dynamic programming.” In: Bulletin of
the American Mathematical Society 60.6 (1954), pp. 503–515 (cit. on pp. 7, 36).

55

56 Bibliography

[11] Yoshua Bengio. “Using a Financial Training Criterion Rather than a Prediction
Criterion.” In: International journal of neural systems 8 4 (1997), pp. 433–43 (cit. on
p. 23).

[12] Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P
Bertsekas. Dynamic programming and optimal control. Vol. 1. 2. Athena scientific
Belmont, MA, 1995 (cit. on pp. 23, 36).

[13] Leo Breiman. “Bagging predictors.” In: Machine learning 24.2 (1996), pp. 123–140

(cit. on p. 20).

[14] Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak
Lee. “Sample-efficient reinforcement learning with stochastic ensemble value
expansion.” In: Advances in Neural Information Processing Systems. 2018, pp. 8224–
8234 (cit. on pp. 21, 28, 33).

[15] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell,
and Alexei A Efros. “Large-scale study of curiosity-driven learning.” In: arXiv
preprint arXiv:1808.04355 (2018) (cit. on p. 24).

[16] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. “Monte-
Carlo Tree Search: A New Framework for Game AI.” In: 2008 (cit. on p. 25).

[17] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine.
“Deep reinforcement learning in a handful of trials using probabilistic dynamics
models.” In: Advances in Neural Information Processing Systems. 2018, pp. 4754–
4765 (cit. on pp. 20, 25).

[18] John D Co-Reyes, YuXuan Liu, Abhishek Gupta, Benjamin Eysenbach, Pieter
Abbeel, and Sergey Levine. “Self-Consistent Trajectory Autoencoder: Hierar-
chical Reinforcement Learning with Trajectory Embeddings.” In: arXiv preprint
arXiv:1806.02813 (2018) (cit. on p. 21).

[19] Corinna Cortes, Spencer Greenberg, and Mehryar Mohri. “Relative deviation
learning bounds and generalization with unbounded loss functions.” In: arXiv
preprint arXiv:1310.5796 (2013) (cit. on pp. 39, 73).

[20] Marc Deisenroth and Carl E Rasmussen. “PILCO: A model-based and data-
efficient approach to policy search.” In: Proceedings of the 28th International
Conference on machine learning (ICML-11). 2011, pp. 465–472 (cit. on pp. 6, 20, 27,
28, 49).

[21] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. “A survey on
policy search for robotics.” In: Foundations and Trends® in Robotics 2.1–2 (2013),
pp. 1–142 (cit. on pp. 2, 3, 28, 35).

[22] Laurent Dinh, David Krueger, and Yoshua Bengio. “NICE: Non-linear indepen-
dent components estimation.” In: arXiv preprint arXiv:1410.8516 (2014) (cit. on
p. 19).

Bibliography 57

[23] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation
using Real NVP.” In: arXiv:1605.08803 [cs, stat] (May 2016) (cit. on p. 19).

[24] Bradley B Doll, Dylan A Simon, and Nathaniel D Daw. “The ubiquity of model-
based reinforcement learning.” In: Current opinion in neurobiology 22.6 (2012),
pp. 1075–1081 (cit. on p. 8).

[25] Priya Donti, Brandon Amos, and J Zico Kolter. “Task-based end-to-end model
learning in stochastic optimization.” In: Advances in Neural Information Processing
Systems. 2017, pp. 5484–5494 (cit. on p. 24).

[26] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff
Clune. “Go-Explore: a New Approach for Hard-Exploration Problems.” In:
arXiv preprint arXiv:1901.10995 (2019) (cit. on p. 81).

[27] Damien Ernst, Pierre Geurts, and Louis Wehenkel. “Tree-based batch mode
reinforcement learning.” In: Journal of Machine Learning Research 6.Apr (2005),
pp. 503–556 (cit. on pp. 9, 36).

[28] Amir-massoud Farahmand. “Iterative value-aware model learning.” In: Ad-
vances in Neural Information Processing Systems. 2018, pp. 9072–9083 (cit. on pp. 3,
24).

[29] Amir-massoud Farahmand, Andre Barreto, and Daniel Nikovski. “Value-aware
loss function for model-based reinforcement learning.” In: Artificial Intelligence
and Statistics. 2017, pp. 1486–1494 (cit. on pp. 3, 23, 24, 34).

[30] Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez,
and Sergey Levine. “Model-based value estimation for efficient model-free
reinforcement learning.” In: arXiv preprint arXiv:1803.00101 (2018) (cit. on pp. 28,
33, 36).

[31] Siyuan Feng, Eric Whitman, X Xinjilefu, and Christopher G Atkeson. “Op-
timization based full body control for the atlas robot.” In: 2014 IEEE-RAS
International Conference on Humanoid Robots. IEEE. 2014, pp. 120–127 (cit. on
p. 17).

[32] Jason Fischer, John G Mikhael, Joshua B Tenenbaum, and Nancy Kanwisher.
“Functional neuroanatomy of intuitive physical inference.” In: Proceedings of the
national academy of sciences 113.34 (2016), E5072–E5081 (cit. on p. 18).

[33] Yarin Gal and Zoubin Ghahramani. “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning.” In: international conference
on machine learning. 2016, pp. 1050–1059 (cit. on p. 20).

[34] Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen. “Improving PILCO
with Bayesian neural network dynamics models.” In: Data-Efficient Machine
Learning workshop, ICML. Vol. 4. 2016 (cit. on pp. 20, 28).

58 Bibliography

[35] Ian Goodfellow. “NIPS 2016 Tutorial: Generative Adversarial Networks.” In:
arXiv:1701.00160 [cs] (Dec. 2016) (cit. on p. 20).

[36] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative adver-
sarial nets.” In: Advances in neural information processing systems. 2014, pp. 2672–
2680 (cit. on p. 20).

[37] Alex Graves. “Generating sequences with recurrent neural networks.” In: arXiv
preprint arXiv:1308.0850 (2013) (cit. on p. 19).

[38] Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. “A
survey of actor-critic reinforcement learning: Standard and natural policy gradi-
ents.” In: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews) 42.6 (2012), pp. 1291–1307 (cit. on p. 16).

[39] David Ha and Jürgen Schmidhuber. “Recurrent world models facilitate policy
evolution.” In: Advances in Neural Information Processing Systems. 2018, pp. 2450–
2462 (cit. on p. 26).

[40] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. “Soft Actor-
Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor.” In: Proceedings of the 35th International Conference on Machine
Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of
Machine Learning Research. Stockholmsmässan, Stockholm Sweden: PMLR,
2018, pp. 1861–1870 (cit. on p. 16).

[41] Jessica B Hamrick, Peter W Battaglia, Thomas L Griffiths, and Joshua B Tenen-
baum. “Inferring mass in complex scenes by mental simulation.” In: Cognition
157 (2016), pp. 61–76 (cit. on p. 18).

[42] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for the
heuristic determination of minimum cost paths.” In: IEEE transactions on Sys-
tems Science and Cybernetics 4.2 (1968), pp. 100–107 (cit. on p. 25).

[43] Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez,
and Yuval Tassa. “Learning continuous control policies by stochastic value
gradients.” In: Advances in Neural Information Processing Systems. 2015, pp. 2944–
2952 (cit. on pp. 28, 33, 54).

[44] Joshua Mason Joseph, Alborz Geramifard, John W. Roberts, Jonathan P. How,
and Nicholas Roy. “Reinforcement learning with misspecified model classes.”
In: 2013 IEEE International Conference on Robotics and Automation (2013), pp. 939–
946 (cit. on pp. 3, 23).

[45] Herman Kahn and Andy W Marshall. “Methods of reducing sample size in
Monte Carlo computations.” In: Journal of the Operations Research Society of
America 1.5 (1953), pp. 263–278 (cit. on p. 9).

Bibliography 59

[46] Daniel Kahneman. Thinking, fast and slow. Macmillan, 2011 (cit. on p. 8).

[47] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H
Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Koza-
kowski, Sergey Levine, et al. “Model-Based Reinforcement Learning for Atari.”
In: arXiv preprint arXiv:1903.00374 (2019) (cit. on p. 28).

[48] Mitsuo Kawato. “Internal models for motor control and trajectory planning.”
In: Current opinion in neurobiology 9.6 (1999), pp. 718–727 (cit. on p. 18).

[49] Taylor W Killian, Samuel Daulton, George Konidaris, and Finale Doshi-Velez.
“Robust and Efficient Transfer Learning with Hidden Parameter Markov Deci-
sion Processes.” In: Advances in Neural Information Processing Systems 30. Ed. by
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett. Curran Associates, Inc., 2017, pp. 6250–6261 (cit. on p. 20).

[50] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion.” In: 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. 2015 (cit. on p. 47).

[51] Diederik P. Kingma and Prafulla Dhariwal. “Glow: Generative Flow with
Invertible 1x1 Convolutions.” In: arXiv:1807.03039 [cs, stat] (July 2018) (cit. on
p. 19).

[52] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes.” In:
arXiv:1312.6114 [cs, stat] (Dec. 2013) (cit. on pp. 19, 28).

[53] Vijay R Konda and John N Tsitsiklis. “Actor-critic algorithms.” In: Advances in
neural information processing systems. 2000, pp. 1008–1014 (cit. on p. 15).

[54] Solomon Kullback and Richard A Leibler. “On information and sufficiency.”
In: The annals of mathematical statistics 22.1 (1951), pp. 79–86 (cit. on p. 22).

[55] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel.
“Model-Ensemble Trust-Region Policy Optimization.” In: International Confer-
ence on Learning Representations. 2018 (cit. on pp. 21, 28).

[56] Sascha Lange, Thomas Gabel, and Martin Riedmiller. “Batch reinforcement
learning.” In: Reinforcement learning. Springer, 2012, pp. 45–73 (cit. on p. 9).

[57] Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. “Reinforcement
learning in continuous action spaces through sequential monte carlo methods.”
In: Advances in neural information processing systems. 2008, pp. 833–840 (cit. on
p. 49).

[58] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” In: nature
521.7553 (2015), p. 436 (cit. on p. 7).

[59] Sergey Levine and Pieter Abbeel. “Learning neural network policies with
guided policy search under unknown dynamics.” In: Advances in Neural Infor-
mation Processing Systems. 2014, pp. 1071–1079 (cit. on pp. 2, 6, 22, 26).

60 Bibliography

[60] Sergey Levine and Vladlen Koltun. “Guided policy search.” In: International
Conference on Machine Learning. 2013, pp. 1–9 (cit. on p. 18).

[61] Weiwei Li and Emanuel Todorov. “Iterative linear quadratic regulator design
for nonlinear biological movement systems.” In: (cit. on p. 21).

[62] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. “Continuous control with
deep reinforcement learning.” In: arXiv preprint arXiv:1509.02971 (2015) (cit. on
pp. 9, 11, 16).

[63] David JC MacKay. “A practical Bayesian framework for backpropagation
networks.” In: Neural computation 4.3 (1992), pp. 448–472 (cit. on p. 20).

[64] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen
Paul Smolley. “Least squares generative adversarial networks.” In: Computer
Vision (ICCV), 2017 IEEE International Conference on. IEEE. 2017, pp. 2813–2821

(cit. on p. 20).

[65] Alberto Maria Metelli, Mirco Mutti, and Marcello Restelli. “Configurable
Markov Decision Processes.” In: Proceedings of the 35th International Confer-
ence on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80.
Proceedings of Machine Learning Research. Stockholmsmässan, Stockholm
Sweden: PMLR, 2018, pp. 3488–3497 (cit. on p. 67).

[66] Alberto Maria Metelli, Matteo Papini, Francesco Faccio, and Marcello Restelli.
“Policy optimization via importance sampling.” In: Advances in Neural Informa-
tion Processing Systems. 2018, pp. 5442–5454 (cit. on p. 10).

[67] John Milnor. Dynamics in One Complex Variable.(AM-160):(AM-160)-. Vol. 197.
Princeton University Press, 2011 (cit. on p. 21).

[68] Nikhil Mishra, Pieter Abbeel, and Igor Mordatch. “Prediction and Control with
Temporal Segment Models.” en. In: International Conference on Machine Learning.
July 2017, pp. 2459–2468 (cit. on pp. 21, 25).

[69] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. “Asyn-
chronous methods for deep reinforcement learning.” In: International conference
on machine learning. 2016, pp. 1928–1937 (cit. on p. 16).

[70] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. “Human-level control through deep reinforcement
learning.” In: Nature 518.7540 (2015), p. 529 (cit. on pp. 8, 17).

[71] Hans Moravec. Mind children: The future of robot and human intelligence. Harvard
University Press, 1988 (cit. on p. 17).

Bibliography 61

[72] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. “Safe
and efficient off-policy reinforcement learning.” In: Advances in Neural Informa-
tion Processing Systems. 2016, pp. 1054–1062 (cit. on p. 9).

[73] Kumpati S Narendra and Kannan Parthasarathy. “Identification and control
of dynamical systems using neural networks.” In: IEEE Transactions on neural
networks 1.1 (1990), pp. 4–27 (cit. on pp. 28, 33).

[74] Duy Nguyen-Tuong and Jan Peters. “Model learning for robot control: a
survey.” In: Cognitive processing 12.4 (2011), pp. 319–340 (cit. on p. 1).

[75] Duy Nguyen-Tuong, Matthias Seeger, and Jan Peters. “Model learning with
local gaussian process regression.” In: Advanced Robotics 23.15 (2009), pp. 2015–
2034 (cit. on pp. 2, 22).

[76] Junhyuk Oh, Satinder Singh, and Honglak Lee. “Value prediction network.” In:
Advances in Neural Information Processing Systems. 2017, pp. 6118–6128 (cit. on
pp. 3, 24).

[77] Yoko Ohtomo, Takeshi Kakegawa, Akizumi Ishida, Toshiro Nagase, and Minik
T Rosing. “Evidence for biogenic graphite in early Archaean Isua metasedi-
mentary rocks.” In: Nature Geoscience 7.1 (2014), p. 25 (cit. on p. 17).

[78] Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. “Pixel
Recurrent Neural Networks.” In: ICML. 2016 (cit. on p. 19).

[79] Art B. Owen. Monte Carlo theory, methods and examples. 2013 (cit. on pp. 9, 47,
72).

[80] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. “Curiosity-
driven exploration by self-supervised prediction.” In: International Conference
on Machine Learning (ICML). Vol. 2017. 2017 (cit. on p. 24).

[81] AR Penner. “The physics of putting.” In: Canadian Journal of Physics 80.2 (2002),
pp. 83–96 (cit. on p. 49).

[82] Jan Peters and Stefan Schaal. “Reinforcement learning by reward-weighted
regression for operational space control.” In: Proceedings of the 24th international
conference on Machine learning. ACM. 2007, pp. 745–750 (cit. on pp. 14, 15, 83).

[83] L. Piroddi and W. Spinelli. “An identification algorithm for polynomial NARX
models based on simulation error minimization.” In: International Journal of
Control 76.17 (2003), pp. 1767–1781. eprint: https : / / doi . org / 10 . 1080 /

00207170310001635419 (cit. on p. 23).

[84] Doina Precup, Richard S. Sutton, and Satinder P. Singh. “Eligibility Traces for
Off-Policy Policy Evaluation.” In: Proceedings of the Seventeenth International
Conference on Machine Learning (ICML 2000), Stanford University, Stanford, CA,
USA, June 29 - July 2, 2000. Ed. by Pat Langley. Morgan Kaufmann, 2000,
pp. 759–766 (cit. on p. 9).

https://doi.org/10.1080/00207170310001635419
https://doi.org/10.1080/00207170310001635419

62 Bibliography

[85] Martin L Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 2014 (cit. on pp. 5, 6).

[86] Carl Edward Rasmussen. “Gaussian processes in machine learning.” In: Summer
School on Machine Learning. Springer. 2003, pp. 63–71 (cit. on p. 19).

[87] Alfréd Rényi et al. “On measures of entropy and information.” In: Proceedings
of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume
1: Contributions to the Theory of Statistics. The Regents of the University of
California. 1961 (cit. on p. 10).

[88] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochastic
Backpropagation and Approximate Inference in Deep Generative Models.” In:
Proceedings of the 31st International Conference on Machine Learning. Ed. by Eric P.
Xing and Tony Jebara. Vol. 32. Proceedings of Machine Learning Research 2.
Bejing, China: PMLR, 2014, pp. 1278–1286 (cit. on p. 19).

[89] Martin Riedmiller. “Neural fitted Q iteration–first experiences with a data
efficient neural reinforcement learning method.” In: European Conference on
Machine Learning. Springer. 2005, pp. 317–328 (cit. on p. 36).

[90] Stéphane Ross and J Andrew Bagnell. “Agnostic system identification for
model-based reinforcement learning.” In: Proceedings of the 29th International
Coference on International Conference on Machine Learning. Omnipress. 2012,
pp. 1905–1912 (cit. on pp. 23, 26, 35).

[91] Carina M Schlebusch, Helena Malmström, Torsten Günther, Per Sjödin, Alexan-
dra Coutinho, Hanna Edlund, Arielle R Munters, Mário Vicente, Maryna Steyn,
Himla Soodyall, et al. “Southern African ancient genomes estimate modern
human divergence to 350,000 to 260,000 years ago.” In: Science 358.6363 (2017),
pp. 652–655 (cit. on p. 17).

[92] Jürgen Schmidhuber. “A possibility for implementing curiosity and boredom
in model-building neural controllers.” In: Proc. of the international conference on
simulation of adaptive behavior: From animals to animats. 1991, pp. 222–227 (cit. on
p. 24).

[93] Jürgen Schmidhuber. “An on-line algorithm for dynamic reinforcement learn-
ing and planning in reactive environments.” In: 1990 IJCNN international joint
conference on neural networks. IEEE. 1990, pp. 253–258 (cit. on p. 8).

[94] Jürgen Schmidhuber. “Deep learning in neural networks: An overview.” In:
Neural networks 61 (2015), pp. 85–117 (cit. on p. 7).

[95] Jürgen Schmidhuber. “Formal theory of creativity, fun, and intrinsic motivation
(1990–2010).” In: IEEE Transactions on Autonomous Mental Development 2.3 (2010),
pp. 230–247 (cit. on p. 8).

Bibliography 63

[96] Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. “Model-Based Active
Exploration.” In: Proceedings of the 36th International Conference on Machine
Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97.
Proceedings of Machine Learning Research. Long Beach, California, USA:
PMLR, 2019, pp. 5779–5788 (cit. on pp. 21, 24).

[97] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Grae-
pel, et al. “A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play.” In: Science 362.6419 (2018), pp. 1140–1144 (cit. on
p. 18).

[98] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. “Deterministic policy gradient algorithms.” In: ICML. 2014

(cit. on p. 9).

[99] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, et al. “Mastering the game of Go with deep neural
networks and tree search.” In: nature 529.7587 (2016), p. 484 (cit. on pp. 17, 18).

[100] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. “Mastering the game of go without human knowledge.” In:
Nature 550.7676 (2017), p. 354 (cit. on p. 18).

[101] David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim
Harley, Gabriel Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto,
et al. “The predictron: End-to-end learning and planning.” In: Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR. org. 2017,
pp. 3191–3199 (cit. on pp. 3, 24).

[102] Bernard W Silverman. Density estimation for statistics and data analysis. Routledge,
2018 (cit. on p. 19).

[103] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting.” In: Journal of Machine Learning Research 15 (2014), pp. 1929–1958

(cit. on p. 20).

[104] Bradly C Stadie, Sergey Levine, and Pieter Abbeel. “Incentivizing exploration
in reinforcement learning with deep predictive models.” In: arXiv preprint
arXiv:1507.00814 (2015) (cit. on p. 24).

[105] Richard S. Sutton. “Dyna, an Integrated Architecture for Learning, Planning,
and Reacting.” In: SIGART Bull. 2.4 (July 1991), pp. 160–163. issn: 0163-5719

(cit. on pp. 8, 26).

64 Bibliography

[106] Richard S Sutton. “Learning to predict by the methods of temporal differences.”
In: Machine learning 3.1 (1988), pp. 9–44 (cit. on p. 15).

[107] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
2018 (cit. on pp. 1, 5, 7, 15, 18, 36).

[108] Richard S Sutton, Csaba Szepesvári, Alborz Geramifard, and Michael Bowl-
ing. “Dyna-style planning with linear function approximation and prioritized
sweeping.” In: Proceedings of the Twenty-Fourth Conference on Uncertainty in
Artificial Intelligence. AUAI Press. 2008, pp. 528–536 (cit. on pp. 24, 26).

[109] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.
“Policy gradient methods for reinforcement learning with function approxima-
tion.” In: Advances in Neural Information Processing Systems. 2000, pp. 1057–1063

(cit. on pp. 3, 7, 12, 47, 69).

[110] Voot Tangkaratt, Syogo Mori, Tingting Zhao, Jun Morimoto, and Masashi
Sugiyama. “Model-based policy gradients with parameter-based exploration
by least-squares conditional density estimation.” In: Neural networks 57 (2014),
pp. 128–140 (cit. on p. 28).

[111] Yuval Tassa, Tom Erez, and Emanuel Todorov. “Synthesis and stabilization of
complex behaviors through online trajectory optimization.” In: 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE. 2012, pp. 4906–
4913 (cit. on p. 22).

[112] Sebastian B Thrun and Knut Möller. “Active exploration in dynamic environ-
ments.” In: Advances in neural information processing systems. 1992, pp. 531–538

(cit. on p. 24).

[113] Andrea Tirinzoni, Mattia Salvini, and Marcello Restelli. “Transfer of Samples
in Policy Search via Multiple Importance Sampling.” In: Proceedings of the 36th
International Conference on Machine Learning. Ed. by Kamalika Chaudhuri and
Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research.
Long Beach, California, USA: PMLR, 2019, pp. 6264–6274 (cit. on p. 49).

[114] George E Uhlenbeck and Leonard S Ornstein. “On the theory of the Brownian
motion.” In: Physical review 36.5 (1930), p. 823 (cit. on p. 11).

[115] Aäron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W Senior, and Koray Kavukcuoglu.
“WaveNet: A generative model for raw audio.” In: SSW. 2016, p. 125 (cit. on
p. 19).

[116] Tim Van Erven and Peter Harremos. “Rényi divergence and Kullback-Leibler
divergence.” In: IEEE Transactions on Information Theory 60.7 (2014), pp. 3797–
3820 (cit. on p. 10).

Bibliography 65

[117] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou,
Julian Schrittwieser, et al. “Starcraft ii: A new challenge for reinforcement
learning.” In: arXiv preprint arXiv:1708.04782 (2017) (cit. on p. 17).

[118] Oskar Von Stryk and Roland Bulirsch. “Direct and indirect methods for tra-
jectory optimization.” In: Annals of operations research 37.1 (1992), pp. 357–373

(cit. on p. 25).

[119] Xin Wang and Thomas G Dietterich. “Model-based policy gradient reinforce-
ment learning.” In: Proceedings of the 20th International Conference on Machine
Learning (ICML-03). 2003, pp. 776–783 (cit. on p. 28).

[120] Christopher JCH Watkins and Peter Dayan. “Q-learning.” In: Machine learning
8.3-4 (1992), pp. 279–292 (cit. on p. 9).

[121] Ronald J Williams. “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning.” In: Machine learning 8.3-4 (1992), pp. 229–256

(cit. on pp. 12, 14, 47).

[122] Tingting Zhao, Hirotaka Hachiya, Gang Niu, and Masashi Sugiyama. “Anal-
ysis and improvement of policy gradient estimation.” In: Advances in Neural
Information Processing Systems. 2011, pp. 262–270 (cit. on p. 15).

A
P R O O F S A N D D E R I VAT I O N S

In this appendix, we report the proofs of the results presented in the thesis, together
with some additional results and extended discussion.

various proofs

In this section, we see the proofs of various results proven throughout the thesis,
divided by sections.

Proofs of Section 4.1

The following lemma is used in proving Theorem 4.1.

Lemma A.1. Considering the state-action distributions δπ,pµ and δπ,p̂µ under policy π and
models p and p̂, the following upper bound holds:∥∥∥δπ,pµ − δπ,p̂µ

∥∥∥
1
6

γ

1− γ
E

s,a∼δ
π,p
µ

[‖p(·|s, a) − p̂(·|s, a)‖1] .

Proof. Recalling that δπ,pµ (s, a) = π(a|s)dπ,pµ (s) we can write:∥∥∥δπ,pµ − δπ,p̂µ

∥∥∥
1
=

∫
S

∫
A

∣∣∣δπ,p̂µ (s, a) − δπ,p̂µ (s, a)
∣∣∣dsda

=

∫
S

∫
A

π(a|s)
∣∣∣dπ,pµ (s) − dπ,p̂µ (s)

∣∣∣dsda
=

∫
S

∣∣∣dπ,pµ (s) − dπ,p̂µ (s)
∣∣∣ ∫

A

π(a|s)dads

=

∫
S

∣∣∣dπ,pµ (s) − dπ,p̂µ (s)
∣∣∣ds = ∥∥∥dπ,pµ − dπ,p̂µ

∥∥∥
1
,

where dπ,pµ (s) = (1−γ)
∑+∞
t=0 γ

t Pr(st = s|M, π). In order to bound
∥∥∥dπ,pµ − dπ,p̂µ

∥∥∥
1

,
we can use Corollary 3.1 from [65]:∥∥∥dπ,pµ − dπ,p̂µ

∥∥∥
1
6

γ

1− γ
E

s,a∼δ
π,p
µ

[‖p(·|s, a) − p̂(·|s, a)‖1] .

�

Now, we can prove Theorem 4.1.

67

68 Bibliography

Theorem 4.1. Let q ∈ [1,+∞] and p̂ ∈ P. Then, the Lq-norm of the difference between the
policy gradient ∇θJ(θ) and the corresponding MVG ∇MVG

θ J(θ) can be upper bounded as:

∥∥∇θJ(θ) −∇MVG
θ J(θ)

∥∥
q
6
γ
√
2ZRmax

(1− γ)2

√
E

s,a∼η
π,p
µ

[DKL(p(·|s, a)‖p̂(·|s, a))],

where

ηπ,pµ (s, a) =
1

Z

∫
S

∫
A

δπ,pµ (s ′, a ′)
∥∥∇θ logπθ(a ′|s ′)

∥∥
q
δ
π,p
s ′,a ′(s, a)ds

′da ′

is a probability distribution over S×A and

Z =

∫
S

∫
A

δπ,pµ (s ′, a ′)
∥∥∇θ logπθ(a ′|s ′)

∥∥
q

ds ′da ′

is a normalization constant, both independent from p̂.

Proof.∥∥∥∇θJ(θ) −∇MVG
θ J(θ)

∥∥∥
q
=
∥∥∥ 1

1− γ

∫
S

∫
A

δπ,pµ (s, a)(Qπ,p(s, a) −Qπ,p̂(s, a))

×∇θ logπ(a|s)dsda
∥∥∥
q

6
1

1− γ

∫
S

∫
A

δπ,pµ (s, a)
∣∣∣Qπ,p(s, a) −Qπ,p̂(s, a)∣∣∣ ‖∇θ logπ(a|s)‖qdsda (A.1)

=
Z

1− γ

∫
S

∫
A

νπ,pµ (s, a)
∣∣∣Qπ,p(s, a) −Qπ,p̂(s, a)∣∣∣dsda (A.2)

=
Z

1− γ

∫
S

∫
A

νπ,pµ (s, a)

∣∣∣∣∫
S

∫
A

r(s ′, a ′)(δπ,ps,a (s
′, a ′) − δπ,p̂s,a (s

′, a ′))ds ′da ′
∣∣∣∣dsda

(A.3)

6
ZRmax

1− γ

∫
S

∫
A

νπ,pµ (s, a)

∣∣∣∣∫
S

∫
A

(δπ,ps,a (s
′, a ′) − δπ,p̂s,a (s

′, a ′))ds ′da ′
∣∣∣∣dsda (A.4)

6
ZRmax

1− γ

∫
S

∫
A

νπ,pµ (s, a)
∥∥∥δπ,ps,a − δπ,p̂s,a

∥∥∥
1

dsda

6
ZRmaxγ

(1− γ)2

∫
S

∫
A

νπ,pµ (s, a)

∫
S

∫
A

δπ,ps,a (s
′, a ′) (A.5)

×
∥∥p(·|s ′, a ′) − p̂(·|s ′, a ′)∥∥ds ′da ′dsda

=
ZRmaxγ

(1− γ)2

∫
S

∫
A

ηπ,pµ (s ′, a ′)

∫
S

∣∣p(s ′′|s ′, a ′) − p̂(s ′′|s ′, a ′)∣∣ds ′′ds ′da ′
6
ZRmaxγ

(1− γ)2

∫
S

∫
A

ηπ,pµ (s, a)
√
2DKL(p(·|s, a)‖p̂(·|s, a))dsda (A.6)

6
ZRmaxγ

(1− γ)2

√
2

∫
S

∫
A

η
π,p
µ (s, a)DKL(p(·|s, a)‖p̂(·|s, a))dsda, (A.7)

Bibliography 69

where in Equation (A.2), we define a new probability distribution ν
π,p
µ (s, a) =

1
Zδ
π,p
µ (s, a)‖∇θ logπ(a|s)‖q by means of an appropriate normalization constant Z,

assumed Z > 0. In Equation (A.3), we use the definition of Q-function as Qπ,p(s, a) =∫
S

∫
A δ

π,p
s,a (s

′, a ′)r(s ′, a ′)ds ′da ′. After bounding the reward in Equation (A.4), in
Equation (A.5) we apply Lemma A.1. Then we obtain Equation (A.6) by employing
Pinsker’s inequality, defining the overall weighting term

ηπ,pµ (s ′, a ′) =

∫
S

∫
A

νπ,pµ (s, a)δπ,ps,a (s
′, a ′)dsda,

and renaming variables for clarity. Last passage follows from Jensen inequality. �

Proofs of Section 4.2

We start introducing the following lemma that states that taking expectations w.r.t.
δ
π,p
µ is equivalent to taking proper expectations w.r.t. ζπ,pµ .

Lemma A.2. Let f : S×A→ Rk an arbitrary function defined over the state-action space.
Then, it holds that:

E
s,a∼δ

π,p
µ

[f(s, a)] = (1−γ)

+∞∑
t=0

γt E
τ0:t∼ζ

π,p
µ

[f(st, at)] = (1−γ) E
τ∼ζ

π,p
µ

[
+∞∑
t=0

γtf(st, at)

]
.

(A.8)

Proof. We denote with T the set of all possible trajectories. We just apply the definition
of δπ,pµ [109]:

E
s,a∼δ

π,p
µ

[f(s, a)] =

∫
S

∫
A

δπ,pµ (s, a)f(s, a)dsda

= (1− γ)

+∞∑
t=0

γt
∫
S

∫
A

Pr (st = s, at = a|M, π) f(s, a)dsda

= (1− γ)

+∞∑
t=0

γt
∫
S

∫
A

(∫
T

ζπ,pµ (τ0:t)1 (st = s, at = a)dτ0:t

)
f(s, a)dsda

= (1− γ)

+∞∑
t=0

γt
∫
T

ζπ,pµ (τ0:t)

(∫
S

∫
A

1 (st = s, at = a) f(s, a)dsda
)

dτ0:t

= (1− γ)

+∞∑
t=0

γt
∫
T

ζπ,pµ (τ0:t)f(st, at)dτ0:t

= (1− γ)

∫
T

ζπ,pµ (τ)

+∞∑
t=0

γtf(st, at)dτ,

70 Bibliography

where we exploited the fact that the probability Pr (st = s, at = a|M, π) is equal to
the probability that a prefix of trajectory τ0:t terminates in (st, at), i.e.,∫

T

ζπ,pµ (τ0:t)1 (st = s, at = a)dτ0:t.

The last passage follows from the fact that f(st, at) depends on random variables
realized at time t we can take the expectation over the whole trajectory. �

We can apply this result to rephrase the expectation w.r.t. ηπ,pµ as an expectation
w.r.t. ζπ,pµ .

Lemma A.3. Let f : S×A→ Rk an arbitrary function defined over the state-action space.
Then, it holds that:

E
s,a∼η

π,p
µ

[f(s, a)] =
(1− γ)2

Z
E

τ∼ζ
π,p
µ

[
+∞∑
t=0

γt
t∑
l=0

‖∇θ logπ(al|sl)‖q f(st, at)
]

. (A.9)

Proof. We just need to apply Lemma A.2 twice and exploit the definition of ηπ,pµ :

E
s,a∼η

π,p
µ

[f(s, a)] =

∫
S

∫
A

ηπ,pµ (s, a)f(s, a)dsda

=
1

Z

∫
S

∫
A

∫
S

∫
A

δπ,pµ (s ′, a ′)
∥∥∇θ logπ(a ′|s ′)

∥∥
q

× δπ,ps ′,a ′(s, a)ds ′da ′f(s, a)dsda.

Let us first focus on the expectation taken w.r.t. δπ,pµ (s ′, a ′). By applying Lemma A.2
with f(s ′, a ′) = ‖∇θ logπ(a ′|s ′)‖q δ

π,p
s ′,a ′(s, a), we have:∫

S

∫
A

δπ,pµ (s ′, a ′)
∥∥∇θ logπ(a ′|s ′)

∥∥
q
δ
π,p
s ′,a ′(s, a)ds

′da ′

= (1− γ)

+∞∑
t=0

γt
∫
T

ζπ,pµ (τ0:t) ‖∇θ logπ(at|st)‖q δπ,pst,at(s, a)dτ0:t.

Bibliography 71

Now, let us consider δπ,pst,at(s, a). We instantiate again Lemma A.2:

E
s,a∼η

π,p
µ

[f(s, a)] =
(1− γ)

Z

∫
S

∫
A

+∞∑
t=0

γt
∫
T

ζπ,pµ (τ0:t) ‖∇θ logπ(at|st)‖q

× δπ,pst,at(s, a)f(s, a)dτ0:tdsda

=
(1− γ)

Z

+∞∑
t=0

γt
∫
T

ζπ,pµ (τ0:t) ‖∇θ logπ(at|st)‖q

×
∫
S

∫
A

δπ,pst,at(s, a)f(s, a)dsdadτ0:t

=
(1− γ)2

Z

+∞∑
t=0

γt
∫
T

ζπ,pµ (τ0:t) ‖∇θ logπ(at|st)‖q

×
+∞∑
l=0

γl
∫
T

ζπ,pst,at(τ0:l)f(sl, al)dτ0:ldτ0:t

=
(1− γ)2

Z

∫
T

ζπ,pµ (τ)

+∞∑
t=0

‖∇θ logπ(at|st)‖q
+∞∑
h=t

γhf(sh, ah)dτ,

where the last passage derives from observing that, for each t and l we are computing
an integral over the trajectory prefixes of length h := t+ l and observing that (sl, al)
can be seen as the h-th state-action pair of a trajectory τ ∼ ζπ,pµ . We now rearrange the
summations:

+∞∑
t=0

‖∇θ logπ(at|st)‖q
+∞∑
h=t

γhf(sh, ah) =

+∞∑
h=0

γhf(sh, ah)

h∑
t=0

‖∇θ logπ(at|st)‖q .

By changing the names of the indexes of the summations, we get the result. �

We are now ready to prove Lemma 4.3.

Lemma A.4. Let π and πb be two policies such that π � πb (π is absolutely continuous
w.r.t. to πb). Let f : S×A→ Rk be an arbitrary function defined over the state-action space.
Then, it holds that:

E
s,a∼η

π,p
µ

[f(s, a)] =
(1− γ)2

Z
E

τ∼ζ
πb,p
µ

[
+∞∑
t=0

γtρπ/πb(τ0:t)

t∑
l=0

‖∇θ logπ(al|sl)‖q f(st, at)
]

.

Proof. What changes w.r.t. Lemma A.3 is that we are now interested in computing the
expectation w.r.t. to a target policy π while trajectories are collected with a behavioral

72 Bibliography

policy πb, fulfilling the hypothesis stated in the lemma. We start from Lemma 4.3 and
we just need to apply importance weighting [79]:

E
τ∼ζ

π,p
µ

[
+∞∑
t=0

γt
t∑
l=0

‖∇θ logπ(al|sl)‖q f(st, at)
]

=

+∞∑
t=0

γt E
τ0:t∼ζ

π,p
µ

[
t∑
l=0

‖∇θ logπ(al|sl)‖q f(st, at)
]

=

+∞∑
t=0

γt E
τ0:t∼ζ

πb,p
µ

[
ζ
π,p
µ (τ0:t)

ζ
πb,p
µ (τ0:t)

t∑
l=0

‖∇θ logπ(al|sl)‖q f(st, at)
]

=

+∞∑
t=0

γt E
τ0:t∼ζ

πb,p
µ

[
ρπ/πb(τ0:t)

t∑
l=0

‖∇θ logπ(al|sl)‖q f(st, at)
]

= E
τ∼ζ

πb,p
µ

[
+∞∑
t=0

γtρπ/πb(τ0:t)

t∑
l=0

‖∇θ logπ(al|sl)‖q f(st, at)
]

.

�

Proofs of Section 4.3

Under Assumption 1, we prove the following intermediate result about the objective
function in Equation (4.5).

Lemma A.5. Let p̂ ∈ P be the maximizer of the objective function in Equation (4.5), obtained
with N > 0 independent trajectories {τi}Ni=1. Under Assumption 1 and 2, for any δ ∈ (0, 1),
with probability at least 1− 2δ it holds that:

E
τ∼ζ

πb,p
µ

[
lπ,p̂(τ)

]
> sup
p∈P

E
τ∼ζ

πb,p
µ

[
lπ,p(τ)

]
− 4c1ε, (A.10)

where ε =

√
v log 2eNv +log 4δ

N Γ

(√
v log 2eNv +log 4δ

N

)
and Γ(ξ) := 1

2 +
√
1+ 1

2 log 1ξ = Õ(1).

Proof. We use a very common argument of empirical risk minimization. Let us denote
with p̃ ∈ arg maxp∈P Eτ∼ζπb,pµ

[
lπ,p(τ)

]
and L̂π,p = 1

N

∑N
i=1 l

π,p(τi):

E
τ∼ζ

πb,p
µ

[
lπ,p̂(τ)

]
− E
τ∼ζ

πb,p
µ

[
lπ,p̃(τ)

]
= E
τ∼ζ

πb,p
µ

[
lπ,p̂(τ)

]
− E
τ∼ζ

πb,p
µ

[
lπ,p̃(τ)

]
± L̂π,p̂

> E
τ∼ζ

πb,p
µ

[
lπ,p̂(τ)

]
− L̂π,p̂

− E
τ∼ζ

πb,p
µ

[
lπ,p̃(τ)

]
+ L̂π,p̃

> −2 sup
p∈P

∣∣∣∣∣L̂π,p − E
τ∼ζ

πb,p
µ

[
lπ,p(τ)

]∣∣∣∣∣ ,

Bibliography 73

where we exploited the fact that L̂π,p̃ 6 L̂π,p̂, as p̂ is the maximizer of L̂π,·. The
result follows from the application of Corollary 14 in [19], having bounded the growth
function with the pseudodimension, as in Corollary 18 of [19]. �

We can derive a concentration result for the gradient estimation (Equation (4.9)),
recalling the fact that gπ,p is a vectorial function.

Lemma A.6. Let q ∈ [1,+∞], d be the dimensionality of Θ and p̂ ∈ P be the maximizer
of the objective function in Equation (4.5), obtained with N > 0 independent trajectories
{τi}Ni=1. Under Assumption 1 and 2, for any δ ∈ (0, 1), with probability at least 1− 2dδ,
simultaneously for all p ∈ P, it holds that:∥∥∥∇̂θJ(θ) −∇MVG

θ J(θ)
∥∥∥
q
6 2d

1
qRmaxc2ε, (A.11)

where ε =

√
v log 2eNv +log 4δ

N Γ

(√
v log 2eNv +log 4δ

N

)
and Γ(ξ) := 1

2 +
√
1+ 1

2 log 1ξ = Õ(1).

Proof. We observe that ∇̂θJ(θ) is the sample version of ∇MVG
θ J(θ). Under Assump-

tion 1 and 2, and using Corollary 14 in [19] as in Lemma A.5, we can write for any
j = 1, ...d the following bound that holds with probability at least 1− 2δ, simultane-
ously for all p̂ ∈ P:∣∣∣∇̂θjJ(θ) −∇MVG

θj
J(θ)

∣∣∣ 6 2Rmaxc2ε. (A.12)

Considering the Lq-norm, and plugging the previous equation, we have that with
probability at least 1− 2dδ it holds that, simultaneously for all p̂ ∈ P:

∥∥∥∇̂θJ(θ) −∇MVG
θ J(θ)

∥∥∥
q
=

 d∑
j=1

∣∣∣∇MVG
θj

J(θ) −∇θjJ(θ)
∣∣∣q
 1
q

6 2d
1
qRmaxc2ε,

having exploited a union bound over the dimensions d. �

We are now ready to prove the main result.

Theorem 4.5. Let q ∈ [1,+∞], d be the dimensionality of Θ and p̂ ∈ P be the maximizer of
the objective function in Equation (4.5), obtained with N > 0 independent trajectories {τi}Ni=1.
Under Assumption 1 and 2, for any δ ∈ (0, 1), with probability at least 1− 4δ it holds that:

∥∥∥∇̂θJ(θ) −∇θJ(θ)∥∥∥
q
6
γ
√
2ZRmax

(1− γ)2
inf
p∈P

√
E

s,a∼η
π,p
µ

[DKL(p(·|s, a)‖p(·|s, a))]︸ ︷︷ ︸
approximation error

+ 2Rmax

(
d
1
q c2ε+

γ
√
2Zc1ε

1− γ

)
︸ ︷︷ ︸

estimation error

,

74 Bibliography

given

ε =

√
v log 2eNv + log 8(d+1)δ

N
Γ

√
v log 2eNv + log 8(d+1)δ

N

 ,
Γ(ξ) :=

1

2
+

√
1+

1

2
log

1

ξ
.

Proof. Let us first consider the decomposition, that follows from triangular inequality:∥∥∥∇̂θJ(θ) −∇θJ(θ)∥∥∥
q
=
∥∥∥∇̂θJ(θ) −∇θJ(θ)±∇MVG

θ J(θ)
∥∥∥
q

6
∥∥∥∇̂θJ(θ) −∇MVG

θ J(θ)
∥∥∥
q

(i)

+
∥∥∇MVG
θ J(θ) −∇θJ(θ)

∥∥
q

(ii)

.

Bibliography 75

We now bound each term of the right hand side. (i) is bounded in Lemma A.6. Let us
now consider (ii). We just need to apply Theorem 4.3 and Lemma A.5, recalling the
properties of the KL-divergence. From Theorem 4.1:∥∥∥∇MVG

θ J(θ) −∇θJ(θ)
∥∥∥
q
6
γ
√
2ZRmax

(1− γ)2

√
E

s,a∼η
π,p
µ

[DKL(p(·|s, a)‖p̂(·|s, a))]

=
γ
√
2ZRmax

(1− γ)2

(
E

s,a∼η
π,p
µ

[∫
S

p(s ′|s, a) logp(s ′|s, a)ds ′

−

∫
S

p(s ′|s, a) log p̂(s ′|s, a)ds ′
]) 1

2

(A.13)

=
γ
√
2ZRmax

(1− γ)

√√√√ E
τ∼ζ

πb,p
µ

[
+∞∑
t=0

ωt (logp(st+1|st, at) − log p̂(st+1|st, at))

]
(A.14)

=
γ
√
2ZRmax

(1− γ)

√√√√ E
τ∼ζ

πb,p
µ

[
+∞∑
t=0

ωt logp(st+1|st, at)

]
− E
τ∼ζ

πb,p
µ

[
lπ,p̂(τ)

]

6
γ
√
2ZRmax

(1− γ)

√√√√ E
τ∼ζ

πb,p
µ

[
+∞∑
t=0

ωt logp(st+1|st, at)

]
− sup
p∈P

E
τ∼ζ

πb,p
µ

[lπ,p(τ)] + 4c1ε

(A.15)

=
γ
√
2ZRmax

(1− γ)

(
inf
p∈P

E
τ∼ζ

πb,p
µ

[
+∞∑
t=0

ωt (logp(st+1|st, at) − logp(st+1|st, at))

]

+ 4c1ε

) 1
2

(A.16)

6
γ
√
2ZRmax

(1− γ)

√√√√ inf
p∈P

E
τ∼ζ

πb,p
µ

[
+∞∑
t=0

ωt (logp(st+1|st, at) − logp(st+1|st, at))

]

+
2γRmax

√
2Zc1ε

1− γ
(A.17)

=
γ
√
2ZRmax

(1− γ)2

√
inf
p∈P

E
s,a∼η

π,p
µ

[DKL(p(·|s, a)‖p(·|s, a))] +
2γRmax

√
2Zc1ε

1− γ
, (A.18)

where Equation (A.13) and Equation (A.18) follow from the definition of KL-divergence
and Lemma 4.3. Equation (A.14) is derived from Lemma 4.3 where

ωt = γ
tρπ/πb(τ0:t)

t∑
l=0

‖∇θ logπ(al|sl)‖q .

76 Bibliography

Equation (A.15) is obtained by applying Lemma A.5. Equation (A.17) follows from
the subadditivity of the square root. Putting together (i) and (ii) we get the result that
holds with probability at least 1− 2(d+ 1)δ as bound (i) holds w.p. 1− 2δ and bound
(ii) w.p. 1− 2dδ. By rescaling δ we get the result. �

gradient-unaware model learning

We now show that maximum-likelihood model estimation is a sound way of estimating
the policy gradient when using the MVG, although it is optimizing a looser bound
with respect to the one provided by Theorem 4.1. For proving the following result, we
assume the score is bounded by ‖∇θ logπ(a|s)‖q 6 K.

Proposition A.7. Let q ∈ [1,+∞] and p̂ ∈ P. If ‖∇θ logπ(a|s)‖q 6 K for all s ∈ S

and s ∈ A, then, the Lq-norm of the difference between the policy gradient ∇θJ(θ) and the
corresponding MVG ∇MVG

θ J(θ) can be upper bounded as:

‖∇θJ(θ) −∇MVG
θ J(θ)‖q 6

γ
√
2ZRmax

(1− γ)2

√
E

s,a∼η
π,p
µ

[DKL(p(·|s, a)‖p̂(·|s, a))]

6
γ
√
2KRmax

(1− γ)2

√
E

s,a∼δ
π,p
µ

[DKL(p(·|s, a)‖p̂(·|s, a))].

Proof.∥∥∥∇θJ(θ) −∇MVG
θ J(θ)

∥∥∥
q
6
γ
√
2ZRmax

(1− γ)2

(∫
S

∫
A

ηπ,pµ (s, a)DKL(p(·|s, a)‖p̂(·|s, a))dsda
) 1
2

=
γ
√
2ZRmax

(1− γ)2

(∫
S

∫
A

1

Z

∫
S

∫
A

‖∇θ logπ(a ′|s ′)‖qδπ,pµ (s ′, a ′)δπ,ps ′,a ′(s, a)ds
′da ′

(A.19)

×DKL(p(·|s, a)‖p̂(·|s, a))dsda
) 1
2

6
γ
√
2KZRmax

(1− γ)2

(∫
S

∫
A

∫
S

∫
A

δπ,pµ (s ′, a ′)δπ,ps ′,a ′(s, a)ds
′da ′ (A.20)

×DKL(p(·|s, a)‖p̂(·|s, a))dsda
) 1
2

=
γ
√
2KZRmax

(1− γ)2

(∫
S

∫
A

δπ,pµ (s, a)DKL(p(·|s, a)‖p̂(·|s, a))dsda
) 1
2

(A.21)

6
γ
√
2KRmax

(1− γ)2

(∫
S

∫
A

δπ,pµ (s, a)DKL(p(·|s, a)‖p̂(·|s, a))dsda
) 1
2

, (A.22)

where we started from Theorem 4.1. Equation (A.21) follows from the fact that∫
δ
π,p
µ (s ′, a ′)δπ,ps ′,a ′(s, a)ds

′da ′ = δπ,pµ (s, a), as we are actually recomposing the state-

Bibliography 77

action distribution that was split at (s ′, a ′) and Equation (A.22) is obtained by observ-
ing that Z 6 K. �

We can observe that maximum likelihood provides a looser bound w.r.t. to the one
provided by Theorem 4.1. This reflects the fact that the standard approach for model
learning in MBRL does not make use of all the available information, in this case
related to the gradient of the current agent policy.

weighted kl divergence

Minimizing DKL between real and estimated model is equivalent to to maximizing the
weighted log-likelihood of the data collected under the real model. This is formally
stated in the following proposition.

Proposition A.8. Given an arbitrary weighting function ξ : S×A→ R, this equality holds:

arg min
p

∫
ξ(s, a)DKL(p(s

′|s, a)‖p(s ′|s, a))dsda

= arg max
p

lim
N→∞ 1

N

N∑
i=1

s ′
i
∼p(·|si,ai)

ξ(s, a) logp(s ′i|si, ai)

Proof.

arg min
p

∫
ξ(s, a)DKL(p(s

′|s, a)‖p(s ′|s, a))ds ′dsda

= arg min
p

∫
ξ(s, a)

∫
p(s ′|s, a) log

p(s ′|s, a)

p(s ′|s, a)
ds ′dsda

= arg min
p

∫
ξ(s, a)

(∫
p(s ′|s, a) logp(s ′|s, a)ds ′

−

∫
p(s ′|s, a) logp(s ′|s, a)ds ′

)
dsda

= arg min
p

−

∫
ξ(s, a)

∫
p(s ′|s, a) logp(s ′|s, a)ds ′dsda

= arg max
p

∫
ξ(s, a)

∫
p(s ′|s, a) logp(s ′|s, a)ds ′dsda

= arg max
p

∫
p(s ′|s, a)ξ(s, a) logp(s ′|s, a)ds ′dsda

= arg max
p

lim
N→∞ 1

N

N∑
i=1

s ′
i
∼p(·|si,ai)

ξ(si, ai) logp(s ′i|si, ai)

78 Bibliography

�

In the case of GAMPS, the weighting function is given by ξ(s, a) = ηπ,pµ (s, a).

details about the assumption

Assumption 1 is equivalent to require that there exists two finite constants c1 < +∞
and c2 < +∞ such that:

E
τ∼ζ

πb,p
µ

(+∞∑
t=0

γtρπ/πb(τ0:t)

t∑
l=0

‖∇θ logπ(al|sl)‖q logp(st+1|st, at)

)2 6 c21,
(A.23)

E
τ∼ζ

πb,p
µ

(+∞∑
t=0

γtρπ/πb(τ0:t)∇θj logπ(at|st)Qπ,p(st, at)

)2 6 R2maxc
2
2, j ∈ [1..d].

(A.24)

We now state the following result that allows decoupling Assumption 1 into two
separate conditions for the policies π and πb and the transition models p (the real
one) and p (the approximating one).

Corollary A.9. Assumption 1 is satisfied if there exist three constants χ1, χ2 and χ3, with
χ1 <

1
γ .

sup
π∈ΠΘ

sup
s∈S

E
a∼πb(·|s)

[(
π(a|s)

πb(a|s)

)2]
6 χ1,

sup
π∈ΠΘ

sup
s∈S

E
a∼πb(·|s)

[(
π(a|s)

πb(a|s)
‖∇θ logπ(a|s)‖2q

)2]
6 χ2,

sup
p∈P

sup
s∈S
a∈A

E
s ′∼p(·|s,a)

[(
logp(s ′|s, a)

)2]
6 χ3.

In such case, Equation (A.23) and Equation (A.24) are satisfied with constants:

c21 =
χ3χ2(1+ γχ1)

(1− γ)(1− γχ1)3
, c22 =

χ3χ2
(1− γ)3(1− γχ1)

.

Bibliography 79

Proof. Let us start with Equation (A.23). We first apply Cauchy Swartz inequality to
bring the expectation inside the summation:

E
τ∼ζ

πb,p
µ

(+∞∑
t=0

γ
t
2 · γ t2ρπ/πb(τ0:t)

t∑
l=0

‖∇θ logπ(al|sl)‖q logp(st+1|st, at)

)2
6

+∞∑
t=1

γt E
τ∼ζ

πb,p
µ

[+∞∑
t=0

γt
(
ρπ/πb(τ0:t)

×
t∑
l=0

‖∇θ logπ(al|sl)‖q logp(st+1|st, at)
)2]

6
1

1− γ

+∞∑
t=0

γt E
τ∼ζ

πb,p
µ

[(
ρπ/πb(τ0:t)

t∑
l=0

‖∇θ logπ(al|sl)‖q

× logp(st+1|st, at)
)2]

.

Let us fix a timestep t. We derive the following bound:

E
τ∼ζ

πb,p
µ

(ρπ/πb(τ0:t) t∑
l=0

‖∇θ logπ(al|sl)‖q logp(st+1|st, at)

)2
= E
τ∼ζ

πb,p
µ

(t∑
l=0

ρπ/πb(τ0:t) ‖∇θ logπ(al|sl)‖q

)2
(logp(st+1|st, at))

2

6 E
τ∼ζ

πb,p
µ

[
(t+ 1)

t∑
l=0

(
ρπ/πb(τ0:t) ‖∇θ logπ(al|sl)‖q

)2
(logp(st+1|st, at))

2

]
,

where we applied Cauchy-Swartz inequality to bound the square of the summa-
tion. We now rewrite the expectation in a convenient form to highlight the different
components.

E
τ∼ζ

πb,p
µ

[
(t+ 1)

t∑
l=0

(
ρπ/πb(τ0:t) ‖∇θ logπ(al|sl)‖q

)2
(logp(st+1|st, at))

2

]

= (t+ 1)

t∑
l=0

E
τ0:t∼ζ

πb,p
µ

[(
ρπ/πb(τ0:t) ‖∇θ logπ(al|sl)‖q

)2
× E
st+1∼p(·|st,at)

[
(logp(st+1|st, at))

2
]]

6 (t+ 1)χ3

t∑
l=0

E
τ0:t∼ζ

πb,p
µ

[(
ρπ/πb(τ0:t) ‖∇θ logπ(al|sl)‖q

)2]
.

80 Bibliography

Let us fix l and bound the expectation inside the summation, by unrolling the trajectory
and recalling the definition of ρπ/πb(τ0:t):

E
τ0:t∼ζ

πb,p
µ

[(
ρπ/πb(τ0:t) ‖∇θ logπ(al|sl)‖q

)2]

= E
s0∼µ

a0∼π(·|s0)

[(
π(a0|s0)

πb(a0|s0)

)2
E

s1∼p(·|s0,a0)
a1∼π(·|s1)

[(
π(a1|s1)

πb(a1|s1)

)2
. . .

× E
sl∼p(·|sl−1,al−1)
al∼π(·|sl)

[(
π(al|sl)

πb(al|sl)
‖∇θ logπ(al|sl)‖q

)2

. . . E
st∼p(·|st−1,at−1)
at∼π(·|st)

[(
π(at|st)

πb(at|st)

)2]
. . .

]
. . .

]]

6 χ2χ
t
1.

Plugging this result in the summation we get the result, recalling that γχ1 < 1 and
using the properties of the geometric series, we obtain:

1

1− γ

+∞∑
t=0

(t+ 1)2γtχt1χ2χ3 =
χ3χ2(1+ γχ1)

(1− γ)(1− γχ1)3
.

We now consider Equation (A.24) and we apply Cauchy Swartz as well:

E
τ∼ζ

πb,p
µ

(+∞∑
t=0

γ
t
2 · γ t2ρπ/πb(τ0:t)∇θj logπ(at|st)Qπ,p(st, at)

)2
6

1

1− γ

+∞∑
t=0

γt E
τ∼ζ

πb,p
µ

[(
ρπ/πb(τ0:t)∇θj logπ(at|st)Qπ,p(st, at)

)2]
.

By observing that
∣∣Qπ,p(st, at)∣∣ 6 Rmax

1−γ and
∣∣∇θj logπ(at|st)

∣∣ 6 ‖∇θ logπ(at|st)‖∞ 6
‖∇θ logπ(at|st)‖q we can use an argument similar to the one used to bound Equa-
tion (A.23) to get:

E
τ∼ζ

πb,p
µ

[(
ρπ/πb(τ0:t)∇θj logπ(at|st)Qπ,p(st, at)

)2]
6

R2max
(1− γ)2

χ2χ
t
1.

Plugging this result into the summation, we have:

1

1− γ

+∞∑
t=0

γtχt1χ2χ3
R2max

(1− γ)2
=

χ3χ2R
2
max

(1− γ)3(1− γχ1)
.

�

B
D E TA I L S O N T H E A L G O R I T H M

alternative derivation

In this section, we provide an alternative derivation for our gradient-aware weighting
scheme for model learning, starting from Theorem 4.1.

To make the weighting for transitions suggested by Theorem 4.1 practical, we have
to choose a sampling strategy for two distributions, namely νπ,pµ (s, a), as defined in
Equation 4.1, and δπ,ps,a (s ′, a ′).

Concerning νπ,pµ (s, a), we can recall its definition and use importance sampling,
adopting δπ,pµ (s, a) as the proposal distribution. For a generic function f(s, a), we
have:

E
s,a∼ν

π,p
µ

[f(s, a)] = E
s,a∼δ

π,p
µ

[
ν
π,p
µ (s, a)

δ
π,p
µ (s, a)

f(s, a)

]
= E
s,a∼δ

π,p
µ

[‖∇θ logπ(a|s)‖
Z

f(s, a)

]
.

(B.1)

The importance weight is therefore the normalized norm of the score. In practice,
we will be interested in finding the model parameters that maximize the likelihood
objective implied by the KL-divergence: we can therefore ignore the computation of
the normalizing constant Z, that does not depend on them.

Sampling from δ
π,p
s,a (s

′, a ′) is harder. In principle, to obtain independent samples,
we should restart the environment in state s, execute action a and then observe the
subsequent (s, a) tuples; however, even if sometimes used in reinforcement learning
(e.g., for exploration [26]), restarting the environment to an arbitrary state is often
impossible or at least very expensive. Therefore, we propose an approximate sampling
procedure, based on the reuse of transitions belonging to the same trajectory. For
instance, given a trajectory τ = (s0, a0, s1, a1, ..., st, at, ...) ∈ D, we consider (st, at)

a sample from δ
π,p
s0,a0 as well as a sample from δ

π,p
s1,a1 , both (s1, a1) and (st, at) as

samples from δ
π,p
s0,a0 .

Let us assume, for the moment, that τ has been generated by policy π. For computing
the overall weighting factor for transition (st, at, at+1) ∈ τ, we should consider the
contribution of every preceding transition in τ. Let us fix our attention, for instance,
on transition (s`, a`, s`+1) ∈ τ, with ` < t: we weight the sample collected according to
δ
π,p
µ (s`, a`) with a partial factor of γ`‖∇θ logπ(a`|s`)‖, given by discounting and the

above discussed importance sampling on νπ,pµ (s`, a`). Then, we must consider (st, at)
as a sample from δ

π,p
s`,a`(s, a): to do it, we simply apply the discount by multiplying by

81

82 Bibliography

another factor γt−`, given that transition (st, at) comes after t− ` steps. The overall
weight is obtained by summing the contribution of all transitions in τi that come
before (st, at, at+1):

ω̃t =

t∑
`=0

γ`‖∇θ logπ(a`|s`)‖γt−` = γt
t∑
`=0

‖∇θ logπ(a`|s`)‖. (B.2)

In Equation B.2, we assumed the policy with respect to which we compute the
weights to be the same as the one that generated trajectory τ. However, the data has
been generated by a policy πb, in general different from π, and the computation of
the weights ωt happens in an off-policy scenario. Therefore, we must consider the
importance weights for given trajectories when performing sampling from δ

π,p
µ (s, a)

and from δ
π,p
s,a (s

′, a ′). Hence, the weights for learning the model must be modified
accordingly:

ωt = γ
t
t∑
`=0

∏̀
m=0

π(am|sm)

πb(am|sm)
‖∇θ logπ(a`|s`)‖

t∏
r=`+1

π(ar|sr)

πb(ar|sr)
=

= γtρπ/πb(τ0:t)

t∑
`=0

‖∇θ logπ(a`|s`)‖.
(B.3)

Once computed the weights ωit for all the transitions in our dataset, we find the
forward model by minimizing the weighted Kullback-Liebler divergence between it
and the actual environment model. In practice, since the problem is equivalent to
maximizing the weighted log-likelihood of observed transitions (as shown in Appendix
A.3), we solve the following optimization problem:

p̂ = arg max
p∈P

1

N

N∑
i=1

T (i)−1∑
t=0

ωit logp
(
sit+1|s

i
t, a

i
t

)
(B.4)

where T i denotes the length of trajectory τi and N is the total number of collected
transitions.

time complexity

Let us consider that the algorithm is run for K iterations on a dataset of N trajectories.
Suppose a parametric model class for which at most E epochs are necessary for
estimation. We define H as the maximum length of a trajectory (or horizon) and use
an estimate of the Q-function derived by sampling M trajectories from the estimated
model, as described in Section 4.2.2. For every iteration, we first compute the weights
for every transition in every trajectory O(NH) and then estimate the corresponding
forward model (order ofNHE). Then, we estimate the gradient given all the transitions,

Bibliography 83

using the trajectories imagined by the model for obtaining the value function (order
of NMH2). The overall time complexity of the algorithm is therefore O(KNHE +

KNMH2).

a connection with reward-weighted regression

Interestingly, our gradient-aware procedure for model learning has some connections
with the reward-weighted regression (RWR) [82] techniques, that solve reinforcement
learning problems by optimizing a supervised loss. To see this, we shall totally revert
our perspective on a non-Markovian decision process. First, we interpret a model p̂φ
parameterized by φ as a policy, whose action is to pick a new state after observing
a previous state-action combination. Then, we see the policy π as the model, that
samples the transition to the next state given the output of p̂φ. Finally, the cumulative
absolute score at time t is the (non-markovian) reward. To strengthen the parallel, let
us consider an appropriate transformation uc on the weights ωt.

We can now give an expectation-maximization formulation for our model learning
problem as reward-weighted regression in this newly defined decision process:
E-step:

qk+1(t) =
pφk(st+1|st, at)uck(ωt)∑
t ′ pφk(st ′+1|st ′ , at ′)uck(ωt ′)

(B.5)

M-step for model parameters:

φk+1 = arg max
∑
t

qk+1(t) logpφ(st+1|st, at) (B.6)

M-step for transformation coefficient:

τk+1 = arg max
c

∑
t

qk+1(t)uc(ωt) (B.7)

Assuming a Gaussian-linear model p̂ = N(st+1|µ(st, at), σ
2I) and a transformation

uc(x) = c exp(−cx), the update for the model parameters and the transformation
parameter is given by:

φk+1 =
(
ΦTWΦ

)−1
ΦTWY (B.8)

σ2k+1 = ‖Y −φTk+1Φ‖2W (B.9)

ck+1 =

∑
t uc(ωt)∑

t ′ uc(ωt ′)ωt ′
(B.10)

where Φ, Y and W are the matrices containing, respectively, state-action features,
successor state features and cumulative score weights on the diagonal.

As in the case of the original RWR, this learned exponentiation of the weights could
in practice improve the performance of our algorithm. We leave this direction to future
work.

	Dedication
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	Abstract
	Abstract
	Sommario

	1 Introduction
	1.1 Contributions
	1.2 Overview

	2 Reinforcement Learning
	2.1 Markov Decision Processes
	2.2 Reinforcement Learning Algorithms
	2.2.1 Model-free and Model-based
	2.2.2 Value-based and Policy-based
	2.2.3 On-policy and Off-policy

	2.3 Model-Free policy Gradient
	2.3.1 Policy Gradient
	2.3.2 The Policy Gradient Theorem
	2.3.3 The score function
	2.3.4 REINFORCE
	2.3.5 Improvements over REINFORCE
	2.3.6 Actor-Critic Methods

	3 Model-based Reinforcement Learning
	3.1 Overview
	3.1.1 Motivation
	3.1.2 A definition for MBRL
	3.1.3 Overview on modern generative models

	3.2 Which model class to use
	3.2.1 Dealing with uncertainty
	3.2.2 Single-step and multi-step dynamics modeling
	3.2.3 Locally-accurate models

	3.3 How to learn the model
	3.3.1 Decision-unaware MBRL
	3.3.2 Decision-aware MBRL

	3.4 How to use the learned model
	3.4.1 Online planning
	3.4.2 Offline planning

	3.5 Model-based Policy Gradient
	3.5.1 Overview
	3.5.2 Fully-Model-based Gradient
	3.5.3 Model-Value-based Gradient

	3.6 Comparison among gradients

	4 Gradient-Aware Model-based Policy Search
	4.1 Analysis of the Model-Value-based Gradient
	4.1.1 Decision-Aware Bound
	4.1.2 Maximum Likelihood Bound

	4.2 Gradient-Aware Model-based Policy Search Algorithm
	4.2.1 Learning the transition model
	4.2.2 Computing the value function
	4.2.3 Estimating the policy gradient

	4.3 Theoretical Analysis
	4.3.1 Assumptions
	4.3.2 Finite-sample bound

	5 Experiments
	5.1 Two-areas Gridworld
	5.1.1 Properties of Gradient-Aware Model Learning
	5.1.2 Performance in Policy Improvement

	5.2 Minigolf

	6 Conclusions
	6.1 Summary and additional insights
	6.2 Current Limitations and Future Work
	6.2.1 Extension to the online setting
	6.2.2 Other techniques for estimating Q
	6.2.3 Deeper Theoretical Analysis
	6.2.4 Other gradient-aware MVGs

	 Bibliography
	A Proofs and derivations
	A.1 Various proofs
	A.1.1 Proofs of Section 4.1
	A.1.2 Proofs of Section 4.2
	A.1.3 Proofs of Section 4.3

	A.2 Gradient-Unaware Model Learning
	A.3 Weighted KL divergence
	A.4 Details about the Assumption

	B Details on the algorithm
	B.1 Alternative derivation
	B.2 Time complexity
	B.3 A connection with reward-weighted regression

