
Politecnico di Milano

SCHOOL OF INDUSTRIAL AND INFORMATION ENGINEERING

Master of Science in Computer Science and Engineering

MASTER THESIS

A General Approach to Value Identification of
Large Scale Geospatial Data

Supervisor

Prof. Marco Brambilla

Co-Supervisor

Prof. Ernestina Menasalvas Ruiz
Prof. Alessandro Bogliolo

Candidate

Gioele Bigini
Matr.898741

Academic Year 2018–2019

Virtutibus Itur Ad Astra
9th book of the Aeneid

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 1
1.3 Proposed Solution . 2
1.4 Structure of the Thesis . 3

2 Background 5
2.1 Internet of Things . 5

2.1.1 A Bit of History . 5
2.1.2 Challenges . 6

2.2 Big Data . 7
2.2.1 Data Sets Growth . 7
2.2.2 Challenges . 8

2.3 Mobile Crowdsensing . 8
2.3.1 Data Collection . 9
2.3.2 Challenges . 9
2.3.3 Architecture . 10

2.4 Libraries and Tools . 10
2.4.1 Jupyter and Python . 10
2.4.2 Apache Spark . 11
2.4.3 Google Cloud Platform . 12
2.4.4 QGIS . 13

3 Related Works 15
3.1 Mobile Crowdsensing Applications 15

3.1.1 Data Collection and Processing Workflow 15
3.1.2 Real-World Applications . 18

3.1.2.1 Crowdsensing for the common interest 19
3.1.2.2 SmartRoadSense 19

4 The General Approach for Value Identification 23
4.1 The Concept of Value . 23
4.2 The Proposed Approach . 24
4.3 Exploratory Analysis . 25

4.3.1 Data set . 25
4.3.2 Insights . 25

4.4 Outcome Definition . 26

v

vi CONTENTS

4.5 Pre Processing . 27
4.6 Processing . 28
4.7 Visualisation . 29

5 Implementation Experience 31
5.1 Exploratory Analysis . 31

5.1.1 Data set . 31
5.1.2 Row Attributes . 32
5.1.3 Retrieving Informations . 33
5.1.4 Insights . 34

5.2 Outcome Definition . 35
5.3 Pre Processing . 35

5.3.1 Spatial Query . 36
5.4 Processing . 39

5.4.1 Anomalies Detection . 39
5.4.2 Usage Trend Metric . 43
5.4.3 Data Recency Metric . 45
5.4.4 Data Quantity Metric . 47

5.5 Visualisation . 48
5.5.1 Crossed Visualisation . 49

6 Experiments And Discussion 51
6.1 Local vs Cluster Solution . 51

6.1.1 Local Optimisation . 52
6.1.2 Cluster Implementation . 54

6.2 Metrics . 57

7 Conclusions 63

A Appendix 65
A.1 Jupyter Notebook on Google DataProc 65
A.2 Anomalies Detection . 69
A.3 Data Quantity . 70
A.4 Data Recency . 70
A.5 Usage Trends . 70

Acronyms 73

Bibliography 75
References cited in the text . 75

Publications and Manuals . 75
Online Materials . 77

List of Figures

2.1 General Mobile Crowd Sensing Architecture 10
2.2 Spark Job Flow . 11

3.1 MCS Application Workflow . 15
3.2 SmartRoadSense Process Flow . 20

4.1 Example of bad data collection . 26
4.2 Municipalities Selected through Spatial Query in QGIS 28
4.3 Example of Anomalies in a Time Series 29
4.4 Example of Visualisation with Plotly 29

5.1 Measurements distribution for road 97464677 34
5.2 JSON format after Pre Processing phase 39
5.3 Sample Time Series . 40
5.4 Forward Fill on Sample Series . 40
5.5 Backward Fill on Sample Series . 41
5.6 Corrected Sample Series . 41
5.7 New time series originated by the corrected one 42
5.8 Removing anomalies through Forward Filled Series 42
5.9 New time series filled with Linear Interpolation 42
5.10 Removing anomalies through Linear Filled Series 42
5.11 Time series cleaned of the anomalies 43
5.12 Examples of different trend cases 43
5.13 All the municipalities of Marche Region in Italy 44
5.14 Trend of Acqualagna Municipality 45
5.15 Recency Decaying Window . 46
5.16 Usage Trends Metric . 48
5.17 Data Recency Metric . 48
5.18 Data Quantity Metric . 49
5.19 Crossed Metrics Result . 49

6.1 Pre Processing Algorithm Core . 53
6.2 Optimised Pre Processing Algorithm Core 53
6.3 Ancona and Osimo Municipalities Study Case 57
6.4 Ancona (on top) and Osimo (bottom) Municipalities Trends 58
6.5 Fano/Macerata municipalities with their recency and quantity . . . 59
6.6 Fano (on top) and Macerata (bottom) Municipalities Recency and

Quantity . 59

vii

viii LIST OF FIGURES

6.7 The municipalities of Urbino, Ancona and Ascoli Piceno 60
6.8 Results found applying the approach 61

List of Tables

3.1 SmartRoadSense Open Data Schema 21

5.1 Metrics Explained . 48

6.1 Local Execution Results . 52
6.2 Optimised Local Execution Results 54
6.3 DataProc Cluster Configuration . 54
6.4 Cluster Execution Results and Costs 57

ix

Listings

5.1 Evaluating RAM Occupation . 33
5.2 Plotting exploration’s results . 33
5.3 Polygon and Point Objects . 36
5.4 Transformed and Cached Dataset 37
5.5 Date convertion function . 37
5.6 From Hex to Lat/Long . 37
5.7 Processing function . 38
5.8 Spatial Query . 38
5.9 Trend Value Function . 45
5.10 Date interval for Recency . 46
5.11 Data Recency Value Function . 47
5.12 Data Quantity Function . 47
6.1 Read GeoJSON From Bucket . 55
6.2 Start Processing . 55
6.3 Upload Results to Google Cloud Storage 56
A.1 Import Libraries . 65
A.2 View SparkContext . 65
A.3 Read GeoJSON From Bucket . 65
A.4 Load Data . 66
A.5 Define functions for Processing . 66
A.6 Take Regions Borders . 66
A.7 Start Processing . 67
A.8 Upload Results to Google Cloud Storage 68
A.9 Function Definitions for Anomalies Detection 69
A.10 Defining Quantities . 70
A.11 Defining Recency . 70
A.12 Defining Trend . 70

xi

Sommario

Oggi la maggior parte dei dispositivi mobili registra continuamente informazioni
come dati geo-spaziali. Grazie all’avvento dell’Internet delle Cose, essi stanno
gradualmente dominando il settore dei big data. Un’applicazione che si occupa di
collezionare questo genere di dati è SmartRoadSense, un app mobile che è stata
sviluppata con lo scopo di collezionare dati geo-spaziali relativamente alle strade
percorse mentre si sta guidando un auto.

Uno dei principali problemi relativamente ai dati geo-spaziali è la capacità di
fare analytics in maniera efficace su di essi. Due sono le cause principali: la dis-
tribuzione nello spazio (dal momento che possono essere registrati in qualsiasi punto
del globo) e la distribuzione nel tempo (essi perdono progressivamente valore con
il passare del tempo).

Pertanto, se l’aumento di volume rappresenta una sfida per le operazioni di
memorizzazione, gestione e trattamento (perlopiù aspetti tecnici), dall’altro lato
l’analisi, visualizzazione e veracità rappresentano una sfida ancora più grande per-
ché non c’è alcun modo di poter quantificare lo sforzo necessario per comprenderne
il valore.

Lo scopo di questo lavoro è proporre un approccio generale che tenti di aiutare
l’operatore nel comprendere la distribuzione dei dati geo-spaziali (senza limiti di
forma) nello spazio e nel tempo a partire da metriche personalizzate con l’obbiettivo
implicito rivelarne il valore.

xiii

Abstract

Nowadays, most mobile devices continuously record information as geospatial
data. Thanks to the advent of the Internet of Things, they are gradually dominat-
ing the big data sector. An application that collects this kind of data is SmartRoad-
Sense, a mobile app that has been developed with the aim of collecting geospatial
data relative to the roads travelled while driving a car.

One of the main problems with geospatial data is the ability to effectively per-
form analytics on them. There are two main causes: the distribution in space
(since they can be recorded at any point on the earth) and the distribution over
time (they gradually lose value over time).

Therefore, if the increase in volume represents a challenge for storing, managing
and processing operations (mostly technical aspects), on the other hand, the anal-
ysis, visualisation and veracity represent an even greater challenge because there
is no way to be able to quantify the effort required to understand its value.

The purpose of this work is to propose a general approach that attempts to
help the operator understand the distribution of geospatial data (without shape
limits) in space and time starting from customised metrics with the implicit goal
of revealing its value.

xiv

Chapter 1

Introduction

1.1 Context
During these years, the devices involved in the Internet of Things have im-

mensely increased in number and in the amount of information they are able to
record. Through cameras, GPS, accelerometers, Wi-Fi and Bluetooth antennas,
NFC and other sensors, they are able to collect a huge amount of data, generally
referred as Big Data.

When talking about Big Data we often refer to data sets so extensive in terms
of volume, speed and variety that It is no longer possible to deal with them through
conventional tools and they often require specific technologies and analytical meth-
ods for the extraction of value.

Today, geospatial data is everywhere. It is generated continuously while driving,
while using social networks or while playing with mobile devices. This data often
hide interesting implicit information useful for several reason: i.e. user profiling.

In this context entered Crowd4Roads, an Horizon 2020 project that combines
trip sharing and crowd sensing initiatives to harness collective intelligence to con-
tribute to the solution of the sustainability issues of road passenger transport, by
increasing the car occupancy rate and by engaging drivers and passengers in road
monitoring through SmartRoadSense [14], a mobile application developed by the
IT unit of the University of Urbino that uses smartphone’s accelerometer and GPS
sensor to detect and classify irregularities of the road surface while driving.

1.2 Problem Statement
Many data collection platforms, including SmartRoadSense, collect information

from mobile devices such as smartphones and tablets with cross-platform applica-
tions. The devices available on the market are obviously not all the same, pre-
senting several differences between them in terms of hardware used and software
implemented. This is reflected in the ability to collect data more or less of the
same quality. Moreover, the collected data are not necessarily useful if in a good

1

2 Chapter 1. Introduction

amount, or rather there is not a univocal relationship between quantity and value
for which the greater the data and the greater the value they represent because
this relationship is strongly dependent on the problem considered.

For example, SmartRoadSense has been running for about 3 years and has col-
lected millions of geospatial data but the amount available is sparse on time and
space. Just to be more specific, considering all the data collected about a specific
road, having a large amount of data over that road does not imply that this is
equally distributed along the road nor that It has been collected more or less in
the same period or recent enough to suggest useful information.

In general, the greater the data and the greater is the probability that a data
set contains relevant insights, which makes this possibility not certain. When using
geospatial data sets the problems discussed earlier lowers a lot the probability (even
more if the data has been collected on a broad spatial basis). These problems are
the ones that the big companies all over the world have dragged in a short time
and the goal of this work is to try to give a general approach to face with them.
They can be summarised as the problems of:

• Data Volume: the volume affects the ability to deliver results;

• Sparsity: the data is sparse on a spatial and temporal basis which could
affect the ability to generate value.

1.3 Proposed Solution
Since the data collected (in SmartRoadSense) as raw data shown obvious defi-

ciencies related to their distribution over time and space, this suggested to focus
on solving the problem through a strategy aimed at generating results that can be
crossed together in order to find out which records of the data set can be able to
generate the value needed.

In order to reach this goal several technologies, methods and techniques have
been involved, mainly massively parallel software like Spark, time series techniques,
cluster implementations as well as some simple analytical linear model.

The work is based on the challenge of generating a crossed data set that sums
up different metrics. Specifically for this work the metrics are:

• Data Recency: how much the collected data is recent with respect to the
present;

• Usage Trends: which is the usage trend of the application along the terri-
tories;

• Data Quantity: the total amount of data collected over time.

1.4. Structure of the Thesis 3

The metrics have been designed to be addressed on a territorial basis, basically
the municipalities. As a reference, the Italian peninsula has been considered since
It is the pilot of the project.

1.4 Structure of the Thesis
The dissertation is structured as follows:

Chapter 1: Introduction - A brief introduction

Chapter 2: Background - The state of the art and relevant technologies used

Chapter 3: Related Works - Other works from which the problem emerged

Chapter 4: The General Approach for Value Identification - The proposed
solution

Chapter 5: Implementation Experience - The implementation of the approach

Chapter 6: Experiments and Discussion - Experiments involved and discus-
sion of what has been obtained

Chapter 7: Conclusions - The final conclusions and future works

Chapter 2

Background

2.1 Internet of Things

The Internet of Things (IoT) refers to the concept that different devices (ho-
mogeneous and/or heterogeneous) are able to communicate and interact through
the availability of a wireless connection, on the internet.

Initially, the traditional IoT field was relegated to sensor networks, control and
automation systems. Today, the IoT means more devices capturing information
useful for several reason as: taking strategic decisions or training algorithms.

Thanks to the IoT, a new number of technologies and techniques have been
cleared in the fields of real-time analysis and machine learning. However, the IoT
is criticised for the big impact it implies on people’s lives since the most tradi-
tional applications are intrusive, enabling monitoring and control at the expense
of privacy and security. And It is not clear the impact on health that some new
technologies supporting the IoT have, like 5G communication.

2.1.1 A Bit of History

The derivation of the term “Internet of Things” is rather tight. The concept
of a network of devices was first discussed in 1982 when a modified Coke vending
machine at Carnegie Mellon University became the first Internet-connected appli-
ance, capable of reporting its inventory and whether the loaded drinks were still
cold or not. Later, Mark Weiser’s published the article “The Computer of the 21st
Century” [1] that is more like the IoT vision of today. It was the 1991.

According to Wikipedia, the term Internet of Things was probably coined for
the first time by Kevin Ashton of Procter & Gamble in 1999, later MIT’s Auto-
ID Center [2]. Then in January 2002, Kary Främling and his team at Helsinki
University of Technology more closely matches the modern idea: an information
system infrastructure for implementing smart, connected objects. [3]

5

6 Chapter 2. Background

2.1.2 Challenges
In recent years, the IoT experienced an unprecedented explosive growth with

millions of connected devices. The reason why the IoT has taken over is in the
opportunities It generated once It abandoned the traditional track. Thanks to
technologies improvements into the telecommunications sector, nowadays most of
all the objects are smart. Today the Internet of Things is synonymous of:

• Efficiency improvements

• Economic benefits

• Human efforts reduction

But, more devices means more implications. The amount of data available
is a lot bigger than before and this impact on the response time required for an
IoT device to process some request. This big increase in data volume brought
several challenges in the data transmission field. For this reason the services can
be generally provided at three different levels [4]:

• IoT Devices

• Edge/Fog Nodes

• Cloud Computing

These three service levels substantially differentiate on how much the system
is time dependent. For example:

• If the IoT device must recognise objects in real time then the response time
should be minimum to receive the necessary prediction as soon as possible.
This decision, which must be very fast, would not be possible if using Cloud
Computing only and so, all the power of the IoT system should be inside the
device.

• On the other hand, a platform for extracting value from data would not
require responsiveness but a very large amount of data, not sustainable from a
regular device. Then, the Cloud Computing would prove extremely effective.

• There are then middle cases: Edge or Fog Nodes. In the future, the IoT
could be so advanced as to provide autonomous behaviours such as the abil-
ity to detect changes in the environment. This goal requires at the same time
important characteristics in the space to manage a multitude always greater
of devices. With millions of devices in the internet space, Fog Computing
will represent a viable alternative for managing the ever-increasing data flow
on the internet. The Edge devices can be used to analyse and process data,
providing real-time scalability.

2.2. Big Data 7

2.2 Big Data
The field of Big Data tries to find ways to analyse, extract information and

deal with data sets that are too large or complex to be dealt with by traditional
data-processing application software [29].

Actually, the field of Big Data tends to refer to the use of predictive analytics,
user behaviour analytics, or certain other advanced data analytics methods that
extract value from data and seldom to a particular size of data set. Big Data
analytics is done to find new correlations, for example to spot business trends,
prevent diseases, combat crime and so on [21].

2.2.1 Data Sets Growth
Data sets grow rapidly because they are increasingly gathered by cheap and nu-

merous information sensing devices. The world’s technological per-capita capacity
to store information has roughly doubled every 40 months since the 1980s.

In this context, relational database management systems, desktop statistics and
software packages used to visualise data often have difficulty handling Big Data.
To manage and analyse this data sets may require massively parallel software run-
ning on several machines.

What qualifies a data set to be “Big” varies depending on the capabilities of
the users and available tools, considering that expanding capabilities makes Big
Data less big and then a moving target. For example some organisations facing
hundreds of gigabytes of data for the first time may trigger a need to reconsider
data management options. For others, It may take tens or hundreds of terabytes
before data size becomes a significant problem to consider.

So, to identify a Big Data, three main characteristics should be considered
along with the concept of veracity [12][5]:

1. Volume: The quantity of generated and stored data. The size of the data
determines the value and potential insights.

2. Variety: The type and nature of the data. This helps people who analyse
it to effectively use the resulting insights. Big data draws from text, images,
audio, video and It completes missing pieces through data fusion.

3. Velocity: The speed at which the data is generated and processed to meet
the demands and challenges that lie in the path of growth and development.
The data is often available in real-time. Velocity factors are: the frequency
of generation and the frequency of handling, recording and publishing.

4. Veracity: It is the extended definition for big data, which refers to the data
quality and value. The data quality of captured data can vary greatly, af-
fecting the accurate analysis. Data must be processed with advanced tools

8 Chapter 2. Background

to reveal meaningful information.

2.2.2 Challenges
A high amount of data offer greater statistical power, higher if It is not too

complex (high number of attributes or columns), because complexity may lead
to a higher false discovery rate [6]. However, this suggest that Big data includes
several challenges:

• Data Collection: The heterogeneity of devices could generate data difficult
to interpret;

• Data Storage: Much of that data is unstructured, meaning that it doesn’t
reside in a database;

• Data Analysis: Documents, photos, audio, videos and other unstructured
data can be difficult to search and analyse;

• Data Security: Big Data stores can be attractive targets for hackers;

• Data Privacy: Each collected data should be handled accordingly to the
regulations of a given location.

2.3 Mobile Crowdsensing
Crowd-sensing, sometimes referred to as Mobile Crowd-sensing, is a technique

where a large group of individuals having mobile devices capable of sensing and
computing (such as smartphones, tablet computers, wearables) collectively share
data and extract information to measure, map, analyse, predict any processes of
common interest.

The term “Mobile Crowdsensing” was coined by Raghu Ganti, Fan Ye, and
Hui Lei in 2011 [7] and based on the type of involvement of the user, Mobile
Crowdsensing can be classified into two types:

• Participatory Crowd-sensing: where the users voluntarily participate in
contributing information [8];

• Opportunistic Crowd-sensing: where the data is sensed, collected and
shared automatically without user intervention and in some cases, even with-
out the user’s explicit knowledge [9].

2.3. Mobile Crowdsensing 9

2.3.1 Data Collection
Taking advantage of the ubiquitous presence of powerful mobile computing de-

vices in the recent years (especially smartphones), Crowd-sensing has become an
appealing method to businesses that wish to collect data without making large-
scale investments. Most smartphones can sense light, noise, location, movement,
and so on. The embedded sensors can collect vast quantities of data useful in a
variety of ways. Numerous technology companies are using Crowd-sensing to offer
services based on the big data collected, some of the most notable examples are
Facebook, Google and Uber.

There are three main strategies for collecting this data [10]:
• Manual Collection: The user of a device collects data manually. This can

include taking pictures or using smartphone applications;

• Hybrid Collection: The user can manually control data collection, but
some data can be collected automatically, such as when a user opens an
application;

• Automated Collection: Data sensing is triggered by a particular context
that has been predefined, such as a device that reacts to a second nearest
device.

2.3.2 Challenges
Collecting data from mobile devices involves several challenges. All the devices

are limited in terms of resources and privacy-security represent a major issue.

Limited resources are most of the time related to energy, bandwidth and com-
putation power. For positioning, using sensors like GPS drains batteries and if we
like to avoid using it through Wi-Fi and GSM, the results are generally less accu-
rate. The same happens if the sensing process does not care about redundancies:
eliminating redundant data can reduce energy and bandwidth costs or, restricting
data sensing when quality is unlikely to be high, can improve energy consumption.

The data collected through Mobile Crowd-sensing can be sensitive to individu-
als, revealing personal information such as home and work locations and the routes
used when commuting between the two. Ensuring the privacy and security of per-
sonal information collected through Mobile Crowd-sensing is therefore important.
Mobile Crowd-sensing can use three main methods to protect privacy [11]:

• Anonymisation: It removes identifying information from the data before
It is sent to a third party. This method does not prevent inferences being
made based on details that remain in the data;

• Secure Multiparty Computation: It transforms data using cryptographic
techniques. This method is not scalable and requires the generation and
maintenance of multiple keys, which in return requires more energy;

10 Chapter 2. Background

• Data Perturbation: It adds noise to sensor data before sharing it with a
community. Noise can be added to data without compromising the accuracy
of the data.

2.3.3 Architecture

Figure 2.1: General Mobile Crowd Sensing Architecture

As coordinated distributed software platforms, Mobile Crowd-sensing systems
are usually composed of a central in-cloud application server and several mobile
clients. The central server is responsible for managing all the centralised phases of
the whole sensing and processing procedure.

It implicitly or explicitly assigns the sensing tasks to the users and then receives
data collected by participants. The sensing task is performed in a decentralised
manner through mobile clients of volunteers. The software client can collect data
directly or with the help of the user. For a more comprehensive analysis of typical
MCS architectures, see the work of Louta et al. [13].

2.4 Libraries and Tools
The project as described needs suitable tools and procedures for the analysis

and extraction of information. The database contains millions of records and this
number is going to grow exponentially in the future.

2.4.1 Jupyter and Python
The main tools used are Jupyter Notebook (version 4.4.0) and Python (version

2.7 in this work). The Python version is fundamental for the PySpark environment
used locally on the machine when experimenting.

2.4. Libraries and Tools 11

2.4.2 Apache Spark
Spark is a unified analytics engine for large-scale data processing created by

Apache to distribute the workload on clusters. It provides high-level APIs with
which to develop the applications to be submitted to Its cluster manager that takes
care about the processing involved.

Spark applications run as independent sets of processes on a cluster, coordi-
nated by the SparkContext object in the main program (called the driver program).
Specifically, to run on a cluster, the SparkContext can connect to several types of
cluster managers (either Sparks own standalone cluster manager: Mesos or YARN),
which allocate resources across applications.

Once connected:
1. Spark acquires executors on nodes in the cluster, which are processes that

run computations and store data for the application;

2. It sends the application code (Python for this work) to the executors;

3. The SparkContext sends tasks to the executors to run.

Figure 2.2: Spark Job Flow

There are several things to note:
1. Each application gets its own executor processes, which stay up for the du-

ration of the whole application and run tasks in multiple threads.

• PRO: The applications are isolated each other: on both the scheduling
side (each driver schedules its own tasks) and executor side (tasks from
different applications run in different JVMs).

• CONS: Data cannot be shared across different Spark applications (in-
stances of SparkContext) without writing it to an external storage sys-
tem.

2. Spark is agnostic to the underlying cluster manager. As long as it can acquire
executor processes, and these communicate with each other, It is relatively
easy to run It even on a cluster manager that also supports other applications
(e.g. Mesos/YARN).

12 Chapter 2. Background

3. The driver program must listen for and accept incoming connections from
its executors throughout its lifetime. As such, the driver program must be
network addressable from the worker nodes. Because the driver schedules
tasks on the cluster, It should be run close to the worker nodes, preferably
on the same local area network.

Resilient Distributed Dataset
Spark revolves around the concept of a Resilient Distributed Dataset (RDD),

which is a fault-tolerant collection of elements that can be operated on in parallel.
Parallel collections are created by calling sc.parallelize() method on an existing
collection in the driver program. The elements of the collection are copied to form
a distributed dataset that can be operated on in parallel.

One important parameter for parallel collections is the number of partitions
to cut the dataset into. Spark will run one task for each partition of the cluster.
Typically, Spark tries to set the number of partitions automatically based on the
cluster properties. However, It is possible to manually pass the number of parti-
tions as a second parameter to the parallelize() method.

RDDs support two types of operations:

1. Transformations: which create a new RDD from an existing one;

2. Actions: which return a value to the driver program after running all the
transformations on the RDD.

For example, map is a transformation that passes each RDD element through
a function and returns a new RDD representing the results. On the other hand,
reduce is an action that aggregates all the elements of the RDD using some func-
tion and returns the final result to the driver program.

All transformations in Spark are lazy, in that they do not compute their results
right away. The transformations are only computed when an action requires a re-
sult to be returned to the driver program. This design enables Spark to run more
efficiently. For example, we can realise that a RDD created through map will be
used in a reduce and return only the result of the reduce to the driver, rather than
the larger mapped RDD.

By default, each transformed RDD may be recomputed each time an action
is performed. However, persisting the RDD in memory using persist() or cache()
method allow to keep the elements around on the cluster for a much faster access.

2.4.3 Google Cloud Platform
Massively parallel processing using tools such as Spark can be performed locally

for small data sets and Its local implementation can be used to perform optimisa-

2.4. Libraries and Tools 13

tion operations before proceeding to launch a specific algorithm on a cluster.

If the operations to be performed require clusters with non-negligible resources
and not negligible execution times, then locally studying an algorithm should be
exploited in this sense.

Google offers a service called DataProc that allows the creation of tailor-made
clusters on demand. The service is obviously not free but excellent in all cases It
is necessary to perform tasks with tools such as Spark. However, It is very cheap
and has been used to pre-process the SmartRoadSense data set.

2.4.4 QGIS
Quantum GIS (QGIS) is an open source GIS desktop application, very similar

in user interface and functions to equivalent commercial GIS packages.

The use of QGIS is related to the generation of borders (namely in shapefiles)
used to apply the geo-spatial queries to the areas on which the analysis has been
performed.

Chapter 3

Related Works

3.1 Mobile Crowdsensing Applications

3.1.1 Data Collection and Processing Workflow

Figure 3.1: MCS Application Workflow

The Mobile Crowd-sensing applications follow a general pattern before coming
on the market. There are several definition like the one below, that It is considered
the most accepted one with some original change. The workflow is based on the
proposal of Dr. Saverio Delpriori [15], shown in Figure 3.1.

15

16 Chapter 3. Related Works

Task Creation
In this first phase, the central entity creates specific tasks and provides a de-

tailed description of the required actions. The task creation can be even started
by users, the same ones who will consume the data collected using the Mobile
Crowd-sensing application.

Depending on the platform used, the description could be either in natural
language or domain specific language that software clients are able to understand
and present to volunteers. In some cases, the task creation is implicit in the
platform structure. Volunteers who join the application are automatically tasked
with a defined sensing operation [14].

Task Allocation
The central entity can analyse the sensing task and assign it to specific partici-

pants (or nodes of the sensing network) possibly trying to respect given constraints:
ensuring area coverage, minimising the task completion estimated time, maintain-
ing the number of volunteers involved under a given threshold, ensuring a minimal
average trust value among the selected participants, and so on.

Another approach is to notify all clients that a new task is available and let
them choose whether to take part in the sensing task or not. Depending on the mo-
tivation incentive systems utilised, some systems also allow approaches like auction
based assignments.

Data Sensing
Involves both information sensed from mobile devices and user contributed data

from mobile internet applications. MCS applications usually have to tackle secu-
rity and privacy issues, thus providing users with automated or semi-automated
mechanisms determining what kind of information they want to publish and whom
to share them with is fundamental.

Many MCS systems resort to access control mechanisms and pre-anonymisation
techniques. In order to reduce transmission costs and size, data is often pre-
processed on board of the user device. Finding the appropriate trade-off between
the amount of processing to be done onboard of smartphones and in cloud after
the data has been transmitted is a crucial parameter for a MCS application.

Data Collection
In this phase, data is received by mobile clients and stored into appropriate

memory supports. Privacy-preserving techniques are applied to ensure security
and to avoid that malicious users acquire collected data and can track them back
to users. The sensor gateway module provides a standard approach - usually im-
plementing common web services technologies - to enable data collection from

3.1. Mobile Crowdsensing Applications 17

crowd-sensed sources supplying a unified interface.

MCS applications may collect a vast amount of heterogeneous data and big
data storage systems are usually employed. Big data techniques simplify the col-
lection of large-scale and complex data like noise level measured across an urban
area. Sensing tools used by participants to evaluate the phenomenon at stance typ-
ically varies a lot, leading to significant differences in the accuracy of crowd-sensed
data. Therefore, data is commonly transformed and unified before being stored
and passed to the next phase in order to boost further processing.

Data Processing
Aims to derive high-level intelligence from raw data received. Using logic-based

inference rules and machine-learning techniques this step focuses on discovering fre-
quent data patterns in order to extract crowd-intelligence starting from data sensed
by mobile users and user-contributed data from other mobile internet applications
mixed together.

The first step of the data processing is the data aggregation phase, in that, raw
data from different users, time and space are combined on different dimensions and
associated with reference known features (e.g., map-matching [16]).

Then further data processing techniques are applied to extract the three kinds of
crowd-intelligence (namely: user awareness, ambient awareness, and social aware-
ness). When information passes through this phase, different statistic methods are
applied to classify the quality of processed data.

Data Distribution
Once data have been aggregated, and the crowd-intelligence has been extracted

from them, this information is usually made publicly available to be re-used (often
as Open Data) or only shared in a private way with authorities, communities,
companies, etc.

Exploitation
Finally data arrive at the stage where they are re-used, exploited or just shown.

The implementation of a usable user interface and of data visualisation techniques
(such as mapping, graphing, animation) are essential to fully exploit the crowd-
intelligence extracted by the underlying system starting from raw data.

Cooperation Incentives
As shown in Figure 3.1, the cooperation incentives phase influences almost every

other stage of the proposed framework. Users can be motivated to participate in a
sensing task by using incentives in the task allocation phase. In the sensing phase,

18 Chapter 3. Related Works

the idea of a possible future reward can motivate users to collect better or more
data.

3.1.2 Real-World Applications

Mobile Crowd-sensing applications can serve as sensing and processing instru-
ments in many different fields. Due to mobile devices inherent mobility, they can
be utilised for sensing tasks aimed to gain better awareness and understanding of
urban dynamics. Acquiring knowledge in such context is of prime importance in
order to foster sustainable urban development and to improve citizens life quality
in terms of comfort, safety, convenience, security, and awareness.

Many other studies have investigated urban social structures and events start-
ing from crowd-sensed data. Crooks et al. studied the potential of Twitter as a
distributed sensor system. They explored the spatial and temporal characteristics
of Twitter feed activity responding to a strong earthquake, finding a way to identify
impact areas where population has suffered major issues [17].

Large-scale data can be also collected by means of MCS platforms to analyse
the actual social function of urban regions, a kind of data which is usually very
difficult to obtain and that can be of primary importance concerning urban plan-
ning. For instance, Pan et al. started from the GPS log of taxi cabs to classify
the social functions of urban land [18], while Karamshuk et al. tried to identify
optimal placements for new retail stores [19].

Awareness of user location is the foundation of many modern and popular
mobile applications, such as location search services, indoor positioning, location
based-advertising, and so forth. But more useful and precise services can be en-
abled harnessing all the peculiar characteristics of personal mobile phones. As an
example, Zheng et al. used crowdsourced user-location histories to build a map of
points of interest which can be of help for people who are familiarising with a new
city [20].

Other cases are Geo-Life [22], a Mobile Crowd-sensing platform able to suggest
new friendship looking at similarities in user-location logs. Or CrowdSense@Place
[24], a framework able to exploit advanced sensing features of smartphones to op-
portunistically capture images and audio clips to better categorise places the user
visits.

In many cases, the development of a particular platform has been the answer
to issues raised by pre-existing communities or grassroots initiatives. Citizens and
policy makers have usually strong interests in matters like environmental monitor-
ing, public safety and healthcare, where the participatory and mobile essence of the
Mobile Crowd-sensing approach provides a novel way for collaboratively monitor
the issue being considered.

3.1. Mobile Crowdsensing Applications 19

3.1.2.1 Crowdsensing for the common interest

The moving nature of these topics draws the attention of online and offline
communities. The potential of a community can be harnessed by MCS approaches
to engage people and to make them participate in the data collection. It is not
just a matter of the number of participants, rather someone who is moved by a
topic not only will be more disposed to contribute but will also be prone to provide
better and more complete data.

As an example, Ruge et al. described how their application SoundOfTheCity
[25] allowed users to link their feelings and experiences with the measured noise
level, helping in providing information essential to have a more clear understanding
of the context (is the high noise level in a party, at a festival or just in a crowded
street?). This is an illustrative case of how qualitative data provided by users can
enrich the quantitative data gathered through personal smart devices.

In short, to fully harness their potentialities when analysing such contexts, MCS
applications should aim not only to collect as much data as possible but also to
provide ways for users to enrich the collection with thick data.

Then there are other examples of MCS applications analysing topics of common
interest as:

• NoiseTube [26] which was a system able to exploit volunteers smartphones
to collect data about environmental noise in users daily lives and to aggregate
them to obtain a fine-grained noise map;

• U-Air [23] inferred air quality data by heterogeneous crowd-sensed data
comparing them against information from sensing stations and traffic infor-
mation.

Healthcare is another field where MCS is helping a lot by collecting a wealth of
data for applications more and more useful for an ageing society like ours. Google
researchers did pioneering work in 2006 using health-related search queries to es-
timate illnesses distribution in US [27], while Wesolowski et al. exploited the
widespread diffusion of mobile phones to analyze malaria spreading in Kenya [28].

3.1.2.2 SmartRoadSense

An application only based on data sensed using personal user smartphone is
SmartRoadSense [14]. The platform is a crowd-sensing system used to monitor the
surface status of the road network. The SmartRoadSense mobile app is able to
detect and classify the road surface irregularities by means of accelerometers and
send them to an in-cloud server. Aggregated data about road roughness are shown
on an interactive online map and made available as open data1.

1http://www.smartroadsense.it

20 Chapter 3. Related Works

Figure 3.2: SmartRoadSense Process Flow

The system has been developed to provide quantitative estimations of road net-
work surface roughness. The approach at data sensing and processing is general
enough to be employed also in different contexts. As many other MCS platform,
sensing tasks in SmartRoadSense are performed by multiple distributed sensing
devices by means of which volunteers contribute to gauge the quantity of interest
in a specific location, within a specific time-window.

As shown in Figure 3.2, the architecture of the SmartRoadSense platform is
characterised by the following three layers:

• Mobile Application: An app running on users smartphones during a given
car trip. The application makes use of the smartphones accelerometers and
computation capabilities to collect and process acceleration values the device
is subject to. The result, representing the estimated roughness of the trav-
elled road in a given point at a given time, is geo-referenced, time-stamped,
and transmitted to a server by means of radio connectivity.

• Cloud Platform: A cloud-based back-end service in charge of collecting,
aggregating and storing data from multiple users. The platform is in charge
of two tasks:

– MapMatching: geo-referenced roughness indexes stored in the database
of raw-data (SRS_RAW) are projected on digital cartography maps,
specifically OpenStreetMap. Map-matching entails the association of
GPS points to features on a digital cartography maps.

– Sampling and Aggregation: data is subsequently aggregated to pro-
vide a single evaluation (for a given spatial coordinate) of the rough-
ness index, given the data made available for that point by multiple
users. Aggregated data is used to populate the related database (called
SRS_AGGREGATE).

3.1. Mobile Crowdsensing Applications 21

• Visualisation: A front-end service providing visualisation capabilities of the
geospatial information produced by the SmartRoadSense processing pipeline.
The same front-end also allows interested end-users to download a continu-
ously updated version of the database containing all SmartRoadSense aggre-
gated data in a ready-to-be-reused fashion (the schema of the table is visible
in Table 3.1). Each row of the open-data dataset contains a set of informa-
tion relative to the roughness level, the geo-localisation, the quality of the
data, and even a indication of the estimated number of occupants of each
vehicle that has been involved in the gathering process.

COLUMN FORMAT DESCRIPTION
LATITUDE DECIMAL DEGREES The latitude coordinate of center

of the section of the road where
the PPE value has been estimated

LONGITUDE DECIMAL DEGREES The longitude coordinate of cen-
ter of the section of the road
where the PPE value has been es-
timated

PPE DECIMAL The average roughness level of the
road section

OSM_ID LONG INT The ID of the road in the Open-
StreetMap

HIGHWAY TEXT The road category according
to the OpenStreetMap classifica-
tion2

QUALITY DECIMAL A numerical estimate of the qual-
ity of this particular PPE value.
This quality index has been calcu-
lated using our bootstrap-based
method, in our case-of-study

PASSENGERS DECIMAL The average of the number of pas-
sengers in vehicles involved in the
process

UPDATED_AT DATE (ISO 8601) The last update of the data for
that particular road section

Table 3.1: SmartRoadSense Open Data Schema

In SmartRoadSense (and possibly in other MCS Systems), the sensing process
can be divided into time epochs, during which data is continuously gathered, pro-
cessed and aggregated. At the end of a given time epoch the system updates
current information on the status of measured variables and, in case, It performs a
composition operation with data collected in previous epochs (in SmartRoadSense

22 Chapter 3. Related Works

an epoch represents a week of monitoring activity).

The platform continuously receives values of road roughness from end users.
Roads are spatially segmented into landmark points, then all values associated to
positions falling within a given range (typically 20 meters) of a landmark point p
are aggregated and concur to the overall roughness index of p (the mean value of
contributed points is taken by default). At the end of each week current epoch ter-
minates, and the roughness value of each point p is updated by taking the average
between the value of current epoch and the value of previous epoch.

This processing inherently implements a form of infinite impulse response filter,
the aim of which is to progressively down-weigh (through an exponential decay of
weights) the contribution of older samples to the value assigned to p.

Chapter 4

The General Approach for Value
Identification

As mentioned in the previous chapter, a data set is considered “Big Data” if It
satisfies the properties of: volume, variety and velocity.

However, data alone is not enough. Evaluating Its veracity is needed in order
to understand if It can be useful to exploit. To explore this property a specific
roadmap has been followed and the concept of value has been defined.

4.1 The Concept of Value
What is value in Big Data? As seen in Chapter 2, the word of value is included

in the concept of veracity. But what really mean value for the data? In this case
there is no real definition.

If the meaning of value is referable to an economic concept and therefore to
an intrinsic property of an object, such as the currency, then the quantity would
determine the amount of value held and the greater the coins owned, the greater
is the value. Then we could converge on the same idea: a large amount of data
represents a great value. However, some could argue: for the same amount of coins
held, the one that owns more value is the one who possess those with the higher
intrinsic value. But a third party intervenes and claims that It is the market that
gives value to the currency and since some currencies have greater market value,
in the end the one who has more value is who possesses the higher amount of coins
with the greater intrinsic value and market value.

The problem is therefore to ask if the datum represents an intrinsic value: my
answer is no. If the datum represented an intrinsic value then we should not verify
information or quality of the data, as this property would be intrinsic to the infor-
mation itself. But in fact, this is not the case for data, which in no way represents
an immutable concept. The data is basically a raw material that needs to be pro-
cessed to generate value.

23

24 Chapter 4. The General Approach for Value Identification

Therefore, It is not enough to say that: the data acquire value if they are in
a big amount. The value is determined by indicators, even multiple, which we
could define as metrics, that if crossed together can generate the notion of value.
For example, the value in the case of geospatial data could be determined by the
fact that they must be in large quantities and be recent. However, this statement
is strongly dependent on the goal of data handlers. To conclude, by value of the
data we mean the goal generated by the data after a regulated evaluation respecting
specific indicators, called metrics.

4.2 The Proposed Approach
When looking to geospatial data It is interesting to know which records would

be used for exploitation (i.e. researches).

In big data sets as geospatial ones, It is a challenge to realise which records are
useful for this purpose. The data may present several complications:

• Size: disk space can be large to the order of gigabytes or terabytes;

• Volume: the amount and the complexity of records may be high and the
greater the complexity, the greater the computational cost required to process
a record;

• Velocity: the records could be updated frequently;

• Sparsity: the geospatial points could not be distributed equally on time
and space so, It is difficult to have enough information regarding the terri-
tory analysed, despite the high volume.

To this end it makes sense to implement an approach developed in different
phases, in order to define a process that suggests the correct analysis of geospatial
data sets. The process thought is based on 5 main phases:

1. Exploratory Analysis: a very first analysis to obtain more information
about the data set considered;

2. Outcome Definition: the definition of the metrics used to give the defini-
tion of value;

3. Pre Processing: reducing data set volume avoiding redundancies;

4. Processing: using the different metrics to generate results;

5. Visualisation: giving a visual representation of what has been obtained.

4.3. Exploratory Analysis 25

4.3 Exploratory Analysis
Exploratory analysis is the very first phase to face when having an unknown

data set. In this phase It is necessary to take into consideration the shape char-
acteristics of the data set such as its weight and the volume in terms of records,
trying to get a comprehensive idea of the data set itself and its critical issues.

4.3.1 Data set
A data set could be structured or unstructured but reducible as a set of rows

and column. Analysing a data set means mainly understanding its shape character-
istics, i.e. the size, the number of records contained and the amount of information
per record. This last point is particularly important since the number of columns
generated impacts on the computational complexity and memory occupation. For
this reason, this phase focus on carry out a quantitative analysis of the data set
that allows to anticipate the dimensions in RAM.

The RAM memory occupancy estimate in Python can be easily performed by
having a single data set record available, appropriately transformed according to
the criterion that will be used during the Pre-Processing phase. This is because
the information that you want to get from the single record is its memory occupa-
tion and therefore It is necessary that the record is formatted exactly as It will be.
The second information concerns instead the number of rows contained in the data
set, information obtainable through the Unix terminal, through Spark or the I/O
methods available in Python. At this stage It is clear that the data set should only
be read, any attempt to load a data set of the Big Data order into memory will
saturate the RAM available on the machine, making the application unresponsive.

The estimate can then be reduced to:

memory occupancy ∗ number of lines

To be more detailed about the methods that can be used to derive this information
is good to cite:

• UNIX: wc -l <dataset.extension>

• Spark: count() method

• Python: Read and Write operations on files

4.3.2 Insights
Once that the data set form is clear, It is necessary to understand the distri-

butions of data over space and time. Geo-spatial data sets contain millions of
records that are potentially distributed throughout the world. This last assump-
tion directly refers to what had been introduced in the previous chapters: in such

26 Chapter 4. The General Approach for Value Identification

a large context of data collection such as geo-spatial data, the risk of not having
enough data to be able to generate value is very high and strongly dependent on
the problem considered. As anticipated, It is not enough to know quantitatively
the distribution of data on the territory to understand Its value because quantity
alone is not synonymous of value. The data must be interpreted according to the
context in which they are considered.

The exploration is therefore very important at least to understand the obsta-
cles that stand in the ability to generate the value from data, quantifying them
qualitatively. For example, in Figure 4.1 a road for which the data collected over
time have been obtained (many similar ones have been found). It is clear that for
the SmartRoadSense data set there is a problem of fair distribution over time and
space, perhaps due to the youth of the application, which in any case hinders the
achievement of value.

Figure 4.1: Example of bad data collection

4.4 Outcome Definition
After obtaining the insights regarding the data set, It is time to define the goal

to achieve, that is the metrics that will be used to define the value.

The idea is that since geospatial data sets could show the previous deficiencies,
the focus should be on appropriate metrics that together can generate results that
can be crossed together in order to highlight which records can be more promising
for one’s needs.

The goal should be focused on using metrics that are meaningful for the work
considered. One could search for the amount of data in a territory, their degree of
topicality, the trend over time of the recordings and so on. Other metrics can be
freely added or the previous proposals can be removed if not useful.

4.5. Pre Processing 27

These tasks could then be converged into a single solution that can fully describe
the data considered, allowing a correct final big picture retailed on its own definition
of value.

4.5 Pre Processing
The Pre Processing part is essential for the final solution. Once the metrics are

settled, with all probability a large part of the available data will not be useful for
solving the problem because they simply represents redundancy.

For this phase, Spark tool is available but in order to perform data Pre-Processing,
lots of companies use other solutions like UNIX, perhaps coupled with incremental
loading. But many tools are available: Python, or the same SQL could help.

However, these approaches vary from problem to problem and are not always
applicable especially with geospatial data, for example:

• Using SQL assumes that a distributed database in which the data is stored
is available, such as PostGIS. Instead, often geo-spatial data is provided as
Open Data in text files.

• Using SQL assumes that any geospatial operations are procedures within the
database, limiting the freedom that a programming language like Python
offers.

• Using the UNIX console for non-trivial operations such as a spatial query is
not a valid alternative to Spark in addition to introducing perhaps greater
restrictions than those offered by SQL with a distributed geospatial database.

Spark’s success is therefore guaranteed because of the convenience It represents:
its instruments have a great usability and are much more extensive. Despite not
finding a real application in local, their use in limited available hardware allows a
better settings of the algorithms developed with it.

In fact, the Pre Processing phase if done locally allows to put in place all the
necessary tools in the absence of resources, allowing to not worry about the re-
sources available in the code writing and optimisation phase.

Moreover, the Pre Processing phase in the case of geospatial data involves not
only the removal of redundancies but also a multitude of other operations such as
spatial functions. Spatial functions, or called spatial queries, are useful methods for
selecting records on a territorial basis. Through Python It is possible to perform
them and with Spark It is possible to develop an algorithm that can exploit the
maximum parallelism to execute them. An example of a spatial query application
is shown in Figure 4.2 where all the municipalities have been selected across the
borders of the Marche Region.

28 Chapter 4. The General Approach for Value Identification

Figure 4.2: Municipalities Selected through Spatial Query in QGIS

If you imagine that this kind of operations should be performed for every single
record of the geospatial data set, the complexity of the problem tends to explode.
To this end, in this phase the optimisation is fundamental for a subsequent imple-
mentation on clusters with the precise objective of providing the results in a short
time, since It makes sense to obtain results in a short time in a real-time context.

For the implementation of clusters there are several providers available, for
example Amazon, Google and Microsoft. For the project Google DataProc was
used for convenience but any other solution is certainly valid.

4.6 Processing
At the end of the Pre-Processing phase a new data set is produced which is

almost free of redundancies and tailored in respect of the goal, therefore containing
the information necessary for the implementation of the metrics.

In this phase the defined metrics are implemented and subsequently crossed
together to form the final data set which should be a correct summary of the three.
Python in this case lends itself very well to the purpose, allowing data manipula-
tion, which this time is no longer of unmanageable volumes.

However, before generating the results It is necessary to carry out a further
operation that can guarantee the quality of the data set generated in the Pre Pro-
cessing phase. In particular, in the specific case of SmartRoadSense, but this may
happen for any data set, the anomalies may have been easily introduced for some
reason. Before generating the results of the predefined metrics It is therefore nec-
essary to verify that the data set produced is free of anomalies, or that the new
distributions generated contain data that are consistent with one another.

As an example, once the Pre Processing operation was performed on the SmartRoad-
Sense data set and the new data set was generated with the necessary information
for the metrics, It was noticed that many distributions presented data far outside

4.7. Visualisation 29

the average, such as in Figure 4.3. Their removal is therefore necessary before
proceeding.

Figure 4.3: Example of Anomalies in a Time Series

Finally, It is possible to proceed doing the operations that aggregate the data
to obtain the values for the necessary metric. Once crossed, the results are ready
to be shown.

4.7 Visualisation

Figure 4.4: Example of Visualisation with Plotly

The visualisation consists in giving a final picture of the results obtained in the
Processing phase. On the basis of the Processing phase, It makes sense to visualise
the generated results for immediate understanding.

The tools useful for visualisation are many: It is possible to use web apps, mo-
bile applications, libraries available in different languages. The criterion is free but
has the common objective of forming an overview of rapid comprehension.

In this work the plotly library available in Python was used for convenience,
which allows the overlapping of several layers and the insertion of legends and
captions as in Figure 4.4

Chapter 5

Implementation Experience

The implementation is based on the process defined in the previous chapter.
The meaning in terms of implementation is illustrated in the next sections, point
by point. To develop the final solution the Spark environment has been used locally,
the drawbacks related to this choice are discussed later on Chapter 6, as well as
the solutions to them (the use of a cluster). This evidences of this is not discussed
in this chapter since the algorithm written with Spark (locally) can be ported on
a cluster with little efforts.

To sum up, the approach for identifying the value in geospatial data sets is as
follows:

1. Exploratory Analysis

2. Outcome Definition

3. Pre Processing

4. Processing

5. Visualisation

5.1 Exploratory Analysis
In the very first part of the process a qualitative analysis of the data is car-

ried out which led to the formulation of several important considerations for the
development of the final solution.

5.1.1 Data set
The data set available comes from a PostGIS database of hundreds of millions

records. SmartRoadSense is built on two different databases:

• Raw Database: It contains the measurements coming from the mobile
application that runs on mobile devices. This data is stored for its future
aggregation.

31

32 Chapter 5. Implementation Experience

• Aggregate Database: It contains data generated starting from raw data.
It is weekly generated for each road throughout the year.

The data considered is part of the Italian peninsula, country (together with
the United Kingdom) from which the pilot of the project started, therefore at
least theoretically more populated of information. As a local area for showing the
process an even smaller area has been focused (the Marche region) for three main
reasons:

• The project started at the University of Urbino, whose municipality resides
in the Marche region

• The approach generated must be scalable regardless of the volume of data

5.1.2 Row Attributes
A typical row of the SmartRoadSense dataset contains the following information

(only the significant ones will be cited):

• single_data_id: Unique ID of the measurement;

• date: Time Instant of Sampling;

• osm_line_id: OpenStreetMap ID;

• ppe: Deterioration Value;

• speed: Vehicle Instantaneous Speed;

• position: The projection of “Position” on the relative road;

• track: The track that registered the information (available only for raw
data).

The following attributes: osm_line_id, position, track play an important role
in the analysis because they constitute three different concepts:

• Section: a section is identified through its osm_line_id, the id through
which OpenStreetMap identifies a section of a road in its global map. In
other words, for each road of any length, OpenStreetMap maps portions of
this street within its dataset by associating a given ID. Consequently, a real
road is often composed of several sections.

• Segment: a segment is identified by the position attribute. Within a section,
many segments of a length of twenty meters are identified, therefore the
number of segments contained in a section will be equal to the ratio between
the length of the section in meters and the length of the segment.

5.1. Exploratory Analysis 33

• Track: when a user collects data He produces a track. A track can involve
several roads, as well as several section. This information is only available for
raw data, when the data is collected. This means that when a user travels
on some road, an identifier is marking his trip.

5.1.3 Retrieving Informations
A Spark environment was used on the local machine for exploring the data

set. The SmartRoadSense data set of the Italian peninsula alone contains about
20 million records and a number of columns for each row equal to 16. Through the
code in Listing 5.1 it was possible to estimate the amount of memory needed to
load the entire data set in RAM. The result is just over 20 GB of RAM.

1 data = sc. textFile (’../ Datasets / Extraction 10/ raw_italy .
csv ’) \

2 .map(lambda line: line.encode(’ascii ’, ’ignore ’
))

3

4 clean = data. filter(lambda row: row != header.value) \
5 .map(lambda row: re.sub(r’\{[\s\S]*\} ’, ’{}’

, row)) \
6 .map(lambda row: row.split(",")) \
7 .map(lambda row: row [:4]+[convert_date (row

[4])]+ row [5:])
8

9 print sys. getsizeof (clean.take (1)) *20000000

Listing 5.1: Evaluating RAM Occupation

Subsequently, the exploration continued extracting data step-by-step, develop-
ing an algorithm to plot results avoiding to load the whole amount in memory. The
algorithm developed on Spark, although poorly performing due to local operation,
was pretty useful for plotting without the risk of having the RAM saturated. The
code is visible on Listing 5.2.

1 % matplotlib inline
2 import os
3 for road in unique_roads :
4 quantity = []
5 for elem in tqdm(interval):
6 count = rdd_plot . filter(lambda row: row [0] ==

road)\
7 .filter(lambda row: row [1] <=

elem and row [1] > elem -
datetime . timedelta (days =7))\

8 .count ()
9 quantity .append(count)

34 Chapter 5. Implementation Experience

10

11 fig = plt.figure(figsize =(32 ,12) , dpi =100)
12 plt.bar(np.arange(len(interval)), quantity)
13 plt.title(’Road ’+str(road))
14 plt.xticks (np.arange(len(interval)), interval ,

rotation =90)
15 plt.xlabel (’Time ’)
16 plt.ylabel (’Row Data Collected ’)
17 plt. savefig (’Road_ ’+road+’_Distribution .png ’, dpi

=100)
18 plt.close ()

Listing 5.2: Plotting exploration’s results

5.1.4 Insights
What came out analysing the the plots generated is that the data is still too

few and scattered even when decreasing the granularity. For example, in Figure 5.2
the granularity is totally reduced: It only shows the quantities of measurements
collected over time from the first moment the SmartRoadSense platform was acti-
vated (2016) for a certain road. By a quick look of the graph It is clear that the
available window of data is too small (18 weeks, more or less 3 months). This plot
has been generated by taking the twenty most travelled roads, i.e. those with the
greatest number of measurements.

Figure 5.1: Measurements distribution for road 97464677

So, if the latter case was incomplete, trying to increase the granularity looking
to each section of one road is useless. Suppose that for a future research we should
be able to guess the speed of deterioration or predict when a certain section will
deteriorate: with the available data this forecast is not possible even by using fill-
ing techniques that can make the time series complete. There is simply no data to
generate value regarding that road.

5.2. Outcome Definition 35

It is easy to imagine that in such a context with lack of continuity in the
measurements, no forecasting could be possible regarding a microscopic value like
the PPE collected along the road. The inaccuracy associated with any model
would be too high that the work associated with lots of case study could be found
not helpful. However, the amount of data available remains high, that means the
data could represent value. But the problem is clear: there is a need of correctly
visualise the distribution of the data on the different territories where they have
been collected in order to understand which of them could be valuable enough to
provide good data. There is the need of identifying the data that can generate the
value.

5.2 Outcome Definition
So, since the data distributions built from raw data shown obvious deficiencies

related to the distribution over time, this suggested to focus on solving the prob-
lem through a strategy aimed at generating results that can be crossed together in
order to highlight which region of data can be more promising in generating value.

Since the time series could be used for several reason, i.e. forecasting, the value in
this specific work is represented by the idea that the time series found for a specific
road is not sparse and so, Its collected data are equally distributed over time and
possibly increasing. This goal could be decomposed with three different metrics:

• Data Quantity: How many data belongs to a certain region that can be
calculated as the summation of the collected samples for each municipality;

• Data Recency: Which is the recency of the data over a certain region that
can be calculated as a weighted average between all the collected sample for
each municipality;

• Usage Trends: Which is the trend of data collection over a certain region
that can be evaluated by a model (linear in this work) generated considering
the quantity of data collected over time.

These three tasks will lead to identify the territories in which the data should
generate the value looked for.

5.3 Pre Processing
The computations are based on the amount of data collected over time over a

specific area, in this work the Marche region. For such a problem what is needed
to compute the solution is to:

• Know the quantity of measurements in a given territory: the Latitude and
Longitude

36 Chapter 5. Implementation Experience

• Know the time in which these measurements took place: the Date in which
the record has been collected

• Uniqueness of the record: the ID of the record

• Spatial region: the Polygon that defines the area

A raw data set record is composed of the previous fields, this is described in
section 5.1.2. Only one of these does not concern the raw data and is the border of
the individual municipalities. The perimeters were extracted from the multitude
of shapefiles available online.

5.3.1 Spatial Query
The first step is to group data by areas. To obtain this result It is necessary to

perform spatial queries for each record considered.

Through Longitude and Latitude It is easy to know if one collected record is
included inside an area or not, which bounds are defined by polygons. To perform
this task the shapely library is available in Python. The objects and methods used
in the next listings comes directly from this library, as Point and Polygon objects:

• Point(latitude, longitude)

• Polygon([(latitude, longitude)])

Through the Polygon.contains() function It is possible to check whether a point
is included in a specific polygon, as in Listing 5.3:

1 # Check if a point lies inside a polygon
2 point = Point (12.50 , 43.74)
3 polygon = Polygon (geom[’coordinates ’])
4 print(polygon . contains (point))

Listing 5.3: Polygon and Point Objects

The result of the contains() function is a Boolean:

• True, if the point is contained;

• False, if It falls outside the polygon.

In any case, performing spatial queries on large data sets is particularly com-
plex on a local machine. It is sufficient to think that by testing the algorithm on a
local Spark infrastructure (single node) related to the Marche Region took about 3
hours before It terminates. This was possible only thanks to the fact that the data
set is still not so big. But, since SmartRoadSense is continuously updating records

5.3. Pre Processing 37

in real-time, It is predictable that to obtain results in the future will become incre-
mentally complex that to retrieve results in an acceptable time will not be possible.

So, in order to develop a general solution scalable and ready to be used on
a cluster, the algorithm should be general enough to be moved from a local to a
cluster environment easily. And this is actually possible with Spark working locally.

In order to do this, the data set has been loaded into the Spark Context, It
has been cleaned up of all the redundancies and repartitioned along all the cores
of the local machine. Then, finally cached. This is shown in Listing 5.4. Caching
the RDD gives the advantage of avoiding that Spark can start from the beginning
of the transformations every time an action is called. It basically permits to save
a lot of time when processing the same RDD.

1 data. filter(lambda row: row != header)\
2 .map(lambda row: row [: row.find(’{’) -1]+ row[row.find(

"{")+1: row.find("}")]. replace (",",";")+row[row.
find(’}’)+2:])\

3 .map(lambda row: row.split(","))\
4 .map(lambda row: [row [0]]+[row [6]]+[str(convert_date

(row [4]))]+[coordinates (row [7])])\
5 . repartition (8)\
6 .cache ()

Listing 5.4: Transformed and Cached Dataset

In Listing 5.4, two functions are called: convert_date() and coordinates(). The
convert_date() function takes care of simply formatting the dates in the same way:
<year-month-day>.

1 def convert_date (date):
2 try:
3 result = datetime . datetime . strptime (date , ’%Y-%m-%d

%H:%M:%S’).date ()
4 except:
5 result = datetime . datetime . strptime (date , ’%Y-%m-%d

%H:%M:%S.%f’).date ()
6 return result

Listing 5.5: Date convertion function

The coordinates() function takes care of transforming the hex referred to the
position. Latitude and Longitude are encoded and saved as hex in the SmartRoad-
Sense database, so this step is needed.

1 def coordinates (hex_location):
2 point = wkb.loads(hex_location , hex=True)

38 Chapter 5. Implementation Experience

3 return str(point.x)+";"+str(point.y)

Listing 5.6: From Hex to Lat/Long

Once the RDD has been cached It is possible to perform the spatial queries.
Note, as mentioned earlier, the importance of this step since spatial queries, as
shown in Listing 5.7, are performed for each individual RDD record. In the ab-
sence of caching, this step would risk being considerably slower, of an order as
higher as larger is the working RDD.

1 intervals = []
2 for municipality in tqdm(marche):
3 boundaries = []
4 for elem in municipality [’geometry ’][’coordinates ’]:
5 boundaries .append(Polygon (elem [0]))
6 intervals = clean. filter(lambda row: isInside (row

[3], boundaries) == True)\
7 .map(lambda row: (row [2], 1))\
8 . reduceByKey (lambda x,y: x+y)\
9 . collect ()

Listing 5.7: Processing function

The spatial query is called by the Spark driver with the isInside() function
visible in Listing 5.8. The function takes the polygons (the areas) and verifies that
the record is included within the boundaries of the polygons themselves.

1 def isInside (location , polygon):
2 point = Point(float(location .split(";")[0]) , float(

location .split(";")[1]))
3 for elem in polygon :
4 if elem. contains (point):
5 return True
6 return False

Listing 5.8: Spatial Query

The complexity of the algorithm is determined not only by the size of the prob-
lem but also by the type of transformations and actions performed on the RDD.
Specifically, Spark takes much longer to do grouping and filtering rather than map
transformations. This is reflected in the time required for the development of re-
sults. Note that the algorithm contains all the three transformations.

Now, considering that these operations should be repeated as many times as
all the Italian municipalities, It comes out that this processing is computational
intensive. It is not suspicious that the whole processing took so much time before
termination.

5.4. Processing 39

For this reason, when the Pre Processing is concluded, a file with the results
is generated to avoid recomputing it. The file created contains the information
related to the quantities for each territory. To be specific, It is a json that contains
all the municipalities and the dates on which the data was collected, along with
their quantities, as in Figure 5.3.

Figure 5.2: JSON format after Pre Processing phase

5.4 Processing
The Processing phase focuses on using the data set produced during the Pre

Processing phase in order to capture the information necessary for the fulfilment
of certain metrics.

Consequently, the Processing phase involves two operations:

• Anomalies Detection operations that ensure that the data are ready to
be used. It can be seen as a last Pre Processing before the Processing for
metrics results generation;

• Development and Implementation of the different metrics to use for the
final value identification.

5.4.1 Anomalies Detection
There is no way of knowing if a given data set contains anomalies without

understanding the data set itself and It is not a good practice to leave this task
to automated algorithms. It would be like wanting to use a specific screwdriver
without knowing the kind of screw.

In the analysed case of SmartRoadSense the anomalies are caused by the cam-
paigns that have been activated over time. In order to encourage data collection
the SRS team established several days in which the application was advertised in
order to increase its usage. In other words, the quantity of data produced during
some days could be totally disproportionate with the real trend of usage of the
application and therefore the data collected in correspondence of those days must
be excluded from the final evaluation.

40 Chapter 5. Implementation Experience

The algorithm that deals with detecting and removing the anomalies used in
the project is a simple low pass filter, widely used and replaceable with possibly
more advanced techniques, but this is not the purpose of the thesis. The procedure
used for the removal of the anomalies is described in the next paragraphs. The
following examples will take a sample time series (shown in Figure 5.3) to show
but the same approach has been used for all the municipalities.

Figure 5.3: Sample time series

Figure 5.3 shows scattered and discontinuous data over time, showing some
outliers too. This behaviour is expected as said just before because data collection
campaigns have been activated consequently generating anomalous growth of data
collected during some days. This time series needs to be cleaned of anomalies to
better understand what is really happening to data.

However, the discontinuities in the data need to be managed. In order to build a
series without missing data there are different possibilities: Forward Fill, Backward
Fill and Linear Fill. But, none of these three is correct and their use should be
considered on the basis of the problem to be carried out. In this particular case,
the first two techniques would produce the results visible in Figure 5.4 and 5.5:

Figure 5.4: Forward Fill on sample time series

These results are not very helpful as they do not allow to have a complete time
series for the period under consideration: in the case of Forward Fill we will have
absence of data in the queue, while on the contrary for Backward Fill the absence
of data could occur in the head. To obtain a complete result, regardless of the

5.4. Processing 41

Figure 5.5: Backward Fill on sample time series

Figure 5.6: Corrected sample time series

technique, we should first model the series as in Figure 5.6.

So, Backward Fill or Forward Fill should be chosen based on two considerations:

• It is assumed that the data preceding a known datum is at the same value

• It is assumed that the data following a known datum is at the same value

In our case, generating an artificial datum equal to a known one could corre-
spond to consider that the same quantity was collected on a previous day (Back-
ward) or later day (Forward). This is something the is highly improbable but at
least It allows to avoid inserting anomalies.

The solution is found using a combination of two of the techniques: the For-
ward Fill for data from the head to the beginning of the tail of the Time Series
and the Backward Fill to fill the tail as shown in Figure 5.7.

However, the Forward Fill has some limitations in terms of representation: a
function as a moving average would produce poorly credible results. The fact that
It is a piecewise constant function due to the lack of data would end up creating
a very distant from reality function, much more focused on the traits than on the
real points of the function itself, as visible in Figure 5.8. The final goal should not
be forgotten: eliminate the outliers.

42 Chapter 5. Implementation Experience

Figure 5.7: New time series originated by the corrected one

Figure 5.8: Removing anomalies through Forward Filled Series

So, what if using a linear interpolation instead of forward filling then? Linear in-
terpolation consists substantially in generating artificial data that is not constants
at all, but rather the result of the straight line joining the two neighbouring points
as in Figure 5.9.

Figure 5.9: New time series filled with Linear Interpolation

Using the Linear Fill for the point between the head and the tail could give
better results when looking for anomalies. And in fact, the function already iden-
tifies the outliers more clearly as shown in Figure 5.10. Therefore, It is possible
to identify them through a low-pass filter, one of the most used techniques for the
identification of anomalies in the time series.

Figure 5.10: Removing anomalies through Linear Filled series

5.4. Processing 43

Identified the outliers with the previous technique, It is possible to remove them
from the initial time series, generating a new one free of anomalies (Figure 5.11).

Figure 5.11: Time series cleaned of the anomalies

5.4.2 Usage Trend Metric
The general idea is to define a trend (i.e. stable, increasing or decreasing) for

each area considered, in our case the municipalities. In order to do this, a definition
of the term usage in our context should be carried out.

Figure 5.12: Examples of different trend cases

In this specific context, the meaning of usage can refer to the number of points
collected over time. When the collected data is increasing, a positive trend should
be highlighted, as well as when the data is decreasing, a negative trend should be
highlighted. The same should happen when the data is not decreasing nor increas-
ing, in that case the trend will be stable.

So, what is expected is to reach a result of this kind based on the data, breaking
down the problem on territorial basis: municipality by municipality.

In Italy there are more or less 7998 municipalities1 and in the case examined in
1The shapefile of the Italian Peninsula is updated to 2016. Today there are fewer municipali-

ties, according to Wikipedia they are 7918 [https://en.wikipedia.org/wiki/Comune]

44 Chapter 5. Implementation Experience

this work, the region of Marche has 236 of them, about the 2.95% of the national
territory.

Figure 5.13: All the municipalities of Marche Region in Italy

Finding the Trend

Filling the time series by linear interpolating the point is not valid for the pur-
pose of identifying the trend. In this case, linear interpolation is a function that
risks to negatively influence the trend since It is not correct to think that the points
absent in the series grow linearly over time.

Actually, none of the three proposals is correct: neither that they are constant
(Backwards or Forward Fill), nor that they grow linearly. However, to define the
trend between these three functions it is preferable to use a constant function that,
in a certain sense, does not give a negative or positive contribution compared to
neighbouring points and assumes that in those days the collected date were almost
the same as in the other days.

Applying the Forward Fill and using a linear model the trend is defined as in
the Figure 5.14. The value of the slope that is the indicator highlighting the trend
is represented by the coefficient of the line, in this case positive and equal to +0.18

• Positive: the trend is growing

• 0: the trend is stable

5.4. Processing 45

• Negative: the trend decreases

Figure 5.14: Trend of Acqualagna Municipality

The code that performs the previous operation is shown below. The operation
consists in finding the linear model based on the points, with the help of numpy
library.

1 # Generating Trend Values
2 def trendline (data , order =1):
3 coeffs = np. polyfit (data.index.values , list(data),

order)
4 return [float(elem) for elem in coeffs]
5

6 trend_d = {}
7 for key , value in tqdm(sorted(municipalities_d . iteritems

())):
8 df = pd. DataFrame (list(sorted(value. iteritems ())),

columns =[’year ’,’quantity ’])
9 df_ffill = df.ffill ()

10 coeffs = trendline (df_ffill [’quantity ’],1)
11 slope = coeffs [-2]
12 trend_d [key] = slope

Listing 5.9: Trend Value Function

5.4.3 Data Recency Metric
The idea behind the recency of the data is that within each single considered

area an indicative value of the distribution over time of the quantity of collected
points can be returned.

The process should therefore return a normalised value between 0 and 1 that
can visually communicate the status of the data when the analysis is performed

46 Chapter 5. Implementation Experience

on a consistent scale.

The generated Pre-Processing data set cleaned of anomalies contains all the
information necessary for the recency evaluation. The information used for the
final solution are two:

• Creation date;

• ID.

Basically, if a road is totally recent then all its points are updated to date. As
the points are old, their weight decreases in the recency calculation. For example,
if a road possess 10 points collected globally and all of these have been collected
today, then their weight will be equal to 1 and the final average will give a 100%
recency. This is expressed by the following equation:

Recency =
Σiweight of datei ∗municipality collected samples on datei

total municipality collected samples

The result will be equal to 1, which means the data is 100% recent. The weight
for the collected data in a specific date is chosen based on a decaying window
(Figure 5.16) in which: if the data have been collected near the present then the
weight will be near 1, or on the contrary near 0. In this work, the window is
considering three years before weighting a record with 0 but the choice of the
amplitude of it can be modified.

Figure 5.15: Recency Decaying Window

The code that generates the recency value is shown below. The operation con-
sists in generating a new value between 0 and 1 based on the moment in time in
which data have been collected.

So, first of all the width of the interval is retrieved, starting from January 1st
2016 up to today.

1 # Generating Interval
2 minimum = datetime .date (2016 , 1, 1) today = datetime .

date.today ()
3 width = today - minimum
4 width.days

Listing 5.10: Date interval for Recency

5.4. Processing 47

And then the value calculated:

1 # Generating Recency Values
2 recency_d = {}
3 for key , value in tqdm(sorted(municipalities_d . iteritems

())):
4 collected = 0
5 for k, v in value. iteritems ():
6 date = datetime . datetime . strptime (k, ’%Y-%m-%d’).

date ()
7 weight = (date - datetime .date (2016 , 1, 1)).days /

float(width.days)
8 recency += weight * v
9 collected += v

10 result = recency / collected
11 recency_d [key] = result

Listing 5.11: Data Recency Value Function

Where v is the amount of points collected in a certain date k, for a specific
municipality key.

5.4.4 Data Quantity Metric

Finding the quantity of the data is an easy task since It only relies on the
amount of data over a territory. This means that It does not matter how the data
is distributed over time but simply how much of It is in the considered area.

The generated dataset contains all the information necessary for the formula-
tion of this visualisation. Getting a solution in this case is much simpler and after
removing the anomalies, It is possible to find the results. The information needed
is simply the number of records in a certain area that can retrieved as shown in
listing 5.12.

1 quantity_d = {}
2 for key , value in tqdm(sorted(municipalities_d . iteritems

())):
3 collected = 0
4 for k, v in value. iteritems ():
5 collected += v
6 quantity_d [key] = collected

Listing 5.12: Data Quantity Function

As in the previous case, v is the amount of data collected in a certain date k,
for a specific municipality key.

48 Chapter 5. Implementation Experience

5.5 Visualisation
Once the files containing the results of the metrics to be displayed have been

generated, they can be used in any way, for example with the plotly library made
available on python. An explanation of the generated files with the referred values
to the single municipalities is shown in Table 5.1.

Metric Values Meaning
Usage Trend (-1, 0, 1) -1 Negative Trend, 0 Stable Trend, 1 Positive Trend

Data Quantity [0, inf[Quantity of Data Collected
Data Recency [0, 1] Recency of data collected. 0% Recent to 100% Recent

Table 5.1: Metrics Explained

The results of the three metrics are visible in Figures 5.16, 5.17 and 5.18 and as
you can see, all three give different outcomes, which makes It difficult to choose
the portion of data to be investigated for future studies.

The colours used differ in what they must represent. A grayscale was used to
represent the quantity and recency metrics. If white is intense, then the municipal-
ity will have more data and the data collected will be more recent. Conversely, if
the color is black, the amount of data and recency will be lower. As far as the usage
trend is concerned, a Red-Yellow-Green chromatic scale has been chosen to repre-
sent the three different conditions in which a trend can appear: negative (Red),
positive (Green) or stable (Yellow). The grey color emerges in those municipalities
where the data did not allow the formulation of the trend, perhaps due to a lack
of information.

Figure 5.16: Usage Trends Metric Figure 5.17: Data Recency Metric

5.5. Visualisation 49

Figure 5.18: Data Quantity Metric

5.5.1 Crossed Visualisation

Figure 5.19: Crossed Metrics Result

So, the three metrics alone cannot explain the data correctly, given that the
results may be in contrast to each other or not very useful if considered atomically.

Hence the desire to combine the three results in a unique solution that can
better describe the situation of the data in the area, allowing the identification of
the best records that accomplish the goal: value.

Quantity and recency are information that can be easily combined with an aver-

50 Chapter 5. Implementation Experience

age, perhaps weighting them according to a certain criterion. As for the trend, the
combination is not so trivial. Trend information is all about saying if the collection
over time is increasing or decreasing, therefore it would be a mistake to make a
simple average. However, It is possible to pair it with the result, for example by
showing It as information added to the display produced by quantity and recent-
ness.

For this reason, the final solution consists of the combination of quantity and
recency, leaving the task of inferring the trend through a pop-up window, as shown
in Figure 5.19. The areas that show a color closer to green are those where the data
is more numerous and recent while the increasingly red ones are those in which the
data are few and obsolete. Exceptions are the grey areas that instead show a lack
of information.

Chapter 6

Experiments And Discussion

Several problems have been detected during the implementation and they are
now discussed. The implementation has brought out the limitations that Big Data
causes on systems with limited resources. This was already budgeted and It is
topic of experiments and discussions in order to achieve the goal.

In fact, from the proposed approach the two critical points emerge which are
largely the subject of all Machine Learning problems. Tackling Pre-Processing and
Processing. Pre-processing is always the most operational one, which requires the
ability of the Data Scientist to use different tools to prepare the data necessary
for the processing to be performed. Processing is increasingly oriented to the pro-
duction of results, therefore oriented to the exploitation of previously refined data
during Pre Processing.

On the basis of this, two very interesting discussions emerge on the basis of the
work: one oriented on solving the problem represented by data volume, the other
one relative to the value identification by applying the proposed approach.

6.1 Local vs Cluster Solution
The implementation on Chapter 5 was developed locally and restricted to the

Marche region for demonstration purposes only. The processing took 3 hours locally
for its complete termination with the following machine:

• MacBook Pro i7 Haswell QuadCore 2.5 Ghz

• 16 GB RAM

• 512 SSD

Spark is not meant to be used locally, at least during production. This means
that its use in a local machine is just a great way to test algorithms before they
are brought to a distributed system.

51

52 Chapter 6. Experiments And Discussion

When used locally, Spark automatically divides the resources for the correct
execution of normal operations among the available workers, which are generally
the machine’s CPU cores. It is clear that such a system is affected by traffic on
the machine relative to I/O operations, network traffic and the availability of the
machine’s computational power. Therefore in continuous competition for system
resources and not usable for serious processing.

However its usefulness is effective: through Spark in a local machine It is possi-
ble to access data indiscriminately from their size. As illustrated in chapter 5, the
availability of RDDs (Resilient Distributed Database) allows you to load a very
large data set even on a local machine and easily explore it. This is due to the
nature of the RDD itself which does not load the entire data set into memory but
rather simple pointers to the data.

Being able to display large data in a text file containing unstructured data much
larger than the available RAM is not new, Spark has not helped change the world
in this sense. UNIX functions like “grep” already did their work in the past (and
present too). In any case Spark makes everything much more concrete and close to
the user, enabling languages such as Python and entering evaluation opportunities
directly into a single environment.

Therefore, the local solutions were very useful first of all for the experimentation
and optimisation. This way of using Spark led to the following results in terms of
execution times relative to the size of the problem:

Problem Processing Time
Municipality ~2 minutes

Region ~8 hours
Nation ~9 days

Table 6.1: Local Execution Results

The use of the system locally has its obvious limitations. The records in the
data set available are around 18 million with 16 columns, a number that is not too
high. Performing the Pre Processing phase in these terms is unthinkable, especially
considering that in general these could be even larger.

6.1.1 Local Optimisation
Analysing the algorithm that deals with the Pre Processing from a higher level

of abstraction It could be summarised as in Figure 6.1. Once the data set is loaded
into the RDD, It is shredded. The caching operation is very laborious, but once
executed It allows to process the data with very high speed, precisely because they
are more easily accessible by the driver who does not have to repeat the transfor-

6.1. Local vs Cluster Solution 53

mations whenever he needs data contained in the RDD.

Figure 6.1: Pre Processing Algorithm Core

However, data processing is as onerous as the data set in which to search is
larger, even if when cached. The number of operations performed for pre-processing
can be easily estimated as:

number of records× number of municipalities

In other words, billions and billions of operations considering that the available
records are more than 20 million and only Italian municipalities are about 7998.
In practice, every time the Pre-Processing activity is started, or whenever a spatial
query is made, identifying whether the record considered is contained within the
boundaries of a municipality or not is like looking for a needle in a haystack, from
here to optimisation: reduce haystack.

Reducing the haystack means reducing the size of the cached data set in such a
way that the geo-spatial identification operation is easier. This is possible through
the decomposition of the original RDD into smaller RDDs processed from time to
time, as shown in figure 6.2.

Figure 6.2: Optimised Pre Processing Algorithm Core

This type of processing has several critical points:

1. Reducing the data set implies the need for multiple caching, a rather slow
operation;

2. The operations on the various RDDs are executed sequentially, so every time
a new RDD is to be processed, It is necessary to wait until the previous one
has finished processing.

54 Chapter 6. Experiments And Discussion

However, reducing the problem to the regions, generating 20 RDDs (Italy has
20 regions) the results were remarkable, as shown in table 7.2.

Problem Processing Time
Municipality ~40 seconds

Region ~3 hours
Nation ~3 days

Table 6.2: Optimised Local Execution Results

However, 3 days for Pre Processing are still extremely high but It is possible
to bring the solution into a cluster.

6.1.2 Cluster Implementation
The cluster implementation does not differ from the one presented in the pre-

vious chapter. In the previous chapter the optimisation was not given and the
Google API are not there for obvious reasons.

The machine chosen for the final solution is a cluster on Google DataProc with
the following configuration:

Nodes 3
Workers 2

CPU 48 Core
RAM 96 GB
DISK 150GB

Table 6.3: DataProc Cluster Configuration

The considered machine is clearly superior to the machine used locally. The
advantages deriving from the execution on clusters of the Pre Processing algorithm
are obvious: Spark has a much greater amount of resources than local execution.
It can run faster.

The choice of only 3 nodes, where one of these acts as a Master, is dictated by
the fact that Spark is much more powerful when the cluster scales vertically. As
a result, few nodes but as a high computing power provide the perfect solution to
solve the problem.

In fact, increasing the number of nodes, would only increase the bottleneck on
the network of data necessary for processing. In all likelihood a configuration with

6.1. Local vs Cluster Solution 55

a greater number of nodes would have given better results, but also greater costs,
for this reason it was preferred to test immediately the vertical scale.

The algorithm (whose complete code is visible in the appendix) changes as fol-
lows:

The files are read directly from Google Cloud Storage, which is a persistent
storage offered by Google since the Cluster is removed when the cluster is deleted.

1 from google.cloud import storage client = storage .Client
()

2

3 bucket = client .bucket(’dataproc -2 earbb1b -9101 -4127 -281s
-a3ff37ebb8a2 -us -east1 ’)

4 blobs = list(bucket. list_blobs (prefix=’GeoJSON /’))
5 target_blob = blobs [1] # read as string
6 read_output = target_blob . download_as_string ()

Listing 6.1: Read GeoJSON From Bucket

The data is loaded for processing as seen in the previous chapter (they are
not shown again for obvious reasons) and the algorithm that executes what was
described in section 6.1.1 is started.

1 first = True
2

3 for region in regions :
4 header = data.first ()
5 clean = data. filter(lambda row: row != header)\
6 .row: row.split(","))\
7 .map(lambda row: [row [0]]+[row [6]]+[str(

convert_date (row [4]))]+[coordi .
filter(lambda row: row [3] != "ERROR")
\

8 .filter(lambda row: isInside (row [3],
region_borders [region]) == True)\

9 . repartition (32)\
10 .cache ()
11

12 plots_data = []
13 for mun , polygon in tqdm(reg_poly [region]):
14 quantities = clean. filter(lambda row: isInside (row

[3], polygon) == True)\
15 .map(lambda row: (row [2], 1))\
16 . reduceByKey (lambda x,y: x+y)
17 . collect ()
18 plots_data .append ((mun , quantities))

56 Chapter 6. Experiments And Discussion

19

20 if first:
21 d = {}
22

23 for x,y in plots_data :
24 dates = {}
25 for elem in y:
26 dates[elem [0]] = elem [1]
27 d[x] = dates
28

29 with open(’data.json ’, ’w’) as outfile :
30 json.dump(d, outfile)
31

32 first = False
33 else:
34 with open(’data.json ’, ’r’) as p: x = json.load(p)
35

36 = {}
37 for a,b in plots_data :
38 dates = {}
39 for elem in b:
40 dates[elem [0]] = elem [1] y[a] = dates
41 d = merge_two_dicts (x, y)
42

43 with open(’data.json ’, ’w’) as outfile :
44 json.dump(d, outfile)

Listing 6.2: Start Processing

With the previous step all the municipalities are processed region by region.
This reduce a lot the time required for the processing. Finally, the results are
moved from the cluster to the Google Cloud Storage again.

1 from google.cloud import storage
2

3 def upload_blob (bucket_name , source_file_name ,
destination_blob_name):

4 """ Uploads a file to the bucket."""
5 storage_client = storage .Client ()
6 bucket = storage_client . get_bucket (bucket_name)
7 blob = bucket.blob(destination_blob_name)
8 blob. upload_from_filename (source_file_name)
9 upload_blob (’dataproc -2 earbb1b -9101 -4127 -281s-

a3ff37ebb8a2 -us -east1 , ’data.json ’, ’data_Italy .
json ’)

Listing 6.3: Upload Results to Google Cloud Storage

6.2. Metrics 57

Moving the processing on cluster has reduced the time by at least 70%, pro-
cessing one region in about 20 minutes at the cost of 3.50 euros per hour. In the
table 6.4 these new performances are shown.

Problem Processing Time Cost
Municipality ~5 seconds ~> 1 cent

Region ~20 minutes ~1 euros
Nation ~7 hours ~20 euros

Table 6.4: Cluster Execution Results and Costs

6.2 Metrics
The results obtained following the implementation of the metrics and cross-

referencing the data suggest the areas highlighted in the Figure 5.20 (Chapter 5).
In the following section the results are discussed.

Figure 6.3: Ancona and Osimo Municipalities Study Case

The three metrics used were: usage trend, data quantity and data re-
cency. For the first one, the results are shown in Figure 6.3. They have been
already explained in the previous chapter but It is time to go deeper, taking two
municipalities as examples: Ancona and Osimo, two diametrically opposed case
studies since the first shows a positive trend while the second one a negative one.

58 Chapter 6. Experiments And Discussion

Before starting, It should be noted the total absence of the yellow color that
should represent the stability of the trend. The reason why this happens is related
to the definition of stability as a horizontal line. It is obvious that in the real world
this case is pretty difficult to obtain. Maybe would have been useful to define a
confidence interval within which the slope of the trend would have been considered
horizontal. However this is part of the design of the metric and will not be dis-
cussed.

So, in Figure 6.4 the data distributions over time (deprived of anomalies) are
shown. The two municipalities show consistent trends with the predefined color
scheme (green and then positive for Ancona; red and then negative for Osimo).

Figure 6.4: Ancona (on top) and Osimo (bottom) Municipalities Trends

Regarding recency and quantity, they can be considered together. For both
the metrics the same color scale has been chosen. In this case the correctness of
the metrics should be investigated as well as the consequences of merging them
together. When a municipality is recent with a big amount of data, It is expected
that the graphs should show more collected data on Its right half, or viceversa. For
this reason the municipalities of Fano and Macerata have been chosen, shown in
Figure 6.5.

The previous assumption is verified in Figure 6.6. In the results, It is possible
to verify that the number of samples collected and the fact that the data is recent
is effective. They both show the same quantity of data collected but Fano munici-
pality is more recent in respect to Macerata and this is reflected in how the data
are distributed over time.

6.2. Metrics 59

Figure 6.5: Fano/Macerata municipalities with their recency and quantity

Figure 6.6: Fano (on top) and Macerata (bottom) Municipalities Recency and Quantity

As a final comment, in Figure 6.5 It is evident to refer above all to the case of
Urbino, in which the quantity of data is excessively high compared to the neigh-
bouring municipalities. Although this was predictable, It is interesting to underline
the potential of the ability of designing metrics with this approach. Choosing a

60 Chapter 6. Experiments And Discussion

metric means having the freedom to design it as best suits it: in this case the
municipality of Urbino has a much greater impact in terms of data than the rest
of the territory, risking to hide in a certain sense the potential of neighbouring mu-
nicipalities and so, the programmer could be free of weighting (or down weighting)
the collected quantity in respect to others in some way bu just re-design the metric.

In any case, the final visualisation permits to generate an overall visualisation
able to suggest more concretely which are the best areas. And in fact, by normal-
ising the quantity values and mediating them with the recency, the final result is
visible in Figure 6.7. The legend from Red to Green shows the best (green) and
the worst (red) municipalities in which to look for valuable data.

Figure 6.7: The municipalities of Urbino, Ancona and Ascoli Piceno

The best municipalities seems to be those of Urbino, Ancona and Ascoli Piceno
in the Marche region. The roads belonging to these three municipalities are ap-
proximately 11900 and must be investigated. Following the exploration of the data
in these areas different roads emerge with a quantity of data in the time necessary
to carry out subsequent studies. Some of these are shown in Figure 6.8.

These results suggest that the approach used worked as expected and allowed
to restrict the focus to the most important data, the ones able to generate value
based on the metrics chosen. The approach guaranteed the expected results.

6.2. Metrics 61

Figure 6.8: Results found applying the approach

Chapter 7

Conclusions

During the dissertation several challenges and many different variables have
been faced, most of them critical to the final development. The data produced by
SmartRoadSense has proven to be really interesting but a bit hard to handle. The
amount of data available is pretty big considering the ages of the project but still
It seems not enough to be used for more complex challenges.

This has been reflected on the work carried out with this thesis. In the very
beginning of this work, It was thought to use the PPE information of road rough-
ness for forecasting. But as an evidence of this work, that idea has been proven to
be immature and distant from being able to take place since the difficulty to find
valuable data for that scope is actually challenging. Perhaps, even if some studies
on specific use cases may also be possible, the lack of a constant amount of data
available over time is actually a huge problem, so important that the SRS team is
currently planning to introduce a game into the application itself as an attempt to
entertain children in cars and to push them into use. However, this problems have
been repeatedly underlined along this work as the need for correct strategies for
the value identification.

This suggested to take a look deeply on how to identify regions of data where
the information carried is meaningful. The proposed approach and techniques used
could be applied to any geospatial data set in which we would like to avoid the
use of SQL, for example when the data is unstructured or placing a geospatial
database is not a choice. Furthermore, the use of massively processing tools gives
the freedom to the programmer to write simple scripts that can work stand alone
that nowadays represents a big advantage in data analytics due to the availability
of clusters on demand.

The main difficulties faced have been related to the problem of volume handling.
During the Pre-Processing phase a big amount of data was taken into consideration.
Like usually happens in the field of Data Science, most of the time is spent during
this phase. The limits deriving from the analysis of a large data set has required
further efforts to guess which solution to adopt if the data set continues its vertical
growth. The case of SmartRoadSense is in fact an excellent case representative of
what happens when collecting data from the “crowd” in this sense. The amount of

63

64 Conclusions

data is so large and tends to grow so quickly that the solutions adopted today may
no longer be sufficient tomorrow and must be scaled accordingly. In this sense, the
solution found that allows to scale the problem with a cluster-based solution has
definitively been a winning choice. Furthermore, this suggested that the system
could be updatable rather than working in batch, avoiding recomputing largely the
same data every time.

As for the solution regarding the ability to identify records able to generate
value, instead, excellent results have been obtained. Through the selection of
multiple metrics and their combination, It was actually possible to identify the
portion of the data set with the best data for generating the value needed, most
continuous over time and in large quantity. However some techniques used should
be replaced with more precise and advanced techniques, such as those used for
the identification of anomalies, which currently consist of simple low pass filters
and could be replaced with more effective and precise machine learning techniques.

For this reason this work will not end here. At this time, further activities are
planned such as:

• Introduction of techniques in the field of machine learning for the removal of
anomalies in the time series

• Automation of the analytics process to work in real-time

These acts should allow for a more streamlined and complete application that
can automatically suggest the best data in which to operates with the final goal of
picking the best one that can generate the value needed.

Appendix A

Appendix

A.1 Jupyter Notebook on Google DataProc

1 import datetime
2 from tqdm import tqdm_notebook as tqdm
3 from pyspark import SparkContext , SparkConf
4 from shapely . geometry import Point
5 from shapely . geometry . polygon import Polygon
6 import math
7 from dateutil . parser import parse
8 import matplotlib as mpl
9 import matplotlib .pyplot as plt

10 import seaborn as sns
11 import numpy as np
12 import pandas as pd
13 from scipy. interpolate import interp1d
14 import json
15 from shapely import wkb

Listing A.1: Import Libraries

1 sc
2 sc. defaultParallelism

Listing A.2: View SparkContext

1 from google.cloud import storage client = storage .Client
()

2

3 bucket = client .bucket(’dataproc -2 earbb1b -9101 -4127 -281s
-a3ff37ebb8a2 -us -east1 ’)

4 blobs = list(bucket. list_blobs (prefix=’GeoJSON /’))
5 target_blob = blobs [1] # read as string
6 read_output = target_blob . download_as_string ()
7

65

66 Appendix A. Appendix

8 geojson = json.loads(read_output)
9 regions = []

10 for elem in geojson [’features ’]:
11 if elem[’properties ’][’COD_REG ’] not in regions :
12 regions . append(elem[’properties ’][’COD_REG ’])

Listing A.3: Read GeoJSON From Bucket

1 data = sc. textFile (’gs :// dataproc -2 eecbb1b -9211 -44d7 -86
d5 -a3ff37ebb8a2 -us -east1/data /... ’

2 .map(lambda line: line.encode(’ascii ’, ’ignore ’
))

3 header = data.first ()
4 for i, elem in enumerate (header.split(",")):
5 print "Index:", i, "Column:", elem data.take (2)

Listing A.4: Load Data

1 def coordinates (hex_location):
2 try:
3 point = wkb.loads(hex_location , hex=True)
4 return str(point.x)+";"+str(point.y)
5 except:
6 return "ERROR"
7

8 def convert_date (date):
9 try:

10 result = datetime . datetime . strptime (date , ’%Y-%m-%d
%H:%M:%S’).date ()

11 except:
12 result = datetime . datetime . strptime (date , ’%Y-%m-%d

%H:%M:%S.%f’).date ()
13 return result
14

15 def isInside (location , polygon):
16 point = Point(float(location .split(";")[0]) ,float(

location .split(";")[1]))
17 for elem in polygon :
18 if elem. contains (point): return True
19 return False

Listing A.5: Define functions for Processing

1 target_blob = blobs [2]
2 read_output = target_blob . download_as_string ()
3 geojson_regions = json.loads(read_output)
4

5 region_borders = {}

A.1. Jupyter Notebook on Google DataProc 67

6 for elem in geojson_regions [’features ’]:
7 boundaries = []
8 for poly in elem[’geometry ’][’coordinates ’]:
9 boundaries .append(Polygon (poly [0]))

10 region_borders [elem[’properties ’][’COD_REG ’]] =
boundaries

11

12 reg_poly = {}
13 for region in regions :
14 municipalities = []
15 for elem in geojson [’features ’]:
16 if elem[’properties ’][’COD_REG ’] == region:
17 municipalities .append(elem)
18

19 polygons = []
20 for municipality in municipalities :
21 boundaries = []
22 for poly in municipality [’geometry ’][’coordinates ’]:
23 boundaries .append(Polygon (poly [0]))
24 polygons . append ((municipality [’properties ’][’

COMUNE ’], boundaries))
25

26 reg_poly [region] = polygons
27

28 def merge_two_dicts (x, y):
29 z = x.copy () # start with x’s keys and values
30 z.update (y) # modifies z with y’s keys and values &

returns None return z

Listing A.6: Take Regions Borders

1 first = True
2

3 for region in regions :
4 header = data.first ()
5 clean = data. filter(lambda row: row != header)\
6 .row: row.split(","))\
7 .map(lambda row: [row [0]]+[row [6]]+[str(

convert_date (row [4]))]+[coordi .
filter(lambda row: row [3] != "ERROR")
\

8 .filter(lambda row: isInside (row [3],
region_borders [region]) == True)\

9 . repartition (32)\
10 .cache ()
11

12 plots_data = []

68 Appendix A. Appendix

13 for mun , polygon in tqdm(reg_poly [region]):
14 quantities = clean. filter(lambda row: isInside (row

[3], polygon) == True)\
15 .map(lambda row: (row [2], 1))\
16 . reduceByKey (lambda x,y: x+y)
17 . collect ()
18 plots_data .append ((mun , quantities))
19

20 if first:
21 d = {}
22

23 for x,y in plots_data :
24 dates = {}
25 for elem in y:
26 dates[elem [0]] = elem [1]
27 d[x] = dates
28

29 with open(’data.json ’, ’w’) as outfile :
30 json.dump(d, outfile)
31

32 first = False
33 else:
34 with open(’data.json ’, ’r’) as p: x = json.load(p)
35

36 = {}
37 for a,b in plots_data :
38 dates = {}
39 for elem in b:
40 dates[elem [0]] = elem [1] y[a] = dates
41 d = merge_two_dicts (x, y)
42

43 with open(’data.json ’, ’w’) as outfile :
44 json.dump(d, outfile)

Listing A.7: Start Processing

With the previous step all the municipalities are processed region by region.
This reduce a lot the time required for the processing.

1 from google.cloud import storage
2

3 def upload_blob (bucket_name , source_file_name ,
destination_blob_name):

4 """ Uploads a file to the bucket."""
5 storage_client = storage .Client ()
6 bucket = storage_client . get_bucket (bucket_name)
7 blob = bucket.blob(destination_blob_name)

A.2. Anomalies Detection 69

8 blob. upload_from_filename (source_file_name)
9 upload_blob (’dataproc -2 earbb1b -9101 -4127 -281s-

a3ff37ebb8a2 -us -east1 , ’data.json ’, ’data_Italy .
json ’)

Listing A.8: Upload Results to Google Cloud Storage

A.2 Anomalies Detection

1 def moving_average (data , window_size):
2 """ Computes moving average using discrete linear

convolution of two one dimensional
3 Args:
4 data (pandas.Series): independent variable
5 window_size (int): rolling window size
6 Returns :
7 ndarray of linear convolution
8 """
9 window = np.ones(int(window_size))/float(window_size)

10 return np. convolve (data , window , ’same ’)
11

12 def explain_anomalies (y, window_size , sigma =1.0):
13 """ Helps in exploring the anamolies using stationary

standard deviation
14 Args:
15 y (pandas.Series): independent variable
16 window_size (int): rolling window size
17 sigma (int): value for standard deviation Returns :
18 a dict (dict of ’standard_deviation ’: int , ’

anomalies_dict ’: (index: value))
19 """
20 avg = moving_average (y, window_size).tolist ()
21 residual = [y_i - avg_i for y_i , avg_i in zip(y, avg)]
22

23 # Calculate the variation in the distribution of the
residual

24 std = np.std(residual)
25 return {’standard_deviation ’: round(std , 3), ’

anomalies_dict ’: collections . OrderedDict ([(index ,
y_i) for index , y_i , avg_i in izip(count (), y, avg)

if (y_i > avg_i + (sigma*std)) | (y_i < avg_i - (
sigma*std))])}

Listing A.9: Function Definitions for Anomalies Detection

70 Appendix A. Appendix

A.3 Data Quantity

1 quantity_d = {}
2 for key , value in tqdm(sorted(municipalities_d . iteritems

())):
3 collected = 0
4 for k, v in value. iteritems ():
5 collected += v quantity_d [key] = collected

Listing A.10: Defining Quantities

A.4 Data Recency

1 # Generating Interval
2 minimum = datetime .date (2016 , 1, 1)
3 today = datetime .date.today ()
4 width = today - minimum
5 width.days
6

7 # Generating Recency Values
8 recency_d = {}
9 for key , value in tqdm(sorted(trend_d . iteritems ())):

10 collected = 0
11 for k, v in value. iteritems ():
12 result = recency / collected recency_d [key] = result

Listing A.11: Defining Recency

A.5 Usage Trends

1 # Generating Trend Values
2 def trendline (data , order =1):
3 coeffs = np. polyfit (data.index.values , list(data),

order)
4 return [float(elem) for elem in coeffs]
5

6 trend_d = {}
7 for key , value in tqdm(sorted(trend_d . iteritems ())):
8 df = pd. DataFrame (list(sorted(value. iteritems ())),

columns =[’year ’,’quantity ’])
9 df_ffill = df.ffill ()

10 coeffs = trendline (df_ffill [’quantity ’],1)
11 slope = coeffs [-2]
12 trend_d [key] = slope

A.5. Usage Trends 71

Listing A.12: Defining Trend

Acronyms

C4Rs CrowdForRoads
The Crowd4Roads project combines trip sharing and crowd sensing initiatives to
harness collective intelligence to contribute to the solution of the sustainability
issues of road passenger transport, by increasing the car occupancy rate and by
engaging drivers and passengers in road monitoring.
www.c4rs.eu

IoT Internet Of Things
The Internet of things (IoT) is the extension of Internet connectivity into physical
devices and everyday objects. Embedded with electronics, Internet connectivity,
and other forms of hardware (such as sensors), these devices can communicate
and interact with others over the Internet, and they can be remotely monitored
and controlled.
www.en.wikipedia.org

MCS Mobile Crowd Sensing
Mobile Crowdsensing, is a technique where a large group of individuals having
mobile devices capable of sensing and computing (such as smartphones, tablet
computers, wearables) collectively share data and extract information to mea-
sure, map, analyze, estimate or infer (predict) any processes of common interest.
www.en.wikipedia.org

SRS SmartRoadSense
SmartRoadSense is a mobile application that uses your smartphones accelerome-
ters and GPS sensor to detect and classify irregularities of the road surface while
you are driving.
www.smartroadsense.it

H2020 Horizon 2020
Horizon 2020 is the biggest EU Research and Innovation programme ever with
nearly 80 billion euros of funding available over 7 years (2014 to 2020) - in
addition to the private investment that this money will attract. It promises
more breakthroughs, discoveries and world-firsts by taking great ideas from the
lab to the market.
www.ec.europa.eu

73

http://www.c4rs.eu
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Crowdsensing
http://www.smartroadsense.it/
https://ec.europa.eu/programmes/horizon2020

Bibliography

References cited in the text

Publications and Manuals
[1] Mark Weiser. “The Computer for the 21st Century”. In: Scientific American.

1991, pp. 78–89 (cit. on p. 5).
[2] Kevin Ashton. “That ’Internet of Things’ Thing”. In: RFID Journal. 2009

(cit. on p. 5).
[3] Kary Främling et al. “Product agents for handling information about physical

objects”. In: Report of Laboratory of Information Processing Science series
B, TKO-B 153/03, Helsinki University of Technology. 2003 (cit. on p. 5).

[4] Mehdi Mohammadi et al. “Deep Learning for IoT Big Data and Streaming
Analytics: A Survey”. In: IEEE Communications Surveys and Tutorials. 2018
(cit. on p. 6).

[5] Rob Kitchin and Gavin McArdle. “What makes Big Data, Big Data? Explor-
ing the ontological characteristics of 26 datasets”. In: SAGE Journal (2016)
(cit. on p. 7).

[6] Tom Breur. “Statistical Power Analysis and the contemporary crisis in social
sciences”. In: (2016) (cit. on p. 8).

[7] Raghu Ganti, Fan Ye, and Hui Lei. “Mobile crowdsensing: current state and
future challenges”. In: IEEE Communications Magazine (2011), pp. 32–39
(cit. on p. 8).

[8] Haoyi Xiong et al. “iCrowd: Near-Optimal Task Allocation for Piggyback
Crowdsensing”. In: IEEE Transactions on Mobile Computing (2016) (cit. on
p. 8).

[9] Bin Guo et al. “Mobile Crowd Sensing and Computing: The Review of an
Emerging Human-Powered Sensing Paradigm”. In: ACM Computing Surveys
(2015) (cit. on p. 8).

[10] Jinwei Liu, Haiying Shen, and Xiang Zhang. “A Survey of Mobile Crowdsens-
ing Techniques: A Critical Component for the Internet of Things”. In: 2016
25th International Conference on Computer Communication and Networks.
2016 (cit. on p. 9).

75

76 Bibliography

[11] Raghu Ganti, Fan Ye, and Hui Lei. “Mobile crowdsensing: current state
and future challenges”. In: 2016 25th International Conference on Computer
Communication and Networks. Vol. 49. 2011 (cit. on p. 9).

[12] M. Hilbert. Big Data for Development: A Review of Promises and Challenges.
34 vols. 2016, pp. 135–174. url: http://doi.org/10.1111/dpr.12142 (cit.
on p. 7).

[13] Malamati Louta, Konstantina Mpanti, and Thomas Karetsos Georg end
Lagkas. “Mobilecrowdsensing architectural frameworks: A comprehensive sur-
vey”. In: 2016 7th International Conference on Information, Intelligence, Sys-
tems and Applications (IISA). 2016 (cit. on p. 10).

[14] Giacomo Alessandroni et al. “Smartroadsense: Collaborative road surface
condition monitoring”. In: Proceedings of the UBICOMM. 2014 (cit. on pp. 1,
16, 19).

[15] Saverio Delpriori. “Mobile Crowd-Sensing: Enabling Technologies and Appli-
cations”. In: (2018) (cit. on p. 15).

[16] Saverio Delpriori et al. “Efficient algorithms for accuracy improvement in
mobile crowdsensing vehicular applications”. In: UBICOMM 2015. 2015 (cit.
on p. 17).

[17] Andrew Crooks et al. Transactions in GIS. 2013 (cit. on p. 18).
[18] Gang Pan et al. “Land-use classification using taxi gps traces”. In: IEEE

Transactions on Intelligent Transportation Systems. 2013 (cit. on p. 18).
[19] Dmytro Karamshuk et al. “Geo-spotting: mining online location-based ser-

vices for optimal retail store placement”. In: Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining.
2013 (cit. on p. 18).

[20] Vincent W Zheng et al. “Towards mobile intelligence: Learning from gps
history data for collaborative recommendation”. In: Artificial Intelligence.
2012 (cit. on p. 18).

[22] Yu Zheng et al. “Recommending friends and locations based on individual
location history”. In: ACM Transactions on the Web (2011) (cit. on p. 18).

[23] Yu Zheng, Furui Liu, and Hsun-Ping Hsieh. “U-air: When urban air quality
inference meets big data”. In: Proceedings of the 19th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. 2013 (cit. on
p. 19).

[24] Yohan Chon et al. “Automatically characterizing places with opportunistic
crowdsensing using smartphones”. In: Proceedings of the 2012 ACM Confer-
ence on Ubiquitous Computing. 2012 (cit. on p. 18).

[25] Lukas Ruge, Bashar Altakrouri, and Andreas Schrader S. “Soundofthecity -
Continuous noise monitoring for a healthy city”. In: IEEE International Con-
ference on Pervasive Computing and Communications. 2013 (cit. on p. 19).

[26] Nicolas Maisonneuve, Matthias Stevens, and Bartek Ochab. “Participatory
noise pollution monitoring using mobile phones”. In: Information Polity. 2010
(cit. on p. 19).

http://doi.org/10.1111/dpr.12142

Bibliography 77

[27] Neil M. Ferguson et al. “Strategies for mitigating an influenza pandemic”. In:
Nature (2006) (cit. on p. 19).

[28] Amy Wesolowski et al. “Quantifying the impact of human mobility on malaria”.
In: Science (2012) (cit. on p. 19).

Online Materials
[21] The Economist. Data, data everywhere. 2010. url: https://www.economist.

com/special-report/2010/02/27/data-data-everywhere (cit. on p. 7).
[29] Wikipedia. Big data. 2019. url: https://en.wikipedia.org/wiki/Big_

data (cit. on p. 7).

https://www.economist.com/special-report/2010/02/27/data-data-everywhere
https://www.economist.com/special-report/2010/02/27/data-data-everywhere
https://en.wikipedia.org/wiki/Big_data
https://en.wikipedia.org/wiki/Big_data

	Frontespizio
	Dedica
	Contents
	List of Figures
	List of Tables
	Listings
	Sommario
	Abstract
	Introduction
	Context
	Problem Statement
	Proposed Solution
	Structure of the Thesis

	Background
	Internet of Things
	A Bit of History
	Challenges

	Big Data
	Data Sets Growth
	Challenges

	Mobile Crowdsensing
	Data Collection
	Challenges
	Architecture

	Libraries and Tools
	Jupyter and Python
	Apache Spark
	Google Cloud Platform
	QGIS

	Related Works
	Mobile Crowdsensing Applications
	Data Collection and Processing Workflow
	Real-World Applications
	Crowdsensing for the common interest
	SmartRoadSense

	The General Approach for Value Identification
	The Concept of Value
	The Proposed Approach
	Exploratory Analysis
	Data set
	Insights

	Outcome Definition
	Pre Processing
	Processing
	Visualisation

	Implementation Experience
	Exploratory Analysis
	Data set
	Row Attributes
	Retrieving Informations
	Insights

	Outcome Definition
	Pre Processing
	Spatial Query

	Processing
	Anomalies Detection
	Usage Trend Metric
	Data Recency Metric
	Data Quantity Metric

	Visualisation
	Crossed Visualisation

	Experiments And Discussion
	Local vs Cluster Solution
	Local Optimisation
	Cluster Implementation

	Metrics

	Conclusions
	Appendix
	Jupyter Notebook on Google DataProc
	Anomalies Detection
	Data Quantity
	Data Recency
	Usage Trends

	Acronyms
	Bibliography
	References cited in the text
	Publications and Manuals
	Online Materials

