POLITECNICO
 MILANO 1863

School of Architecture Urban Planning Construction Engineering
Master of Science in Building and Architectural Engineering
A.Y. 2018 / 2019

STEEMBER

Steel and timber for a high-rise building in Queens, New York

Final thesis

THESIS SUMMMARY

00	SINOSSI ABSTRACT	III
01	TIMBER IN CONSTRUCTION	3
02	PRELIMINARY ANALYSIS	11
03	SITE ANALYSIS	17
04	MASTERPLAN DESIGN	39
06	ARCHITECTURAL DESIGN	47
06	STRUCTURAL DESIGN	67
	TECHNOLOGICAL DESIGN	137
18	ENERGY DESIGN	177
09	CONCLUSIONS ACKNOWLEDGEMENT	211

SIINOSSI
 ABSTRACT

ABSTRACT

SINOSSI

Il progetto "Steember" nasce da un bando per studenti volto alla riqualificazione di un lotto abbandonato del Queens, New York.

Tale competizione architettonica viene organizzata annualmente dalla "Association of Collegiate Schools of Architecture" (ACSA) ed è intitolata "TIMBER IN THE CITY: Urban Habitats Competition".

Il concorso nasce da una partnership tra il Binational Softwood Lumber Council (BSLC), I'Association of Collegiate Schools of Architecture (ACSA) e la School of Constructed Environments (SCE) della Parsons School of Design. Lo scopo è di coinvolgere gli studenti nell'immaginare la trasformazione delle città esistenti attraverso edifici sostenibili ed alimentat da risorse rinnovabili, offrendo una costruzione conveniente ed originale utilizzando il legno in maniera sia tradizionale che innovativa. L'obiettivo principale è l'interrelazione tra residenze e cambiamento climatico progettando ambienti di vita e di lavoro confortevoli ed accoglienti.

La competizione sfida i partecipanti a re-immaginare un lotto abbandonato sul lungofiume del Queens come un ambiente salutare, moderno ed accogliente per la popolazione della città.

Per sviluppare tale progetto si è partiti da una iniziale fase di analisi urbana per individuare te esigenze della popolazione locale, considerando che una città enorme e cosmopolita come New York e gia piena di servizi e diversita. Successivamente, e stato prima organizzato e quindi implementato un programma funzionale col fine di sviluppare un planivolumetrico efficiente ed allo stesso tempo architettonicamente di pregio. Lintero progetto comprende tre edifici con tre diverse funzioni: un centro educativo per la prima infanzia, un centro sportivo comunitario e una torre residenziale, che è l'edificio principale.

Ci si è quindi concentrati sul progetto architettonico dell'edificio residenziale che è stato studiato nel dettaglio con l'obiettivo di garantire diverse tipologie di unità abitative, al fine di coprire numerosi segmenti di mercato. Il processo di progettazione ha seguito un approccio integrato, considerando insieme gli aspetti architettonici, strutturali, tecnologici ed energetici.

Grande attenzione è stata dedicata alla parte tecnologica ed energetica del progetto, con l'obiettivo di raggiungere un edificio che può essere principalmente prefabbricato e che è estremamente confortevole e sostenibile energeticamente.

Ogni aspetto del progetto è stato sistematicamente sviluppato con analisi approfondite e specifiche simulazioni. Infine, i risultati sono stati implementati secondo un approccio multidisciplinare individuando la migliore soluzione architettonica ed ingegneristica.

ABSTRACT

"Steember" is the result of study for the redevelopment and requalification of an abandoned lot situated in Queens, New York City, on Vernon Boulevard.
The guidelines are given by The Association of Collegiate Schools of Architecture (ACSA) which yearly organizes "TIMBER IN THE CITY: Urban Habitats Competition" for the 2018-2019 Academic Year.

The competition is a partnership between the Binational Softwood Lumber Council (BSLC) the Association of Collegiate Schools of Architecture (ACSA) and the School of Constructed Environments (SCE) at Parsons School of Design. The program is intended to engage students to imagine the transformation of existing cities through sustainable buildings from enewable resources, offering expedient, affordable construction, innovating with new and raditional wooden materials, and designing healthy living and working environments. The main focus is the interrelationship between housing, healthy, early childhood education and climate change.
The competition challenges participants to re-imagine a vacant waterfront site in Queens, New York as a vibrant and vanguard model of healthy, biophilic living for the future of the city

The first part of the project started with a phase of urban analysis to pinpoint the equirements of the local population, considering that a huge and cosmopolitan city as New York is already full of functions and diversity. After this, a functional program was organized and then implemented in an urban masterplan. The whole project contains three buildings with three different functions: an early childhood education centre, a community wellness centre and the main building which is a residential high rise tower.

The architectural project of the residential building was studied with the goal to guarantee different typologies of dwelling units, in order to cover many residential market segments. The design process followed an integrated approach, considering together the architectural structural, technological and energy aspects.

Great attention has been paid to the technological and energy part of the project, with the goal to reach a building which can be mostly prefabricated and which is extremely energy efficient.
Every aspect of the project has been systematically developed with deep analysis and specific software simulations. Then, the results have been implemented according to a multi-disciplinary approach, finding out the best architectural or engineering solution

1 INTRODUCTION

ROCESSING TIMBER PRODUCTS

1.2.1 THE HARVESTING OF ROUNDWOOD 4
1.2.2 DRY TIMBER
1.2.3 DIMENSIONAL TIMBER PROCESSING GLULAM
_AMINATED VENEER LUMBER (LVL)
STRUCTURAL VENEER LUMBER (SVL)
CROSS-LAMINATED TIMBER (CLT or XLAM)
I-JOIST
PANEL TYPES
1.3 TIMBER FOR STRUCTURAL USE 8
1.3.1 WHAT TO BUILT WITH TIMBER
1.3.2 BUILDING TALL BUILDINGS WITH TIMBER

Master of Science in Building and Archite ural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco
1.1-INTRODUCTION

Timber for construction is one of the many forest products used around the world. It is used in buildings both large and small, in particular for residential houses and villas in North Europe, Canada and the USA. Ther is a huge global supply for the foreseeable future, and although there is a worldwide trend towards deforestation, it is generally due to clearing land for agriculture rather than logging for timber

While there are limitless possible esigns, and construction is based on both engineering and cultural practice, timber has a high strength to weight ratio and is used most efficiently in structures where it is carrying a lot of its own self-weight

In many areas of the world, building codes limit timber buildings height well below what is possible in wooden structures. Important questions relating to the service life of timber structures are also frequent, affected predominantly by their fire performance and moistur sensitivity, and how this can be extended through the modification of the natural material or using effective design details.

Construction-grade timber and engineered forest products are some of the highest value products from trees. This suggests that structural use is important for economies that rely on orestry. Furthermore, following primary use as structure, there are many secondary or tertiary uses for timber construction waste that retains its value

The environmental benefits, such as the circular economy and the low level of CO_{2} emission have been demonstrated on some projects, but are not always easy to quantify or generalize
1.2 - PROCESSING TIMBER PRODUCTS

The global supply chain for wood is a complex network of harvesters, processors and distributors. In Europe, the most commonly used structural timbers are derived from sustainably managed coniferous forests

Although typically not as dense and hard as hardwood species, softwoods are cheap and largely available in useful dimensions and can be easily engineered into timber products that optimise their structural properties. These enhanced properties equate to high strength o-weight ratios that allow timber to compete with other more energy or carbon-intensive construction materials
1.2.1 - THE HARVESTING OF ROUNDWOOD

The first stage of timber processing is the wood harvest. Felled trees with branches removed and trunks cut to length for transportation are commonly referred to as "Roundwood" European, American an Canadian forests are some of the most intensively managed in the world. Depending on the topography, a common silvicultural practise typically ranges from:

- clear-felling and artificial regeneration of whole stands of plantation trees
- natural regeneration under shelterwood;
- mixed and natural regeneration combined with selective cutting

Clear fell harvesting with specially customised harvester heads offers the greatest efficiencies in terms of annual yield due to the regular trunk diameter of consecutive farmed efficien.

Thinning and clear-cut harvesting operations are increasingly mechanised for optimum productivity. Mechanized round wood harvesting is carried out by customised cutting heads mounted on a hydraulically controlled harvester vehicle.

122 - DRY TIMBER

As a natural material, wood is susceptible to fungal degradation, but below 20% moisture content there is no issue occurring

International standards for structural timber specify an upper limit of 20\% moisture content for "dry graded" timber in order for it to receive a defined strength grading. Dried timber also provides a more receptive substrate for glueing and is lighter to transport. Moreover, timber's durability and environmental resistance can be further enhanced by thermal and chemica reatments.
As a hygroscopic material, timber fluctuates in moisture content relative to its surrounding environment. It is therefore important to dry timber before using it in order to match the anticipated moisture content within a building environment and avoid excess movemen as the timber naturally dries to its equilibrium service condition. The embodied moisture is generally represented as a percentage of the dry weight of timber, and the moisture content which wood tends towards in a given temperature and humidity is called the "equilibrium

Fgure 1.2 - Dry wooden logs and timber

Harvested softwood can have moisture content in excess of 100%, consisting of "free water" held in the cell cavities and chemically 'bound water' in the cell walls. Once all free water has been removed from the cell cavities a state known as the 'fibre saturation point (FSP) is reached. Timber at or above the FSP is termed "green" wood, and above the FSP the mechanical properties of the wood are not seen to vary with moisture content. Below the FSP, there is a strong correlation of mechanical properties with moisture content, with strength and stiffness increasing with decreasing moisture content. Timber also shrinks as it dries below the FSP. Since the equilibrium moisture
 on species, drying of the 'bound water' is necessary to avoid shrinkage in service. In order to necessary to reduce the natural moisture content with natural or accelerated drying
There are many methods of removing moisture from timber including air, solvent, microwave and supercritical CO_{2} drying, but the most common in the sawn softwood industry is convective or condensing kiln ${ }^{2}$ drying Convective drying although energy and equipment intensive, offers the most accelerated means of drying dimensional timber for the market. The "kiln" is defined as an enclosed structure, typically $30-100 \mathrm{~m}^{3}$, that provides controlled heating air circulation, humidification and ventilation. Heating is achieved by indirect (steam, hot water, thermal liquid, electricity) or direct means (gas/oil burner). It is common for convective kilns to enclose overhead or side fans that circulate warm or dehumidified air through and around an open stack of sawn timber. Equipment factors which can affect the efficiency of softwood drying include standards of kiln thermal insulation and the modulation of fans' speed during different stages of the drying cycle.

Studies in the Pacific Northwest of the United States have shown that of all the manufacturing processes associated with converting roundwood into dimensional timber, kiln drying of softwood consumes the most energy accounting for up to 92% of total manufacturing energy. By contrast, harvesting and regeneration of forestry have been shown to have a minima mpact, accounting for just 5% cumulative energy use.
Structural timber is most commonly used within a dry building envelope but it can be exposed to excess moisture on-site during the construction phase. To ensure equilibrium moisture content relative to its anticipated service environment, structural timber is dried to between a $12-20 \%$ moisture content. Structural timber unprotected on-site is likely to be
exposed to elevated levels of moisture. Once the timbers are enclosed within the finished building, the 20% moisture content would then decrease in situ to 12%. Service class definitions are important as excessive shrinkage in-situ can cause warping and cracking of timber, reducing its mechanical properties

1.2 .3 - DIMENSIONAL TIMBER PROCESSING

During the processing of roundwood, approximately 50% is recovered as viable board and plank products, with the remaining dust, shavings and fibre byproducts typically used as biomass fuel or as fibre in engineered timber panel products with a market value. In order to ensure that processed timber materials are able to support anticipated maximum loads as part of a structure in service, it is necessary to strength grade each piece of dimensional timber. This grading standard permits a structural engineer to specify a chosen strength class of timber and use the characteristic strength values of that class in their design calculations.

Aside from dimensional sawn timber, softwoods are also processed into structurally optimised building materials known as "engineered timber". The benefits of these wood composites manufactured from laminated timbers, adhesives and other materials, include increased dimensional stability, more homogeneous mechanical properties and greate durability. The following are the families of these materials.

Figure 1.3 - The processing chain of engineered timber products, P.H. Fleming

GLULAM
Defined as a structural timber member composed by at least two essentially paralle laminations which may comprise of one or two boards side by side having finished thicknesses from 6 mm up to 45 mm . These are typically used to fabricate curved and long beams limited only by methods of transport. Glulam is allocated to specific strength classes defined in BS EN $14080: 2013$

LAMINATED VENEER LUMBER (LVL)
A reconstituted dimensional timber that is common twice the strength of dimensional timber of the same species manufactured from rotary peeled veneers of spruce, pine or dougla fir of 3 mm thickness. Usually, the veneer grain is oriented in a single direction but cross grained sections are also manufactured to offer tailored mechanical properties. Lengths of short veneer are jointed end-to-end with a scarf joint allowing limitless dimensional lengths.
olitecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

STRUCTURAL VENEER LUMBER (SVL)

It consists of outer plies of LVL laminated together to form linear structural components Douglas fir veneers of 2.5 mm laminated in the direction of grain parallel to the longitudinal direction of the board or beam are common

CROSS-LAMINATED TIMBER (CLT or XLAM)
Timber panels that are made of a minimum of three layers of sawn softwood stacked on top of one another at right angles and glued to form a thickness in the range $50-500 \mathrm{~mm}$ suitable for floor, wall and roof elements of up to 13.5 m in length

-JOISTS

Whilst these are more expensive and deeper than solid timber joists for an equivalent strength and stiffness, composite IJoists are more dimensionally stable due to their homogeneous OSB web and the relatively small dimension of the solid timber or LVL flanges.

PANEL TYPES

Structural prefabricated sandwich panels consisting of an insulation layer encased between two skins of fibre or oriented strand board

Many engineered panel products are also combined with dimensional timber frame constructions to add bracing and shear strength including Plywood, Oriented Strand Board (OSB, Medium Density Fiber Board (MDF) and Fiberboard

Although engineered timber products have superior structural properties as compared o dimensional timber, the necessity for adhesives use, negatively impacts the embodied energy burden of these products.
1.3 - TIMBER FOR STRUCTURAL USE

1.3.1 - WHAT TO BUILD WITH TIMBER

Timber is one of the three structural materials currently used in the construction of large structures, along with steel and reinforced concrete. If timber is used in the types of building in which it is most structurally efficient then the timber we harvest can do the most to reduce the environmental impact of construction.

Hardwood is slightly stronger, and softwood slightly weaker, although timber cannot match modern high-strength concrete in compression. Timber is less stiff than concrete, and both materials are far less stiff and strong than steel, however, it has a low density compared with these other conventional structural materials.

This results in efficiency for long-span or tall structures, in which a significant part of the load to be carried by the structure is its own weight. When those loads are resisted purely in load to be carried by the structure is its own weight. When those loads are resisted purely in
tension or compression, the strength-to-weight or elastic modulus-to-weight ratio are measures of the mass of material required to achieve a structure of a given area, height or span.

As a consequence, timber is a particularly structurally efficient material in structures, or parts of structures, in which a high proportion of the load to be resisted is the self-weight of the structure itself.

Examples are roofs, some bridges and the gravity load resisting system of tall buildings In structures for which the load to be resisted is largely independent of the weight of the structure, such as the wind load on a tall building, the higher absolute strength of steel or reinforced concrete may make them more efficient, in terms of the amount of material required to achieve the function of the building

In case of an earthquake, the force imposed on the structure by shaking depends strongly on its mass, with heavier structures experiencing larger seismic forces. Light timber residentia buildings have therefore been seen to perform better in seismic events, compared to havie structures such as reinforced concrete or masonry ones.

1.3.2 - BUILDING TALL BUILDINGS WITH TIMBER

In the last decade, a handful of six-storey timber buildings and higher have been constructed, and engineers have begun to look at the possibility to build much taller with timber.

The complexity of the structure of a tall building increases with the height of the structure. In low-rise buildings, where the forces to be resisted are relatively low, it is possible to resist lateral loads by bending stresses in walls which form a vertical cantilever. This is the approach widely used in cross-laminated timber construction in buildings.
Using a frame around the perimeter of the building, rather than a core in the interior, can oad all members in uniform tension and compression.

A common system for very tall buildings in concrete is a central core coupled with shear walls near the outer edges of the building by stiff link beams.

For buildings up to about six storeys, CLT uses substantially more timber to achieve the same function as a light timber frame building. For buildings over six stories, CLT together with light timber frame may require less timber than CLI alone, and for buildings taller than ten stories the only proven system to date is the external glulam frame supporting internal CLT units.

The structural material is only part of the material used in a building. Some materials, such as glazing, cladding and mechanical and electrical fittings may be unrelated to the structure. The use of wood as a structural material, however, often has the consequence of introducing ther materials to achieve certain performance requirements: concrete is often used to achieve acceptable floor vibration, for example, and gypsum boards for fire resistance or concrete to achieve thermal mass results

Figure 1.4 - Material usage in terms of mass in muti-storey timber buidings. The axes show the mass of timber and concrete used per m^{3} of each building

02 PRELIMINARY ANALYSIS

2.1 GENERAL OVERVIEW
2.1.1 THE BOROUGHS 12
mant
MANHATTAN - 13
QUEENS 13
THE BRONX 13
BROOKLYN 14
STATEN ISLAND
2.1.2 THE MULTI-ETHNIC POPULATION 14
2.1.3 THE CENTRE OF BUSINESS

More than 30 million tourists visit New York annually, but most of these rarely see much beyond Manhattan island, which is the smallest city borough. Divided by 12 north-south avenues and crossed by 220 east-west streets, Manhattan is easily understood and infinitely nchanting. It is the original New York, boasts the world's largest collection of skyscrapers and is overloaded with cultural, commercial and political institutions and places of end " the administrative business, and financial centre of the metropolis, In no other part of New York re there such stark contrasts between rich and poor, as it results to be the city with the highest number of billionaires in the whole world.

attan skyline
QUEENS
Queens county would constitute a major Anserican city were it not a part of New York. ts land is more than one-third of the city with primarly middle-class population owning private homes. In the 19th century, Queens had two shorelines that attracted the wealthy and it served as the final resting place for deceased New Yorkers.
A pleasing mix of the urban and the rural nvironment, Queens was the centre of the silent-filmindustry until displaced by Hollywood the late ' 20 s. This growing borough had more than a million inhabitants even before was linked to the Bronx by three bridges and o Manhattan by the Midtown Tunnel in 1940

In a diverse and cosmopolitan city as New York, Queens ranks as the most ethnically varied of all the boroughs. It has no visible rea since its residents are unted in apartments.

HE BRONX

 apartments.The Bronx is the northernmost borough and (except for a tiny sliver of Manhattan) the only part of New York on the mainland. It was first settled by farmers and for centuries remained rural, and is also the scene of many conflicts during the American Revolution, but afterwards it became the area where wealthy politicians and merchants established summer homes
For more than a decade after the mid-1960s, the Bronx became the scene of urban decay caused by crime, drug dealers and the strain of accepting waves of immigrants. The fires that
consumed its buildings and the drug and gang wars that destroyed its young people is what created the famous bad reputation of the area. During the last quarter of the 20th century, the tide of decay reversed, and the Bronx rebounded in remarkable fashion

BROOKLYN

The most populous borough of New York, Brooklyn, is to the east of Manhattan on the western fringe of Long Island. Early in the 19th century, it became the world's first modern commuter suburb, and Brooklyn Heights was transformed into a wealthy residential community.

Contemporary Brooklyn has the independent character of an industrial city. Although the borough has many private homes, the majority of its people live in apartments or upgraded row housing.

STATEN ISLAND

Geographically isolated at the juncture of Upper and Lower New York Bays, Staten Island is 8 km detached from Manhattan by ferry and a mile away from Brooklyn. Its surface is still the least densely populated, most rural part of the city, even though it ranks as the fastestgrowing county in the state

The construction of the Verrazano-Narrows Bridge in 1964 opened the Staten Island to quick development and made it a functional part of city life. Staten Island is the most homogeneous borough in New York; it has the lowest proportion of ethnic minorities and is the youngest and most politically conservative, such that when in 1990 U.S. Supreme Cour ordered a reduction in borough power, Staten Islanders endorsed a move to study secession from New York to become an independent city.
2.1.2- THE MULTI-ETHNIC POPULATION

The shifting population base of New York remains its most dramatic story and at the end of the 20th century, representatives of some 200 national groups were counted among its people. the biggest groups are people of European ancestry, Hispanics and African Americans.

The arrival of "new" immigrants from eastern and southern Europe after 1880 again changed Manhattan. Irish and Germans, who by then held a vast proportion of political and economic power, deeply resented Italians, Greeks, Russians, Hungarians, and Poles crowding into their city. Waves of immigrants continue to reach the city also nowadays, continuously increasing hese numbers. The Statue of Liberty, more than a century after its dedication in the harbour in 886, is still the most powerful symbol of New York, as it welcomes newcomers into the city's "golden door".

By the beginning of the 20th century, New York was the headquarters for more than two hirds of the top 100 American corporations, and its 25,000 factories manufactured several hundred different industrial products. It led the nation in total factory workers, a number of actories, capital valuation, and product value. New York held its leadership position and provided nearly one million industrial jobs into the ' 50 s

By constantly enhancing its key economic advantages, New York has remained prosperous even as it underwent change, its strength has always been lying in its diversity. The port, which lost some percentage of its shipping to other cities through the years, is still the busies port is the Las Coast and generates bilions of dors of revene, creates thousands of jobs, and is the focus of major plans for renewal and renovation. A major portion of the country's software and computer-related industry has located itself in New York and built an urban Silicon Alley to mirror California's Silicon Valley. The city's continuing financial supremacy was apparent in " The quadrupled ans postaurants, hotels, health clubs and theatres across Naw York are necessary to care for and eed the millions of visitors who come to the city annually.

Figure 2.4 - A view of New York's financial district

03 SITE

3.1 INTRODUCTIONN.Y. ARCHITECTURAL TERRACOTTA WORKS BUILDING3.2 THE I.M.M. INVESTIGATION19
3.2.1 THE STUDY OF THE NEIGHBOURING AREA 20
VOLUMES 20
VOIDS 21
TRANSPORTATIONS 22
FUNCTIONS 23
POROSITY 24
PERMEABILITY 25
COMPACTNESS 26
DIVERSITY 27
NTERFACE 28
COMPLEXITY 29
PROXIMITY 30
EFFECTIVENESS 31
CONNECTIVITY 32
3.3 THE SORROUNDING AREA 33
3.4 THE CLIMATE ANALYSIS 34
TEMPERATURE PROFILE 34
POLLUTION ANALYSIS 34
WIND ANALYSIS 34
CARPET DIAGRAM 37
3.2 - THE I.M.M. INVESTIGATION

IMM stands for Integrated Modification Methodology and it is an innovative design methodology based on a process with the main goal of improving the CAS (Complex Adaptive Systems) energy performance, modifying its constituents and optimizing the architecture of heir ligands.

Its approach is fundamentally Holistic, Multi-Layer, Multi-scale. In this methodology, the city is considered as a dynamic Complex Adaptive System comprised by the synergic integration of a number of elementary parts, which through their arrangement and the architecture of their ligands provide a certain physical and provisional arrangement of the CAS. In IMM the emergence process of interaction between elementary parts to form a synergy is named Key categories. These are the products of the synergy between elementary parts, a new organization that emerges not simply as an additive result of the proprieties of the elementary parts. When we alter the interaction between elementary parts and recombine them in a different way, different organizations emerge, but it could also get lost. This explains that added proprieties emerge just when the combination is right.
According to this view, the city is not only a mere aggregation of disconnected energy consumers and the total energy consumption of the city is different from the sum of all of the buildings' consumption

This considerable gap between the total energy consumption of the city and the sum of all consumers is concealed from the urban morphology and urban form of the city. The MM investigates the relationships between urban morphology energy consumption and environmental performances by focusing mostly on the 'Subsystems' characterized by physical characters and arrangements

The main object of this design process is to address a more sustainable and better performing urban arrangement. IMM methodology is based on a multi-stage process composed of four different but fully integrated phases. It shows, through an interconnected Phasing Design Process, how incorporating a wide range of issues makes it possible to mprove the metabolism of the city as well as its energy performance.
Just like any other system, the built
environment is characterized by including parts and subsystems between which there are complex relationships. Accordingly, in the Investigation phase, the system is being broken into its parts. Morphologically speaking, these parts for the cities would be Urban Volume, Urban Void, Links, and Types of Uses. After analyzing the mentioned subsystems individually, the synergy between them is being investigated. Key categories are types of emergency that show how elements come to self-organize or to synchronize their states into forming a new level of organization. Emergence is something new that can't be described by the description of the parts. Emerging properties are the product of the synergies

Figure 3.4 - Concept of the I.M.M. investigation namely: Porosity, Permeability, Proximity, Diversity, Interface, Accessibility, and Effectivenes Numerous properties of the urban environment like the physical arrangement of the building blocks, car dependency, connectivity, functional arrangement and the performing manner of public transportation are being examined here.

Built Volume

Lower density

Higher permeability
Lower permeability

The most important road in the area of the building site is Vernon Boulevard, a street running parallel to Roosevelt Island from Socrates Sculpture Park to Hunters Point and Long Island City.

In the quarter, it is possible to notice the effect of the urban gentrification: the district is under redevelopment and what once was a set of poor and degraded buildings, is now reaching new value thanks to the construction and retrofitting of modern and functional architectures.
Just like the whole city of New York, the surrounding area of the site is a touristic attraction due to its proximity to Roosevelt Island, but most of the buildings around the vacant lot are industrial and residential. Primary and secondary functions are present and not far one from each other. The long waterfront is the object of redesign and improvement, in order to become an attraction and a liveable area useful for inhabitants and tourists.

What the city is aiming to is a complete requalification of the old industrial navy zone, as it is happening in Brooklyn, with the complete retrofitting of buildings. A clear example is the Brooklyn Navy Yard, an old shipyard and industrial complex where, in the renovated buildings, more than 330 businesses are now located, collectively employing about 7000 people.

3.4 - THE CLIMATE ANALYSIS

The city of New York is generally known for a humid continental climate. The weather is trongly influenced by two continental air masses: one is warm and humid and weather is the southwest, while the other one is cold and dry from the northwest.

Summers tend to be warm and humid, while winters are generally cold and snowy due to he cold air coming from the north.

NEW YORK

Figure 3.8 - Humidity and temperature hourly data chart
TEMPERATURE PROFILE
The temperature analysis chart reflects what the general behaviour of New York's climate is, the daily and monthly averages have a regular trend which puts the cold season from half October to March and the hot season from half May to half September. In summer it is possible to reach $35^{\circ} \mathrm{C}$ and higher, while in January the minimum registered temperature touches $-15^{\circ} \mathrm{C}$.

POLLUTION ANALYSIS
Even though New York is one of the most populated cities in the world, the quality of the air is better than what could be expected

The particulate matter concentration in the air is lower than expected, even if the quality of the air is not so clean, obviously due to the high concentration of cars, industries and buildings.

Polluting gases like carbon monoxide (CO) and sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ have a low registered concentration which is greatly far from the optimal threshold for healthy breathable air. Nitrogen dioxide (NO2) has a higher concentration if compared to the previous two gases, but also this one rarely oversteps the admitted threshold for optimal quality of the air The gas which has higher concentration in the air is Ozone $\left(\mathrm{O}_{3}\right)$ and this is the one that more frequently exceeds the limitations.

Anyway, thanks to the close position to the ocean and the presence of almost constan breeze and wind, the air in the detected zone of New York (less than 2 km from the site) is no unacceptable and the quality is greatly positive.

WIND ANALYSIS

Through the year the wind doesn't reach high values of speed, the maximum registered is around $13 \mathrm{~m} / \mathrm{s}$ at a height of 80 meters. The most frequent direction of origin is north-west even if the strongest winds are registered coming from south.

TEMPERATURE ANALYSIS

DEGREE DAY CHART

Figure 3.9 - Dry bulb Temperature and degree day hourly data char

Politecnico di Milano. Master of Science in Building and Architectural Engineerin Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marce

OZONE

Figure 3.10 - Particulate matter concentration data chart (PM 2.5 and PM 10)

SULFUR DIOXIDE

PARTICULATE MATTER 2.5

 time [dd/mm]
$60 \times$ PM 10 Concentration ——Threshold

time [dd/mm]
$\times \mathrm{SO}_{2}$ Concentration Threshold

NITROGEN DIOXIDE

CARBON MONOKIDE

cnico di Milano Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

Figure 3.12 - Wind rose data chart

CARPET DIAGRAM

In the below carpet diagram, the distribution of the temperatures through the year is shown In particular, the graph underlines that New York is in a heating-dominated climate.

MASTERPLAN DESIGN

THE DRIVEWAY ACCESSES
THE INTERNAL PATHS

THE ATTRACTIONS

4.1- THF SITF ANAIYSIS

As requested in the competition's guidelines, the three main functions area residential, educational and wealthy. It has been chosen to keep these functions disconnected, due to the particular requirements each function foresees, resulting in three different buildings but linked by a common architectural language. In particular, the two-level kindergarten and the complex shape of the sports centre are dominated by the residential building, a 23-floor tower

In order to position the buildings in a better way, the area has been studied in terms of sola radiation, projected shadows and wind, so that they would not create any issue for each other

Fortunately, the site is not surrounded by excessively high buildings and the only tall element nearby is the Queensboro bridge. Being it on the north side, it does not create shadows on the land and as a consequence, it is not a solar obstacle for winter solar gains. As it happens, the solar radiation hitting the site's surface has a constant high value around 1'500 $\mathrm{kWh} / \mathrm{m}^{2}$, etting the designers consider the solar power as an opportunity to take advantage of On the south of the site, at the moment, there is an old factory with two high chimneys, and these
 are the only elements that project shadows on the flat surface of the lot. Since these two elements are thin and tall, it is studied that they only create a shadow issue in winter for not more than seven or eight hours a day in the most southern region of the lot, resulting in not being a considerable obstacle. Neither the wind needs to be considered as a dangerous or hazardous element since the climatic data did not register high speed and there are no surrounding obstacles which could create turbulences.

Figure 4.1 - Solar radiation analysis

4.2 - THE MASTERPLAN CREATION

After placing the buildings, designing and developing their surrounding area is important o create a harmonious and balanced environment between new constructions, land in the site and the rest of surrounding city, making it fascinating and beautiful but, at the same time, unctional and practical.

THE DRIVEWAY ACCESSES

The first decision is to keep the public parking under the bridge, as it is now. These would be useful for the whole surrounding area and, in particular, for the new sports centre. On the side of the entrance of this parking, there are two vehicle ramps which enable the inhabitants the residenia tower to reach the two undergound pivale parking levels. In this way, one pnly driveway access on Vernon Boulevard is in service of the residential bullaing and the public parking.The educational centre has, instead, its own access 40 m distant from the previous one. This access leads to a small internal parking and the internal courtyard, where it is possible to have a quick stop for parents who need to leave the kids and to park for the kindergarten teachers

Figure 4.8 - Definition of the buildings' position

THE INTERNAL PATHS
The green open space within the buildings is crossed by internal paved paths. The main one creates a linear axis which links the main road, Vernon Boulevard, to the waterfront. In this way, also from the road, it is possible to have a view on the river and on Manhattan's skyline. Other secondary paths link the main one to the buildings and to the open parking main the are carriageable, so that cars and trucks can drive over it. This is due to the lawn maintenance by gardeners and to the movement of food trucks which will populate the area under the bridge and the waterfront, to create a fix but changing attraction.

THE GREEN

All around the buildings, and in particular between the sports centre and bridge, the area is to be kept as green as possible. The lawn is everywhere, winhigh trees and lower open public park. Toward the basketball court of the sports centre there's an escarpment with flowers and brushes, while all around the lawn there are scattered troes that go from the main road to main road to the waterfront.

THE WATERFRONT
As required by the competition and by the general project of redevelopment of the city, the existing waterfon has been given new value. Previously, it just was an extension of the green space that is on the other side of the bridge. Now, it matches green, attraction, functions and a new pedestrian and cyclable path.

At the end of the lawn, in fact, there is first the cyclable path following the river from north
to south. After it, a staircase which leads to the water level which, with a game of higher and lower steps, welcomes trees and brushes scattered through the waterfront

In this way, the river walk has more than a level, allowing people to walk at the same height as the lawn or closer to the water. Thanks to this particularity, this waterfront, which is not just in front of this site but runs from north to south in front of Roosevelt Island, can become an attraction for tourists and locals.

THE ATTRACTIONS
The whole area will not be useful only for the inhabitants of the residential building, but it will be open to all the New Yorkers and all the tourists. This is why, in order to make the area more attractive and liveable, other open functions are present.

Under the bridge, for example, at the end of the public parking, there is a big paved rectangle. Half of it is occupied by a skate park, while the other half of the area is used by food truck drivers to stop and work there, according to licenses and permissions. Another food truck can be placed at the end of the principal path, close to the waterfront.
4.3 - THE POSITION OF THE BUILDINGS

Following these studies on the area, alongside with the enhancement of existing and potential pathways, the result is a reasoned and optimized position in the masterplan

In particular, the residential building, which is the highest of the three, is set close to the bridge and on the north side of the site, so that it won't create any shadow on the other two constructions. The children education centre, which is going to be a two-storey building, will be in front of the residential tower on the south side. Moreover, it is going to be linked existing "New York Architectural Terra Cotta Works Building", and it can be considered as a bon purpo in order to better distinguish the newly added part from the original building Regarding the sports centre it is placed on the south side together with the kindergarten but Regar to the river. Being it a low rise building it will proiect some shadow on the north, but will just affect the green area expected in the middle of the site

Politecnico di Milano, Master of Science in Building and Architectural Engineering

ARCHITECTURAL DESIGN

1 INTRODUCTION 48
5.2 THE EARLY CHILDHOOD EDUCATION CENTRE 48
5.3 THE SPORTS WELLNESS CENTRE 49
5.4 THE RESIDENTIAL TOWER 50
5.3.1 THE INTERNAL DISTRIBUTION 50
THE CENTRAL CORE AND THE VERTICAL CONNECTION 50
THE FLOOR PLANS 50
GROUND FLOOR 51
IRST FLOOR 52
TYPE A 53
TYPE B 54
YPE C 55
TYPE D 56
TYPE E 57
EVEL-1 58
LEVEL -2 59
5.3.2 THE ELEVATIONS 60
THE CURTAIN WALL 60
HE CLADDING AND THE WINDOWs 60THE BALCONY60
SOUTH-WEST 61
NORTH-WEST 62
NORTH-EAS 63
5.3.3 THE ARCHITECTURAL RENDERINGS 64

5.1 - INTRODUCTION

The three different buildings have big differences in shape and aspect, but they are anyway linked by a stylistic and external harmony, which create, despite the contrasts, a unique architectural language.

5.2 - THE EARLY CHILDHOOD EDUCATION CENTRE

The education centre building is to be considered as a timber structure enlargement of the existing historic building called "New York Architectural Terra Cotta Works Building".

It is sized to host until 130 children between the ages of 6 weeks and 5 years, so from infants through prekindergarten. It is linked to the original building through a corridor which serves the classrooms of the new structure, leading to the auditorium placed at the end. The rooms are normal classrooms, or specially equipped rooms for music and art activities, together with playrooms, both internal and external.

It develops on two levels, so that, according to the local regulations, there is enough room at ground floor for infants (from 6 weeks to 24 months), while older children can stay at the second level. Also, in this way, the total height of the new addition of the building is not talle than the existing one. In fact, the horizontal roof of the new part touches the old structure exactly where the original pitched roof starts.

The enlargement basically has two bodies: a long and thin one, with one row of rooms and the corridor, and a large one at the end of the previous one. This is where the corridor ends, leading to the biggest rooms and the auditorium. In this way, together with the "New York Architectural Terra Cotta Works Building", the whole building has a C shape that creates private courtyard.

This courtyard is divided into two sections by a fence and it has two functions. The hal closer to the road is parking, where the parents can shortly stop to bring inside the kids and where the workers can park their car for the day. The other half is an external private playground for kindergarten kids

The south and north facades of the building have the same curtain wall. This has timber mullions and transoms which follow, both vertically and horizontally, a modular scheme: their distance is always a multiple of $120 \mathrm{~cm}(120,240,360)$, creating a regular disorder which gives movements but, at the same time, simplicity, to the walls. In this way, this curtain wall, which faces north and gives natural light to the classrooms, maximises the entrance in these rooms of diffuse light, so that glaring effect for children and teachers is null.

The roof is green with grass on it and it is half covered by PV panels. The access to the roof is directly from the pitch of the old building's roof, therefore, the internal vertical connection

5.3 - THE SPORTS WELLNESS CENTRE

The sports wellness centre is a mid-rise timber building with different functions.
The volume is divided into two main bodies: a flat and half underground one and a mid-rise body that looks composed by overlapping cubes

The flat area is half underground and hosts two basketball courts: an indoor one at level -1 and an outdoor one on the roof. The overground body has many other functions, in particular all the fitness rooms (cardio area, weightlifting room, CrossFit room, courses room), the locker ooms, the staff offices and, at ground level, a physiotherapy centre and a restaurant. All these functions are thought to create a healthy attraction for people that, coming here, can devote attention to their bodies, considering sport as a source of the body and mental wellness.

The whole building has a particularity: the walls facing north and south are glass facades, while the ones facing east and west are completely opaque. The inspiration for this architectural effect and for the entire building volume has been taken from the Kashiyama Daikanyama building by Nendo, a new commercial complex in Tokyo. The curtain walls of the glass facades have the same modular texture of mullions and transoms of the educational centre so that it can appear having continuity with the building on its side.

The cubes which create the mid-rise part of the building are inclined one with respect the other. This inclination and the position of every single cube has been optimized with energy simulation, in order to find the best solution in terms of energy demand. In this way, the shape and the position of this composed volume allow to maximize the solar gains and minimize the annual energy demand for heating and cooling.

The cubes that form this complex volume are externally linked by staircases connecting the formed terraces. These stairs give movement and naturalism to a structure that would be, otherwise, too static and rigid. The volume projects its shadows on the green public area, being a source of refreshment in hot summer days, without being an obstacle for other buildings

All the cubes have different height and flat roof. This game of heights creates a movement which is recognizable also from the top view, where the opaque roof is partially visible and it camouflages with PV panels and staircases

The outdoor basketball court is linked by a big stair to the surrounding green area and to the waterfront. This means that every terrace is connected to the park, creating one only big and multilevel welcoming space.

One last particular aspect of this building is that, due to its inclination and its differences in height, if seen from Vernon boulevard, it recalls the visual effect of many different skyscrapers seen from a distance, and it perfectly matches the Manhattan skyline in the background view. In this way, from the road, the skyline view is not hidden but it is, instead, enhanced and embellished.

Figure 5.2-3D view of the sports wellness centre

The third and last building is a residential high rise tower. This building is the more in-depth studied since every aspect of it has been deepened, from the exterior appearance to the structure and the technology.
5.3.1 - THE INTERNAL DISTRIBUTION

The building has a rectangular shape ($30 \mathrm{~m} \times 15 \mathrm{~m}$), with the longer side parallel to the Queensboro Bridge.
THE CENTRAL CORE AND THE VERTICAL CONNECTION
The tower has a central reinforced concrete core which structurally gives strength and inertia to the whole building. It is composed of thick walls which bear the horizontal forces due to wind and earthquakes. Within these walls, there are two stairwells, three elevators and two systems cavities.

All the three elevators are big enough to host up until eight people to avoid lines and long waits in the peak hours. Alternatively, the two stairwells are available, but only the central one goes down until the two underground levels. The position of the fire doors is studied in order to create a safe filter and so that every vertical connection is secured by smoke.
THE FLOOR PLANS
The two underground levels have basically the same plan. They are linked to the outdoor by two ramps for vehicles which are parallel. The parking develops all around the tower with forty-five open parking spaces per floor, guaranteeing ninety parking spaces for the residents The central core keeps the same plan that it has in the other floors, while under the surface of the tower there are many cellars, for a total surface of $180 \mathrm{~m}^{2}$ per floor. These are linked to the apartments so that people can have storage rooms if they need additional space. A big technical room is to be set in both the two underground levels, in order to host all the needed mechanical systems. Considering the central stairwell as a safety exit, there is another one in the furthest corner of the parking, its exit is outside in the open public parking under the bridge. The other safety exit is the ramp itself since it is open. The whole underground level is surrounded by a crawl space, necessary for the natural ventilation required for fire safety reasons.

The ground level hosts different functions for the residents. There is a big entrance hal from where it is possible to access the central core and, from here, it is possible to get to the other functions and floors. There is a big laundry room, open to every dweller of the building, and a garbage room. These two are close to the ramps so that they can easily be accessible for vehicles. On the other side of the central core, there is bicycle storage for residents normal and electrical bikes, with also recharge stations. The rest of the surface is occupied by a playroom and a coworking area where people can meet to hang out or to work together

The first level is the only one which is smaller than the other ones since the coworking and the entrance hall on the ground floor have a double-height. The portion on the right of the central core is a gym, while the one on the left is a silent work/study room. They both face the central core is a gym, while the one on the left is a silent work/study room. They both face the are surrounded by a curtain wall which has the same modular texture of the kindergarten and of the sports centre. This choice was made to have the same architectural language in every building and to have the maximum possible light entering in these common spaces in the basement of the tower. Another common area is the roof, which is open to all the inhabitants who wish to enjoy the view with some friends on the green grass placed on the flat covering

The upper floors are the ones that host the apartments. There different typologies of floor plans in which many kind and dimensions of flats alternate themselves. The units go from the studio, with one only room working as a living room and bedroom together, to the biggest which is the attic, placed up at the last two floors. In between, various apartments with one two and three bedrooms are planned, combined together to create five different typologies of floor plans. Every floor has a balcony running around almost the totality of the building, with the exception of some holes on the south, east and west sides, and the correspondence with the elevators in the central core.

.3.2 - THE ELEVATIONS

THE CURTAIN WALL

At the ground and on the first floor there is a timber curtain wall which is equal to the one used in the other two buildings. The timber mullions and transoms create a regular and modular texture since they have an interaxis distance which is always a multiple of 120 cm The alternation is not regular so that they can create wider and smaller transparent rectangle that alternate on the façade

THE CLADDING AND THE WINDOWS
The elevations of the building are very tall, so in order not to have a monotone solid element, is important to create a pattern with cladding panels and windows. In particular, these elements are always 60 centimetres wide and they create a module that alternates on the façade. The windows are combined to have big transparent elements composed by up to seven window sashes, in way, ther is an alle opaque and transparen modules of 120, 180 elevators. This part of the elevation can be used to fix some advertisement panels due to its position. it is in fron the position: it is in front of the highway of the Queensboro Bridge. This could be a way for the THE BALCONY

The balcony is a continuous element running from one side to the other, but it is interrupted by a 180 cm hole which is present on every floor. The length of the overhang has been optimized with energy simulations in order to find the optimal measure. the result is 2 meters. With this dimension the balcony works perfectly as a shading element in summer but, at the same time, it allows enough light to enter the building in winter for sufficient solar gains. Furthermore, with this length, the natural light is the best compromise between the well-lit and the overlit ratio of the internal environment. These holes create one or more lines on the facades, elements that give movement to the building and create a distinctive element on the elevations. In particular, the North-West facade and the South-East have the same pattern and appearance. Moreover, the railings are of two different kinds and they alternate vertically at every floor: one is a glass transparent element and so it won't almost be seen, while the other one is opaque and it is made with the same material of the cladding, just the colour changes, going from a lighter to a darker shade of the same one

Figure 5.3-Architectural rendering, view 1

OL STRUCTURAL DESIGN

6. 1 MATERIAL DESCRIPTION 68
6.1.1 DEFINITION 68
6.1.2 TIMBER 68
6.13 CALCULATION PROCEDURE 68
6.2 CASE STUDY 69
6.2.1 INTRODUCTION 69
6.2.2 STRUCTURAL SCHEME 70
.2.3 TECHNOLOGY 71
6.2.4 CODES 72
6.2.5 MATERIALS 72
6.3 LOAD ANALYSIS 74
6.3.1 PERMANENT LOADS 74
3. VARIABLE LOADS 77
6.4 ELEMENT DESIGN 82
6.4.1 STEEL CANTILEVER BEAM 82
6.4.2 XLAM - INTERMEDIATE SLAB 88
6.4.3 XLAM - ROOF 92
6.4.4 STEEL SECONDARY BEAM - HE SHAPE 93
6.4.5 STEEL SECONDARY BEAM - UPN SHAPE 96
6.4.6 STEEL PRIMARY BEAM 100
6.4.7 STEEL BORDER BEAM - SECONDARY BEAM LOAD
6.4.9 STEEL COLUM 114
6.4.10 CONCRETE MIX DESIGN 122
6.4.11 CONCRETE BEAM - SLAB'S LOAD 125

6.1 - MATERIAL DESCRIPTION

6.1.1 - DEFINITION

The development of dry-built technologies has increased a lot over the last decades alongside with the growing resistance provided by higher-performant materials, it allows the combination of greater spans and higher-rise buildings, with thinner elements. On the other hand, joint techniques are always more affordable and more common in daily-practice use Everything goes in the direction of the prefabrication, for greater management in terms of performances, quality execution and general speed of the construction process

In the analysed building, the main effort has been done on the dimensioning and the calculations of cross-laminated timber and steel members. With this, we underline how much the prefabrication concept has in the analysed project, with a careful design and drawing of each constructing element.

6.1.2 - TIMBER

Timber, used as a bidimensional board, represents the base for a complete cross-laminated timber element. This "engineered" timber looks like practical, economical and easy to build up. From a generic point of view, CLT panels are used for load-bearing applications, working as a solid bidimensional element. It is made of odd layers and assembled orthogonally among themselves, having thus the symmetrical behaviour under the permanent and variable actions o constrain.
Boards are generally sorted by the provided resistance to bending moment; commonly, we face resistances that go from $24 \mathrm{~N} / \mathrm{mm}^{2}$ to $36 \mathrm{~N} / \mathrm{mm}^{2}$. Boards, previously planned, are joined by means of finger joints, in order to ensure the structural continuity between the sheets tha make up the individual layers.

These panels are built inside controlled factory conditions and delivered to the site with all the layers already assembled ready to be set in the proper positions This technology provides both great performances in terms of energy efficiency and high-quality elements, reducing the needed onsite time, therefore the overal cost.
6.1.3 - CALCULATION PROCEDURE CLT TECHNICAL BEHAVIOUR

The way to calculate CLT, as a combination of laminated timber boards and orthogonally crossed at each leve, and crosed has The main direction of the layer corresponds to the ideal way of the loading path (from the panel, it goes in the beams, and so on), and it has a greater stiffness of the beam.

In order to compute the effective resistance of the beam, only the panels ordered in the main direction will be computed, because of the null Young modus assumption for transverse fibres $\left(E_{90}=0\right)$. Furthermore, a shear action, defined as "rolling shear" will appear on these above-mentioned transverse layers; consequently, these layers are intended more as spacers for the longitudinal ones, in order to get a higher inertia moment for the fina verification to deflection.

Figure 6.2 - Shear behaviour

CODE PRESCRIPTIONS

Because of the lack of information that

Figure 6.3 - Net cross-section vs. gross cross-section

6.2 - CASE STUDY

6.2.1 - INTRODUCTION

The case study consists of 25 floors: 23 of them are above ground, while 2 are completely underground. Following dry-assembled concepts, the idea was to use as much as possible astening elements, like CLT panels for initial load-bearing slabs, and steel-frame members for beams and columns.
The computed elements regard, consequently, all the members included in the tower, and more specifically

CLT panels for rooftop
CLT panels for a typical slab;
Cantilever steel member, having a fixed-end constrain to be welded;
Secondary steel member, acting in the middle of the span space;

- Secondary steel member, set on the outer face of the central core;
- Primary steel member
- Border beam element, subjected to the action of the primary beam;
- Border beam element, subjected to the action of the slab itself;
- Steel column member;
- Concrete beam at the ground floor, calculated for the specific purpose of bearing a glass-façade.

For the purpose of the thesis, the above-mentioned elements have been computed in order o match the feasibility of the specific vertical and horizontal joints, aiming for a complete study of the technological field it has been addressed
6.2.2 - STRUCTURAL SCHEME

As shown in the above image, the building is mainly based on a central concrete core, and on a simple frame made of steel.

Figure 6.4-3D view of the typical structural scheme
Shear walls are represented by a central core, made of concrete. It acts like a windward element in case of building's torsion due to wind force, constraining the arisen momentum but also provides security in case of a fire incident. It covers a span of 13.60 metres in the longer direction of the tower, and it has a length of a single span in the shorter direction of 7.50 metres. The slabs set at the inside are assumed as made of concrete, due to the specific aim that it must provide with respect to the fire prescriptions; this is the only place designed to resist in case of fire propagation. It includes three lifts and two stairwells, secured by filter spaces at the edge of it.

Mitecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

Due to the severe functionality, the core must dear with, structural girders and columns have been designed in order to comply with the given spans of the concrete elements. In order to facilitate the static behaviour of the building, a regular scheme has been adopted spans are approximately 6 to 8 metres long, and they follow the first grid the core has. The connection of the beams to the concrete is made through stiffeners plates and anchoring elements passing through the secondary beam and reaching the concrete element.
Consequently, the structural grid covers an area of 3 rows in the shorter span and 5 in the onger direction. Because of the foreseen thickness of the total slab, it has been decided to order secondary beams in the shorter direction for each loading area, so that it was possible to have slightly reduced thicknesses with respect to the other solution. Since the building has a regular vertical subdivision (double-height floors have been avoided) without the use of multi-panel door-windows over a regular height, the greater size border beams have is not mpacting on the defined architectural choice. Due to these considerations, CLT panels were ordered in the orthogonal direction of the above-mentioned position of secondary beams

6.2.3 - TECHNOLOGY

As anticipated, the use of CLT panels and lumber elements could output as the main conclusion a lightweight construction. The layer assembling of customised elements membranes and panels, also considers the mid-long spans the building has: therefore, lighter stratigraphy could help for a reduced load acting on the structure so that the selection of stee element might go for a thinner member. In this way, the reduced space reserved for structura elements can go for a greater commercial area of apartments, increasing the overall value of the building

Figure 6.6 - Structural plan of the typical floo

- 6.5 - Partial structural section of the builaing

Politecnico di Milano, Master of Science in Building and Architectural Engineering
Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

6.2.4 - CODES

The following list includes the code used for the definition of general and specific prescriptions of all the structural elements

- "Eurocode 1: Actions on structures"
- "Eurocode 2: Design of concrete structures"
- "Eurocode 3: Design of steel structures"
"Eurocode 5: Design of timber structures"
"ASCE 7: Minimum Design Loads for Buildings and Other Structures"
Because of the limited availability of data for the project site, it has been decided to rely completely on the Eurocodes for the design of the structures for each specific element

6.2.5 - MATERIALS

The following subchapter shows, for each material, the properties of the chosen material Later, the reasons the choice for the specific class will be explained, by looking into the detail of the calculation procedure

CROSS LAMINATED TIMBER PANELS		
Class		GL36h
Characteristic bending strength	$\mathrm{f}_{\mathrm{m}, \mathrm{k}}$	$32.00 \mathrm{~N} / \mathrm{mm}^{2}$
Operative bending strength	$\mathrm{f}_{\mathrm{m}, \mathrm{k}^{*}}$	$28.80 \mathrm{~N} / \mathrm{mm}^{2}$
- Partial safety coefficient for CLT	γ_{M}	1.25
Characteristic shear strength	$\mathrm{f}_{\mathrm{v}, \mathrm{k}}$	$4.30 \mathrm{~N} / \mathrm{mm}^{2}$
Operative shear strength	$f_{v, k^{*}}$	$3.44 \mathrm{~N} / \mathrm{mm}^{2}$
Operative compressive strength along the grain	$\mathrm{f}_{\mathrm{c}, \mathrm{O}, \mathrm{d}}$	$31.00 \mathrm{~N} / \mathrm{mm}^{2}$
Young Modulus	$\mathrm{E}_{\mathrm{g}, \text { mean }}$	$14700 \mathrm{~N} / \mathrm{mm}^{2}$
- Operative Young Modulus	$\mathrm{E}_{\mathrm{g}, \text { mean,fin }}$	$4900 \mathrm{~N} / \mathrm{mm}^{2}$
Coefficient due to humidity exposure (class 1)	$\mathrm{k}_{\text {def }}$	0.60
Coefficient due to humidity exposure (class 3)	$\mathrm{k}_{\text {def }}$	2.00
- Coefficient of shape affecting moment verification	$\mathrm{k}_{\text {sys }}$	1.13 vs. 1.23
Characteristic traction // to fibres	$\mathrm{f}_{\mathrm{t}, 0, \mathrm{~g}, \mathrm{k}}$	$25.60 \mathrm{~N} / \mathrm{mm}^{2}$
Rolling shear modulus	$\mathrm{G}_{\mathrm{r}, \mathrm{g}, \text { mean }}$	$51.20 \mathrm{~N} / \mathrm{mm}^{2}$
STEEL - CANTILEVER BEAMS		
Class		S355
- Characteristic yielding strength	$f_{\text {y,k }}$	355.0 N/mm ${ }^{2}$
- Operative bending strength	$\mathrm{f}_{\mathrm{m}, \mathrm{k}^{*}}$	338.1 N/mm²
- Partial safety coefficient for structural steel	$\mathrm{V}_{\text {ss }}$	1.05
- Admissible operative tangent tensional stress	$\tau_{\text {d }}$	$195.2 \mathrm{~N} / \mathrm{mm}^{2}$
- Young Modulus	$\mathrm{E}_{\mathrm{g} \text {,mean }}$	$210 \mathrm{kN} / \mathrm{mm}^{2}$

Politecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

-	Class		S235
-	Characteristic yielding strength	$f_{\text {y,k }}$	235.0 N/mm ${ }^{2}$
-	Operative bending strength	$f_{m, k^{*}}$	223.8 N/mm ${ }^{2}$
-	Partial safety coefficient for structural steel	$\gamma_{\text {ss }}$	1.05
-	Admissible operative tangent tensional stress	$\tau_{\text {d }}$	$129.2 \mathrm{~N} / \mathrm{mm}^{2}$
-	Young Modulus	$\mathrm{E}_{\mathrm{g}, \text { mean }}$	210 kN/mm²
STEEL - BORDER BEAMS			
-	Class		S275
-	Characteristic yielding strength	$f_{y, k}$	275.0 N/mm ${ }^{2}$
-	Operative bending strength	$\mathrm{f}_{\mathrm{m}, \mathrm{k}^{*}}$	$261.9 \mathrm{~N} / \mathrm{mm}^{2}$
-	Partial safety coefficient for structural steel	$\nu_{\text {ss }}$	1.05
-	Admissible operative tangent tensional stress	$\tau_{\text {d }}$	$151.2 \mathrm{~N} / \mathrm{mm}^{2}$
-	Young Modulus	$\mathrm{E}_{\mathrm{g}, \text { mean }}$	$210 \mathrm{kN} / \mathrm{mm}^{2}$
STEEL - COLUMNS			
-	Class		S550MC
-	Characteristic yielding strength	$f_{\text {y,k }}$	550.0 N/mm ${ }^{2}$
-	Operative bending strength	$\mathrm{f}_{\mathrm{m}, \mathrm{k}^{*}}$	523.8 N/mm ${ }^{2}$
-	Partial safety coefficient for structural steel	$\gamma_{\text {ss }}$	1.05
-	Admissible operative tangent tensional stress	$\tau_{\text {d }}$	302.4 N/mm ${ }^{2}$
-	Young Modulus	$\mathrm{E}_{\text {g,mean }}$	$210 \mathrm{kN} / \mathrm{mm}^{2}$
CONCRETE - BORDER BEAMS			
-	Class		C37/45
	Characteristic cubic compressive strength	$\mathrm{R}_{\mathrm{c}, \mathrm{k}}$	$45.00 \mathrm{~N} / \mathrm{mm}^{2}$
	Characteristic cylinder compressive strength	$f_{c, k}$	$37.50 \mathrm{~N} / \mathrm{mm}^{2}$
	Compressive resistance strength	$\mathrm{f}_{\mathrm{c}, \mathrm{d}}$	$21.25 \mathrm{~N} / \mathrm{mm}^{2}$
-	Operative compressive resistance strength	$f^{\prime}{ }_{\text {c d }}$	$17.00 \mathrm{~N} / \mathrm{mm}^{2}$
-	Operative tensional stress of concrete	$\sigma_{\text {c }}$	$22.50 \mathrm{~N} / \mathrm{mm}^{2}$
-	Average tensional compressive cylindric res.	$\mathrm{f}_{\mathrm{c}, \mathrm{m}}$	$45.50 \mathrm{~N} / \mathrm{mm}^{2}$
	Average tensional cylindric resistance	$\mathrm{f}_{\text {ctm }}$	$3.36 \mathrm{~N} / \mathrm{mm}^{2}$
-	Characteristic traction resistance	$\mathrm{f}_{\text {ctk }}$	$2.35 \mathrm{~N} / \mathrm{mm}^{2}$
	Concrete/steel Young Modulus ratio	α	15
-	Speed of development for concrete resistances	β	2.25

Poitecnico di Milano Master of Science in Building and Architectural Engineering
Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco Steember - Steel and timber for a high rise building in Queens, New York hinnici Federico - Maranesi Marco

NTERMEDIATE SLAB

Layers		$\rho\left[\mathrm{NN} / \mathrm{m}^{3}\right]$	t [m]	$\mathrm{q}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
G2	Internal partitions			1.34
	Wooden tiles	9.20	0.010	0.09
	Gypsumfibre sheet	11.50	0.013	0.14
	Lightweight screed	15.00	0.045	0.68
	Wooden fibre insulation	2.50	0.020	0.05
	Lightweight screed	4.00	0.080	0.32
G1	Protective membrane	3.50	0.002	0.01
	Clomping insulation	7.00	0.013	0.09
	Xlam slab	4.00	0.186	0.74
	Wooden fibre insulation	0.70	0.050	0.04
G2	Gypsumfibre sheet	11.50	0.013	0.14
	Gypsumfibre sheet	11.50	0.013	0.14
	Gypsum plaster	12.00	0.010	0.12
Q			0.454	3.90
	CATEGORY A			2.00
				5.90

BALCONY

Layers						$\boldsymbol{\rho}\left[\mathrm{kN} / \mathrm{m}^{3}\right]$	$\mathrm{t}[\mathrm{m}]$	$\mathrm{q}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
G1	Wooden boards	10.00	0.030	0.30				
	Lightweight concrete	20.00	0.110	2.20				
			0.320	2.54				
Q	CATEGORY 5			2.50				
				5.04				

PAVEMENT SLAB

Layers		$\rho\left[\mathrm{kN} / \mathrm{m}^{3}\right]$	t [m]	$\mathrm{q}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
G2	Internal partitions			1.34
	Tiles	20.00	0.015	0.30
	Lightweight screed	4.00	0.080	0.32
	Waterproof membrane	20.00	0.002	0.04
G1	Wooden fibre insulation	1.60	0.160	0.26
	Xlam slab	4.00	0.186	0.74
	Wooden fibre insulation	0.70	0.050	0.04
G2	Gypsumfibre sheet	11.50	0.013	0.14
	Gypsumfibre sheet	11.50	0.013	0.14
			0.493	3.03
Q	CATEGORY A			2.00
				5.03

Politecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

Politecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

CURTAIN WALL

Layers							$\rho\left[\mathrm{kN} / \mathrm{m}^{3}\right]$	$\mathrm{t}[\mathrm{m}]$	$\mathrm{q}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
Glass wall	10.80	0.05	0.53						
		$\mathrm{~h}_{\text {floor }}[\mathrm{m}]$	$\mathrm{g}_{\text {curtan wall }}[\mathrm{kN} / \mathrm{m}]$						
			6.80	3.60					

6.3.2 - VARIABLE LOADS

CATEGORIES FOR RESIDENTIAL USE
Regarding the main function of this project, residential use is highlighted as the one and only function of the building. According to the EC 1991-1-1, the selected categories are A as the main variable load inside the building and H as the load acting on the roof.

Category	Specific Use	Example
A	Areas for domestic and residential activities	Rooms in residential buildings and houses; bedrooms and wards in hospitals; bedrooms in hotels and hostels kitchens and toilets.
B	Office areas	
C	Areas where people may congregate (with the exception of areas defined under category A, B, and Di)	C1: Areas with tables, etc. e.g. areas in schools, cafés, restaurants, dining halls, reading rooms, receptions. C2: Areas with fixed seats, e.g. areas in churches, theatres or cinemas, conference rooms, lecture halls, assembly halls, waiting rooms, railway waiting rooms. C3: Areas without obstacles for moving people, e.g. areas in museums, exhibition rooms, etc. and access areas in public and administration buildings, hotels, hospitals, railway station forecourts. C4: Areas with possible physical activities, e.g. dance halls, gymnastic rooms, stages. C5: Areas susceptible to large crowds, e.g. in buildings for public events like concert halls, sports halls including stands, terraces and access areas and railway platforms.
D	Shopping areas	D1: Areas in general retail shops D2: Areas in department stores
${ }^{\text {1) }}$ Attention is drawn to 6.3.1.1(2), in particular for C4 and C5. See EN 1990 when dynamic effects need to be considered. For Category E, see Table 6.3 NOTE 1 Depending on their anticipated uses, areas likely to be categorised as C2, C3, C4 may be categorised as C5 by decision of the client and/or National annex. NOTE 2 The National annex may provide sub categories to A, B, C1 to C5, D1 and D2 NOTE 3 See 6.3 .2 for storage or industrial activity		

Categories of loaded area	Specific Use
H	Roofs not accessible except for normal maintenance and repair.
I	Roofs accessible with occupancy according to categories A to Rect G ब⿶凵I
K	Roofs accessible for special services, such as helicopter landing areas

Figure 6.8 - Categorisation of roofs

Poitecnico di Milano Master of Science in Building and Architectural Engineering teember - Steel and timber tor a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

Categories of loaded areas	$\begin{gathered} \left.q_{\mathrm{k}}{ }_{[\mathrm{kN}}\right] \end{gathered}$	$\begin{gathered} Q_{k} \\ {[\mathrm{kN}]} \end{gathered}$
Category A		
- Floors	1,5 tor.0	2.0 to 3,0
- Stairs	2.0 to4, 0	2.0 10 4,0
- Balconies	2.5 51040	2.0 to 3,0
Category B	2,0 to 3.0	1,5 to 4.5
Category C		
- Cl	2,0 to 3.0	3,0 to 4.0
- C 2	3,0 to 4.0	2.5 to $7,0(4,0)$
- C 3	3,0 to 5. 0	4.0 0 7 7,0
- C 4	4,510 ¢ 5.0	3,5 to 7.0
- C 5	5.0107 .5	3.5 to 4.5
category D		
- DI	4.0 to 5, 0	3,5 to 7,0 (4,0)
- D2	4,0 to 5 . 0 .	3.5 to 7.0

Figure 6.9 - Imposed loads on floors, balconies and stairs in buildings
SNOW LOAD
The calculation of the snow load is performed according to "ASCE 7: Minimum Design Loads for Buildings and Other Structures". This is due to the availability of data from the New York code building because the Eurocode allows the use of national annexes for it computation.

According to the (Eq. 7-1), we have:

$$
q_{s}=0.7 * c_{e} * c_{t} * I * p_{g}
$$

Where:

$\mathrm{C}_{\mathrm{e}}=$ exposure coefficient;
$\mathrm{C}_{\mathrm{t}}=$ thermal coefficient
= importance factor;
$S_{k}=$ characteristic value of snow load on the ground
C_{e} can be computed as the below-shown table, where it is a function of the terrain category (B for urban and suburban areas), and of the fully exposed building (defined as "Roofs exposed on all sides with no shelter, afforded by terrain, higher structures, or trees")

Terrain Category	Fully Exposed	Exposure of Roof* Partially Exposed	Sheltered
A (see Section 6.5.6)	N / A	1.1	1.3
B (see Section 6.5.6)	0.9	1.0	1.2
C (see Section 6.5.6)	0.9	1.0	1.1
D (see Section 6.5.6)	0.8	0.9	1.0
Above the treeline in windswept mountainous areas.	0.7	0.8	$\mathrm{~N} / \mathrm{A}$
In Alaska, in areas where trees do not exist within a	0.7	0.8	$\mathrm{~N} / \mathrm{A}$
2-mile (3 km) radius of the site.			

The terrain category and roof exposure condition chosen shall be representative of the anticipated conditions during
the life of the structure. An exposure factor shall be determined for each roof of a structure.
Igure 6.10 - Exposure coefficient $\mathrm{C}_{\text {e }}$

Iitecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco
${ }_{\mathrm{t}}$ is a function of the warmness of the rooftop: since it can be considered as a warm elemen (with a transmittance lower than $0.40 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$), we can get the coefficient from the below table, and from the extract of the referent national annexe:

Thermal Condition*	$c_{\text {t }}$
All structures except as indicated below	1.0
Structures kept just above freezing and others with cold, ventilated roofs in which the thermal resistance (R -value) between the ventilated space and the heated space exceeds $25 \mathrm{~F}^{\circ} \cdot \mathrm{hr} \cdot \mathrm{sq} \mathrm{ft} / \mathrm{Btu}\left(4.4 \mathrm{~K} \cdot \mathrm{~m}^{2} / \mathrm{W}\right)$	1.1
Unheated structures and structures intentionally kept below freezing	1.2
Continuously heated greenhouses** with a roof having a thermal resistance (R -value) less than $2.0 \mathrm{~F}^{0} \cdot \mathrm{hr} \cdot \mathrm{ft}^{2} / \mathrm{Btu}\left(0.4 \mathrm{~K} \cdot \mathrm{~m}^{2} / \mathrm{W}\right.$)	0.85
${ }^{*}$ These conditions shall be representative of the anticipated conditions during winters for the life of the structure.	
*Greenhouses with a constantly maintained interior temperature of $50^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right)$ or more at any point 3 ft above the floor level during winters and having either a maintenance attendant on duty at all times or a temperature alarm system to provide warning in the event of a heating failure. Figure 6.11 - Thermal coefficient C ,	

It follows an extract that defines the exposure class for the snow coefficient
Exposure B: Exposure B shall apply where the ground surface roughness condition, as fined by Surface Roughness B, prevails in the upwind direction for a distance of at leas $2630 \mathrm{ft}(800 \mathrm{~m})$ or 10 times the height of the building, whichever is greater. Exception: For buildings whose, mean roof height is less than or equal to $30 \mathrm{ft}(9.1 \mathrm{~m}$), the upwind distance may be reduced to 1500 ft (457 m)

Exposure C: Exposure C shall apply for all cases where exposures B or D do not apply
Exposure D: Exposure D shall apply where the ground surface roughness, as defined by surface roughness D, prevails in the upwind direction for a distance at least 5000 ft (1524 m) or 10 times the building height, whichever is greater. Exposure D shall extend inland from the shoreline for a distance of $660 \mathrm{ft}(200 \mathrm{~m})$ or 10 times the height of the building, whichever is greater".

The important factor I is a function of the building's category; our building is the category II, as shown in the below tables:

figure 6.12 - Classification of buildings for flood, wind, snow, earthquake and ice loads
in Building and Architectural Engineeri Steember - Steel and timber for a high rise builaing in Queens, New York Chinnici Federico - Maranesi Marco

gure 6.13-Classification of buildings for flood, wind, snow, earthquake and ice load
P_{g} is a given value for the roof's slope under 5°.
Consequently, the final load is:

$$
q_{s}=0.7 * 0.90 * 0.85 * 1.10 * 0.96=0.57 \mathrm{kN} / \mathrm{m}^{2}
$$

WIND LOAD

The calculation of the snow load is performed according to the Eurocode 1-4 prescriptions for wind actions. Because of the high number of coefficients that need to be computed, it has been decided to show a few steps for the definition of the wind load

For its calculations, it has been decided to evaluate the parapet only under the effect of the wind load; wind forces acting on external walls, curtain walls and roof have been neglected.

As a starting point, the value of the initial wind speed was taken according to the class of the building (class III, as coded in the "ASCE 7: Minimum Design Loads for Buildings and Other Structures") and the variation of the wind height has been reached, with the following formula

$$
v_{m(z)}=c_{r(z)} * c_{o(z)} * v_{b}=1.04 * 1.00 * 53.55=55.61 \mathrm{~m} / \mathrm{s}
$$

Where:
$v_{m(z)}=$ mean wind velocity;
$c_{r(z)}=$ roughness factor, accounts for the variability of the mean wind velocity at the site of the structure due to the height above ground level and the ground roughness of the terrain upwind of the structure in the wind direction considered. In the procedure, a total height of 84.1 metres has been considered as the highest values of the balcony, on the last floor
c = terrain orthography, wherein the absence of characteristic situations, can be assumed as 1 ;
$v_{\mathrm{b}}=$ basic wind velocity, given in the National Annex.
After the computation of the mean wind, it is now the step of calculating the eventual wind urbulence Iv, as a basic step for the following peak velocity pressure.

$$
I_{v(z)}=\frac{\sigma_{v}}{v_{m(z)}}=\frac{13.03}{55.61}=0.23
$$

Where:

$\sigma_{v}=$ standard deviation of the mean velocity;
$v_{m(z)}=$ mean wind velocity
Once the turbulence intensity is defined, the next step is the peak velocity pressure q_{p} at height z, which includes mean and short-term velocity fluctuations. The formula is the following:

$$
\begin{gathered}
q_{p(z)}=\left(1+7 * I_{v(z)}\right) * \frac{1}{2} * \rho * v_{m(z)}^{2}=(1+7 * 0.23) * 0.50 * 1.25 * 55.61^{2} \\
=5.10 \mathrm{kN} / \mathrm{m}^{2}
\end{gathered}
$$

Where

$=$ wind turbulence factor;
$\mathrm{p}=$ density of the air (coded as $1.25 \mathrm{~kg} / \mathrm{m}^{3}$);
$v_{m(z)}=$ mean wind velocity.
The final calculation regards directly the wind pressure, acting on a surface. Here, codes prescribe the use of the highest value between external pressure and internal pressure, as the driving coefficient for the definition of the final wind force.

$$
w_{e}=q_{p(z)} * c_{p e}=5.10 * 1.60=8.17 \mathrm{kN} / \mathrm{m}^{2}
$$

Where:
$\mathrm{w}_{\mathrm{e}}=$ wind pressure acting on the external surfaces;
$q_{p(z)}=$ peak velocity pressure;
$c_{p e}=$ is the pressure coefficient for the external pressure

6.4 - ELEMENTS' DESIGN

6.4.1 - STEEL CANTILEVER BEAM

LOAD CALCULATION

Given the permanent load (2.54 kN m^{2}) and the variable load ($2.50 \mathrm{kN} / \mathrm{m}^{2}$), we can compute the kN / m value by using the highest length a single beam has to bea due to the slab weight.

$$
\begin{aligned}
& g^{\prime}=g * l=2.54 * 3.75=9.54 \mathrm{kN} / \mathrm{m} \\
& q^{\prime}=q * l=2.50 * 3.75=9.38 \mathrm{kN} / \mathrm{m} \\
& g^{\prime}+q^{\prime}=9.54+9.38=18.91 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Due to the presence of the parapet, we have a pointed load set on the extremity of the balcony

$$
P=\rho * s_{\text {th. }} * h_{\text {rail }} * l * \gamma_{g}=35 *(2 * 0.012) * 1.10 * 3.75 * 1.35=4.68 \mathrm{kN}
$$

The parapet provides also bending moment on the top end of the structure, which will be considered as negative due to the reverse action.

$$
M_{w}=w_{e} * l * \frac{h_{\text {rail }}^{2}}{2}=8.17 * 3.75 * \frac{1.10^{2}}{2}=18.53 \mathrm{kNm}
$$

ULS - $\mathrm{M}_{\text {max }}$
Following the superimposition of the schematic schemes, as shown in the below images, we can compute the maximum bending moment at the ultimate limit state.

$M=$ costante $\quad V=0 \quad \varphi=+\frac{M I}{E I} \quad \delta_{d}=+\frac{M l^{2}}{2 E I}$
Figure 6.15- Isostatic scheme: fixed-end constrain and moment force

$M_{\text {max }}=P l \quad V=P \quad \varphi=+\frac{P l^{2}}{2 E l} \quad \delta_{d}=+\frac{P l^{3}}{3 E l}$
Figure 6.16- Isostatic scheme: fixed-end constrain and concentrated load on opposite extreme

$$
\begin{aligned}
& M_{\text {max }}=\frac{q l^{2}}{2} \\
& V_{\text {max }}=q l^{2} \\
& \varphi=+\frac{q l^{3}}{6 E l} \\
& \delta_{d}=\frac{q l^{4}}{8 E I}
\end{aligned}
$$

Figure 6.17 - Isostatic scheme: fixed-end constrain and distributed load over the span

Eurocode prescriptions refer to use of some safety partial coefficients for permanent and variable loads. At the ULS, those coefficients are

$$
\begin{aligned}
& \gamma_{g}=1.35 \\
& \gamma_{q}=1.50
\end{aligned}
$$

Proceeding with the moment actions:

$$
M_{e d, d i s}=\left(\gamma_{g} * g^{\prime}+\gamma_{q} * q^{\prime}\right) * \frac{l^{2}}{2}=(1.35 * 9.54+1.50 * 9.38) * \frac{2.30^{2}}{2}=71.24 \mathrm{kNm}
$$

$$
M_{e d, c o n}=\gamma_{g} * P * l=1.35 * 4.68 * 2.30=14.52 \mathrm{kNm}
$$

$M_{w}=18.53 \mathrm{kNm}$

The final moment will be

$$
M_{e d}=M_{e d, d i s t r}+M_{e d, c o n}+M_{w}=71.24+14.52-18.53=67.24 \mathrm{kNm}
$$

The final step, thus, is to find the minimum module resistance due to the bending moment

$$
W_{x, \min }=\frac{M_{e d}}{f_{y, k}}=\frac{72.24}{338.10}=199 \mathrm{~cm}^{3}
$$

Figure 6.18 - Moment diagram of the distributed load

Figure 6.19 - Moment diagram of Figure 6.19 - Moment di
the concentrated load

The code prescribes which is the worst combination between the variable loads only (a the SLS state), with an allowed deflection of $1 / 150$ for cantilever beams, and the complete load (permanent + variable) with an allowed deflection of I/125, intended as getting half of the values with respect to isostatic beams with hinged-rolled constrains.

Condizioni	Limiti (vedere fig. 4.1)	
	$\delta_{\text {mux }}$	δ_{2}
Coperture in generale	L/200	L250
Coperture praticate frequentemente da personale diverso da quello della manutenzione	L250	L/300
Solai in generale	L/250	L/300
Solai o coperture che reggono intonaco o altro materiale di finitura fragile o tramezzi non flessibili	L250	L350
Solai che supportano colonne (a meno che lo spostamento sia stato incluso nella analisi globale per lo stato limite ultimo)	L400	L500
Dove $\delta_{\text {max }}$ può compromettere l'aspetto delliedificio	L	250

Calculations are:

$$
c o m b .1=\frac{q^{\prime}}{\delta_{\max }^{\prime}}=\frac{9.38}{\frac{2.30}{150}}=611 \mathrm{kN}
$$

$$
c o m b .2=\frac{g^{\prime}+q^{\prime}}{\delta_{\max }^{\prime \prime}}=\frac{9.54+9.38}{\frac{2.20}{125}}=1028 \mathrm{kN}
$$

Using the worst combination, it is now possible to proceed by looking at the minimum inertia the beam must provide. The superimposition of the effects leads to the result. In order to get it, we should compute the final Young modulus, which is susceptible to the abovementioned service class of the beam

$$
\begin{gathered}
I_{x, \text { min,distr. }}=\left(g^{\prime}+q^{\prime}\right) * \frac{l^{4}}{8 * E_{s} * \delta_{\text {max }}^{\prime \prime}}=(9.54+9.38) * \frac{2.30^{4}}{8 * 210000 *\left(\frac{2.30}{125}\right)}=1712 \mathrm{~cm}^{4} \\
I_{x, \text { min,com. }}=P * \frac{l^{3}}{3 * E_{s} * \delta_{\max }^{\prime \prime}}=4.68 * \frac{2.30^{3}}{3 * 210000 *\left(\frac{2.30}{100}\right)}=491 \mathrm{~cm}^{4} \\
I_{x, \text { min,w }}=M_{w} * \frac{l^{2}}{2 * E_{s} * \delta_{\max }^{\prime \prime}}=18.53 * \frac{2.30^{2}}{2 * 210000 *\left(\frac{2.30}{100}\right)}=1268 \mathrm{~cm}^{4}
\end{gathered}
$$

The final minimum inertia will be

$$
I_{x, \text { min }}=I_{x, \text { min,distr. } .}+I_{x, \text { min,con. }}-I_{x, \text { min }, w}=1712+491-1268=935 \mathrm{~cm}^{4}
$$

BEAM CHOICE

Because of the minimum resistant module and the minimum inertia, it has been selected a proper beam in order to verify these two above-mentioned restrictions. The selection goes for a HE 280 M , needed for the verification due to torsion moment

$$
\begin{aligned}
h & =31 \mathrm{~cm} ; & & A=240 \mathrm{~cm}^{-} \\
b & =29 \mathrm{~cm} ; & & \rho_{g, k}=1.89 \frac{\mathrm{kN}}{\mathrm{~m}} \\
t_{w} & =0.019 \mathrm{~cm} ; & & W_{x}=2551 \mathrm{~cm}^{3} \\
t_{f} & =0.033 \mathrm{~cm} ; & & I_{x}=39550 \mathrm{~cm}^{4}
\end{aligned}
$$

$$
\begin{gathered}
W_{x,}>W_{x, \min } \rightarrow 2551 \mathrm{~cm}^{3}>300 \mathrm{~cm}^{3} \\
I_{x}>I_{x, \min } \rightarrow 39550 \mathrm{~cm}^{4}>935 \mathrm{~cm}^{4}
\end{gathered}
$$

SLS - $M_{\text {max }}$
With the superimposition of the combination, it is now possible to compute the maximum bending moment at the SLS. The used formulas are the above-mentioned ones

$$
M_{\text {ed,distr. }}=\left(\rho_{g, k}+g^{\prime}+q^{\prime}\right) * \frac{l^{2}}{2}=(1.89+9.54+9.38) * \frac{2.30^{2}}{2}=55.02 \mathrm{kNm}
$$

$$
M_{\text {ed, conc. }}=P * l=4.68 * 2.30=10.76 \mathrm{kNm}
$$

$M_{w}=18.53 \mathrm{kNm}$

Therefore

$$
M_{e d}=M_{e d, d i s t r .}+M_{e d, c o n c .}-M_{w}=55.02+10.76-18.53=47.25 \mathrm{kNm}
$$

The resisting moment is computed as:

$$
M_{r d}=f_{y, k} * \frac{W_{x}}{\delta_{M}}=375.00 * \frac{2551}{1.05}=862.48 \mathrm{kNm}
$$

So:

$$
M_{e d}<M_{r d} \rightarrow 47.25 \mathrm{kNm}<862.48 \mathrm{kNm} \rightarrow \text { utilisation } 5 \%
$$

ULS - $\mathrm{V}_{\text {max }}$
With the superimposition of the combination, it is now possible to compute the maximum shear at the ULS, with its relative coefficients. The used formulas are the above-mentioned ones.

$$
\begin{aligned}
V_{\text {max. distr. }}= & \left(\gamma_{g} *\left(\rho_{g, k}+g^{\prime}\right)+\gamma_{q} * q^{\prime}\right) * L=(1.35 *(1.89+9.54)+1.50 * 9.38) * 2.30 \\
& =67.82 \mathrm{kN}
\end{aligned}
$$

$$
V_{\text {max }, \text { conc. }}=\gamma_{g} * P=1.35 * 4.68=6.31 \mathrm{kN}
$$

Since there is no shear effect due to wind actions, the effective shear at the ULS.

$$
V_{\max }=V_{\max , \text { distr. }}+V_{\max , c o n c .}=67.82+6.31=74.13 \mathrm{kN}
$$

figure 6.21 - Shear diagram of the distributed load

Figure 6.22 - Shear diagram of the concentrated load

Politecnico di Milano, Master of Science in Building and Architectural Engineering

The resisting shear is computed as:

$$
V_{r d}=\tau_{d} * \frac{A_{w}}{\gamma_{M}}=\frac{\frac{355.00}{1.05}}{\sqrt{3}} * \frac{(0.31 * 0.019)}{1.05}=1066.16 \mathrm{kN}
$$

Consequently:

$$
V_{e d}<V_{r d} \rightarrow 74.13 k N<1066.16 k N \rightarrow \text { utilisation 7\% }
$$

SLS - $\delta_{\text {max }}$

With the superimposition of the combination, it is now possible to compute the deflection at the SLS. The used formulas are the above-mentioned ones. Eurocode defines the way to compute the deflection due to the load-bearing slab with some partial coefficients due to the intensity of the action (permanent, semi-permanent, accidental, etc.), according to the load type (people, snow, wind).

In addition, a creep phenomenon is considered, by multiplying the coefficient of class (subjected to humidity exposure) to the permanent load only, as an adding force for the deflection verification.

Figure 6.23 - Coefficients due to variable load types

$$
\begin{aligned}
& \delta_{\text {beam }, g}=\left(\rho_{g, k}+g^{\prime}\right) * \frac{l^{4}}{8 * E_{s} * I_{x}}=(0.715+9.54) * \frac{2.45^{4}}{8 * 210000 * 39550}=0.000 \mathrm{~m} \\
& \delta_{\text {beam }, g}=\left(\rho_{g, k}+g^{\prime}+q^{\prime}\right) * \frac{l^{4}}{8 * E_{s} * I_{x}}=(0.715+9.54+9.38) * \frac{2.45^{4}}{8 * 210000 * 39550}
\end{aligned}
$$

$$
=0.001 \mathrm{~m}
$$

The allowed deflection for a fixed-end beam due to permanent load only is:

$$
\delta_{\max }=\frac{l}{\frac{350}{2}}=\frac{2.30}{\frac{350}{2}}=0.013 \mathrm{~m}
$$

While for a beam loaded of both permanent and variable loads, the maximum allowed deflection is:

$$
\delta_{\max }=\frac{l}{\frac{300}{2}}=\frac{2.30}{\frac{300}{2}}=0.015 \mathrm{~m}
$$

Consequently:

$$
\delta_{\text {beam,g }}<\delta_{\max } \rightarrow 0.000 \mathrm{~m}<0.013 \mathrm{~m} \rightarrow \text { utilisation } 4 \%
$$

Consequently:

$$
\delta_{\text {beam }, g+q}<\delta_{\max } \rightarrow 0.001 \mathrm{~m}<0.015 \mathrm{~m} \rightarrow \text { utilisation } 6 \%
$$

Politecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

SLS $-\tau_{\text {max }}$
Another effect given to the cantilever beam is due torsion moment. Because the distribution load is not set on the exact axis of the beam, in some cases it is needed to go through a oad is not set on the exact axis of the beam, in some

In order to compute this, at first it is needed to check the torsion moment, intended as a distributed load acting on its middle, multiplied by its lever arm

$$
M_{\text {tor }}=\left(g^{\prime}+q^{\prime}\right) * l *\left(l-\frac{l_{\text {prim. }}}{3 * 2}\right)=(9.54+9.38) * 2.30 *\left(2.30-\frac{7.80}{3 * 2}\right)=43.49 \mathrm{kNm}
$$

Figure 6.24- Longitudinal section of the balcony and torsion effec

The outcome of the tensional tangent stress will be:

$$
\begin{aligned}
\tau_{\max }=3 * M_{\text {tor }} * & \frac{t_{f}}{\sum_{i=1}^{i=3}\left(2 * b * t_{f}^{3}+\left(h-2 * t_{f}\right) * t_{w}^{3}\right.} \\
& =3 * 43.49 * \frac{33}{\left(2 * 220 * 33^{3}+(310-2 * 33) * 19^{3}\right.}=193.57 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
\end{aligned}
$$

While the resisting force due to torsion is:

$$
\tau_{\text {tor }}=\frac{f_{y d}}{\sqrt{3}}=\frac{338.10}{\sqrt{3}}=195.20 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

Therefore:

$$
\tau_{\max }<\tau_{\text {tor }} \rightarrow 193.57 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}<195.20 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \rightarrow \text { utilisation } 99 \%
$$

6.4.2 - XLAM - INTERMEDIATE SLAB

INTRODUCTION

Before computing the load analysis, a proper computation on the CLT needs to be done. As mentioned in the early part of he chapter, the extreme layers are the ones who need to resist the bending action. The nes set in the midale are considered as spacers", in order to achieve a great inertia moment, able to provide a lower deflection of the panel.

Figure 625 - Monodimensional XLAM slab
For the calculation of the load-bearing panel, it has been decided to show the most frequent action where panels are set. Since we have one rooftop level, while the rest are all slabs, the below-shown procedure counts for the slab computation only. By changing the initial loads will change. However, the procedure for their calculation is always the same; in addition to the oads, it changes just some coefficient for the service class of the timber
GEOMETRY
The calculation of the number of layers composing the finite panel refers to the first step.

$$
\begin{gathered}
L_{\text {ref }}=\frac{l_{\text {prim. }}}{2}=\frac{7.80}{2}=3.90 \mathrm{~m} \\
b=\frac{l_{\text {sec. }}}{3}=\frac{7.50}{3}=2.50 \mathrm{~m}
\end{gathered}
$$

Once defined the two measures of the single board, it is now time to evaluate the inertia the single layer has:

$$
\begin{aligned}
& J_{1}=b * \frac{t h_{1}^{3}}{12}=2.50 * \frac{0.040^{3}}{12}=1333.33 \mathrm{~cm}^{4} \\
& J_{2}=b * \frac{t h_{2}^{3}}{12}=2.50 * \frac{0.033^{3}}{12}=748.69 \mathrm{~cm}^{4}
\end{aligned}
$$

Because of the gamma theory prescription, the final effective inertia moment of the pane will be computed by means of a corrective γ coefficient

$$
r_{i, 1}=1 / 1+\left(\pi^{2} * E_{\text {mean }} * \frac{\left(b * t h_{1}\right)}{L_{\text {ref }}^{2}} * \frac{t h_{1}}{b * G_{r g, \text { mean }}}\right)=\left(1+\left(\pi^{2} * 14700 * \frac{2.50 * 0.040}{3.90^{2}} * \frac{0.040}{2.50 * 51.20}\right)\right)^{-1}=0.77
$$

Given the coefficient (where Grg, mean is the rolling shear resistance, defined as redoubling the shear resistance), it is now possible to go forward with the definition of the highest inertia moment of the board. At first, a lever arm of the uppermost panel needs to be done, with respect to the centre of the xlam element itself:
$a_{1}=\frac{\left(n_{\text {layers.th. } 1} * t h_{1}+n_{\text {layers.th. } 2} * t h_{2}\right)}{2}-\frac{t h_{1}}{2}=\frac{3 * 0.040+2 * 0.033}{2}-\frac{0.040}{2}=0.073 \mathrm{~m}$
$J_{1, e f f}=J_{1}+\left(\gamma_{i, 1} *\left(b * t h_{1}\right) * a_{1}^{2}=1333.33+\left(0.77 *(2.50 * 0.040) * 0.040^{2}=42386 \mathrm{~cm}^{4}\right.\right.$
The reason why only the uppermost layer has been computed is that the resistant module counts for the highest inertia moment of the single board, and it is:

$$
W_{o, n e t}=\frac{J_{1, e f f}}{a_{1}}=\frac{42386}{0.073}=5806 \mathrm{~cm}^{3}
$$

woll

$$
S_{r, n e t}=b * t h_{1} * a_{1}=2.50 * 0.040 * 0.073=7300 \mathrm{~cm}^{3}
$$

OADS

Given the permanent load ($3.90 \mathrm{kN} / \mathrm{m}^{2}$) and the variable load $\left(2.00 \mathrm{kN} / \mathrm{m}^{2}\right)$, we can compute the kN / m value by using the maximum span between two secondary beams supporting the xlam board.

$$
\begin{gathered}
g^{\prime}=g * b=3.90 * 2.50=9.76 \mathrm{kN} / \mathrm{m} \\
q^{\prime}=q * b=2.00 * 2.50=5.00 \mathrm{kN} / \mathrm{m} \\
g^{\prime}+q^{\prime}=9.76+5.00=14.76 \mathrm{kN} / \mathrm{m}
\end{gathered}
$$

ULS - $\mathrm{M}_{\text {max }}$

Following the superimposition of the schematic schemes, as shown in the below images we can compute the maximum bending moment at the ultimate limit state

$$
\begin{aligned}
& M_{\text {max }}=\frac{q l^{2}}{8} \text { in mezzenia } \\
& V_{\text {max }}=\frac{q l^{2}}{2} \\
& \varphi_{A}=-\varphi_{B}=\frac{q l^{3}}{24 E \mid} \\
& \delta_{d}=\delta_{\sqrt{2}}=\frac{5}{384} \frac{q l^{4}}{E l}
\end{aligned}
$$

Figure 6.26 - Isostatic scheme with roller/hinge and distributed load

Proceeding with the moment actions

$$
M_{e d}=\left(\gamma_{g} * g^{\prime}+\gamma_{q} * q^{\prime}\right) * \frac{l^{2}}{8}=(1.35 * 9.36+1.50 * 5.00) * \frac{3.90^{2}}{8}=39.30 \mathrm{kNm}
$$

Figure 6.27 - Moment diagram of the distributed load
The maximum tensions due to bending moment are:

$$
\sigma_{m, d}=\frac{M_{e d}}{W_{0, n e t}}=\frac{39.30}{5806}=6.77 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

While the resisting moment provided by the board is:

$$
f_{m, k}^{*}=\frac{f_{m, k}}{\gamma_{M}}=\frac{36.00}{1.25}=28.80 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

Consequently:

$$
\sigma_{m, d}<f_{m, k}^{*} \rightarrow 6.77 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}<28.80 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \rightarrow \text { utilisation } 24 \%
$$

ULS - $V_{\text {max }}$
At the same time, we can compute the action given by shear forces:

$$
V_{\max }=\left(\gamma_{g} * g^{\prime}+\gamma_{q} * q^{\prime}\right) * L / 2=(1.35 * 9.36+1.50 * 5.00) * 3.90 / 2=40.31 \mathrm{kN}
$$

The maximum tangent tensional stresses will be computed as:

Figure 6.28 - Shear diagram of the distributed load
Here, the resistant module due to rolling shear has been considered, since it has a greater value. The verification, for xlam elements, should be done both to shear actions and rolling shear forces

Due to Eurocode prescriptions, the service class of the timber will influence the resistance of the resisting shear. Because the computed xlam slab is set in an indoor environment, the used coefficient is 0.60

$$
\begin{aligned}
& f_{v, d}^{* *}=\frac{f_{v, d}}{\gamma_{M}} * k_{\text {def }}=\frac{4.30}{1.25} * 0.60=2.06 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \\
& f_{v r, d}^{*}=f_{v r, d} * k_{d e f}=1.20 * 0.60=0.72 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\tau_{v d}<f_{v, d}^{*} & \rightarrow 0.28 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}<2.06 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \rightarrow \text { utilisation } 14 \% \\
\tau_{v d}<f_{v r, d}^{*} & \rightarrow 0.28 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}<0.72 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \rightarrow \text { utilisation } 39 \%
\end{aligned}
$$

SLS - $M_{\text {max }}$
It is now possible to compute the maximum bending moment at the SLS. The used formulas are the above-mentioned ones.

$$
M_{e d}=\left(g^{\prime}+q^{\prime}\right) * \frac{l^{2}}{8}=(9.36+5.00) * \frac{3.90^{2}}{8}=28.05 \mathrm{kNm}
$$

Afterwards, it is needed to calculate the maximum acting due to bending moment

$$
\sigma_{m, d}=\frac{M_{e d}}{W_{0, n e t}}=\frac{28.05}{5806}=4.83 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

While the resisting moment provided by the board at the SLS is the combination of the operative resisting stress, corrected by two more coefficients, mentioned earlier in the wooden cantilever beam.

$$
f_{m, k}^{*}=\frac{f_{m, k}}{\gamma_{M}}=\frac{36.00}{1.25}=28.80 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

$$
k_{d e f}=0.60
$$

$$
k_{\text {sys }}=1+0.025 *\left(n_{\text {layers,th } .1}+n_{\text {layers,th } .2}\right)=1+0.025 *(3+2)=1.13
$$

Then:

$$
f_{m, d}=f_{m, k} * k_{d e f} * k_{s y s}=\frac{36.00}{1.25} * 0.60 * 1.13=19.44 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

Consequently:

$$
\sigma_{m, d}<f_{m, d} \rightarrow 4.83 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}<19.44 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \rightarrow \text { utilisation } 25 \%
$$

SLS - $\delta_{\text {max }}$
It is now possible to compute the deflection at the SLS. The used formulas are the abovementioned ones. Eurocode defines the way to compute the deflection due to the loadbearing slab with some partial coefficients due to the intensity of the action (permanent, semipermanent, accidental, etc.), according to the load type (people, snow, wind).
In addition, a creep phenomenon is considered, by multiplying the coefficient of class (subjected to humidity exposure) to the permanent load only, as an adding force for the deflection verification.
XLAM slabs should be verified in two different ways: the first one foresees the verification under the condition of a quasi-permanent design situation, while the second one refers to an initial and an end deformation.

$$
\begin{gathered}
\delta_{\text {inst. }}=\frac{5}{384} *\left(g^{\prime}+\psi_{0, v a r .} * q^{\prime}\right) * \frac{l^{4}}{E_{\text {mean,fin }} * J_{\text {max }, \text { eff }}} \\
=\frac{5}{384} *(9.76+0.70 * 5.00) * \frac{3.90^{4},}{9188 * 42386}=0.010 \mathrm{~m} \\
\delta_{\text {creep }}=k_{\text {def }} * \frac{5}{384} * g^{\prime} * \frac{l^{4}}{8 * E_{\text {mean.fin }} * J_{\text {max,eff }}}=0.60 * \frac{5}{384} * 9.76 * \frac{3.90^{4}}{9188 * 42386} \\
=0.005 \mathrm{~m}
\end{gathered}
$$

The outcome is going to be:

$$
\delta_{\text {beam }}=\delta_{\text {inst. }}+\delta_{\text {creep }}=0.010+0.005=0.015 \mathrm{~m}
$$

The allowed deflection is:

Consequently:

$$
\delta_{\max }=\frac{l}{250}=\frac{3.90}{250}=0.016 \mathrm{~m}
$$

And:

$$
\begin{aligned}
& \delta_{\text {inst }}=\frac{5}{384} *\left(g^{\prime}+q^{\prime}\right) * \frac{l^{4}}{E_{\text {mean,fin }} * J_{\text {max } x, \text { eff }}}=\frac{5}{384} *(9.76+5.00) * \frac{3.90^{4}}{9188 * 42386} \\
&=0.011 \mathrm{~m} \\
& \delta_{\text {creep }}=k_{\text {def }} * \frac{5}{384} * g^{\prime} * \frac{l^{4}}{8 * E_{\text {mean.fin }} * J_{\text {maxe,eff }}}=0.60 * \frac{5}{384} * 9.76 * \frac{3.90^{4}}{9188 * 42386} \\
&=0.005 \mathrm{~m}
\end{aligned}
$$

So:

$$
\delta_{\text {beam }}=\delta_{\text {inst. }}+\delta_{\text {creep }}=0.011+0.005=0.016 \mathrm{~m}
$$

The allowed deflection at the initial state is

$$
\delta_{\max }=\frac{l}{300}=\frac{3.90}{300}=0.013 \mathrm{~m}
$$

Consequently:

$$
\delta_{\text {inst }}<\delta_{\max } \rightarrow 0.011 \mathrm{~m}<0.013 \mathrm{~m} \rightarrow \text { utilisation 85\% }
$$

While the allowed deflection at the initial state is:

$$
\delta_{\max }=\frac{l}{200}=\frac{3.90}{200}=0.020 \mathrm{~m}
$$

Therefore

$$
\delta_{\text {beam }}<\delta_{\text {max }} \rightarrow 0.016 \mathrm{~m}<0.020 \mathrm{~m} \rightarrow \text { utilisation } 80 \%
$$

6.4.3 - XLAM - ROOF

Because of the same procedure between the xlam board of the rooftop and the xlam board of the intermediate slab, it has been decided to avoid a merely carbon copy of the previous calculations. The only changing variables are represented by the different loads (permanen and variable), with the snow and wind load addition (and their relative partial coefficients regarding the load durability). Consequently, no calculation report has been added to the thesis. However, panels set on the rootop have beectived order to complete the work drawing the exact layering composition for the effective representation of the technologica joints described later in the thesis book.

After the calculations, differently from the intermediate floor XLAM slab, which results in a $18,4 \mathrm{~cm}$ thick slab, composed by 5 layers, the roof XLAM panels needed are 33,2 cm thick and composed by 9 layers

Itecnico di Milano, Master of Science in Building and Archiectura Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco
6.4.4 - STEEL SECONDARY BEAM - HE SHAPE

LOAD CALCULATIONS

Given the permanent load ($3.90 \mathrm{kN} / \mathrm{m}^{2}$) and the variable load $\left(2.00 \mathrm{kN} / \mathrm{m}^{2}\right)$, we can compute the kN / m value by using the highe length a secondary beam has in our project.
$g^{\prime}=g * l=3.90 * 3.875=15.12 \mathrm{kN} / \mathrm{m}$
$q^{\prime}=q * l=2.00 * 3.875=7.75 \mathrm{kN} / \mathrm{m}$
$g^{\prime}+q^{\prime}=15.12+7.75=22.87 \mathrm{kN} / \mathrm{m}$

ULS - $M_{\text {max }}$
Following the superimposition of the schematic schemes, as shown in the below images we can compute the maximum bending moment at the ultimate limit state.

$$
\not \quad 1
$$

$$
\begin{aligned}
& M_{\text {max }}=\frac{q l^{2}}{8} \text { in mezzena } \\
& V_{\text {max }}=\frac{q l}{2} \\
& \varphi_{A}=-\varphi_{B}=\frac{q l^{3}}{24 E l} \\
& \delta_{d}=\delta_{V / 2}=\frac{5}{384} \cdot \frac{q l^{4}}{E l}
\end{aligned}
$$

Figure 6.30 - Isostatic scheme with roller/hinge and distributed load
Proceeding with the moment actions:
$M_{e d}=\left(\gamma_{g} * g^{\prime}+\gamma_{q} * q^{\prime}\right) * \frac{l^{2}}{8}=(1.35 * 15.12+1.50 * 7.75) * \frac{7.50^{2}}{8}=225.27 \mathrm{kNm}$

Figure 6.31 - Moment diagram of the distributed load

The next step is the calculation of the minimum module resistance the beam must load The operative resistance to bending moment will be:

$$
W_{x, \min }=\frac{M_{e d}}{f_{y d}}=\frac{225.27}{\left(\frac{235}{1.05}\right)}=1007 \mathrm{~cm}^{3}
$$

Politecnico di Milano, Master of Science in Building and Architectural Engineering
Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

Politecnico di Milano. Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

SLS - $M_{\text {max }}$
With the superimposition of the combinations, it is now possible to compute the maximum bending moment at the SLS. The used formulas are the above-mentioned ones.

$$
M_{e d}=\left(\rho_{g, k}+g^{\prime}+q^{\prime}\right) * \frac{k^{2}}{8}=(1.170+15.12+7.75) * \frac{7.50^{2}}{8}=169.04 \mathrm{kNm}
$$

The resisting moment is computed as:

$$
M_{r d}=f_{y k} * \frac{W_{x}}{\delta_{M}}=235.00 * \frac{1678}{1.05}=375.55 \mathrm{kNm}
$$

So:

$$
\Lambda_{e d}<M_{r d} \rightarrow 169.04 \mathrm{kNm}<375.55 \mathrm{kNm} \rightarrow \text { utilisation } 45 \%
$$

ULS - $\mathrm{V}_{\text {max }}$
With the superimposition of the combination, it is now possible to compute the maximum shear at the ULS, with its relative coefficients. The used formulas are the above-mentioned ones.

$$
\begin{aligned}
V_{\text {ed }}= & \left(\gamma_{g} *\right. \\
& \left.\left(\rho_{g, k}+g^{\prime}\right)+\gamma_{q} * q^{\prime}\right) * \frac{L}{2}=(1.35 *(1.170+15.12)+1.50 * 7.75) * \frac{7.50}{2} \\
& =126.07 \mathrm{kN}
\end{aligned}
$$

Figure 6.33 - Shear diagram of the distributed load
The resisting shear is computed as:

$$
V_{r d}=\tau_{d} * \frac{A_{w}}{\gamma_{M}}=\frac{\frac{235.00}{1.05}}{\sqrt{3}} * \frac{0.30 * 0.011}{1.05}=406.11 \mathrm{kN}
$$

Consequently:
$S L S-\delta_{\text {max }}$
With the superimposition of the combination, it is now possible to compute the deflection at the SLS. The used formulas are the above-mentioned ones,

$$
\begin{aligned}
\delta_{\text {beam }, g}= & \frac{5}{384} *\left(\rho_{g, k}+g^{\prime}\right) * \frac{l^{4}}{E_{s} * l_{x}}=\frac{5}{384} *(1.170+15.12) * \frac{7.50^{4}}{210000 * 25170} \\
= & 0.013 \mathrm{~m} \\
& \delta_{\text {beam,g+q}}=\frac{5}{384} *\left(\rho_{g, k}+g^{\prime}+q^{\prime}\right) * \frac{l^{4}}{E_{s} * I_{x}} \\
& =\frac{5}{384} *(1.170+15.12+7.75) * \frac{7.50^{4}}{210000 * 25170}=0.019 \mathrm{~m}
\end{aligned}
$$

The allowed deflection for a rolled-hinged beam due to permanent load only is

$$
\delta_{\max }=\frac{l}{350}=\frac{7.50}{350}=0.021 \mathrm{~m}
$$

While for a beam loaded of both permanent and variable loads, the maximum allowed deflection is:

$$
\delta_{\max }=\frac{l}{300}=\frac{7.50}{300}=0.025 \mathrm{~m}
$$

Plitecnico di Milano. Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

Politecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

Consequently: And:

$$
\delta_{\text {beam }, g}<\delta_{\max } \rightarrow 0.013 \mathrm{~m}<0.021 \mathrm{~m} \rightarrow \text { utilisation } 62^{\circ}
$$

6.4.5 - STEEL SECONDARY BEAM - UPN SHAPE

As far as the previous situation, where XLAM panels of both intermediate slab and rooftop have the same procedure, here there is a change in the beam shape. Fo some secondary beams, it is needed to use a UPN profile, because they are placed on the core concrete wall's face, alts to the main support. In addition, a torsion moment set on the beam should be verified, due to the non-centralised load acting on the beam.

Moreover, a reduced span acts on thi beam, downgrading the resisting moment it
has to provide at the ULS and SLS.
 LOAD CALCULATIONS
Given the permanent load ($3.90 \mathrm{kN} / \mathrm{m}^{2}$) and the variable load $\left(2.00 \mathrm{kN} / \mathrm{m}^{2}\right)$, we can compute the kN / m value by using the highest length a secondary beam has in our project.

$$
\begin{aligned}
& g^{\prime}=g * l=3.90 * 1.94=7.56 \mathrm{kN} / \mathrm{m} \\
& q^{\prime}=q * l=2.00 * 1.94=3.88 \mathrm{kN} / \mathrm{m} \\
& g^{\prime}+q^{\prime}=7.56+3.88=11.44 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

ULS - $\mathrm{M}_{\text {max }}$
Following the superimposition of the schematic schemes, as shown in the below images, we can compute the maximum bending moment at the ultimate limit state.

$$
\begin{aligned}
& M_{\text {max }}=\frac{q l^{2}}{8} \text { in mezzenia } \\
& V_{\text {max }}=\frac{q l^{2}}{2} \\
& \varphi_{A}=-\varphi_{B}=\frac{q l^{3}}{24 E l} \\
& \delta_{d}=\delta_{V / 2}=\frac{5}{384} \cdot \frac{q l^{4}}{E l}
\end{aligned}
$$

ted load

Proceeding with the moment actions:
$M_{e d}=\left(\gamma_{g} * g^{\prime}+\gamma_{q} * q^{\prime}\right) * \frac{l^{2}}{8}=(1.35 * 7.56+1.50 * 3.88) * \frac{7.50^{2}}{8}=112.63 \mathrm{kNm}$

Figure 6.36 - Moment diagram of the distributed load
As foreseen, the moment at the ULS is acting with a half value due to the reduced span.
The next step is the calculation of the minimum module resistance the beam must load The operative resistance to bending moment will be:

$$
W_{x, \min }=\frac{M_{e d}}{f_{y d}}=\frac{112.63}{\left(\frac{235}{1.05}\right)}=503 \mathrm{~cm}^{3}
$$

SLS $-\delta_{\text {max }}$
The code prescribes which is the worst combination between the variable loads only (at the SLS state), with an allowed deflection of $I / 350$ for rolled-hinged beams, and the complete load (permanent + variable) with an allowed deflection of I/300

Condizioni	Limiti (vedere fig. 4.1)	
	$\delta_{\text {max }}$	δ_{2}
Coperture in generale	$L / 200$	$L / 250$
Coperture praticate frequentemente da personale diverso da quello della manutenzione	$L / 250$	$L / 300$
Solai in generale	$L / 250$	$L / 300$
Solai o coperture che reggono intonaco o altro materiale di finitura fra- gile o tramezzi non flessibili	$L / 250$	$L / 350$
Solai che supportano colonne (a meno che lo spostamento sia stato in- cluso nella analisi globale per lo stato limite ultimo)	$L / 400$	$L / 500$
Dove $\delta_{\text {max }}$ può compromettere l'aspetto dell'edificio	L	$/ 250$

Figure 6.37 - Table of the limit values for deflection
Calculations are:

$$
\begin{gathered}
\text { comb. } 1=\frac{g^{\prime}+q^{\prime}}{\delta_{\max }^{*}}=\frac{7.56+3.38}{\frac{7.50}{200}}=305 \mathrm{kN} \\
\text { comb. } 2=\frac{q^{\prime}}{\delta_{\max }^{\prime}}=\frac{3.38}{\frac{7.50}{250}}=129 \mathrm{kN}
\end{gathered}
$$

Using the worst combination, it is now possible to proceed by looking at the minimum nertia the beam must provide.

$$
I_{x, \min }=\frac{5}{384} *\left(g^{\prime}+q^{\prime}\right) * \frac{l^{4}}{E_{s} * \delta_{\max }^{\prime \prime}}=\frac{5}{384} *(7.56+3.38) * \frac{7.50^{4}}{210000 *\left(\frac{7.50}{200}\right)}=5983 \mathrm{~cm}^{4}
$$

olitecnic di Milano Master of Science in Building and Archiectur Engineering

 Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco
BEAM CHOICE

Because of the minimum resistant module and the minimum inertia, a proper beam has been selected in order to verify these two above-mentioned restrictions.

The selection went for the UPN 320, able to provide the minimum allowed inertia.

$$
\begin{aligned}
h & =32 \mathrm{~cm} ; \\
b & =10 \mathrm{~cm} ; \\
t_{w} & =1.40 \mathrm{~cm} ; \\
t_{f} & =1.75 \mathrm{~cm} ; \\
A & =77.30 \mathrm{~cm}^{2} \\
\rho_{g, k} & =0.606 \frac{\mathrm{kN}}{\mathrm{~m}} \\
W_{x} & =679 \mathrm{~cm}^{3} \\
I_{x} & =10870 \mathrm{~cm}^{4}
\end{aligned}
$$

Thus

$$
\begin{gathered}
W_{x}>W_{x, \text { min }}+679 \mathrm{~cm}^{3}>503 \mathrm{~cm}^{3} \\
I_{x}>I_{x, \text { min }} \rightarrow 10870 \mathrm{~cm}^{4}>5983 \mathrm{~cm}^{4}
\end{gathered}
$$

SLS - $M_{\text {max }}$

With the superimposition of the combinations, it is now possible to compute the maximum bending moment at the SLS. The used formulas are the above-mentioned ones

$$
M_{e d}=\left(\rho_{g, k}+g^{\prime}+q^{\prime}\right) * \frac{l^{2}}{8}=(0.606+7.56+3.88) * \frac{7.50^{2}}{8}=84.67 \mathrm{kNm}
$$

The resisting moment is computed as

So:

$$
M_{r d}=f_{y k} * \frac{W_{x}}{\delta_{M}}=235.00 * \frac{679}{1.05}=151.97 \mathrm{kNm}
$$

$$
M_{e d}<M_{r d} \rightarrow 84.67 \mathrm{kNm}<151.97 \mathrm{kNm} \rightarrow \text { utilisation } 56 \%
$$

[^0]With the superimposition of the combination, it is now possible to compute the maximum shear at the ULS, with its relative coefficients. The used formulas are the above-mentioned ones.

$$
\begin{aligned}
V_{e d}=\left(\gamma_{g} *\right. & \left.\left(\rho_{g, k}+g^{\prime}\right)+\gamma_{q} * q^{\prime}\right) * \frac{L}{2}=(1.35 *(0.606+7.56)+1.50 * 3.38) * \frac{7.50}{2} \\
& =63.14 \mathrm{kN}
\end{aligned}
$$

Figure 6.38 - Shear diagram of the distributed load

Politecnico di Milano. Master of Science in Building and Architectural Engineering

The resisting shear is computed as:

$$
V_{r d}=\tau_{d} * \frac{A}{\gamma_{M}}=\frac{\frac{235.00}{1.05}}{\sqrt{3}} * \frac{0.30 * 0.014}{1.05}=551.32 \mathrm{kN}
$$

Consequently:

$$
V_{e d}<V_{r d} \rightarrow 63.14 \mathrm{kN}<551.32 \mathrm{kN} \rightarrow \text { utilisation } 11 \%
$$

$S L S-\delta_{\text {max }}$
With the superimposition of the combination, it is now possible to compute the deflection at the SLS. The used formulas are the above-mentioned ones

$$
\begin{aligned}
\delta_{\text {beam }, g} & =\frac{5}{384} *\left(\rho_{g, k}+g^{\prime}\right) * \frac{l^{4}}{E_{s} * I_{x}}=\frac{5}{384} *(0.686+7.56) * \frac{7.50^{4}}{210000 * 10870} \\
= & 0.015 \mathrm{~m} \\
& \quad \delta_{\text {beam }, g+q}=\frac{5}{384} *\left(\rho_{g, k}+g^{\prime}+q^{\prime}\right) * \frac{l^{4}}{E_{s} * I_{x}} \\
& =\frac{5}{384} *(0.686+7.56+3.88) * \frac{7.50^{4}}{210000 * 10870}=0.022 \mathrm{~m}
\end{aligned}
$$

The allowed deflection for a rolled-hinged beam due to permanent load only is

$$
\delta_{\max }=\frac{l}{350}=\frac{7.50}{350}=0.021 \mathrm{~m}
$$

While for a beam loaded of both permanent and variable loads, the maximum allowed deflection is

$$
\delta_{\max }=\frac{l}{300}=\frac{7.50}{300}=0.025 \mathrm{~m}
$$

Consequently:

$$
\delta_{\text {beam,g }}<\delta_{\max } \rightarrow 0.015 \mathrm{~m}<0.021 \mathrm{~m} \rightarrow \text { utilisation } 71 \%
$$

And

$$
\delta_{\text {beam }, g+q}<\delta_{\max } \rightarrow 0.022 \mathrm{~m}<0.025 \mathrm{~m} \rightarrow \text { utilisation } 88 \%
$$

6.4.6 - STEEL PRIMARY BEAM

LOAD CALCULATIONS

Given the shear value of the secondary HE beams and added to the shear value of another HE secondary beam (this time with 7.00 metres of span instead of 7.50 metres) it is possible to go directly at the maximum ULS moment and the SLS deflection.

$P_{\text {sec. } 7.50 \mathrm{om}}=126.07 \mathrm{kN}$

$P_{\text {sec. } 7.00 \mathrm{~m}}=117.66 \mathrm{kN}$
\qquad

ULS - $M_{\text {max }}$
Following the superimposition of the schematic schemes, as shown in the below images we can compute the maximum bending moment at the ultimate limit state.

$$
\begin{aligned}
& M_{\text {max }}=\frac{q l^{2}}{8} \text { in mezzenia } \\
& V_{\text {max }}=\frac{q l}{2} \\
& \varphi_{A}=-\varphi_{B}=\frac{q l^{3}}{24 E l} \\
& \delta_{d}=\delta_{1 / 2}=\frac{5}{384} \frac{q l^{4}}{E l}
\end{aligned}
$$

Figure 6.40-Isostatic scheme with roller/hinge and distributed load

Figure 6.41 - Isostatic scheme with roller/hinge and concentrated load
Proceeding with the moment actions:

$$
M_{e d}=P * \frac{l}{4}=247.37 * \frac{7.80}{4}=482.38 \mathrm{kNm}
$$

The next step is the calculation of the minimum module resistance the beam must load. The operative resistance to bending moment will be:

$$
W_{x, \text { min }}=\frac{M_{e d}}{f_{y d}}=\frac{482.38}{\left(\frac{235}{1.05}\right)}=2155 \mathrm{~cm}^{3}
$$

$S L S-\delta_{\text {max }}$
It is now possible to proceed by looking at the minimum inertia the beam must provide

$$
I_{x, \min }=\frac{P * l^{3}}{48 * E_{s} * \delta_{\max }^{*}}=\frac{243.73 * 7.80^{3}}{48 * 210000 *\left(\frac{7.80}{250}\right)}=36777 \mathrm{~cm}^{4}
$$

BEAM CHOICE
Because of the minimum resistant module and the minimum inertia, a proper beam has been selected in order to verify these two above-mentioned restrictions

The selection went for the HE 360 B, able to provide sufficient inertia with a lower weight, mportant in the cases of multi-storey residential constructions, where the slab height should get lightened as much as possible. In this way, the later computation of the column could take advantage due to a lighter column height and a greater performance on the instability verification.

$$
\begin{aligned}
h & =36 \mathrm{~cm} ; \\
t_{w} & =1.20 \mathrm{~cm} ; \\
t_{f} & =2.30 \mathrm{~cm} ; \\
A & =181 \mathrm{~cm}^{2} \\
\rho_{g, k} & =1.420 \frac{\mathrm{kN}}{\mathrm{~m}} \\
W_{x} & =2400 \mathrm{~cm}^{3} \\
I_{x} & =43190 \mathrm{~cm}^{4}
\end{aligned}
$$

Thus:

$$
\begin{aligned}
& W_{x}>W_{x, \text { min }} \rightarrow 2400 \mathrm{~cm}^{3}>2155 \mathrm{~cm}^{3} \\
& I_{x}>I_{x, \text { min }} \rightarrow 43190 \mathrm{~cm}^{4}>36777 \mathrm{~cm}^{4}
\end{aligned}
$$

SLS - $M_{\text {max }}$
With the superimposition of the combinations, it is now possible to compute the maximum bending moment at the SLS. The used formulas are the above-mentioned ones.

$$
\begin{aligned}
& M_{\text {ed,conc. }}=P * \frac{l}{4}=174.30 * \frac{7.80}{4}=339.88 \mathrm{kNm} \\
& M_{\text {ed,distr. }}=\rho_{p, k} * \frac{l^{2}}{8}=1.420 * \frac{7.80^{2}}{8}=18.10 \mathrm{kNm}
\end{aligned}
$$

The summation of the two effects is:
$M_{\text {ed }}=M_{\text {ed,conc. }}+M_{\text {ed,distr. }}=339.88+18.10=350.68 \mathrm{kNm}$

. Mont diagran of the concentrated load
\square
Figure 6.43 - Moment diagram of the distributed load

The resisting moment is computed as:

So:

$$
M_{r d}=f_{y k} * \frac{W_{x}}{\delta_{M}}=235.00 * \frac{2400}{1.05}=537.14 \mathrm{kNm}
$$

$$
M_{e d}<M_{r d} \rightarrow 350.68 \mathrm{kNm}<537.14 \mathrm{kNm} \rightarrow \text { utilisation } 65 \%
$$

Politecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

The allowed deflection for a rolled-hinged beam is:

$$
\delta_{\max }=\frac{l}{350}=\frac{7.80}{300}=0.026 \mathrm{~m}
$$

Consequently:

ULS - $V_{\text {max }}$
With the superimposition of the combination, it is now possible to compute the maximum shear at the ULS, with its relative coefficients. The used formulas are the above-mentioned ones

$$
\begin{gathered}
V_{\text {ed,conc. }}=\frac{P}{2}=\frac{243.73}{2}=121.86 \mathrm{kN} \\
V_{\text {ed, distr. }}=\left(\gamma_{g} * \rho_{g, k}\right) * \frac{L}{2}=(1.35 * 1.420) * \frac{7.80}{2}=7.48 \mathrm{kN}
\end{gathered}
$$

Figure 6.44 - Shear diagram of the concentrated load

$$
\text { Figure } 6.45 \text { - Shear diagram of the distributed load }
$$

The summation of the two effects is

$$
V_{\text {ed }}=V_{\text {ed,conc. } .}+V_{\text {ed,distr. }}=121.86+7.48=129.34 \mathrm{kN}
$$

The resisting shear is computed as:

$$
V_{r d}=\tau_{d} * \frac{A}{\gamma_{M}}=\frac{\frac{235.00}{1.05}}{\sqrt{3}} * \frac{0.36 * 0.012}{1.05}=531.63 \mathrm{kN}
$$

Consequently:

$$
V_{e d}<V_{r d} \rightarrow 129.34 \mathrm{kN}<531.63 \mathrm{kN} \rightarrow \text { utilisation } 24 \%
$$

$S L S-\delta_{\text {max }}$
With the superimposition of the combination, it is now possible to compute the deflection at the SLS. The used formulas are the above-mentioned ones.

$$
\begin{gathered}
\delta_{\text {beam,conc. }}=P * \frac{l^{3}}{48 * E_{s} * I_{x}}=174.30 * \frac{7.80^{3}}{48 * 21000 * 43190}=0.019 \mathrm{~m} \\
\delta_{\text {beam,distr. }}=\frac{5}{384} * \rho_{g, k} * \frac{l^{4}}{E_{s} * I_{x}}=\frac{5}{384} * 1.420 * \frac{7.80^{4}}{210000 * 43190}=0.001 \mathrm{~m}
\end{gathered}
$$

The summation of the two effects is:

$$
\delta_{\text {beam }}=\delta_{\text {beam,conc. }}+\delta_{\text {beam,distr. }}=0.019+0.001=0.020 \mathrm{~m}
$$

```
\delta bea< < < max }->0.020m<0.026m->\mathrm{ utilisation 77%
\(\delta_{\text {beam }}<\delta_{\text {max }} \rightarrow 0.020 \mathrm{~m}<0.026 \mathrm{~m} \rightarrow\) utilisation 77\%
```


6.4.7 - STEEL BORDER BEAM - SECONDARY BEAM LOAD

In the following pages, we go through the calculation of two different types of border beams: one is subjected to a load of the secondary beam, set in the middle of the border beam itself. The second one instead s subjected to the load of the slab, where its ength influence is counted as half of it, as it was for the secondary UPN beam.
This will lead to different loads of combinations, and different levels of moment shear, deflection and torsion. That is why in shear, deflection the computational procedure, even if they are equivalent, will be both explained.
Figure 6.46 - The border steel beam

LOAD CALCULATIONS

Given the shear value of the cantilever beam (counting twice, each border beam will bear wo cantilevers) and added to the shear value of the HE secondary beam (with a total length of 7.50 metres), it is possible to go directly at the maximum ULS moment and the SLS deflection

This time it is not possible, to sum up, the two loads since they are acting on three different cross-sections on the beam

$$
\begin{aligned}
& P_{\text {cant } .230 \mathrm{~m}}=74.13 \mathrm{kN} \\
& P_{\text {sec. } 7.50 \mathrm{~m}}=126.07 \mathrm{kN}
\end{aligned}
$$

Furthermore, the distributed load represented by the external wall should be added to the total load that the border beam must bear: its value is

$$
q_{\text {ext.wall }}=4.72 \mathrm{kN} / \mathrm{m}
$$

ULS - $M_{\text {max }}$
Following the superimposition of the schematic schemes, as shown in the below images we can compute the maximum bending moment at the ultimate limit state.

$$
\begin{aligned}
& M_{\text {max }}=\frac{q l^{2}}{8} \text { in mezzenia } \\
& V_{\max }=\frac{q l}{2} \\
& \varphi_{A}=-\varphi_{B}=\frac{q l^{3}}{24 E l} \\
& \delta_{d}=\delta_{V / 2}=\frac{5}{384} \frac{q l^{4}}{E l}
\end{aligned}
$$

Figure 6.47 - Isostatic scheme with roller/hinge and distributed load
olitecnico di Man Master Science Building and Architectura Engineering Steember - Steel and timber for a high rise builaing in Queens, New York Chinnici Federico - Maranesi Marco

$$
\begin{aligned}
& M_{\text {max }}=\frac{P l}{4} \text { in mezzenia } \\
& V_{\max }=\frac{P}{2} \\
& \varphi_{A}=-\varphi_{B}=\frac{P l^{2}}{16 E I} \\
& \delta_{d}=\delta_{1 / 2}=\frac{P l^{3}}{48 E I}
\end{aligned}
$$

Figure 6.48 - Isostatic scheme with roller/hinge and concentrated load

$$
\begin{aligned}
& M_{\text {max }}=P a \text { in mezzeria } \\
& V_{\text {max }}=P \\
& \varphi_{A}=-\varphi_{B}=P a \cdot \frac{l-a}{12 E I} \\
& \delta_{d}=\delta_{/ 2 /}=\frac{P a}{24 E I} \cdot\left(3 l^{2}-4 a^{2}\right)
\end{aligned}
$$

Figure 6.49 - Isostaic schene with rollerhinge and double concentrated load
Proceeding with the moment actions:

$$
\begin{gathered}
M_{\text {ed,wall }}=\left(\gamma_{g} * g_{\text {ext.wall }}\right) \frac{l^{2}}{8}=(1.35 * 4.72) * \frac{7.80^{2}}{8}=48.42 \mathrm{kNm} \\
M_{\text {ed,sec. } 7.50 \mathrm{~m}}=P_{\text {sec }} * \frac{l}{4}=126.07 * \frac{7.80}{4}=245.83 \mathrm{kNm} \\
M_{\text {ed,_ant. } 2.30 \mathrm{~m}}=P_{\text {cant. }} * \frac{l}{3}=74.13 * \frac{7.80}{3}=192.75 \mathrm{kNm}
\end{gathered}
$$

$$
\underbrace{\infty}_{8}
$$

Figure 6.50 - Moment diagram of the distributed load

Figure 6.51 - Moment diagram of the concentrated load

22 - Moment diagram of the double concentrated load

Summing up the three values:

Politecnico di Milano, Master of Science in Building and Architectural Engineering

The next step is the calculation of the minimum module resistance the beam must load The operative resistance to bending moment will be

$$
W_{x, \text { min }}=\frac{M_{e d}}{f_{y d}}=\frac{487.00}{\left(\frac{275}{1.05}\right)}=1859 \mathrm{~cm}^{3}
$$

$S L S-\delta_{\text {max }}$
It is now possible to proceed by looking at the minimum inertia the beam must provide. The uperimposition of the effects leads to the result.

$$
\begin{aligned}
& I_{x, \text { min,wall }}=\frac{5}{384} * q_{\text {ext.wall }} * \frac{l^{4}}{E_{s} * \delta_{\max }}=\frac{5}{384} * 4.72 * \frac{7.80^{4}}{210000 *\left(\frac{7.80}{250}\right)}=3469 \mathrm{~cm}^{4} \\
& \begin{aligned}
& I_{x, \text { min,sec. } 7.50 \mathrm{~m}}=P_{\text {sec }} * \frac{l^{3}}{48 * E_{s} * \delta_{\max }}=90.15 * \frac{7.80^{3}}{48 * 210000 *\left(\frac{7.80}{250}\right)}=13603 \mathrm{~cm}^{4} \\
& I_{x, \text { min,cant. } 2.30 \mathrm{~m}}=P_{\text {cant }} * \frac{\frac{l}{3}}{24 * E_{s} * \delta_{\max }} *\left(3 * l^{2}-4 * \frac{l^{2}}{3}\right) \\
&= 52.52 *\left(\frac{7.80}{3}\right) /\left(24 * 210000 *\left(\frac{7.80}{250}\right) *\left(3 * 7.80^{2}-4 *\left(\frac{7.80}{3}\right)^{2}\right)\right. \\
&= 13501 \mathrm{~cm}^{4}
\end{aligned}
\end{aligned}
$$

The final minimum inertia will be
$I_{x, \text { min }}=I_{x, \text { min,wall }}+I_{x, \text { min,sec. } 7.50 m}+I_{x, \text { min,cant. 2.45m }}=3469+13603+13501$ $=30574 \mathrm{~cm}^{4}$

BEAM CHOICE

Because of the minimum resistant module and the minimum inertia, a proper beam has been selected in order to verify these two above-mentioned restrictions.

The selection went for the HE 320 M , high as the primary beam, in order to save space nough to a reduced thickness of the slab, allowing the possibility of having higher indoor spaces and permit the positioning of the pre-assembled wall, which has a greater high due o small handles. Furthermore, due to the torsion moment provided by the cantilever beam, greater resistance of the internal web and flanges is needed for its verification.

$$
\begin{aligned}
b & =30.90 \mathrm{~cm} ; \\
h & =35.90 \mathrm{~cm} ; \\
t_{w} & =2.10 \mathrm{~cm} ; \\
t_{f} & =4.00 \mathrm{~cm} ; \\
A & =312 \mathrm{~cm}^{2} \\
\rho_{g, k} & =2.450 \frac{\mathrm{kN}}{\mathrm{~m}} \\
W_{x} & =3796 \mathrm{~cm}^{3} \\
I_{x} & =68130 \mathrm{~cm}^{4}
\end{aligned}
$$

Thus:

$$
\begin{aligned}
& W_{x,}>W_{x, \text { min }} \rightarrow 3796 \mathrm{~cm}^{3}>1859 \mathrm{~cm}^{3} \\
& I_{x}>I_{x, \text { min }} \rightarrow 68130 \mathrm{~cm}^{4}>40636 \mathrm{~cm}^{4}
\end{aligned}
$$

SLS - $M_{\text {max }}$
With the superimposition of the combinations, it is now possible to compute the maximum bending moment at the SLS. The used formulas are the above-mentioned ones,

$$
\begin{gathered}
M_{\text {ed,beam }}=\rho_{p, k} * \frac{l^{2}}{8}=2.450 * \frac{7.80^{2}}{8}=18.63 \mathrm{kNm} \\
M_{\text {ed,wall }}=q_{\text {ext.wall }} * \frac{l^{2}}{8}=4.72 * \frac{7.80^{2}}{8}=35.87 \mathrm{kNm} \\
M_{\text {ed,sec.7.50m }}=P_{\text {sec }} * \frac{l}{4}=90.15 * \frac{7.80}{4}=175.80 \mathrm{kNm} \\
M_{\text {ed,cant. } 2.30 \mathrm{~m}}=P_{\text {cant }} * \frac{l}{3}=52.52 * \frac{7.80}{3}=136.55 \mathrm{kNm}
\end{gathered}
$$

The summation of the four effects is:

$$
M_{e d}=M_{\text {ed,beam }}+M_{\text {ed,wall }}+M_{\text {ed,.sec.7.50m }}+M_{\text {ed,cant } 2.45 \mathrm{sm}}
$$

$$
\begin{aligned}
& \text { eam }+M_{\text {ed, wall }}+M_{\text {ed,sec. } 7.50 \mathrm{mo}}+M_{\text {ed,cant. } 2.45 m} \\
& =18.63+35.87+175.80+136.55=36.85 \mathrm{kNm}
\end{aligned}
$$

The resisting moment is computed as:

$$
M_{r d}=f_{y k} * \frac{W_{x}}{\delta_{M}}=275.00 * \frac{3796}{1.05}=994.19 \mathrm{kNm}
$$

So:

$$
M_{e d}<M_{r d} \rightarrow 359.24 \mathrm{kNm}<994.19 \mathrm{kNm} \rightarrow \text { utilisation } 36 \%
$$

ULS - $V_{\text {max }}$
With the superimposition of the combination, it is now possible to compute the maximum shear at the ULS, with its relative coefficients. The used formulas are the above-mentioned ones.

$$
\begin{gathered}
V_{\text {ed.,.beam }}=\left(\gamma_{g} * \rho_{g, k}\right) * \frac{L}{2}=(1.35 * 2.450) * \frac{7.80}{2}=12.90 \mathrm{kN} \\
V_{\text {ed.wall }}=\left(\gamma_{g} * q_{\text {ext...all }}\right) * \frac{L}{2}=(1.35 * 4.72) * \frac{7.80}{2}=24.83 \mathrm{kN} \\
V_{\text {ed.sec. } 7.50 m}=\frac{P_{\text {see }}}{2}=\frac{126.07}{2}=63.03 \mathrm{kN} \\
V_{\text {ed.cant.230m }}=P_{\text {cant }}=74.13 \mathrm{kN} \\
\text { Figure 6.53 - Shear diaaram of the distributed load }
\end{gathered}
$$

Figure 6.53 - Shear diagram of the distributed load

Figure 6.54 - Shear diagram of the concentrated load

Figure 6.55 - Shear diagram of the double concentrated load

Politecnico di Milano. Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

The summation of the four effects is

$$
\begin{aligned}
V_{\text {ed }}= & V_{\text {ed, }, \text { eaam }} \\
& +V_{\text {ed,wall }}+V_{\text {ed,sec. } 7.50 \mathrm{~m}}+V_{\text {ed, cant. } 2.30 \mathrm{~m}}=12.90+24.83+63.03+74.13 \\
& 174.90 \mathrm{kN}
\end{aligned}
$$

The resisting shear is computed as:

$$
V_{r d}=\tau_{d} * \frac{A_{w}}{\gamma_{M}}=\frac{\frac{275.00}{1.05}}{\sqrt{3}} * \frac{0.359 * 0.021}{1.05}=1085.69 \mathrm{kN}
$$

Consequently:

$$
V_{e d}<V_{r d} \rightarrow 174.90 \mathrm{kN}<1085.69 \mathrm{kN} \rightarrow \text { utilisation } 16 \%
$$

$S L S-\delta_{\text {max }}$
With the superimposition of the combination, it is now possible to compute the deflection at the SLS. The used formulas are the above-mentioned ones.

$$
\begin{aligned}
& \delta_{\text {beam }}=\frac{5}{384} * \rho_{g, k} * \frac{l^{4}}{E_{s} * I_{x}}=\frac{5}{884} * 2.450 * \frac{7.80^{4}}{210000 * 68130}=0.001 \mathrm{~m} \\
& \delta_{\text {wall }}=\frac{5}{384} * q_{\text {ext.wall }} * \frac{l^{4}}{E_{s} * I_{x}}=\frac{5}{384} * 4.72 * \frac{7.80^{4}}{210000 * 68130}=0.002 \mathrm{~m} \\
& \phi_{\text {sec. } 7.50 \mathrm{~m}}=P_{\text {sec }} * \frac{l^{3}}{48 * E_{s} * l_{x}}=90.15 * \frac{7.80^{3}}{48 * 210000 * 68130}=0.006 \mathrm{~m} \\
& \delta_{\text {cant. } 2.45 m}=P_{\text {cant }} * \frac{\frac{l}{3}}{24 * E_{s} * l_{x}} *\left(3 * l^{2}-4 * \frac{l^{2}}{3}\right) \\
& =52.52 * \frac{7.80}{3} 24 * 210000 * 68130 *\left(3 * 7.80^{2}-4 *\left(\frac{7.80}{3}\right)^{2}\right)=0.006 \mathrm{~m}
\end{aligned}
$$

The summation of the four effects is:

$$
\begin{aligned}
\delta_{\text {beam }}=\begin{array}{c}
\text { beam }
\end{array} \\
=0.015 \mathrm{~m}
\end{aligned} \delta_{\text {wall }}+\delta_{\text {sec. } 7.50 \mathrm{~m}}+\delta_{\text {cant } 2.30 \mathrm{~m}}=0.001+0.003+0.006+0.006
$$

The allowed deflection for a rolled-hinged beam is:

$$
\delta_{\max }=\frac{l}{300}=\frac{7.80}{300}=0.026 \mathrm{~m}
$$

Consequently:

$$
\delta_{\text {beam }}<\delta_{\max } \rightarrow 0.015 m<0.026 m \rightarrow \text { utilisation } 58 \%
$$

$S L S-\tau_{\text {max }}$
As previously mentioned, another effect given to the beam is due torsion moment.

Figure 6.56 - Longitudinal section of
he cantilever loading the border beam
In order to compute this, at first, it is needed to check the torsion moment. One only is the orsion moment affecting the border beam, in two different sections. This torsion moment is provided by the cantilever beam, using the fixed-end moment earlier computed:

Following the superimposition of the schematic schemes, as shown in the below images we can compute the maximum bending moment at the ultimate limit state.

$$
\begin{aligned}
& M_{\text {max }}=\frac{q l^{2}}{8} \text { in mezzena } \\
& V_{\text {max }}=\frac{q l}{2} \\
& \varphi_{A}=-\varphi_{B}=\frac{q l^{3}}{24 E l} \\
& \delta_{d}=\delta_{V / 2}=\frac{5}{384} \cdot \frac{q l^{4}}{E I}
\end{aligned}
$$

Figure 6.58 - Isostatic scheme with roller/hinge and distributed load

Figure 6.59 - Isostatic scheme with roller/hinge and double concentrated load
Proceeding with the moment actions:

$$
\begin{gathered}
M_{\text {ed,slab }}=\left(\gamma_{g} * g^{\prime}+\gamma_{q} * q^{\prime}\right) * \frac{l^{2}}{8}=(1.35 * 7.56+1.50 * 3.88) * \frac{7.50^{2}}{8}=112.63 \mathrm{kNm} \\
M_{\text {ed,wall }}=\left(\gamma_{g} * g_{\text {ext.wall }}\right) * \frac{l^{2}}{8}=(1.35 * 4.72) * \frac{7.50^{2}}{8}=44.77 \mathrm{kNm} \\
M_{\text {ed,.cant. } 2.30 \mathrm{~m}}=P_{\text {cant. }} * \frac{l}{3}=74.13 * \frac{7.80}{3}=185.34 \mathrm{kNm}
\end{gathered}
$$

Figure 6.60 - Moment diagram of the distributed load

Figure 6.61 - Moment diagram of the double concentrated load
Summing up the three values:

$$
M_{\text {ed }}=M_{\text {ed,slab }}+M_{\text {ed,wall }}+M_{\text {ed,cant } 2.30 \mathrm{~m}}=112.63+44.77+185.34=342.74 \mathrm{kNm}
$$

The next step is the calculation of the minimum module resistance the beam must load. The operative resistance to bending moment will be:

$$
W_{x, \min }=\frac{M_{e d}}{f_{y d}}=\frac{342.74}{\left(\frac{275}{1.05}\right)}=1309 \mathrm{~cm}^{3}
$$

It is now possible to proceed by looking at the minimum inertia the beam must provide. The superimposition of the effects leads to the result.

Condizioni	Limiti (vedere fig. 4.1)	
	$\delta_{\text {max }}$	δ_{2}
Coperture in generale	L/200	L/250
Coperture praticate frequentemente da personale diverso da quello della manutenzione	L/250	L/300
Solai in generale	L/250	L/300
Solai o coperture che reggono intonaco o altro materiale di finitura fragile o tramezzi non flessibili	L/250	L/350
Solai che supportano colonne (a meno che lo spostamento sia stato incluso nella analisi globale per lo stato limite ultimo)	L/400	L/500
Dove $\delta_{\text {max }}$ può compromettere l'aspetto dell'edificio	L	50

$$
\begin{aligned}
& \text { Figure 6.62- Table of the limit values for deflection } \\
& \text { comb. } 1=\frac{g^{\prime}+q^{\prime}}{\delta_{\max }^{\prime \prime}}=\frac{7.56+3.38}{\frac{7.50}{250}}=381 \mathrm{kN} \\
& \operatorname{comb} .2=\frac{q^{\prime}}{\delta_{\max }^{\prime}}=\frac{3.38}{\frac{7.50}{300}}=155 \mathrm{kN}
\end{aligned}
$$

Using the worst combination, it is now possible to proceed by looking at the minimum inertia the beam must provide.

$$
\begin{aligned}
& I_{x, \text { min }, \text { slab }}=\frac{5}{384} *\left(g^{\prime}+q^{\prime}\right) * \frac{l^{4}}{E_{s} * \delta_{\max }^{\prime \prime}}=\frac{5}{384} *(7.56+3.38) * \frac{7.50^{4}}{210000 *\left(\frac{7.50}{300}\right)}=7478 \mathrm{~cm}^{4} \\
& I_{x, \text { min }, \text { wall }}= \\
& 384
\end{aligned} q_{\text {ext.wall }} * \frac{l^{4}}{E_{s} * \delta_{\max }}=\frac{5}{384} * 4.72 * \frac{7.50^{4}}{210000 *\left(\frac{7.50}{300}\right)}=3084 \mathrm{~cm}^{4} .
$$

The final minimum inertia will be:

$$
I_{x, \text { min }}=I_{x, \text { min,slab }}+I_{x, \text { min,wall }}+I_{x, \text { min,cant. 2.30m }}=7478+3084+12483=23045 \mathrm{~cm}^{4}
$$

BEAM CHOICE

Because of the minimum resistant module and the minimum inertia, a proper beam has been selected in order to verify these two above-mentioned restrictions.

The selection went for the HE 320 M , high as the primary beam, in order to save space enough to a reduced thickness of the slab, allowing the possibility of having higher indoor spaces and permit the positioning of the pre-assembled wall, which has a greater high due to small handles. Furthermore, due to the torsion moment provided by the cantilever beam greater resistance of the internal web and flanges is needed for its verification.

$$
\begin{array}{ll}
b=30.90 \mathrm{~cm} ; & A=312 \mathrm{~cm}^{2} \\
h=35.90 \mathrm{~cm} ; & \rho_{g, k}=2.450 \frac{\mathrm{kN}}{\mathrm{~m}} \\
t_{w}=2.10 \mathrm{~cm} ; & W_{x}=3796 \mathrm{~cm}^{3}
\end{array}
$$

$$
t_{f}=4.00 \mathrm{~cm} ; \quad I_{x}=68130 \mathrm{~cm}^{4}
$$

$$
\begin{aligned}
& W_{x}>W_{x, \text { min }} \rightarrow 3796 \mathrm{~cm}^{3}>1307 \mathrm{~cm}^{3} \\
& I_{x}>I_{x, \text { min }} \rightarrow 68130 \mathrm{~cm}^{4}>23045 \mathrm{~cm}^{4}
\end{aligned}
$$

SLS - $M_{\text {max }}$
With the superimposition of the combinations, it is now possible to compute the maximum bending moment at the SLS. The used formulas are the above-mentioned ones

$$
\begin{gathered}
M_{\text {ed,beam }}=\rho_{p, k} * \frac{l^{2}}{8}=2.450 * \frac{7.50^{2}}{8}=17.23 \mathrm{kNm} \\
M_{\text {ed,slab }}=\left(\rho_{g, k}+g^{\prime}+q^{\prime}\right) * \frac{l^{2}}{8}=(2.450+7.56+3.88) * \frac{7.50^{2}}{8}=97.63 \mathrm{kNm} \\
M_{\text {ed,wall }}=q_{\text {ext.wall }} * \frac{l^{2}}{8}=4.72 * \frac{7.50^{2}}{8}=33.16 \mathrm{kNm} \\
M_{\text {ed,cant. } 2.30 \mathrm{~m}}=P_{\text {cant }} * \frac{l}{3}=52.52 * \frac{7.50}{3}=131.30 \mathrm{kNm}
\end{gathered}
$$

The summation of the four effects is:

$$
M_{\text {ed }}=M_{\text {ed,beam }}+M_{\text {ed,slab }}+M_{\text {ed,wall }}+M_{\text {ed,cant. } 2.30 \mathrm{~m}}=17.23+97.63+33.16+131.30
$$

$$
=279.32 \mathrm{kNm}
$$

The resisting moment is computed as:

$$
M_{r d}=f_{y k} * \frac{W_{x}}{\delta_{M}}=275.00 * \frac{3796}{1.05}=946.85 \mathrm{kNm}
$$

So:

$$
M_{e d}<M_{r d} \rightarrow 279.32 \mathrm{kNm}<946.85 \mathrm{kNm} \rightarrow \text { utlisation } 29 \%
$$

ULS - $\mathrm{V}_{\text {max }}$

With the superimposition of the combination, it is now possible to compute the maximum shear at the ULS, with its relative coefficients. The used formulas are the above-mentioned ones.

$$
\begin{aligned}
& V_{\text {ed,beam }}=\left(\gamma_{g} *\left(\rho_{g, k}+g^{\prime}\right)+\gamma_{q} * q^{\prime}\right) * \frac{L}{2}=(1.35 *(2.450+7.56)+1.50 * 3.38) * \frac{7.50}{2} \\
&= 72.47 \mathrm{kN} \\
& V_{\text {ed,wall }}=\left(\gamma_{g} * q_{\text {ext.wall }}\right) * \frac{L}{2}=(1.35 * 4.72) * \frac{7.80}{2}=23.88 \mathrm{kN} \\
& V_{\text {ed, cant. } 2.30 \mathrm{~m}}=P_{\text {cant }}=74.13 \mathrm{kN} \\
& \text { Figure 6.63 - Shear diagram of the distributed load }
\end{aligned}
$$

Olitecnico di Milano, Master of Science in Building and Architectura Engineering
Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

Figure 6.64 - Shear diagram of the double concentrated load
The summation of the four effects is:

$$
V_{\text {ed }}=V_{\text {ed,beam }}+V_{\text {ed,wall }}+V_{\text {ed,,cant. } 2.30 \mathrm{~m}}=72.47+23.88+73.92=170.49 \mathrm{kN}
$$

he resisting shear is computed as:

$$
V_{r d}=\tau_{d} * \frac{A}{\gamma_{M}}=\frac{\frac{275.00}{1.05}}{\sqrt{3}} * \frac{0.36 * 0.021}{1.05}=1085.69 \mathrm{kN}
$$

Consequently:

$$
V_{e d}<V_{r d} \rightarrow 170.49 \mathrm{kN}<1085.69 \mathrm{kN} \rightarrow \text { utilisation } 16 \%
$$

SLS $-\delta_{\text {max }}$
With the superimposition of the combination, it is now possible to compute the deflection at the SLS. The used formulas are the above-mentioned ones

$$
\begin{aligned}
\begin{aligned}
& \delta_{\text {beam }}= \frac{5}{384} *\left(\rho_{g, k}+g^{\prime}+q^{\prime}\right) * \frac{l^{4}}{E_{s} * I_{x}} \\
&=\frac{5}{384} *(2.450+7.56+3.88) * \frac{7.50^{4}}{210000 * 68130}=0.004 \mathrm{~m} \\
& \delta_{\text {wall }}= \frac{5}{384} * q_{\text {ext.wall }} * \frac{l^{4}}{E_{s} * I_{x}}=\frac{5}{384} * 4.72 * \frac{7.50^{4}}{210000 * 68130}=0.001 \mathrm{~m} \\
& \delta_{\text {cant.2.30m }}=P_{\text {cant }} * \frac{\frac{l}{3}}{24 * E_{s} * I_{x}} *\left(3 * l^{2}-4 * \frac{l^{2}}{3}\right) \\
&= 69.39 * \frac{7.50}{3} \\
& 24 * 210000 * 68130
\end{aligned}\left(3 * 7.50^{2}-4 *\left(\frac{7.50}{3}\right)^{2}\right)=0.005 \mathrm{~m}
\end{aligned}
$$

The summation of the four effects is:

$$
\delta_{\text {beam }}=\delta_{\text {beam }}+\delta_{\text {wall }}+\delta_{\text {cant. } 2.30 \mathrm{~m}}=0.004+0.001+0.005=0.011 \mathrm{~m}
$$

The allowed deflection for a rolled-hinged beam is:

$$
\delta_{\max }=\frac{l}{300}=\frac{7.50}{300}=0.025 \mathrm{~m}
$$

Consequently:
$S L S-\tau_{\text {max }}$
As previously mentioned, another effect given to the beam is due torsion moment

Figure 6.65 - Longitudinal section of
the cantilever loading the border beam
In order to compute this, at first, it is needed to check the torsion moment. Two are the orsion moments affecting the border beam, in three different sections. Their torsion moment s provided by the cantilever beam, using the fixed-end moment earlier computed, and by the slab acting on the border beam itself:

$$
M_{\text {tor }, \text { cant }}=M_{\text {cant }}=47.25 \mathrm{kNm}
$$

The outcome of the tensional tangent stress will be

$$
\begin{aligned}
& \tau_{\max }=3 * M_{\text {tor }} * \frac{t_{f}}{\sum_{i=1}^{i=3}\left(2 * b * t_{f}^{3}+\left(h-2 * t_{f}\right) * t_{w}^{3}\right.} \\
&=3 * 47.25 * \frac{40}{\left(2 * 309 * 40^{3}+(359-2 * 40) * 21^{3}\right.}=134.56 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
\end{aligned}
$$

While the resisting force due to torsion is:

$$
\tau_{t o r}=\frac{f_{y d}}{\sqrt{3}}=\frac{261.90}{\sqrt{3}}=151.21 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

Therefore:

$$
\tau_{\max }<\tau_{\text {tor }} \rightarrow 134.56 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}<151.21 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \rightarrow \text { utilisation } 89 \%
$$

Once designed all the structural beams is now time to go on with the computatio both the compression forces and the arise both the compression forces and the arise
he following step is to compute the tota oad acting at the base of the pillar, with later-deternined HEM pronile. Regaraing he total bending moment, there is no influence due to the column, since it does not provide any further bending moment.

An additional note is that all the floors have been considered with the sam weight in order to be on the safe side for the entire column's calculation process.

Figure 6.67 - B1 pillar
aver beam $+2 \times$ border-slab loaded-beam

Figure 6.69 - C2 pillar
Figure 6.69-C2 pilla
Cantilever beam +
primary beam

Figure 6.68-C1 pillar
$2 \times$ cantilever beams + border-secondary loaded-beam + bor-

Because of the elevated compression resistance the column should provide, it has been selected the use of a high-strength steel class

Shear forces and bending moments at the ULS have been considered for the computation of the pillars.

COLUMN A

The loads due to the shear forces provided by the beams are:
$N_{\text {ed.A1 }}=P_{\text {cant.2.30m }}+P_{\text {cant.2.30m }}+P_{\text {border sec. } 7.80 \mathrm{~m}}+P_{\text {border slab } 7.50}$
$M_{\text {ed.A1 }}=M_{\text {cant.2.30m }}+M_{\text {cant.2.30m }}+M_{\text {border sec. } 7.80 \mathrm{~m}}+M_{b}$ t.2.30m $+M_{\text {cant. } 2.30 \mathrm{~m}}+M_{\text {border sec. } 7.80 \mathrm{~m}}+M_{\text {border slab }} 7.50 \mathrm{~m}$
$=67.24+67.24+0.00+0.00=134.48 \mathrm{kNm}$

Thus:
$N_{\text {ed,tot,A1 }}=N_{\text {ed,A1 }} * n_{\text {floors }}+\rho_{g, k} * h_{\text {floors }} * n_{\text {floors }}$ $=493.65 * 23-2 *(74.13+74.13)+1.720 * 3.60 * 23=11199.89 k N$
$M_{\text {ed,tot }, A 1}=M_{\text {ed, }, A 1} * n_{\text {floors }}=134.48 * 23-2 *(67.24+67.24)=2258.04 \mathrm{kNm}$
In this case, a HE 260 M has been considered for the self-weight of the beam:

$$
\begin{aligned}
& A_{\text {min,ed } A 1}=\frac{N_{e d A 1}}{f_{y d}}=\frac{11199.89}{523.81}=213.82 \mathrm{~cm}^{2} \\
& W_{\text {min }, \text { ed } A 1}=\frac{M_{e d A 1}}{f_{y d}}=\frac{2824.14}{523.81}=53.92 \mathrm{~cm}^{3}
\end{aligned}
$$

Computing its verifications

$$
\begin{aligned}
A & =220 \mathrm{~cm}^{2}>213.82 \mathrm{~cm}^{2} \\
W_{x} & =2159 \mathrm{~cm}^{3}>53.92 \mathrm{~cm}^{3}
\end{aligned}
$$

COLUMN B

The loads due to the shear forces provided by the beams are:
$N_{\text {ed.B1 }}=P_{\text {cant.2.30m }}+P_{\text {primary } 7.80 \mathrm{~m}}+P_{\text {border slab 7.50m }}+P_{\text {border slab } 7.00 \mathrm{~m}}$ $=74.13+129.34+170.49+134.97=508.93 \mathrm{kN}$
$M_{\text {ed.B1 }}=M_{\text {cant.2.30 }}+M_{\text {primary } 7.80 \mathrm{~m}}+M_{\text {border slab 7.50m }}+M_{\text {border slab 7.00m }}$ $=67.24+0.00+0.00+0.00=67.24 \mathrm{kNm}$

Thus:
$N_{\text {ed,tot }, B 1}=N_{\text {ed, } B 1} * n_{\text {floors }}+\rho_{g, k} * h_{\text {floors }} * n_{\text {floors }}$ $=508.93 * 23-2 * 74.13+1.720 * 3.60 * 23=11713.66 \mathrm{kN}$
$M_{\text {ed,tot }, B 1}=M_{\text {ed }, B 1} * n_{\text {floors }}=67.24 * 23-2 *(67.24+67.24)=1412.07 \mathrm{kNm}$

In this case, a HE 280 M has been considered for the self-weight of the beam

$$
\begin{gathered}
A_{\text {min,ed } B 1}=\frac{N_{e d B 1}}{f_{y d}}=\frac{11713.66}{523.81}=223.62 \mathrm{~cm}^{2} \\
W_{\text {min,ed } B 1}=\frac{M_{e d B 1}}{f_{y d}}=\frac{1412.07}{523.81}=26.96 \mathrm{~cm}^{3}
\end{gathered}
$$

Computing its verifications

$$
\begin{gathered}
A=240 \mathrm{~cm}^{2}>223.62 \mathrm{~cm}^{2} \\
W_{x}=2551 \mathrm{~cm}^{3}>26.96 \mathrm{~cm}^{3}
\end{gathered}
$$

COLUMN C1

The loads due to the shear forces provided by the beams are

$$
\begin{gathered}
N_{\text {ed.C1 }}=P_{\text {cant.2.30m }}+P_{\text {cant.2.30m }}+P_{\text {border sec. } 7.80 \mathrm{~m}}+P_{\text {border slab } 7.00 \mathrm{~m}} \\
=74.13+74.13+174.90+134.97=458.14 \mathrm{kN}
\end{gathered}
$$

$M_{\text {ed. } C 1}=M_{\text {cant. } 2.30 \mathrm{~m}}+M_{\text {cant.2.30m }}+M_{\text {border sec. } 7.80 \mathrm{~m}}+M_{\text {border slab } 7.00 \mathrm{~m}}$ $=67.24+67.24+0.00+0.00=134.48 k N m$

Thus:

$$
N_{\text {ed, tot }, C 1}=N_{\text {ed, }, 1} * n_{\text {floors }}+\rho_{g, k} * h_{\text {floors }} * n_{\text {floors }}
$$

$$
=458.14 * 23-2 *(74.13+74.13)+1.570 * 3.60 * 23=10370.67 \mathrm{kN}
$$

$M_{\text {ed,tot }, C 1}=M_{\text {ed }, C 1} * n_{\text {floors }}=134.48 * 23-2 *(67.24+67.24)=2824.14 \mathrm{kNm}$
In this case, a HE 240 M has been considered for the self-weight of the beam:

$$
\begin{gathered}
A_{\text {min,ed } C 1}=\frac{N_{e d} C 1}{f_{y d}}=\frac{10370.67}{523.81}=197.99 \mathrm{~cm}^{2} \\
W_{\text {min,ed } C 1}=\frac{M_{e d} C 1}{f_{y d}}=\frac{2824.14}{523.81}=53.92 \mathrm{~cm}^{3}
\end{gathered}
$$

Computing its verifications

$$
\begin{aligned}
A & =200 \mathrm{~cm}^{2}>197.99 \mathrm{~cm}^{2} \\
W_{x} & =1799 \mathrm{~cm}^{3}>53.92 \mathrm{~cm}^{3}
\end{aligned}
$$

COLUMN C2

The loads due to the shear forces provided by the beams are:
$N_{\text {ed.C2 }}=P_{\text {cant. } 2.30 \mathrm{~m}}+P_{\text {primary } 7.00 \mathrm{~m}}+P_{\text {border sec } 7.80 \mathrm{~m}}+P_{\text {border sec } 6.80 \mathrm{~m}}$ $=74.13+128.57+174.90+160.22=537.83 \mathrm{kN}$
$M_{\text {ed.C2 }}=M_{\text {cant. } 2.30 \mathrm{~m}}+M_{\text {primary } 7.80 \mathrm{~m}}+M_{\text {border sec } 7.80 \mathrm{~m}}+M_{\text {border sec } 6.80 \mathrm{~m}}$ $=67.24+0.00+0.00+0.00=67.24 \mathrm{kNm}$

Thus:
$N_{\text {ed }, \text { tot }, C 2}=N_{\text {ed }, B 1} * n_{\text {floors }}+\rho_{g, k} * h_{\text {floors }} * n_{\text {floors }}$ $=537.83 * 23-2 * 74.13+1.890 * 3.60 * 23=12378.25 \mathrm{kN}$
$M_{\text {ed,tot }, C 2}=M_{\text {ed,C2 }} * n_{\text {floors }}=67.24 * 23-2 * 67.24=1412.07 \mathrm{kNm}$
In this case, a HE 280 M has been considered for the self-weight of the beam:

$$
\begin{gathered}
A_{\text {min,ed } C 2}=\frac{N_{e d ~} 2}{} \\
f_{y d}
\end{gathered}=\frac{12378.25}{523.81}=236.31 \mathrm{~cm}^{2} .
$$

Computing its verifications:

$$
A=240 \mathrm{~cm}^{2}>223.62 \mathrm{~cm}^{2}
$$

$$
W_{x}=2551 \mathrm{~cm}^{3}>26.96 \mathrm{~cm}^{3}
$$

cOLUMN C4

The loads due to the shear forces provided by the beams are

$$
N_{\text {ed.C4 }}=P_{\text {cant. } 2.30 \mathrm{~m}}+P_{\text {primary } 7.00 \mathrm{~m}}+P_{\text {border sec } 6.80 \mathrm{~m}}+P_{\text {border sec } 6.80 \mathrm{~m}}
$$

$$
=74.13+128.57+160.22+160.22=523.15 \mathrm{kN}
$$

$M_{\text {ed.C4 }}=M_{\text {cant. } 2.30 \mathrm{~m}}+M_{\text {primary } 7.80 \mathrm{~m}}+M_{\text {border sec } 6.80 \mathrm{~m}}+M_{\text {border sec } 6.80 \mathrm{~m}}$ $=67.24+0.00+0.00+0.00=67.24 \mathrm{kNm}$
Thus:

$$
N_{\text {ed, }, \text { tot }, C 4}=N_{\text {ed, }, 4} * n_{\text {floors }}+\rho_{g, k} * h_{\text {floors }} * n_{\text {floors }}
$$

$$
=537.83 * 23-2 * 74.13+1.890 * 3.60 * 23=12040.70 \mathrm{kN}
$$

$M_{\text {ed,tot }, C 4}=M_{\text {ed, }, 44} * n_{\text {floors }}=67.24 * 23-2 * 67.24=2824.14 \mathrm{kNm}$
In this case, a HE 280 M has been considered for the self-weight of the beam:

$$
\begin{gathered}
A_{\text {min,ed } B 1}=\frac{N_{e d ~ B 1}}{f_{y d}}=\frac{12040.70}{523.81}=229.87 \mathrm{~cm}^{2} \\
W_{\text {min }, e d} B 1
\end{gathered}=\frac{M_{e d ~} 11}{} f_{y d}=\frac{2824.14}{523.81}=53.92 \mathrm{~cm}^{3} .
$$

Computing its verifications

$$
\begin{aligned}
A & =240 \mathrm{~cm}^{2}>223.62 \mathrm{~cm}^{2} \\
W_{x} & =2551 \mathrm{~cm}^{3}>26.96 \mathrm{~cm}^{3}
\end{aligned}
$$

After the load calculation for each element, we discovered that the C2 column is the pillar most subjected to compression actions (two out of the four beams support part of the slab), while for A1 and C1 the bending moment given by two cantilever beams reaches the maximum value.

We can go now through the minimum resistance due to compressive actions. Bending moment checking will be neglected in this calculation report since it is clearly obvious that compressions actions are more burdensome that bending moment

Politecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

ULS - $N_{\max } / M_{\max }$
The calculation of the minimum area able to support the load is:

$$
A_{\text {min }, e d}=\frac{N_{e d, \max }}{f_{y d}}=\frac{12378.25}{\frac{550.00}{1.05}}=236.31 \mathrm{~cm}^{2}
$$

While the minimum resistant module is computed as:

$$
W_{x, \text { min }, \text { ed }}=\frac{M_{e d, \max }}{f_{y d}}=\frac{2824.14}{\frac{550.00}{1.05}}=53.92 \mathrm{~cm}^{3}
$$

The above-mentioned HE 400 M column verifies the two minimum requirements:

$$
\begin{aligned}
& A>A_{\text {min,ed }} \rightarrow 315.80 \mathrm{~cm}^{2}>236.31 \mathrm{~cm}^{2} \\
& W_{x}>W_{x, \text { min }, \text { ed }} \rightarrow 4052 \mathrm{~cm}^{3}>53.92 \mathrm{~cm}^{3} \\
& W_{y}>W_{y, \text { min,ed }} \rightarrow 1276 \mathrm{~cm}^{3}>53.92 \mathrm{~cm}^{3}
\end{aligned}
$$

BEAM CHOICE

As a recap, here the values regarding the HE 340 M beam are shown again, working as an easier comprehension for the following stages.

$$
\begin{aligned}
h & =37.70 \mathrm{~cm} ; \\
b & =30.90 \mathrm{~cm} ; \\
t_{w} & =2.10 \mathrm{~cm} ; \\
t_{f} & =4.00 \mathrm{~cm} ; \\
r & =2.70 \mathrm{~cm} ; \\
i_{x} & =15.55 \mathrm{~cm} ; \\
i_{y} & =7.90 \mathrm{~cm} ; \\
A & =315.80 \mathrm{~cm}^{2} \\
\rho_{g, k} & =2.480 \frac{\mathrm{kN}}{\mathrm{~m}} \\
W_{x} & =4052 \mathrm{~cm}^{3} \\
W_{y} & =1276 \mathrm{~cm}^{3} \\
I_{x} & =76370 \mathrm{~cm}^{4} \\
I_{y} & =19710 \mathrm{~cm}^{4}
\end{aligned}
$$

ULS - $N_{\text {max }}$

As the Eurocode prescribes, it is important to verify the stability of the column along its main two axes, the $x-x$ inertial and the $y-y$ inertial axis, at the Ultimate Limit State.

The first step is to select the so-called imperfection coefficient for the instability curve of the piliar. It must respect specific geometrical rules, according to the selected profile, and they are mentioned in the below image.

Politecnico di Milano, Master of Science in Building and Architectural Engineering teember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

\section*{| \quad Coursa arimstabinial | a | | | |
| :--- | :---: | :---: | :---: | :---: |
| Coefficiente di i imperferione α | 0.21 | 0,34 | 0.49 | 0.76 |}

Figure 6.71 - Imperfection coefficients

Sezione trasversale	Limiti	$\begin{array}{\|c} \begin{array}{c} \text { Insabilital } \\ \text { antorno } \\ \text { allase } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { Curva di } \\ & \text { instabilit } \end{aligned}$
Sezioni laminate ad I	$\begin{aligned} & h / b>1,2: \\ & t_{f} \leq 40 \mathrm{~mm} \\ & 40 \mathrm{~mm}<t_{f} \leq 100 \mathrm{~mm} \\ & \\ & h / b \leq 1,2: \\ & t_{f} \leq 100 \mathrm{~mm} \\ & t_{f}>100 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & y-y \\ & z-z \\ & y-y \\ & z-z \\ & y-y \\ & z-z \\ & y-y \\ & z-z \end{aligned}$	$\begin{aligned} & \text { a } \\ & \text { b } \\ & \text { c } \\ & \text { c } \\ & \text { b } \\ & \text { c } \\ & \text { d } \\ & d \end{aligned}$

Consequently, since:

$$
\frac{h}{b}=\frac{37.70}{30.90} \geq 1.20
$$

And

$$
t_{f} \leq 4.00 \mathrm{~cm}
$$

We can go through the "a" coefficient for the $x-x$ axis and "b" coefficient y - y axis. So:

$$
\begin{aligned}
& \alpha_{x-x}=0.21 \\
& \alpha_{y-y}=0.34
\end{aligned}
$$

The following step is to compute the slenderness coefficient, given as:

$$
\begin{aligned}
& \lambda_{x}=\frac{h_{\text {floor }}}{i_{x}}=\frac{360}{15.55}=23.15 \\
& \lambda_{y}=\frac{h_{\text {floor }}}{i_{y}}=\frac{360}{7.90}=45.57
\end{aligned}
$$

To compute the a-dimensional slenderness, it is important to use yielding stress able to resist to the following verifications.

$$
\begin{aligned}
& \overline{\lambda_{x}}=\frac{\lambda_{x}}{\lambda_{1}}=\frac{23.15}{\pi^{2} * \sqrt{\frac{E_{s}}{f_{y k}}}}=\frac{23.15}{\pi^{2} * \sqrt{\frac{210000}{550.00}}}=0.38 \\
& \overline{\lambda_{y}}=\frac{\lambda_{y}}{\lambda_{1}}=\frac{45.57}{\pi^{2} * \sqrt{\frac{E_{s}}{f_{y k}}}}=\frac{45.57}{\pi^{2} * \sqrt{\frac{210000}{550.00}}}=0.74
\end{aligned}
$$

A further Φ coefficient is needed to go through the calculations, defined as:

$$
\begin{aligned}
& \phi_{x}=0.5 *\left(1+\alpha_{x-x} *\left(\overline{\lambda_{x}}-0.2\right)+{\overline{\lambda_{x}}}^{2}\right)=0.5 *\left(1+0.21 *(0.38-0.2)+0.38^{2}\right) \\
& \quad=0.59
\end{aligned} \quad \begin{aligned}
\phi_{y} & =0.5 *\left(1+\alpha_{y-y} *\left(\overline{\lambda_{y}}-0.2\right)+\bar{\lambda}_{y}{ }^{2}\right)=0.5 *\left(1+0.34 *(0.74-0.2)+0.74^{2}\right) \\
& =0.87
\end{aligned}
$$

Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

Politecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

And

$$
\begin{aligned}
& N_{e d, \max }<N_{r d, x} \rightarrow 12378.25 \mathrm{kN}<15858.85 \mathrm{kN} \rightarrow \text { utilisation } 78 \% \\
& N_{e d, \max }<N_{r d, y} \rightarrow 12378.25 \mathrm{kN}<12559.87 \mathrm{kN} \rightarrow \text { utilisation } 99 \%
\end{aligned}
$$

combined compressive and bending stress verification

Additional verification is due to the combined action of bending moment and compressive orces.
In order to compute this, two more coefficients should be solved, having the following mitation

$$
k_{x} \leq 1.50 \text { and } k_{v} \leq 1.50
$$

Thus:

$$
\begin{aligned}
& k_{x}=1-\frac{\mu_{x} * N_{e d}}{\chi_{x} * A * f_{y d}}=1-\frac{0.90 * 12378.25}{0.96 * 315.80 * 523.81}=0.30 \\
& k_{y}=1-\frac{\mu_{y} * N_{e d}}{\chi_{y} * A * f_{y d}}=1-\frac{0.90 * 12378.25}{0.76 * 315.80 * 523.81}=0.11
\end{aligned}
$$

Where μ_{\star} and μ are taken as the maximum allowed value in Eurocode (equal to 0.90), in order to be on the safe side

Consequently, we can calculate the overall relation

$$
\begin{aligned}
\frac{N_{e d, \max }}{\chi_{\min }+A * f_{y d}} & +\frac{k_{x} * M_{e d, \max }}{W_{x} * f_{y d}}+\frac{k_{y} * M_{e d, \max }}{W_{y} * f_{y d}} \leq 1 \\
& \rightarrow \frac{12378.25}{0.76 * 326 * 523.81}+\frac{0.30 * 2258.04}{4052 * 523.81}+\frac{0.11 * 2258.04}{1276 * 523.81}=0.99
\end{aligned}
$$

Thus:

For sections of class 1,2 and 3 , the β_{α} can be assumed as 1 .
Consequently:
$N_{r d, x}=\chi_{x} * \beta_{a} * A * f_{y d}=0.96 * 1 * 315.80 * 523.81=15858.85 \mathrm{kN}$

Politecnico di Milano, Master of Science in Building and Architectural Engineering

6.4.10 - CONCRETE MIX DESIGN

The very last element computed in this thesis project is the concrete beam. Due to an architectural choice of having a glass faccade passing in front of the steel frame, a greater beam's base was needed, in order that both columns and glass façade could load on the beam, without any other supporting plate.

The only way to reach the set target was the consideration and the use of concrete, able o be designed in a more flexible way with respect to other materials. Steel beams are no suitable, because the pre-determined shape can lead to bases not greater than 30 cm . On the other way around, wooden beams are not enough to resist to compression forces provided by steel columns.

Therefore, a more proper structural solution was decided to complete the structural design

Brief mix design has been done, in order to select a proper concrete class, able to respect the below-exposed environmental prescriptions. These resistant classes should pass through the UNI EN 206-2006, that defines a minimum concrete class with respect to the exposure to the aggressivity of the environment.

No risk of corrosion or attack:

- XO;

Minimum resistant class: C12/15;
Corrosion induced by carbonation:
XC1

- Dry or permanently wet: $w / c_{\max }=0,60$;

Minimum concrete dosage $\left(\mathrm{kg} / \mathrm{m}^{3}\right)=300$;
Minimum resistant class: C25/30;

- XC2
- Wet, rarely dry: w/ $\mathrm{c}_{\max }=0,60$;

Minimum concrete dosage $\left(\mathrm{kg} / \mathrm{m}^{3}\right)=300$;
Minimum resistant class: C25/30;

XC3
Moderate humidity: $\mathrm{w} / \mathrm{c}_{\max }=0,55$
Minimum concrete dosage $\left(\mathrm{kg} / \mathrm{m}^{3}\right)=320$;
Minimum resistant class: C28/35;

XC4

- Cyclic wet and dry: $w / c_{\max }=0,50$;

Minimum concrete dosage $\left(\mathrm{kg} / \mathrm{m}^{3}\right)=340$;

- Minimum resistant class: C32/40;

Corrosion induced by chlorides:
XD1

Politecnico di Milano. Master of Science in Building and Architectural Engineering teember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

Moderate humidity: $\mathrm{w} / \mathrm{c}_{\max }=0,55$;
Minimum concrete dosage $\left(\mathrm{kg} / \mathrm{m}^{3}\right)=320$;
Minimum resistant class: C28/35;

XD2
Wet, rarely dry: $\mathrm{w} / \mathrm{c}_{\text {max }}=0,50$;
Minimum concrete dosage $\left(\mathrm{kg} / \mathrm{m}^{3}\right)=340$;
Minimum resistant class: C32/40;

XD3
Cyclic wet and dry: $w / \mathrm{c}_{\text {max }}=0,45$;
Minimum concrete dosage $\left(\mathrm{kg} / \mathrm{m}^{3}\right)=360$;
Minimum resistant class: C35/45;
Corrosion induced by chlorides from sea water:
XS1

- Exposed to airborne salt but not in direct contact with sea water: $\mathrm{w} / \mathrm{c}_{\max }=0,45$;

Minimum concrete dosage $\left(\mathrm{kg} / \mathrm{m}^{3}\right)=340$;
Minimum resistant class: C32/40;

- XS2 - Permanently submerged: $\mathrm{w} / \mathrm{c}_{\max }=0,45$;

Minimum concrete dosage $\left(\mathrm{kg} / \mathrm{m}^{3}\right)=360$;
Minimum resistant class: C35/45;

- XS3
- Tidal, splash and spray zones: $\mathrm{w} / \mathrm{c}_{\max }=0,45$;

Minimum concrete dosage $\left(\mathrm{kg} / \mathrm{m}^{3}\right)=360$;
Minimum resistant class: C35/45;
Freeze/Thaw attack:

- XF1
- Moderate water saturation, without de-icing agent: $\mathrm{w} / \mathrm{c}_{\max }=0,50$;

Minimum concrete dosage $\left(\mathrm{kg} / \mathrm{m}^{3}\right)=320$;
Minimum resistant class: C32/40;

XF2
Moderate water saturation, with de-icing agent $\mathrm{w} / \mathrm{c}_{\max }=0,50$;
Minimum concrete dosage $\left(\mathrm{kg} / \mathrm{m}^{3}\right)=340$;
Minimum resistant class: C25/30;

Politecnico di Milano Master of Science in Building and Architectual Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

Plitecnico dirn Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

6.4.11 - CONCRETE BEAM - SLAB'S LOAD

GEOMETRICAL PRE-DESIGN

Concrete pre-design elements should be checked too many parameters influencing already at the early stage of its design

Given the base and the height dimensions, the beam should verify that

$$
h>\frac{l}{25}
$$

Given the length of the beam, as previously calculated, and since:

$$
h=70 \mathrm{~cm}
$$

We have

$$
70 \mathrm{~cm}>31 \mathrm{~cm}
$$

The minimum cover for the steel rebars is

$$
d_{\text {cover }, \text { nom }}=M A X\left(\phi_{\text {bars }} ; 15 \mathrm{~mm}\right)+10 \mathrm{~mm}
$$

The selected bars are

$$
\phi=28 \mathrm{~mm}
$$

So, the minimum cover is:

$$
d_{\text {cover }, \text { nom }}=28+10=38 \mathrm{~mm}
$$

Consequently, the effective height will be

$$
d_{\max }=h-h_{\text {cover, nom }}-\frac{\phi}{2}=70-3.80-\frac{2.80}{2}=64.80 \mathrm{~cm}
$$

The effective distance between the concrete tensioned face and the barycentre of the stee reinforcement is designed as:

$$
d=45 \mathrm{~cm}
$$

So

$$
d<d_{\max } \rightarrow 45 \mathrm{~cm}<64.80 \mathrm{~cm}
$$

The base should be set in the following range:

$$
\begin{aligned}
& b>\operatorname{MAX}\left(20 \mathrm{~cm} ; \frac{h}{4}\right) \\
& b<\operatorname{MIN}(h+d ; 2 * d)
\end{aligned}
$$

Since:

$$
b=70 \mathrm{~cm}
$$

We have:

$$
b_{\min }<b<b_{\max } \rightarrow 20 \mathrm{~cm}<70 \mathrm{~cm}<90 \mathrm{~cm}
$$

LOAD ANALYSIS
The load analysis considers both the self-weight of the beam and the curtain wall lying on it The total load at the ULS is:

$$
\frac{\rho}{2}=\rho^{\prime} * b * h=25 * 0.70 * 0.70=6.13 \frac{\mathrm{kN}}{\mathrm{~m}}
$$

Given the permanent load ($3.03 \mathrm{kN} / \mathrm{m}^{2}$) and the variable load $\left(2.00 \mathrm{kN} / \mathrm{m}^{2}\right)$, we can compute the kN / m value by using the highest length a single beam has to bear due to the slab weight and curtain wall weight.

Thus:

$$
\begin{gathered}
g^{\prime}+q^{\prime}=(g+q) * l_{\text {infl }}+\frac{\rho}{2}=(3.03+2.00) * 3.75+6.13=24.99 \frac{\mathrm{kN}}{\mathrm{~m}} \\
g_{\text {curt.wall }}=3.60 \frac{\mathrm{kN}}{\mathrm{~m}} \\
Q_{\text {tower }}=g^{\prime}+q^{\prime}+g_{\text {curt.wall }}=24.99+3.60=28.59 \frac{\mathrm{kN}}{\mathrm{~m}}
\end{gathered}
$$

At the same time, the concrete beam needs to support the relative influenced area of the adjacent garden. The slab's weight counts for $8.99 \mathrm{kN} / \mathrm{m}^{2}$, while the variable load is equal to $5.00 \mathrm{kN} / \mathrm{m}^{2}$, as prescribed by the Eurocode.

A regular structural grid of 6×6 metres of the underground floor counts to the beam an influenced area equal to 3 metres.

$$
Q_{\text {garden }}=(g+q) * l+\frac{\rho}{2}=(8.99+5.00) * 3.00+6.13=48.09 \frac{\mathrm{kN}}{\mathrm{~m}}
$$

At the Ultimate Limit State, the calculation is:

$$
\begin{aligned}
Q=\left(\gamma_{g} * g+\right. & \left.\gamma_{q} * q\right) * l_{\text {infl }}+\gamma_{g} * \frac{\rho}{2}+\left(\gamma_{g} * g+\gamma_{q} * q\right) * l_{\text {infl }}+\gamma_{g} * \frac{\rho}{2}+\gamma_{g} * g_{\text {curt.wall }} \\
& =(1.35 * 3.03+1.50 * 2.00) * 3.75+1.35 * 6.13 \\
& +(1.35 * 8.99+1.50 * 5.00) * 3.00+1.35 * 6.13+1.35 * 3.60 \\
& =106.90 \frac{k N}{m}
\end{aligned}
$$

ULS - $\mathrm{M}_{\text {max }}$
Following the superimposition of the schematic schemes, as shown in the below images, we can compute the maximum bending moment at the ultimate limit state. A secondary beam acts on the concrete member.

Politecnico di Milano. Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

Proceeding with the moment actions:

$$
\mathrm{M}_{\mathrm{ed}, \text { distr,mid }}=\mathrm{Q} * \frac{\mathrm{l}^{2}}{24}=106.90 * \frac{7.50^{2}}{24}=250.54 \mathrm{kNm}
$$

While for extreme cross-sections:

$$
M_{e d, s l a b, e x t r}=Q * \frac{l^{2}}{12}=106.90 * \frac{7.50^{2}}{12}=501.08 \mathrm{kNm}
$$

Figure 6.75 - Moment diagram of the distributed load

REINFORCEMENT DESIGN
The next step is to determine the minimum area for steel reinforcement. According to the Eurocode, the minimum quantity should not be less than:

$$
\begin{gathered}
A_{\text {steel }, \text { min }}=\operatorname{MAX}\left(\frac{M_{e d}}{0.90 * d * f_{y d}} ; 6.16 \mathrm{~cm}^{2} ; 0.26 * \frac{f_{c t m}}{f_{y d}} * b * d ; 0.003 * f_{y k}\right) \\
A_{\text {steel }, \text { min }}=\operatorname{MAX}\left(\frac{501.08 v s .250 .54}{0.90 * 45 * 391.30} ; 6.16 ; 0.26 * \frac{3.36}{391.30} * 70 * 45 ; 0.003 * 450\right) \\
A_{\text {steel,min,mid }}=13.17 \mathrm{~cm}^{2} \\
A_{\text {steel }, \text { min }, \text { extr }}=26.35 \mathrm{~cm}^{2}
\end{gathered}
$$

Moreover, a further prescription states that the overall quantity of reinforcement should not be less than:

$$
\rho_{\min }=0.0013 \% * b * d=0.0013 \% * 70 * 45=4.10 \%
$$

And not more than

$$
\rho_{\max }=0.0078 \% * f_{y k}=0.0078 \% * 450=4.21 \%
$$

Due to this result, 22 rebars have been selected on the tensional side, and 11 more are set in the compressional side. As mentioned before, the diameter size of the rebars is 28 mm .

Thus:
$A_{\text {steel }}=\left(n_{\text {long.bars,tens }}+n_{\text {long.bars,comp }}\right) * \pi^{2} * \frac{\phi}{4}=(22+11) * \pi^{2} * \frac{28}{4}=203.20 \mathrm{~cm}^{2}$
And:

$$
\rho=\frac{A_{\text {steel }}}{b * h}=\frac{203.20}{70 * 70}=4.15 \%
$$

Consequently:

$$
\begin{aligned}
& A_{\text {steel }}>A_{\text {steel,min, mid }} \rightarrow 203.20 \mathrm{~cm}^{2}>13.17 \mathrm{~cm}^{2} \\
& A_{\text {steel }}>A_{\text {steel,min,extr }} \rightarrow 203.20 \mathrm{~cm}^{2}>26.35 \mathrm{~cm}^{2}
\end{aligned}
$$

And:

$$
\rho_{\min }<\rho<\rho_{\max } \rightarrow 4.10 \%<4.15 \%<4.29 \%
$$

Moreover, the Eurocode states a further verification on the longitudinal reinforcement according to the compressive area, with respect to the tensional one. This happens in case of a great quantity of reinforcement, in case the minimum quantity of rebars are not enough to respect the above-mentioned formula:

$$
\begin{aligned}
& \rho_{s+}^{\prime} \geq 0.25 * \rho_{s^{+}} \\
& \rho_{s+}^{\prime} \geq 0.25 * \rho_{s-} \\
& \rho_{s_{-}}^{\prime} \geq 0.50 * \rho_{s_{-}}
\end{aligned}
$$

Thus:

$$
\begin{aligned}
& \rho_{s+}^{\prime}=\frac{A_{\text {steel }}}{b * h}=\frac{11 * \pi^{2} * \phi / 4}{70 * 70}=1.38 \% \\
& \rho_{s-}^{\prime}=\frac{A_{\text {steel }}}{b * h}=\frac{11 * \pi^{2} * \phi / 4}{70 * 70}=1.38 \% \\
& \rho_{s^{+}}=\frac{A_{\text {steel }}}{b * h}=\frac{22 * \pi^{2} * \phi / 4}{70 * 70}=2.76 \% \\
& \rho_{s_{-}}=\frac{A_{\text {steel }}}{b * h}=\frac{22 * \pi^{2} * \phi / 4}{70 * 70}=2.76 \%
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
& \rho_{s+}^{\prime} \geq 0.25 * \rho_{s+} \rightarrow 1.38 \% \geq 0.69 \% \\
& \rho_{s-}^{\prime} \geq 0.25 * \rho_{s-} \rightarrow 1.38 \% \geq 0.69 \% \\
& \rho_{s-}^{\prime} \geq 0.50 * \rho_{s-} \rightarrow 1.38 \% \geq 1.38 \%
\end{aligned}
$$

ANCHORAGE LENGTH

The anchorage length of the rebars to the concrete pillars set below the steel columns depends on different factors and coefficients:

$$
l_{b}=\frac{\phi_{\text {long bars }} * f_{y d}}{4 * f_{c t k} * \frac{\beta_{b}}{\gamma_{c}}}=\frac{28 * 391.30}{4 * 2.35 * \frac{2.25}{1.50}}=93.14 \mathrm{~cm}
$$

ULS - $\mathrm{M}_{\text {max }}$
As the first step for the bending moment verification, it is needed to check the neutral axis of the beam.

Given the reinforcement area in both the tensional and the compressional sides, as:

$$
\begin{aligned}
& A_{s, \text { tens }}=n_{\text {long.bars,tens }} * \pi^{2} * \frac{\phi}{4}=22 * \pi^{2} * \frac{28}{4}=135.47 \mathrm{~cm}^{2} \\
& A_{s, \text { comp }}=n_{\text {long.bars,comp }} * \pi^{2} * \frac{\phi}{4}=11 * \pi^{2} * \frac{28}{4}=67.73 \mathrm{~cm}^{2}
\end{aligned}
$$

Politecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

It is possible to compute the neutral axis position:

$$
=\left(-1+\sqrt{1+\frac{\alpha_{e} * \frac{n_{s, \text { tens }}+n_{s, \text { comp }}}{b}}{\alpha_{e} *\left(A_{s, \text { tens }}+A_{s, \text { comp }}\right)} *\left(d * A_{s, \text { tens }}\right)+\frac{(h-d) * A_{s, \text { comp }}}{A_{s, \text { tens }}+A_{s, \text { comp }}}}\right)
$$

$$
=15 * \frac{135.47+67.73}{70}
$$

$$
*\left(-1 \sqrt{\left.1+2 * \frac{70}{15 * 135.47 * 67.73} * 45 * 135.47+((70-45) * 67.73) /(135.47+67.73)\right)}\right)
$$

$=28.81 \mathrm{~cm}$
The final resisting moment is

$$
\begin{gathered}
M_{r d}=A_{s, t e n s} * f_{y d} *(d-0.4 * x)=135.47 * 391.30 *(45-0.4 * 28.81) \\
=2129.52 \mathrm{kNm} \\
M_{\text {ed,mid }}<M_{r d} \rightarrow 250.54 \mathrm{kNm}<2129.52 \mathrm{kNm} \rightarrow \text { utilisation } 12 \% \\
M_{\text {ed,extr }}<M_{r d} \rightarrow 501.08 \mathrm{kNm}<2129.52 \mathrm{kNm} \rightarrow \text { utilisation } 24 \%
\end{gathered}
$$

So:

ULS - V
With the superimposition of the combination, it is now possible to compute the maximum shear at the ULS, with its relative coefficients. The used formulas are the above-mentioned ones

The resisting shear is computed as:

$$
\begin{aligned}
& V_{r d}=\frac{C_{r d, c}}{\gamma_{c}} *\left(1+\sqrt{\frac{b}{d}}\right) *\left(\rho_{s} * f_{c k}\right)^{\frac{1}{3}} * b * d \\
&=\frac{0.18}{1.50} *\left(1+\sqrt{\frac{70}{45}}\right)+(0.0415 * 45)^{\frac{1}{3}} * 70 * 45=456.80 \mathrm{kN}
\end{aligned}
$$

Consequently:

$$
V_{e d}<V_{r d} \rightarrow 400.87 \mathrm{kN}<456.80 \mathrm{kN} \rightarrow \text { utilisation } 88 \%
$$

SLS - $M_{\text {max }}$

With the superimposition of the combination, it is now possible to compute the bending moment at the SLS. The neutral axis, since it depends on the geometry of the beam and the reinforcement quantity, is already set.

The bending moment is:

$$
\begin{aligned}
M_{\text {ed,SLS,mid }} & \left(\left(g^{\prime}+q^{\prime}\right) * l+\frac{\rho}{2}+g_{\text {curt.wall }}\right) * \frac{l^{2}}{24}+\left(\left(g^{\prime}+q^{\prime}\right) * l+\frac{\rho}{2}\right) * \frac{l^{2}}{24} \\
= & ((3.03+2.00) * 3.90+6.13+3.60) * \frac{7.50^{2}}{24} \\
& +((8.99+5.00+) * 3.00+6.13) * \frac{7.50^{2}}{24}=179.73 \mathrm{kNm} \\
M_{\text {ed,SLS, } \text { extr }}= & \left(\left(g^{\prime}+q^{\prime}\right) * l+\frac{\rho}{2}+g_{\text {curt.wall }}\right) * \frac{l^{2}}{12}+\left(\left(g^{\prime}+q^{\prime}\right) * l+\frac{\rho}{2}\right) * \frac{l^{2}}{12} \\
& =((3.03+2.00) * 3.90+6.13+3.60) * \frac{7.50^{2}}{12} \\
& +((8.99+5.00+) * 3.00+6.13) * \frac{7.50^{2}}{12}=359.45 \mathrm{kNm}
\end{aligned}
$$

The bending moment computed at the SLS is given by means of the stresses acting on the beam, rather than the final value; knowing the neutral axis earlier computed, they are calculated as.

$$
\begin{gathered}
\sigma_{c}^{\prime}=M_{e d, S L S, \text { mid }} * \frac{2}{b * x * d-\frac{x}{3}}=179.73 * \frac{2}{70 * 28.81 * 45-\frac{28.81}{3}}=5.04 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \\
\sigma^{\prime \prime}{ }_{c}=M_{\text {ed,SLS,extr }} * \frac{2}{b * x * d-\frac{x}{3}}=359.454 * \frac{2}{70 * 28.81 * 45-\frac{28.81}{3}}=10.07 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
\end{gathered}
$$

Since the operative tensional stress of concrete is:

$$
\sigma_{c}=0.60 * f_{c k}=0.60 * 37.50=22.50 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

Therefore:

$$
\begin{aligned}
\sigma_{c}^{\prime}<\sigma_{c} & \rightarrow 5.04 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}<22.50 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \rightarrow \text { utilisation } 22 \% \\
\sigma_{c}{ }_{c}<\sigma_{c} & \rightarrow 10.07 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}<22.50 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \rightarrow \text { utilisation } 45 \%
\end{aligned}
$$

Due to the presence of the shear stress, it is needed to increase the amount of steel by means of stirrups set embracing the longitudinal reinforcement.

The code prescribes a minimum size of the stirrup diameter:

$$
\phi_{s t, \text { min }}=M A X(6 \mathrm{~mm} ; 0.09 * b)=6.30 \mathrm{~mm}
$$

Consequently:

$$
\phi_{s t}=8 \mathrm{~mm}
$$

And:

$$
\phi_{s t}>\phi_{s t, \min } \rightarrow 8 \mathrm{~mm}>6.30 \mathrm{~mm}
$$

The stirrup needs a specific hook length, coded as:

$$
d_{\text {hook }, \min }=M A X\left(10 ; 10 * 2 \phi_{\text {long bars }}\right)=M A X(10 ; 10 * 2.80)=28 \mathrm{~cm}
$$

The designed hook is:

$$
d_{\text {hook }}=30 \mathrm{~cm}
$$

Thus:

$$
d_{\text {hook }}>d_{\text {hook, } \min } \rightarrow 30 \mathrm{~cm}<28 \mathrm{~cm}
$$

The distance between the stirrups depends on their position on the beam itself. When we are dealing with the beam core (set in the centre), the distance should be designed less than:

$$
d_{s t, c o r, \max }=\operatorname{MIN}(60 ; 0.75 * d)=\operatorname{MIN}(60 ; 0.75 * 45)=33.75 \mathrm{~cm}
$$

So:

$$
d_{s t, c o r}=30 \mathrm{~cm}
$$

Thus:

$$
d_{s t, \text { cor }}<d_{s t, \text { cor }, \min } \rightarrow 33 \mathrm{~cm}<33.75 \mathrm{~cm}
$$

Regarding the critical distance, the designed distance should be less than:

$$
\begin{aligned}
d_{\text {st,cr, } \max }= & \text { MIN }\left(\frac{h-d_{\text {cover }}}{4} ; 22.50 ; 8 * \phi_{\text {long bars }} ; 24 * \phi_{\text {st }}\right) \\
& =\left(\frac{70-22.80}{4} ; 22.50 ; 8 * 2.80 ; 24 * 0.80\right)=11.80 \mathrm{~cm}
\end{aligned}
$$

So:

$$
d_{s t, c r}=10 \mathrm{~cm}
$$

Thus:

$$
d_{s t, c r}<d_{s t, c r, \min } \rightarrow 10 \mathrm{~cm}<11.80 \mathrm{~cm}
$$

The number of stirrups set for each linear metre should be not less than:

$$
n_{s t .}=\frac{100}{M A X\left(d_{s t, c o r} ; d_{s t, c r}\right)}=\frac{100}{33 ; 10}=3
$$

The computed area for the stirrups, set on the longitudinal section, is:

$$
A_{s t}=n_{s t .} * n_{\text {st.bars }} * \pi^{2} * \frac{\phi}{4}=3 * 4 * \pi^{2} * \frac{8}{4}=6.09 \frac{\mathrm{~cm}^{2}}{\mathrm{~m}}
$$

While the minimum prescription is.

$$
\begin{aligned}
A_{s t, \text { min }}=M A X & \left(0.09 \% * b ; 0.08 * \frac{\sqrt{f_{c k}}}{f_{y k}}\right)=M A X\left(0.09 \% * 70 ; 0.08 * \frac{\sqrt{37.50}}{450}\right) \\
& =0.06 \frac{\mathrm{~cm}^{2}}{\mathrm{~m}}
\end{aligned}
$$

Thus:

$$
A_{s t}>A_{s t, \min } \rightarrow 6.09 \frac{\mathrm{~cm}^{2}}{\mathrm{~m}}>0.06 \frac{\mathrm{~cm}^{2}}{\mathrm{~m}}
$$

Before calculating the ratio, we should evaluate the maximum allowed distance between the legs of the stirrups, that is:
$d_{s t, l e g s, \max }=\operatorname{MIN}(30 ; 0.80 * d)=\operatorname{MIN}(30 ; 0.80 * 45)=30 \mathrm{~cm}$

$$
d_{s t, l e g s}=25 \mathrm{~cm}
$$

Thus:

$$
d_{\text {st,legs }}<d_{\text {st,legs, } \max } \rightarrow 23 \mathrm{~cm}<30 \mathrm{~cm}
$$

The ratio that corresponds to the stirrup area is

$$
\rho_{s, s t}=\frac{A_{s}}{b * d_{\text {st,legs }}}=\frac{6.09}{70 * 25}=0.35 \%
$$

And it should be not less than:

$$
\rho_{s, s t, \min }=0.09 \%
$$

Thus:

$$
\rho_{s, s t}>\rho_{s, s t, \min } \rightarrow 0.35 \%<0.09 \%
$$

 \qquad

Figure 6.77 - Cross-section of the beam
\qquad 0
+
+

TECHNOLOGICAL DESIGN

BLOW-UP 1 - OPAQUE
BLOW-UP 2 - TRANSPARENT 168
170
STARTING STAGE 175
ENDING STAGE
.

7.1 - INTRODUCTION

The technological elements of the building are all lightweight members which can be put in place in an easy and fast way. One of the goals is to have most of the elements prefabricated in order to have less manufacture possible on site. Such elements would just need to be supplied and installed, leaving just the internal and external finishing to the site carpenters.

The main used materials are steel for the structure of the building frame, and timber for the slabs and for the external and internal walls. These materials allow having wide freedom of shape and personalization, in order to make the installation of the prefabricated elements easier and faster. In particular, the walls have a timber frame structure with gypsum fibre panels, while the slabs are composed by cross-laminated timber panels, over which there will be the facilities screed and the radiant floor. This choice permits to have the enclosure completely built up in laboratory with the maximum dimensions obliged by the transportation limits. Moreover, the balcony is composed by a prefabricated concrete slab. The concrete is casted into a load-bearing corrugated sheet which works as a disposable formwork. This slab can arrive to the building site already waterproofed, with installed flooring and parapet, ready to be anchored to the steel cantilevers.

The choice of steel and timber as main materials is due to extreme prefabrication level that they offer and to light weight that these elements have. A precise and detailed construction process as also the aim to demonstrate how timber structures are ideal elements in many different types of buildings and, in particular, in high rise buildings as well.

Finally, timber was also chosen because is renewable, sustainable and ecological. The many trees used will be, in fact, automatically substituted by new ones even without human intervention if harvesting happens accordingly to the autoregeneration of forests.

Using timber can have an additional positive environmental impact because trees absorb carbon dioxide through photosynthesis and lock it away as carbon, thus removing it from the atmosphere. Therefore, timber can be considered as a carbon negative material. It is however important to remember that the sequestered carbon will be released at the end of life of the timber product, unless it is reused or recycled.

7.2 - THE STRATIGRAPHIES AND THEIR THERMAL PROPERTIES

First of all, the perimetral elements have been studied in order to select optimal materials at each layer reaching the best thermal properties. The considered parameters are the U values and the presence of interstitial condensation using the Glaser-method.

The used internal and external convective heat transfer coefficients are
$\mathrm{h}_{\mathrm{i}}=8 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$
$\mathrm{h}_{\mathrm{e}}=23 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$
7.2.1 - THE STUDY OF THE THERMAL PROPERTIES

- The external wall
$\mathrm{U}=0,148 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \quad \mathrm{Ms}=77,72 \mathrm{~kg} / \mathrm{m}^{2}$

Layers		$\mathrm{t}[\mathrm{m}]$	$\lambda[\mathrm{W} / \mathrm{mK}]$	$\rho\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
	$\mathrm{C}[\mathrm{J} / \mathrm{kgK}]$			
Convective internal heat transfer coefficient	$/$	$/$	$/$	$/$
Gypsumfibre board	0.013	0.320	1100	1100
Water vapour barrier	0.003	0.400	500	1800
Gypsumfibre board	0.013	0.320	1100	1100
Cellulose	0.160	0.038	45	2100
Gypsumfibre board	0.013	0.320	1100	1100
Wooden fibre insulation	0.080	0.040	160	2100
Air cavity	$/$	$/$	$/$	$/$
Fibre cement board	0.013	0.350	1150	2600
Convective external heat transfer coefficient	$/$	$/$	$/$	$/$

Layers	$\begin{gathered} \delta \\ {[\mathrm{kg} /(\mathrm{smPa})]} \end{gathered}$	$\begin{gathered} r \\ {\left[\left(\mathrm{sm}^{2} \mathrm{~Pa}\right) / \mathrm{kg}\right]} \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{si}} \\ {[\mathrm{~Pa}]} \end{gathered}$	$\begin{gathered} P_{v_{i}} \\ {[\mathrm{Paj}]} \end{gathered}$	
Convective internal heat transfer coefficient	1	1	2268	1474	\checkmark
Gypsumfibre board	1.44×10^{-11}	8.69×10^{8}	2247	1473	\checkmark
Water vapour barrier	2.49×10^{-15}	1.60×10^{12}	2241	409	\checkmark
Gypsumfibre board	1.44×10^{-11}	8.69×10^{8}	2221	408	\checkmark
Cellulose	4.68×10^{-11}	3.42×10^{9}	826	404	\checkmark
Gypsumfibre board	1.44×10^{-11}	8.69×10^{8}	818	403	\checkmark
Wooden fibre insulation	9.35×10^{-12}	4.28×10^{9}	460	391	\checkmark
Convective external heat transfer coefficient	1	1	401	361	\checkmark

The green roof

$\mathrm{U}=0,086 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$

$\mathrm{Ms}=442,33 \mathrm{~kg} / \mathrm{m}^{2}$

Layers		$\mathrm{t}[\mathrm{m}]$	$\lambda[\mathrm{W} / \mathrm{mK}]$	$\rho\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
	$\mathrm{C}[\mathrm{J} / \mathrm{kgK}]$			
Convective external heat transfer coefficient	$/$	$/$	$/$	$/$
Soil	0.150	0.200	1464	840
Filtering membrane	0.004	0.220	0.00	0.00
Stock/dryer layer	0.082	0.034	25	1200
Lightweight screed	0.075	0.090	380	2500
Waterproof membrane	0.002	0.220	2000	840
OSB panel	0.013	0.130	650	1600
Wooden fibre insulation	0.160	0.040	160	2100
Xlam slab	0.332	0.120	400	1600
Water vapour barrier	0.003	0.400	500	1800
Wooden fibre insulation	0.050	0.040	160	2100
Gypsumfibre board	0.013	0.320	1100	1100
Gypsumfibre board	0.013	0.320	1100	1100
Convective internal heat transfer coefficient	1	$/$	$/$	$/$

Layers	$\begin{gathered} \delta \\ {[\mathrm{kg} /(\mathrm{smPa})]} \end{gathered}$	$\begin{gathered} r \\ {\left[\left(\mathrm{sm}^{2} \mathrm{~Pa}\right) / \mathrm{kg}\right]} \end{gathered}$	$\mathrm{P}_{\text {si }}$ [Pa]	$\begin{gathered} \mathrm{P}_{\mathrm{vi}} \\ {[\mathrm{~Pa}]} \end{gathered}$	
Convective external heat transfer coefficient	1	/	401	361	\checkmark
Soil	1.87×10^{-10}	8.02×10^{8}	404	361	\checkmark
Filtering membrane	1.56×10^{-12}	5.26×10^{10}	447	361	\checkmark
Stock/dryer layer	9.35×10^{-15}	4.28×10^{11}	678	386	\checkmark
Lightweight screed	9.38×10^{-11}	5.33×10^{8}	680	585	\checkmark
Waterproof membrane	9.35×10^{-15}	2.14×10^{11}	741	585	\checkmark
OSB panel	4.68×10^{-12}	2.67×10^{9}	742	684	\checkmark
Wooden fibre insulation	9.35×10^{-12}	1.71×10^{10}	753	685	\checkmark
Xlam slab	2.67×10^{-12}	1.24×10^{11}	1355	693	\checkmark
Water vapour barrier	2.49×10^{-15}	1.60×10^{12}	1989	751	\checkmark
Wooden fibre insulation	9.35×10^{-12}	4.28×10^{9}	1996	1496	\checkmark
Gypsumfibre board	1.44×10^{-11}	8.69×10^{8}	2282	1498	\checkmark
Gypsumfibre board	1.44×10^{-11}	8.69×10^{8}	2294	1499	\checkmark
Convective internal heat transfer coefficient	/	/	2306	1499	\checkmark

The ground floor

$\mathrm{U}=0,133 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$

Layers	t [m]	$\lambda[\mathrm{W} / \mathrm{mK}]$	$\rho\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	C [J/kgK]
Convective internal heat transfer coefficient	/	1	1	/
Tiles	0.015	1.000	2079	840
Lightweight screed	0.075	0.090	380	2500
Waterproof membrane	0.002	0.220	2000	840
Wooden fibre insulation	0.160	0.040	160	2100
Xlam slab	0.186	0.120	400	1600
Wooden fibre insulation	0.040	0.040	160	2100
Gypsumfibre board	0.013	0.320	1100	1100
Gypsumfibre board	0.013	0.320	1100	1100
Convective external heat transfer coefficient	1	1	/	/

Layers	$\begin{gathered} \delta \\ {[\mathrm{kg} /(\mathrm{smPa})]} \end{gathered}$	$\begin{gathered} \mathrm{r} \\ {\left[\left(\mathrm{sm}^{2} \mathrm{~Pa}\right) / \mathrm{kg}\right]} \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{si}} \\ {[\mathrm{~Pa}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{vi}} \\ {[\mathrm{~Pa}]} \end{gathered}$	
Convective internal heat transfer coefficient	1	1	2277	1480	\checkmark
Tiles	4.68×10^{-12}	3.12×10^{9}	2270	1469	\checkmark
Lightweight screed	9.38×10^{-11}	8.53×10^{9}	1896	1465	\checkmark
Waterproof membrane	9.35×10^{-15}	2.14×10^{11}	1892	698	\checkmark
Wooden fibre insulation	9.35×10^{-12}	1.71×10^{10}	798	636	\checkmark
Xlam slab	2.67×10^{-12}	6.96×10^{10}	550	387	\checkmark
Wooden fibre insulation	9.35×10^{-12}	4.28×10^{9}	419	371	\checkmark
Gypsumfibre board	1.44×10^{-11}	8.69×10^{8}	415	368	\checkmark
Gypsumfibre board	1.44×10^{-11}	8.69×10^{8}	410	365	\checkmark
Convective external heat transfer coefficient	1	1	406	365	\checkmark

7.2.2 - THE STRATIGRAPHIES

THE EXTERNAL WALL

1 Fermacell Gypsum fiberboard, (th: 1.25 cm)
2 Water vapour barrier Riwega DS 482200 TOP SK, density: $1100 \mathrm{~kg} / \mathrm{m}^{3}, \lambda=0.17 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, (th: 0.2 cm)
3 Fermacell Gypsum fiberboard, (th: 1.25 cm
4 Laminated spruce wood beam, structure of the frame wall, $8 \times 16 \mathrm{~cm}$ (th: 16 cm)
5 Wooden fiber insulation Gutex Thermowall, $125 \times 59 \mathrm{~cm}, \lambda=0.040 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, (th: 16 cm)
6 Fermacell Powerpanel $\mathrm{H}_{2} \mathrm{O}$ fiberboard, (th: 1.25 cm)
7 Wooden fiber insulation Gutex Thermowall, $83 \times 60 \mathrm{~cm}, \lambda=0.040 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, (th: 8 cm)
8 Air cavity (th: 4 cm)
9 External cladding in fiber cement panels, (th: 1.25 cm)

THE GREEN ROOF

[^1]

1 Porcelain stoneware tiles, $40 \times 40 \mathrm{~cm}$, (th. $1,5 \mathrm{~cm}$), placed with a double-component adhesive, class S 1 , (th: 0.3 cm)	2	Fermacell Gypsum fiberboard, (th: 1.25 cm)

3 Facilities integration dry lightweight mortar screed Pavileca, density $400 \mathrm{~kg} / \mathrm{m}^{3}, \lambda=0.09 \mathrm{~W} / \mathrm{mK}$, (th: 8 cm)
4 Adhesive waterproofing sheath Monoself FV 2 MM P (th: 0.2 cm)
5 Wooden fiber insulation FiberThermBase $250,135 \times 60 \mathrm{~cm}, \lambda=0.040 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, (th: $10+6 \mathrm{~cm}$)
6 5-layer spruce wooden boards -XLAM- bearing slab, $\lambda=0.12 \mathrm{~W} / \mathrm{mK}$, (th: 18.6 cm)
7 Secondary load bearing steel beam HEM 240
8 Primary load bearing steel beam HEM 280
9 Acoustic double glass wool panel insulation, $140 \times 60 \mathrm{~cm}$, density $70 \mathrm{~kg} / \mathrm{m}^{3}, \lambda=0.038 \mathrm{~W} / \mathrm{mK}$, (th: 5 cm)

| 10 | $2 \times$ Fermacell Gypsum fiberboard, (th: $1.25+1.25 \mathrm{~cm}$) |
| :---: | :---: | :---: |

Fermacell Gypsum fiberboard, (th: 1.25 cm)
3 Heat-sealing mortar screed, density: $1500 \mathrm{~kg} / \mathrm{m}^{3}$; prefab radiant heating panels in polystyrene, $120 \times 60 \mathrm{~cm}(\mathrm{th}: 4.5 \mathrm{~cm}$) 4 Polystyrene panel with metallic thermo-conduction sheet, $\lambda=0.032 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}(\mathrm{th}: 2 \mathrm{~cm})$
5 Facilities integration dry lightweight mortar screed Pavileca, density $400 \mathrm{~kg} / \mathrm{m}^{3}, \lambda=0.09 \mathrm{~W} / \mathrm{mK}$, (th: 8 cm)
6 Adhesive waterproofing sheath Monoself FV 2 MM P (th: 0.2 cm)
7 Clomping insulation rubber and bitumen paper panel, $100 \times 100 \mathrm{~cm}$, density $700 \mathrm{~kg} / \mathrm{m}^{3}, \lambda=0.033 \mathrm{~W} / \mathrm{mK}$, (th. 1.3 cm) 8 5-layer spruce wooden boards -XLAM- bearing slab, $\lambda=0.12 \mathrm{~W} / \mathrm{mK}$, (th: 18.6 cm)
9 Secondary load bearing steel beam HEB 300
10 Primary load bearing steel beam HEB 360
11 Acoustic wooden fiber panel insulation, $140 \times 60 \mathrm{~cm}$, density $70 \mathrm{~kg} / \mathrm{m}^{3}, \lambda=0.040 \mathrm{~W} / \mathrm{mK}$, (th. 5 cm$)$
$122 \times$ Fermacell Gypsum fiberboard, (th: $1.25+1.25 \mathrm{~cm}$)

Politecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

Politecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

1 External floating floor pavement, 6 cm cavity (th: 9 cm)
2 Adhesive waterproofing sheath Monoself FV 2 MM P (th: 0.2 cm)
Prefab. slab: lightweight concrete pre-cast in a metal sheet being a disposable formwork, slope 1\% SAND150 corrugated load bearing sheet, $\mathrm{h}=15 \mathrm{~cm}$ (th: $1,5 \mathrm{~mm}$)
ightweight concrete with electro-welded mesh (th: 6 cm)
4 Neoprene waterproofing and vibration pad between steel beam and concrete
Bolt drowned in concrete casting for the anchoring of the slab to the steel beam
6 Steel cantilever beam HE 280 M
Outdoor Aquapanel board for countertop (th: $1,25 \mathrm{~cm}$)

THE OUTDOOR CARRIAGEABLE SLAB

1	External stone tiles, (th. 3 cm)

2 Double collaborating cast concrete with electro-welded mesh, $\Phi 12$, (th: 15 cm)
3 Hollow core prefabricated concrete slab IMAFOR H320, weight: $408 \mathrm{~kg} / \mathrm{m}^{2}$ (th: 32 cm)
4 Fire protection mortar made by gypsum, concrete and vermiculite KF4 Fassa Bortolo (th: 0.2 cm)
7.3 - THE TECHNOLOGICAL JOINTS

VERTICAL JOINT - INTERMEDIATE SLAB + EXTERNAL WALL
SCAIF 1:10

VERTICAL JOINT - INTERMEDIATE SLAB + EXTERNAL WALL + WINDOW
SCALE 1:10
The external prefabricated wall has already windows installed
In this way, since the assembly of the windows is completed in the laboratory, there is no risk of having weak points from the point of view of thermal bridges or interstitial condensation on the window's perimeter

HORIZONTAL JOINT - COLUMN + EXTERNAL WALL
SCALE 1:10
The gap between the end of the prefab. wall and the steel pillar is filled with insulation and then sealed with gypsum fibre boards.
Externally, boards and external insulation are fixed to the pillar in order to ontinue the externa insulation layer before applying the cladding

Soft insulation filling the steel column cavity
L-shaped steel profiles welded to the column Timber strip for external cladding support

Rothoblass HBS countersunk screw

Mechanical anchor plug

Air tightness sheet USB Windtop UV
Adhesive tape USB Tape UV

Angular fibre
cement panel Curvo Panel

HORIZONTAL JOINT - COLUMN + EXTERNAL WALL + CURTAIN WAL
SCALE 1:10
In this case, since the curtain wall is kept on the external side of the pillar for architectural reasons, there is an external cavity which needs to be made rigid. For this purpose a timber I-joist is used, so that the mullion of the curtain wall can be horizontally fixed to it. The structura function of bearing the load of the curtain wall, though, is performed by a steel plate which is welded to the upper floor's border beam.
Finally, for thermal and acoustic reasons, the cavity is filled with soft insulation.

$19,1^{\circ} \mathrm{C}$
$0,1^{\circ} \mathrm{C}$

HORIZONTAL JOINT - EXTERNAL WALL + WINDOW

SCALE 1:10

The windows, as previously said, are completely installed in the wall in the prefabrication phase in laboratory. This allows workers to be more careful when placing every material and every element, decreasing a lot the risk of problems and mistakes.
In this way, the thermal insulation and the waterproofing can be better positioned, avoiding the risk of having interstitial condensation or mold in critical points such as the window outline.
 and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

$18,4^{\circ} \mathrm{C}$

VERTICAL JOINT - INTERMEDIATE SLAB + EKTERNAL WALL WITH TWO WINDOWS + BALCONY
SCALE 1:10
Superiorly, the upper timber beam of the wall is anchored to an L shape steel profile using self/drilling screws even over a window. Under this beam there is the rolling-shutter box, which is completely insulated

VERTICAL JOINT - GREEN ROOF + BALCONY
SCALE 1:10
On the rooftop the prefabricated wall and the balcony are fixed in the same way than on the other slabs. In this case the balcony is not accessible to residents but it is just present for architectural reasons.

7.4- THE BLOW-UPS

7.5 - THE CONSTRUCTION PROCESS

Steel structural frame, previously placed and assembled on-site
2) On-site fastening between the columns with steel plates
(3) L-shape steel profile, welded to the beam off-site, for the wall's installation
4. Previously-placed on-site timber prefab. wall at the below storey

(5) Off-site production of the CLT slabs with annexed vibration insulation pads on the edges
6) On-site CLT slab anchorage from below to the steel beam by means of self-drilling screws
(7) On-site connection from above between CLT panels with self-drilling screws
(8) On-site placement of the gypsum fibre board around the structural steel profiles under the CLT slab

(9) Off-site production of the prefab. timber frame wall
(10) On-site handling and positioning of the prefab. timber frame wall, placed with a crane and pulled inside by means of lifting straps; the wall will be roughly placed on the belower CLT panel, matching the upper L-shape

(11) On-site positioning of angular brackets
(12) On-site horizontal fixing of angular brackets with high bond nails to the wall
(13) On-site vertical anchorage to the CLT slabs with self-drilling screws
(14) On-site horizontal fixing of the wall with self-drilling screws to the L-shape steel profile
(15) On-site columns convering with rigid insulation panels and screwed gypsum fibre boards

(16) On-site fulfillment of cavities inside the string course with soft insulation and around the pillars
(17) On-site closure with soft insulation, gypsum fibre boards and air-tight membrane
(18) On-site sealing with air-tight adhesive tapes on the membrane's joints and around the cantilever steel beams

(16) On-site positioning of timber strips to the timber frame wall mullions
(17) On-site fastening of fibrecement cladding panels to the timber strips

(18) Off-site production and assembly of the prefab. balcony, complete with parapet, finishing, external cladding and wooden cover for the railing
(19) On-site fastening of the balcony system by means of nuts, screwing the upper bolts, which are sealed in the concrete block, from below

20) On-site fulfillment of cavities around the columns with soft insulation working from the balcony that can now be used as a working plane, without the needs of scaffolding
(21) On-site closure with soft insulation, gypsum fibre boards and air-tight membrane
(22) On-site sealing with air-tight adhesive tapes on the membrane's joints
(23) On-site fastening of the upper structural steel frame for balconies

Poitecnico di Milano Master of Science in Building and Architectura Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

STARTING STAGE

ENDING STAGE

The construction process is summarised and explained in these 8 steps
By bringing all the prefabricated elements, the operations to be completed on-site are jus the assembly and the composition of these ones, followed by the sealing of cavities and the application of the external cladding

Having few and easy working procedures helps carpenters to work faster with lower risk of making mistakes.

This dry-assembled technology, together with lightweight materials, lends itself for differen types of constructions, in particular for high rise buildings as in this case. The studied building has just 23 floors because of the number of apartmentes required in the competition. This technology, though, would allow to reach even higher heights and add other floors.

08
 DESIGN

8.1 178
8.2 THE ENERGY ANALYSIS OF THE BUILDING 178
8.3 THE SOFTWARE USED AND THE 3D MODEL 179
8.4 THE THERMAL COMFORT 179
8.4.1 THERMAL BALANCE AND ITS FACTORS 179
8.4.2 THE TECHNICAL REGULATIONS
8.4.2 THE TECHNICAL REGULATIONS
UNI EN ISO 7730 180UNI EN 15251
180
8.5 THE STARTING POINT181
8.5.1 THE U VALUES 182
8.5.2 THE SPACE USE
8.5.2 THE SPACE USE 182
THE BENEFITS AND LIMITS OF THE RADIANT FLOOR 183
8.6 THE WINDOW/WALL RATIO 184
8.7 THE BALCONIES' LENGTH 185
8.8 THE DESIGNED U VALUES 187
8.9 THE SOLAR HEAT GAIN FACTOR (SHGC) 189
8.9.1 THE APARTMENT'S WINDOWS199
192
8.10 THE ACTIVE SHADING SYSTEM 193
THE ACTIVE SHAD
194
8102 THE CURTAIN WAL
196
8.11 THE SOLAR RADIATION ACTIVATING THE SHADING SYSTEM
196
196
8.11.1 THE APARTMENT'S WINDOWS
8.11.1 THE APARTMENT'S WINDOWS 196
8.12 THE MECHANICAL SYSTEM 198
8.12.1 THE APARTMENTS 201
8.13 THE WORKING TEMPERATURE 203
8.13.1 THE APARTMENT
8.13.2 THE BASEMENT 206
8.13 FINAL ENERGY BREAKDOWN 209
8.1 - INTRODUCTION

Climate change and negative effects of pollution have focused people's attention on environmental issues. One of the aspects that arouses greater concern is the greenhouse effect, i.e. the increase in the average temperature of the planet caused by the emission into the atmosphere of some gases, generated above all by the combustion processes, the most significan of which is carbon dioxide $\left(\mathrm{CO}_{2}\right)$.

Many countries are seeking a solution to these problems, adding regulatory restrictions and new parameters to be followed in many fields, particularly in the construction sector, in order to decrease pollution level and CO_{2} emissions.

Considering that in many developed countries the construction and use of buildings is the leading consumer of energy and producer of greenhouse gas emissions, stabilizing and reversing emissions in this sector is the key to keeping future global warming under one-degree Celsius $\left({ }^{\circ} \mathrm{C}\right)$ above today's level, in order to avoid increased global warming

The European Union has adopted the 20/20/20 objective which foresees, by 2020 the reduction of greenhouse gas emissions by 20%, the increase of energy produced by renewable sources by 20% and energy consumption savings by 20\%

Another initiative is the " 2030 challenge", by the American architect Edward Mazria and the Architecture 2030 organization. This asks the global architecture and construction community to adopt a series of greenhouse gas reduction targets for new and renovated buildings to save the environment, yearly increasing the fossil fuel standard reduction, aiming to have carbon-neutral buildings by 2030.

8.2 - THE ENERGY ANALYSIS OF THE BUILDING

The energy demand of a building and the thermal comfort of its rooms are two fundamental parameters to define the real performance of the building itself.

A smaller energy requirement means having a bigger economic saving in the building management through its life, a smaller power of the mechanical systems and bigger environmental sustainability.

In order to reach the best results of the above-written features, the design of the residentia tower went through an integrated approach which, between the structural and technologica aspects, included an optioneering process aimed to increase the overall building performance.

This optioneering started in the early stages of the design and went on until the end, putting together passive and active strategies, deeply studied to limit the energy consumption but a the same time, ensuring the internal thermal comfort for the residents

The climate analysis of the site was fundamental and is the starting point to develop every strategic action while designing. The graphs and the results shown and discussed in section 3.4 represent the climate condition from which designers can take advantage or understand the obstacles.

Figure 8.1 - Sustainability in buildings

- The airspeed (V) is the airspeed relative to the body;
- Air humidity (RH) is the partial pressure of water vapour in the environment
- The activity carried out by the person directly affects the metabolism and therefore the production of metabolic heat of the body (1 metabolic unit $=1 \mathrm{met}=58.2 \mathrm{~W} / \mathrm{m}^{2}$);
- The thermal resistance of the clothes represents a unit of measure which expresses the thermal resistance of a piece of clothing (1 unit of clothing $=1 \mathrm{clo}=0.155 \mathrm{~m}^{2} \circ \mathrm{C} / \mathrm{W}$)

The first two parameters can be expressed together in a single one, and this is the operative temperature. It is the uniform temperature of air and walls of the environment which make the subject have the same heat exchange, by convection and radiation, that it would have in the real environment. It is given by the combination of the air temperature and the mean radian temperature Often, for moderate thermal environments, it is possible to consider it equal to the arithmetic mean of the two temperatures.
8.4.2 - THE TECHNICAL REGULATIONS

The technical rules of reference are two
UNI EN ISO 7730
Ergonomics of thermal environments Analytical determination and interpretation of thermal well-being by calculating the PMV and PPD and of local thermal comfort criteria

This standard allows the designer to evaluate and predict the overall thermal sensation and the degree of discomfort (thermal dissatisfaction) of people in a given environment. It allows to have the analytical determination and interpretation of thermal well-being by calculating the PMV (predicted
 mean vote) and the PPD (predicted percentage of dissatisfied - expected percentage of dissatisfied people) and of the criteria of local thermal well-being, providing the environmental acceptable conditions for the global thermal well-being as well as those that represent loca discomfort.

The PMV is an index which predicts the average value of the grades of a large group of people on a 7 -point thermal sensation scale. This parameter, proposed by Fanger since the 1970s, is a function of the six variables previously defined.
The PPD index indicates the percentage of dissatisfied subjects. The correlation between the PMV and PPD index is expressed by a mathematical function and has been elaborated on the basis of experimental researches

The PMV and the PPD express the hot or cold discomfort for the human body in his complex However, thermal dissatisfaction can also be caused by local discomfort. The most common causes are the presence of an air current, a too high difference of air temperature, a floor too hot or cold and asymmetry of a too high radiant temperature.

The Fanger model, based on a static approach, defines a fixed band of acceptable emperatures that must be verified regardless of the external climatic conditions

UNI EN 15251

Criteria for the design of the internal environment and for the evaluation of energy performance of buildings, in relation to the quality of indoor air, to the thermal environment, lighting and acoustics.

This regulation introduces the concept of "adaptation" by proposing a correlation between the comfort temperature for the occupants and the outside air temperature. The resulting comfort model is based on the fact that the human body adapts itself to external weathe conditions, considering different internal temperatures as comfortable depending on season

Piltecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco
and location. The information contained in the UNI EN 15251 standard refers to buildings without mechanical cooling system and naturally ventilated.

8.5 - THE STARTING POINT

For the first simulation, it was important to define the value of the parameters needed in the first specific case. Every parameter is then going to be optimized through a deep study and further simulations.

STARTING POINT
windows/wall ratio [-]

Politecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco
8.5.1 - THE U VALUES

The starting simulation has been done with the defined geometry of the building, with values of the thermal transmittance of opaque and transparent elements given by the requirements for energy efficient residential buildings in the New York Building Code (NYCECC). In this way this first case would be the reference building, useful to compare the impact of every strateg and optimization.

In particular, the minimum values in the code are:

- $U_{\text {wall }}=0,465 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$
- $\quad U_{\text {floor }}=0,266 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$
- $U_{\text {roof }}=0,170 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$
- $U_{\text {window }}=1,98 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$

8.5.2 - THE SPACE USE

If from the third floor upwards there are only apartments, on the first two levels the different rooms have various functions, such as co-working, gym, playroom and laundry. This difference is fundamental and it needs to be pointed out in the software in order to have realistic simulations.

The building has been divided into thermal zones according to the internal distribution of the rooms, both in the apartments and in the first two levels. Thanks to this division it was possible to specify the working hours of the systems and the internal gains due to electrical devices, lighting and people. These last ones are considered both as sensible and latent heat gain, according to the number of people, in fact, the software will consider $65 \mathrm{~W} /$ person as sensible part and $55 \mathrm{~W} /$ person as latent part.

The internal gains due to lighting and electrical devices have different values according to the function of the rooms, going from $2 \mathrm{~W} / \mathrm{m}^{2}$ and $5 \mathrm{~W} / \mathrm{m}^{2}$ for the apartments to $5 \mathrm{~W} / \mathrm{m}^{2}$ and 8 $\mathrm{W} / \mathrm{m}^{2}$ for the gym and the co-working rooms.

Also, the crowding index and the occupied hours have been specified, so that the systems would be working according to that schedule.

In particular, for the apartments, the rooms have been divided between night and day areas, changing the occupied hours. For example, the bedrooms have occupancy going from 11 pm to 7 am, while living rooms, kitchens and dining rooms have occupancy from am to 10 pm but with different percentages, considering that from 8 am to 6 pm many flats could be empty due to the absence of people. In these hours the systems are set to keep the temperature at $20^{\circ} \mathrm{C}$ in winter and at $26^{\circ} \mathrm{C}$ in summer, while in the unoccupied hours they are set to work with lower intensity, due to the probable absence of people, and to keep temperatures of $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$.

Regarding the gym and the co-working rooms, the occupied hours are different in this case. The first rooms have a schedule which is similar to an office, considering the maximum case. The first rooms have a schedule which is similar to an office, considering the maximum system with a possible peak of occupancy reached from 5 pm to 11 pm .

8.5.3 - THE MECHANICAL SYSTEMS

Choosing the best mechanical system is a choice that affects the energy demand of the building, the maintenance cost and thermal comfort. Moreover, it can be determined according to the function inside the building itself.

The possibilities are all-air systems, fan coils and primary air systems and radiant floor and primary air systems.

The all-air system provides treated air both for air conditioning and for air quality control of the rooms. The other two types are mixed air-water systems. The latter uses an air system to
control and exchange air and hydronic terminals to manage heating and cooling loads in the various environments
The hydronic terminals can be of various types and require a network distribution of hot and cold water. In the case of fan coils, the air is aspired through them to be heated or cooled and re-emitted in the environment where heat exchange occurs by convection. In radiant panels instead, hot or cold water flows into the pipes located in the radiant floor screed and the heat exchange with the environment mainly happens by radiation.

The primary air system is composed by an air handling unit (AHU), the channels of aeraulic distribution of supply and return, from the delivery diffusers and from the recovery grilles. Its main function in mixed systems is to provide fresh air to the internal environment ensuring the correct humidity level, in some cases, it can also provide conditioning of air.
A comparison between the three different kinds of systems can give an idea of which one is the most convenient to use, in terms of energy demand. In particular, the all-air system is the one with the higher energy consumption, while between the two mixed air-water systems, the radiant one is cheaper than the fan coils one.

As a result of this preliminary analysis, the radiant floor with a primary air system can be the right choice for the building, particularly for the residential apartments where the comfort emperature needs to be reached and then maintained for long periods. For the first two levels, a fan coils system can be used, so that according to the occupancy, it can be set to a needed temperature, which can be reached in a short period of time.
THE BENEFITS AND LIMITS OF THE RADIANT FLOOR
The radiant floor is not only convenient for energy reasons, but also for other important aspects that cannot be ignored by a designer, such as thermal comfort, air quality, no spatial constraints and low-temperature heat transfer fluid.

Radiant panels exchange heat mainly by radiation, as a consequence, there will not be convection current of hot air. If compared to a radiators system which has single and specific diffusers, the heat distribution is better, since this is a system "diffused" on the whole floor surface. This will result in a homogenous temperature distribution in the air, slightly warmer in the legs zone and slightly cooler in the chest zone, close to the heart and the respiratory system.

As a result of the heat exchange by radiation, the air moved by convection is less, avoiding the movement of dust and filth, having positive effects on the healthiness and wholesomeness of air. This system does not create spatial constraints since this is hidden in the slab thickness.
 one (centre).

It does not require any terminal like radiators or air vents, resulting in the freedom to furnishing an apartment as desired, without any limitations given by needed air circulation.

Finally, the water that needs to flow through the radiant floor pipes has a temperature range between $30-40^{\circ} \mathrm{C}$, much lower than the 60$80^{\circ} \mathrm{C}$ range of a radiators system. The lower need for heating water results firstly in lower energy demand, as said before, but also in the possibility to use high efficient generators, like heat pumps, solar panels and condensing boilers.
However, this kind of system has some limits when it comes to cooling and dehumidifying air. As a matter of fact, lowering the temperature would mean having superficial condensation. In these cases, the primary air system starts working, conditioning air and keeping a healthy quality of air.

Anyway, all the first optimisations have been considered in free-run mode, without working systems.
di Milano. Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

8.7 - THE BALCONIES' LENGTH

Once the surface of glazing façade has been established, it is important to define how these elements are subject to solar radiation.

The amount of sunlight hitting the transparent elements needs to be controlled since it can have a positive effect on the cold season helping the building to naturally warm-up, but it can also have counteractive in the warm season, resulting in overheating for the internal rooms

For this reason, the balconies, besides being useful for architectural and functional purposes, have been studied and developed as shading overhangs which would protect the windows
By running various simulations it was possible to size the length of these elements in order to take advantage of the solar gain in the cold period of the year, but also to avoid the greenhouse effect and the overheating in the hottest months.

At the same time, the natural light has been established to be in a good amount for daylight reasons, with the purpose to have the best possible percentage of well-lit area on the floor plan.

As a consequence, the best result has been obtained by matching together the sum of heating and cooling demand with the well-lit percentage, resulting in an optimal length of these overhangs of 2,00 meters

This length, other than being energetically helpful, is also an architectural advantage since a $2,00 \mathrm{~m}$ space is livable and enjoyable for the residents of the building.

(ilecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

TYPE A - NEW YORK CODED U-VALUES - PMV

These first free run simulations consider a building with optimised balconies' lenght, ptimised windows' size and New York minimum U-values.

This is to be considered as a starting point and as it is evident from the perceived comfor he internal conditions are very far from being satisfactory. In particular, most of the hours of the year are outside the comfort range because the temperature is too cold. The consider area, in this case, is the coldest apartment of the building, which is facing nort-west, in particular the living room, since it is the most representative room of the flat. In this way it is possible o state that the next passive strategies, focused to reduce the heating demand, will surely improve the overall internal comfort of the building.

8.8 - THE DESIGNED U VALUES

A further implementation of the building performance is given by the improvement of the thermal parameters of the technological elements. When designing the packages of the horizontal and vertical closures, the choice of every layer's material is done with the goal to reach the lowest possible U values, finding the right compromise between thermal performance and construction process.

The specific layers and thermal properties have been explained in the technological chapter, but they can be recalled here, to also be compared to the minimum required values of the New York Building Code.

TYPE A - DESIGNED U-VALUES - PMV

$$
\begin{array}{ll}
- & U_{\text {wall }}=\mathbf{0 , 1 5 0}<0,465 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \\
- & U_{\text {roof }}=\mathbf{0 , 0 8 6}<0,170 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}
\end{array}
$$

At this point, the PMV index shows that the number of hours in the coldest range passes from 54% to 46%, while the comfort range ($-0,5<$ PMV $<0,5$) has an overall improvemen equal to 4%. Also, the coldest registered temperature, which was $2^{\circ} \mathrm{C}$ in the coldest week of the year, is now up to $5^{\circ} \mathrm{C}$.

Politecnico di Milano. Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco
8.9 - THE SOLAR HEAT GAIN FACTOR (SHGC)

The glass of the windows and of the curtain wall requires an optimization too. The customization is about the solar gain factor (SHGC), a dimensionless index between 0 and 1 which is the ratio between the incoming solar energy (sum of the energy passed directly hrough the glass and the one absorbed by it and retransmitted inside) and the incident solar energy. This parameter can be referred to the glass only or to the combination of glass and solar control device.

To better understand how a different value of this parameter would affect the performance of the building, many simulations have been run and the results were analyzed in terms of energy demand and internal comfort of the environment, in order to find the best combination of the two. The same optimization has been made for the glass of the first two levels curtain wall.

0.35

0.45

0.55

0.65

0.75

The results of the simulations of the north-west facing apartment (type A) show that this is the coldest zone of the building, as it is evident in the PMV graphs previously discussed.

A high value of the solar factor would mean increasing the temperature of the zone, but a oo high number would create a too-warm apartment.
The other two apartments which were considered are the small studio facing south (resulted in the hottest one), and the attic at the last floor, that is the biggest and with many windows on every side of the building.
As a rebuttal that this g value works fine for the whole building, it is important to check if these two apartments get too hot with such a solar factor.

TYPE A - OPTIMISED G-VALUE - PMV - LIVING ROOM COMPARISON

These data refers to the living room of the coldest apartment. The goal, in this case, is to reduce the heating demand and improve the overall comfort without creating overheating and cause too hot hours. Anyway, considering that the windows have been designe with a triple glass, it is obvious that a very high g value is not available.

Politecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

TYPE A - OPTIMISED G-VALUE - PMV

Considering the obtained results, the chosen g value is 0,65 ; commercial triple glazed windows can reach that value
As a matter of fact, this number permits to increase the overall comfort from 18% to 22%, at the same time reducing the number of cold perceived hours of the 12% without increasing oo much the number of hot hours.

As a verification, the same simulations have been analysed in the hottest apartment which faces the south (type B), proving that this value does not create over heating

TYPE B - BASELINE G-VALUE - PMV - BALCONY COMPARISON

The graphs output that in the type B apartment there is no overheating despite the medium high g value of 0,65 . This is also achieved thanks to the presence of the balconies which were previously optimised and which help to cool down the internal temperature in the hot season.

The comfort chart demonstrates that the simulation run without the balconies would cause a considerable number of hours to be too hot for the comfort, in particular it is clear tha without the balconies the internal temperature can reach $28^{\circ} \mathrm{C}$ in the hottest week of summer, which means using the cooling system. While, with the shadows projected by the balconies, the cooling system can be activated only in exceptional cases since the hottest temperature registered is $24^{\circ} \mathrm{C}$.
8.9.2 - THE CURTAIN WALL

The first two levels have a big curtain wall on the whole façade. In this case, the sola radiation entering the rooms is much higher, resulting in higher solar gains. This, combined with the fact that the different intended use of these zones from the residential apartmen has higher internal loads, makes the rooms hotter, as it is visible in the thermal comfort PMV graphs.

GROUND FLOOR - DESIGNED U-VALUES - PMV

The playroom at the ground floor results to be the hottest room of the firts two floors. Considering that many hours through the year are outside the comfort range because too hot, it would not make sense to increase the g value more than 0,35 , which is the first case considered.

In conclusion, there is no need of a passive strategy with the goal to reduce the heating demand.
8.10 - THE ACTIVE SHADING SYSTEM

After defining the best kind of glass, an active shading system is obviously required. This would be helpful in terms of energy efficiency, but it is also indispensable for the inhabitants since every resident of the building should have the freedom to decide how much light is wanted in the room, from fully enlightened to completely dark.

8.10.1 - THE APARTMENTS' WINDOWS

The goal is to find the best shading device, the one that more improves the internal comfort At this stage, after optimising the g value of the windows, the considered apartment is the biggest one which faces all the four façades. In this way, it is possible to manage both the heating and cooling system since the apartment under investigation deals with both cold an hot zones. Furthermore, it is logical to use one unique shading type for the total building

The considered room is the double bedroom, since it previously resulted as the hottest one.

TYPE E - OPTIIIISED SHADING TYPE - PMV - BEDROOM DOUBLE COMPARISON

The external venetians are the ones which cause the highest number of cold hours, but, since the goal is to have the lower cooling necessity, they are the best solution because there are no hot perceived hours (PMV in class 3) throughout the whole year

Thermal Comfort Guideline ISO 7730 - New York - Optimised shading type - PO7 - Bedroom double

TYPE E - OPTIMISED SHADING TYPE - PMV

Also with the optimised shading system the double bedroom is the hottest one while the bedroom with two single beds results in being the coldest as it is evident in the temperature profiles registered in the hottest week of the year.

TYPE E - OPTIMISED SHADING TYPE - WEEKLY PERIOD

20

8.10.2 - THE CURTAIN WALL

The shading system of the curtain wall, instead, is not optimized and its choice did not go through a selection process. In this case, in fact, the choice was driven by an architectural aspect: having an external shading system in front of a curtain wall would not be appealing and would ruin the façade, without considering the problem of maintenance and dirt.

This is why internal blinds were chosen. This solution is internal and does not affect the exterior appearance of the façade.

The shading devices are going to be used as preferred by the users, according to their as preferred by the users, according to the of time in which people will not be present, it of time in which people will not be present, it activate to protect the internal rooms from the solar radiation.
To do so, it is important to select the correc solar radiation intensity $\left[\mathrm{W} / \mathrm{m}^{2}\right]$ at which they automatically activate. Thanks to a simulation run with Grasshopper and Ladybug it is possible to know the typical value of rays hitting the vertical surfaces of the four façades and the maximum value reaches $350 \mathrm{~W} / \mathrm{m}^{2}$.

>50

>150

>20

>250

8.11.1 - THE APARTMENTS' WINDOWS

The apartments windows are already enough shaded and protected by the balconies overhangs. So here the shading devices do not have an energy purpose, they will just be used by the users. Therefore, the automatic activation is set on $300 \mathrm{~W} / \mathrm{m}^{2}$, which is close to he maximum reached value

8.11.2 - THE CURTAIN WALL

The internal blinds present on the first two levels are going to protect big and internally loaded rooms, so they need to be automatically activated not to let the solar gains negatively affect internal comfort

Also in this case the considered room is the playroom, which is the hottest one.
The chosen value is $250 \mathrm{~W} / \mathrm{m}^{2}$ even if the difference with other values is not substantia This selection is due to the fact that activating the shadings at ower values would mean having a sort of visual barrier towards the outside even in slightly cold periods of the year affecting the emotional comfort of people inside who could be disturbed by not being free to
watch out of the window.

GROUND FLOOR OPTIMISED SHADING - PMV - PLAYROOM COMPARISON

Thermal Comfort Guideline ISO 7730 - New York - Optimised shading - PO7 - Playroom

GROUND FLOOR - OPTIMISED SHADING - PMV

Politecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

As it is visible in the graph, the radiant floor is not the best choice in terms of energy demand. However, given the considerable benefits that this system can give to the thermal comfort of the rooms, as previously explained, this is the chosen system, finding the best compromise between the two below graphs of the heating and cooling needs and of the internal comfort.

8.12 - THE MECHANICAL SYSTEMS

At this point, the mechanical systems have been switched on. No more free run simulations, it is important to quantify the energy demand of the building's systems and match it with the thermal comfort considered until now.

First of all, in order to choose the best kind of heating and cooling system, it is fundamental to compare the different energy demand that every typology requires.
8.12.1 - THE APARTMENTS

For the apartments' floors, from the $3^{\text {rd }}$ to the $23^{\text {rd }}$, considering the residential use of the space, the choice is between hydronic terminals, meaning that the analyzed possibilities are fan coil units, radiant floor and variable refrigerant flow fan coils. These last ones have bee
simulated both air-cooled and water-cooled.

TYPE E - OPTIMISED SYSTEM TYPE - PMV - BEDROOM DOUBLE COMPARISON

TYPE E- OPTIMISEE SYSTEM TYPE-PMV

8.12.2 - THE BASEMEN

On the first two levels, the considered options are air systems, due to the different space use of the rooms and to the fact that in these areas the occupancy may be inconstant. Such plants, in fact, allow reaching the desired temperatures in a shorter period of time, if a change s suddenly needed.

GROUND FLOOR OPTIMISED SYSTEM TYPE - PMV - PLAYROOM COMPARISON

Matching the two hown graphs, in this case, the optimal solution is variable refrigerant flow fan coils, which manage to reach thermal comfort with low energy demand.

This type of system, even if slightly more consuming than the splits, guarantees a higher value of thermal comfort and this is why it is chosen kind of system

GROUND FLOOR - OPTIMISED SYSTEM TYPE - WEEKLY PERIOD

8.13 - THE WORKING TEMPERATURE

To further improve the thermal comfort through the year, the settings of the systems are fundamental. The software lets the designer set the setpoint and setback temperatures. The first ones are the temperatures that the heating and cooling system has to keep during the cold and warm season, while the second ones are the temperatures at which, once reached
 emperature the system starts working until the ambient temperature reaches $21^{\circ} \mathrm{C}$ again.

Many simulations have been run with different values. Using higher temperatures in winter and lower ones in summer would be helpful in terms of thermal comfort since that would be easier to keep acceptable ambient temperatures. However, this would mean that the systems would be working harder and for more hours through the year, resulting in a higher EUI, due to increased heating and cooling needs
8.13.1 - THE APARTMENTS

Considering the radiant floor, the starting setback temperatures were $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ Other simulations have been done, considering that such a system does not need very high working temperatures

TYPE E - OPTIMISED SYSTEM TEMPERATURE - PMV - BEDROOM DOUBLE COMPARISOI

The target was to select the working temperatures so that the combination between these two values creates a positive delta.

Matching the thermal comfort and the consumptions of the building, the chosen setback temperatures are $19^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$. In fact, these values quarantee an increased comfort value (+23\%) with respect to the starting point, but, of course, an higher energy demand (+20\%).

Finally, in the annual profile temperature of the apartment, it can be seen how the optima work of the systems guarantees the dry bulb temperature of every hour to stay within the comfort range.

TYPE E - OPTIMISED SYSTEM TEMPERATURE - PMV

8.13.2 - THE BASEMENT

In this case, the system working system is VRF fancoils. As before, many simulations have been done to select the best range of temperatures in which it would optimally work.
The starting point has setback temperatures equal to $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$.

?
$18^{\circ} \mathrm{C} \quad 28^{\circ} \mathrm{C}$

$19{ }^{\circ} \mathrm{C} 27^{\circ} \mathrm{C}$

$20^{\circ} \mathrm{C} \quad 27^{\circ} \mathrm{C}$

$20^{\circ} \mathrm{C} \quad 26^{\circ} \mathrm{C}$

$21^{\circ} \mathrm{C} 25^{\circ} \mathrm{C}$

GROUND FLOOR OPTIMISED SYSTEM TEMPERATURE - PMV - PLAYROOM COMPARISON

Politecnico di Milano, Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

As previously done, the target was to select the working temperatures so that the combination between these two values creates a positive delta.
Finding a compromisebetween the thermal comfort and the consumptions of the building the chosen setback temperatures are, also in this case, $19^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$. These values guarantee an increased comfort value (+17\%) with respect to the starting point, but, of course, an higher energy demand (+13\%)

Finally, in the annual profile temperature of the apartment, it can be seen how the optimal work of the systems guarantees the dry bulb temperature of every hour to stay within the comfort range.

Politecnico di Milano Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

As it is evident in final the Energy Use Intensity graph, every step of the optimisation improved the performance of the building by decreasing the amount of energy necessary to eep a constant thermal comfort

In particular, considering the starting point, the sum of the passive strategies manages to almost halve the overall consumption through the year

Finally, as a last optimisation, the intro duction of a renewable energy source as the sun nstaling a PV panels system, gave the final result. In the end, the optimised solution plus the reneable energy sources allow to have a building which has an ener gy demand which is decreased by the 57% with respect to the initial condition.

09
 CONCLUSIONS ACKNOWLEDGEMENT

CONCLUSIONS
REFERENCES
..... 214
BIBLIOGRAPHY
..... 214
ARTICLES
..... 214
Standards and regulations
214
SITOGRAPH

CONCLUSIONS

At the end of this long and thorough thesis path, which started from the urban study of the rea and ended with the architectural development of the residential centre, greater aware ness in architectural and engineering design was reached. The work turns out to be the resul of a multi-disciplinary study that has embraced different areas of architecture and engineering.

The different aspects, which have been deepened throughout the whole design process, helped us to develop every detail basing every choice on scientific results. Every characteristic of the building was developed and optimised, but particular attention has been paid to the technological aspects and energy efficiency.

The goal of having a building which can be mostly prefabricated and easily assembled on-site has been reached thanks to the use of light and versatile materials such as steel and timber. Following the instructions of the construction process, in fact, would be the perfect way to build the tower faster than any other buildings, with low risk of making mistakes. Being able to assemble the whole construction without making errors is also fundamental in order to guarantee the final performance of the building itself to meet the expectations during the design phase.

Furthermore, internal comfort has been deeply studied and optimised, and this is strictly related to the success of the assembly process. By running many simulations it was possible to halve the initial consumption of the total building guaranteeing at the same time a livable internal environment for the residents of the tower

The greatest milestone reached with this work is the operational methodology and design process in the development of a complex architectural and engineering project, as a demonstration of the fact that architecture cannot exist without engineering and vice versa. This work, at the end of the two years of the Master of Science in Building and Architectura Engineering, taught us the basis of an integrated design method that will be useful for our future career in the building sector.

ACKNOWLEDGMENT

Our thanks to all the people who have guided and supported us in this thesis work and along the two-year long path of the master degree course through advice, suggestions and indications. Every Professor we had the pleasure to work with has been extremely useful for us to develop the right attitude and the best approach to the design work.
Our special thanks go to Professor Gabriele Masera, who spent his time and made efforts with us to create and develop our project, correcting our mistakes and helping us to improve and better define our intuitions and ideas

Marco

would like to thank all the people who have been on my side during my years at Politecnico di Milano: professors, colleagues and friends.

In particular, my warmest thanks are for my family, who always helped and encouraged me o never give up, even in the hardest times.
The most special gratitude is for my mother and my sister, who are my reference point They taught me that all the sacrifices and efforts made are repaid in the end. Finally, a huge thank goes to my father who, being an Architect, firstly made me love the building sector and later gave me sound advice due to his long-term experience.

Federico

I would like to conclude this work with a special greeting to all the people who helped me complete this two-year course and, more in general, to all the people who made my educational path richer.

Lots of thanks go to my parents for their support.
I also address a special thought to Andrea, Michael and Alessandro, with whom I shared some parts of this thesis on different moments, receiving appreciations, hints and suggestions to further enhance the project

Politecnico di Milano Master of Science in Building and Architectural Engineering Steember - Steel and timber for a high rise building in Queens, New York Chinnici Federico - Maranesi Marco

REFERENCES

BIBLIOGRAPHY
C. Benedetti; "Costruire in legno. Edifici a basso consumo energetico", Bozen-Bolzano University Press, 201
S. Gagnon, C. Pirvu; "CLT Handbook", FP Innovations, U.S. edition, 2018
M. Green; "The case for tall wood buildings", MGA, 2017
S. Jones; "Mass timber: design and research", ORO editions, 2017
J. Natterer, T. Herzog, R. Schweitzer, M. Volz, W. Winter; "Timber Construction Manual", Birkhaeuser - Detail, 2004 A. Bernheimer; "Timber in the city"; ORO editions, 2015

- M. Hegger, M. Fuchs, T. Stark, M. Zeumer; "Energy manual", Birkhaeuser - Detail, 2008
A. Athienitis, W. O'Brien; "Modeling, Design, and Optimization of Net-Zero Energy Buildings", Wiley, 2015
K. Voss, E. Musall; "Net zero energy buildings", 2013
- L. Bertolini; "Materiali da costruzione - struttura, proprietà e tecnologie di produzione ", Città Studi Edizioni, 2010
G. Salvalai; "2020. Edifici ad energia quasi zero (nZEB)", Maggioli Editore, 2015
- F. Hall, R. Greeno; "Building Services Handbook", Elsevier, 2008
G. Toniolo: "Tecnica delle Costruzioni - Elementi strutturali in acciaio", Masson, 1990
A. A. Bell Jr., "HVAC equations, data, and rules of thumb", McGraw-Hill, 2000

ARTICLES

- M.H. Ramage et al.; "The wood from the trees: The use of timber in construction. Renewable and Sustainable
Energy Reviews", 2017 Energy Reviews", 2017
K. Mahapatra, L. Gustavsson; "Multi-storey timber buildings: breaking industry path dependency", Journal Building Research \& Information, Volume 36, 2008 - Issue 6
V. Z. Leskovar, M. Premrov; "An approach in architectural design of energy-efficient timber buildings with a focu on the optimal glazing size in the south-oriented façade", 2011
V. Z. Leskovar, M. Premrov; "Influence of glazing size on energy efficiency of timber-frame buildings", Construction and Building Materials, Volume 30, May 2012, Pages 92-99
T. Kalamees, Ü. Alev, M. Pärnalaas; "Air leakage levels in timber frame building envelope joints", Building and , 121-129
J.F.Nicol, M.A.Humphreys; "Adaptive thermal comfort and sustainable thermal standards for buildings", Energy and Buildings, Volume 34, Issue 6, July 2002, Pages 563-572

STANDARDS AND REGULATIONS

NYC Codes, Buildings, 2014 Construction codes; Rules
NYC Codes, Buildings; 2.1.12 - Residential Envelope Module
NYC Codes, Buildings; 2.1.13 - Commerciall Envelope Module
NYC Department of housing preservation \& development; HPD design guidelines

- UNI EN ISO 13788:2013 - Prestazione igrotermica dei componenti e degli elementi per edilizia - Temperatura uperficiale interna per evitare l'umidità superficiale critica e la condensazione interstiziale - Metodi di calcolo UNI EN ISO 7730, 2006 - Ergonomics of the thermal environment - Analytical determination and interpretation of hermal comfort using calculation of the PMV and PPD indices and local thermal comfort effects.
EN 15251, 2007 - Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics

Eurocode 1: Actions on structures. EN 1991-1-1
Eurocode 2: Design of concrete structures. EN1992-1-1

- Eurocode 3: Design of steel structures. EN 1993-1-1
- Eurocode 5: Design of timber structures. EN 1995-1-1
- D.M. 17 gennaio 2018: "Norme tecniche per le costruzioni"
- ASCE 7: Minimum design loads for buildings and other structures; 49 CFR 193.2013
- ANSI/ASHRAE Standard 55-2017: Thermal environmental conditions for human occupancy

SITOGRAPHY

- https://up.codes/codes/new_york
- https://www.britannica.com/place/New-York-City
- http://www.aianys.org/rules-regulations
- http://www.oasisnyc.net
- https://www.dos.ny.gov/cnsl/lg03.htm
- http://www.immdesignlab.com
- http://www.promolegno.com
- https://www.galimberti.eu
- http://www.oppo.it
- http://www.alveox.it
- https://www.fermacell.it
- https://gutex.de
- https://www.mapei.com
- https://www.rothoblaas.com
- https://www.klh.at/it
https://www.hoepli.it
- https://www.riwega.com
- https://www.leca.it
https://www.xlamdolomiti.it
- https://www.unitherm.it
- https://www.schueco.com
http://bituver.it
- https://sefaira.com/
- https://meteonorm.com/
- https://energyplus.net/weather

[^0]: ULS - $V_{\text {max }}$

[^1]: 1 Filling gravel and soil for grass (th: 15 cm)
 2 Anti root polypropylene-fiber tissue, (th: 0.4 cm)
 3 Water collection polystyrene panels, $125 \times 100 \mathrm{~cm}, \lambda=0.034 \mathrm{~W} / \mathrm{mK}$, (th: 8.2 cm) (DiaDrain type) with
 mechanical protection membrane Armodillo Index in polyester
 4 Dry assembled lightweight mortar screed Pavileca, density $400 \mathrm{~kg} / \mathrm{m}^{3}, \lambda=0.09 \mathrm{~W} / \mathrm{mK}$, (th: 5 cm minimum), slope 1%
 5 Adhesive waterproofing sheath Monoself FV 2 MM P (th: 0.2 cm)
 6 OSB panel (th: 1.25 cm)
 7 Wooden fiber insulation FiberThermBase 250, $135 \times 60 \mathrm{~cm}, \lambda=0.040 \mathrm{~W} / \mathrm{mK}$, (th: $10+6 \mathrm{~cm}$)
 8 -layer spruce wooden boards -XLAM- bearing slab, $\lambda=0.12 \mathrm{~W} / \mathrm{mK}$, (th: 33.2 cm)
 9 Water vapour adhesive barrier Riwega DS 482200 TOP SK, density: $1100 \mathrm{~kg} / \mathrm{m}^{3}, \lambda=0.17 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, (th: 0.3 cm)
 10 Secondary load bearing steel beam HEB 300
 11 Primary load bearing steel beam HEB 360
 12 Acoustic wooden fiber panel insulation, $140 \times 60 \mathrm{~cm}$, density $70 \mathrm{~kg} / \mathrm{m}^{3}, \lambda=0.040 \mathrm{~W} / \mathrm{mK}$, (th: 5 cm)
 $132 \times$ Fermacell Gypsum fiberboard, density $1150 \mathrm{~kg} / \mathrm{m}^{3}, \lambda=0.32 \mathrm{~W} / \mathrm{mK}$, (th: $1.25+1.25 \mathrm{~cm}$)

