
POLITECNICO DI MILANO

SCHOOL OF INDUSTRIAL AND INFORMATION ENGINEERING

MSc of Mathematical Engineering

Tesi di Laurea Magistrale

Development of a reactive numerical solver
based on the SU2 CFD code

Relatore:
Prof. Paolo Francesco BARBANTE

Giuseppe ORLANDO

Matr. 878776

Academic Year 2018-2019

Contents

List of Symbols 3

List of Figures 5

List of Tables 6

Abstract 9

1 Introduction 10
1.1 Physical Processes . 10
1.2 Local Thermal Equilibrium . 10
1.3 Flow/Reaction Interactions . 11

2 Mathematical Model 13
2.1 Conservative Governing Equations . 13
2.2 Analysis of Stefan-Maxwell Equations . 18
2.3 Chemistry Source Term . 27

3 Numerical Methods 30
3.1 Space Integration . 30

3.1.1 Vertex-Centered Finite Volume . 30
3.1.2 Discretization of Convective Fluxes 32
3.1.3 Second Order Reconstruction . 36
3.1.4 Flux Limiters . 38
3.1.5 Discretization of Diffusive Fluxes 40
3.1.6 Discretization of Source Term . 40

3.2 Time Integration . 40
3.3 Boundary Conditions . 43

3.3.1 Euler Wall . 43
3.3.2 No-Slip Isothermal Wall . 43
3.3.3 Subsonic Inlet . 44
3.3.4 Subsonic outlet . 47

1

4 SU2 Code 50
4.1 General Features . 50
4.2 Additions . 52

4.2.1 CSolver . 53
4.2.2 CVariable . 56
4.2.3 CNumerics . 59
4.2.4 Reacting Model Library . 61

4.3 Execution . 71

5 Numerical Results 78
5.1 Inviscid Bump . 78
5.2 Diffusion in a channel . 81
5.3 Laminar Flat Plate . 83
5.4 Combustion and Hybrid Rocket Engine 85
5.5 Hypersonic flow over blunt body . 95

6 Conclusions 102

A 103
A.1 Equations formulated for moving grids . 103
A.2 Pressure and Temperature Derivatives . 105
A.3 Convective Flux Jacobian . 107
A.4 AUSM Scheme Approximate Jacobian . 109
A.5 Numerical Viscous Jacobians . 114
A.6 Source Chemistry Jacobian . 117
A.7 BiCGSTAB Algorithm . 119
A.8 Spline interpolation . 121
A.9 Secant Method . 123

2

List of Symbols

δij = Kronecker’s delta
p = Mixture pressure
ρ = Mixture density
ρi = Density of species i
Yi = Mass fraction of species i
Xi = Mole fraction of species i
T = Temperature
u = Velocity
ux = Component of the velocity along x direction
uy = Component of the velocity along y direction
uz = Component of the velocity along z direction

∂·
∂(ρu) =


∂·

∂(ρux)
∂·

∂(ρuy)
∂·

∂(ρuz)


E = Total energy per unit of mass
e = Internal energy per unit of mass
H = Mixture total enthalpy
h = Mixture static enthalpy
hi = Static enthalpy of species i
Cp = Mixture specific heat at constant pressure
Cv = Mixture specific heat at constant volume
Cpi = Specific heat at constant pressure of species i
µ = Mixture laminar viscosity
k = Mixture thermal conductivity
kf,r = Forward rate of reaction r
kb,r = Backward rate of reaction r
Kr = Equilibrium constant of reaction r
Ar = Pre-exponential factor or reaction r
βr = Temperature exponent of reaction r
Er = Activation energy of reaction r
Tr = Activation temperature of reaction r
ω̇i = Mass production term of species i
[·] = Concentration of species ·

3

List of Figures

3.1 Finite volumes strategies . 31
3.2 Schematic of the mesh and the control volume on a dual mesh. 31

4.1 General structure of SU2 . 50
4.2 Diagram for solver class . 53
4.3 Diagram for variable class . 56
4.4 UML diagram for the class CReactiveUpwAUSM 60
4.5 Hierarchy for reacting model library . 62

5.1 Computational mesh with highlighted boundary conditions 78
5.2 Comparison of Mach number contours between my version (left) and the

original one (right) . 79
5.3 Comparison of pressure contours between my version (left) and the orig-

inal one (right) . 79
5.4 Mach number contour for multispecies simulation 80
5.5 Pressure contour for multispecies simulation 80
5.6 Mesh (stretched in y for visibility) and boundary conditions: Inlet, Outlet,

No-slip walls . 81
5.7 Steady state distribution of CO2 mass fraction (left) and O2 mass fraction

(right) . 81
5.8 Steady state distribution of CO mass fraction 82
5.9 Steady state profile of CO2 and O2 mass fractions at x = 0.8 m 82
5.10 Computational mesh with highlighted boundary conditions 83
5.11 Comparison of Mach number contours between my version (left) and the

original one (right) . 83
5.12 Mach number contour for flat plate simulation 84
5.13 Comparison with Blasius profile at x = 0.3048 m(O2 for original version

of SU2) . 84
5.14 Computational mesh for chamber . 86
5.15 Summary of boundary conditions for combustion 86
5.16 Contour plot of the temperature without chemistry 87
5.17 Temperature contour at steady state for combustion chamber (Merkle) . . 87
5.18 C4H6 (left) and O2 (right) contours at steady state (Merkle) 87
5.19 CO2 (left) and H2O (right) contours at steady state (Merkle) 88

4

5.20 Temperature contour for combustion chamber (JL 4 reactions) 89
5.21 C4H6 (left) and O2 (right) contours (JL 4 reactions) 89
5.22 CO2 (left) and H2O (right) contours (JL 4 reactions) 89
5.23 Temperature contour for combustion chamber (JL 6 reactions) 90
5.24 C4H6 (left) and O2 (right) contours (JL 6 reactions) 90
5.25 CO2 (left) and H2O (right) contours (JL 6 reactions) 91
5.26 O2 (left) and O (right) profiles (JL 6 reactions) 91
5.27 H2O (left) and OH (right) profiles (JL 6 reactions) 91
5.28 H (left) and H2 (right) profiles (JL 6 reactions) 92
5.29 CO2 profile (JL 6 reactions) . 92
5.30 H2O profile comparison between JL 4 reactions and JL 6 reactions 93
5.31 H2O mass fraction comparison between my simulation(left) and Mazzetti(right) 93
5.32 CO2 mass fraction comparison between my simulation (left) and Mazzetti

(right) . 94
5.33 Mesh and boundary conditions for supersonic flow over blunt body 95
5.34 Contour plot of Mach number (left) and temperature (right) 97
5.35 Distribution of N2 mass fraction (left) and N mass fraction (right) 97
5.36 Distribution of O2 mass fraction (left) and O mass fraction (right) 98
5.37 Contour plot of total enthalpy . 99
5.38 Contour plot of Mach number (left) and temperature (right) with a second

order scheme . 99
5.39 Contour plot of pressure (left) and relative zoom (right) with a second

order scheme . 100
5.40 Contour plot of total enthalpy with a second order scheme 101

5

List of Tables

3.1 Comparison between two approaches for subsonic outlet boundary condi-
tions (pi = 101824.4595, Ti = 3365.4756, pb = 109368.0710) 49

4.1 Independent variables for which reference values can be arbitrarily chosen 56
4.2 Reference values for all other variables . 57
4.3 Parameters C4H6 . 69
4.4 Molecular diffusion volumes of considered species (from [1]) 71

5.1 Parameters of JL (4 reactions) chemical scheme: units are cm,mol, s, cal . 88
5.2 Parameters of JL (6 reactions) chemical scheme: units are cm,mol, s, cal . 90
5.3 Parameters of Gupta [35] chemical scheme: units are cm,mol, s,K 96

6

Ringraziamenti

Ringrazio il professor Barbante per avermi seguito con grande pazienza nella stesura di
questa tesi e per avermi incoraggiato e supportato con utili consigli e suggerimenti, che
hanno migliorato questo lavoro.

7

Sommario

La tesi si occupa della formulazione e dell’implementazione delle equazioni che model-
lano fluidi reattivi.
Particolare attenzione è stata posta alla modellazione dei flussi di diffusione molecolare
che sono coloro che “alimentano la chimica” usando risultati rigorosi provenienti dalla
teoria cinetica dei gas.
Per questo motivo le celebri equazioni di Stefan-Maxwell sono state utilizzate per cal-
colare i già menzionati flussi di diffusione. Il problema con questo tipo di modello è
che sorgono singolarità a causa delle proprietà di conservazione dei flussi, specialmente
nel caso di frazioni di massa nulle o evanescenti; pertanto per superare questa difficoltà
vengono proposte delle modifiche ad hoc delle equazioni di Stefan-Maxwell.

L’implementazione è stata eseguita sulla suite SU2: si tratta di un codice per simu-
lazioni di Fluidodinamica Computazionale fornito dall’Università di Stanford. In questo
lavoro le sue potenzialità sono state estese per poter studiare fluidi reattivi con lo sviluppo
inoltre di una libreria per il calcolo di proprietà fisiche e chimiche.

Pertanto l’elaborato è stato strutturato come segue: nel primo capitolo introduciamo
i principi fisici generali tipici dei fluidi reattivi; poi nel secondo formuliamo il modello
matematico che governa il fenomeno.
Successivamente presentiamo il metodo numerico adottato per discretizzare le equazioni:
verrà usato uno schema ai volumi finiti di tipo vertex-centered con l’utilizzo dello schema
di AUSM per i flussi convettivi.
Nel quarto capitolo è riportata una descrizione generale riguardo SU2 e le sue funzion-
alità in modo da introdurre brevemente le aggiunte richieste per trattare fluidi reattivi
ed anche la libreria implementata.
Infine alcuni test vengono eseguiti in modo da validare il codice: sono riportati in partico-
lare i risultati relativi a simulazioni dei processi di combustione che avvengono all’interno
dei motori aerospaziali ed a un caso di rientro.

8

Abstract

This thesis explores the formulation and implementation of the equations that model
chemically reacting flows.
Specific attention has been paid to the modelling of molecular diffusion fluxes, which are
the one that “feed the chemistry” using rigorous results of the kinetic theory of gases.
For this purpose the well-known complete Stefan-Maxwell equations have been used
in order to compute the diffusion fluxes. The problem with this kind of model is that
singularities arise in the equation due to the conservation property of fluxes, especially
in case of zero or vanishing mass fractions: in order to overcome this issue ad hoc mod-
ifications of Stefan-Maxwell equations are presented.

The implementation has been performed on the SU2 suite: it is a general purpose
Computational Fluid Dynamics code provided by the Stanford University. In this work
its capabilities have been extended in order to study multispecies reacting flows with the
development of a library to compute physical and chemical properties.

Therefore the thesis has been structured in this way: in the first chapter we intro-
duce the general physical principles that are typical of reacting flows; then in second
chapter we formulate the mathematical model that governs this kind of phenomenon.
Subsequently we present the numerical method employed to discretize the governing
equations: it will be used a vertex-centered finite volume scheme with the employment
of AUSM scheme for convective fluxes.
Then a general description about SU2 and its functionalities is performed in order to
briefly illustrate the additions required for reactive flows and also the implemented li-
brary.
Eventually some test cases are performed in order to validate the code, in particular
simulations of the combustion processes that take place inside aerospace engines and a
re-entry case.

9

Chapter 1

Introduction

1.1 Physical Processes

Two main physical processes are involved in a reacting flow: the fluid dynamics and the
chemical reactions.
The fluid dynamics process is the balance between the temporal evolution and the spatial
convection of the flow properties due to conservation of mass, momentum, and energy,
while chemical reactions determine the generation/destruction of chemical species under
the constraint of mass conservation.
Each of the above processes could be either evolving or in equilibrium. For the evolving
condition, each above process has its own space and time scales, and they are very
different from that of other processes. Such differences in space and time scales, on
one hand, could allow simplification in the theoretical model. On the other hand, they
could be the source of numerical difficulties. In this work, we assume that the space
and time scales of fluid dynamics and chemical reactions are much larger than that
of thermodynamics. Thus, the thermodynamic process is always considered to be in
equilibrium. From the viewpoint of thermodynamics, the chemical composition of the
reactive gas mixture is locally frozen, and the gas mixture is locally motionless. We refer
to this condition as thermal equilibrium. In the following subsections, we provide further
discussions about the thermal equilibrium assumption and the interaction between fluid
dynamics and chemical reactions.

1.2 Local Thermal Equilibrium

Due to the assumption of thermal equilibrium, the concept of state variables and the
equation of state in the classical thermodynamics can be used to provide the relation-
ship between thermodynamic variables. Because of flow motion and the associated
pressure and temperature distribution throughout the space-time domain, the flow field
as a whole is not in thermal equilibrium. The notion of the classical thermodynamics
must be supplemented by additional ideas: the whole flow system is subdivided into a
large number of subsystems that are small as compared to the whole system but still

10

of macroscopic size relative to the molecular structure of the fluid. By assuming that
each subsystems is in thermal equilibrium internally but not in equilibrium with its
neighbours, we then apply equilibrium thermodynamics to each subsystem. As a re-
sult, we can build up, by integrating the flow equations, the space-time evolution of
the entire non-thermally-equilibrium system. Physically, the above notion implies that
numerous molecular collisions occur locally during a typical time increment of a CFD
calculation such that various energy modes, i.e., translation, rotation, vibration, of indi-
vidual molecule and the thermal energy between different molecules (including different
species) are statistically in equilibrium. Thus, there is only one temperature of the gas
mixture at each space-time location. We remark that this assumption may not be true
for hypersonic (rarefied) flows, in which the time scales associated with molecular col-
lisions and the mean free path may be comparable to the flow residence time and the
associated length scales. Thus, there are not enough collisions between molecules within
each time step for the local system to reach a thermally equilibrium state.

1.3 Flow/Reaction Interactions

The interactions between chemical reactions and fluid dynamics is best described by the
Damköhler number, which is the ratio of the characteristic time of fluid mechanics to
that of chemical reactions. As the Damköhler number approaches infinity, the chemical
reactions are much faster compared to fluid dynamics. Thus, the chemical composition
can be treated as a state variable governed by the chemical equilibrium theory, i.e., free
energy minimization. In this case, the above thermal equilibrium needs to be modified in
order to include the effect of free energy minimization. Thus the fluid dynamics becomes
the only evolving process. The discussion of this condition, however, is out of the scope
of the present work.
If Damköhler number is close to zero, the chemical reactions are slow as compared to
fluid flows, and a non-reactive fluid can be assumed. Only when the Damköhler number
is of the order of unity, does one anticipate the greatest interaction between chemical
reactions and fluid dynamics. In this case, both fluid dynamics and chemical reactions
should be treated as evolving processes, and one must use the finite-rate kinetics to
model chemical reactions. We shall focus on this condition in the present work.
However, in the finite rate chemistry with multiple reaction steps, a wide range of time
scales for chemical reactions exists. Thus, the Damköhler numbers associated with
individual reaction steps span a wide range of values. In this case, a global Damköhler
number could be assigned based on the bottle neck reaction step, which can be deduced
by a sensitivity study of the chemical kinetics. Nevertheless, some confusion remains in
defining a single Damköhler number when using multiple reaction steps.
In this work, and as always in other CFD works for combustion, the space-time evolution
of fluid dynamics is our main concern, and the space and time scales of fluid dynamics
will be used as the pacing parameters in the calculations. In addition, the time increment
and spatial mesh employed will also be constrained by the CFL number condition for
numerical stability. Because of the wide range of the time and space scales associated

11

with the multiple reaction steps, such a choice of the time step and the mesh size based
on the CFL number constraint could grossly under-resolve some of the reaction steps.
This will cause severe stiffness problem in numerical calculations.
The common practice is to resort to special treatments for the stiff source terms in the
species equations without fully resolving the space and time scales of the source terms.

12

Chapter 2

Mathematical Model

2.1 Conservative Governing Equations

We consider first the unsteady, inviscid and chemically reacting flow equations in three
spatial dimensions:

∂Q

∂t
+∇ ·E = S (2.1)

where

Q =



ρ
ρu
ρE
ρ1

ρ2

...
ρNs


,E =



ρu
ρu⊗ u+ pI
(ρE + p)u
ρ1u
ρ2u
...
ρNsu


,S =



0
0
0
ω̇1

ω̇2

...
ω̇Ns


Here ⊗ denotes the tensor product and ∇· denotes the divergence operator.

This set of equations is known as Euler equations: the first three are the continu-
ity, momentum and energy equations respectively, and the rest are Ns species continuity
equations, describing the mass conservation of each gas species.
In (2.1), ρ is the density of the gas mixture, while ρi is the density for species i,u =
(ux, uy, uz) is the velocity of the gas mixture and E is the total energy of the gas mixture
per unit mass, and is defined as

E = e+
‖u‖2

2
(2.2)

where ‖·‖ denotes the Euclidean norm and e is the internal energy of the gas mixture
per unit mass: it is computed based on a mass-weighted average of the internal energy
per unit mass of each species ei, i.e.,

e =

Ns∑
i=1

Yiei. (2.3)

13

Note that

Yi = ρi
ρ

is the mass fraction of species i in the gas mixture.
As it will be shown later, the definitions of internal energy e and total energy E include
the heat of formation of chemical species. Therefore, no source term exists in the energy
equation. Moreover, mass is conserved through chemical reactions and the summation
of all source terms is zero, i.e.

Ns∑
i=1

ω̇i = 0

as we will see later on.
Eventually we assume that individual species behave as thermally perfect gases, i.e. they
satisfy the relation:

pi = ρiRiT (2.4)

where pi is the partial pressure, Ri is the gas constant of species i and T is the temper-
ature. The gas constant Ri is computed based on

Ri =
Ru
Mi

where Ru = 8.31 J mol−1 K−1 is the universal gas constant and Mi is the molar mass
of species i.
As Dalton’s law prescribes that the pressure p of a mixture is equal to the sum of partial
pressure, we find:

p =

Ns∑
i1

pi =

Ns∑
i=1

ρiRiT =

Ns∑
i=1

ρYiRiT = ρRT (2.5)

where R =
NS∑
i=1

YiRi is the gas constant of the mixture.

In case of a viscous reactive flow the governing equations that express the conserva-
tion of mass, momentum and energy become respectively:

∂ρ

∂t
+∇ · (ρu) = 0 (2.6)

∂ρu

∂t
+∇ · (ρu⊗ u+ pI)−∇ · τ = 0 (2.7)

∂ρE

∂t
+∇ · ((ρE + p)u)−∇ · (τu− q) = 0 (2.8)

Here τ is the stress tensor whose definition is

τ = µ
(
∇u+ (∇u)T

)
−
(
η − 2

3
µ

)
(∇ · u) I

14

where µ is the laminar viscosity and η is the volume viscosity, and q is the heat flux due
to conduction and diffusion whose expression will be specified later on.
In this work we consider negligible the contribution due to η, applying the so-called
Stokes hypothesis which has become a common practice in the analysis of the motion of
compressible fluids.

The continuity equation for a single species i is modified as follows:

∂ρi
∂t

+∇ · (ρiu) +∇ · Ji = ω̇i (2.9)

In equation (2.9) the term Ji represents the diffusion flux of species i whose contribution
must be taken into account in the expression of q:

q = −k∇T +

NS∑
i=1

hiJi

where k represents the thermal conductivity and hi is the static enthalpy of species i
(including heat of formation) defined as:

hi = ei +
pi
ρi

(2.10)

The static enthalpy can be related to the specific heat at constant pressure Cpithanks
to first law of thermodynamics; indeed if we define

Cpi =
∂qi
∂T

∣∣∣∣
pi

we find that
dqi = Tdsi = dei + pidvi = dhi − vidpi

Hence it follows immediately that

Cpi =
∂hi
∂T

∣∣∣∣
pi

(2.11)

Herein qi is the reversible heat transfer per unit of mass, si is the entropy of species i
and vi is the volume occupied by species i.
We immediately note that hi is a function of T only and can be proper expressed as
integration of (2.11):

hi =

∫ T

Tref

CpidT + hfi (2.12)

where Tref is a reference temperature and hfi is the assigned value of enthalpy at T =
Tref (formation enthalpy).
Moreover the following conservation constraint must hold

NS∑
i=1

Ji = 0

15

in order to ensure the total mass conservation as expressed by (2.6).

In case the dilute approximation (also known as Fick’s law) holds we can say through
Ramshaw self-consistent modification of fluxes that

Ji = −ρMi

M
Di,m∇Xi + Yi

NS∑
j=1

ρDi,m
Mj

M
∇Xj (2.13)

where Xi is the molar fraction of species i and Dj,m is the mass diffusion coefficient for
species i in the mixture.
In other cases the dilute approximation may not be acceptable and full multicomponent
diffusion is required; in such cases, Stefan-Maxwell equations must be solved:

di + θi
∇T
T

=

NS∑
j=1

XiXj

Dij
(Vj − Vi) (2.14)

where Vi and Vj represent the diffusion velocity of species i and j respectively, θi is the
thermal diffusion ratio of species i, while di can be expressed as

di = ∇Xi + (Xi − Yi)∇ ln p− Yi
p

(
ρfi − ρ

NS∑
k=1

Ykfk

)
(2.15)

f are body forces terms.
In this work no body forces are considered and we neglect the contribution due to the
pressure so that:

di = ∇Xi (2.16)

and moreover we neglect the contribution due to thermal diffusion in the Stefan-Maxwell
equations.
Anyway it is worth to underline that the considerations about Stefan-Maxwell equations
that we will discuss later on hold even in case all terms of (2.14) are considered.
Summing up we can write the governing equations as

∂Q

∂t
+∇ · F−∇ ·G = S (2.17)

where

Q =



ρ
ρu
ρE
ρ1

ρ2

...
ρNs


,F =



ρu
ρu⊗ u+ pI
(ρE + p)u
ρ1u
ρ2u
...
ρNS

u


,G =



0
τ
τu− q
−J1

−J2

...
−JNS


,S =



0
0
0
ω̇1

ω̇2

...
ω̇Ns



16

and the set of equations (2.17) is known as Navier-Stokes equations.

It is not common to consider as independent variables both the mixture density ρ and
the partial densities ρi of all NS species since this choice seems to be redundant: the
reason is that eventual mistakes in the chemical composition due to the approximate
numerical algorithm are not modified by the convective terms and also the diffusion
part, as we will see later on, is not able to dissipate these errors because of the intrinsic
structure of Stefan-Maxwell equations.

17

2.2 Analysis of Stefan-Maxwell Equations

Let us try now to develop the expression of Stefan-Maxwell equations in order to obtain
a linear system in terms of Ji.
First of all let us rewrite (2.14) in a more convenient way; since Ji = ρiVi we get:

di =

NS∑
j=1

XiXj

Dij

(
Jj
ρj
− Ji
ρi

)
=

NS∑
j=1

XiXj

Dij

(
Jj
ρYj
− Ji
ρYi

)
=

NS∑
j=1

XiXj

Dij

(
MJj
ρMjXj

− MJi
ρMiXi

)

=
M

ρ

NS∑
j=1

XiXj

Dij

(
JjMiXi − JiMjXj

XiXjMiMj

)
=
M

ρ

NS∑
j=1

JjMiXi − JiMjXj

DijMiMj
(2.18)

From the conservation constraint we can eliminate JNS
from the set of Stefan-Maxwell

equations and reduce to NS − 1 relations, namely

NS∑
j=1

Jj = 0 =⇒ JNS
= −

NS−1∑
j=1

Jj = −Ji −
NS−1∑
j=1
j 6=i

Jj

We can exploit the manipulation provided in (2.18) to say that

cdi = − Ji
Mi

NS∑
j=1
j 6=i

Xj

Dij
+Xi

NS∑
j=1
j 6=i

Jj
MjDij

where 1
M =

NS∑
i=1

Yi
Mi

is the inverse of the mixture molar mass and c = ρ
M is the mixture

concentration.
Now we can finally isolate and then eliminate the N th

S diffusive flux

cdi = − Ji
Mi

NS∑
j=1
j 6=i

Xj

Dij
+Xi

NS−1∑
j=1
j 6=i

Jj
MjDij

+Xi
JNS

MNS
DiNS

= − Ji
Mi

NS∑
j=1
j 6=i

Xj

Dij
+Xi

NS−1∑
j=1
j 6=i

Jj
MjDij

− Xi

MNS
DiNS

Ji +

NS−1∑
j=1
j 6=i

Jj


=− Ji

Mi

NS∑
j=1
j 6=i

Xj

Dij
− Xi

MNS
DiNS

Ji +Xi

NS−1∑
j=1
j 6=i

Jj
MjDij

− Xi

MNS
DiNS

NS−1∑
j=1
j 6=i

Jj

=− Ji

 Xi

MNS
DiNS

+
1

Mi

NS∑
j=1
j 6=i

Xj

Dij

+Xi

NS−1∑
j=1
j 6=i

Jj

(
1

MjDij
− 1

MNS
DiNS

) (2.19)

18

which can be expressed as a linear system of the form

BJ = −cdi (2.20)

where

Bij = −Xi

(
1

MjDij
− 1

MNS
DiNs

)
i = 1...NS

Bij =
Xi

MNS
DiNS

+
1

Mi

NS−1∑
j=1
j 6=i

Xj

Dij
i, j = 1...NS , i 6= j

This approach has a significant drawback: you have to choose which of the NS−1 species
you solve and so there is the presence of an asymmetry since one species is treated dif-
ferently from the other and moreover some problems can arise from a numerical point
of view if the selected species is not present in excess.

An alternative is represented by the iterative method proposed by Sutton in [5].
First of all let us rewrite the Stefan-Maxwell equations for Ji in a more convenient form:

di =
M

ρ

NS∑
j=1

(
XiJj
MjDij

− XjJi
MiDij

)
(2.21)

and let us express now these relations in terms of di:

Ji = −ρMi

M

NS∑
j=1

Xj

Dij
di + YiM

NS∑
j=1

Xj

Dij

NS∑
j=1

Jj
MjDij

(2.22)

The closure equation that expresses the conservation is imposed by the iterative scheme

JN+1
i = JNi − Yi

NS∑
j=1

JNj

where the term JNi is computed using (2.22) for each species and the entire set is cor-
rected for iteration N + 1 using the aforementioned conservation constraint.

Another approach has been proposed by Giovangigli in [24]: the analysis carried out
takes into account some criticality of the Stefan-Maxwell equations once they are con-
sidered as a set of NS independent relations.
Let us recall the Stefan-Maxwell equations as reported in (2.14):

di =

NS∑
j=1

XiXj

Dij
(Vj − Vi) = Xi

NS∑
j=1
j 6=i

XjVj
Dij

−XiVi

NS∑
j=1
j 6=i

Xj

Dij

19

which can be expressed as a linear system of the form

FV = −di (2.23)

where

Fii = Xi

NS∑
j=1
j 6=i

Xj

Dij
i = 1, ..., NS

Fij = −XiXj

Dij
i, j = 1, ..., NS , i 6= j

It is immediate to verify that
NS∑
j=1

Fij = 0 and therefore the matrix F is singular and

hence not invertible.

The Stefan-Maxwell equations are equivalent [25] to the following relation:

Vi = −
NS∑
j=1

Dijdj (2.24)

where D = (Dij) is the symmetric multicomponent diffusion matrix.

The elements Dij are defined with the constraint
NS∑
j=1

YiDij = 0 as reported by [25].

Since Dij = Dji, i, j = 1, ..., NS the following relation holds:

NS∑
i=1

YiDij = 0 (2.25)

A direct consequence of (2.25) is that the relation

NS∑
i=1

YiVi = 0 =⇒
NS∑
i=1

Ji = 0 (2.26)

is satisfied independently on the driving forces di. Therefore errors in the computation
of the chemical composition (i.e. the mass fractions do not sum up to 1) cannot be
dissipated by the diffusion fluxes.

The idea to overcome this issue is to modify the Stefan-Maxwell equations, in such

a way that the constraints
NS∑
i=1

Yi = 1 and
NS∑
i=1
Ji = 0 are not imposed a priori but will

be satisfied in the whole domain under the imposition of suitable boundary and initial
conditions.

20

First of all since the continuity equations are solved for the mass fractions of the species,
the driving forces of the Stefan-Maxwell equations must be expressed in terms of mass
fractions as well. The original relation between the mole and mass fractions is given by:

Xi =
M

Mi
Yi

so that

∇Xi =
M

Mi
∇Yi +

Yi
Mi
∇M

Since

1

M
=

NS∑
j=1

Yj
Mj

then

∇M = −M2
NS∑
j=1

∇Yj
Mj

and so

∇Xi =
M

Mi
∇Yi −M2 Yi

Mi

NS∑
j=1

∇Yj
Mj

=
M

Mi
∇Yi −MXi

NS∑
j=1

∇Yj
Mj

=

NS∑
j=1

Mij∇Yj

where

Mii =
M

Mi
(1−Xi) i = 1...NS

Mij = −MXi

Mj
i, j = 1...NS , i 6= j

Note that
NS∑
i=1

Mij = 0 and so also the matrix M = Mij is singular.

From another prospective if we couple the definition of mixture molar mass and the

relation between mole and mass fraction, we find that
NS∑
i=1

Xi = 1 independently from

the values of mass fractions, i.e it is imposed a priori. Indeed:

Xi =
M

Mi
Yi =⇒

∑
i=1

M

Mi
Yi =

M

M
= 1.

In order to eliminate the singularity of the aforementioned matrix we adopt the following
relation between mass and mole fractions as proposed by [26]:

Xi = σ
M

Mi
Yi

21

where σ =
NS∑
i=1

Yi.

Note that
NS∑
i=1

Xi =
NS∑
i=1

Yi and the gradient is now given by:

∇Xi =
σM

Mi
∇Yi −MXi

NS∑
j=1

∇Yj
Mj

+
MYi
Mi
∇σ = M̃ij∇Yi

where

M̃ii =
M

Mi
(Yi −Xi + σ) i = 1...NS

M̃ij = M

(
Yi
Mi
− Xi

Mj

)
i, j = 1...NS , i 6= j

Note that
NS∑
i=1

M̃ij = 1: the matrix M̃ = M̃ij is not singular and
NS∑
i=1
∇Xi =

NS∑
i=1
∇Yi.

As shown by [24] singularities in the Stefan-Maxwell equations will appear for flux bound-
ary conditions and homogeneous Neumann conditions as well. The singular behaviour is

due to the lack of a diffusion term for the “species”
NS∑
i=1

Yi: adding an artificial diffusion

would suppress the singularity and this is achieved by adding αYi(α > 0) times the mass
flux constraint to each Stefan-Maxwell equation that becomes:

NS∑
j=1

FijVJ + αYi

NS∑
j=1

YjVJ = −∇Xi (2.27)

The modified Stefan-Maxwell equations can be expressed as:

F̃ V = −di

where F̃ = F + αY ⊗ Y .
As shown by Giovangigli the matrix F̃ is symmetric and positive definite and therefore
it is invertible. If we introduce the matrix G = F̃−1 we find

V = −Gdi

Switching from velocities to mass fluxes J = Ji since Ji = ρYiVi we find

J = −Hdi

where H = RG where R = diag(ρY1,ρYNS
).

For positive mass fractions the matrices R and G are non-singular and in this case H
is not singular as well; however difficulties arise in the case of zero or vanishing mass

22

fractions: in this situation the matrices R and F̃ are singular or ill-conditioned: indeed
since F̃ij = Fij + αYiYj we find that

NS∑
j=1

F̃ij =

NS∑
j=1

Fij +

NS∑
j=1

αYiYj = αYiσ

which is equal or tends to 0 in presence of at least one zero or vanishing mass fraction.

Therefore we need a rescaled version of Stefan-Maxwell equations in terms of diffusion
fluxes. We are led to introduce the matrix Γ such that:

Γii = σ
M

ρMi

NS∑
j=1
j 6=i

Xj

Dij
, i = 1...NS (2.28)

Γij = −σ M

ρMj

Xi

Dij
i, j = 1...NS , i 6= j (2.29)

so that:
ΓJ = −di

It is important to notice that the mixture molar mass M must be computed using the
following relation:

1

M
=
∑
i

YiMi

and the other classical relation
M =

∑
i

XiMi

does not hold anymore. Indeed if the previous formula were still valid we would obtain:

XiMi = σMYi =⇒ M = σMσ =⇒ σ2 = 1 =⇒ σ = 1

which in general is not true.
Another possible approach would be considering

M =
∑
i

XiMi

and define then

Yi = σ̃
Mi

M
Xi

with σ̃ =
NS∑
i=1

Xi.

It would still hold that
NS∑
i=1

Xi =
NS∑
i=1

Yi, but the entries of matrix Γ should be modified

23

as follows:

Γ̂ii =
M

ρMiσ̃

NS∑
j=1
j 6=i

Xj

Dij
, i = 1...NS (2.30)

Γ̂ij = − M

ρMj σ̃

Xi

Dij
i, j = 1...NS , i 6= j (2.31)

Coming back to the first formulation, we notice that since
NS∑
i=1

Γij = 0, the matrix Γ is

singular and we have to modify it according to [24] as:

Γ̃ = Γ +
α

ρ
Y ⊗U

where U = (1, ..., 1)T .

Since Γ̃ij = Γij + α
ρYi then

NS∑
i=1

Γ̃ij = α
ρσ, hence we are able to determine the diffu-

sive fluxes even in the presence of zero or vanishing mass fractions solving the linear
system

Γ̃J = −di (2.32)

In his work, Giovangigli developed also an iterative method to solve the aforementioned
system; it is based on the following consideration: if we define S = I − L−1Γ, with L
to be determined later on, then SJ −L−1di = J +L−1di −L−1di = J .
Let us introduce the following vector space U⊥ =

{
x ∈ RNS : U · x = 0

}
where

U · x =

NS∑
i=1

xi.

There is only one solution J such that, given di ∈ U⊥, it satisfies the conservation
constraint; in particular the following theorem holds:

Theorem 1 Let Γ be as in (2.28),(2.29), let Yi ≥ 0, i = 1...NS such that ∃i Yi 6= 0 and
let L = diag (L1, ...LNS

) such that

Li =
Γii

1− Yi
σ

so that Li > Γii if Yi > 0 and Li ≥ Γii if Yi = 0. Denote by Q = I − Y ⊗U
σ and

S = I −L−1Γ where I is the identity matrix; let x0 ∈ RNS ,y0 = Qx0 and define

yN+1 = Q
(
SyN −L−1di

)
.

24

Then
J = lim

N→∞
yN

The drawback of this method is that the matrix Q projects each vector that belongs to
RNS to U⊥; indeed we get:

[Qx]i = xi −
NS∑
j=1

(Y ⊗U)ij
σ

xj = xi −
NS∑
j=1

Yi
σ
xj = xi −

Yi
σ

NS∑
j=1

xj

and therefore:

NS∑
i=1

[Qx]i =

NS∑
i=1

xi − Yi
σ

NS∑
j=1

xj

 =

NS∑
i=1

xi −
NS∑
i=1

Yi
σ

NS∑
j=1

xj


=

NS∑
i=1

xi −
NS∑
j=1

xj

NS∑
i=1

Yi
σ

=

NS∑
i=1

xi −
NS∑
j=1

xj = 0

Hence this iterative method is not able to compute the correct diffusive fluxes if di 6∈ U⊥.
Indeed in this case the scheme is not able to diffuse correctly errors in the chemical com-
position that, therefore, will be transported unchanged along the domain.

For this reason we choose to solve the linear system (2.32) with a “standard” iterative
scheme, in particular the biconjugate gradient stabilized (BiCGSTAB) method (see
Appendix A.7) because it does not need any particular requirement and this matches
our case since the matrix Γ̃ is neither symmetric in general.

Eventually an appropriate choice for the free parameter α needed by the definition
of Γ̃ is given by α = 1/ max

i,j=1,...,NS

Dij because it guarantees the same order of magnitude

for the elements of Γ̃.

The computational way to obtain the mole fractions gradient ∇Xi, i = 1, ..., NS will
be explained later on.

At this point we need to focus on the application of the mass flux constraint: the

original Stefan-Maxwell equations are subjected to
NS∑
i=1
Ji = 0, but the use of artificial

diffusivity changes this constraint; indeed summing up the relations (2.32) we find:

ασ

NS∑
i=1

Ji = −∇σρ (2.33)

and therefore we modify the continuity equation (2.6) to include this theoretical diffusion
effect:

∂ρ

∂t
+∇ · (ρu)−∇ ·

(ρ

σα
∇σ
)

= 0 (2.34)

25

Hence the matrix associated to viscous fluxes in (2.17) is modified as follows:

G =



ρ
σα∇σ
τ
τu− q
−J1

−J2

...
−JNS


Let us notice finally that in case σ ≡ 1 everywhere equation (2.34) reduces to (2.6) and

the constraint (2.33) reduces to
NS∑
i=1
Ji = 0 recovering the “standard” continuity equation.

Summing up, in this section we introduced a modification of Stefan-Maxwell equations

which does not impose a priori that
NS∑
i=1
Ji = 0 but allows us to compute the diffusion

fluxes in such a way that possible errors in the chemical composition due to the numer-
ical method are diffused and dissipated.
In order to realize this process we need to consider also the “global” continuity equation

as independent relation, so that
NS∑
i=1

Yi = 1 (or equivalently
NS∑
i=1

ρi = ρ) is no more a

constraint but a result of the algorithm, and moreover we need to modify it adding a
diffusion term which takes into account the new version of Stefan-Maxwell equations.

26

2.3 Chemistry Source Term

A simple approach to obtain the chemical source term, as reported in [1], is the Perfectly
Stirred Reactor(PSR) hypothesis proposed by [6] which considers chemical reactions in
a pseudo-laminar condition:

ω̇i = Mi

NR∑
r=1

(
ν
′′
i,r − ν

′
i,r

)kf,r
NS∏
j=1

[
ρYj
Mj

]φ′j,r
− kb,r

NS∏
j=1

[
ρYj
Mj

]φ′′j,r , i = 1...NS (2.35)

Here NR denotes the number of reactions that the considered species partecipate in, ν
′
i,r

and ν
′′
i,r are the stoichiometric coefficients for species i in the reaction r as reactant and

product respectively, while φ
′
j,r and φ

′′
j,r are rate exponent for species j in reaction r as

reactant and product.
Finally kf,r and kb,r denote the forward and backward rate constant for reaction r; the
forward rate is computed using a generalized Arrhenius equation of the form

kf,r = ArT
βr exp(−Er/RT)

where Ar is the exponential pre-factor which is derived experimentally, βr is the temper-
ature exponent and Er is the activation energy. An alternative form uses the activation
temperature Tr instead of the energy activation so that

kf,r = ArT
βr exp(−Tr/T)

The backward rate constant is computed using the relation

kb,r =
kf,r
Kr

where Kr is the equilibrium constant of reaction r.

It is quite simple to show that the definition (2.35) guarantees that the constraint
NS∑
i=1

ω̇i = 0 is satisfied and therefore no source term appear to the global continuity

27

equation; indeed we get:

NS∑
i=1

ω̇i =

NS∑
i=1

Mi

NR∑
r=1

(
ν
′′
i,r − ν

′
i,r

)kf,r
NS∏
j=1

[
ρYj
Mj

]φ′j,r
− kb,r

NS∏
j=1

[
ρYj
Mj

]φ′′j,r


=

NS∑
i=1


NR∑
r=1

Mi

(
ν
′′
i,r − ν

′
i,r

)kf,r
NS∏
j=1

[
ρYj
Mj

]φ′j,r
− kb,r

NS∏
j=1

[
ρYj
Mj

]φ′′j,r


=

NR∑
r=1


NS∑
i=1

Mi

(
ν
′′
i,r − ν

′
i,r

)kf,r
NS∏
j=1

[
ρYj
Mj

]φ′j,r
− kb,r

NS∏
j=1

[
ρYj
Mj

]φ′′j,r


=

NR∑
r=1


kf,r

NS∏
j=1

[
ρYj
Mj

]φ′j,r
− kb,r

NS∏
j=1

[
ρYj
Mj

]φ′′j,r
NS∑
i=1

Mi

(
ν
′′
i,r − ν

′
i,r

)
The term

NS∑
i=1

Mi

(
ν
′′
i,r − ν

′
i,r

)
is equal to 0 for each reaction thanks to the balance due

to stoichiometry and therefore
NS∑
i=1

ω̇i = 0.

In general for non elementary reactions, i.e. reactions with more than one step, the
rate exponents φ

′
j,r and φ

′′
j,r that appear in (2.35) do not coincide with the stoichio-

metric coefficients ν
′
i,r and ν

′′
i,r and therefore the effective computation of the source

chemistry term is quite challenging.
Anyway if thanks to some experimental data we are able to know φ

′
j,r we can overcome

the issue related to the computation of φ
′′
j,r in the following manner; as reported in [31]

at chemical equilibrium the following relations must simultaneously hold:

Kr =

NS∏
j=1

[
ρYj
Mj

]ν′′j,r
NS∏
j=1

[
ρYj
Mj

]ν′j,r (2.36)

kf,r

NS∏
j=1

[
ρYj
Mj

]φ′j,r
− kb,r

NS∏
j=1

[
ρYj
Mj

]φ′′j,r
= 0 (2.37)

The first relation comes from the definition of equilibrium constant while the second one
derives from the fact that ω̇i = 0 at equilibrium. If we substitute (2.36) into (2.37) ed

we recall that kb,r =
kf,r
Kr

we find the following relation:

kf,r

NS∏
j=1

[
ρYj
Mj

]φ′j,r
− kf,r

NS∏
j=1

[
ρYj
Mj

]ν′j,r
NS∏
j=1

[
ρYj
Mj

]ν′′j,r
NS∏
j=1

[
ρYj
Mj

]φ′′j,r
= 0

28

which implies
NS∏
j=1

[
ρYj
Mj

]φ′′j,r
=

NS∏
j=1

[
ρYj
Mj

]φ′j,r−ν′j,r+ν
′′
j,r

(2.38)

and so:
φ
′′
j,r = φ

′
j,r − ν

′
j,r + ν

′′
j,r j = 1...NS (2.39)

Finally we need a way to compute the equilibrium constant Kr; since it is a thermo-
dynamic constant, it exists a relation between its value and a thermodynamic quantity
represented by Gibbs free energy G defined as

G = h− Ts

where h and s are the static enthalpy and the entropy respectively.
The aforementioned relation reads as follows:

∆G◦r = −RuT ln(Kp) (2.40)

where Kp is the equilibrium constant in terms of pressure and the symbol ◦ denotes the
standard state pressure, i.e. p0 = 1 atm.
Hess’s law guarantees that the total change of Gibbs free energy during a reaction is
independent of the pathway between the initial and final states: from a mathematical
point of view this is translated by the following equation:

∆G◦r =
∑

∆◦Grproducts
−
∑

∆◦Grreactants
(2.41)

The relation 2.40 allows us to find the equilibrium constant in terms of pressure but,
since we are interested to the equilibrium constant in terms of concentration, we need
to apply the following relation:

Kr = Kp

(
RuT

patm

)−∆nr

(2.42)

where ∆nr =
NS∑
i=1

(ν
′′
i,r − ν

′
i,r) and patm denotes the atmospheric pressure.

It is worth to notice that the value Ru = 8.31 J mol−1 K−1 is valid only if we use as
units of the atmospheric pressure Pa(1 atm = 101325 Pa), while if we want to use
directly the value 1 atm we need Ru = 0.000 082 057 338 m3 atm K−1 mol−1.

29

Chapter 3

Numerical Methods

The system of equations in (2.17) must be discretized both in space and in time in order
to provide a numerical solution.

3.1 Space Integration

3.1.1 Vertex-Centered Finite Volume

During the last decades, the Finite Volume method [13,14] has become one of the most
employed techniques for simulating a wide variety of flows governed by hyperbolic equa-
tions.
The basic idea of this method is to subdivide the computational domain Ω into a disjoint
set of finite cells or volumes and to apply inside each cell the conservation laws.
Let us introduce some useful notation: the division of Ω into NC elements gives raise to
the computational mesh or grid and the cell Ci is composed by a set of vertices V so
that:

Ci, i = 1, ..., NC

Ω =

NC⋃
i=1

Ci

C̊i ∩ C̊j = ∅, i, j = 1...NC , i 6= j

Once a mesh has been formed, we have to create the finite volumes Ωi on which the
conservation laws will be applied. This can be done in two ways depending on where
the solution is stored:

(1) If the solution is stored at the center of each Ci, then Ci itself is the finite volume,
namely Ωi = Ci: this is the so called cell-centered finite volume method.

(2) If the solution is stored at the vertices of the mesh, then the finite volume Ωi must
be constructed around each vertex and this gives raise to the vertex-centered
finite volume method.

30

Figure 3.1: Finite volumes strategies

In either case we get a collection of finite volumes such that

Ω =

NC⋃
i=1

Ωi

Ω̊i ∩ Ω̊j = ∅, i, j = 1...NC , i 6= j

The points where the solution is stored are called nodes.

The software that we will exploit adopts this second strategy and the finite volumes
are formed by the centroids, face, and edge-midpoints of all cells sharing a particular
node: their union is known as dual grid as shown is Figure (3.2).

Figure 3.2: Schematic of the mesh and the control volume on a dual mesh.

31

The algorithm discretizes the system of PDE’s in (2.17) written in an integral form:∫
Ωi

∂Q

∂t
dΩ +

∫
Ωi

∇ · F dΩ−
∫

Ωi

∇ ·GdΩ−
∫

Ωi

SdΩ = 0 (3.1)

Now we exploit the divergence theorem to find:∫
Ωi

∂Q

∂t
dΩ +

∫
Σi

FndΣ−
∫

Σi

GndΣ−
∫

Ωi

SdΩ = 0 (3.2)

where Σi is the boundary of the finite volume Ωi and n is the outward unit normal
with respect to Σi. At this point we rewrite the equation (3.2) introducing the so called
residual (or steady residual) so that∫

Ωi

∂Q

∂t
dΩ +Ri(Q) = 0 (3.3)

with

Ri(Q) =

∫
Σi

(F −G)ndΣ−
∫

Ωi

SdΩ (3.4)

Every term in (3.4) is discretized separately leading to an upwind treatment of convective
fluxes, a central discretization of diffusive fluxes and a vertex-centered treatment of the
source term in combination with an explicit(forward Euler, Runge Kutta) or implicit
scheme for the time stepping. Moreover second order accuracy in space can be obtained
evaluating the fluxes with a linear polynomial reconstruction, while high order in time
can be achieved by selecting a time integration scheme like n − th order Runge-Kutta
method.

3.1.2 Discretization of Convective Fluxes

The discretization of the convective term leads to:∫
Σi

FndΣ =

Nf∑
f=1

FfΣf (3.5)

where Ff = F̃fnf is the numerical convective flux projected onto the normal nf to the
interface f with area Σf and Nf is the number of neighbour nodes of node i.

The numerical flux F̃ depends on the state vectors corresponding to the left and right
neighboring points of the considered interface, namely:

F̃ = F̃ (Qi,Qj)

as reported in Figure (3.2).
The choice for multi-species reacting flows is a scheme of Advection Upstream Splitting
Method (AUSM) family which is described in the next subsection.

32

AUSM Family

The schemes proposed by Liou and Steffen in [17–19] combine the efficiency of flux
vector splitting methods with the accuracy and robustness of Godunov methods. The
main idea is to split the projected numerical flux Ff into a convective term F (c) and a
pressure term F (p) so that at a continuum level we find:

Ff = F (c) + F (p) = ṁΨ + F (p)

Herein Ψ is a vector quantity that represents the problem variables; in our context the
mass flux ṁ, the vector Ψ and the pressure flux F (p) can be therefore expressed as:

ṁ = ρu · n,Ψ =


1
u
H
Yi

 ,F (p) =


0
pn
0
0

 (3.6)

As we can see in (3.6) the convective term is constituted by a common scalar mass flux
that takes into account the flow direction(the upwinding nature of AUSM) and problem
variables which are convected by this mass flux, while the pressure term takes into ac-
count the contribution due only to pressure.

The discretization of the component of the numerical flux normal to a given interface
depends on the left and right state vectors QL and QR and it can be defined as:

F1/2 (QL,QR,n) = ṁ1/2ΨL/R + p1/2

where ΨL/R will be determined in a simple upwind fashion,

ΨL/R =

{
ΨL, if ṁ1/2 > 0

ΨR, otherwise

Different choices for ṁ1/2 = ṁ1/2 (QL,QR,n) and p1/2 = p1/2 (QL,QR,n) deter-
mine different schemes: in this work the AUSM+-up is chosen and therefore this method
is briefly described in the next subsection.

AUSM+-up

The formulation of this scheme is widely discussed in [19].
According to this method the mass flux scalar term ṁ1/2 is a function of the interface
Mach number, the left and right neighboring cells densities ρL, ρR and the interface
sound speed a1/2:

ṁ1/2 = M1/2a1/2

{
ρL, if M1/2 > 0

ρR, otherwise
(3.7)

33

where M1/2 is a polynomial function of left and right neighboring cells Mach numbers
ML and MR. The basic AUSM method in [17] defines:

MAUSM
1/2 =M+(ML) +M−(MR)

where the split Mach number polynomial M± reads:

M±(M) =

{
M±(1)(M), if |M | > 1

M±(2)(M), otherwise

with

M±(1)(M) =
1

2
(M ± |M |)

M±(2)(M) = ±1

4
(M ± 1)2

and ML and MR are the normal left and right Mach numbers defined as:

ML =
uL · n
a1/2

MR =
uR · n
a1/2

The AUSM+-up method redefines the split Mach numbers polynomials as:

M±(4)(M) =

M
±
(1)(M), if |M | ≥ 1

M±(2)(M)
(

1∓ 16βM∓(2)(M)
)
, otherwise

where − 1
16 ≤ β ≤

1
2 In this way we can define M

AUSM+-up
1/2 =M+

(4)(ML) +M−(4)(MR).

Moreover the scheme adds a pressure diffusion term, namely:

M1/2 = M
AUSM+-up
1/2 − Kp

fa
max

(
0, 1− σM̄2

) pR − pL
ρ1/2a

2
1/2

where 0 ≤ Kp ≤ 1 and σ ≤ 1. The interface density ρ1/2 is defined as:

ρ1/2 =
ρL + ρR

2
(3.8)

while the local mean Mach number M̄ is such that:

M̄2 =
1

2

(
M2
L +M2

R

)
At this point we can focus on the definition of the interface sound speed a1/2; it can be
expressed in several ways:

a1/2 =
√
aLaR (3.9)

34

a1/2 =
aL + aR

2
(3.10)

a1/2 = min (āL, āR) (3.11)

with

āL/R =
a∗2

max
(
a∗,
∣∣uL/R · n∣∣)

where the critical velocity a∗ expression is equal to:

a∗ =

√
2(γ − 1)

γ + 1
H

In this work the interface sound speed is computed using the simplest approach that
corresponds to (3.10).

The same idea applies to the pressure flux term: for the standard AUSM scheme it
has been defined as:

pAUSM
1/2 = P+(ML)pLn+ P−(MR)pRn

where the split polynomials P± are given by:

P±(M) =

{
1
MM

±
(1)(M), if |M | > 1

±M±(2)(M) (2∓M) , otherwise

In the case of AUSM+-up the split pressure polynomials P± are modified as follows:

P±(5)(M) =


1
MM

±
(1)(M), if |M | ≥ 1

±M±(2)(M)
[
(±2−M)∓ 16αMM∓(2)(M)

]
, otherwise

with 3
16 ≤ α ≤

1
8 .

In this way we can define p
AUSM+-up
1/2 = P+

(5)(ML)pLn+ P−(5)(MR)pRn.
The pressure flux is finally modified adding an extra term like the mass flux and so we
get:

p1/2 = p
AUSM+-up
1/2 −KuP+

(5)(ML)P−(5)(MR) (ρL + ρR)
(
faa1/2

)
(uR · n− uL · n)n

with 0 ≤ Ku ≤ 1 and the scaling factor fa given by

fa(M0) = M0 (2−M0)

where
M2

0 = min
(
1,max

(
M̄2,M2

co

))
35

and the cut-off Mach number Mco is user-defined such that Mco = O(M∞). Moreover
the parameters α and β appearing in the split Mach and pressure functions are set to:

α =
3

16

(
5f2
a − 4

)
β =

1

8

Eventually as suggested in [17, 18] we set as default values Kp = 0.25, Ku = 0.75 and
σ = 1.0.
It is worth to notice the role of the scaling factor fa: as shown by Liou [19] it guarantees
less diffusive and more robust scheme in case of low Mach numbers and on the other
side its expression is such that fa = O(1) if Ma = O(1).
Moreover, according to Liou, the method is monotone and positivity-preserving.
A scheme is said to be monotone if for two initial conditions u0

j , v
0
j with u0

j ≤ v0
j , then

unj ≤ vnj ∀n

while it is said to be positivity-preserving if given unj ≥ 0 then

un+1
j (x) ≥ 0

These two properties guarantee the stability of the method.

3.1.3 Second Order Reconstruction

The AUSM scheme as presented so far assumes a constant average solution on each cell
and this leads to a first order accurate discretization in space.

The idea to get second order accuracy is to linearly extrapolate the value of the variables
denoted by Qc at the centre of the cell to the face quadrature points q as follows:

Qq = Qc +∇Qc (xq − xc) (3.12)

where xc denotes the centroid position of the control volume Ωc.
This extrapolation procedure is often indicated as MUSCL (Monotone Upstream-
centered Schemes for Conservation Laws).
We choose to apply this reconstruction scheme on T,u and p, then the density is com-
puted from the equation of state (A.2) leaving the mass fractions Yi, i = 1, ..., Ns fixed.
Now we need a procedure to compute the gradients needed in (3.12); in this work two dif-
ferent strategies have been employed: the Green-Gauss method or the Least Squares
technique.
It is worth to notice that these procedures are employed also in the computation of
∇Xi, i = 1, ..., NS for the numerical solution of Stefan-Maxwell equations.

Green-Gauss Method

Let us describe in this subsection the general procedure to determine the gradients of
suitable variables P using Green-Gauss theorem.

36

The theorem applied to cell Ωi reads as follows:∫
Ωi

∇P dΩi =

∫
∂Ωi

P · ndΣi

The discretized version therefore becomes:

∇P =
1

|Ωi|

Nf∑
f=1

P̄fnfΣf

where P̄f is a face-averaged value of P computed from the values of neighbour nodes.
The value of vector P̄f at the interface between two cells is computed through a simple
arithmetic average: therefore if we denote by PL and PR the variables at left and right
of the considered interface f respectively we get:

P̄f =
1

2
(PL + PR)

Eventually in case of boundary cells it is pretty evident that we can not use average
values but only the value on the corresponding node.

Least Squares Technique

Let us describe now the second approach to determine gradients: the least-squares tech-
nique. For the sake of simplicity we will describe the procedure for a scalar variable Pi:
given data P1, P2, P3, ..., PNi located at x1,x2,x3, ...,xNi , the following Taylor expansion
holds:

Pj = Pi +∇Pi · (xj − xi) +O(h2), j = 1...Ni
where Ni denotes the number of neighbour cells of node i.
Let us denote by ∇Pi = (a, b, c)T the three components of the gradient and define:

∆Pj = Pj − Pi ∆xj = xj − xi ∆yj = yj − yi ∆zj = zj − zi

Neglecting higher order terms, we have on over-determined system of equations

∆Pj = ∆xja+ ∆yjb+ ∆zjc

The components of ∇Pi are determined by solving the weighted minimization problem

min
a,b,c

Ni∑
j=1

ωj [∆Pj −∆xja−−∆yjb−∆zjc]
2

The weight function is chosen as:

ωj =
1

‖xj − xi‖2

37

Conditions for extrema are:

∂

∂a

Ni∑
j=1

ωj [∆Pj −∆xja−−∆yjb−∆zjc]
2 = 2

Ni∑
j=1

ωj
[
−∆Pj∆xj + (∆xj)

2a+ ∆xj∆yjb+ ∆xj∆zjc
]

= 0

∂

∂b

Ni∑
j=1

ωj [∆Pj −∆xja−−∆yjb−∆zjc]
2 = 2

Ni∑
j=1

ωj
[
−∆Pj∆yj + ∆yj∆xja+ (∆yj)

2b+ ∆yj∆zjc
]

= 0

∂

∂c

Ni∑
j=1

ωj [∆Pj −∆xja−−∆yjb−∆zjc]
2 = 2

Ni∑
j=1

ωj
[
−∆Pj∆zj + ∆zj∆xja+ ∆zj∆yjb+ (∆zj)

2c
]

= 0

We obtained three coupled equations∑
j

ωj∆x
2
j

 a+

∑
j

ωj∆xj∆yj

 b+

∑
j

ωj∆xj∆zj

 c =
∑
j

ωj∆Pj∆xj∑
j

ωj∆xj∆yj

 a+

∑
j

ωj∆y
2
j

 b+

∑
j

ωj∆zj∆yj

 c =
∑
j

ωj∆Pj∆yj∑
j

ωj∆xj∆zj

 a+

∑
j

ωj∆yj∆zj

 b+

∑
j

ωj∆z
2
j

 c =
∑
j

ωj∆Pj∆zj

which in matrix form becomes:
∑

j ωj∆x
2
j

∑
j ωj∆xj∆yj

∑
j ωj∆xj∆zj∑

j ωj∆xj∆yj
∑

j ωj∆y
2
j

∑
j ωj∆zj∆yj∑

j ωj∆xj∆zj
∑

j ωj∆yj∆zj
∑

j ωj∆z
2
j

ab
c

 =


∑

j ωj∆Pj∆xj∑
j ωj∆Pj∆yj∑
j ωj∆Pj∆zj


We need at least two neighbouring cells to apply least squares method. In general it
is better to provide a sufficiently large stencil in order to prevent singularities: here we
chose the Ni face neighbouring cells which is usually sufficient to apply least squares
successfully.
It is worth to note that the least squares method gives accurate gradient estimates, but
on highly stretched grids it can lead to unstable schemes.

3.1.4 Flux Limiters

In order to prevent the appearance of spurious oscillations near shock waves, i.e. the
so-called Gibbs phenomenon, when using a high order reconstruction, a flux limiter, here
after indicated with Φ, is typically applied. Therefore the linear reconstruction specified
in (3.12) must be modified as follows:

Qqi = Qci + Φci · ∇Qci · (xq − xc) (3.13)

with Φci ∈ [0, 1]∀i. This comes at a cost of an unavoidable accuracy deterioration in
proximity of flow discontinuities and of a hampering of convergence.

38

Venkatakrishnan’s Limiter

One common choice for the function Φc is represented by the so called Venkatakrish-
nan’s limiter [32].
Venkatakrishnan developed his multidimensional limiter in order to overcome some de-
ficiencies of Barth-Jespersen’s limiter [33], in particular the degradation of accuracy in
nearly smooth flow regions.

Also in this case for the sake of simplicity the description is performed for a scalar
variable Qi and the corresponding limiter is denoted by Φi; in the original formulation
the simple function Φ(r) = min(r, 1) [33] is replaced by a differentiable function:

Φ(r) =
r2 + r

r2 + r + 2

and the limiter is given by: 
Φi = Φ(∆+

max
∆−), for ∆− > 0

Φi = Φ(
∆+

min
∆−), for ∆− < 0

1, for ∆− = 0

where

∆− =
1

2
∆x · ∇Qi ∆+

max = max
j∈Ni

(Qi, Qj)−Qi ∆+
min = min

j∈Ni

(Qi, Qj)−Qi

where ∆x is the vector that connects the node i with the one sharing the considered
edge, while Ni denotes the set of neighbours of node i.

In order to maintain the accuracy in nearly uniform regions where ∆+ ≈ ∆− ≈ 0
the flux function is modified as follows:

Φ

(
∆+

∆−

)
=

∆+2
+ 2∆+∆− + δ

∆+2 + ∆+∆− + 2∆−2 + δ

where the δ term must scale to be negligible in non smooth flow regions and predominant
where the flow is almost uniform. To this end δ can be estimated as

δ = KU2
0

(
h

L

)3

where U0 ≈ O(‖u‖) in the whole domain, h is a local characteristic length (such as the
square root of current cell area), L is a local characteristic solution length in the smooth
flow regions and K ≈ O(1) is a user-defined constant.

The limiter is computed and applied separately for each variable in the solution vec-
tor.

39

3.1.5 Discretization of Diffusive Fluxes

The discretization of the viscous term gives raise to the following relation:

∫
Σi

GndΣ =

Nf∑
f=1

GfΣf (3.14)

where Gf = G̃fnf is the numerical diffusive flux projected onto the normal nf to the
interface f .
Typically it depends on the primitive variables P and on their gradients:

G̃ = G̃ (P ,∇P)

Either the application of Green-Gauss theorem within a chosen control volume Ωv or
the least-squares technique as previously described can be used to determine the above
mentioned gradients.

In our simulation we apply an average gradient approach with a suitable correction
in order to reduce the truncation error of the scheme:

∇P · n =
1

2
(∇P |i +∇P |j) · (nij − αs) +

Pj − Pi
‖xj − xi‖

α (3.15)

where s is the normalized vector connecting the cell centroid across the face, namely
s =

xj−xi

‖xj−xi‖ , and α = s · nij .

3.1.6 Discretization of Source Term

Source terms are approximated using piecewise constant reconstruction within each of
the finite volume cells, i.e. ∫

Ωi

SdΩ ≈ S(Pi)Ωi = SiΩi (3.16)

If the source term depends on some derivatives the Green-Gauss theorem or the least-
squares technique can still be applied with control volume equal to the current cell.

3.2 Time Integration

The system of equations in (3.3) is an example of semidiscretazion of a system of PDEs;
at this point we need a suitable discretization in time of (3.3) to obtain a numerical
solution in space and in time. First of all let us reduce ourselves to a system of ODEs
with the following semplification∫

Ωi

∂Q

∂t
dΩ +Ri (Q) ≈ dQi

dt
|Ωi|+Ri (Q) (3.17)

40

where |Ωi| is the volume of cell i.
Now we have several possibilities to discretize in time, for instance:

Qn+1
i −Qn

i

∆tni
+Ri (Qn) = 0 Explicit Euler (EE) (3.18)

Qn+1
i −Qn

i

∆tni
+Ri

(
Qn+1

)
= 0 Implicit Euler (IE) (3.19)

where the superscripts n and n+ 1 denote that the numerical solutions are evaluated at
step n and n+ 1 respectively.
∆tni is the time step for the cell i at time n: indeed local-time stepping strategies are
applied so that each volume can advance at a different time step according to the local
values of the variables of the problem. The following definition applies:

∆ti = NCFL min

(
|Ωi|
λconvi

,
|Ωi|
λvisci

)
where NCFL is the Courant-Friedrichs-Lewy (CFL) number and λconvi is the integrated
convective spectral radius computed as

λconvi =

Nf∑
f=1

(∣∣u1/2

∣∣+ c1/2

)
Σf

where
∣∣u1/2

∣∣ is the absolute value of the interface velocity computed as
∣∣uL+uR

2 · nf
∣∣

and c1/2 is the interface sound speed compute as (3.9). On the other hand the viscous
spectral radius λvisci is computed as:

λvisci =

Nf∑
f=1

Cµ1/2 + f(µL1/2 + µT1/2)

ρ1/2
Σ2
f

Here ρ1/2 is the interface density already defined in (3.8), C is a constant, µ1/2 is the

interface viscosity defined as the sum of the interface laminar viscosity µL1/2 =
µLL+µLR

2

and the interface eddy viscosity µT1/2 =
µTL+µTR

2 in case of a turbulent simulation and f is
a suitable function defined as

f(µL1/2 + µT1/2) =

(
1.0 +

PrL1/2

PrT1/2

µT1/2

µL1/2

)(
γ1/2

µL1/2

PrL1/2

)
(3.20)

where PrL1/2 and PrT1/2 are the laminar and turbulent Prandtl number respectively de-
fined as:

Pr
L/T
1/2 =

µ
L/T
1/2 Cp1/2

κ
L/T
1/2

41

with Cp1/2 =
CpL

+CpR
2 as interface specific heat at constant pressure and κ

L/T
1/2 =

κ
L/T
L +κ

L/T
R

2 as laminar and turbulent interface thermal conductivity.

Finally γ1/2 =
Cp1/2

Cv1/2
where Cv1/2 =

CvL
+CvR
2 is the interface specific heat at constant

volume.

In case of Explicit Euler scheme the solution update ∆Qn
i = Qn+1

i = Qn
i is immediately

found as:
∆Qn

i = −Ri(Q
n)∆tni (3.21)

while in case of Implicit Euler scheme the residuals at time n + 1 are unknown and
therefore a linearization about tn is needed:

Ri(Q
n+1) = Ri(Q

n)+
∂Ri(Q

n)

∂t
∆tn+O(∆t2) = Ri(Q

n)+

Nf∑
j=1

∂Ri(Q
n)

∂Qn
j

∆Qn
j +O(∆t2)

Finally the following linear system should be solved to find the solution update ∆Qn
i :(

|Ωi|
∆tni

δij +
∂Ri(Q

n)

∂Qn
j

)
∆Qn

j = −Ri(Q
n)

The term ∂Ri(Q
n)

∂Qn
j

is constituted by the contribution of convective numerical flux Jaco-

bian (see Appendix A.4), viscous numerical flux Jacobian(see Appendix A.5) and source
term Jacobian (see Appendix A.6) and in case the total flux F̃ij has a stencil of points
{i, j}, then contributions are made to the Jacobian at four points:

∂R

∂Q
=



.

.
∂F̃ij

∂Qi
. . .

∂F̃ij

∂Qj
. . .

...
...

...
. . .

...
...

. −∂F̃ij

∂Qi
. . . −∂F̃ij

∂Qj
. . .

...
...

...
...

...
...


Finally we set Qn+1 = Qn + ∆Qn.

The software allows also the use of a dual time-stepping strategy in order to achieve
high-order accuracy in time. The main idea of this method is to transform an unsteady
problem into a steady one at each physical time step; therefore the implementation of
the dual-time stepping approach solves the following problem:

∂Q

∂τ
+R∗ (Q) = 0

with

R∗ (Q) =
3

2∆t
Q+

1

|Ω|n+1

(
R (Q)− 2

∆t
Qn |Ω|n +

1

2∆t
Qn−1 |Ω|n−1

)

42

where ∆t is the physical time step and τ is a fictitious time step used for the convergence
of the steady problem: therefore we set Q = Qn+1 once the steady problem is satisfied.
Obviously in case the control volume is fixed

∣∣Ωn−1
∣∣ = |Ωn| =

∣∣Ωn+1
∣∣

3.3 Boundary Conditions

A set of boundary conditions is necessary to solve the governing equations (2.17) at each
time step. For node-centric finite volume solvers the solution is stored directly on the
computational boundary: this allows boundary conditions to be enforced either weakly
or strongly. In weak enforcement, the governing equations are written on the boundary
and a flux is computed such that when the solution achieves convergence, the condition
is satisfied, while in strong enforcement Dirichlet conditions are set for one or more scalar
variables at boundary and any contribution to the solution residual or Jacobian from
flux calculations is eliminated to preserve the specified boundary condition. The main
required boundary conditions and their numerical implementation are described in this
section.

3.3.1 Euler Wall

It requires the local velocity to align with the boundary and it is used to represent
objects in inviscid flow environments or to represent planes of symmetry in the domain.
Explicitly the boundary condition is stated as

u · n = 0

This flow tangency boundary condition is weakly enforced by imposing the numerical
flux

F̂b =



0
pn
0
0
0
....
0


over the slip-wall faces associated with boundary b.

3.3.2 No-Slip Isothermal Wall

The no slip condition which requires the flow velocity at wall equal to zero is strongly
imposed, while for what concerns the isothermal condition we impose a numerical flux

43

equal to:

F̂iso =



0
0
κ(Tint−Tw)

dij

0
0
....
0


where Tint is the temperature at the nearest internal node, Tw is the prescribed temper-
ature and dij is the distance between the nearest internal node and the boundary node.
As it is evident from the flux expression we employ a simple finite difference scheme
to approximate the heat flux due to temperature gradient and we treat the wall as
non-catalytic, i.e. ∇Yi · n = 0, i = 1...NS .

3.3.3 Subsonic Inlet

More attention is needed for what concerns the inlet boundary conditions; two cases
must be distinguished: supersonic and subsonic inlet.
In both cases the Riemann invariants have to be taken into account [27].
Starting from a generic system of conservation laws:

∂q

∂t
+
∂f(q)

∂x
= 0

we can express it in the semilinear form

∂q

∂t
+A

∂q

∂x
= 0

Moreover
A = ΓΛΓ−1

where Λ = diag(λ1, ..., λm) and the columns of Γ are the right eigenvectors of A.
If we set p = Γ−1q, we find:

∂p

∂t
+ Λ

∂p

∂x
= 0

In the previous relation, the single equations are decoupled and assume the form:

∂pk
∂t

+ λk
∂pk
∂x

= 0, k = 1, ...,m

It is natural to define the characteristic curve as solutions of the equations:

dx

dt
= λk(x, t), k = 1, ...,m

and a Riemann invariant is a scalar quantity which is constant along the characteristic
curve.

44

In general a regular function wk : Rm → R is called k-Riemann invariant if it satisfies
the following equation:

∇wk(q) · rk(q) = 0

where rk is the k−th right eigenvector of matrix A.
In case of supersonic inlet there are no outgoing characteristics and therefore all variables
can be directly specified at inlet, while in case of subsonic inlet there is one outgoing
characteristic. Usually the Riemann invariant associated to it is expressed as

Vn + 2
c

γ − 1
= const (3.22)

where Vn is the normal velocity, but unluckily this relation holds only considering the
isentropic relations for ideal gas, i.e. γ = const, as specified in [34]

p

ργ
= const (3.23)

In our case, since we are considering thermally perfect gases and γ is not constant,
we can not deal a priori to this relation. One possible novel approach can be starting
from differential relations and then, when no exact integral is available, approximate it
through suitable quadrature formulas.

In this analysis we will focus on the so called total inlet boundary conditions which
impose the velocity, the total temperature and the total pressure, i.e. the temper-
ature and the pressure when the fluid is at rest.
In order to pass from the “total” state to the local boundary state we impose the con-
ditions of isentropicity and adiabaticity.
Let us express the two aforementioned conditions and the Riemann invariant in differ-
ential form: 

Cv
dT

T
−Rdρ

ρ
= 0 (3.24)

dh+ V dV = 0 (3.25)

dVn +
c

ρ
dρ = 0 (3.26)

where the subscripts b and i denote the boundary and inner state respectively. If we
develop and we start integrating we get:

∫ Tb
Ttot

CpdT −
∫ Tb
Ttot

RbdT −
∫ Tb
Ttot

Rb
T (ρ)
ρ dρ = 0∫ hb

Htot
dh+

∫ Vb
0 V dV = 0∫ Vn,b

Vn,i
dVn +

∫ ρb
ρi

c
ρdρ = 0

where Htot is the total enthalpy computed at the imposed total temperature Ttot.
It is worth to notice that (3.24) and (3.25) are integrated between “total” and “local”
boundary conditions, while (3.26) is integrated between boundary and inner states.

45

Moreover Rb is the mixture gas constant computed with the composition imposed at in-
let and since we assume that mass fractions do not change between “total” and “local”
state, Rb is constant along the integration.

We obtain: 
∫ Tb
Ttot

CpdT −Rb (Tb − Ttot)−
∫ Tb
Ttot

Rb
T
ρ dρ = 0

hb +
V 2
b
2 = Htot

Vn,b +
∫ ρb
ρi

c
ρdρ = Vn,i

(3.27)

Applying the trapezoidal rule we find:

hb −Htot −Rb(Tb − Ttot)−Rb
(
ρb − ρtot

2

)[
Tb
ρb

+
Ttot
ρtot

]
= 0 (3.28)

hb +
V 2
b

2
= Htot (3.29)

Vbα+

(
ρb − ρi

2

)[
cb
ρb

+
ci
ρi

]
= Vn,i (3.30)

where α is the inner product between the inlet velocity direction and the outward unit
normal and ρtot is computed using the gas equation with Ttot and the total pressure ptot.

Let us derive Vb from (3.30):

Vb =
1

α

[
Vn,i −

(
ρb − ρi

2

)(
cb
ρb

+
ci
ρi

)]
=

1

α

[
Vn,i +

1

2

(
ρi
cb
ρb

+ ci − ρb
ci
ρi
− cb

)]
= Vb(ρb(Tb)) (3.31)

Now we need to express ρb = ρb(Tb) in order then to substitute into (3.29) and apply
an iterative scheme like the secant method (see Appendix A.9) to solve the implicitly
defined relation; from (3.28) we find:

hb −Htot −Rb(Tb − Ttot)−
Rb
2

(
Tb + ρb

Ttot
ρtot
− ρtot

Tb
ρb
− Ttot

)
= 0 =⇒

hb −Htot −
3

2
Rb (Tb − Ttot)−

Rb
2
ρb
Ttot
ρtot

+
Rb
2
ρtot

Tb
ρb

= 0 =⇒

− Rb
2

Ttot
ρtot

ρ2
b +

[
nb −Htot −

3

2
Rb(Tb − Ttot)

]
ρb +

Rb
2
ρtotTtot = 0 =⇒

Rb
2

Ttot
ρtot

ρ2
b −

[
nb −Htot −

3

2
Rb(Tb − Ttot)

]
ρb −

Rb
2
ρtotTtot = 0 (3.32)

The relation (3.32) is a second degree equation whose only physical solution is

ρb =

[
hb −Htot − 3

2Rb(Tb − Ttot)
]

+

√[
hb −Htot − 3

2Rb(Tb − Ttot)
]2

+R2
bTtotTb

RbTtot
ρtot

= ρb(Tb)

(3.33)

46

Eventually if we substitute (3.33) into (3.31) and (3.31) into (3.29) we get:

hb(Tb) +
Vb(ρb(Tb))

2

2
= Htot (3.34)

We underline the fact that since we use Burcat polynomials to compute the enthalpy as
we will see later on, we still have to rely on secant method to determine the boundary
temperature at inlet through (3.34) because temperature is defined by enthalpy only
implicitly. (see Appendix A.9).

Eventually it is worth to notice that the choice of trapezoidal rule has been due to
the fact that we need to derive explicitly ρb as a function of Tb but more accurate
quadrature rules can be applied.

3.3.4 Subsonic outlet

An analogous discussion holds also for the outlet boundary condition: in case of super-
sonic outlet there are no incoming characteristics and therefore all the variables can be
extrapolated from the interior state, while in case of subsonic outlet there is one incom-
ing characteristics and therefore the value of one variable depends on the state outside
the computational domain.
The typical choice, applied also in this work, is to impose the static back pressure pb at
outlet boundary and then to rely on isentropicity between the outer and the inner state
in order to update the boundary variables.
As stated in [34], the isentropicity condition can be also expressed in differential form
as:

Cp
dT

T
−Rdp

p
= 0 (3.35)

which can be integrated: ∫ Tb

Ti

Cp
T
dT −R ln

(
pb
pi

)
= 0 (3.36)

where R is constant because we choose to keep on the boundary the same mass fractions
of the inner node.
Now we need to approximate the integral that appears in (3.36) using a quadrature for-
mula; herein we choose to employ the so-called Cavalieri-Simpson rule which represents
a good compromise between accuracy and computational cost. Therefore we get:∫ Tb

Ti

Cp
T
dT =

Tb − Ti
6

[
Cp(Ti)

Ti
+ 4

Cp(
Ti+Tb

2)
Ti+Tb

2

+
Cp(Tb)

Tb

]
= f(Tb) (3.37)

from which we find the following implicit equation:

F (Tb) = f(Tb)−R ln

(
pb
pi

)
= 0 (3.38)

47

which can be solved iteratively through the secant method.
Up to now we did not mention anything about the information from the Riemann invari-
ant: now it’s time to exploit the incoming characteristic in order to find the boundary
velocity; indeed the aforementioned Riemann invariant can be stated in the form:

Vb,n −
∫ ρb

ρi

c

ρ
dρ = Vi,n (3.39)

The integral in (3.39) can be approximated through quadrature rules: herein we choose
a three-point Gaussian quadrature formula; since we can map the interval between ρi
and ρb (determined through (2.5)) exploiting the isentropicity, this scheme represents a
good compromise between accuracy and computational cost.
More in detail we get:∫ ρb

ρi

c(T)

ρ
dρ =

∫ ρb

ρi

f(ρ)dρ ≈ ρb − ρi
2

∑
j

wjf

(
ρb − ρi

2
ψj +

ρb + ρi
2

)
=
ρb − ρi

2

∑
j

wjf(ψ̃j)

(3.40)
with

wj =

[
5

9

8

9

5

9

]
ψj =

[
−
√

3

5
0

√
3

5

]

The intermediate temperature T̃j at corresponding density ρ̃j to compute the speed of
sound is determined through the isentropicity, as stated before:∫ T̃j

T̃j−1

Cp
T
dT −R

∫ T̃j

T̃j−1

dT

T
−R

∫ ψ̃j

ψ̃j−1

dρ

ρ

As it can be easily noticed, in the previous discussion we applied two different quadrature
formula for resolving subsonic inlet and outlet. The reason is that the first boundary
condition requires lower order rules if we want to obtain relatively easily an analytic ex-
pression, while the second one can be manipulated even in case of higher order formulas.
In any case it is worth to notice that (3.27) can be treated as a non-linear system of
equations where the integrals can be approximated with any kind of quadrature rule and
then the system is solved with a suitable scheme such as Newton’s method.
Analogous considerations hold also for (3.36).

Anyway both this approach for subsonic outlet and the one previously described for
subsonic inlet do not guarantee a significant improvement in the accuracy of boundary
condition especially if compared with the computational cost: indeed we run out various
simulations with random generated inner states and we checked that time required grows
up more than 50 times as we can see from the results of one of them

48

Approximation γ = const My algorithm

Vn,b 147.226900273 147.2501327862
Tb 3433.8045 3433.7451
ρb 0.0194 0.0194
cb 2801.0706 2800.1045

Execution Time 312.8 ns 16274.1 ns

Table 3.1: Comparison between two approaches for subsonic outlet boundary conditions
(pi = 101824.4595, Ti = 3365.4756, pb = 109368.0710)

The relative error for the temperature is 1.7307 · 10−5 which does not justify a so
relevant increase in the time needed.

Therefore we choose to pick γ = const approximation taking the internal value for
the subsonic outlet and the harmonic average between the internal value and the total
one in order to consider the contribution of both states for the subsonic inlet and there-
fore we assume the validity of (3.23).
We set

R+ = Vn,i +
2ci
γ − 1

In case of subsonic inlet we compute Vb as

Vb =
R+ − 2cb(T)

γ−1

α

which we substitute into (3.34) to find the temperature. Then we employ the state
equation to complete properly the state

In case of subsonic outlet we compute the density from (3.23) and consequently the
speed of sound, while the normal velocity Vn,b is found as

Vn,b = R+ − 2cb
γ − 1

Eventually we apply the state equation to find the temperature.

For further detail, please refer on [37].

49

Chapter 4

SU2 Code

The system of equations previously introduced is implemented in the SU2 suite, an
open-source collection of C++ based software tools for performing Partial Differential
Equations(PDE) analysis and solving PDE-constrained optimization problems.
For a more detailed analysis, please refer to [2]

4.1 General Features

At the highest level, SU2 has a driver class, CDriver, that controls the solution of
a multiphysics simulation. The CDriver class is responsible for instantiating all of the
geometry, physics packages, and numerical methods needed to solve a particular problem
as we can see in (4.1). In particular the constructor of this class calls all the routine

Figure 4.1: General structure of SU2

involved to the preprocessing of the simulation that ensure the physical reliability of
data.

50

if (rank == MASTER_NODE)

cout << endl <<"------------------------- Geometry Preprocessing

------------------------" << endl;

Geometrical_Preprocessing();

...

if (rank == MASTER_NODE) {

cout << endl <<"------------------------ Iteration Preprocessing

------------------------" << endl;

}

Iteration_Preprocessing();

...

if (rank == MASTER_NODE)

cout << endl <<"------------------------- Solver Preprocessing

--------------------------" << endl;

solver_container[iZone] = new CSolver**

[config_container[iZone]->GetnMGLevels()+1];

for (iMesh = 0; iMesh <= config_container[iZone]->GetnMGLevels(); iMesh++)

solver_container[iZone][iMesh] = NULL;

for (iMesh = 0; iMesh <= config_container[iZone]->GetnMGLevels();

iMesh++) {

solver_container[iZone][iMesh] = new CSolver* [MAX_SOLS];

for (iSol = 0; iSol < MAX_SOLS; iSol++)

solver_container[iZone][iMesh][iSol] = NULL;

}

Solver_Preprocessing(solver_container[iZone], geometry_container[iZone],

config_container[iZone]);

...

if (rank == MASTER_NODE)

cout << endl <<"----------------- Integration and Numerics Preprocessing

----------------" << endl;

integration_container[iZone] = new CIntegration*[MAX_SOLS];

Integration_Preprocessing(integration_container[iZone],

geometry_container[iZone],

config_container[iZone]);

if (rank == MASTER_NODE) cout << "Integration Preprocessing." << endl;

numerics_container[iZone] = new

CNumerics***[config_container[iZone]->GetnMGLevels()+1];

Numerics_Preprocessing(numerics_container[iZone], solver_container[iZone],

geometry_container[iZone], config_container[iZone]);

if (rank == MASTER_NODE) cout << "Numerics Preprocessing." << endl;

51

4.2 Additions

For our purposes, since we are interested in the implementation of a new kind of prob-
lem, we have to focus on the classes which represent the interface for physical problems
which are CVariable, CSolver and CNumerics.
Therefore we need to implement the numerical methods described before in order to com-
pute the fluxes with distinction between convective, diffusive and source term: hence we
built three different classes all derived by the base class CNumerics.
Secondly we need to store opportunely the physical state of a multispecies simulation
and we created two classes (CReactiveEulerVariable and CReactiveNSVariable)
which enriches the first one with laminar viscosity, thermal conductivity and diffusion
coefficients.
Then we adapted the main routines of the CSolver class in order to adequately call
the functions implemented in the other classes for computing residuals and imposing
boundary conditions.
Moreover we added all the options for reading extra informations typical of multispecies
flows and needed by the configuration file such as free-stream or inlet mass fractions.
Eventually we chose to rely on an external library to read chemical reactions and its
parameters (Arrhenius coefficents, activation temprature, ...) and to compute all the
physical-chemical properties required.

In the following subsections as summary we will briefly focus on some relevant aspects
of the classes related to CSolver, CNumerics and Cvaribale and on the library.

52

4.2.1 CSolver

In this class the solution procedure is defined and each child represent a solver for a par-
ticular set of governing equations: ours will be solved through class CReactiveEuler-
Solver or CReactiveNSSolver depending on whether Euler or Navier-Stokes equa-
tions have to be investigated.

Figure 4.2: Diagram for solver class

These solver classes contain functions for computing each spatial term of the PDE:
we find loops over the mesh edges to compute convective and viscous fluxes and loops
over the mesh nodes to compute source terms as well as routines for imposing suitable
boundary conditions.

We report briefly the secant method to find temperature in case of subsonic inlet which
has been discussed in the previous section

/*--- Auxiliary function to impose adiabaticity ---*/

auto f = std::function<su2double(su2double)>([&](su2double T){

su2double hb = library->ComputeEnthalpy(T, Ys);

su2double cb = std::sqrt(Gamma*Rgas*T);

su2double Vb = (Riemann - 2.0*cb/Gamma_Minus_One)/alpha;

return hb + 0.5*Vb*Vb;

});

/*--- Set parameters for secant method to find temperature ---*/

bool NRconvg, Bconvg;

su2double NRtol = 1.0e-9; // Tolerance for the Secant method

su2double Btol = 1.0e-6; // Tolerance for the Bisection method

unsigned short maxNIter = 15; // Maximum Secant method iterations

unsigned short maxBIter = 100; // Maximum Bisection method iterations

unsigned short iIter;

su2double Told = Ttot + 1.0;

53

su2double Tcurr = Ttot;

su2double Tnew;

NRconvg = false;

/*--- Execute a secant root-finding method to find the inlet temperature

(TRAPEZOIDAL) ---*/

for(iIter = 0; iIter < maxNIter; ++iIter) {

su2double tmp = f(Tcurr);

su2double F = tmp - Tot_Enthalpy;

su2double dF = tmp - f(Told);

Tnew = Tcurr - F*(Tcurr - Told)/dF;

/*--- Check for convergence ---*/

if(std::abs(Tnew - Tcurr) < NRtol) {

NRconvg = true;

break;

}

else {

Told = Tcurr;

Tcurr = Tnew;

}

}

if(NRconvg)

V_inlet[T_INDEX_PRIM] = Tcurr;

else {

/*--- Execute the bisection root-finding method ---*/

Bconvg = false;

su2double Ta = config->GetTemperatureMin()/config->GetTemperature_Ref();

su2double Tb = Ttot;

for(iIter = 0; iIter < maxBIter; ++iIter) {

Tcurr = (Ta + Tb)/2.0;

su2double F = f(Tcurr) - Tot_Enthalpy;

if(std::abs(F) < Btol) {

V_inlet[T_INDEX_PRIM] = Tcurr;

Bconvg = true;

break;

}

else {

if(F > 0.0)

Ta = Tcurr;

else

Tb = Tcurr;

}

}

/*--- If absolutely no convergence, then something is going really wrong

---*/

if(!Bconvg)

throw std::runtime_error("Convergence not achieved for bisection method

in inlet boundary condition");

}

Moreover we report a typical loop used in order to call the functions that evaluate the

54

flux and that are implemented in the CNumerics class as explained later on.

/*--- Loop over all the edges ---*/

for(iEdge = 0; iEdge < geometry->GetnEdge(); ++iEdge) {

/*--- Points in edge and normal vectors ---*/

iPoint = geometry->edge[iEdge]->GetNode(0);

jPoint = geometry->edge[iEdge]->GetNode(1);

numerics->SetNormal(geometry->edge[iEdge]->GetNormal());

/*--- Get primitive variables ---*/

auto V_i = node[iPoint]->GetPrimitive();

auto V_j = node[jPoint]->GetPrimitive();

...

/*--- Set primitive variables without reconstruction ---*/

numerics->SetPrimitive(V_i, V_j);

if(implicit)

numerics->SetSecondary(node[iPoint]->GetdPdU(),node[jPoint]->GetdPdU());

/*--- Compute the residual ---*/

numerics->ComputeResidual(Res_Conv, Jacobian_i, Jacobian_j, config);

/*--- Check for NaNs before applying the residual to the linear system

---*/

bool err = !std::none_of(Res_Conv, Res_Conv + nVar,

[](su2double elem){return std::isnan(elem);});

if(implicit) {

if(!err) {

for(iVar = 0; iVar < nVar; ++iVar) {

err = !std::none_of(Jacobian_i[iVar], Jacobian_i[iVar] + nVar,

[](su2double elem){return std::isnan(elem);});

err = err || !std::none_of(Jacobian_j[iVar], Jacobian_j[iVar] + nVar,

[](su2double elem){return std::isnan(elem);});

if(err)

break;

}

}

}

/*--- Update residual value ---*/

if(!err) {

LinSysRes.AddBlock(iPoint, Res_Conv);

LinSysRes.SubtractBlock(jPoint, Res_Conv);

/*--- Set implicit Jacobians ---*/

if(implicit) {

Jacobian.AddBlock(iPoint, iPoint, Jacobian_i);

Jacobian.AddBlock(iPoint, jPoint, Jacobian_j);

Jacobian.SubtractBlock(jPoint, iPoint, Jacobian_i);

Jacobian.SubtractBlock(jPoint, jPoint, Jacobian_j);

}

}

else

throw std::runtime_error("NaN found in the upwind residual");

} /*--- End loop over edges ---*/

55

4.2.2 CVariable

As we can see in Figure (4.2) the solver classes refer to the CVariable class for stor-
ing unknowns and other variables pertinent to the PDE at each mesh node and for
our simulations we created, as stated before, two suitable child classes called CReac-
tiveEulerVariable and CReactiveNSVariable depending on the type of problem we
need to investigate.

Figure 4.3: Diagram for variable class

An important consideration when we deal with equations or system of equations like
(2.17) is the non-dimensionalization in order to avoid undesirable scaling effects due to
units. The particular scheme chosen for SU2 can be found in Table (4.1) and (4.2)

Variables Value SI

Length lref (input) m
Pressure pref (input) kg m−1 s−2

Density ρref (input) kg m−3

Temperature Tref (input) K

Table 4.1: Independent variables for which reference values can be arbitrarily chosen

56

Variables Value SI

Velocity uref =
√
pref/ρref m s−1

Time tref = lrefuref s
Dynamic Viscosity µref = ρrefuref lref (input) kg m−1 s−1

Specific energy eref = u2
ref m2 s−2

Specific enthalpy href = eref m2 s−2

Gas Constant Rref = eref/T
2
ref m2 s−2 K−1

Heat capacity (constant pressure) cpref = Rref m2 s−2 K−1

Heat capacity (constant volume) cvref = Rref m2 s−2 K−1

Turbulent kinetic energy kref = u2
ref m2 s−2

Turbulent specific dissipation ωref = uref/lref s−1

Table 4.2: Reference values for all other variables

Unlike the original implementation we allow the user to choose the reference length
which was prior fixed to 1.0 m in order to allow more flexibility and to take into account
the mesh dimension which will be hopefully related to the characteristic length of the
problem.

//Length_Ref = 1.0; //<---- NOTE: this should be given an option or set as

a const

/*!\brief REF_LENGTH\n DESCRIPTION: Reference length for

adimensionalitazion (1.0 m by default) \ingroup Config*/

addDoubleOption("REF_LENGTH", Length_Ref, 1.0);

Moreover we added some suitable variables in order to access a certain quantity inside
the conserved or primitive array: in this way another developer can simply modify these
values if a different order is needed.

/**

* Mapping between the primitive variable name and its position in the

physical data

*/

static constexpr unsigned short T_INDEX_PRIM = 0;

static constexpr unsigned short VX_INDEX_PRIM = 1;

static unsigned short P_INDEX_PRIM;

static unsigned short RHO_INDEX_PRIM;

static unsigned short H_INDEX_PRIM;

static unsigned short A_INDEX_PRIM;

static unsigned short RHOS_INDEX_PRIM;

/**

* Mapping between the solution variable name and its position in the

physical data

*/

static constexpr unsigned short RHO_INDEX_SOL = 0;

static constexpr unsigned short RHOVX_INDEX_SOL = 1;

static unsigned short RHOE_INDEX_SOL;

static unsigned short RHOS_INDEX_SOL;

57

The most important function is the one that allows at the beginning of each itera-
tion to pass from conserved to primitive variables before computing fluxes: it is called
Cons2PrimVar and its interesting part is the computation of temperature from total
energy

/*--- Translational-Rotational Temperature ---*/

const su2double Rgas =

library->ComputeRgas(Ys)/config->GetGas_Constant_Ref();

const su2double C1 = (-rhoE + 0.5*rho*sqvel)/(rho*Rgas);

const su2double C2 = 1.0/Rgas;

/*--- Pick initial state and start algorithm ---*/

T = V[T_INDEX_PRIM];

Told = T + 1.0;

for(iIter = 0; iIter < maxNIter; ++iIter) {

/*--- Execute a secant root-finding method to find T ---*/

su2double dim_temp, dim_temp_old;

dim_temp = T*config->GetTemperature_Ref();

dim_temp_old = Told*config->GetTemperature_Ref();

if(US_System) {

dim_temp *= 5.0/9.0;

dim_temp_old *= 5.0/9.0;

}

hs_old = library->ComputeEnthalpy(dim_temp_old,

Ys)/config->GetEnergy_Ref();

hs = library->ComputeEnthalpy(dim_temp, Ys)/config->GetEnergy_Ref();

if(US_System) {

hs_old *= 3.28084*3.28084;

hs *= 3.28084*3.28084;

}

f = T - C1 - C2*hs;

df = T - Told + C2*(hs_old-hs);

Tnew = T - f*(T-Told)/df;

/*--- Check for convergence ---*/

if(std::abs(Tnew - T) < NRtol) {

NRconvg = true;

break;

}

else {

Told = T;

T = Tnew;

}

}

/*--- If the secant method has converged, assign the value of T.

Otherwise execute a bisection root-finding method ---*/

if(NRconvg)

V[T_INDEX_PRIM] = T;

else {

Bconvg = false;

su2double Ta = Tmin;

su2double Tb = Tmax;

for(iIter = 0; iIter < maxBIter; ++iIter) {

T = (Ta + Tb)/2.0;

su2double dim_temp = T*config->GetTemperature_Ref();;

58

if(US_System)

dim_temp *= 5.0/9.0;

hs = library->ComputeEnthalpy(dim_temp, Ys)/config->GetEnergy_Ref();

if(US_System)

hs *= 3.28084*3.28084;

f = T - C1 - C2*hs;

if(std::abs(f) < Btol) {

V[T_INDEX_PRIM] = T;

Bconvg = true;

break;

}

else {

if(f > 0)

Ta = T;

else

Tb = T;

}

}

/*--- If absolutely no convergence, then something is going really wrong

---*/

if(!Bconvg)

throw std::runtime_error("Convergence not achieved for bisection

method");

}

4.2.3 CNumerics

This class discretizes each system of governing equations using the numerical schemes
specified in the input file. There are several child that provide discretization techniques
for convective fluxes,viscous fluxes and source terms. During a single iteration methods
in the CNumerics classes would compute the flux contributions and Jacobians (in case of
implicit computations) at each node (using the variables stored in the CVariable class).
These flux and Jacobian values are transferred back to the CSolver class which calls
routines within CSysMatrix in order to solve the resulting linear system of equations for
the solution update.

59

Figure 4.4: UML diagram for the class CReactiveUpwAUSM

Herein we reported the UML diagram with some members of the new class CUp-
wReactiveAUSM used for the convective fluxes: the function that effectively computes
the flux and eventually the Jacobians is called ComputeResidual.
It is worth to notice that the SU2 Code widely employes run-time polymorphism:
therefore in order to implement any kind of new physical model it is necessary to de-
rive from the base class CNumerics and to implement accordingly the virtual func-
tion ComputeResidual. For our purpose three more classes are needed: one for vis-
cous fluxes at boundary nodes (CAvgGradReactive Boundary) where we cannot
apply the corrected average gradient formula (3.15), one for viscous fluxes at internal
nodes(CAvgGradReactive Flow) and one for chemistry source terms. (CSourceReactive).

60

4.2.4 Reacting Model Library

This section describes the structure of the library implemented for computing the phys-
ical and chemical properties in the mixture.
In order to allow each user to use its own version of the library and to handle the creation
of polymorphic object we use a simple version of the factory design pattern.

/*!

* \class Factory

* \brief Class for loading libraries at run-time.

* \author G. Orlando

*/

template<class Base>

class Factory: public Common::NotCopyable<Factory<Base>> {

public:

/*

* \brief Constructor of this simple factory

* \param[in] lib_name - Name of the desired library

* \param[in] config_name - Name of the file to read in order to configure

the library

* \param[in] lib_path - Path where the library is present

*/

Factory(const std::string& lib_name, const std::string& config_name, const

std::string& lib_path);

/*

* \brief Factory destrcutor

*/

~Factory() {}

/*

* \brief Get the library

*/

std::shared_ptr<Base> GetLibraryPtr(void) const {

return my_library;

}

private:

std::shared_ptr<Base> my_library; /*!< \brief Pointer to Base in order to

access concrete version. */

}; /*--- End of class Factory ---*/

Class Factory is templatized with the polymorphic Base type as a parameter and serves
as a registry point for all the providers of that type.

In our case the Base type is represented by the class PhysicalChemicalLibrary, while
ReactingModelLibrary is the concrete implementation of the functions virtually de-
clared in the Base.

61

Figure 4.5: Hierarchy for reacting model library

In the solver classes we add as a member a static shared pointer to the Base class so
that we have one version of the library and all functions can rely on that if necessary

class CReactiveEulerVariable: public CVariable {

public:

typedef std::vector<su2double> RealVec;

typedef su2double** SU2Matrix;

typedef std::shared_ptr<Framework::PhysicalChemicalLibrary> LibraryPtr;

....

}

/*! \class CReactiveEulerSolver

* \brief Main class for defining a solver for chemically reacting inviscid

flows.

* \author G. Orlando.

*/

class CReactiveEulerSolver: public CSolver {

public:

using RealVec = CReactiveEulerVariable::RealVec;

using RealMatrix = CReactiveNSVariable::RealMatrix;

using LibraryPtr = CReactiveEulerVariable::LibraryPtr;

protected:

static LibraryPtr library; /*!< \brief Smart pointer to the library that

computes physical-chemical properties. */

....

}

The reading of mixture data, chemical reactions, thermodynamic and transport proper-
ties data is delegated to the library through a suitable function called Setup

/*--- Setup library ---*/

void ReactingModelLibrary::Setup(void) {

if(!Lib_Setup) {

Le = 1.0;

/*--- If nobody has configured the library path, we try to do it here

with a default value ---*/

if(Lib_Path == "") {

std::cout<<"Library path set to default"<<std::endl;

auto base_dir = std::experimental::filesystem::current_path().string();

Lib_Path = base_dir;

}

62

std::vector<std::string> list_file;

std::ifstream config_file(Config_File);

if(config_file.is_open()) {

while(config_file.good() && !config_file.eof()) {

std::string curr_line;

std::getline(config_file,curr_line);

if(!curr_line.empty() && !std::ispunct(curr_line.at(0)))

list_file.push_back(curr_line);

}

}

else {

std::cerr<<"Unable to open the specified file with all the file names

for setting library."<<std::endl;

std::exit(1);

}

/*--- Read mixture file: it needs to be the first to check exactness of

chemical reactions and properties ---*/

std::string file_mix = list_file.at(0);

ReadDataMixture(file_mix);

std::cout<<"Mixture Data read"<<std::endl;

/*--- Check we have the right number of files ---*/

using size_type = std::vector<std::string>::size_type;

size_type max_n_file = 2*nSpecies + 2;

size_type n_file = list_file.size();

SU2_Assert((n_file == max_n_file) || (n_file == max_n_file - 1), "The

number of files present in the configuration file is wrong");

/*--- Set the specific gas constants ---*/

SetRiGas();

/*--- Read chemistry file (if present) ---*/

int buffer_chemistry = 1;

nReactions = 0;

if(n_file == max_n_file) {

/*--- We assume that chemistry file is the second in the list if its

present ---*/

std::string file_chem = list_file[1];

/*--- Herein we read chemical reaction with a suitable parser.

Inline the reactions we specify the coefficients for the exponents to

compute rates ---*/

ReadDataChem(file_chem);

std::cout<<"Chemical Reactions read"<<std::endl;

buffer_chemistry = 0;

}

/*--- We assume that data correspond to the species declared at the

beginning of the file

and a transport file is followed by a thermodynamic file

(I can’t check the content so it seems reasonable) ---*/

std::string file_transp, file_thermo;

for(unsigned short iSpecies = 0; iSpecies < nSpecies; ++iSpecies) {

file_transp = list_file[iSpecies*2 + 2 - buffer_chemistry];

ReadDataTransp(file_transp);

file_thermo = list_file[iSpecies*2 + 3 - buffer_chemistry];

63

ReadDataThermo(file_thermo);

}

Lib_Setup = true;

std::cout<<"Library set."<<std::endl;

std::cout<<std::endl;

}

else

throw Common::NotSetup("Trying to setup again without calling unsetup

first.");

}

where Common::NotSetup is a simple exception to underline that the library has
not been correctly instantiated.

We report here also the function ReadDataChem employed to read all parameters
related to chemical reactions

/*--- Reading data about chemistry. ---*/

void ReactingModelLibrary::ReadDataChem(const std::string& f_name) {

/*--- Local variables ---*/

std::string line;

unsigned n_line = 0;

unsigned n_reac_read = 0;

std::ifstream chemfile(Lib_Path + "/" + f_name);

if(chemfile.is_open()) {

/*--- Clear for safety ---*/

Stoich_Coeffs_Reactants.resize(0,0);

Stoich_Coeffs_Reactants.resize(0,0);

Stoich_Coeffs_Products_Exp.resize(0,0);

Stoich_Coeffs_Reactants_Exp.resize(0,0);

Reversible_Reactions.clear();

As.clear();

Betas.clear();

Temps_Activation.clear();

while(chemfile.good() && !chemfile.eof()) {

std::getline(chemfile,line);

/*--- Check if we encounter the termination character ---*/

if(line == "STOP")

break;

/*--- We avoid clearly reading empty lines and comments in the file

---*/

if(!line.empty() && !std::ispunct(line.at(0))) {

if(n_line == 0) {

std::istringstream curr_line(line);

curr_line>>nReactions;

SU2_Assert(!curr_line.fail(), "You have to specify the number of

reactions before proceding");

/*--- Resize and reserve space for vectors ---*/

Stoich_Coeffs_Reactants.resize(nSpecies,nReactions);

Stoich_Coeffs_Reactants.setZero();

Stoich_Coeffs_Products.resize(nSpecies,nReactions);

Stoich_Coeffs_Products.setZero();

64

Stoich_Coeffs_Reactants_Exp.resize(nReactions,nSpecies);

Stoich_Coeffs_Reactants_Exp.setZero();

Stoich_Coeffs_Products_Exp.resize(nReactions,nSpecies);

Stoich_Coeffs_Products_Exp.setZero();

Forward_Rates.resize(nReactions);

Backward_Rates.resize(nReactions);

Kc.resize(nReactions);

Kc_Derivatives.resize(nReactions);

Reversible_Reactions.reserve(nReactions);

As.reserve(nReactions);

Betas.reserve(nReactions);

Temps_Activation.reserve(nReactions);

n_line++;

}

else if(n_line == 1) {

std::istringstream curr_line(line);

std::string kind_units;

curr_line>>kind_units;

if(kind_units == "CGS")

CGS_Units = true;

else if(kind_units == "SI")

CGS_Units = false;

else

throw std::out_of_range("Unknown option for the type of units

measure");

n_line++;

}

else {

bool is_rev;

if(n_line ’mod’ 2 == 0 && n_line < nReactions + 3) {

is_rev = (line.find(’<’) != std::string::npos);

Reversible_Reactions.push_back(is_rev);

n_reac_read++;

ReadReactSpecies(line,is_rev,n_reac_read);

}

else if(n_line ’mod’ 2 == 1 && n_line < nReactions + 4) {

ReadChemCoefs(line);

}

else {

ReadExtraData_Rates(line);

ReadExtraData_ForwardExponent(line);

ReadExtraData_BackwardExponent(line);

}

n_line++;

}

}

}

SU2_Assert(n_reac_read == nReactions, "The number of reactions detected

doesn’t match nReactions");

chemfile.close();

unsigned short iReac, iSpecies;

65

/*--- Try automatic computations of exponents of products in case

backward data were not already available ---*/

for(iReac = 0; iReac < nReactions; ++iReac) {

if(Reversible_Reactions[iReac] &&

Available_Backward_Rate.count(iReac) == 0) {

for(iSpecies = 0; iSpecies < nSpecies; ++iSpecies)

Stoich_Coeffs_Products_Exp(iReac,iSpecies)=

Stoich_Coeffs_Reactants_Exp(iReac,iSpecies) +

Stoich_Coeffs_Products(iSpecies,iReac) -

Stoich_Coeffs_Reactants(iSpecies,iReac);

}

}

/*--- Update to SI units the Arrhenius constants if needed ---*/

if(CGS_Units) {

for(iReac = 0; iReac < nReactions; ++ iReac) {

double sum_forward_exp = Stoich_Coeffs_Reactants_Exp.row(iReac).sum();

As[iReac] *= std::pow(10.0, 6.0*(1.0 - sum_forward_exp));

if(Available_Backward_Rate.count(iReac) == 1) {

double sum_backward_exp =

Stoich_Coeffs_Products_Exp.row(iReac).sum();

As_back[iReac] *= std::pow(10.0, 6.0*(1.0 - sum_backward_exp));

}

}

}

/*--- Save species with negative exponents for forward rates---*/

Reactant_Species_Negative_Exponent.resize(nReactions);

for(iReac = 0; iReac < nReactions; ++iReac) {

for(iSpecies = 0; iSpecies < nSpecies; ++iSpecies) {

if(Stoich_Coeffs_Reactants_Exp(iReac,iSpecies) < 0.0)

Reactant_Species_Negative_Exponent[iReac].push_back(iSpecies);

}

}

/*--- Save species with negative exponents for backward rates---*/

Product_Species_Negative_Exponent.resize(nReactions);

for(iReac = 0; iReac < nReactions; ++iReac) {

for(iSpecies = 0; iSpecies < nSpecies; ++iSpecies) {

if(Stoich_Coeffs_Products_Exp(iReac,iSpecies) < 0.0)

Product_Species_Negative_Exponent[iReac].push_back(iSpecies);

}

}

}

else {

std::cerr<<"Unable to open the chemical file: "<<f_name<<std::endl;

std::exit(1);

}

}

As it can be easily noticed we allow the user to express the Arrhenius constants both in
CGS units (mol/cm3) and SI units (mol/m3) and the same holds also for the activa-
tion temperature where we can express the activation energy in cal/mol or directly the
temperature in K.

66

Moreover we save the species with negative exponents in order to avoid the rates going
to infinity in case of zero or vanishing mass fractions.

Let us discuss now the models employed in the library for computing transport (vis-
cosity and conductivity) and thermodynamic (specific heat, enthalpy and entropy)
properties as well as diffusion coefficients.

Viscosity

We need adequate relations for the molecular viscosity of single species µi and for the one
of the mixture µ; regarding molecular viscosity of the single species, the interpolations
from [3] is used for all the species except for 1,3-butadiene (C4H6), which is a species
that will be involved in one of our simulations and is not available in given reference.
It is an interpolation of the form:

lnµi = Ai lnT +
Bi
T

+
Ci
T 2

+Di (4.1)

where coefficients Ai, Bi, Ci and Di are given in [3] for 200− 1000 K and 1000− 6000 K
temperature ranges. In addition we remark that data ranges for H2O and O are avail-
able respectively from 300 K and from 1000 K and below these values the viscosity of
these species is considered constant and equal to the first available datum.

For C4H6 the Chapman-Enskog correlation from [10] is used:

µC4H6 = 26.69

√
MT

σ2Ωv

with

Ωv = a(T ∗)−b+c exp(−dT ∗) + e exp(−fT ∗)

σ = 0.809V
1
3
c

T ∗ = T
kb
εc

where kb is the Boltzmann constant, εc is the characteristic energy and Vc is the critical
volume. Moreover:

a = 1.16145 d = 0.77320

b = 0.14874 e = 2.16178

c = 0.52487 f = 2.43787

Results from the expression for viscosity of 1,3 butadiene considered so far anyway do
not take into account molecular polarity. Therefore the following relation from [11] is
used:

µC4H6 = 40.785
Fc
√
MT

V
2
3
c Ωv

where Fc is the correction factor whose expression depends on the polarity characteristics
of C4H6 and has the form

Fc = 1− 0.2765AF

where AF is the acentric factor, a measure of the “non sphericity” of the 1,3 butadiene
molecule.

67

All values of required parameters are reported in Table (4.3).

Moreover data for H2O and for monoatomic gases such as O and H are available respec-
tively from 300 K and 1000 K: below these values, viscosity was not extrapolated but
considered constant and with value corresponding to the first available datum.

For the molecular viscosity of the mixture µ the well known Wilke’s formula from [20]
is used:

µ =

NS∑
i=1

µiXi∑NS
j=1Xjφij

(4.2)

where

φij =

[
1 +

(
µi
µj

) 1
2
(
Mj

Mi

) 1
4

]2

√
8
[
1 +

(
Mi
Mj

)] 1
2

Let us analyse more in detail the relation (4.2) in order to get a form that will be useful
later on for a comparison with the formula used for thermal conductivity: first of all let
us notice that φii = 1 so that

NS∑
i=1

µiXi∑NS
j=1Xjφij

=

NS∑
i=1

µiXi

Xi +
NS∑
j=1
j 6=i

Xjφij

=

NS∑
i=1

µi

1 + 1
Xi

NS∑
j=1
j 6=i

Xjφij

=

NS∑
i=1

µi

1 + 1
Xi

Σφ

(4.3)

where

Σφ =

NS∑
j=1
j 6=i

Xjφij

Thermal Conductivity

For thermal conductivity of the species κi, the same kind of interpolation as the one
previously shown for viscosity from [3] can be used. Coefficients Ai, Bi, Ci and Di coef-
ficients are conductivity-specific and are given by the reference.
This again does not apply to 1,3-butadiene, which is not available in given reference, as
for viscosity. For C4H6 different approaches have been compared by [1]: two modified
Eucken model (from [21] and [22]) and Chung method (from [11]) all summarized in [21].
All these models require ideal gas hypothesis and are expressed as follows:

κC4H6 =
µC4H6Cv
MC4H6

(
1.30 + 1.7614

Ru
Cv

)
(4.4)

Here Cv is the specific heat at constant volume computed as Cv = Cp−Ru according the
law of ideal gases and MC4H6 is the molar mass of 1,3-butadiene. Moreover we remark
that the dynamic viscosity µC4H6 has been calculated in the previous section while the
computation of specific heat at constant pressure, which for an ideal gas depends only
on temperature, will be explored in the next section.

Stiel et al. in [22] proposed a modification of (4.4) which reads:

κC4H6 =
µC4H6Cv
MC4H6

(
1.15 + 2.033

Ru
Cv

)
(4.5)

68

Chung et al. in [11] proposed a method that expresses the thermal conductivity as:

κC4H6 =
µC4H6Cv
MC4H6

3.77RuΨ (4.6)

which Ψ is a function of three parameters α, β and Z of the form:

Ψ = 1 + α

[
0.215 + 0.28288α− 1.061β + 0.26665Z

0.6366 + βZ + 1.061αβ

]
with:

α =
Cv
Ru
− 3

2
=
Cp
Ru
− 5

2

β = 0.7682− 0.7109AF + 1.3168(AF)2

Z = 2.0 + 10.5

(
T

Tc

)2

Let us summarize all data needed for transport properties of 1,3-butadiene For the

M[g mol−1] 54.092
Vc[cm3 mol−1] 220

εc [J] 4.6614021 · 10−21

AF 0.192
Tc[K] 425.17

Table 4.3: Parameters C4H6

thermal conductivity of the mixture κ a Wilke’s formula analogous to (4.3) holds, but
an approach from [23] is chosen. This method is valid for polyatomic gas mixtures but
represents an adequate approximation even if monoatomic species are present and reads:

κ =

NS∑
i=1

κi

1 + 1
Xi

Σψ

(4.7)

where

Σψ =

NS∑
j=1
j 6=i

Xjψij

ψij =

1.065

[
1 +

(
κi
κj

) 1
2
(
Mj

Mi

) 1
4

]2

√
8
[
1 +

(
Mi
Mj

)] 1
2

Entropy, Enthalpy and Specific Heat

Single species entropy si, static enthalpy hi and specific heat at constant pressure Cp,i
are taken from NASA polynomials as given by [4]. The polynomials have the form:

s◦
Ru

= a1i lnT + a2iT +
a3iT

2

2
+
a4iT

3

3
+
a5iT

4

4
+ a7i

hi
RuT

= a1i +
a2iT

2
+
a3iT

2

3
+
a4iT

3

4
+
a5iT

4

5
+
a6i

T
cp,i
Ru

= a1i + a2iT + a3iT
2 + a4iT

3 + a5iT
4

69

It is important to notice that the static enthalpy given by the polynomial expression
includes the enthalpy of formation at Tref = 298K.

Finally in order to obtain the mixture entropy s, the mixture static enthalpy h and
the mixture specific heat at constant pressure Cp we average over mass fractions, i.e.:

s◦ =

NS∑
i=1

Yis
◦
i (4.8)

h =

NS∑
i=1

Yihi (4.9)

Cp =

NS∑
i=1

YiCp,i (4.10)

In this work we do not apply directly the aforementioned polynomials to compute trans-
port and thermodynamic properties, but we employ spline interpolation techniques (see
Appendix (A.8)) in order to obtain flexibility in the use of several user-defined models
and to gather the computational way to proceed; this is performed in the following man-
ner: in a pre-processing stage data tables for thermodynamic/transport properties are
generated as text files using literature polynomial data with user-defined temperature
interval ∆T and then the spline interpolation coefficients are generated during the setup
phase.
Eventually in order to determine the interval which a desired temperature belongs to,
the integer search algorithm has been employed: in this way the extrema of interval can
be found through a simple division with a noticeable speed-up in the algorithm.

Binary diffusion coefficients

For what concerns diffusion fluxes in order to solve (2.21) we need an expression for
binary diffusion coefficients. As reported in [5] their expression is the following

Dij =
7.1613 · 10−25

ρ

M
[
T
(

1
Mi

+ 1
Mj

)]1/2

Ωij

which requires the computation of collision integrals Ωij : this is very expansive from
a computational point of view and so we decide to exploit a semi-empirical formula
from [12]

Dij =
10−3T 1.75

pM
1
2
ij

[
(Σv)

1
3
i + (Σv)

1
3
j

]2 (4.11)

where

Mij =

[
1

Mi
+

1

Mj

]−1

and (Σv)i is the molecular diffusion volume of species i as the sum of atomic and struc-
tural volume.

It is important to remark that in (4.11) the temperature must be expressed in K and the
pressure in atmospheres in order to obtain the result in

[
cm2 s−1

]
using data in Table

(4.4).

70

Species Diffusion Volumes [cm3/mol]

CO 18.00
CO2 26.90
C4H6 77.46
H 2.31
H2 6.12
H2O 13.10
O 6.11
O2 16.30
OH 8.42
N2 17.90

Table 4.4: Molecular diffusion volumes of considered species (from [1])

4.3 Execution

The main program for solving fluid dynamics applications calls essentially three routines
as reported:

/*--- Multi-zone problem: instantiate the multi-zone driver class by default

or a specialized driver class for a particular multi-physics problem. ---*/

driver = new CFluidDriver(config_file_name, nZone, nDim, MPICommunicator);

delete config;

config = NULL;

/*--- Launch the main external loop of the solver ---*/

driver->StartSolver();

/*--- Postprocess all the containers, close history file, exit SU2 ---*/

driver->Postprocessing();

Inside the constructor of the class CFluidDriver we call several functions including
Iteration Preprocessing, Solver Preprocessing, Integration Preprocessing and
Numerics Preprocessing.

Iteration Preprocessing allocates the class MeanFlowIteration as shown here:

case REACTIVE_EULER: case REACTIVE_NAVIER_STOKES:

if (rank == MASTER_NODE)

std::cout << ": Euler/Navier-Stokes/RANS fluid iteration." << std::endl;

iteration_container[iZone] = new

CMeanFlowIteration(config_container[iZone]);

break;

Solver Preprocessing allocates the appropriate class CSolver and calls the Preprocessing
function inside the CSolver class.

71

if(reactive_euler) {

if(compressible) {

solver_container[iMGlevel][FLOW_SOL] = new

CReactiveEulerSolver(geometry[iMGlevel], config, iMGlevel);

solver_container[iMGlevel][FLOW_SOL]->

Preprocessing(geometry[iMGlevel], solver_container[iMGlevel], config,

iMGlevel, NO_RK_ITER, RUNTIME_REACTIVE_SYS, false);

}

}

if(reactive_ns) {

if(compressible) {

solver_container[iMGlevel][FLOW_SOL] = new

CReactiveNSSolver(geometry[iMGlevel], config, iMGlevel);

solver_container[iMGlevel][FLOW_SOL]->

Preprocessing(geometry[iMGlevel], solver_container[iMGlevel], config,

iMGlevel, NO_RK_ITER, RUNTIME_REACTIVE_SYS, false);

}

}

where RUNTIME REACTIVE SYS is a marker of the type of governing equations.
Integration Preprocessing allocates the class CMultiGridIntegration whose con-
structor sets the variables that check the convergence.

Numerics Preprocessing instead allocates the classes that will compute the residual for
all terms(convective, viscous and source).

Inside the function StartSolver() we call several functions to simulate effectively the
chosen problem.

while (ExtIter < config_container[ZONE_0]->GetnExtIter()) {

/*--- Perform some external iteration preprocessing. ---*/

PreprocessExtIter(ExtIter);

/*--- Perform a single iteration of the chosen PDE solver. ---*/

if (!fsi) {

/*--- Perform a dynamic mesh update if required. ---*/

DynamicMeshUpdate(ExtIter);

/*--- Run a single iteration of the problem

(mean flow, wave, heat,...). ---*/

Run();

/*--- Update the solution for dual time stepping strategy ---*/

Update();

}

72

else {

Run(); // In the FSIDriver case, mesh and solution updates are

already included into the Run function

}

...

/*--- If the convergence criteria has been met,

terminate the simulation. ---*/

if (StopCalc) break;

ExtIter++;

}

PreprocessExtIter(ExtIter) calls SetExtIter(ExtIter) and SetInitialCondition to set
respectively the maximum number of iteration for the external loop and the initial con-
dition in case of an unsteady simulation.

Let us report some of the routines called by the function Run

for (iZone = 0; iZone < nZone; iZone++)

iteration_container[iZone]->

Preprocess(output, integration_container, geometry_container,

solver_container, numerics_container, config_container,

surface_movement, grid_movement, FFDBox, iZone);

...

if (unsteady)

nIntIter = config_container[MESH_0]->GetUnst_nIntIter();

else

nIntIter = 1;

for (IntIter = 0; IntIter < nIntIter; IntIter++) {

...

for (iZone = 0; iZone < nZone; iZone++) {

config_container[iZone]->SetIntIter(IntIter);

iteration_container[iZone]->

Iterate(output, integration_container, geometry_container,

solver_container, numerics_container, config_container,

surface_movement, grid_movement, FFDBox, iZone);

}

/*--- Check convergence in each zone --*/

checkConvergence = 0;

for (iZone = 0; iZone < nZone; iZone++)

checkConvergence += (int)

integration_container[iZone][FLOW_SOL]->GetConvergence();

/*--- If convergence was reached in every zone --*/

if (checkConvergence == nZone) break;

}

}

73

The function Iterate calls MultiGrid Iteration to execute an iteration of the full ap-
proximation scheme

/*--- Solve the Euler, Navier-Stokes or Reynolds-averaged Navier-Stokes

(RANS) equations (one iteration) ---*/

if (config_container[val_iZone]->GetKind_Solver() == REACTIVE_EULER ||

config_container[val_iZone]->GetKind_Solver() == REACTIVE_NAVIER_STOKES)

integration_container[val_iZone][REACTIVE_SOL]->

MultiGrid_Iteration(geometry_container, solver_container,

numerics_container, config_container,

RUNTIME_REACTIVE_SYS, IntIter, val_iZone);

else

integration_container[val_iZone][FLOW_SOL]->

MultiGrid_Iteration(geometry_container, solver_container,

numerics_container, config_container,

RUNTIME_FLOW_SYS, IntIter, val_iZone);

which calls MultiGrid Cycle to compute the Space Integration (suitable functions of
the class CSolver for computing residuals and applying boundary conditions) and
the Time Integration(function of the class CSolver depending on the time marching
scheme) and eventually get the prolungated solution.

for (iPreSmooth = 0; iPreSmooth < config[iZone]->GetMG_PreSmooth(iMesh);

iPreSmooth++) {

switch (config[iZone]->GetKind_TimeIntScheme()) {

case RUNGE_KUTTA_EXPLICIT: iRKLimit = config[iZone]->GetnRKStep(); break;

case EULER_EXPLICIT: case EULER_IMPLICIT: iRKLimit = 1; break; }

for (iRKStep = 0; iRKStep < iRKLimit; iRKStep++) {

...

/*--- Space integration ---*/

Space_Integration(geometry[iZone][iMesh], solver_container[iZone][iMesh],

numerics_container[iZone][iMesh][SolContainer_Position],

config[iZone], iMesh, iRKStep, RunTime_EqSystem);

/*--- Time integration, update solution using the old solution plus the

solution increment ---*/

Time_Integration(geometry[iZone][iMesh], solver_container[iZone][iMesh],

config[iZone], iRKStep, RunTime_EqSystem, Iteration);

...

}

}

...

if ((iMesh < config[iZone]->GetnMGLevels() && ((Iteration >=

config[iZone]->GetnStartUpIter()) || startup_multigrid))) {

/*--- Compute $r_k = P_k + F_k(u_k)$ ---*/

solver_container[iZone][iMesh][SolContainer_Position]->

74

Preprocessing(geometry[iZone][iMesh], solver_container[iZone][iMesh],

config[iZone], iMesh, NO_RK_ITER, RunTime_EqSystem, false);

Space_Integration(geometry[iZone][iMesh], solver_container[iZone][iMesh],

numerics_container[iZone][iMesh][SolContainer_Position],

config[iZone], iMesh, NO_RK_ITER, RunTime_EqSystem);

SetResidual_Term(geometry[iZone][iMesh],

solver_container[iZone][iMesh][SolContainer_Position]);

/*--- Compute $r_(k+1) = F_(k+1)(I^(k+1)_k u_k)$ ---*/

SetRestricted_Solution(RunTime_EqSystem,

solver_container[iZone][iMesh][SolContainer_Position],

solver_container[iZone][iMesh+1][SolContainer_Position],

geometry[iZone][iMesh], geometry[iZone][iMesh+1],

config[iZone]);

solver_container[iZone][iMesh+1][SolContainer_Position]->

Preprocessing(geometry[iZone][iMesh+1], solver_container[iZone][iMesh+1],

config[iZone], iMesh+1, NO_RK_ITER, RunTime_EqSystem,

false);

Space_Integration(geometry[iZone][iMesh+1],

solver_container[iZone][iMesh+1],

numerics_container[iZone][iMesh+1][SolContainer_Position],

config[iZone], iMesh+1, NO_RK_ITER, RunTime_EqSystem);

/*--- Compute $P_(k+1) = I^(k+1)_k(r_k) - r_(k+1) ---*/

SetForcing_Term(solver_container[iZone][iMesh][SolContainer_Position],

solver_container[iZone][iMesh+1][SolContainer_Position],

geometry[iZone][iMesh], geometry[iZone][iMesh+1],

config[iZone], iMesh+1);

/*--- Recursive call to MultiGrid_Cycle ---*/

for (unsigned short imu = 0; imu <= RecursiveParam; imu++) {

if (iMesh == config[iZone]->GetnMGLevels()-2)

MultiGrid_Cycle(geometry, solver_container, numerics_container,

config, iMesh+1, 0, RunTime_EqSystem,

Iteration, iZone);

else

MultiGrid_Cycle(geometry, solver_container, numerics_container,

config, iMesh+1, RecursiveParam, RunTime_EqSystem,

Iteration, iZone);

}

/*--- Compute prolongated solution, and smooth the correction $u^(new)_k

= u_k + Smooth(I^k_(k+1)(u_(k+1)-I^(k+1)_k u_k))$ ---*/

GetProlongated_Correction(RunTime_EqSystem,

solver_container[iZone][iMesh][SolContainer_Position],

solver_container[iZone][iMesh+1][SolContainer_Position],

geometry[iZone][iMesh],

geometry[iZone][iMesh+1],

config[iZone]);

75

SmoothProlongated_Correction(RunTime_EqSystem,

solver_container[iZone][iMesh][SolContainer_Position],

geometry[iZone][iMesh],

config[iZone]->GetMG_CorrecSmooth(iMesh),

1.25, config[iZone]);

SetProlongated_Correction(solver_container[iZone][iMesh][SolContainer_Position],

geometry[iZone][iMesh], config[iZone], iMesh);

The function Update calls the function Update of the class CMeanFlowIteration

for(iZone = 0; iZone < nZone; iZone++)

iteration_container[iZone]->Update(output, integration_container,

geometry_container, solver_container,

numerics_container, config_container,

surface_movement, grid_movement,

FFDBox, iZone);

which sets the solution at time n− 1 and n for the dual time solver.

Let us report the main subroutines of the function Postprocessing inside the class CFlu-
idDriver

for (iZone = 0; iZone < nZone; iZone++) {

Numerics_Postprocessing(numerics_container[iZone],

solver_container[iZone],

geometry_container[iZone],

config_container[iZone]);

delete [] numerics_container[iZone];

}

delete [] numerics_container;

if (rank == MASTER_NODE) cout << "Deleted CNumerics container." << endl;

for (iZone = 0; iZone < nZone; iZone++) {

Integration_Postprocessing(integration_container[iZone],

geometry_container[iZone],

config_container[iZone]);

delete [] integration_container[iZone];

}

delete [] integration_container;

if (rank == MASTER_NODE) cout << "Deleted CIntegration container." <<

endl;

for (iZone = 0; iZone < nZone; iZone++) {

Solver_Postprocessing(solver_container[iZone],

geometry_container[iZone],

config_container[iZone]);

delete [] solver_container[iZone];

}

delete [] solver_container;

if (rank == MASTER_NODE) cout << "Deleted CSolver container." << endl;

76

for (iZone = 0; iZone < nZone; iZone++) {

delete iteration_container[iZone];

}

delete [] iteration_container;

if (rank == MASTER_NODE) cout << "Deleted CIteration container." << endl;

All the functions for Postprocessing are simply delegated to delete the instances of the
classes created in the corresponding Preprocessing.

77

Chapter 5

Numerical Results

In this section we report the main results from the numerical simulations performed
during this work. Its starts from three basic test-cases for non reacting flows in order
to validate the code for multispecies simulations (inviscid bump, diffusion inside a chan-
nel and laminar flat plate) and develops the discussion into more complex conditions
(combustion inside aerospace engine and re-entry case)

5.1 Inviscid Bump

The first case to test the correct behaviour of the code is represented by the inviscid
bump in a channel: this example uses a 2D geometry that features a circular bump along
the lower wall. This kind of flow is one of the benchmark problems for subsonic inlet
and outlet boundary conditions in SU2 and therefore we can employ the already tested
mesh.
In detail the channel is of length 3 m with a height of 1 m and a circular bump centered
along the lower wall with height 0.1 m, while the mesh is composed of quadrilaterals
with 256 nodes along the length of the channel and 128 nodes along the height.

Figure 5.1: Computational mesh with highlighted boundary conditions

At inlet boundary total boundary conditions are imposed with a total tempera-
ture of 288.6 K and a total pressure of 102010.0 Pa, while the static pressure imposed
at outlet is equal to 101325.0 Pa.

78

Eventually the species chosen for the simulation is O2. Let us compare the results at
steady state with a second order scheme:

Figure 5.2: Comparison of Mach number contours between my version (left) and the
original one (right)

Figure 5.3: Comparison of pressure contours between my version (left) and the original
one (right)

The results obtained with my version are in good agreement with respect to the orig-
inal one and the expected symmetry due to the geometry and the model is well caught.

Finally another simulation involving three species (78% N2, 20% O2 and 2% CO2) has
been performed in order to verify the behaviour in case of multispecies flows.
Let us report the results at steady state:

79

Figure 5.4: Mach number contour for multispecies simulation

Figure 5.5: Pressure contour for multispecies simulation

Also in this case the simulation shows the expected symmetric behaviour with values
very similar to the previous simulations since the gas constant values are not so different.

80

5.2 Diffusion in a channel

The second test case regards the diffusion of two species inside a channel in order to ver-
ify if the modifications of Stefan-Maxwell equations previously described work properly.
The channel is long 1 m and height 0.06 m and the mesh consists of 120 x 40 nodes.
As initial condition the channel is full of CO so that we can verify that the model is able
to eliminate a species that is no more injected and does not react.
Moreover the species denoted as CO2 has the same molar mass of O2 in order to avoid
pressure gradients at inlet so that streamlines do not curve along the domain.
Eventually at inlet we inject O2 in the upper part and CO2 in the lower part with a
total temperature of 500 K and a total pressure of 102 000 Pa, while at outlet we set a
static pressure of101 325 Pa.

Figure 5.6: Mesh (stretched in y for visibility) and boundary conditions: Inlet, Outlet,
No-slip walls

These are the contours of species mass fractions at steady state:

Figure 5.7: Steady state distribution of CO2 mass fraction (left) and O2 mass fraction
(right)

81

Figure 5.8: Steady state distribution of CO mass fraction

Moreover we report the profile of CO2 and O2 mass fractions at x = 0.8 m

Figure 5.9: Steady state profile of CO2 and O2 mass fractions at x = 0.8 m

The diffusion phenomenon is very well caught at interface as it can be seen by the
symmetry of the profile: the two species diffuse from y ≈ 0.02 m up to y ≈ 0.04 m and
at y = 0.03 m we find half O2 and half CO2.
Moreover there are no residuals of CO as expected.

82

5.3 Laminar Flat Plate

Another interesting test case regards the capability to catch boundary layer; therefore a
comparison analogous to the one previously described for the bump is performed.
The computational mesh for the flat plate is composed of quadrilaterals with 65 nodes
in both the x and y directions. The flat plate is along the lower boundary of the domain
(y = 0) starting at x = 0 m and is of length 0.3048 m.

Figure 5.10: Computational mesh with highlighted boundary conditions

At inlet boundary total conditions are imposed with a total temperature of 300 K
and a total pressure of 100 000 Pa, while the static pressure imposed at outlet is equal
to 97 250 Pa.
As in the previous case we choose O2 to compare the results at steady state between the
original code and my version.

Figure 5.11: Comparison of Mach number contours between my version (left) and the
original one (right)

As it can be noticed the two simulations match well: the development of the bound-
ary layer is present in the results with analogous height.

Eventually we perform a simulation with three species taking the same composition
described for the bump, i.e 78% N2, 20% O2 and 2% CO2, and we show the results at
steady state:

83

Figure 5.12: Mach number contour for flat plate simulation

The boundary layer is present even in this case and in order to support the results
we compare them with the well known Blasius profile ([28]):

Figure 5.13: Comparison with Blasius profile at x = 0.3048 m(O2 for original version of
SU2)

As it can be noticed in Figure (5.13) the behaviour matches nearly perfectly not only
the original version of SU2 but also the analytical solution of Blasius equation.

84

5.4 Combustion and Hybrid Rocket Engine

A good starting point to define combustion is provided by [16] as “a rapid oxidation
generating heat or both light and heat”.
Combustion can occure in either a flame or nonflame mode and flames are catego-
rized as being either premixed flames or nonpremixed(diffusion) flames. The two
classes of flames are related to the state of mixedness of reactants as suggested by the
names: in a premixed flame the fuel and the oxidizer are mixed at a molecular level
before the occurrence of any chemical reaction, while in a diffusion flame the reactants
are initially separated and reaction occurs only at the interface between the fuel and the
oxidizer where also the mixing takes place.

Historically within the framework of space technology two kind of engines have been
used: solid rocket engine and liquid rocket engine.
Liquid-propellant rockets are in general more efficient because the high density allows
the volume of propellant tanks to be low and therefore the use of low-mass propellant
tanks results in a high mass ratio (a measure of the efficiency of rockets which de-
scribes how much more massive the vehicle is with propellant than without) and allows
to obtain higher velocity changes; on the other hand solid-propellant rockets can remain
in storage for a long time without too much propellant degradation and so provide high
thrust for relatively low cost.

Hybrid rocket engine try to conjugate precision and safety of liquid-fuelled rockets with
design simplicity and low cost of solid-fuelled rockets.
The main characteristic of a hybrid rocket engine is that oxidizer and fuel are in dif-
ferent phases and therefore the resulting motor shows features of both liquid and solid
propellants systems; in the typical configuration the fuel is a solid of cylindrical shape
while the oxidizer is injected into its port as a liquid spray or a gas.

Chemistry

In order to choose the correct chemical model, an assumption has to be made about
pyrolisis products of the considered fuel (HTPB): as reported in [1], according to [8]
and [9] the main product during pyrolisis process is gaseous 1,3 butadiene C4H6. The
first approach is to implement a very simple chemical model for the combustion of
butadiene gas and as shown in [6], it is possible to introduce a two step, five species
combustion model (Venkateswaran - Merkle model):

1. C4H6 + 3.5O2 −→ 4CO + 3H2O

2. CO + 0.5O2 ←→ CO2

The mass production terms are computed as follows:

˙ωC4H6 = −MC4H6kf,1[C4H6][O2]

˙ωO2 = MO2

{
−3.5kf,1[C4H6][O2]− 0.5

(
kf,2[CO][O2]0.5 − kb,2[CO2]

)}
˙ωCO = MCO

{
4kf,1[C4H6][O2]−

(
kf,2[CO][O2]0.5 − kb,2[CO2]

)}
˙ωH2O = 3MH2Okf,1[C4H6][O2]

˙ωCO2 = MCO2

(
kf,2[CO][O2]0.5 − kb,2[CO2]

)

85

where

kf,1(T) = 8.80 · 1011 exp(−30000/(RuT))

kf,2(T) = 1014.6 exp(−40000/(RuT))

kb,2(T) = 5.00 · 108 exp(−40000/(RuT))

with Ru = 1.985 75 cal/(mol ·K).

Let us now briefly describe the addressed geometry: the chamber is described as a
2D domain with an axial inlet for the oxidizer and a transverse inlet for fuel which ex-
tends from 0.025 m to 0.075 m along x direction. The chamber is 0.125 m long and 0.006
0.006 m height.
For what concerns the computational mesh we rely on [1] and therefore we know that a
mesh with 100 x 80 elements is sufficient to reach convergence. Anyway in order to catch
even better the behaviour near the walls we employ a tapered mesh with 90 cells in y
direction and more specifically 20 nodes from 0 m to 0.001 m and from 0.005 m to 0.006 m

Figure 5.14: Computational mesh for chamber

Let us summarize now the employed boundary conditions: we underline that the
walls are treated as isothermal no-slip walls.

Figure 5.15: Summary of boundary conditions for combustion

Let us report now some important considerations about convergence and CFL con-
dition: simulations that involve chemistry, in particular the one with combustion, are
very stiff because reactions lead to a large heat release and subsequent density changes
and large accelerations in the flow.
For this reason the value of the Courant-Friedrichs-Levy (CFL) number must be kept low
and a good way to reach a stable solution is employing a two-step procedure: we begin

86

by solving the flow with reactions disabled and when the pattern has been established
we re-enable the reactions and continue the calculation.

Figure 5.16: Contour plot of the temperature without chemistry

In all our simulations we set CFL equal to 0.2 and as default parameter convergence
is reached for a residual norm below 10−4.

These are the results for what concerns the Venkateswaran - Merkle model:

Figure 5.17: Temperature contour at steady state for combustion chamber (Merkle)

Figure 5.18: C4H6 (left) and O2 (right) contours at steady state (Merkle)

87

Figure 5.19: CO2 (left) and H2O (right) contours at steady state (Merkle)

Reactant distribution is coherent with inlet positioning: fuel (C4H6) remains in lower
region and then it is burnt, while oxidizer (O2) remains in the top region and reacts in
the flame region.
Products distribution is coherent with peak temperature region, were chemical reactions
are more intense.
Finally the peak temperature is significantly high but, as explained by [1], this is due
to the simplicity of the model which does not allow a correct and quantitative study of
combustion processes in hybrid rocket engine.

A more detailed four reactions, six species scheme from Jones and Linstedt (JL) [7]
has been then considered:

1. C4H6 + 2O2 −→ 4CO + 3H2

2. C4H6 + 4H2O −→ 4CO + 7H2

3. CO +H2O ←→ CO2 + 3H2

4. H2 + 0.5O2 ←→ H2O

with the following parameters

N. reaction Ar Er βr Reaction rate a b

1 9.44e+10 30000 0 kf,1[C4H6]a[O2]b 0.5 1.25
2 7.84e+10 30000 0 kf,2[C4H6]a[O2]b 1 1
3 2.75e+12 20000 0 kf,3[C4H6]a[O2]b 1 1
4 1.43e+17 40000 -1 kf,4[C4H6]a[O2]b 0.25 1.5

Table 5.1: Parameters of JL (4 reactions) chemical scheme: units are cm,mol, s, cal

Herein we report the main results:

88

Figure 5.20: Temperature contour for combustion chamber (JL 4 reactions)

Figure 5.21: C4H6 (left) and O2 (right) contours (JL 4 reactions)

Figure 5.22: CO2 (left) and H2O (right) contours (JL 4 reactions)

The qualitative behaviour previously described is caught even with this model; any-
way the peak temperature is still beyond 4000 K: as explained in [1], this scheme with
4 reactions is not a suitable candidate for quantitative analysis because it lacks of any
strong energy-absorbing chemical process as shown by the high presence of H2O.

Therefore a better compromise between number of chemical species involved and com-
putational cost is the six reactions, nine species model proposed again by Jones and
Linstedt [7]:

1. C4H6 + 2O2 −→ 4CO + 3H2

2. C4H6 + 4H2O −→ 4CO + 7H2

89

3. CO +H2O ←→ CO2 + 3H2

4. H2 + 0.5O2 ←→ H2O

5. O2+←→ O +O

6. H2O ←→ OH +H

with the following parameters

N. reaction Ar Er βr Reaction rate a b

1 9.44e+10 30000 0 kf,1[C4H6]a[O2]b 0.5 1.25
2 7.84e+10 30000 0 kf,2[C4H6]a[O2]b 1 1
3 2.75e+12 20000 0 kf,3[C4H6]a[O2]b 1 1
4 1.43e+17 40000 -1 kf,4[C4H6]a[O2]b 0.25 1.5
5 1.50e+09 113000 0 kf,5[O2]a 1
6 2.30e+22 40000 -3 kf,6[H2O]a 1

Table 5.2: Parameters of JL (6 reactions) chemical scheme: units are cm,mol, s, cal

Herein we report the main results:

Figure 5.23: Temperature contour for combustion chamber (JL 6 reactions)

Figure 5.24: C4H6 (left) and O2 (right) contours (JL 6 reactions)

90

Figure 5.25: CO2 (left) and H2O (right) contours (JL 6 reactions)

For further considerations we report also the profile of some mass fractions at x =
0.1 m and x = 0.120 m:

Figure 5.26: O2 (left) and O (right) profiles (JL 6 reactions)

Figure 5.27: H2O (left) and OH (right) profiles (JL 6 reactions)

91

Figure 5.28: H (left) and H2 (right) profiles (JL 6 reactions)

Figure 5.29: CO2 profile (JL 6 reactions)

The peak temperature, about 3800 K, and the flame geometry are in line with liter-
ature results (see [1]).
In the highest temperature region H2O dissociates into H and OH and O2 dissociates
in O. CO2, which appears in the chemical model only as reaction product, is generated
homogeneously along the flame. As also expected by problem physics, being H2O a re-
actant in the production of CO2, it is possible to notice a separation between the regions
where mass fractions of these two species are present. The same phenomena involves
also H2 mass fraction with respect to H2O mass fraction, being the first a reaction an-
tagonist of the latter in all the chemical reactions involving both of them.

Moreover we report a comparison of the H2O profile between the four reactions and
the six reactions model at the end of combustion chamber where reactions are more

92

intense.

Figure 5.30: H2O profile comparison between JL 4 reactions and JL 6 reactions

As it can be noticed the mass fraction of H2O in case of the model with four reactions
is much higher than the one obtained with the model with 6 reactions: this is probably
due to the lack of the last two reactions that characterize JL 6 reactions scheme which
express the water dissociation.

Eventually we perform a qualitative analysis comparing the obtained mass fractions
profiles of H2O and CO2 with the one reported in [1]; in his simulation indeed Mazzetti
adopted a turbulent regime or, more precisely, a turbulent regime where the contribution
related to chemical reactions have been computed in a laminar framework.

Figure 5.31: H2O mass fraction comparison between my simulation(left) and
Mazzetti(right)

93

Figure 5.32: CO2 mass fraction comparison between my simulation (left) and Mazzetti
(right)

The qualitative behaviour is quite similar and the position on flame, which is detected
by the portion where the species are more present, is in accordance with between the
two simulations.
There are some differences from a quantitative point of view but this is probably due to
the fact that Mazzetti worked in a turbulent regime.

94

5.5 Hypersonic flow over blunt body

The last simulation deals with a hypersonic flow over a blunt body.
The high velocities reached allow us to employ an Euler model; this case represents a
good test for re-entry: indeed, since this kind of flow is characterized by hypersonic
regime (Ma >> 1), we are in presence of shock waves.
The mesh consists of 81 nodes at inlet and 61 nodes at outlet: it is a structured grid
with elements perpendicular to the arc of circumference in correspondence of Euler wall
(see Figure 5.33).

Figure 5.33: Mesh and boundary conditions for supersonic flow over blunt body

As free-stream conditions we pick Mach number Ma∞ = 12, pressure p∞ = 43 Pa
and temperature T∞ = 266 K.
The chosen composition is 79% of N2 and 21% of O2, while the chemical scheme from [35]
is the following:

1. O2 +N ←→ 2O +N

2. O2 +NO ←→ 2O +NO

3. O2 +O ←→ 2O +O

4. O2 +O2 ←→ 2O +O2

5. O2 +N2 ←→ 2O +N2

6. N2 +O ←→ 2N +O

95

7. N2 +NO ←→ 2N +NO

8. N2 +O2 ←→ 2N +O2

9. N2 +N ←→ 2N +N

10. N2 +N2 ←→ 2N +N2

11. NO +O2 ←→ N +O +O2

12. NO +N2 ←→ N +O +N2

13. NO +O ←→ N +O +O

14. NO +N ←→ N +O +N

15. NO +NO ←→ N +O +NO

16. NO +O ←→ O2 +N

17. N2 + 0←→ NO +N

with the following parameters

N. reaction Arrhenius parameter Temperature exponent Activation temperature

1 3.610e+18 -1 5.940e+04
2 3.610e+18 -1 5.940e+04
3 3.610e+18 -1 5.940e+04
4 3.610e+19 -1 5.940e+04
5 3.610e+18 -1 5.940e+04
6 1.920e+17 -0.5 1.131e+05
7 1.920e+17 -0.5 1.131e+05
8 1.920e+17 -0.5 1.131e+05
9 4.150e+22 -1.5 1.131e+05
10 1.920e+17 -0.5 1.131e+05
11 3.970e+20 -1.5 7.560e+04
12 3.970e+20 -1.5 7.560e+04
13 3.970e+20 -1.5 7.560e+04
14 3.970e+20 -1.5 7.560e+04
15 3.970e+20 -1.5 7.560e+04
16 3.180e+09 1 1.970e+04
17 6.750e+13 0 3.750e+04

Table 5.3: Parameters of Gupta [35] chemical scheme: units are cm,mol, s,K

It is worth to notice that the exponent coefficients to compute reaction rates coincide
with stoichiometric coefficients.
Moreover we specify that data for thermodynamic properties are taken by [39].
Let us report now the obtained results:

96

Figure 5.34: Contour plot of Mach number (left) and temperature (right)

Figure 5.35: Distribution of N2 mass fraction (left) and N mass fraction (right)

97

Figure 5.36: Distribution of O2 mass fraction (left) and O mass fraction (right)

As we can notice from Mach number and temperature contour plots we see the shock
wave who is travelling along the domain.
For what concerns the mixture composition we underline the fact that the nitrogen N2

dissociates into N minimally, while the molecular oxygen O2 dissociates into atomic
oxygen in significant quantity.

Moreover we report the contour plot of the total enthalpy which is conserved along
the domain as expected since we are using Euler equations

98

Figure 5.37: Contour plot of total enthalpy

Then we tried to perform a simulation using a 2nd order scheme.
Unfortunately in this case the obtained results are not satisfactory

Figure 5.38: Contour plot of Mach number (left) and temperature (right) with a second
order scheme

99

Figure 5.39: Contour plot of pressure (left) and relative zoom (right) with a second order
scheme

We do not retrieve the expected accuracy as it can be noticed by the oscillations
present in the results.
Moreover there is another issue: the total enthalpy is no more conserved; even if we
cannot expect the perfect results obtained in Figure (5.37) because of the reconstruction
procedure, we find large oscillations, while in [38] it has been shown that the relative
difference is on the order of 0.01%.

100

Figure 5.40: Contour plot of total enthalpy with a second order scheme

Since we saw through the simulation with a first order scheme that there are no
problems in imposing the boundary conditions, the reason of this issue is probably due
to the reconstruction procedure and in particular to the limiter.

101

Chapter 6

Conclusions

In this work we developed a numerical solver for the simulation of reacting flows with
a novel approach in the treatment and computation of molecular diffusion fluxes which
play an essential role in the progress of chemical reactions.
Different numerical simulations were performed in order to validate the code and they
showed a good behaviour both for subsonic and supersonic flows.
It is worth to notice that the code is able to support 3D simulations in case more complex
geometries are needed.

Future developments and extensions are possible, for instance:

1. The capability to treat turbulent flows;

2. The implementation of adequate reconstruction schemes to simulate correctly hy-
personic flows;

3. The implementation of catalytic boundary condition;

4. The implementation of a radiation model, able to describe precisely the radiative
heating effects inside a combustion chamber.

The first suggestion requires further discussion: usually the closure of governing equa-
tions for turbulent flows is based on strong approximations and hypothesis. In his work,
Mazzetti [1] found an accurate closure for the turbulent transport of energy, but the
same does not hold for diffusion fluxes where a lot of work have still to be done specially
in case Stefan-Maxwell equations are employed: it is certainly a difficult issue.

102

Appendix A

A.1 Equations formulated for moving grids

Many unsteady flows require solutions on arbitrary moving grids; for this reason we
report here a popular approach to analyse this kind of situations known as Arbitrary
Lagrangian Eulerian (ALE) formulation.
This method leads to a modified form of the Navier-Stokes equations which accounts for
the relative motion of the grid with respect to the fluid.

The governing equations (2.17) written in a time-dependent integral form for a mov-
ing control volume Ω with boundary Σ, surface element dΣ and n as outward unit
normal vector of the boundary Σ read as follows:∫

Ω

∂Q

∂t
dΩ +

∫
Σ
FMndΣ−

∫
Σ
GndΣ−

∫
Ω
SdΩ = 0 (A.1)

The only difference with respect to the integral form (3.2) is in the definition of FM ,
while the vector of viscous fluxes G, the source term Q and the components of the stress
tensor τ retain the same form.

The vector of convective fluxes projected onto n becomes on dynamic grids

FMn = Fn− (vloc · n)Q

where

vloc =

(
∂x

∂t
,
∂y

∂t
,
∂z

∂t

)T
is the local velocity for a domain in motion.

Summing up we can express the new term FM as:

FM =



ρ(u− vloc)
ρu⊗ (u− vloc) + pI
ρE(u− vloc) + pu
ρ1(u− vloc)
ρ2(u− vloc)
...
ρNS

(u− vloc)


=



ρ(u− vloc)
ρu⊗ (u− vloc) + pI
(ρE + p)(u− vloc) + pvloc
ρ1(u− vloc)
ρ2(u− vloc)
...
ρNS

(u− vloc)



103

The mass flux ṁ and the vector Ψ of the AUSM method reported in (3.6) become:

ṁ = ρ(u− vloc) · n,Ψ =


1
u
H + pvloc·n

ρ(u−vloc)·n
Yi


Moreover the modified flow tangency wall boundary condition is (u − vloc) · n = 0 for
inviscid flows and the no-slip wall boundary condition becomes u = vloc.

As reported in [27], Thomas and Lombard pointed out first that besides the conservation
of mass, momentum and energy, also the so-called Geometric Conservation Law(GCL)
must be satisfied in order to avoid errors induced by moving control volumes; the integral
form of GCL reads:

∂

∂t

∫
Ω
dΩ−

∫
Σ
vloc · ndΣ = 0

and this result comes from the requirement that a numerical scheme employed in the
simulations must be able to reproduce a constant solution (uniform flow) independently
on the deformation of the grid.

104

A.2 Pressure and Temperature Derivatives

Let us recall the employed state equation for a mixture that obeys to the perfect gas
relation:

p =

NS∑
i=1

ρiRiT (A.2)

As we can see from (A.2) the thermodynamic quantity p is described by NS +1 variables
and therefore p = p(ρi, T).
Moreover since T is not an unknown of the Navier-Stokes equations it must exist and
additional relation between the temperature and the conserved variables T (Q) so that
p = p(ρi, T (Q)) = p(Q).

In order to express the Jacobian matrices for convective and viscous fluxes we are inter-
ested in the derivatives of pressure and temperature with respect to Q.
Let us start from (A.2):

dp =

NS∑
i=1

RiTdρi +

NS∑
i=1

ρiRidT =

NS∑
i=1

RiTdρi + ρRdT (A.3)

At this point we need to know dT in order to proceed; for this purpose we refer to
another thermodynamic quantity: the internal energy. Indeed we get:

ρe =

NS∑
i=1

ρiei =⇒ d(ρe) =

NS∑
i=1

eidρi +

NS∑
i=1

ρidei (A.4)

Since each gas is considered thermally perfect, the internal energy of each species i is a
function of temperature only so that dei = dei

dT dT = CvidT ; if we substitute into (A.4)
we obtain:

d(ρe) =

NS∑
i=1

eidρi +

NS∑
i=1

ρiCvidT =

NS∑
i=1

eidρi + ρCvdT

=⇒ dT =

d(ρe)−
NS∑
i=1

eidρi

ρCv
(A.5)

Now we need an expression for d(ρe) in terms of the unknowns Q and since the most
related conserved variable to the internal energy is ρE we try to employ the following
relation:

ρE = ρe+
1

2
ρu · u = ρe+

1

2

(ρu) · (ρu)

ρ
=⇒ d(ρE) = d(ρe) +

1

2
d

(
(ρu) · (ρu)

ρ

)
The term d

(
(ρu)·(ρu)

ρ

)
can be expanded in this way:

d

(
(ρu) · (ρu)

ρ

)
= 2

(ρu) · d(ρu)

ρ
+ (ρu) · (ρu)d(

1

ρ
) = 2u · d(ρu)− (u · u)dρ

Therefore we finally obtain:

d(ρE) = d(ρe)+u ·d(ρu)− 1

2
(u ·u)dρ =⇒ d(ρe) =

1

2
(u ·u)dρ−u ·d(ρu)+d(ρE) (A.6)

105

Now we can back substitute (A.6) into (A.5) to find:

dT =
u · u
2ρCv

dρ− u

ρCv
· d(ρu) +

1

ρCv
d(ρE)−

NS∑
i=1

ei
ρCv

dρi (A.7)

Eventually we need to back substitute (A.7) into (A.3) to conclude the computations
related to pressure derivatives:

dp =

NS∑
i=1

RiTdρi + ρR

(
u · u
2ρCv

dρ− u

ρCv
· d(ρu) +

1

ρCv
d(ρE)−

NS∑
i=1

ei
ρCv

dρi

)

=
R

Cv

u · u
2

dρ− R

Cv
u · d(ρu) +

R

Cv
d(ρE) +

NS∑
i=1

(
RiT −

R

Cv
ei

)
dρi (A.8)

Moreover the following relation holds:

R

Cv
=
Cp − Cv
Cv

= γ − 1 (A.9)

Summing up, thanks to (A.7),(A.8) and (A.9) we found:

∂T (Q)

∂ρ
=
u · u
2ρCv

∂T (Q)

∂(ρu)
= − u

ρCv
(A.10)

∂T (Q)

∂(ρE)
=

1

ρCv

∂T (Q)

∂ρi
= − ei

ρCv
(A.11)

(A.12)

∂p(Q)

∂ρ
= (γ − 1)

u · u
2

∂p(Q)

∂(ρu)
= −(γ − 1)u (A.13)

∂p(Q)

∂(ρE)
= (γ − 1)

∂p(Q)

∂ρi
= RiT − (γ − 1)ei (A.14)

106

A.3 Convective Flux Jacobian

The convective flux Jacobian represents the gradient of the convective fluxes with respect
to the conservative variables.
First of all let us report the definition of the aforementioned fluxes in a more convenient
form:

Fn = Fn =



ρu · n
(ρu⊗ u+ pI)n
(ρE + p)u · n
ρ1u · n
ρ2u · n
...
ρNS

u · n


=



ρu · n
(ρu⊗ρu)

ρ n+ pn

(ρE + p)ρu·nρ
ρ1

ρu·n
ρ

ρ2
ρu·n
ρ

...
ρNS

ρu·n
ρ


For simplicity let us denote by F 1

n the term ρu · n, by F 2
n the term (ρu⊗ρu)

ρ n + pn, by

F 3
n the term (ρE + p)ρu·nρ and by F 4

n the term ρi
ρu·n
ρ .

For what concerns F 1
n we get:

∂F 1
n

∂ρ
= 0

∂F 1
n

∂(ρu)
= n

∂F 1
n

∂ρE
= 0

∂F 1
n

∂ρi
= 0 (A.15)

About F 2
n we will find the derivatives only along x direction and the ones along y and

z will follow immediately from similar computations. Let F 2
nx

= ρux
ρu·n
ρ + pnx the

component of F 2
n along x; hence it follows:

∂F 2
nx

∂ρ
= − 1

ρ2
ρux(ρu · n) +

∂p

∂ρ
nx = −uxu · n+

∂p

∂ρ
nx

∂F 2
nx

∂(ρux)
=
ρu · n
ρ

+
ρuxnx
ρ

+
∂p

∂ρux
nx = u · n+ uxnx +

∂p

∂ρux
nx

∂F 2
nx

∂(ρuy)
=
ρuxny
ρ

+
∂p

∂ρuy
nx = uxny +

∂p

∂ρuy
nx

∂F 2
nx

∂(ρuz)
=
ρuxnz
ρ

+
∂p

∂ρuz
nx = uxnz +

∂p

∂ρuz
nx

∂F 2
nx

∂ρE
=

∂p

∂ρE
nx

∂F 2
nx

∂ρi
=

∂p

∂ρi
nx (A.16)

Summing up we obtain:

∂F 2
n

∂ρ
= −u(u · n) +

∂p

∂ρ
n

∂F 2
ni

∂(ρu)j
= u · nδij + uinj +

∂p

(∂ρu)j
ni, i, j = 1...3

∂F 2
n

∂ρE
=

∂p

∂ρE
n

∂F 2
n

∂ρi
=

∂p

∂ρi
n (A.17)

For what concerns F 3
n we find:

∂F 3
n

∂ρ
= − 1

ρ2
((ρu · n)ρE) + ρu · n

∂
(
p
ρ

)
∂ρ

= −E(u · n) +
∂p

∂ρ
(u · n)− p

ρ
(u · n) = (u · n)

(
∂p

∂ρ
− E − p

ρ

)
∂F 3

n

∂(ρu)
=
ρE

ρ
n+

p

ρ
n+ (u · n)

∂p

∂(ρu)
=

(
E +

p

ρ

)
n+

∂p

∂(ρu)
(u · n)

∂F 3
n

∂ρE
= u · n+ (u · n)

∂p

∂(ρE)
=

(
∂p

∂(ρE)
+ 1

)
(u · n) = γ(u · n)

∂F 3
n

∂ρj
= (u · n)

∂p

∂ρj
(A.18)

107

Let us focus finally on F 4
n :

∂F 4
n

∂ρ
= − ρi

ρ2
(ρu · n) = −Yi (u · n)

∂F 4
n

∂(ρu)
= Yin

∂F 4
n

∂ρE
= 0

∂F 4
n

∂ρj
= (u · n)δij (A.19)

108

A.4 AUSM Scheme Approximate Jacobian

The numerical flux computed by means of AUSM scheme reported in Section (3.1.2) can
be expressed as a function of the conserved variables as:

F1/2 (QL,QR,n) =a1/2


M+

1/2QL +M+
1/2



0
0
pL
0
0
...
0


+M−1/2QR +M−1/2



0
0
pR
0
0
...
0





+ p1/2



0
n
0
0
0
...
0


(A.20)

Herein M±1/2 = 1
2

(
M1/2 +

∣∣M1/2

∣∣) with

M1/2 =M+
(4)(ML) +M−(4)(MR)−MP (ML,MR)

where

MP (ML,MR) =
Kp

fa
max

(
0, 1− σM̄2

) pR − pL
ρ1/2a

2
1/2

and
p1/2 = P+(ML)pL + P−(MR)pR − PP (ML,MR)

with

PP (ML,MR) = KuP+
(5)(ML)P−(5)(MR) (ρL + ρR)

(
faa1/2

)
(uR · n− uL · n)

All the other terms are defined in Section (3.1.2).

Since we are interested in an approximate Jacobian, we will neglect the dependence
of the interface speed of sound on the conserved variables (frozen speed of sound); hence

109

the complete Jacobian of the scheme can be written in compact form as:

∂F1/2

∂QL/R
=a1/2



(
∂M+

1/2

∂QL/R

)T
ρL +

(
∂M−

1/2

∂QL/R

)T
ρR(

∂M+
1/2

∂QL/R

)T
(ρu)L +

(
∂M−

1/2

∂QL/R

)T
(ρu)R(

∂M+
1/2

∂QL/R

)T
((ρE)L + pL) +M+,−

1/2

(
∂pL,R

∂QL,R

)T
+

(
∂M−

1/2

∂QL/R

)T
((ρE)R + pR)(

∂M+
1/2

∂QL/R

)T
ρ1L +

(
∂M−

1/2

∂QL/R

)T
ρ1R(

∂M+
1/2

∂QL/R

)T
ρ2L +

(
∂M−

1/2

∂QL/R

)T
ρ2R

...(
∂M+

1/2

∂QL/R

)T
ρNSL

+

(
∂M−

1/2

∂QL/R

)T
ρNSR



+ a1/2M
+,−
1/2 I +



0T(
∂p1/2
∂QL/R

)T
n

0T

0T

0T

...
0T


(A.21)

Now we can focus on the expressions of the partial derivatives in (A.21):

∂M±1/2

∂QL
=

1

2

∂M1/2

∂QL

(
1± sgn(M1/2)

) ∂M±1/2

∂QR
=

1

2

∂M1/2

∂QR

(
1± sgn(M1/2)

)
(A.22)

∂M1/2

∂QL
=
∂M+

(4)

∂QL
− ∂MP

∂QL

∂M1/2

∂QR
=
∂M−(4)

∂QR
− ∂MP

∂QR
(A.23)

∂M±(4)(M)

∂Q
=

{
1
2 (1± sgn(M)) ∂M∂Q , if |M | ≥ 1

±
(

1
2 ± 1

)
(1 + 8βM (M ∓ 1)) ∂M∂Q , otherwise

(A.24)

∂MP (ML,MR)

∂QL
=

Kp

a2
1/2

∂
(

max(0,1−σM̄2)
fa

pR−pL
ρ1/2

)
∂QL

=

Kp

a2
1/2f

2
aρ

2
1/2

[
∂(max(0, 1− σM̄2))

∂QL
(pR − pL)(faρ1/2) +

∂(pR − pL)

∂QL
max(0, 1− σM̄2)(faρ1/2)

− ∂fa
∂QL

ρ1/2

(
max(0, 1− σM̄2)(pR − pL)

)
−
∂ρ1/2

∂QL
fa
(
max(0, 1− σM̄2)(pR − pL)

)]
(A.25)

110

Now we need to compute each derivative term that appears in (A.25):

∂(pR − pL)

∂QL
= − ∂pL

∂QL
(A.26)

∂ρ1/2

∂QL
=



0.5
0
0
0
0
...
0


(A.27)

∂(max(0, 1− σM̄2))

∂QL
=

{
−σML

∂ML
∂QL

, if 1− σM̄2 > 0

0, otherwise
(A.28)

∂fa
∂QL

= f(M̄,Mco)

(
ML

∂ML

∂QL

)
(A.29)

where

f(M̄,Mco) =

{
0, if M̄2 > 1 or M̄2 < M2

co
1−M̄
M̄

, otherwise

Analogous computations hold for the right state:

∂MP (ML,MR)

∂QR
=

Kp

a2
1/2

∂
(

max(0,1−σM̄2)
fa

pR−pL
ρ1/2

)
∂QR

=

Kp

a2
1/2f

2
aρ

2
1/2

[
∂(max(0, 1− σM̄2))

∂QR
(pR − pL)(faρ1/2) +

∂(pR − pL)

∂QR
max(0, 1− σM̄2)(faρ1/2)

− ∂fa
∂QR

ρ1/2

(
max(0, 1− σM̄2)(pR − pL)

)
−
∂ρ1/2

∂QR
fa
(
max(0, 1− σM̄2)(pR − pL)

)]
(A.30)

with

∂(pR − pL)

∂QR
=

∂pR
∂QR

(A.31)

∂ρ1/2

∂QR
=



0.5
0
0
0
0
...
0


(A.32)

∂(max(0, 1− σM̄2))

∂QR
=

{
−σMR

∂MR
∂QR

, if 1− σM̄2 > 0

0, otherwise
(A.33)

∂fa
∂QR

= f(M̄,Mco)

(
MR

∂MR

∂QR

)
(A.34)

111

Let us focus now on the pressure related terms:

∂p1/2

∂QL
= P+

(5)

∂pL
∂QL

+ pL
∂P+

(5)

∂QL
− ∂PP
∂QL

∂p1/2

∂QR
= P−(5)

∂pR
∂QR

+ pR
∂P−(5)

∂QR
− ∂PP
∂QR

(A.35)

∂P±(5)(M)

∂Q
=

{
0, if |M | ≥ 1

±1
4 (M ± 1)

(
±3− 3M + 4α

(
5M2 − 1

)
(M ∓ 1)

)
∂M
∂Q ±M(M2 − 1)2 ∂α

∂Q , otherwise

(A.36)

with
∂α

∂Q
=

15

8

∂fa
∂Q

Therefore we get:

∂PP (ML,MR)

∂QL
= Kua1/2

∂
(
P+

(5)P
−
(5)(ρR + ρL)fa(uR · n− uL · n)

)
∂QL

=

Kua1/2

[
∂P+

(5)

∂QL
P−(5)(ρR + ρL)fa(uR · n− uL · n) +

∂P−(5)

∂QL
P+

(5)(ρR + ρL)fa(uR · n− uL · n)+

∂(ρR + ρL)

∂QL
P+

(5)P
−
(5)fa(uR · n− uL · n) +

∂fa
∂QL

P+
(5)P

−
(5)(ρR + ρL)(uR · n− uL · n)+

∂(uR · n− uL · n)

∂QL
P+

(5)P
−
(5)(ρR + ρL)fa

]
(A.37)

and:

∂PP (ML,MR)

∂QR
= Kua1/2

∂
(
P+

(5)P
−
(5)(ρR + ρL)fa(uR · n− uL · n)

)
∂QR

=

Kua1/2

[
∂P+

(5)

∂QR
P−(5)(ρR + ρL)fa(uR · n− uL · n) +

∂P−(5)

∂QR
P+

(5)(ρR + ρL)fa(uR · n− uL · n)+

∂(ρR + ρL)

∂QR
P+

(5)P
−
(5)fa(uR · n− uL · n) +

∂fa
∂QR

P+
(5)P

−
(5)(ρR + ρL)(uR · n− uL · n)+

∂(uR · n− uL · n)

∂QR
P+

(5)P
−
(5)(ρR + ρL)fa

]
(A.38)

112

with

∂(ρR + ρL)

∂QL
=
∂(ρR + ρL)

∂QR
=



1
0
0
0
0
...
0


(A.39)

∂(uR · n− uL · n)

∂QL
=



−uL·n
ρL

− n
ρL

0
0
0
...
0


(A.40)

∂(uR · n− uL · n)

∂QR
=



uR·n
ρR
n
ρR
0
0
0
...
0


(A.41)

Finally the derivatives of the Mach number with respect to the conserved variables are:

∂M

∂Q
=



−M
ρ
n

ρa1/2

0
0
0
...
0


(A.42)

113

A.5 Numerical Viscous Jacobians

For implicit time-stepping a Jacobian of viscous fluxes is required. Analytically, the
viscous Jacobian depends on second order derivative information within the flow domain,
which is difficult and expensive to acquire in general as it requires the use of non-local,
“neighbour of neighbour” nodes. This can be avoided by applying the Thin Shear
Layer (TSL) approximation [27], where dual-grid face tangential gradient information
are neglected. Under TSL approximation, gradients of a generic scalar quantity ξ are the
finite difference gradients between nodes i and j, projected into the cartesian directions,

∂ξ

∂·
=
ξj − ξi
dij

n·, · = x, y, z

where dij is the distance between node i and node j.
Under the TSL approximation, only local quantities on opposing sides of the dual-
grid interface are required, which makes the approximation well-suited to edge-based,
unstructured solvers. Moreover in SU2 an other approximation is introduced for what
concerns the Jacobian contribution due to momentum and energy balance equations:
the value of the gradient at node j is computed using the mean value at interface and
then its opposite is taken for node i, i.e:

∂ξ

∂·

∣∣∣∣
j

= −∂ξ
∂·

∣∣∣∣
i

=
ξ̄

dij
n·, · = x, y, z

where ξ̄ is the mean value of a generic quantity ξ at face interface. Let us analyse first
the contribution of the following part of the projected viscous flux:

Ĝij =


..
τn
(τu− q) · n
...

 , (A.43)

If the transport coefficients are held fixed under differentiation and (A.43) is differenti-
ated with respect to the primitive variables

P =

(
u
T

)
the TSL Jacobian takes a simpler form,

∂Ĝi,j
∂Pij

=
∂Ĝi,j

(1)

∂Pij
+
∂Ĝi,j

(2)

∂Pij

where

∂Ĝij
(1)

∂Pj
=


µijθx/dij µijηz/dij µijηy/dij 0
µijηz/dij µijθy/dij µijηz/dij 0
µijηy/dij µijηx/dij µijθz/dij 0
µijπx/dij µijπy/dij µijπz/dij κij ∗ θ/dij

 = −
∂Ĝij

(1)

∂Pi

114

Herein µij and κij are the laminar viscosity and the thermal conductivity at the interface
respectively, while the other quantities are defined as follows:

θ = n2
x + n2

y + n2
z

θx = θ +
n2
x

3

θy = θ +
n2
y

3

θz = θ +
n2
z

3

ηx =
nynz

3

ηy =
nznz

3

ηz =
nxny

3
πx = ūxθx + ūyηz + ūzηy

πy = ūxηz + ūyθy + ūzηx

πz = ūxηy + ūyηx + ūzθz

where ū· , with · = x, y, z is the value of velocity at face interface.

Eventually

∂Ĝij
(2)

∂Pj
=
∂Ĝij

(2)

∂Pi
=


0 0 0 0
0 0 0 0
0 0 0 0

0.5(τijn)x 0.5(τijn)y 0.5(τijn)z
∑NS

k=1
0.5Jkij · nCpk(T̄)


where T̄ is the interface temperature.
The whole computation is very long to report; anyway in order to show the general
procedure let us show the computation of ∂(τn)x

∂ux
|j ; first of all we recall that

(τn)x = µij

(
2
∂ūx
∂x
− 2

3
∇ · ū

)
nx + µij

(
∂ūx
∂y

+
∂ūy
∂x

)
ny

Therefore

∂(τn)x
∂ux

∣∣∣∣
j

= µij

(
2
∂

∂ux

(
∂ūx
∂x

)
− 2

3

∂

∂ux
(∇ · ū)

)
nx + µij

(
∂

∂ux

(
∂ūx
∂y

)
+

∂

∂ux

(
∂ūy
∂x

))
ny

Changing the derivatives we get:

∂(τn)x
∂ux

∣∣∣∣
j

= µij

(
2nx −

2

3
nx

)
nx
dij

+ µij
n2
y

dij
= µij

(
4
3n

2
x − n2

y

)
dij

= µij
θx
dij

Since we need the derivatives with respect to the conserved variables, the following
transformation matrix is also applied:

∂P

∂Q
=


−ux

ρ
1
ux

0 0 0 0 0 0

−uy
ρ 0 1

uy
0 0 0 0 0

−uz
ρ 0 0 1

uz
0 0 0 0

∂T
∂ρ

∂T
∂ρux

∂T
∂ρuy

∂T
∂ρux

∂T
∂ρE

∂T
∂ρ1

∂T
∂ρ2

.... ∂T
∂ρNS


115

More attention is needed instead for the contribution due to species diffusion fluxes; in-
deed since the fluxes Ji, i = 1...NS are defined implicitly through (2.18), it is not feasible
to derive an analytic expression even with the use of TSL. Another approach could be
the computation through a numerical Jacobian but even this case is too expensive from a
computational point of view because it requires to solve one more set of Stefan-Maxwell
equations for each interface and, above all, it necessitates the computation of gradient of
molar fractions after perturbation which involves the costly algorithms of Green-Gauss
or least squares.
Therefore the alternative exploited in order to compute an approximate Jacobian is to
apply the TSL to Ramshaw self-consistent relations (2.13) keeping fixed the mean effec-
tive diffusion coefficients and the molar mass computed with the value of molar fractions
at interface.
After some attempts, it has been noted that only the contribution due to single species
guarantees the convergence of implicit Euler method; therefore let us report first the
derivative of a generic molar fraction Xi with respect to a partial density ρk

∂Xi

∂ρk
=
∂
(
σ M
Mi
Yi

)
∂ρk

=
M

Mi

(
∂σ

∂ρk
Yi +

∂Yi
∂ρk

σ

)
=
M

Mi

(
Yi
ρ

+ δik
σ

ρ

)
=
M

Mi

(
Yi
ρ

σ

σ
+ δik

σ

ρ

)
=
Xi

σρ
+
M

Mi

δik
ρ

If we denote by R and L the right and left state respectively we get:

∂J̄i · n
∂ρk

∣∣∣∣
R

=− ρ̄Mi

M̄

¯Di,m

dij

(
Xi,R

σRρR
+
MR

Mi

σR
ρR
δik

)
+ Ȳi

ρ̄

M̄dij

NS∑
j=1

(
Mj

¯Dj,m
Xj,R

σRρR

)
+ Ȳi

ρ̄

M̄dij

MRσR
ρR

+
1

2

δik
ρR

NS∑
j=1

ρ̄
Mj

M̄
¯Dj,m∇X̄j , k = 1, ..., NS

∂J̄i · n
∂ρk

∣∣∣∣
L

=ρ̄
Mi

M̄

¯Di,m

dij

(
Xi,L

σLρL
+
ML

Mi

σL
ρL
δik

)
− Ȳi

ρ̄

M̄dij

NS∑
j=1

(
Mj

¯Dj,m
Xj,L

σLρL

)
− Ȳi

ρ̄

M̄dij

MLσL
ρL

+
1

2

δik
ρL

NS∑
j=1

ρ̄
Mj

M̄
¯Dj,m∇X̄j , k = 1, ..., NS

where the symbol − denotes a value taken at interface between state L and R.
In the previous derivative we neglect the contribution due to total mixture mass and
moreover in computing the Jacobian we take at interface the arithmetic average of mass
fractions.

It is worth to notice that for the diffusion fluxes we do not use the classical SU2 approx-
imation of taking the mean value of interface for right state and then take the opposite
for the left one, but we distinguish between the value at node L and the value at node
R.

116

A.6 Source Chemistry Jacobian

Let us recall here the definition of the source chemistry term (2.35):

ω̇i = Mi

NR∑
r=1

(
ν
′′
i,r − ν

′
i,r

)kf,r
NS∏
j=1

[
ρj
Mj

]φ′j,r
− kb,r

NS∏
j=1

[
ρj
Mj

]φ′′j,r , i = 1...NS (A.44)

We are interested in computing the Jacobian matrix related to these source terms in
case the implicit time stepping strategy is employed; let us start from the derivative
with respect to the mixture density ρ:

∂ω̇i
∂ρ

=
∂

∂ρ

Mi

NR∑
r=1

(
ν
′′
i,r − ν

′
i,r

)kf,r
NS∏
j=1

[
ρj
Mj

]φ′j,r
− kb,r

NS∏
j=1

[
ρj
Mj

]φ′′j,r


= Mi

NR∑
r=1

(
ν
′′
i,r − ν

′
i,r

)∂kf,r∂ρ

NS∏
j=1

[
ρj
Mj

]φ′j,r
−
∂kb,r
∂ρ

NS∏
j=1

[
ρj
Mj

]φ′′j,r (A.45)

At this point we need to compute
∂kf,r
∂ρ and

∂kb,r
∂ρ and for this purpose we apply the chain

rule, namely:

∂kf,r
∂ρ

=
∂kf,r
∂T

∂T

∂ρ
=
kf,r
T

(
βr +

Tr
T

)
∂T

∂ρ
(A.46)

∂kb,r
∂ρ

=
∂kb,r
∂T

∂T

∂ρ
=
∂
kf,r
Keq

∂T

∂T

∂ρ
=

(
∂kf,r
∂T Keq − ∂Keq

∂T kf,r

)
K2
eq

∂T

∂ρ

=

kf,r
T

(
βr + Tr

T

)
Keq − kf,r ∂Keq

∂T

K2
eq

∂T

∂ρ

=
kb,r

((
βr
T + Tr

T 2

)
Keq − ∂Keq

∂T

)
Keq

∂T

∂ρ
(A.47)

Let us denote by γr = γr(T) = βr
T + Tr

T 2 , r = 1, ...NR; if we substitute (A.46) and
(A.47) into (A.45) we obtain:

∂ω̇i
∂ρ

=
∂T

∂ρ
Mi

NR∑
r=1

(
ν
′′
i,r − ν

′
i,r

)kf,r
NS∏
j=1

[
ρj
Mj

]φ′j,r
γr(T)− kb,r

NS∏
j=1

[
ρj
Mj

]φ′′j,r (
γr(T)−

∂Keq

∂T

Keq

)
(A.48)

Analogous relations hold for the derivatives with respect to the momentum and the total
energy:

∂ω̇i
∂(ρu)

=
∂T

∂(ρu)
Mi

NR∑
r=1

(
ν
′′
i,r − ν

′
i,r

)kf,r
NS∏
j=1

[
ρj
Mj

]φ′j,r
γr(T)− kb,r

NS∏
j=1

[
ρj
Mj

]φ′′j,r (
γr(T)−

∂Keq

∂T

Keq

)
(A.49)

∂ω̇i
∂ρE

=
∂T

∂(ρE)
Mi

NR∑
r=1

(
ν
′′
i,r − ν

′
i,r

)kf,r
NS∏
j=1

[
ρj
Mj

]φ′j,r
γr(T)− kb,r

NS∏
j=1

[
ρj
Mj

]φ′′j,r (
γr(T)−

∂Keq

∂T

Keq

)
(A.50)

117

More attention is needed to compute ∂ω̇i
∂ρk

:

∂ω̇i
∂ρk

=
∂

∂ρk

Mi

NR∑
r=1

(
ν
′′
i,r − ν

′
i,r

)kf,r
NS∏
j=1

[
ρj
Mj

]φ′j,r
− kb,r

NS∏
j=1

[
ρj
Mj

]φ′′j,r


= Mi

NR∑
r=1

(
ν
′′
i,r − ν

′
i,r

) ∂

∂ρk

kf,r
NS∏
j=1

[
ρj
Mj

]φ′j,r
− kb,r

NS∏
j=1

[
ρj
Mj

]φ′′j,r
= Mi

NR∑
r=1

(
ν
′′
i,r − ν

′
i,r

)∂kf,r∂ρk

NS∏
j=1

[
ρj
Mj

]φ′j,r
+

∂

ρk

NS∏
j=1

[
ρj
Mj

]φ′j,r kf,r−

∂kb,r
∂ρk

NS∏
j=1

[
ρj
Mj

]φ′′j,r
− ∂

∂ρk

NS∏
j=1

[
ρj
Mj

]φ′′j,r kb,r


= Mi

NR∑
r=1

(
ν
′′
i,r − ν

′
i,r

)kf,r
NS∏
j=1

[
ρj
Mj

]φ′j,r
γr(T)

∂T

∂ρk
+

∂

∂ρk

NS∏
j=1

[
ρj
Mj

]φ′j,r kf,r−

kb,r

NS∏
j=1

[
ρj
Mj

]φ′′j,r (
γr(T)−

∂Keq

∂T

Keq

)
∂T

∂ρk
− ∂

∂ρk

NS∏
j=1

[
ρj
Mj

]φ′′j,r kb,r


(A.51)

Let us analyse the term ∂
∂ρk

(
NS∏
j=1

[
ρj
Mj

]φ′j,r)
:

∂

∂ρk

NS∏
j=1

[
ρj
Mj

]φ′j,r =

NS∑
j=1

 1

Mj
φ
′
j,r

[
ρj
Mj

]φ′j,r−1

δjk

NS∏
l=1
l 6=j

[
ρl
Ml

]φ′l,r
=

NS∑
j=1

φ′j,r
ρj

δjk

NS∏
l=1

[
ρl
Ml

]φ′l,r =
φ
′
k,r

ρk

NS∏
j=1

[
ρj
Mj

]φ′j,r
(A.52)

Obviously the same holds with exponent φ
′′
j,r; if we substitute (A.52) into (A.51) we

eventually find:

∂ω̇i
∂ρk

=
∂T

∂ρk
Mi

NR∑
r=1

(
ν
′′
i,r − ν

′
i,r

)kf,r
NS∏
j=1

[
ρj
Mj

]φ′j,r
γr(T)− kb,r

NS∏
j=1

[
ρj
Mj

]φ′′j,r (
γr(T)−

∂Keq

∂T

Keq

)
+Mi

NR∑
r=1

(
ν
′′
i,r − ν

′
i,r

)φ
′
k,r

ρk
kf,r

NS∏
j=1

[
ρj
Mj

]φ′j,r
−
φ
′′
k,r

ρk
kb,r

NS∏
j=1

[
ρj
Mj

]φ′′j,r (A.53)

118

A.7 BiCGSTAB Algorithm

The biconjugate gradient stabilized gradient method, abbreviated as BiCGSTAB, is
an iterative scheme for the numerical solution of linear system Ax = b with A non-
symmetric developed by H. A. van Der Vorst; it is a variant of the biconjugate gradient
method (BiCG, see [30]) and therefore it belongs to the Krylov subspace methods.

The idea is to define residual vectors of the form :

r̃i = Ψi(A)Φi(A)r0

instead of the definition:
ri = Φi(A)r0

provided by standard BiCG with the hope that Ψi(A) will enable faster and smoother
convergence. Specifically Ψi(A) is defined by simply recurrence:

Ψi(A) =

i∏
j=1

(I − ωjA)

with ωj scalars to be determined.
Let us recall the recursive relations that characterize the BiCG algorithm:

Φi(A) = Φi−1(A)− αiAΠi−1(A)

Πi(A) = Φi(A) + βi+1Πi−1(A)

with αi and βi suitable coefficients we immediately obtain:

Ψi(A)Φi(A)r0 = (I − ωiA) (Ψi−1(A)Φi−1(A)r0 − αiAΨi−1(A)Πi−1(A)r0)

which entails for a recursive relation for the term Ψi(A)Πi(A)r0; this can be also derived
from BiCG:

Ψi(A)Πi(A)r0 = Ψi(A)Ψi(A)r0 + βi+1 (I − ωiA) Ψi−1(A)Φi−1(A)r0

Moreover we define:
˜pi+1 = Ψi(A)Πi(A)r0

so that in vector form we get:

p̃i = ˜ri−1 + βi (I − ωi−1A) ˜pi−1

r̃i = (I − ωiA) (˜ri−1 − αiAp̃)

In order to derive a recursive relation for xi we define:

si = ˜ri−1 −Ap̃i

so that the recurrence relation for r̃i becomes:

r̃i = ˜ri−1 − αiAp̃i − ωiAsi

and therefore since ri = Axi − b we get:

xi = xi−1 + αip̃i + ωisi

119

Now we need to determine the constants αi and βi and choose a suitable ωi; in standard
BiCG we define:

ri = Axi − b = Φi(A)r0

r̂i = ATxi − b = Φi(A
T)r0

γi = (r̂i−1, ri−1) =
(
Φi−1(AT)r̂0,Φi−1(A)r0

)
where (·, ·) denotes the inner product and from these we impose:

αi =
γi

(p̂i,Api)

βi =
γi
γi−1

with

pi = ri−1 + βipi−1

p̂i = r̂i−1 + βip̂i−1

Anyway, since BiCGSTAB does not explicitly keep track of r̂i or ri, we cannot directly
use the previous formula for γi. However it can be related to the scalar

γ̃i =
(
Ψi−1(AT)r̂0,Φi−1(A)r0

)
= (r̂0,Ψi−1(A)Φi−1(A)r0) = (r̂0, ri−1)

Due to biorthogonality ri−1 = Φi−1(A)r0 is orthogonal to Ui−2(AT)r̂0, where Ui−2(AT)
is any polynomial of degree i− 2 ni AT . Hence only the highest order term of Φi−1(AT)
and Ψi−1(AT) are relevant in the scalar products

(
Φi−1(AT)r̂0,Φi−1(A)r0

)
and(

Ψi−1(AT)r̂0,Φi−1(A)r0

)
. The leading coefficients of Φi−1(AT) and Ψi−1(AT) are

(−1)i−1α1α2...αi−1 and (−1)i−1ω1ω2...ωi−1 respectively. It follows that:

γi =
α1α2...αi−1

ω1ω2...ωi−1
γ̃i

and

βi =
γi
γi−1

=
γ̃i
γ̃i−1

αi−1

ωi−1

A similar approach can be used to determine αi; since

αi =
γi

(p̂i,Api)
=

Φi−1(AT)r̂0,Φi−1(A)r0

Πi−1(AT)r̂0,AΠi−1(A)r0

only the highest order terms of Φi−1(AT) and Πi−1(AT) matter in inner products thanks
to biorthogonality and biconjugacy and it happens that Φi−1(AT) and Ψi−1(AT) have
the same leading coefficient. Thus, replacing simultaneously with Ψi−1(AT), we are led
to:

αi =
Ψi−1(AT)r̂0,Φi−1(A)r0

Ψi−1(AT)r̂0,AΠi−1(A)r0
=

γ̃i
r̂0,AΨi−1(A)Πi−1(A)r0

=
γ̃i

(r̂0,Ap̃i)

Finally, BiCGSTAB selects ωi to minimize r̃i = (I − ωiA) si in 2-norm as function of
ωi; this happens when:

((I − ωiA) si,Asi) = 0

giving the value:

ωi =
(Asi, si)

(Asi,Asi)

120

A.8 Spline interpolation

Spline interpolation is a form of interpolation where the interpolant is a piecewise poly-
nomial called spline.
One of the most famous example is represented by the cubic spline, whose formal def-
inition is the following:

Given a set of n+ 1 data (xi, yi) where xi 6= xj , i, j = 0, ..., n and a = x0 < x1 < ... <
xn = b, the cubic spline S(x) is a function satisfying:

1. S(x) ∈ C2([a, b]

2. On each subinterval [xi−1, xi], i = 1, ..., n S(x) is a third order polynomial

3. S(xi) = yi, i = 0, ..., n

Therefore we get:

S(x) =



P1(x), x0 ≤ x ≤ x1

...

Pi(x), xi−1 < x ≤ xi
...

Pn(x), xn−1 < x ≤ xn

where each Pi = ai + bix+ cix
2 + dix

3, i = 1, ..., n is a cubic function.

We need to determine ai, bi, ci, dii = 1, ..., n imposing:

1. Pi(xi−1) = yi−1 and Pi(xi) = yi, i = 1, ..., n

2. P ′i (xi) = P ′i+1(xi), i = 1, ..., n− 1

3. P ′′i (xi) = P ′′i+1(xi), i = 1, ..., n− 1

We can see that there 4n−2 conditions, but we need to determine 4n coefficients, there-
fore we need to add two boundary conditions.

Three are the types of common boundary conditions:

1. First derivatives at the endpoints are known;

2. Second derivatives at the endpoints are known. In the special case they are both
0 this is known as natural or simple boundary condition;

3. When the exact function we want to interpolate is a periodic function with period
xn − x0, S(x) is a periodic function of period xn − x0 too.

In this work we employ null first derivatives at endpoints.

A little side calculation shows that there is only one way to arrange the polynomial
Pi in order to highlight the contribution due to second order derivative:

Pi(x) = Ayi−1 +Byi + Cy′′i−1 +Dy′′i (A.54)

where

A =
xi − x
xi−1 − xi

, B = 1−A =
x− xi−1

xi − xi−1
C =

1

6
(A3−A)(xi−xi−1) D =

1

6
(B3−B)(xi−xi−1)

121

If we take the first derivative of (A.54) we obtain:

P ′(x) =
yi − yi−1

xi − xi−1
− 3A2 − 1

6
(xi − xi−1)y′′i−1 +

3B2 − 1

6
(xi − xi−1)y′′i (A.55)

At this point if, in the equation (A.55), we impose that the first derivative evaluated at
x = xi in the interval (xi−1, xi) is the same of the first derivative evaluated at at x = xi
in the interval (xi, xi+1), we find the relations to compute the second order derivatives.

For further details, please refer to [36].

122

A.9 Secant Method

The secant method is a root-finding algorithm that uses a succession of roots of secant
lines to better approximate a root of a function f(x).
Starting with initial values x0 and x1, the recurrence relation is defined as:

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
, n = 1, 2, ...

If the function f is twice continuously differentiable, the root in question is simple and
the initial values x0 and x1 are sufficiently close to the root, the iterates xn converge to

a root of f with order of convergence φ = 1+
√

5
2 .

It is also a quasi-Newton method because it can be derived from the Newton’s formula:

xn+1 = xn −
f(xn)

f ′(xn)
, n = 1, 2....

by replacing f ′(xn) with a finite-difference approximation:

f ′(xn) ≈ f(xn)− f(xn−1)

xn − xn−1

If we compare Newton’s method with the secant method, we see that Newton’s method
converges faster (order 2 against φ ≈ 1.6), but Newton’s method requires the evaluation
of both f and its derivative while the secant method requires only the evaluation of f .

123

Bibliography

[1] Numerical Modeling and Simulations of Combustion Processes in Hybrid Rocket
Engines, Mazzetti, Alessandro

[2] SU2 Detailed documentation: https://su2code.github.io/docs/home/

[3] R. A. Svehla: Transport Coefficients for the NASA Lewis Chemical Equilibrium
Program, NASA Technical Memorandum 4647, NASA-TM-4647, National Aero-
nautics and Space Administration Lewis Research Center, Cleveland, Ohio; USA;
1995; available online at https://www.grc.nasa.gov/www/CEAWeb/TM-4647.pdf

[4] Burcat, A., Ruscic, B., Third Millennium Ideal Gas and Condensed Phase Ther-
mochemical Database for Combustion with Updates from Active Thermochemical
Tables, Argonne Report ANL 05/20 and Technion Aerospace Report TAE N. 960,
September 2005.

[5] Multi-Component Diffusion with Application To Computational Aerothermody-
namics, Sutton, Kenneth and Gnoffo, Peter, 02/1998

[6] Venkateswaran, S., Merkle, C.L., Size Scale-Up in Hybrid Rocket Motors, AIAA
Aerospace Sciences Meeting and Exhibit, 34th, Reno, NV; USA; 15-18 January,
1996, AIAA Paper 1996-0647.

[7] Jones,W.P., Lindstedt, R.P., Global Reaction Schemes for Hydrocarbon Combus-
tion, Combustion and Flame, 73(3): 233 - 249, 1988.

[8] Arisawa, H., Brill, T.B., Flash Pyrolisis of Hydroxil-Terminated Polybutadiene
(HTPB) I: Analysis and Implications of the Gaseous Products, Combustion and
Flame 106: 131 - 143, 1996.

[9] Arisawa, H., Brill, T.B., Flash Pyrolisis of Hydroxil-Terminated Polybutadiene
(HTPB) II: Implications of the Kinetics to Combustion of Organic Polymers, Com-
bustion and Flame 106: 144 - 154, 1996.

[10] Kuo, K.K., Principles of Combustion, 2nd Ed., Chapter 3. John Wiley & Sons, New
York, NY; 2005.

[11] Chung, T.H., Lee, L.L., Starling, K.E., Applications of Kinetic Gas Theories and
Multiparameter Correlation for Prediction of Dilute Gas Viscosity and Thermal
Conductivity, Industrial and Engineering Chemical Fundamentals, 23(1): 8 - 13,
1984.

[12] Fuller, E.N., Schettler, P.D., Giddings, J.C., A new method for prediction of binary
gas-phase diffusion coefficients, Industrial and Engineering Chemistry, 58(5):19-27,
1966.

124

https://su2code.github.io/docs/home/
https://www.grc.nasa.gov/www/CEAWeb/TM-4647.pdf

[13] Quarteroni, A., Numerical Models for Differential Problems,2014

[14] Praaven, C., Finite volume method on unstructured grid, 2013, http://math.

tifrbng.res.in/~praveen/notes/acfd2013/fvm.pdf

[15] Veynante, D., Poinsot, T., Theoretical and Numerical Combustion, R.T. Edwards,
P.O. Box 27388, Philadelphia, PA, 19118; USA; 2001.

[16] Turns, S.R., An introduction to combustion: Concepts and Applications, 2nd edi-
tion, McGraw-Hill, New York, 2000

[17] Liou, M.-S. and Steffen, C., A New Flux Splitting Scheme, Journal of Computational
Physics, 107: 23-39, 1993.

[18] Liou, M.-S., A Sequel to AUSM: AUSM+, Journal of Computational Physics, 129:
364-382, 1996.

[19] Liou, M.-S., A Sequel to AUSM, Part II: AUSM+-up, Journal of Computational
Physics, 214: 137- 170, 2006.

[20] Wilke, C.R., A Viscosity Equation for Gas Mixtures, The Journal of Chemical
Physics, 18(4): 517 - 519, 1950.

[21] Green, D.W., Perry, R.H., Perry’s Chemical Engineer Handbook, 8th Ed., McGraw-
Hill, 2008.

[22] Stiel, L.I., Thodos, G., The Thermal Conductivity of Nonpolar Substances in the
Dense Gaseous and Liquid Regions, American Institute of Chemical Engineers Jour-
nal, 10(1): 26 - 30, 1964.

[23] Mason, E.A., Saxena, S.C., Approximate Formula for the Thermal Conductivity of
Gas Mixtures, The Physics of Fluids, 1(5): 361 - 369, 1958.

[24] Giovangigli, V., Convergent iterative methods for multicomponent diffusion, IM-
PACT Comput. Sci. Eng., 1990, Vol. 2, 73-97

[25] Giovangigli, V., Mass Conservation and Singular Multicomponent Diffusion Algo-
rithms, IMPACT Comput. Sci. Eng., 1991, Vol. 3, 244-276

[26] Peerenboom K.S.C, Van Dijk J., Ten Thije Boonkkamp J.H.M, Liu L., Goedheer
W.J., Van Der Mullen J.J.A.M., Mass conservative finite volume discretization of
the continuity equations in multi-component mixtures, Journal of Computational
Physics 230 (2011) 3525?3537

[27] Blazek, J., Computational Fluid Dynamics: Principles and Applications, Elsevier
Science, 2001

[28] Valdettaro, L., Dispense del corso di Teoria, Modellistica e Simulazione della Tur-
bolenza, Allievi di Ingegneria Matematica - Laurea Specialistica -Indirizzo Scienze
Computazionali per l’Ingegneria A.A. 2007/08

[29] Wilcox, D.C., Turbulence Modeling for CFD, 3rd Ed. Chapter 5. DCW Industries,
5354 Palm Drive, La Canada, California, 91011; USA; 2006.

[30] Saad, Y., Iterative methods for sparse linear systems, Second Edition, Society for
Industrial and Applied Mathematics Philadelphia, PA, USA, 2003

125

http://math.tifrbng.res.in/~praveen/notes/acfd2013/fvm.pdf
http://math.tifrbng.res.in/~praveen/notes/acfd2013/fvm.pdf

[31] Andersen J., Rasmussen L. C., Giselsson T., Glarborg P., Global Combustion Mech-
anisms for Use in CFD Modeling under Oxy-Fuel Conditions, Energy & Fuels, 2009,
23, 1379-1389

[32] Venkatakrishnan V., Convergence to steady state solutions of the Euler equations
on unstructured grids with limiters, Journal of Computational Physics, 118:120-130,
1995.

[33] Barth T. J. and Jespersen D.C., The design and application of upwind schemes on
unstructured meshes, In AIAA Paper 89-0366, Reno(NV), Jan 1989, 37th AIAA
Aerospace Science Meeting and Exhibit.

[34] Ames Research Staff, Equations, tables and charts for compressible flows, Ames
Aeronautical Laboratory, Moffett Field, California, Report 1135, 1953

[35] Roop N. Gupta, Jerrold M. Yos, Richard Thompson, Kam-Pui Lee, A review of
reaction rates and thermodynamic and transport properties for an 11-species air
model for chemical and thermal nonequilibrium calculations to 30000 K, 1990

[36] Press, William H.; Teukolsky, Saul A.; Vetterling, William T.; Flannery, Brian P.,
Numerical Recipes. The Art of Scientific Computing, 3rd Edition, 2007

[37] Wesseling P., Principles of Computational Fluid Dynamics, Springer, 2001, 518-524

[38] Barbante, P. F., Accurate and Efficient Modelling of High Temperature Nonequilib-
rium Air Flows, PhD Thesis, Université libre de Bruxelles, Von Karman Institute

[39] Bottin, B., Vander Abele D., Carbonaro M., Degeez G., Sarma G. S. R., hermody-
naimic and Tranposrt Properties for Inductive Plasma Modeling, J.of Thermophy-
isics and Heat Transfer, 13,3(1999),343-350

126

	List of Symbols
	List of Figures
	List of Tables
	Abstract
	Introduction
	Physical Processes
	Local Thermal Equilibrium
	Flow/Reaction Interactions

	Mathematical Model
	Conservative Governing Equations
	Analysis of Stefan-Maxwell Equations
	Chemistry Source Term

	Numerical Methods
	Space Integration
	Vertex-Centered Finite Volume
	Discretization of Convective Fluxes
	Second Order Reconstruction
	Flux Limiters
	Discretization of Diffusive Fluxes
	Discretization of Source Term

	Time Integration
	Boundary Conditions
	Euler Wall
	No-Slip Isothermal Wall
	Subsonic Inlet
	Subsonic outlet

	SU2 Code
	General Features
	Additions
	CSolver
	CVariable
	CNumerics
	Reacting Model Library

	Execution

	Numerical Results
	Inviscid Bump
	Diffusion in a channel
	Laminar Flat Plate
	Combustion and Hybrid Rocket Engine
	Hypersonic flow over blunt body

	Conclusions
	
	Equations formulated for moving grids
	Pressure and Temperature Derivatives
	Convective Flux Jacobian
	AUSM Scheme Approximate Jacobian
	Numerical Viscous Jacobians
	Source Chemistry Jacobian
	BiCGSTAB Algorithm
	Spline interpolation
	Secant Method

