

POLITECNICO DI MILANO

Faculty of Industrial and Information Engineering

Master in Computer Science and Engineering

Pistis, a Credentials Management System based on Self-Sovereign Identity

Relatore: Prof. Francesco Bruschi

Master Thesis of:

Sinico Matteo Matr. 898773

Taglia Andrea Matr. 898733

Anno Accademico 2019 - 2020

Matteo Sinico, Andrea Taglia: Pistis, a Credentials Management System based
on Self-Sovereign Identity | Master Thesis in Computer Science and Engeneering,
Politecnico di Milano.
c© Copyright Ottobre 2019.

Politecnico di Milano:
www.polimi.it

Scuola di Ingegneria Industriale e dell’Informazione:
www.ingindinf.polimi.it

http://www.polimi.it
http://www.ingindinf.polimi.it

Contents

Introduction 1
0.1 Problem Framing . 1
0.2 The Need for Such a Solution . 1
0.3 Thesis Contribution . 2
0.4 Thesis Structure . 3

1 State of the art 5
1.1 Known Models . 5

1.1.1 Paper Model . 5
1.1.2 Digital Signature Model . 6
1.1.3 Self Hosted . 7
1.1.4 SaaS (Software as a Service) 8

1.2 Shortcomings of previous models 8
1.3 Self Sovereign Identity approach . 10

1.3.1 Introduction . 10
1.3.2 Our definition of Self Sovereign Identity 10

1.4 Models Comparison . 12
1.5 Known Alternatives . 17

2 Proposed Solution 19

3 Building Blocks 21
3.1 DID & DDO . 21
3.2 Blockchain . 22

3.2.1 Why we need the blockchain? 22
3.3 Smart Contracts . 23
3.4 Verifiable Credential . 23
3.5 Verifiable Presentation . 24
3.6 Actors . 25

4 Pistis Specification 27
4.1 DID & DDO . 27

4.1.1 DDO Structure . 27
4.1.2 DID Method . 28
4.1.3 Service Endpoints . 30

4.2 Naming Schema . 30
4.2.1 Naming System . 30

iii

iv CONTENTS

4.2.2 Abstraction Granularity . 32
4.2.3 Extending the Naming Schema 33
4.2.4 Choosing a Verifiable Credential naming 33

4.3 Verifiable Credentials . 33
4.3.1 Simple VC . 34
4.3.2 VC containing large files . 36
4.3.3 VC with selective disclosure 39
4.3.4 VC as a Verifiable Ticket . 41

4.4 Verifiable Presentation . 42
4.5 Smart Contracts . 44

4.5.1 Multi Signature Operation 46
4.5.2 Operation Executor . 46
4.5.3 Permission Registry . 46
4.5.4 Pistis DId Registry . 47
4.5.5 Credential Status Registry 47
4.5.6 Trusted Contacts Management 48
4.5.7 Design Pattern Decisions . 48

4.6 Communication . 49
4.6.1 Protocol . 49
4.6.2 Transport Methods . 50

5 Pistis Architecture 53
5.1 Mobile Application . 53
5.2 Issuer/Verifier System . 53
5.3 Blockchain Integration . 54

5.3.1 Infura . 54
5.3.2 MetaMask . 55
5.3.3 Permissioned Faucet for On-Chain operations 55
5.3.4 Faucets discovery . 56

5.4 Processes . 57
5.4.1 Issue Verifiable Credentials 57
5.4.2 Share Verifiable Credentials 58
5.4.3 Revoke Verifiable Credentials 59
5.4.4 Entity Resolution (Trusted Contacts Management) 60

6 Pistis Components Details 67
6.1 User App . 67

6.1.1 Identity Management . 67
6.1.2 Credential Storing . 68
6.1.3 Data Sovereignty . 69
6.1.4 Issuer Trust . 69

6.2 Issuer/Verifier Dashboard . 69
6.2.1 Credential Management . 70
6.2.2 Identity Management . 70
6.2.3 Trusted Contacts Management 70
6.2.4 Verifiable Credential Builder Utility 71
6.2.5 Verifiable Credential Reader Utility 72

CONTENTS v

6.2.6 Trusted Contacts List . 72

7 Results 73
7.1 System Performance . 73

7.1.1 How much space does a credential take up? 73
7.1.2 Smart Contracts transaction cost 74

7.2 System Limitations . 76
7.2.1 Data Transports . 76
7.2.2 Data Backup . 76
7.2.3 Need to fund Ethereum transactions 77
7.2.4 Offline support . 78

7.3 About Smart Contract security issues 78
7.3.1 Re-entrancy Attacks . 78
7.3.2 Integer Overflow and Underflow 78
7.3.3 Denial of Service by Block Gas Limit (or startGas) 79

7.4 GDPR compliance . 79

8 Known Alternatives 83
8.1 Ethense . 83
8.2 OpenCerts . 83
8.3 Blockcerts . 84
8.4 Accredible . 85
8.5 Metadium . 85
8.6 Civic . 85
8.7 ION . 87
8.8 Sovrin . 87

9 Conclusion & Future Work 89
9.1 Future Work . 89

9.1.1 Explore pairwise DIDs . 89
9.1.2 Implement Full Key Management 89
9.1.3 Improve Selective Disclosure 90
9.1.4 Sign Any Transactions with Pistis Mobile App 90
9.1.5 On-Chain Automatic VC Verification 90
9.1.6 Smart Contracts Improvements 91

9.2 Conclusion . 91

A Screenshots 93
A.1 Mobile Screenshots . 93
A.2 Dashboard Screenshots . 96
A.3 DDO example . 101

B Communication protocol objects 103

C PoC for the Maltese Government 105

vi CONTENTS

D Smart Contracts Documentation 109
D.1 MultiSigOperations . 109
D.2 CredentialStatusRegistry . 111
D.3 PermissionRegistry . 111

Acronyms 113

Bibliography 115

List of Figures

4.1 Handsaking DID . 29
4.2 Verifiable Credentials fields . 34
4.3 Verifiable Presentations fields . 42
4.4 Smart Contract Class Diagram . 45

5.1 Pistis Architecture Overview . 54
5.2 Sequence Diagram of the issuing process 57
5.3 Sequence Diagram of the sharing process 59
5.4 sequence diagram which visualize all the passages described in order

to revoke and to verify a credential. 61

8.1 Current Civic Architecture . 86

A.1 First time using mobile application 93
A.2 Mobile Application Components . 94
A.3 SSI Verifiable Credential example 95
A.4 VC Reader and dashboard overview 96
A.5 VC Reader details . 97
A.6 Delegates Management . 98
A.7 Example of an on going transaction 98
A.8 Credential Management . 99
A.9 Trusted Contact Management . 99
A.10 VC Builder utility . 100
A.11 Object Viewer . 100
A.12 DDO example . 101

C.1 Actors involved . 105
C.2 User On boarding . 106
C.3 Book an X-Ray Scan . 106
C.4 Do the X-Ray Scan . 107
C.5 Receive the scan via e-mail . 107
C.6 Show the scan to the doctor . 108

vii

List of Tables

1.1 Models comparison . 13

7.1 Smart Contracts transaction cost 75

ix

Listings

4.1 Credential Subject Object . 31
4.2 Verifiable Credential Sample . 35
4.3 Verifiable Credential with large files 38
4.4 Verifiable Presentation with large files 38
4.5 Verifiable Credential with selective disclosure 40
4.6 Verifiable Presentation with selective disclosure 40
4.7 Verfiable Presentation Example . 43
5.1 Credential Status List Object . 60
5.2 Credential Status Object returned by Smart Contract 60
5.3 Entity Object . 61
5.4 Trust Contact Object . 62
5.5 TCL list Object . 62
5.6 Entity Resolver pseudo code . 63
7.1 JWT payload . 74
B.1 Attestation sample . 103
B.2 ShareReq sample . 103
B.3 ShareResp sample . 104

xi

Sommario

Viene definita "credenziale" uno o più attributi legati a un’entità (persona,
organizzazione o cosa) che attestino una qualità, un aspetto, una qualifica o un
risultato dell’entità in questione. In particolare una credenziale è composta da tre
blocchi principali: l’attore che la rilascia, il soggetto della credenziale e infine il
o gli attributi asseriti dalla credenziale stessa. Le credenziali nascono e tuttora
vengono utilizzate principalmente nel loro formato cartaceo, non senza problemi di
contraffazione, portabilità e interoperabilità. La loro versione digitale ha acquistato
popolarità da quando l’informatica è diventata di uso comune e mira a migliorare
gli aspetti negativi del formato cartaceo.

Tuttavia, vi è una forte necessità di una soluzione adeguata per gestire tutti i
diversi formati di credenziali attualmente in uso. In particolare, sono state avviate
numerose iniziative a livello europeo per trovare una soluzione inter-operabile,
scalabile e decentralizzata per i sistemi basati sulle credenziali in ambito accademico.
Nessuna di queste iniziative ha avuto l’impatto desiderato per standardizzare il
modo in cui vengono gestite le credenziali accademiche.

La blockchain è caratterizzata da grandi promesse di decentralizzazione. Sono in
discussione nuovi paradigmi per la gestione delle credenziali e, in termini più ampi,
della gestione dell’identità digitale basata su questa nuova tecnologia, tra cui il più
significativo è la cosiddetta "Self-Sovereign Identity". Lo scopo ultimo di questo
nuovo paradigma è quello di dare la possibilità agli utenti di avere il pieno controllo
sui propri dati, non solo autorizzando chi può vederli o trattarli ma soprattutto
possedendoli fisicamente sul proprio device. È in questo contesto, e sulla base del
framework SSI, che il W3C sta mettendo a punto un nuovo promettente standard
basato sul concetto di Identificatori Decentralizzati e Credenziali Verificabili.

Il seguente lavoro di tesi si basa su questi standard e propone un nuovo sistema
di gestione delle credenziali basato sulla blockchain Ethereum, chiamato "Pistis".
L’obiettivo è quello di essere un sistema veramente usabile, scalabile, decentralizzato
e inter-operabile.

"Pists DID Method" è stato ufficialmente revisionato e accettato dal gruppo
W3C responsabile di questi nuovi standard.

xiii

Abstract

"Credentials" are defined as set of attributes linked to an entity (either person,
organization or thing) to assert a quality, aspect, qualification or achievement
related to the background of the subject entity. A credential is made of three main
blocks: the attesting actor, the subject of the credential and finally the claim itself.
Credentials have historically being used in paper format, not without issues of
counterfeit, portability and interoperability. The digital version of their paper-based
counterpart gained ground since IT became mainstream and aims at improving the
downsides of the paper format.

Still, there is a strong need for a suitable solution to handle all those different
credential formats currently in use. Specifically, there have been many initiatives
run at European level to find an interoperable, scalable and decentralized solution
for credential-based systems in the academic environment. None has had the desired
impact to standardize the way academic credentials are handled.

The blockchain comes with great promises of decentralization. New paradigms
for credentials handling and, in broader terms, of digital identity management based
on this new technology are being discussed, the most notable being "Self-Sovereign
Identity". It involves giving ultimate, sovereign control to users over their data.
It is in this context, and based on the SSI framework, that the W3C is finalizing
a new, promising, standard based on the concept of Decentralized Identifiers and
Verifiable Credentials.

This thesis work builds on top of those standards and proposes a new Self-
Sovereign Identity based credentials management systems running on the Ethereum
blockchain: "Pistis". It aims at being a truly usable, scalable, decentralized and
interoperable system.

"Pists DID Method" has been officially reviewed and accepted by the W3C
group responsible for those new standards.

xiv

Introduction

0.1 Problem Framing

Mobility is increasing all over the world. The need for people to move around is
rapidly growing and the issues that airplane companies are having in catching up
with the increasing demand is just one of the many figures that can be explored
to endorse this point1. In such a context the sharing and validation of different
documentation is becoming more and more important.

The European Union has been trying hard to take down barriers and obstacles
to the free movement across the Old Continent. However, a student/citizen who
wishes to continue their studies at a foreign institution or to apply for an interesting
(foreign) job is invariably faced with the challenge of sharing the obtained or
required diploma and having accepted as authentic. This largely paper-based
procedure results in a great deal of additional work for the student/citizen and
inconvenience for the administration involved, without it strengthening confidence
in the document delivered or limiting potential fraud. The CEF (Connecting Europe
Facility) organism has recently introduced EBSI (European Blockchain Service
Infrastructure), that is aiming at building a Proof of Concept about digital identity in
the first quarter of 2020 [17]. These efforts have as well recently been undertaken by
different countries oversees: Singapore has started issuing certifications to students
[25], Canada is launching its own digital identity system [4]. Many are actively
exploring the potential for Blockchain to provide a decentralized, transparent,
validated and indelible management of student/citizen identity linked data (either
diploma, or any other form of documents and qualifications).

Different options and certificate based models are currently in place, but all
of them fail at addressing the main pain point, that is absence of trust in
complex ecosystems such as the international Academic environment. Lack of
decentralization is the most relevant factor to blame for.

We believe Self-Sovereign Identity model backed by the fast developing blockchain
technology is the direction to take in order to find a suitable solution to a decen-
tralized, reliable and inter-operable system.

0.2 The Need for Such a Solution

We cite some of the most recent councils and work group which, at European
level, show the great interest by the European countries in this new paradigm of

1https://www.iata.org/pressroom/pr/Pages/2016-10-18-02.aspx

1

https://www.iata.org/pressroom/pr/Pages/2016-10-18-02.aspx

2 Introduction

verifiable qualifications.

• Paris Communiqué (EHEA)[10]:

We also urge the adoption of transparent procedures for the recog-
nition of qualifications, prior learning and study periods, supported
by inter-operable digital solutions

• Council recommendation on the Automatic Mutual Recognition of Diplomas
and learning periods abroad (European Council):[49]

Hereby welcomes the Commission’s intention to: . . . Explore, in
cooperation with Member States, the potential of new technolo-
gies, such as blockchain technology, to facilitate automatic mutual
recognition.

• (Draft) Global Convention on the Recognition of Qualifications concerning
Higher Education (UNESCO):[48]

SECTION III. BASIC PRINCIPLES FOR THE RECOGNITION
OF QUALIFICATIONS CONCERNING HIGHER EDUCATION
Article III . . . 8 . Parties commit to adopt measures to eradicate
all forms of fraudulent practices regarding higher education qualifi-
cations by encouraging the use of contemporary technologies and
networking activities among Parties.

There are few underlying open questions which have not been given a proper answer
yet:

• How to overcome the lack of interoperability between systems to unlock much
needed cost efficiencies?

• How to build a single source of truth to prove the veracity and provenance of
people’s qualifications?

• How to incorporate people consent to unlock the sharing of data?

Our Pistis Self-Sovereign Identity system, pairing with blockchain technology might
have the answers to those, it is the thesis we are supporting in this document.

0.3 Thesis Contribution

We analyze existing systems whose aim is the handling of Credentials (also
known as Attributes, Claims, Qualifications) and the way they tackle the verification
of authenticity of those. Especially we deal with academic type of credentials, or
courses attendance credentials, that is all those information whose aim is to prove
one has attended some course/module and has achieved some results.

Firstly we cluster the possible approaches, as far as we could know of, into some
specific Credentials Management Model. Each model is described giving a concrete

0.4. Thesis Structure 3

example of where it is used. We decided to focus on academic credentials to be able
to concretely exemplify our methodology and to consider the details thoroughly.

We then explore the Self Sovereign Identity model (SSI for short), a user-centric
approach to the credentials management problem which exploits the blockchain
technology to ensure transparency and third party independence in the credentials
handling processes.

We conduct a survey of the models outlined and compare them to the
Self Sovereign identity model. We point out how it is arguably better from different
points of view as we have analyzed in the Models Comparison section.

Comparison with alternative implementations of the SSI models is
carried on.

We give a detailed specification for our SSI model design Pistis, built on top
of the W3C Verifiable Credentials and the W3C Decentralized Identifiers standard.
We detail the specification of Pistis DID Method adhering to the standard. We give
a reference implementation built on top of some basic libraries from the SSI based
project uPort, from Consensys team, creators of the popular Ethereum blockchain.
and try out few complete use-cases to see the system working in practice. We
comment on the results and criticalities of our solution.

0.4 Thesis Structure
Next chapters are organized as follows:

• In Chapter 1, we explore existing Credentials Management Systems clustering
them for a fair comparison against the Self Sovereign Identity model. We
show how the SSI model would outperform the others.

• In Chapter 2, we present our solution.

• In Chapter 3, we describe the building blocks which will be necessary to
understand Pistis architecture in the following chapters.

• In Chapter 4, we expand the previous chapter giving specification of the Pistis
system built on top of the standards explained.

• In Chapter 5,We present Pistis’s architecture and the processes happening
within the system.

• In Chapter 6, we report the details of Pistis components we have developed.

• In Chapter 7, we discuss Pistis limitations alongside compliance with current
regulations.

• In Chapter 8 we look at other SSI solutions.

• In Chapter 9, we explore what yet has to be done as a future work and we
conclude the document with a retrospective on the work done and on the
vision we have of the near future.

Chapter 1

State of the art

We looked for different models to implement credentials handling, i.e. Credential
Management Models. We explored some currently employed solutions and we
clustered them under the same group when characteristics are similar.

Firstly the models are explained, bringing along a real world implementation
and use case. Then the SSI approach is described, with a clear description and
example of how it would work. A detailed comparison of the different Models
has been carried on. Finally some SSI compliant certificate-based system, already
existing are analyzed highlighting what we believe should be changed or improved.

1.1 Known Models

The models are described analyzing how each of them carry out the following
processes, which we believe are the necessary processes to have a fully working
Credential Management System.

• Request and Issue a Certificate

• Share and Verify a Certificate

1.1.1 Paper Model

Under the Paper Model we have clustered any model that involves the use of
credentials in paper format. Paper certificates are indeed issued in a physical form.
The delivery usually happens during a physical meeting between the credential issuer
(or someone on behalf) and the recipient of the credential, or involves quite expensive
cost of physical mail expedition. Scanning the document to gather a digital version
of it is often not possible due to the loss of originality of the document. Authenticity
of such credentials is granted by mean of handwritten signature or stamps. There
is a rich literature about how a handwritten signature could be verified to prove its
authenticity[12][50][39]. Sometimes just the handwritten signature or the stamp are
not enough and the verification process could involves the verifier to get in contact
with the issuer to double check the actual issuing of the credential and that its
content has not been tampered with. This usually happens by an agreement via
email, or through phone calls, etc. . .

5

6 Chapter 1. State of the art

Polimi Use Case

Politecnico di Milano allows students to require the issuing of different official
documents, ranging from Transcript of Record to the official diploma. These are
only available upon request and are all released in paper format. Either a signature
or a stamp, or sometimes both, are applied to the documents to attest the validity
of the issuer. The gathering of these documents implies either that the student
shows up in person at the student desks or that Politecnico mailing them. The
sharing of these credentials, as it could be a Transcript of Records to migrate and
validate exams across different universities, involves the physical meeting of the
student with the foreign university, or the mailing of the document. The verification
process need the universities to be in contact or at least having established an
agreement in order to validate the credential.

This whole process is extremely time consuming and cost inefficient as it will
be better shown in the Models Comparison section.

1.1.2 Digital Signature Model

Under the Digital Signature model we have included any model which involves
a digitally signed credential. A digital signature is a cryptographic scheme used
to verify the authenticity, the integrity and to guarantee the non repudiation of
digital messages or, more broadly, documents. A valid digital signature certifies
that the message was created by a known sender (authentication), and that the
message was not altered in transit (integrity).

It requires a Public Key Infrastructure (PKI) and Certification Authorities
(CA) to be fully functioning. The former involves all the pieces needed to create,
distribute, verify, store and revoke digital certificates. The infrastructure rotates
around the concept of asymmetric key encryption, where a CA issues certificates
attesting that a certain public key belongs to a certain individual or organization
(i.e. what is later on referred to as "Entity").

The digitally signed credential, indeed, can be issued in digital format and
redeemed by the recipient. From now on, the recipient is also the ultimate holder of
the credential and he/she is able to freely share it using his preferred sharing tool
(e-mail, social media, messaging apps, etc.). Whoever receives a digitally signed
credential can verify it by means of a digital signature verification software.

UNIBO Use Case

The University of Bologna (Italy) issues certificates that are digitally signed
and can be downloaded as PDFs. It also allows to print the document with a
digital stamp on it. This digital stamp is simply a two-dimensional code (as a
bar code or a QR code) that contains the digitally signed version of the original
document. The result is a PDF file containing the certification in plain text, plus
the two-dimensional code used to verify authenticity and integrity of the credential.
This method allows to have a paper version of a digitally signed document. [2]

1.1. Known Models 7

NTNU Use Case

To release the Transcript of Records to an Erasmus student, the Norwegian
university NTNU uses a third party service called diploma registry1. This service
allows the student to share their transcript of records or their certificate digitally
signed by the NTNU university with anyone he wants to, for a limited period of
time.2, use the following code when prompted: 439367.

Given that the owner of the credential can redeem his own digitally signed TOR
at any moment and share it in another way, not depending on the third party
service, this is a digital signature use case.

1.1.3 Self Hosted

Any model where the credential is not digitally signed and is held by the issuer
of the credential itself. The issuer is responsible for securely storing and making
the credential available. This last part is crucial and divide this model into two
different categories: private, where the credential is shared just with whom the
owner of the credential has given the permission to; public, where the credential is
accessible to whoever has access to the registry of the credentials.

Here all the processes are strictly dependant on the issuer itself. The issuing
procedure is carried out by storing the credential in the issuer’s storage. Is up to
the issuer to ensure security, privacy, availability and persistence of the data stored.
The actual owner of the credential doesn’t really own the credential. Indeed, to
share one of them, he relies again on the issuer, which has to make the credential
available to whoever the owner wants to. Who needs to verify such a credential has
to trust the issuer.

Oracle - private

Oracle allows anyone who has made a certification at Oracle to share his
certification by email. In the email, like in the NTNU case, there is a link with an
access code to an ORACLE web service which shows you the credential. The link
has an expiry date past which it is no longer possible to access to the web service to
verify the certificate.3, use the following access code when prompted: Cr112719At3y

Differently from the NTNU case, here the certification is not digitally signed,
hence the only way to verify it, is through the ORACLE web service itself.

PMI - public

PMI (Project Management Institute) certifications are publicly exposed at the
following link https://certification.pmi.org/registry.aspx. Here anyone can see who
has attained which certifications just by searching for the initials.

1Here there is the link to the diploma registry https://www.vitnemalsportalen.no/
english/

2You can find an example of it at the following link https://app.vitnemalsportalen.no/
vp/showResultFromLink/en/53F8FBB51EF7456D8A6FF3F1041B277A

3You can find an example at the following link https://catalog-education.
oracle.com/pls/web_prod/ocp_interface.certification_authorization?arg_key=
QGZFB112647eOMb404zQFJ&p_org_id=1001&p_lang=US

https://www.vitnemalsportalen.no/english/
https://www.vitnemalsportalen.no/english/
https://app.vitnemalsportalen.no/vp/showResultFromLink/en/53F8FBB51EF7456D8A6FF3F1041B277A
https://app.vitnemalsportalen.no/vp/showResultFromLink/en/53F8FBB51EF7456D8A6FF3F1041B277A
https://catalog-education.oracle.com/pls/web_prod/ocp_interface.certification_authorization?arg_key=QGZFB112647eOMb404zQFJ&p_org_id=1001&p_lang=US
https://catalog-education.oracle.com/pls/web_prod/ocp_interface.certification_authorization?arg_key=QGZFB112647eOMb404zQFJ&p_org_id=1001&p_lang=US
https://catalog-education.oracle.com/pls/web_prod/ocp_interface.certification_authorization?arg_key=QGZFB112647eOMb404zQFJ&p_org_id=1001&p_lang=US

8 Chapter 1. State of the art

1.1.4 SaaS (Software as a Service)

Any model where the credentials are not available through the issuer itself, but
through a third party service. Differently from the Self Hosted models, here there
is another actor, the third party service, which needs to be trusted.

This model is quite similar to the previous one. The only difference rely in
the presence of a third party which is responsible of handling the credentials in
place of the issuer. However this single difference is quite important in therms
of inter-operability, integrity, and issuer verification as is further discussed in the
model comparison section.

AWS

AWS uses a third party service, Certmetrics in particular, as Software as a
Service to handle their credentials. At the end of the course they release a link where
you can freely access and verify the credential and who is the owner.4 Certmetrics
is a third party service, which offers a solution to securely host certification of any
kind in their own infrastracture. A credential issuer, like AWS in this case, can use
their infrastructure to abstract away all the issues related to the credential storing,
by using Certmetrics services.

1.2 Shortcomings of previous models

Previously described models expose some shortcoming which fail at making any
of those the ultimate Credential Management solution. Speicifically, we identitified
the following pain points:

• Issuer Verification: how can one be sure who the issuer of the credential is?
How trustworthy is that system? Does the verification process need to go
through one or more third parties?

• Portability: How can a credential be transferred elsewhere? How cheap and
time that process is?

• Interoperability: how compliant is the model with different standards? Does
it allow for automatic credential verification? (i.e. verification of some basic
properties of a credential without user interaction)

• Consent/Sharing Permission: Users must agree to the use of their credentials.
How to make sure the credential holder is allowed to hold and share it?

• Data Minimization: Disclosure of claims must be minimized. Many of those
models fail at implementing selective disclosure of information.

• Persistence: Credentials must be long-lived. They have to live at least after
you.

4You can find an example at the following link https://www.certmetrics.com/amazon/
public/transcript.aspx?transcript=TPYP1KG2CFRQ1JG5

https://www.certmetrics.com/amazon/public/transcript.aspx?transcript=TPYP1KG2CFRQ1JG5
https://www.certmetrics.com/amazon/public/transcript.aspx?transcript=TPYP1KG2CFRQ1JG5

1.2. Shortcomings of previous models 9

• Control: Users must have access to their own data without relying on third
parties. There should not be the possibility to enforce censorship or any other
form of control to block availability.

In the model comparison section we have analyzed each model against different
criteria. In general current solutions to deal with personal data, suffer from lack of
decentralization and high cost required to maintain all the necessary infrastructure
to store those data in a secure, privacy preserving, persistent and broadly available
way.

High cost are due to the increasing effort done by organizations to improve their
services, to be resilient to data breaches but at the same time offering an user friendly
experience. Decentralizing is a possible cure. Decentralization, indeed, would help
avoiding data to become more and more centralized in huge silos controlled by
single organizations with full control over our personal data. Beside that, these data
silos are at high risk, due to the daily data breaches we are experiencing nowadays.

The following words well describe these issues and gives an anticipation of the
solution we described in the following chapters:

"None of us actually owns a digital identity. We simply ‘rent’ identities
from each of the websites or apps we use, resulting in an inefficient,
fraud-riddled, privacy-invading mess. Additionally, each organization we
interact with must store our personal information in massive databases.
These ‘silos’ become gold mines to hackers and toxic liabilities for anyone
obligated to store the data. A siloed approach to identity may have
worked in the early days of the Internet, but with practically every
business and billions of people now online, problems such as fraud are
growing rapidly. The costs of these problems will soon balloon as billions
more identities come online with the Internet of Things. Regulators
try to police misbehavior by dishing out billions in fines each year, but
they don’t address the root cause. Data breaches continue to occur
almost daily, often because siloed identity creates massive troves of data
attractive to hackers.

Solving the identity silo problem begins with a digital identity that
you literally own, not just control — a “self-sovereign” identity. When
combined with verifiable claims, it enables any person, organization,
or thing to interact directly with any other person, organization or
thing, with trust and privacy. If anyone other than you can “pull the
plug” or change the rules for your identity, it isn’t self-sovereign, it is
siloed – even if it uses ‘blockchain’ technology. True, globally scalable
self-sovereign identity requires an open source, decentralized network
which no single entity owns or controls. Until the advent of distributed
ledger technology (DLT) this was impossible.

Like the Internet, it is not owned by anyone: everyone can use it and
anyone can improve it.

Any person, organization, or thing can actually own their digital identity
– not just control it – independent from any silo. Any person, organiza-
tion, or thing can instantly verify the authenticity of “claims,” including

10 Chapter 1. State of the art

who (or what) something claims to be. Complete control of how, what
and when information is shared, without added risk of correlation and
without creating troves of breachable data."[21]

The solution they are highlighting is called Self Sovereign Identity. In the following
section we introduce this approach.

1.3 Self Sovereign Identity approach

1.3.1 Introduction

Modern year have seen a rapid change in digital identities models. New tech-
nologies offer different and better ways to handle how personal data is dealt with.

"One of the first references to identity sovereignty occurred in February
2012, when developer Moxie Marlinspike wrote about “Sovereign Source
Authority”. He said that individuals “have an established Right to
an ‘identity’ ”, but that national registration destroys that sovereignty.
Some ideas are in the air, so it’s no surprise that almost simultaneously,
in March 2012, Patrick Deegan began work on Open Mustard Seed, an
open-source framework that gives users control of their digital identity
and their data in decentralized systems. It was one of several "personal
cloud" initiatives that appeared around the same time. Since then, the
idea of self-sovereign identity has proliferated."[20]

"The models for online identity have advanced through four broad stages
since the advent of the Internet: centralized identity, federated identity,
user-centric identity, and self-sovereign identity".[3]

These are words by C. Allen that defines himself on his Linkedin profile: "an
entrepreneur and technologist who specializes in collaboration, security, and trust.
As a pioneer in internet cryptography, he’s initiated cross-industry collaborations and
created industry standards that influence the entire internet. Though he’s worked
within numerous privacy and security sectors, Christopher’s recent emphasis has
been on engines of trust such as blockchain, smart contracts, and smart signatures,
in particular decentralized self-sovereign identity."

Indeed, he has recently been very active in the field of decentralized identity
and Self Sovereign Identity specifically.

In the following sections a definition of SSI will be given, and a comparison
between an SSI credential-based system and the currently used credentials manage-
ment systems is carried on.

1.3.2 Our definition of Self Sovereign Identity

There is not globally agreed definition of SSI, as stated by Christopher Allen[3]
as well as Metadium5, a well known team in the SSI credential-based systems space.

5Metadium, Introduction to SSI: https://medium.com/metadium/introduction-to-self-
sovereign-identity-and-its-10-guiding-principles-97c1ba603872

1.3. Self Sovereign Identity approach 11

Many have had a go with their own thoughts about this new paradigm, but still it
lacks a well defined wordings. In order to be clear on what we believe falls inside
this category and what not, we give our own definition below:

Under self-sovereign identity model, individuals and organizations (users) who
have one or more identifiers (something that enables a subject to be discovered and
identified) can present digitally signed claims relating to those identifiers and issued
by some other identifier. The trustworthiness verification process of those claims is
automatic, unequivocal and is done without having to go through an intermediary.

There must not be any single authority which the system depends upon, in this
way, the system must ensure decentralization property.

Every user is the only owner of his own claims, no third party service are needed
to hold credentials. This way the user is responsible for safe-keeping at least his
own claims, he decides who wants to trust and with whom wants to share with his
credentials.

SSI begins with a digital “wallet” that contains digital credentials. This
wallet is similar to a physical wallet in which you carry credentials issued
to you by others, such as a passport, bank account authorization, or
graduation certificate, except these are digitally signed credentials that
can cryptographically prove four things to any verifier:

• Who is the issuer
• To whom it was issued;
• Whether it has been altered since it was issued;
• Whether it has been revoked by the issuer.

You can also carry self-signed credentials in your wallet, such as your
preferences, opinions, legally binding consent, or other attestations
you’ve made about anything.
Verifiable credentials can be issued and digitally signed by any person,
organization, or thing and used anywhere they are trusted. SSI is as
strong as the credentials it contains, strong enough for even high-trust
industries such as finance, healthcare, and government. Organizations
can choose to trust only credentials they have issued, credentials is-
sued by others, or some combination, according to their security and
compliance needs. [[40]]

Every SSI system should include 4 main processes which we will explore further
in the processes section:

• Request and Issue a Claim

• Share and Verify a Claim

• Revoke a Claim

• Entity Resolution
Thus a system willing to adhere to the Self Sovereign Identity model has to handle
the above mentioned processes in order to have the system fully working.

In the Appendix A you can find an example of a SSI qualifications.

12 Chapter 1. State of the art

1.4 Models Comparison
We defined some criteria to base the comparison upon. We have taken inspiration

from the 10 principles that Christopher Allen proposed:

• Existence: Users must have an independent existence.

• Control: Users must control their identities.

• Transparency: Systems and algorithms must be transparent.

• Persistence: Identities must be long-lived.

• Portability: Information and services about identity must be transportable

• Interoperability: Identities should be as widely usable as possible.

• Consent: Users must agree to the use of their identity.

• Minimization: Disclosure of claims must be minimized

• Protection. The rights of users must be protected

For each criterion a mark from 0 to 2 has been given, represented with the following
colors: 0 , 1 , 2 . The results are summurized in the table 1.1

The meaning of each criterion is further explained below, alongside the motiva-
tion for the marking assigned at each model.

1. Ensure Integrity: if someone tampers with a credential, would you notice
it has been tampered with? How trustworthy is this system?

Paper systems suffer from the forgery phenomena which in the years has been
a great issue. However, it is not easy and there are ways to make this harder,
thus a mid rating has been given.

Digital Signature and SSI use the cryptographic digest to ensure integrity.
It is provable that the best way to hack a system like this is brute forcing
the hash, which takes too long with current supercomputers, thus it has been
given the best rating.

On the other side, SaaS Credentials and Self Hosted have a mid rating because
of the lack of ability to self check the integrity, indeed it is all about trusting
the services not to tamper with the credential. Also the storage systems may
be subject of hackers, thus again we also need to trust their storage systems
other than the Service Provider itself.

2. Issuer verification: how can one be sure who the issuer of the credential
is? How trustworthy is that system? Does the verification process need to go
through one or more third parties?

Paper systems, again, suffer from the forgery phenomena.

1.4. Models Comparison 13

Model

Attribute
Paper

Digital
Signature SaaS

Self
Hosted SSI

Ensure Integrity

Issuer
Verification

Ensure Validity

Portability

Interoperability

Consent/Sharing
Permission

Data
Minimization

Persistence

Protection/
Privacy

Data Sovereignty

Table 1.1: Models comparison

On the top row the Models are listed, while on each row the criteria are expressed and
marks are given at each model. For each criterion a mark from 0 to 2 has been given,
represented with the following colors: 0 , 1 , 2

14 Chapter 1. State of the art

Digital Signature use the PKI system to verify who the issuer of a credential
is. This system is largely used nowadays and can be proved to be trustworthy.
But you have to verify a third party CA chain, where the CA are responsible
of providing identity proof, thus a mid rating is given.

SSI check the authenticity of the document by decrypting it with the public
key. Then use a list of trusted contacts/issuer, to verify the association of
the public key of the issuer to a real identity. This list is managed by the
user/verifier itself, so is up to him to decide who can and cannot trust. There
is no third party, because the blockchain is not a real entity. There are various
method to populate such a list, and they will be further explained in the
Entity Resolution Process. This gives SSI a good score.

Self Hosted is equal to Digital signature if it is based on SSL, which is based
on certificate issued through the PKI, thus a mid rating is given.

In the SaaS model you have to trust the third party service provider in order
to know who is the credential issuer. The only thing you can do is to double
check with the issuer. This gives the lowest rating.

3. Ensure Validity: how can I know if the credential has not been revoked or
expired? Is it even possible to do?

Paper simply has an expiration date which can be printed on top of the
document. Revocation is only possible by physically invalidating the document,
which however seems a very inconvenient way. However, this is not a huge
issue when dealing with the sort of academic/courses attendance credentials
we are dealing with. For this reason the rating is only mid range.

Digital Signature can include an expiry date on the signed document, but
like a pen and ink signature (a “wet signature”, just like the Paper model), a
digital signature cannot be remotely controlled. If a digital signature is valid
at the time the document was signed, then it remains valid forever. This is a
downside for this model (think of a Driving License which cannot be revoked).
This is where it comes the same rating as the Paper model.

SaaS model can show an expiry date and can also be responsible for revoking
credentials, but this is all about trusting the Service Provider. This gives the
model a mid rating.

Self Hosted model deals with the issue in a better way as the Issuer itself is
the one responsible for revoking and has the possibility to do it at anytime
since the credential itself is stored on his servers. The solution looks good
from this point of view.

SSI model allows for both expiration and revocation by simply checking a
revocation list, which could be decentralized using a smart contract. This
gives the model a good score once more.

4. Portability: How can a credential be transferred elsewhere? How cheap and
time consuming that system is?

Paper can be transferred in only two ways if the original credential is requested,
via normal mail or in person, both of this method are not cheap nor fast. If

1.4. Models Comparison 15

the original credential is not requested, then paper credential can be sent
via fax, email or any other digital way, like a URL where the credential is
stored. This methods are cheaper and faster than the previous one, but now
the credential has lost its original format. Thus, the lowest rating is given.

Digital Signature instead can be sent with the same methods used for digitized
paper without losing its original status because of the signature attached
which guarantees its originality. The only cons is in the user experience, which
each time involves some steps, like research the credential and send it, which
is not a real cons, that’s the reason of the maximum score.

When it comes to SaaS or Self Hosted the credential can be shared just by
connecting to the link shared by who is sharing the credential. This method is
free and fast but you have to rely on third party/issuer infrastructure, which
could be down and so your credentials may not be shareable. Thus a mid
rating is given.

With SSI method you can share credentials, stored locally on your device, by
scanning a QR code presented by the server of the entity who you are sharing
your credentials with. This method is free, fast and you are not relying on
any third party infrastructure. This gives the maximum score.

5. Interoperability: how standard is the model to be widely used and adopted
by different system? Does it allow for automatic credential verification?

Paper model involves some standard format for some categories of document,
however this is not common practice to adhere to a specific format. This is
especially true when dealing with our type of academic/courses attendance
credentials. A mid rating has been given because of the few paper templates
used, even though the standardization is not unknown to the paper world.

Digital Signature is made of well defined algorithms and most software already
know how to read them automatically. The issue comes with the content
of the signed document, which doesn’t adhere to any standard and thus it
becomes hard to work automatically with bulk of similar files. This gives it a
mid rating.

Credentials hosted under a certain Service Provider (SaaS model) have some
kind of standard format thus allowing for interoperability. The issue comes
when multiple service providers have to deal with each other, just like it
currently happens, and that is where interoperability is losing traction. This
gives it a mid rating.

Self Hosted falls behind other models here as there is no standardized API
which one can expose to make the system interoperable across different services.
Therefore the lowest rating has been given.

SSI has the same benefits of Digital Signature in terms of standard algorithms
for checking a credential. On top of it the claims follow some specific format
which makes it a great option for broad standardization and interoperability.
Better rating has been given.

16 Chapter 1. State of the art

6. Consent/Sharing permission: Users must agree to the use of their cre-
dentials. How to make sure the credential holder is allowed to hold and share
it? Is it even possible to do?

In all the models it is impossible to completely avoid that someone, who you
have shared your credentials with, then reuse and share them with others.

In the case of SaaS and Self Hosted you can do something to counter fight
this possibility by sharing a link/credential with very short expiration date,
so that just the first verifier can verify it, and then they do not longer have
the access to that credential. Thus a mid rating is given.

SSI doesn’t allow to share credentials that are not owned by you or for whom
you are not delegated to share them. But in both cases none of the methods
can avoid the verifier to make a copy of the credential and share it with other
methods. That’s one the problems that SSI doesn’t solve completely.

7. Data Minimization: Disclosure of claims must be minimized.

All the models need some information to identify the subject of the claim,
which in turn involves sharing those information for verification purposes.

Digital Signature is the only one which allows for signing a credential with
just the right information needed. However the process is not efficient as a
credential should be split into multiple files each one of them with different
information depending on the amount of information to be disclosed. A mid
rating is given as it is possible to have a sort of data minimization even though
it is extremely inefficient.

SSI allows for selective disclosure of information thus sharing only the bare
minimum required. This grants is the best score.

8. Persistence: Credentials must be long-lived. They have to live at least after
you.

Paper documents have a good persistence and it is the way we have always
dealt with documents in general. It is also the simplest way of archiving
information and thus the best rating has been given.

Digital Signed credential is easy to store and with some back up can be
considered to be persistent. This gives it a good score.

SaaS credentials have a persistence which completely relies on those service
providers, making it an extremely bad fit for credential. No backup is possible
as the credential only lives as long as the service lives. Bad scoring has been
given.

Self Hosted certificates suffer from the same issue as the SaaS model. Same
score.

SSI inherits the benefits from Digital Signature, as it is the user’s interest
to securely store the credential in a digital format. Simply safekeeping a
digital file is considered a quite persistent approach even though a digital file
only store on a single device may be easier to get lost rather than the paper
version.

1.5. Known Alternatives 17

9. Protection/Privacy: who can see my Credentials? Is it publicly visible? Is
it restricted to certain people?

Paper, Digital Signature and SSI grants a high protection and a high privacy
level given the fact that you and only the people you have shared with have a
copy of your credentials.

SaaS method implicitly oblige you to share your credentials with a third party,
so here privacy cannot be assigned with the highest rate.

Both in Self Hosted and SaaS, if there is a breach all the credentials stored
by these silos could be public available.

10. Data Sovereignty (Access/Availability/Control): Users must have ac-
cess to their own data without relying on third parties. There should not
be the possibility to enforce censorship or any other form of control to block
availability.

Paper grants an extremely good availability of the credential as the document
is stored by the user himself. Also he has full control over it has there is no
intermediaries involved in the storing nor there is possibility to block the user
from using the paper documents. Good score for the paper model.

Digital Signature also allows for great access capabilities as the user stores
the file and thus he is able to access the data at anytime. This gives good
score.

SaaS Credentials on the other side may have downtimes, or even impeding
user’s access to his own data depending on service provider’s behaviour. This
is considered not be a good solution. Bad score.

Self Hosted suffers the same issues as the SaaS Credential. Same score.

SSI allows the user to access the data at anytime as the credentials are
only locally stored. Same benefits as the digital documents. Best score has
therefore been given.

1.5 Known Alternatives

There are many different projects out there, varying in maturity, blockchain
usage extend, geographical location of the team and intended scope of the project.
We valued many of them before starting our work, choosing the most mature and
SSI compliant ones, and in the chapter Known Alternatives we carry out a brief
comparison giving out a short description of the project highlighting the differences
with Pistis.

Anlayzing them we find out some problems, which can be summarized into:

• Usage of Blockchain: Most of them use a DLT/Blockchain, like a notariza-
tion platform, where is possible to store a proof6 that no one has tampered
with a particular credential. We think this is not a correct use of the blockchain

6In all the cases analyzed, the proof is the credential hashed

18 Chapter 1. State of the art

since it forces the issuer to write on the DLT/Blockchain every time a creden-
tial needs to be issued. We prefer to limit to the bare minimum the use of
blockchain given its inefficiency and cost if used frequently.

• Type of Blockchain used: Some solutions prefer to build their own
DLT/Blockchain to manage identities and their credentials, instead of using
an existing one.

• Credential Standard Used: Some solutions use standard that are not
widely accepted or sometimes they create their own standard, rising walls for
broad adoption and interoperability.

Our solution aims at solving those issues and to provide a truly usable Self Sovereign
identity solution.

Chapter 2

Proposed Solution

In this chapter we describe our solution and what are our contributions with
this thesis.

A major problem pointed out by the state of the art survey on credential
management models was the lack of standardization. This problem is easily solved
by the mass adoption of one unique standard. The two most popular standards for
credentials are Open Badges[22] and Verifiable Credentials[53]; the former created
by the Mozilla foundation and now maintained by IMS Global; the latter created
and maintained by W3C.

Verifiable Credentials proposed by the W3C is a strong winning point against
Open Badges. On top of that, Open Badges, differently from VC, aren’t thought with
Self Sovereign Identity in mind, indeed they lack the concept of data minimization
and data sovereignty1. Finally, Verifiable Credentials are strictly related to the
concept of identity thanks to their association with a DID (decentralized ID), which
is another W3C standard, allowing VC to be easily extended to other use cases
other than Academic Credential Management.

Surely we are not the first ones to have a go implementing an SSI system
building on top of Verifiable Credentials and Decentralized Identifier standards,
nonetheless the standards being only recently proposed. Analyzing the already
existing SSI projects, we believe uPort is the most mature. It makes use of the
public Ethereum blockchain, it is open source and it limits to the bare minimum
the use of blockchain keeping off-chain2 all the identity related information, making
it GDPR friendly by design, as further explained in GDPR compliance section. But
still it lacks some fundamental features which would make it the actual killer dApp
(distributed applications) in the field of credentials management, and in broader
terms of digital identity.

Indeed, uPort still lacks the following both from a specification and implemen-
tation points of view:

• Does not fully adhere to W3C standards as it as it uses a slightly different
DID Document structure and does not take full advantage of the concept of
Verifiable Presentation

1Section model comparison clarifies on minimization and sovereignty of data
2Dealing with blockchain technologies, therms like on-chain and off-chain are used in order to

discriminate between what operation are done on the blockchain and what not. In this case is
used to point out that no identity related information are stored on the blockchain

19

20 Chapter 2. Proposed Solution

• Revocation of Verifiable Credential already issued

• Entity association between DID and the owner of that DID in the real world

• Selective disclosure schema which efficiently allows to share just portion of a
Verifiable Credential

• Large files sharing management

• Standardization of the names used inside a verifiable credential

• Dashboard for issuer and verifier to interface with all the functionalities offered
by an SSI system.

• Cost efficient way to handle delegates

With the goal of overcoming these issues, we designed a new solution: Pistis is a
credential management system based on the Ethereum blockchain. It provides a set
of novel smart contracts to handle efficient multi signature operations, delegates
management, permissioned access to extensible services based upon the Decentral-
ized IDentifier specification. It aims at being an actually usable system in a real
world scenario rather than just being purely research and experimentational work.

We took inspiration from uPort, and we even worked alongside some of their
developers for the first period of work. But once realized the just described draw-
backs, with went on with our very own specifications and reference implementation
we have written from scratch.

Hence, Pistis solves the previous issues by giving:

• Generalized and proposed MultiSig enforcing operations through a frontend
smart contract, easily extensible in any SSI linked scenario. The contract
is arguably more elegant and better than the current common usage of a
MultiSig Contract in terms of gas cost usage.

• Reference implementation for Delegates Registry Smart Contract, which
allows to efficiently manage delegates relative to a DID.

• Reference implementation for Revocation Smart Contract, which allows to
check and change the status of a Verifiable Credential already issued.

• Trusted Contacts Management proposal and reference implementation to
handle entity association in a real world scenario.

• An Extended VC to properly manage selective disclosure.

• An Extended VC to include any file other than just text.

• Proposal for a standard Naming Schema, to solve the lack of standardization
of Verifiable Credential content.

• Reference implementation of a complete User Mobile Application, to safely
store and share Verifiable Credential from your own device.

• Reference implementation for Issuer/Verifier dashboard to handle delegates,
manage credential, read VCs, build and issue VCs

Chapter 3

Building Blocks

In order to ease the comprehension of this work, a step by step approach has
been preferred in explaining how starting from the W3C standards we reached
the full Pistis reference implementation and specification. We start with a brief
overview of the building blocks and then we go deeper into the details.

Our implementation aims at being generic enough in order to have Verifiable
Credentials to be extended for different use cases and go beyond the academic
qualifications.

We build on top of the W3C Decentralized Identifier and W3C Verifiable
Credentials standards. The Building Blocks of this chapter are largely taken from
the specification published by W3C. It is extremely important to clearly state these
basic concepts so that we can build upon in the next chapters.

3.1 DID & DDO

DID stands for Decentralized Identifier. Up until now most of the identifiers of
things on the internet have been under the control of organizations. Your email
address will likely be under Google’s control. Your linkedin profile, indeed stays
under Linkedin’s control. Those are some kind of hierarchical namespaces which
live under total ownership of some company.

W3C proposed a new standard for objects addressing which is independent
from any centralized registry, identity provider, or certificate authority, leveraging
distributed ledger technologies (discussed in the following section), explained in the
following section.

Every DID has its own DID Method, that is a set of rules that govern how
DIDs are anchored onto a ledger. Specifically DID methods are the mechanism by
which a DID and its associated DID Document are created, read, updated, and
deactivated on a specific distributed ledger or network. DID methods are defined
using separate DID method specifications.[51]

Every DID points to a DID Document (DDO) which is the serialization of the
data associated with that DID. The main data to be shown in a DID Document
are the public keys that can act on behalf of the DID they are associated with,
that we refer to also as delegates. In addition to the publication of authentication
and authorization mechanisms, the other primary purpose of a DID Document is

21

22 Chapter 3. Building Blocks

to enable discovery of service endpoints for the subject. A service endpoint may
represent any type of service the subject wishes to advertise, including decentralized
identity management services for further discovery, authentication, authorization,
or interaction.

3.2 Blockchain

We got to the point where we have a way to create globally unique identifiers,
the DID and a relative DDO to provide some additional information about that
DID. Where is all this information stored? In a decentralized identity system like
Pistis, identifiers and public keys can be anchored to a variety of Distributed Ledger
Technologies (DLT), such as Bitcoin, Ethereum, and a variety of other similar
technologies.

These are networks of computers that keep in sync with each other, maintaining
one global ledger or database that is mirrored and replicated across thousands of
machines. Entries in the database are periodically (every 15 seconds in Ethereum,
few minutes in Bitcoin) depending on the particulars) cryptographically “sealed” so
that they are practically impossible to change.

Especially, the blockchain our Pistis project is built upon is the popular multi-
purpose blockchain Ethereum. However, the modularity of our implementation
allows it to use the blockchain as plug and play component, thus allowing Pistis to
be used on different blockchain systems. This becomes interesting in those scenario
where the State or Organization willing to use the system in production may want
to use a permissioned blockchain of their choice for instance. The prerequisite for
doing so is to have the Smart Contracts ported to the new Ethereum alternative
blockchain, keeping the same interface.

3.2.1 Why we need the blockchain?

It could all be feasible by just generating a key pair and using the generated
public key as the identifier to attach to my very person. Then I could ask the
Identity Provider to issue a credential linked to my public key. The first issue
comes when we need to make sure the credentials are valid at the moment we
check its validity. Each issuer should have its own Revocation List and expose
it on the internet and ensure availability and security, non trivial and non cheap
requirements to satisfy to a certain degree. From a technical perspective that is
where the blockchain comes in handy with its intrinsic availability and low cost of
usage.

Therefore we have the need for a decentralized and trustworthy piece of code, i.e.
a Smart Contract, to act as a global decentralized authority to allow revocations
of Verifiable Credentials alongside revocation of public keys associated to a DID.
Indeed the need for a SSI ecosystem is for a decentralized and distributed storage
with authorized accesses, that is a Distributed Ledger Technology running the smart
contract we want.

Having the blockchain as a decentralized, single source of truth, there is no need
to interact with third parties for verification of credentials. Also, the only piece

3.3. Smart Contracts 23

that needs to be trusted is a smart contract, which is trustworthy by design. This
gives a great transparency and decentralization, which is the only means by which
we can achieve a fully interoperable system.

Another great feature of blockchain and the smart contracts which run on it, is
the uptime granted. By design you will always be able to access the information
needed for the SSI system to work as there will always be a server available to
serve the request. This extremely high availability would be harder to achieve by a
single party taking care of it. To have an idea of how much it is we can take an
experimental value from the Bitcoin blockchain which still uses Proof Of Work as a
consensus mechanism. According to http://bitcoinuptime.com/ it is over 99.983%
at the time of writing. Ethereum hasn’t official values, but it can be estimated to
be pretty much the same, given the use of the same consensus mechanism along
other different technical similarities in the blockchains. These are the main reasons
which make the blockchain the perfect infrastructure to build the SSI system upon.

3.3 Smart Contracts
Years before Satoshi Nakamoto’s revolutionary white paper introduced the idea

of the blockchain, a Computer Science Researcher and Cryptographer named Nick
Szabo introduced the concept of Smart Contract, and in 1997 wrote an entire
research paper on it[47]. Nowadays, we can define a Smart Contract as “a computer
protocol to digitally execute the terms of a contract”. It needs to be:

• Trustless: no third party has to have control over it. Needs to be universally
accessible

• Trackable: Transactions can be traced. Auditability is also an important
feature

• Irreversible: Just like legal contracts are binding, smart contract transactions
need to be final.

A smart contract is also self executing. This allows to reduce costs, increase speed,
flexible for different use cases. It can be also defined, in a more technical way, as
code that is stored on a blockchain and is self executing thanks to the trust and
security of the blockchain network. In the case of Ethereum, the code is compiled
into bytecode to be executed by the Ethereum Virtual Machine (EVM).

3.4 Verifiable Credential
In the physical world, a credential might consist of:

• Information related to the subject of the credential (for example, a
photo, name, and identification number)

• Information related to the issuing authority (for example, a city govern-
ment, national agency, or certification body)

• Information related to the specific attribute(s) or properties being as-
serted by issuing authority about the subject

24 Chapter 3. Building Blocks

• Evidence related to how the credential was derived

• Information related to expiration dates.

A verifiable credential can represent all of the same information that a physical
credential represents. The addition of technologies, such as digital signatures,
makes verifiable credentials more tamper-evident and more trustworthy than
their physical counterparts. [53]

Our implementation is built on top of the concept of Verifiable Credential (VC).
What we generally called Claim, it now has been given the name of Verifiable
Credential. This is because the Claim represent someone’s piece of information,
indeed a Credential; Verifiable as it is possible to verify the validity of that piece of
information. This generic verification concept is further explained in the following
lines.

Claims are simply <key, value> pairs of information. Single or multiple claims
are grouped under a so called Verifiable Credential.

Upon reception of a Verifiable Credential the following information are guaran-
teed by cryptographics algorithms:

• It has not been tampered with

• Who the issuer is

• Whether the claim is being shared by an authorized entity

• That the claim has been accepted by the claim subject

• Verify that the VC has not been revoked or expired[53]

3.5 Verifiable Presentation

A Verifiable Presentation is a simple encapsulation of more than one Verifiable
Credential. Any time one wants to move a VC, nevermind if it is composed by
single or multiple claims, it has to be encapsulated inside a Verifiable Presentation.
This is to allow the sharing of multiple verifiable credentials at the same time.
Think about the case where a student needs to share with an employer his CV
which is composed by a verifiable credential for each past work experience and
for each diploma he has attained in the past. That is when all those information
represented as Verifiable Credentials are packed inside a Verifiable Presentation for
convenient sharing.

Holders of verifiable credentials can generate presentations and then share these
presentations with verifiers to prove they possess verifiable credentials with certain
characteristics. The rapidity and convenience of such a system makes it perfectly
suited in when trying to establish trust at a distance.

3.6. Actors 25

3.6 Actors
Within the SSI system we propose there are some well defined and distinct

requirements. A generic end user interacts with other DIDs here and there but he
always has a direct and non-automatic interaction with them. This is what allows
him to relax some entity resolution rules as it easy to check the identity of the
one thing he is interacting with. On the other side a user which has the need to
automatically verify credentials, let’s say an institutional entity for instance, needs
to have a way to resolve and trust/untrust entities associated to DIDs. This is a
first distinction which brings up two different actors: User and Verifier.

Another simple yet important difference comes from the practical user experience
one has with the system. The end user needs to hold the credentials on his mobile
phone while a verifier or issuer entity needs to handle the operations from a backend
application. This brings to another distinction among User and Issuer/Verifier.

This leaves us with three different actors in the SSI system:

• User: the owner of some Verifiable Credentials, a student.

• Issuer: the entity issuing one or more Verifiable Credentials, a university.

• Verifier: one who only reads a Verifiable Credential and makes sure he trusts
the issuer, an employer.

User requirements:

• Share Verifiable Credentials

• Receive and Verify Verifiable Credentials

• Store and organize Verifiable Credentials

• Check the history of the previous engagement with others DID

• Manage a list of trusted contacts

• Key Management

Issuer requirements:

• Create and Issue Verifiable Credentials

• Keep track of issued credentials

• Revoke Verifiable Credentials

• Multi-Signature Operations

• Key Management

Verifier requirements:

• Request and Verify Verifiable Credentials

• Manage a list of trusted contacts

Chapter 4

Pistis Specification

In the previous chapter we only gave a brief overview of the very basic building
blocks needed to understand our Self Sovereign Identity system. In this chapter
we give more details on our specification which builds upon those basic concepts
while being compliant with the draft proposed by the W3C Credentials Community
Group.

4.1 DID & DDO

4.1.1 DDO Structure

The DDO data structure is made of the following fields:

• context: it specifies the specification being used;

• id: the DID subject of the DID Document;

• publicKeys: they are are used for digital signatures, encryption and other
cryptographic operations, which in turn are the basis for purposes such as
authentication or establishing secure communication with service endpoints.
It basically contains the list of all public keys that have a certain influence on
the relative DID. The fields below tell what permission those keys have by
setting a reference to them;

• delegatesMgmt: array of references to public keys which have delegates
management permissions granted.

• statusRegMgmt: embedded keys or references to publicKeys field above, which
have permission to interact with the Credential Status Registry smart contract.
Thus, if did:pistis:0xAB... has key 0xCD... within the statusRegMgmt
field, ethereum address 0xCD... can interact with the smart contract to
revoke/change the status of credentials issued by did:pistis:0xAB... ;

• service endpoints: array of services linked to the subject DID;

• potentially any type of permission1 can be added.
1Please refer to Smart Contracts section for a complete explanation of the way it is handled

by Pistis.

27

28 Chapter 4. Pistis Specification

As extensively stressed out by the W3C Credentials Working Group, the DID
Document does not contain any personal-identifiable information (PII).

A complete example of DDO can be found in Appendix A

4.1.2 DID Method

Our specification is fully compliant with the W3C Decentralized Identifier and
W3C Decentralized Identifier Document. We define our DID method, did:pistis:,
supporting the following operations:

Create: specifies how a client creates a DID and its associated DID Document
on the Decentralized Identifier Registry, including all cryptographic operations
necessary to establish proof of control.

In this we match the did:ethr: specification for which the DID is generated by
appending a newly generated Ethereum address to ‘did:pistis:’. The cryptographical
suite to create a key pair comes from the same as bitcoin’s core, that is libsecp256k1.
Generating the private key and public key is the same for both Bitcoin and Ethereum,
they both use libsecp256k1 elliptic curve cryptography. Deriving an account address
from the public key differs slightly. Deriving an Ethereum address from a public
key requires an additional hashing algorithm. Taking the keccak-256 hash of the
public key will return 32 bytes which you need to trim down to the last 20 bytes
(40 characters in hex) to get the address. [11]

An often discussed topic is about keys collision avoidance. 2256 is the size of
Ethereum’s private key space, a huge number. It is approximately 1077 in decimal;
that is, a number with 77 digits. For comparison, the visible universe is estimated
to contain 1080 atoms. Thus, there are almost enough private keys to give every
atom in the universe an Ethereum account. If you pick a private key randomly,
there is no conceivable way anyone will ever guess it or pick it themselves.

The creation of a DID does not involve any on-chain registration. This is
extremely relevant for a Self-Sovereign system as there is no intermediaries involved
in the creation of a DID. Anyone can freely create his/her own identity and there
is no entity able to censorship or impede that creation. Indeed, creating a DID is
just a matter of creating an Ethereum key pair, let us call it 0xAB. The DID that
address is controlling is the trivial did:pistis:0xAB. Now a Verifiable Credential can
be issued by did:pistis:0xAB by signing the JWT with the private key relative to
the ethereum address 0xAB. Also, that address will have any kind of permission on
did:pistis:0xAB. Right after the creation of a DID it is important to set up some
other DIDs to have the right permissions in order to enable key recovery. Please
refer to the section Identity managment.

Read/Verify: how a client uses a DID to request a DID Document from the
Decentralized Identifier Registry, including how the client can verify the authenticity
of the response.

This is achieved through the DID Resolver (for which we provide a reference
implementation as well), that is a software component with an API designed to
accept requests for DID lookups and execute the corresponding DID method to
retrieve the authoritative DID Document. As the W3C specification involves, the

4.1. DID & DDO 29

Figure 4.1: Handsaking DID

DDO contains a list of addresses which are authorized to sign on behalf of that
DID, thus allowing a verifier to check authenticity by applying the asymmetric keys
algorithm and check whether the signing key is amongst the ones who have autho-
rization permissions. See the figure 4.1 to have an insight about the authentication
procedure.

Update: how a client can update a DID Document on the Decentralized
Identifier Registry, including all cryptographic operations necessary to establish
proof of control.

It is done by updating our DID Registry Smart Contract that holds the mapping
between DIDs and the relative addresses with their specific permission for that very
DID.

As suggested in the spec from the W3C, Pistis supports a quorum of trusted
parties to enable DID recovery. Once DID and its relative key pair is generated for
a user, it is heavily recommended to the user to add two more delegates for the
reasons which will be explained below. When only one delegate is owned by a user,
regardless of the permissions, it is allowed for that address to add one delegate.
Once two or more delegates are added for a certain service, a multi signature is
needed to add another. Same rule applies for revocation of a delegate which simply
consists in deleting the corresponding entry from the delegates array.

This delegation mechanism helps mitigating a scenario where the user loses
access to the private key corresponding to a public key delegated of his DID or when
that key is compromised. In either case, the presence of three or more delegates
allows the user to ask the other delegates to revoke the compromised address. The
legitimate user can then generate a new address and ask the delegates to associate
it with the DID to get back control over it and fully restore its functionalities. The
whole implementation has been done exploiting a fairly complex Smart Contracts
inheritance structure to allow for extensibility. More on this in the Smart Contract
section

Deactivate: how a client can deactivate a DID on the Decentralized Identifier
Registry, including all cryptographic operations necessary to establish proof of

30 Chapter 4. Pistis Specification

deactivation. Deactivation applies in a similar manner as the Update. Indeed, it is
a matter of revoking all addresses for a certain DID. This makes the DID unusable
and non retrievable from that point onward. In this case, there is no public key
that can be used to authenticate the holder’s identity.

More importantly, Deletion of a Pisits DID means that this DID cannot be
reactivated again.

4.1.3 Service Endpoints

The main use Pistis makes of the service endpoints capability is to advertise for
Trusted Contacts List. In this case, the serviceEndpoint points to where the tcl is
hosted, that could be either a smart contract address, an https endpoint hosting
the TCL or even an IPFS resource pointer.

Other services can be linked to a certain DID, it could either be Faucets, Name
Services, or any other kind of service which has to deal with that DID and it makes
sense for users to be aware of it. This is how they would discover those services.

4.2 Naming Schema

The above definition of Verifiable Credential and Verifiable Presentation can serve
as a starting point, but actual widespread adoption still lacks some standardization.
There are two main issues we identified coming from the flexibility of the W3C
standards:

1. Naming System: Lack of a standard naming system for claims

2. Abstract Granularity: Lack of a fixed Abstraction Level in representing
information between VC and VP

An ecosystem without such standardization would suffer interoperability as it
already happens for some Credentials Management Models as already shown in
the Model Comparison chapter. What we call Naming Schema proposal aims at
solving both the issues mentioned above.

4.2.1 Naming System

The former becomes easy to spot once we tried to imagine of a system like this
already in place among multiple independent entities, like it can be for different
Universities in Italy or even Europe. Think of Politecnico di Milano releasing a
Verifiable Credential with my University degree in Computer Science Engineering.
How would they call the credential? "UniversityDegree", "University Degree",
"University Diploma", "Uni Diploma", "Diploma" or what? Imagine now I want to
spend the credential applying for a job in the UK. Would the system accept and
automatically verify the credential look for all those names above and more? Or
would they just ask me for any credential and then someone will manually look into
it and understand that the verifiable credential is what they were expecting? The
issue becomes even more relevant if issuer and verifier might refer to the very same

4.2. Naming Schema 31

word giving different meaning as it is the case of a Master Degree. Each country
in Europe has a slightly different way to value a Master Degree. There it comes
the need to impose a structured yet flexible nomenclature for claims. On the other
side, we cannot force a static set of properties. There are at least two downsides in
doing so: we would have the power to decide what exists and what doesn’t, creating
centralization issues; the ecosystem would not be open to changes. An ecosystem
like that would also not be open to changes.

The Naming System we propose involves the use of schema.org vocabulary and
schemas as a community driven, decentralized and updated reference. Schema.org
will then be used to give specific names and types to pieces of information.

The data model [41] used is very generic and derived from RDF Schema (which
in turn was derived from CycL). We have a set of types, arranged in a multiple
inheritance hierarchy where each type may be a subclass of multiple types. We
have a set of properties:

• each property may have one or more types as its domains. The property may
be used for instances of any of these types.

• each property may have one or more types as its ranges. The value(s) of the
property should be instances of at least one of these types.

DataType types first level subclasses are primitive types. This means that a
schema.org instance tree will always terminate each branch with a DataType type.

For example, if I wanted to make a university degree verifiable credential I would
use the type: "EducationalOccupationalCredential". We may want to add some
properties from the ones available under the very same type, or inherited from the
upper classes. Below an example of standardized Verifiable Credential’s claim for
an "EducationalOccupationalCredential" with properties "credentialCategory" to
explicitly say it is about a diploma and "educationalLevel" to point out that it is a
master diploma (Note that not the grade nor the degree subject are being included.
See the following subsection Abstraction Granularity, where the issue is dealt with):

1 [...]
2 "csu":
3 {
4 "@context": "https:// schema.org",
5 "type": "EducationalOccupationalCredential",
6 "name":"Master Diploma in Computer Science

Engineering",
7 "credentialCategory": "degree",
8 "educationalLevel":
9 {

10 "@type": "DefinedTerm",
11 "name": "Master",
12 "termCode": 7,
13 "inDefinedTermSet": "https:// ncfhe.gov.mt/en/

Pages/MQF.aspx"
14 },

32 Chapter 4. Pistis Specification

15 "competencyRequired" : {
16 "@type": "DefinedTerm",
17 "termCode": "LM-32",
18 "name": "Ingegneria Informatica",
19 "inDefinedTermSet": "https://www.universitaly.it

"
20 }
21 }

Codice 4.1: Sample content of a csu field inside a credential representing a Master
Degree in Computer Science

"EducationalOccupationalCredential" goes under the hierarchy Thing > Creative-
Work. It is the Verifiable Credential’s type. The @context establishes the special
terms used, as proposed on the W3C standard. The name attribute is just for
human readability. The credentialSubject attribute encapsulate the core informa-
tion, i.e. the claim itself. Under credentialSubject we can only place properties
allowed for the VC’s type. In our example credentialCategory, educationalLevel and
competencyRequired are three allowed properties. The former has a Text type as
value, that is a data type (i.e. primitive type) and thus it goes as a leaf of the
claim tree, while the latter has a non basic type that is DefinedTerm with other
properties instancing primitive types to end the tree.

If needed, external extension mechanism through the so-called hosted extension
is available and supported by schema.org through self hosted schemas. For example
a certain university may want to add some very specific course information as
credentials. All it would take is a definition of a schema as proposed by schema.org
and they would have to expose an endpoint with that schema description. The
credentials would then point to that url using the @context field.

4.2.2 Abstraction Granularity

At a higher level of abstraction a Presentation of Credentials may represent a
School Diploma, including the following Credentials: School Name, Program Name,
Graduation Year, Final Grades.

A great issue which comes with such flexibility is the need for a standardization
of Presentation types and Credential types. Think of a new trustworthy marketplace
website, where users would post some objects to be sold by some others. The buyer
needs to go to the location where the object is placed in order to make a purchase.
Since the exact location of a user selling the good doesn’t have to be disclosed, only
the postal code is necessary in order to give an idea of the non accurate location of
the object. The website may then ask for an Address Verifiable Credential, when the
user might have had released an AddressPostalCode VC from his municipality. An
ecosystem without such standardization would suffer interoperability as it already
happens for some Models of handling credentials as already shown in the Model
Comparison section.

We face a trade-off between having atomic Credentials and giving the Presen-
tation little abstraction means, in fact, it only represents an array of credentials,
which also gives a clear and fixed structure alongside a lot of overhead to represent

4.3. Verifiable Credentials 33

multiple pieces of information on a single Credential. On the other side, we have a
much more relaxed model with less overhead in packing up information, but giving
up on fixed standards.

The Abstraction Granularity we propose enforces the use of atomic Credentials,
that is Credentials only made by a single claim object, allowing for finer granularity
of selective disclosure. As seen in the Naming System, the credential has a specific
type taken from one proposed by schema.org tree. The credentialSubject field may
then only contain properties of that type, which in turn may have non-primitive
types having a non fixed depth of the credentialSubject field. Note that, as opposed
to what the W3C specification defines, the properties fields inside credentialSubject
are all strictly related to the same outer type, and are not separate, independent
claims about the same subject DID only. This way the issuer can arbitrarily
decide whether to include one or more claims inside a credential by choosing
the right Type depth from the schema.org tree. For example, a "PostalAddess"
credential may be created with "addressLocality" and "addressRegion" as a nested
properties inside the credential, or may choose to have two simple credentials of
type Text representing those two small pieces of information for greater granularity
of information and thus allowing more privacy preserving information disclosure.

This standardization allows for a great communication interoperability. In
fact, one may just ask for any type of credential by requiring something like
Thing/*, or you may ask for any educational related information with the query:
Thing/CreativeWork/EducationalOccupationalCredential/*

4.2.3 Extending the Naming Schema

In some specific contexts, there can be some well established schemas. Think
about the healthcare field: any digital system already uses the HL7 standard. Pistis
accounts for that allowing to specify the naming schema in the context field of the
credentialSubject.

4.2.4 Choosing a Verifiable Credential naming

In a real world scenario where it comes for an Issuer to create a credential it
becomes quite complex for the user to navigate through the schema.org website
and try to find the naming which best suits the credential he is willing to issue.

For this reason we created a simple utility, the VC Builder, which offers a user
friendly manner to create a Verifiable Credential. Writing a JSON may be quite a
cumbersome task for those who are non technical, a UI to navigate the schema.org
tree and input fields to fill in a credential is therefore a vital tool for real adoption.
On the other side, a standard tool to build credential helps interoperability among
different systems.

Appendix A.10 shows a screenshot of the utility.

4.3 Verifiable Credentials

Here we dig deeper into how we have implemented Verifiable Credentials.

34 Chapter 4. Pistis Specification

Figure 4.2: Verifiable Credentials fields

4.3.1 Simple VC

The W3C standards define the Verifiable Credential as subdivided into three
logical sections as depicted in the figure 4.2 Credential Metadata are data which are
used to contextualize the information included in the claims section. The following
are the fields that we have chosen to include as metadata of a verifiable credentials,
following the W3C standards.

• context: It’s a URI, that once it is dereferenced, results in a document con-
taining machine-readable information about how to properly read a verifiable
credential. In our case is a document containing information about a Pistis
verifiable credential.

• iat: issuance timestamp

• sub: the subject of the credential, to whom is entitled the credential

• exp: expiry timestamp

• iss: issuer’s DID,

• csl: credential status list, which contains the information needed to verify the
status of the credential itself.

The actual assertion done about the subject of the credential are called claims. All
these data are contained in a field called Credential Subject (csu). The following is
the structure we have chosen to organize the subject information into:

• context: It’s a URI, that once it is dereferenced, results in a document
containing machine-readable information about how to properly read the
claim.

• type: the type of the claim. This field is used, to know which are the possible
keys/properties that we could expect. Basically it is the path to be added to
the context in order to retrieve the possible keys allowed

4.3. Verifiable Credentials 35

• name: a name given by the creator of the credential, just to enhance the
user experience. So who reads this name can easily understand what this
credential is about.

• <key, value> : a set of key value pairs, which are the effective attributes
attested by the credential2.

In order to transform a set of claims into a verifiable credential we need a way to
verify that the data has not been tampered with and that they are issued by the
actual issuer stated in the metadata. To allow for such a verification the claims
need to be signed with one of the public keys contained into the DDO associated
to the issuer’s DID.

Our reference implementation uses the open standard Json Web Token (JWT)3
that defines a compact and self-contained way for securely transmitting information
between parties as a JSON object. This information can be verified and trusted
because it is digitally signed. JWTs can be signed using a secret (with the HMAC
algorithm) or a public/private key pair using RSA or ECDSA. In our implementation
the signature is done using the elliptic curve signature algorithm with curve es256k1
(abbreviation: ES256K), the one used in both Bitcoin and Ethereum to sign
transactions.

The following are the fields needed in the proof section of the Verifiable Creden-
tial:

• typ: it will always be JWT in our case

• alg: the signing algorithm used to sign the JWT

• signature: the signed JWT

This was the logical structure of a Verifiable Credential. Having chosen to use JWT,
the verifiable credential, practically, will result subdivided into three main object
following the JWT specification:

• header: typ, alg,

• payload: context, iat, sub, exp, iss, csu;

• signature: proof signature field (the signed JWT)

Here is an example of a verifiable credential attesting that the sub has attained
a university degree:

1 "header":{
2 "typ": "JWT",
3 "alg": "ES256K-R"
4 },
5 "payload":{
6 "context": "https://www.pistis.org/2019/credentials/v1

",

2Refer to the section Naming schema for clarification about keys and values data.
3refer to https://tools.ietf.org/html/rfc7519 for a complete explanation about what is a JWT

36 Chapter 4. Pistis Specification

7 "iat": 1554889743,
8 "exp": 1554890343,
9 "sub": "did:ethr:0xa0edad57408c00702a3f20476f687f3bf8b

61ccf",
10 "iss":"did:ethr:0x9fe146cd95b4ff6aa039bf075c889e6e47f8

bd18",
11 "csu": {
12 "context": "https:// schema.org",
13 "@type": "EducationalOccupationalCredential",
14 "name": "University Degree",
15 "credentialCategory" : {
16 "@type": "DefinedTerm",
17 "name": "Computer Science Engineering",
18 "termCode": "CSE"
19 },
20 "educationalLevel" : {
21 "@type": "DefinedTerm",
22 "name": "University Degree",
23 "inDefinedTermSet": "https://www.eu-degrees.eu/

degrees"
24 },
25 "aggregateRating" : {
26 "@type": "AggregateRating",
27 "ratingValue": "110"
28 }
29 },
30 csl: {
31 id: "<id >"
32 type: "Pistis -CSL/v1.0"
33 }
34 },
35 "signature": "eyshdkndkdlfj324ndsakjas ..."

Codice 4.2: Verifiable Credential Sample

All the above data are enough if we want to read or write a simple Verifiable
Credential, but when we need to share large files, or enable selective disclosure
or create a one time use Verifiable Credential (aka a verifiable ticket) we need to
enrich its structure with other properties and protocol for these particular purposes.
In the next sections we will describe these new properties and protocols.

4.3.2 VC containing large files

It might often be useful to include a large file inside a Verifiable Credential, they
may derive from legacy reasons. For instance, let’s pretend we wanted to include
a detailed scan of the paper version of a Diploma and include it in the relative
Verifiable Credential. Being Pistis thought to be a versatile system, this aspect has
been taken into account.

4.3. Verifiable Credentials 37

The main issues from including a large file as it is inside a VC are the following:

• The main transport used for Pistis is the QR. It only has a limited capacity
of about 3,000 bytes if lowest correction level used.

• Mobile phones are becoming more and more powerful, but still it is not
possible to ask for too much storage as they still are small devices. Especially,
the target device we have in mind is a low range device as the system is to be
used by anyone regardless of the device performance.

• Each time a VC of large size is shared, the whole VC has to be uploaded by
the sender and downloaded by the receiver. This is totally feasible with small
files (under 1MB), but it would become a real pain and extremely cumbersome
to force the user to do so each time. It would be a non trivial limitation for
the system usability.

What above led to a different approach which would ensure all those benefits Pistis
already offers. Inside the credential only the hash of the intended file is kept. Thus
the integrity of the file is ensured, and thus the whole VC keeps being the same
piece of immutable information as before.

On the other side, the file itself is to be retrieved in a different way. We propose
a few ways this can be accomplished, but the protocol is built in such a way that it
is not tightly bound to any specific transport mechanism. Upon sharing of a VC, if
the file type is recognized, the Verifiable Presentation will also include a files field
which is an object containing the hashing function used and, for each Verifiable
Credential present in the Verifiable Presentation, an array of objects (precisely a
schema.org DownloadAction) to express the details of where to retrieve the files.

In a real life scenario, different download methods would be chosen depending
mainly on privacy required for that file and bandwidth available.

• Low privacy: the example could be a simple logo which needs to be the
content of a credential to be signed, and thus not just a simple logo linked
to an association (as for that it would be just a matter of adding a "logo"
property with an url as value). In this case the DownloadAction associated
to the VC would include a simple remote and open a url where the file can
be retrieved.

• Medium privacy: it could be a diploma, which doens’t have to be fully
available on the web, however it is still visible in some specific context, as
it could be social media. In this case the storing of the file is delegated to
a secure data hub as it could be the yet to be standardized Identity Hub
[18]. It will then generate a one time link to be included in the Verifiable
Presentation in order to let the receiver download the file from there. In this
case the generation of the credential requires asking the Identity Hub for that
one time link, and thus may suffer some delays, even though it would still be
more than reasonable.

• High privacy: if the file has to be kept on the user’s device no matter what.
In such a scenario the Download Action would include the file content itself.

38 Chapter 4. Pistis Specification

What is actually stored into a VC containing a large files, is a series of escaping
character with the position in the VP files array where we can find the corresponding
DownloadAction (<?f "position" ?>). After the escaping characters there is the
hashed content of the file. Here there is an example of VC with large files:

1 {
2 "iat": 1558515010,
3 "sub": "did:ethr:0xa0edad57408c00702a3f20476f687f3bf8b

61ccf",
4 [...]
5 "csu": {
6 "@context": "https:// schema.org",
7 "@type": "EducationalOccupationalCredential",
8 "name": "Diploma",
9 [...]

10 "image": "<?f1?>CF0BF0055AF44C1DFAC9FB48080DE93F6C1F
54A220127C7EC37CA9E8898DB00A"

11 }
12 },
13 [...]
14 }

Codice 4.3: Verifiable Credential with large files

As you can see the image property is the large file and in this case is stored at
the second position of the files array contained in the verifiable presentation. In
this case the files field will look like the following one:

1 {
2 ...
3 "files": [
4 {
5 encodingFormat: "SHA256",
6 values: [
7 {... download action referred to another

file ...},
8 {
9 "location": "remote",

10 "url": "https://www.qldxray.com.au/wp-
content/uploads/2018/03/imaging -
provider - mobile.jpg",

11 }
12]
13 },
14 {encodingFormat: "SHA256", values: [...]}
15]
16 }

Codice 4.4: Verifiable Presentation with large files

4.3. Verifiable Credentials 39

So as you can see there is an array of download actions for each Verifiable
Credential.

All these array are contained into another array for an easier implementation.
The following are the steps performed by the Pistis system to verify a VP with one
or more VCs containing large files:

• Parse the content of each Verifiable Credential searching for the escaping
characters;

• Every time an escaping character is found look into the VP files property for
the corresponding file. (e.g found the escaping characters <?f1?> in the second
VC, you have to look in the second array for the second DownloadAction)

• Download the corresponding file

• Compute the hash of the file content

• Compare the computed hash with the one stored into the Verifiable Credential

When someone wants to share a Verifiable Presentation containing one or more VC
with large files, he has just to include in the same order of the VCs the corresponding
array of DownloadActions in the Verifiable Presentation.

We have chosen to implement this protocol in order to allow the sharing of
multiple files without having to change the structure of the VC using the bare
minimum additional field into the VP.

4.3.3 VC with selective disclosure

Selective disclosure is clearly an important feature of Verifiable Credentials, e.g.
for driving licenses or passports we might only wish to reveal our name and nothing
else. There are several potential ways of doing this:

• use of ZKPs - zero knowledge proof algorithms allow assertions to be made
about the VC, without revealing the VC itself

• use of atomic credentials - each property of the credential is issued as a
separate VC so that the holder can reveal individual properties

• use of hashes - The VC only contains hashes of each of the credential subject’s
properties, and the properties are separately held by the holder. The holder
places the to-be-revealed claim in the Verifiable Presentation and the verifier
computes its hash and compares it to the appropriate hash in the VC.

In our implementation we have chosen to use the last one, because it is the
optimal compromise between being easy to implement and allows for a real selective
disclosure.

The way it is implemented is very similar to the way we manage large files. The
actual Verifiable Credential data will be contained into an external properties called
data inside the Verifiable Presentation that wraps the VC. In the VC, instead, there
will be just the hash of the content concatenated with a series of escape characters

40 Chapter 4. Pistis Specification

like the ones used for the large files (<?d "position" ?>). Upon the sharing of the
credential a user can choose which data wants to share by including them in clear
into the data property of the Verifiable Presentation. This way who receives the
Verifiable Credential can see just the data shared into the Verifiable Presentation,
the other data in the Verifiable Credential are just the hashed one. This way we
enable selective disclosure without the need to modify the VC or to ask the issuer
to issue multiple credentials.

If the data that has been chosen to be hashed is an easily guessable data like
my age, then an attacker could use bruteforce to retrieve my age even if I didn’t
want to share with him my age. To avoid this, these types of data are concatenated
with a salt of 32 byte, which is just a random data to avoid brute forcing.

Here it is an example of a Verifiable Credential of a Diploma where the grade
and the type of Diploma have been hashed.

1 "context": "https://www.pistis.org/2019/credentials/v1",
2 "iat": 1554889743,
3 "exp": 1554890343,
4 "sub": "did:ethr:0xa0edad57408c00702a3f20476f687f3bf8b

61ccf",
5 "iss":"did:ethr:0x9fe146cd95b4ff6aa039bf075c889e6e47f8

bd18",
6 "csu": {
7 "context": "https:// schema.org",
8 "@type": "EducationalOccupationalCredential",
9 "name": "University Degree",

10 "credentialCategory" : <?d0?>CF0BF0055AF44C1DFAC9FB4
8080DE93F6C1F54A220127C7EC37CA9E8898DB00A

11 "educationalLevel" : {
12 "@type": "DefinedTerm",
13 "name": "University Degree",
14 "inDefinedTermSet": "https://www.eu-degrees.eu/

degrees"
15 },
16 "aggregateRating" : "<?d1?>CF0BF0055AF44C1DFAC9FB480

80DE93F6C1F54A220127C7EC37CA9E8898DB00A",
17 }

Codice 4.5: Verifiable Credential with selective disclosure

Then in the data property of the Verifiable Presentation in which the VC has
been included there is an array for each VC presents in the VP, containing all the
data in clear that the user has chosen to share.

1 {
2 ...
3 "data": {
4 encodingFormat: "SHA256",
5 values: [
6 [

4.3. Verifiable Credentials 41

7 {
8 "@type": "DefinedTerm",
9 "name": "Computer Science Engineering",

10 "termCode": "CSE"
11 },
12 null
13],
14 [another array of data for the hashed one in

the second Verifiable Credential],
15]
16 }

Codice 4.6: Verifiable Presentation with selective disclosure

In this case the user has chosen to share just the type of diploma and not the grade,
that’s why the second entry of the array is a null object.

Actually not all the Verifiable Credential data need to be treated this way. Is
up to the issuer who creates the Verifiable Credential to decide which data need to
be hashed and which not. Obviously selective disclosure will be enabled only on
the data that has been hashed.

The following are the steps performed by the Pistis system to verify a VP with
one or more VCs containing selectively disclosed data :

• Parse the content of each Verifiable Credential searching for the escaping
characters;

• Every time an escaping character is found look into the VP data property for
the corresponding data. (e.g found the escaping characters <?d1?> in the
second VC, you have to look in the second array for the second data)

• Check if the data has been disclosed or not

• If has been disclosed, compute the hash of the data

• Compare the computed hash with the one stored into the Verifiable Credential

When someone wants to share a Verifiable Presentation containing one or more VC
with selectively disclosed data, he has just to include in the same order of the VCs
the corresponding array of data in the Verifiable Presentation.

As for the large files, the encoding format is included inside the data property
of the VP.

The use of a merkle tree has been considered, and discussed in the Future Work
section.

4.3.4 VC as a Verifiable Ticket

Verifiable Credentials are issued to a certain DID and are bound to live with it.
However, there may be the case where the VC might contain information which
are not strictly linked to anybody and thus the credentials can be shared, used,
and hold by anyone. A concrete use case can simply be a discount given at a

42 Chapter 4. Pistis Specification

Figure 4.3: Verifiable Presentations fields

certain competition won by someone. In that case that discount can be issued as a
Verifiable Credential, but it could also be fungible and spent by others.

Our implementation accounts for these types of situations by having a Verifiable
Credential with the sub field equals to zero, that is the credential is not strictly
bound to anyone, and can therefore be shared and exchanged among users. A
common way to deal with this kind of Verifiable Tickets is to revoke them once
used, as they are often meant to be used once, or the validity can be time bounded
trivially using the expiration timestamp. Pistis does not enforce that the credential
can only be shared once, but it is up to the issuer to deal with the situation in the
most suitable way.

This approach is an alternative to the commonly used Non-Fungible Tokens
(NFT)[42]. The major difference lies in that a Verifiable Ticket does not have any
reference on chain (unless a revocation status is set for that credential), indeed it
totally lives off-chain. The exchange of such a token/credential can therefore be
private and free as it is not registered in an Ethereum transaction. Depending on
the specific use case one approach outweighs the other in terms of benefits.

4.4 Verifiable Presentation
The W3C standards define the Verifiable Presentation as subdivided into three

logical sections as depicted in the figure 4.3 Presentation Metadata are data used
to contextualize the verifiable credentials shared. The following are the fields which
we have chosen to include as metadata of a verifiable presentation, adapting the
W3C standard.

• aud: The recipient’s DID,

• iat: Issuance timestamp,

• exp: expiry timestamp,

• iss: The sender’s DID

4.4. Verifiable Presentation 43

The actual Verifiable Credentials are inserted into an array already encoded as
JWT, other than these we have included two other fields: file, used in order to
manage large files which cannot be included directly into a verifiable credential;
and data, used to enable selective disclosure. Here there is the structure of the
Verifiable Credentials section inside a Verifiable Presentations.

• vcl: array of verifiable credential JWTs

• file: array of Download Actions

• data: unencrypted data to enable selective disclosure

As for the Verifiable Credential, a Presentation in order to be Verifiable needs to be
signed with one of the public keys contained into the DDO associated to the issuer’s
DID. And also for Verifiable Presentation we have chosen to use Json Web Token
(JWT). The following are the fields needed for the proof section of the Verifiable
Presentation:

• typ: it will always be JWT in our case

• alg: the signing algorithm used to sign the JWT

• signature: the signed JWT

This was the logical structure of a Verifiable Presentation. Having chosen to use
JWT as verifiable credential, practically, will result subdivided into three main
object following the JWT specification:

• header: typ, alg,

• payload: iat, aud, exp, iss, vcl, file, data;

• signature: proof signature field (the signed JWT)

An example of Verifiable Presentation encapsulating my Career information as
multiple Verifiable Credentials regarding courses would look like the following:

1 "header":{
2 "typ": "JWT",
3 "alg": "ES256K-R"
4 },
5 "payload":{
6 "vcl": [
7 eyJ0eXBaOwJSQ1.... HdHrgh -EnAA ,
8 eyJ0eX2dsisdc2.... HoHthh -TmZZ ,
9 eyJ0eXqiergGC3.... HoHthh -TmZZ

10],
11 "file": [
12 {encodingFormat: "SHA256", values: [...]}
13 {encodingFormat: "SHA256", values: [...]}
14],

44 Chapter 4. Pistis Specification

15 "data": {encodingFormat: "SHA256",
16 values: [
17 null,
18 [data1, data2],
19 null
20]},
21 "aud": "did:ethr:0x7da253add95f4fe6gh269cf173c586s6g46d

7va24",
22 "iat": 1554889743,
23 "exp": 1554890343,
24 "iss":"did:ethr:0x9fe146cd95b4ff6aa039bf075c889e6e47f8

bd18"
25 },
26 signature:"eyshdkndkdlfj324ndsakjas ..."

Codice 4.7: Verfiable Presentation Example

4.5 Smart Contracts
Pistis architecture needs to access the blockchain in different scenarios that can

be divided into read and write operations as below:
Read Operations:

• DID-Resolver: Resolve DID into DID Document. This is needed on multiple
cases, the most common of which is the verification of authorization to sign
on behalf of a certain DID, using the concept of delegate

• VC Status Check: Verify the status of a verifiable credential by checking a
revocation list.

• Entity-Resolver: Verify if the issuer of a verifiable credential is a trusted one
or not by checking a Trusted Contacts list.

Write Operations:

• Delegates Management: Add or Revoke a delegate, update the permission
associated with a delegate

• VC Status Set: Change the status of a verifiable credential updating a
revocation list.

• Trusted Contact Management: Update the trusted contacts list adding or
revoking entities.

Read operations doesn’t need any kind of permission, anyone can perform them
and more important they are completely free, you don’t have to pay any Ether.

Write operations, instead, require permissions to avoid that anyone could freely
edit the state of a smart contract. That’s why we need a Permission Registry which

4.5. Smart Contracts 45

Figure 4.4: Smart Contract Class Diagram

holds these permissions and allow to check and update them. Obviously, write
operations have a cost, because we are updating the state of a smart contract.

A simple Registry, as we have already described in the DID method section,
cannot protect us from a lost private key, or a stolen private key used by a malicious
attacker. That’s why we need a way to execute these kind of operation with the
consensus of a minimum quorum of parties. Here is where the multi signature
wallet comes in handy. A multi signature wallet is a smart contract which allows
multiple people to manage the same wallet, that is the contract itself. When a
transaction needs to be executed one of the n owners of the wallet can submit a
transaction, then this transaction in order to be executed needs to be confirmed
by m over n wallet owners. That is exactly what we need in order to increase the
security of our smart contracts.

However, using a normal multi signature wallet, every single DID who wants
to have this kind of security needs to deploy on the net a multi signature wallet.
This is something that we would like to avoid. Hence, we have reused the same
idea of the multi signature wallet to create a smart contract which combined with
a permission registry allows to have the same functionality of a multi signature
wallet but deploying it just one time. The smart contracts as we have implemented
them, are a way to handle any type of service and who has permission to work on it
on behalf of a certain DID. This is done thanks to the generic OperationExecutor
contract which can be seen a contract whose state has to be modified in a multi-sig
manner by those who have permission for a certain DID. This ended up to be an
interesting topic which could be treated per se on a different paper. The resulting
Class Diagram of the Smart Contracts that we have implemented can be seen in
the figure 4.4

46 Chapter 4. Pistis Specification

4.5.1 Multi Signature Operation

This can be called as the frontend smart contract for the write operations. In
fact is the only one which allow someone to modify contracts state. In this way we
can control who has the right permission to complete a certain operation and at
the same time if that operation has been approved.

Before going on, a clarification is needed. In the following paragraphs the term
function refer to any of the smart contract function, like SubmitOperation,
ConfirmOperation etc . . . The term operation, instead, will be used to refer
to the actual operation that who is using the multiSigOperation contract is trying
to perform, like adding a new delegates or updating the contact list in the TCM
smart contract, so basically an operation which modify the state of one of the smart
contracts.

To complete any kind of operation, one has to first submit that operation
using the submitOperation function. Then as soon as enough delegates have
confirmed that operation, using the confirmOperation function, that operation
will be executed. Executing an operation means to call another smart contract which
inherits from Operation Executor smart contract. In this way the multiSigOperation
contract is as general as possible, allowing anyone to create his own Operation
Executor contract and to use the multiSigOperation as an alternative to the multi
signature wallet.

Actually before executing any of these functions (submitOperation, con-
firmOperation, revokeConfirmation. . .), the contract checks if the caller
has the right permission to complete that kind of operation, by calling a smart
contract that inherits from Permission Registry. Again this is to allow to remain as
general as possible and to allow anyone to implement his own Permission Registry.

The permission needed to complete an operation is the address of the Operation
Executor responsible of executing the operation.

4.5.2 Operation Executor

The Operation executor smart contract is an interface smart contract. Inher-
iting from Operation Executor means being responsible of executing a particular
operation. In order to inherit from it, any smart contract needs to implement the
function execute, which is the function that actually execute an operation.

Every time an Operation Executor is deployed onto a net, the constructor
required to set the address of the mutliSigOperation contract associated. This is to
avoid that no one else but the multiSigOperation can call the execute function.

4.5.3 Permission Registry

The Permission Registry is an interface smart contract that inherits from the
Operation Executor. Inheriting from Permission Registry means being responsible
for tracking the association between addresses, their permissions and the minimum
quorum needed to execute an operation . The inheritance from the Operation
Executor is needed in order to update these associations.

4.5. Smart Contracts 47

In order to inherit from it, any smart contract needs to implements the functions
:

• actorHasPermission, which returns true if the one who is trying to
execute the operation has the right permission for it.

• quorumSatisfied, which returns true if the quorum to execute a particular
operation has been reached.

4.5.4 Pistis DId Registry

The Pistis DID Registry Smart Contract is our implementation of the Permission
Registry and is responsible for keeping the association between a DID and its DDO
document. Based on the DDO structure the smart contract data structure is
composed by 6 variables:

• delegates: the actual list of delegates, for each identity maps permissions (i.e.
executors address) to those addresses who have it granted.

• delegatesCount: count delegates per identity. Needed to update the minimum
quorum required when the number of delegates is less than the quorum set.

• primaryAddressChanged: needed to check whether the primary address asso-
ciated to that identity is still the trivial delegate or not.

• minQuorum: minimum quorum required to perform a certain operation per
identity and per permission

• blockChanged: Needed to retrieve the DID Document from the smart contract

• service endpoints: A list of DID address with the relative service endpoints
publicly exposed by that DID.

The execute function inherited from Operation Executor is responsible of updating
this data structure, in other words is responsible of the write operations. In
particular the operations that can be performed are:

• Add a new delegate to an identity with a certain permission.

• Revoke a permission of an existing delegate from an identity

• Add or revoke a service endpoint associated to a certain identity

4.5.5 Credential Status Registry

The Credential Status Registry Smart Contract is an example of Operation
Executor. In this case it is used to check and update the status of a credential.
From a more generic view point it shows how a service can be added on top of the
existing SSI registry and multi-sig operations with extreme simplicity.

48 Chapter 4. Pistis Specification

The smart contract data structure is a nested mapping like the following:

mapping(address => mapping (uint256 => State)) credentialLlist;

which is a list of credential status indexed by the credential id (uint256, unique
per issuer), which are indexed by the issuer DID (address). More in details the
credential status is a Struct composed by three fields:

• credential_status: the effective status of the credential, could be one of
VALID, REVOKED or SUSPENDED;

• status_reason: the reason of the credential status, which is a string of 32
character, to briefly explain the reason of a status;

• time: the block timestamp in which the update of the status has taken place.

The storage of the smart contract is initialized by default with all zero. This means
that every verifiable credential when is issued for the first time is valid, and we
don’t need to write on the smart contract to issue a new verifiable credential. The
execute function inherited from Operation Executor, is the one responsible to
update the credentialList mapping.

4.5.6 Trusted Contacts Management

The Trusted Contact Management compliant smart contract is an Operation
Executor that holds a data structure like the following:

mapping(DID -> mapping(DID -> Entity))

to maintain the association between a DID and the entity which holds that DID,
and it is indexed by the DID of whom has published and maintain that list.

The reasoning behind the full mapping is that TCL can be published by anyone,
but it is of great importance to state the DID responsible for supporting that list,
indeed being this a solution which fully supports and encourages decentralization,
it is up to every single party deciding whoever they believe being trustworthy.

The execute function inherited from Operation Executor is the one re-
sponsible to update the data structure, adding, removing or updating a TCL.

4.5.7 Design Pattern Decisions

Here we describes the design patterns used and the rationale behind them

Circuit Breaker

Circuit breaker pattern is used when the contract may need to be paused from
function, either totally or partially, due to a bug found in the code.

The implementation is done on the only contract that has a function which
can be called by users, that is the MultiSigOperations contract. Especially, the
confirmation of any operation is reverted in case the circuit breaker is active.
This would impede any operation from being executed, which also means that no

4.6. Communication 49

OperationExecutor contract can have its state changed has no execution can take
place.

A stopped boolean drives the pattern, which is modifiable only from the contract
deployer.

Access Restriction

Access Restriction pattern is needed when a function should not be called by
anyone. That’s all the restriction you can give, as there is no way to restrict actual
visibility of data or function as everything is clear on the blockchain. This is usually
implemented by requiring that a certain pool of addresses are calling the function,
reverting otherwise. About contract state the private keyword can be used to avoid
other contracts to access it.

In this specific scenario the pattern is widely used. Two main uses are explained
below:

1. Some functions can only be executed by those who have certain permissions.
This is done by using modifiers such as actorHasPermission and quo-
rumSatisfied in the MultiSigOperations contract. The former involves
asking a PermissionRegistry contract to check if a certain address has permis-
sion for a certain identity. The logics by which that permission is given or
not is decided by the PermissionRegistry contract. In this scenario there is
the concept of delegates.

2. OperationExecutor contract has only one public function (other than the
constructor) which can only be called by the MultiSigOperations contract.
This ensures that the execution of operations in that OperationExecutor
contract are only made in a multi signature manner. A concrete example is
the CredentialStatusRegistry contract which can have credentials’ status only
changed after enough confirmations by those who have permissions.

4.6 Communication
The issue addressed in the following paragraphs concerns the communication

standard to be used when two actors of the SSI system talk to each other. For
instance, how would a Verifier require specific Verifiable Credential? We have built
a simple communication protocol for that. Moreover, the transportation methods
used to exchange information is also described in the Transport Methods paragraph
below.

4.6.1 Protocol

Between the actors of our system there are 3 different types of communication
which could happen based on the processes described below. These 3 types are:

• Attestation;

• ShareReq;

50 Chapter 4. Pistis Specification

• ShareResp;

Appendix B shows the examples of the three different JWT used in the protocol:
They all have 5 fields in common:

• The type property, which states that we are dealing either with an Attestation
a Share Request or a Share Response.

• The aud property, which is the DID target to whom is directed the JWT.

• The iat property, which is the timestamp at which the JWT has been created.

• The exp property, which is the timestamp at which the JWT will expire.

• The iss property, which is the DID sender, who has created the JWT. Then
the JWT could be signed by one of the delegates who has an authentication
permission.

The other fields that are required only by some types are:

• The credentialSubject field, which is an array of signed Verifiable Credential,
so they are basically other JWT. This field is required by the Attestation and
the ShareResp types.

• The requested field, which is an array of paths to the types of Verifiable
Credential requested during a Share Request.

• The callback field, which is the url where the requested Verifiable Credentials
have to be sent to.

Each JWT is composed by a header a payload and a signature, in the header
there is the algorithm used to encrypt it, in the payload there is the actual data
exchanged and the signature is composed as follows:

<algorithm of encryption>
(base64UrlEncode(header) + "." +
base64UrlEncode(payload),
secret)

where the secret is generated by the symmetric key pair composed by one of the
public keys associated with the DID in the DDO and the associated private key.

4.6.2 Transport Methods

Taking inspiration from uPort project we have implemented a simple transport
by means of QR codes for quick use. Quick Response codes are easy to generate
and use. They are a convenient way to store all kinds of data in a small space. A
single QR code can hold up to 4000 characters (if alphanumeric only).

It perfectly suites to pack a Verifiable Presentation inside a QR. Up to an average
of 3 Verifiable Credentials can be easily held on a single QR. A communication
between a user and a website using the SSI would imply the user to scan the QR
for any kind of interaction, that is either:

4.6. Communication 51

• Download Verifiable Credential issued from a website

• Share a Verifiable Credential to the website willing to verify it

If the interaction was to come from a mobile device, a deep link would encapsulate
the information and the user would be redirected to our reference application.

As a future work, we plan to look into push notifications and bluetooth commu-
nications for nearby devices.

Chapter 5

Pistis Architecture

This chapter aims at giving a comprehensive description of the architecture used
for Pistis. Also some important processes are outlined in order to fully understand
the system built.

Taking into account the different actors of the system (i.e. an issuer, a verifier
and a user), the full architecture used for the reference implementation is shown in
figure 5.1 on the following page

5.1 Mobile Application

The most straightforward component to satisfy the user’s requirements is a
mobile application, given his portability, user experience and his privacy preserving
capabilities. The application communicates with the web server via HTTPS protocol
in order to ensure a secure communication. Infura infrastructure has been used to
easily connect to the blockchain, even though a physical Ethereum node would be
definitely preferred if available. Indeed, in an ideal situation, a verifier would run
his own node and use that as gateway to the blockchain instead of relying on a
third party service like Infura. However, it still is the most used way to access the
Ethereum blockchain without having to setup an entire node by yourself, thus it
still makes a good choice where ease of implementation is preferred of very high
level security. The infura infrastructure exposes a REST API to communicate with.

The application has been implemented using the react-native framework[16] and
Redux[37] which is an implementation of the flux design pattern. It gives the great
benefit to build a native app for both iOS and Android system while developing
just one application using common web programming langagues and tools.

5.2 Issuer/Verifier System

An Issuer or a Verifier have different requirements1 than an end user, and
a mobile application does not fit them properly. It is often the case where the
issuer/verifier needs to expose a web page a user may interact with. A common
scenario is when authorization is given to certain users upon sharing and verification

1see actors section for a brief summary of issuer/verifier requirements

53

54 Chapter 5. Pistis Architecture

Figure 5.1: Pistis Architecture Overview

of a certain Verifiable Credential. Those checks surely have to be done on the
back-end. A reference implementation of a web server and of a client dashboard
have been furnished to satisfy these requirements.

The web server communicates with the mobile application through the commu-
nication protocol described in the communication section. The web server could
communicate directly with the Ethereum blockchain, but again it should set up
an entire Ethereum node to do so, which could be an adoption obstacle to anyone
who does not already have one. That’s why the web server access the Ethereum
blockchain through the Infura infrastructure by default.

The client dashboard communicates with the Ethereum blockchain through
MetaMask browser extension wallet to allow issuer and verifier to sign transactions
with their preferred account, without having to run a full Ethereum node.

Finally the client dashboard and the web server communicate with each other
through WebSocket protocol.

5.3 Blockchain Integration

5.3.1 Infura

In order to access the blockchain we would need to set up an entire node of the
blockchain itself, which means to download more than 1 TB today. Then we could
use a lightweight client which communicates over Https with the actual Ethereum
node to make transactions on the blockchain. But again, somewhere you need to
set up this node. Infura[24] infrastructure is one of the most used ways nowadays
to access the blockchain, and is essentially a service which offers a REST full API
to easily access Ethereum node which you don’t need to worry about at all.

The only thing you have to do is to set up a project in infura in order to generate
an API key to access the service and you are all done. This is how the reference

5.3. Blockchain Integration 55

implementation has been built.

5.3.2 MetaMask

MetaMask[29] is a browser extension that injects a Web3 instance in the user’s
browser. It also works as a wallet to securely hold your accounts and tokens,
allowing to interact with the blockchain without having to run a full node. Both
issuer and verifier need such a interface to sign transaction in order to trigger a
smart contract functions. Infura could have been used as well, exploiting their
services to wrap a pre-signed transaction and send it to the network. However, the
keys would have been handled on the backend and only one account would have
been used. This way it allows for fast switching of accounts, so that multiple actors
of the same organization can interact with the very same dashboard leveraging the
user friendliness of MetaMask. In the section future work we explore the possibility
of using the same mobile application, used by an end user, to replace MetaMask
wallet.

5.3.3 Permissioned Faucet for On-Chain operations

We previously defined the smart contracts needed to run the Pistis system.
On-chain write operations have been avoided as much as possible as it would require
people to spend some wei2 to pay for the gas to have the transaction processed
by the Ethereum network. Of course, if the system was to be deployed on a
permissioned blockchain with no digital currency, for instance,a blockchain system
ran by an institution, that would not be the case. However, the Pistis is mainly
thought to run on Ethereum and thus that is an issue to be overcome.

It is just not feasible to pretend that each single participant in the network
manages his own ETHs. In today’s society and in the next 5 years, this just can’t be
given for granted. On the other side, some operations requires on-chain operations.
These are:

• Revoke a VC

• Revoke a DID’s public key

• Add delegate

• Remove delegate

• Expose a TCL on a Smart Contract

• Any other possible service which can be added on a later time

In some cases, where institutions or national entities are responsible for the opera-
tions, as it can be the case for publishing a TCL or revoking a Verifiable Credential,
having weis to spend on a transaction becomes more reasonable. When it comes to

2Wei is the smallest denomination of ether, the cryptocurrency coin used on the Ethereum
network. 1 Ether = 1,000,000,000,000,000,000 Wei 1018

56 Chapter 5. Pistis Architecture

some user adding a delegate, however, we needed a way for someone to pay for that
user.

There it comes the idea of an ETH faucet which has limited access by a single
DID and also requires some authentication (in the manner of sharing a Verifiable
Credential) prior to the use of it: Pistis Faucet. It is a simple utility which allows
some national entity to expose this service which lands the weis needed to make a
transaction to those who need it. The flow is as follows:

1. The Faucet holder sets up the required criteria to allow the withdrawal of
ETH from the faucet. That is a regex on the Verifiable Credential/s that
the user has to own in order to be eligible to use the faucet. It can simply
be a request for a Person VC with a valid National Identity Number in it
and issued by one of the recognized service providers (this is automatically
processed by the Trusted Contacts Management).

2. The user willing to make a transaction that requires spending some gas, for
instance, the addition of a delegate, is prompted whether to use a faucet or
to pay for the gas himself.

3. If a faucet is chosen (see below for faucets discovery), the user is simply
redirected on the faucet utility page where it is required to share the VCs
needed in order to prove his right to use that faucet.

4. Once his right is proven, a request is automatically made to the faucet service
containing the operation to be performed (i.e. add delegate, revoke public
key etc. . .), espliciting the smart contract function to be called and the user’s
DID.

5. The transaction is then automatically performed by the Application.

6. The faucet service will be listening for on-chain events and will look for that
smart contract function call performed by that user’s DID which previously
requested a faucet withdrawal. This ensures the user actually used those weis
for what meant. If no transaction appears in the next 24 hours, the user is
marked as not eligible anymore for that faucet. Note that this could also
be implemented by using a faucet eligibility VC which can be revoked upon
unexpected user behaviour.

There will also be a limit on the number of withdrawals one can do per type of
operation and per amount of type. That is totally dependant on the faucet holder.
These parameters are easily settable in the utility we prepared.

5.3.4 Faucets discovery

The discovery of certain Faucets is done by means of the Service Endpoint spec
of the DID Documents. A DID offering such a service can advertise the actual URL
where the service is hosted by inserting it as a Service Endpoint with type “faucet”.

5.4. Processes 57

Figure 5.2: Sequence Diagram of the issuing process

5.4 Processes

In this section we will explain in detail what are the fundamental processes
that we have implemented in our Pistis project. They can be classified into 6 main
processes where there are included all the processes highlighted in the previous
section:

• Issue Verifiable Credentials

• Share Verifiable Credentials

• Revoke Verifiable Credentials

• Entity Resolution

5.4.1 Issue Verifiable Credentials

The act of issuing a Verifiable Credential happens in those cases where a user
requires some institution to issue a qualification which states some information
about the requesting subject. This qualification (or Credential) becomes verifiable
if the issuer signs it and releases it following the protocol highlighted in this section.
Note that this can be done automatically: a Verifiable Credential can be released
upon user request at any time and without operator interaction.

The action flow representing the request and subsequent issuing of a Verifiable
Credential is as depitected in the figure 5.2 The back-end of the web app generates

58 Chapter 5. Pistis Architecture

the Verifiable Credential requested, formatted as explained in the verifiable creden-
tials section, signs it with its own private key, wraps it into a verifiable presentation
and finally produce a jwt of type “Attestation”, and renders it as a QR code or in
on of the other formats.

When the user has received the Verifiable Presentation the mobile application
performs verifications first on the Verifiable Presentation and the on each Verifiable
Credentials:

1. Is the Verifiable Credential/Presentation expired? Checks the exp field of the
JWT.

2. Is the Verifiable Presentation sent to me? Checks that the aud field of the
JWT is equal to my DID.

3. Is the Verifiable Credential/Presentation signed by the actual issuer of the
credential? This is verified by resolving the issuer DID into the DID document
through the Pistis DID Registry, and checking that the JWT is signed by one
of the public keys with authentication permission inside the DID document.

4. Is the Verified Credential revoked? This is done by calling the credentialList
method of the Verifiable Credential Status Smart Contract.

5. If large files are included into the VC, verify their content integrity, as explained
in the VC section

6. Verify data selectively disclosed, by comparing their hashes, as explained in
the VC section

If one of this steps is not fulfilled than the verifiable credential is rejected.
After having verified that the Verifiable Credentials is ok, the mobile application

verifies if the issuer is a trusted one, which means that the mobile application checks
if the issuer’s DID is associated with a contact already stored in the list of trusted
contacts of the application. If not, the application asks the user if he wants to add
the new issuer to the trusted contacts list with the information attached in the vc
field of the Verifiable Credential.

Finally the Verifiable Credential is stored into the application local storage,
following the type path convention specified in the credential itself.

5.4.2 Share Verifiable Credentials

Sharing a VC happens when some service requires the user to be eligible for that
service. In order to do so, the user must prove he matches the service requirements.
This often happens with websites login where a user accessing the service has
to prove to be someone. Nowadays the pair username and password is the most
common way to do so, but a Verifiable Credential with the user’s Fiscal Code could
be enough to prove your identity and thus the user can get rid of the hassle of
remembering loads of strings.

The flow representing a verifier requesting some Verifiable Credentials from the
user is shown in the figure 5.3 on the facing page

5.4. Processes 59

Figure 5.3: Sequence Diagram of the sharing process

Especially, a QR is shown on the screen for the user to scan using the mobile
application. The QR carries a JWT which looks like the shareReq one discussed in
the previous chapter.

The user is then prompted to accept the sharing of the Verifiable Credentials
requested from the service requesting it. Upon acceptation from the user, the
requested Verifiable Credentials are packed inside a Verifiable Presentation which is
signed by the user and sent to the the callback url inside a JWT of type “shareResp”.

The backend is waiting for a response on the callback url stated in the previous
request sent to the user, and the authentication is done via the socket id which is
used as a challenge text to secure the communication channel.

Then, as in the issue process, the one who receives the verifiable presentation
needs to verify the jwt received following the same steps described in the issuing
process, first for the verifiable presentation and then for each of the credential
presents inside the presentation.

After that the verifier needs to perform verification about the issuer of the
Verifiable Presentation and Credential. These are done using the Trusted Contact
Management. Explained below.

5.4.3 Revoke Verifiable Credentials

It could happen that an issuer wants to revoke a verifiable credential for some
reason. Think to a driver who is caught driving high on alcohol, one of the actions
pursued by the law is to revoke his driving license. So it is important to have a

60 Chapter 5. Pistis Architecture

way to revoke, or to change the status of a verifiable credential.
In order to revoke a verifiable credential and to verify its status we have applied

the W3C standard, which proposes to insert a pointer to a claim revocation list
inside the VC itself. By default the pointer points to a smart contract which expose
a getter and a setter function of the credential status.

Inside the verifiable credential there is an object called “csl” (credential status
list) like the following one:

1 csl: {
2 id: "<id >"
3 type: "Pistis -CSL/v1.0"
4 }

Codice 5.1: Credential Status List Object

The type field indicates what version of revocation schema we are using, hence,
how to resolve the id field. Currently the only revocation schema supported is
a revocation list held by the Credential Status List Smart contract. This is to
enhance the flexibility of the protocol to accept multiple revocation schema, for
example it could be an URL which publicly expose a revocation list.

The id, indeed, is the identification number of the verifiable credential itself,
which is unique per issuer.

The getter function accepts two parameters, the issuer DID and the id of the
credential which you want to check.. The getter returns an object “credential status”
like the following one:

1 credential status:{
2 current status: "revoked"
3 status reason: "misuse"
4 iat: "23/04/2019"
5 }

Codice 5.2: Credential Status Object returned by Smart Contract

which describe the status of the credential (revoked, suspended, . . .), the reason of
this particular status and the timestamp of the last update.

The setter function accepts as parameter the credential issuer, the credential id,
the status and the status reason. It then updates the smart contract storage.

The setter function, updating the smart contract storage, is a write operation.
Hence the setter can not be called directly, but it has to be called by the multiSig-
Operation smart contract, which is responsible to check if the caller has the right
permission to execute such an operation and if the operation needs to be confirmed
by other delegates before executing it

5.4.4 Entity Resolution (Trusted Contacts Management)

The system as described so far manages entities by assigning them an identifier,
that is a DID. It can be thought of as a mobile phone which can’t save numbers,
still works and still makes sense to use it, however it lacks on user experience and

5.4. Processes 61

Figure 5.4: sequence diagram which visualize all the passages described in order to
revoke and to verify a credential.

it may not be very useful with a large number of numbers to deal with. That is,
Pistis as it is does not scale and is not usable.

There it comes the need to associate a real world Entity to those DIDs, for a
truly usable system a trust model to scale is needed. Just the way it happens with
mobile phones in which you choose whose number belongs to depending on your
knowledge and on who you trust. In the same way, in our SSI system, the user
has a Trusted Contacts List (TC List) which simply associates an Entity to a DID.
However, just like it would happen when you boot up a brand new phone, you
would like to recover your contacts, or importing the contacts of someone you trust
and who knows around about the same group of people as you.

Before diving deeper into the Trusted Contacts Management we propose, we
need to look into some basic data structures to fully understand it. We have
previously defined what a DID is, but the Entity structure has not been discussed
in greater details so far. An Entity data structure is a simple object which follows
the schema.org naming schema. For example the university Politecnico di Milano
could be described by the object below:

1 {
2 "@context": "http:// schema.org",
3 "@type": "EducationalOrganization",
4 "name": "Politecnico di Milano",
5 "address": {
6 "@type": "PostalAddress",
7 "addressLocality": "Milano",
8 "postalCode": "20133",
9 "streetAddress": "Via Bonardi 1"

62 Chapter 5. Pistis Architecture

10 },
11 "logo": "https:// upload.wikimedia.org/wikipedia/it/b/

be/Logo_Politecnico_Milano.png"
12 }

Codice 5.3: Entity Object

For the reasons explained above, a list might also be populated with data coming
from a third party TC List created by someone you consider to be trustworthy. We
then come to define a Trust Contact that is a structure like the following:

1 {
2 "src": [this, https://.../, 0xDCA7...],
3 "did": [null, "did:ethr:0xbc3ae59bc76f894822622cdef7a2

018dbe353840"],
4 "entity": [null, {Entity}]
5 }

Codice 5.4: Trust Contact Object

While the TCL itself is defined as follows:

1 "@context": "pistis -tcm/v1",
2 "tcl" : [{TC#1}, {TC#2}, ..., {TC#N}]

Codice 5.5: TCL list Object

The Trusted Contact List has a context field to account for the protocol version
and possible future changes. The actual Trusted Contact objects are then held in
the tcl array.

On the other side the Trusted Contact structure has the following fields:

• The src field states three possibilities, indeed a Trusted Contact might be a
<DID, Entity> definition as it would be if ’this’ is the value of src field, as it
could also indicate an external source. If the external source is the case, we
currently support either an https endpoint or a smart contract deployed on
the Ethereum blockchain, that is Trusted Contact List can be downloaded
from one of those endpoints. In greater detail, a REST endpoint /tcl would
return a JSON object with a TCL as described in this paragraph. On the
other side, the smart contract will need to expose a method getTCL(did)
to retrieve the TCL associated with that DID passed as param as further
described in the Smart Contracts section.

• the did field contains indeed the relative DID if the src has value ‘this’, null
otherwise

• the entity field contains the Entity object relative to that DID if the src has
value ‘this’, null otherwise

A TC List is therefore an ordered list of Trust Contact objects. The ascending
order matters in case of multiple Trusted Contacts in the list referring to the same
DID, the first one showing has precedence. This can happen when multiple sources

5.4. Processes 63

import a Trusted Contact referring to the same DID, and the definitions (i.e. the
entity) might match or not.

The component whose job is to fetch the Entity object related to a DID, if
known, is called the Entity Resolver. When called, a DID is given as input to the
Entity Resolver, that is the DID whose we are trying to find the associated Entity,
other than the TCL to look into. Also a localList boolean param is first given as
true for what is explained below. The way the Entity Resolver works is by scanning
the local TCL and performs the following simple operations shown in pseudo-code:

1 entity -resolver(did , tcl , localList){
2 for (tContact in tcl){
3 //if the DID is in the tcl passed as parameter

return it
4 if (tContact == ’this’ && did == tContact.did){
5 return tContact.entity
6 }
7 //else if we are parsing the local list and the

DID is stored on a REST endpoint
8 else if (localList && tContact.src starts with

http){
9 //first fetch the tcl list from the endpoint

10 remoteTcl = fetch tContact.src
11 //then call again the entity -resolver passing

the tcl fetched
12 resolvedEnt = entity -resolver(did , remoteTcl ,

false)
13 // if something has been found return it
14 if (resolvedEnt != null){
15 return resolvedEnt
16 }
17 }
18 // else if we are parsing the local list and the

DID it is stored on a smart contract
19 else if (localList && tContact.src starts with 0x)

{
20 //first fetch the tcl list from the smart

contract
21 remoteTcl = fetch rpc tContact.src
22 //then call again the entity -resolver passing

the tcl fetched
23 resolvedEnt = entity -resolver(did , remoteTcl ,

false)
24 // if something has been found return it
25 if (resolvedEnt != null){
26 return resolvedEnt
27 }
28 }

64 Chapter 5. Pistis Architecture

29 }
30 return null
31 }

Codice 5.6: Entity Resolver pseudo code

When parsing a list, in case a Trusted Contact refers to an external source, it only
looks into that source if the list is the local one (i.e. parameter localList in the
function signature). This is to avoid chains of trust which go too far away from the
user’s contact, indeed our trust model aims at mitigating the security weaknesses
introduced by broadly delegating trust.

On top of the operations above, our implementation allows to search the TCM
smart contract for lists published by our trusted DIDs. This is an option which can
either be turned on or off by the user. It gives more space for TCLs to be imported,
while still keeping the non broad trust delegation as it is still considered a non local
TCL and thus treated as discussed.

To summarize, there are few ways the Trusted Contacts list can be populated:

1. Manually adding/removing entries to the list. Note that a pair is simply
<DID, Entity> both as defined earlier in the document. Also, every time
we interact with some entity they will also claim some information about
themselves (that is, they provide the Entity object related to themselves)
which a user can decide to add to the trusted contact upon interaction with the
Entity’s DID. A practical scenario where this would happen is when I interact
with some website. There they may assert their own identity providing the
Entity object which I can then decide to add to my Trusted Contacts list.

2. Import TCL from an external REST endpoint. We picture a scenario where
certain authorities publish a list (either on a smart contract or an https
endpoint) with the association between Entity and DID which they believe
should be trusted. Specifically each authority will publish the list of entities
in its field of competence. In Italy it would mean that the MIUR (Minis-
tero dell’istruzione, dell’università e della ricerca) keeps a list of the Italian
Universities.

3. Import TCL exposed by some trusted DID in the smart contract. This can
either be done explicitly as Trusted Contact, or implicitly as a back up method
if no Entity information has been found in scanning the local TCL.

Then it is also important to keep it in order of precedence to arbitrate collisions.
The component responsible to handle all the mentioned operations it is called

the Trusted Contacts Management (TCM). The system just explained is a hybrid
between the current chain of trust up to the root Certification Authority and a Web
of Trust. That’s because we do have some sort of CAs which are entities supposed
to be trustable from which we gather some Entity objects (even though nobody is
forced to trust anyone), while on the other side each single interaction is subject to
the user’s intention to trust it or not, also the web of trust keeps building as the
user interacts with more and more DIDs.

5.4. Processes 65

Taking inspiration from the current certificates chain which we can find in the
SSL protocol for instance, there can be one or more Trusted Contacts Root (TC
Root) which simply holds a list of pointers to trusted (by the TC Root) entities
exposing a Trusted Contacts List (TC List) as described above.

At the very beginning of the set up of a new Issuer/Verifier system there it the
possibility to trust some TC Root and import the relative pointed lists. This is a
convenient way to kickoff a list of trusted contacts, while it also makes a lot of sense
in some scenario like Academia, where the MIUR may publish its list of trusted
contacts that universities are willing to import.

Chapter 6

Pistis Components Details

This chapter describes in greater detail the components part of the Pistis
ecosystem. Both the mobile app and the issuer/verifier dashboard are explored in
terms of functionalities the components need to offer and the way they implement
the processes needed for the system to function as described.

Both the mobile application and the web dashboard can handle just an identity
at a time. So every operation and information are related to the current identity
handled. Whenever a delegate with the right permission1 wants to perform an
operation on behalf of another identity, he just have to switch from the current
identity to the desired identity . Currently both the application and the web
dashboard does not allow to switch between multiple identity, this will be part of
future work.

6.1 User App
The first time a user open the mobile application, a new identity is generated

without accessing the blockchain and without the need to spend any Ether to
complete such an operation2. From now on this will be the identity associated with
the mobile application.

The mobile application is composed by 5 components: 3 Credential, Contacts,
History, Disclosure and Settings.

6.1.1 Identity Management

An end user needs to be able to manage its identity within the mobile app itself.
As we have already seen in the previous sections, manage an identity means edit
the DDO document associated with the current identity DID.

That’s why the mobile application has a sub-component4 into the setting
component to add and revoke delegates and service endpoints, so far the only

1Every time that we refer to permission we are talking about the permissions explained in the
Smart contract section.

2see the section DID & DDO to have a clarification on how an ethereum address is generated
3see the screenshot taken from the mobile app in the appendix A
4this component is still to be implemented in the mobile application, please refer to the

corresponding identity management component implemented in the issuer/verifier dashboard

67

68 Chapter 6. Pistis Components Details

editable components of a DDO.
The component is composed by three interactive list:

• The list of the current delegates with the identityMgmt permission. Which is
the permission needed to manage the identity and to sign on behalf of the
DID associated with the DDO being edited.

• The list of the current service endpoints presents in the DDO.

• The list of the pending operations to be confirmed. This list is needed to allow
delegates to confirm an operation that requires more than one confirmation
to be approved.

Currently the identity management operations are the only one that delegates can
complete on behalf of another DID using the mobile application.

6.1.2 Credential Storing

When a Verifiable Credential is received the mobile app is responsible of storing
and visualizing it in a user friendly way while keeping all the characteristics that
makes it a Pistis Verifiable Credential.

In order to guarantee all of the above, for each Verifiable Credential, the mobile
app stores:

• the decrypted JWT payload 5, with all the hashed information (used for selec-
tive disclosure and large files management) replaced by the real information
contained in the data and file fields of the Verifiable Presentation. This is
useful to visualize all the information in a user friendly way in the Credential
Component.

• the corresponding data fields of the Verifiable Presentation containing all the
unencrypted data hashed in the verifiable credential.

• the corresponding file fields of the Verifiable Presentation containing the
Download Actions describing where to retrieve the file.

• The JWT token itself, which is the one that will be included in the vcl fields
of a verifiable presentation when might be shared with someone else.

The data and file field are both needed when the user has to share his verifiable
credential with someone else. This is because the Verifiable Credential cannot be
changed, otherwise it won’t be valid anymore. Hence we need to remember the
order in which data were hashed and the order in which large files were included in
the verifiable credential at the time it was issued. Storing both of them upon the
reception of the verifiable credential, is the easiest way to do it.

5see the Verifiable Credential section for more information about what is contained in a JWT
payload

6.2. Issuer/Verifier Dashboard 69

6.1.3 Data Sovereignty

In a SSI system the user should always be able to have control over his data,
knowing what is sharing and with whom is sharing it, while is actually interacting
with someone, but also having a clear view of the interaction completed in the past.

The latter is implemented through the history component which is a history of
transactions showing the user all the transactions in the past, with all the details
needed: when the transaction has taken place, the transaction type6, who was the
sender/receiver, the actual verifiable presentation transferred.

The former, instead, is implemented in the Disclosure component, by asking
the user to confirm every transaction that take place while using the application,
showing him the same information which will be then included in the transaction
history. Other than this information, when the user share a Verifiable Credential,
can select which information want to disclose and which it does not want to disclose
(he can choose just the fields that were hashed by the issuer at issuing time).

6.1.4 Issuer Trust

The application will be used just by an end user and not by any issuer or verifier.
A generic end user interacts with other DIDs in a direct and non-automatic way.
This is what allows him not to have to rely on a Trusted Contacts Management.
More easily, what it needs is just an address book to store all the DIDs he interacts
with. That’s what the Contacts component is, a simple address book that can be
updated manually or automatically when the user accept to interact with a certain
DID.

6.2 Issuer/Verifier Dashboard

The Issuer/Verifier dashboard is a web application which could be independently
used by an issuer or a verifier, to interface in a user friendly way with the Pistis
ecosystem to complete the processes described in the Processes section.

The dashboard is entitled to a unique identity and every operation that can be
performed will be performed on the identity whom the dashboard is entitled to.

In order to access the dashboard you need to have MetaMask7, which is a
browser extension that works as a wallet to securely hold your accounts, and to
interact with the blockchain without having to run a full node.

So whenever someone wants to access the dashboard entitled to a certain identity
he has to login into MetaMask and import his DID address into MetaMask. Now if
he has the right permission to, he can start performing operations on behalf of the
current identity. The dashboard itself is subdivided into two main sections. One
which is accessible by anyone without the need of any permission and contains the
VC Reader utility and the Trusted Contacts list. The other section can be accessed
just with the correct permissions and contains the Credential Management,Identity
Management, Trusted Contacts Management and the VC Builder.

6refer to the section Communication to know what are the type of transaction.
7see section future work to see how and why the mobile application can replace MetaMask

70 Chapter 6. Pistis Components Details

All of the above will be further explained in the following sections.

6.2.1 Credential Management

This is the component where an issuer can see all the credentials that he has
issued. From here he can check the status of a Verifiable Credential (it’s expired?
has been revoked? has been suspended?) and can possibly change the status of the
verifiable credential. He can choose between VALID, SUSPENDED, REVOKED
and he can add a brief motivation about that change.

Anytime an issuer changes a verifiable credential status, he has to perform a
transaction to the MultiSigOperation smart contract, submitting an operation to
be executed by the CredentialStatusregistry smart contract. This is done using
MetaMask to sign each transaction to the blockchain with the private key held by
the MetaMask account.

As we have already explained in the smart contract section, any operation which
modify a smart contract storage, requires that a minimum quorum of delegates
confirmations is reached in order to be executed. That’s why other than the list of
credentials there is the list of pending operations. A list which allows delegates to
confirm an operation submitted by others delegates.

6.2.2 Identity Management

In this component any issuer/verifier can manage his identity. This means to
manage the DID Document, by editing it adding or revoking delegates and service
endpoints.

The delegates are subdivided into permission type. A delegate can be in more
than one permission list.

Any update to one of these lists, is an update to the DID Document associated
with the identity to which the dashboard is entitled. Again each one of this update
is performed by submitting to the MultiSigOperation smart contract an operation
to be executed by the PistisDIDRegistry smart contract.

As for the credential management, there is a list of pending operations, needed
to confirm operations submitted by other delegates.

6.2.3 Trusted Contacts Management

The trusted contacts management component is the one responsible to actually
implement the Entity Resolution process 8.

It is composed by a simple list of contacts that the issuer/verifier has decided
to trust. It can be updated by adding manually a new contact inserting all the
needed information (its DID and an Entity Object, which describes the contact
information following the schema.org naming schema) or by importing a list of
contacts from either a REST endpoint or from a smart contract like the Trusted
Contacts Management smart contract described in the smart contract section.

8See the section Processes to have a full understanding of the entity resolution process

6.2. Issuer/Verifier Dashboard 71

The trusted contacts management component allows also an issuer/verifier to
publish is own trusted contact list to the Trusted Contact Management smart
contract. The publishing of a TCL is done by submitting an operation to the
multiSigOperation to be executed by the trustedContactMangement smart contract.
As for the previous two components, there is a list of pending operations, needed
to confirm operations submitted by other delegates.

6.2.4 Verifiable Credential Builder Utility

Actually creating a Verifiable Credential which follows the schema.org naming
schema is not an easy task. You have to navigate to schema.org web site, then
go through all the schema.org tree to find the correct type for the credential you
are creating. When you have finally found the correct type, you need to choose
the correct properties to populate your credential. At any time you have to be
sure to respect the correct naming schema without forgetting any required fields.
Then there is the struggle of managing large files and enable selective disclosure,
populating the data and the files fields in the right way.

That’ s why we have created a utility which guides you during the creation of a
Verifiable Credential. The following are the main functionalities:

• A json editor with syntax highlighting and linting, to avoid syntax errors.

• A reset function, which reset the json editor to a Verifiable Credential sample
which shows you what are the minimum required fields.

• An Object Viewer which reflects any edit in the json editor and visualize the
Verifiable Credential in a tree view, to have a better understanding of the
credential itself

• A form with all the minimum required fields necessary to compile the Verifiable
Credential, to avoid that the issuer produce incomplete credentials.

• The full schema.org tree, which the issuer can navigate to search the correct
main type or the desired property. Each of them has a brief description to
help understand what is it about. If the description is not enough the link to
the schema.org page is provided. Each type or property can be added to the
credential from the schema.org tree. They are added already formatted in
the right way, in order to reduce to the bare minimum the possibility of bad
formatted credentials.

• An easy way to add a file inside the credential, without having to handle all
manually.

• A selection functionality, which allow the issuer to select and hash the fields
he want to make selectively disclosable. This functionality automatically add
all the hashed fields into the data field.

Finally when the issuer is satisfied with the credential created, he can issue the
credential by generating the verifiable presentation and the QR to be scanned by the
future credential holder. The credential will end up in the Credential Management
dashboard section.

72 Chapter 6. Pistis Components Details

6.2.5 Verifiable Credential Reader Utility

Pistis aims at being a truly usable system. The Verifiable Credential Reader
Utility aims at being a tool to smoothen adoption and increase usability of Pistis.
There will often be the need to simply check the content and the signer of a
transaction, both in terms of DID and Entity resolution, from someone which is
not part of the SSI system.

To let anyone read a VC even if it has not any software able to read it, there it
comes the need for a website which simply shows a QR accepting the root level
of types /* (any VC) so one can just scan it and the website can simply show the
claim of the VCs received and who signed them. This utility can have a simple
name like Credential Reader.

In the dashboard there is such a component which can be used by anyone who
access the dashboard, no permission is required.

6.2.6 Trusted Contacts List

The Trusted Contacts List is just the list present in the trusted contact man-
agement component. The only difference it is that is publicly available and is not
editable.

It is needed in order to allow anyone who use the VC reader to have a look at
the contacts trusted by the identity who is currently hosting the VC reader, and by
the VC reader itself to visualize more detailed data if a credential was issued by
one of the trusted contacts.

Chapter 7

Results

In this chapter we comment on some of the results obtained. In particular, we
ended up with a reference implementation as already described in the previous
chapters.

We took part in the W3C Credential Community Group discussions and we had
the pleasure to be part of some online meeting. It was definitely inspirational and
a lot of good ideas come from those meetings.

A concrete result achieved by this thesis work has been the acceptance of the
Pull Request into the W3C officially recognized DID Methods1.

We built different Proof of Concepts alongside our work and had the pleasure to
present them in different contexts. We presented the solution for Malta’s Healthcare
patients’ record, as well as some Italian Banks for having some certified bank data.
In Appendix C you can find an example of PoC for the Maltese government.

Also, we comment on a few key performance factors and some known system
limitations, we deal with some security issues regarding our smart contracts, we
tackle the sensitive topic of GDPR compliance.

7.1 System Performance

On such a broad system, performance can be measured from many different
points of view and with a bunch of different metrics. We decided to take a few
points which can be or already are system bottlenecks in some way, and see how
Pistis performs in those.

7.1.1 How much space does a credential take up?

How much space a Credentials takes is quite an important metric to look at,
since a user will likely end up with a handful of credentials to hold. Indeed, overhead
coming from security and transport protocols have been kept as low as possible to
save up some extra bytes. This also matters when thinking about the very nature
of a credential meant to be shared and transmitted to other devices pretty often,
thus bandwidth impact is also a huge point here.

1W3C DID Method Registry https://w3c-ccg.github.io/did-method-registry/

73

74 Chapter 7. Results

Text in a credential is Base64Url encoded as it is packed inside a Json Web Token,
thus we will look at characters used for the different parts of a Verifiable Credential,
and then we’ll assume space taken up is: characters ∗ 4/3 as per RFC-4648 [23].

Starting from the outer layer, we get the overhead given by the JWT. That is
30 chars for the header, variable number of chars for the payload which will be
explored in the lines below, 64 chars for the signature.

The payload is dictated by the initial structure of a Verifiable Presentation
which is as follows:

1 {
2 "iat": 1562600828,
3 "type": "attestation",
4 "vcl": [
5 ""
6],
7 "files": [
8 []
9],

10 "data": [
11 []
12],
13 "iss": "did:pistis:0xbc3ae59bc76f894822622cdef7a2018

dbe353840"
14 }

Codice 7.1: JWT payload

That’s around 180 chars as a baseline plus the JWT of the credentials which goes
inside the vcl field.

What just said leads to a 30 + 64 + 180 = 274 chars as overhead to transport
any number of credentials.

Giving an average size of a VC with one level depth and enough information
inside being 600 chars, neglecting the overhead given by hashed data or large files
which most of the times only includes an external file, and considering the 210
bytes overhead from header plus payload we get around 800 chars per credential in
plain text. Being it all Base64Url encoded a full average-sized credential is made of
1.1 KB.

Therefore, we end up with a single VC inside a VP to be around 1.4 KB which
grows up to 1.9KB after turning it into a JWT.

The size of the actual credential text takes most of the space and there is a
linear growing in size, which can be considered satisfactory. The main bottleneck
will be the data transport which is being dealt with in System Limitations section.

7.1.2 Smart Contracts transaction cost

This is an extremely important measure we need to take into account. Being run
on the blockchain, the main system architecture is free in a certain way. What needs
to be paid is the transactions in order to change the state of the smart contracts.

7.1. System Performance 75

Contract function Gas Usage (gas) Fiat cost ($)
$0.20

deploy MultiSigOperations 2,753,261 $5.50
deploy PistisDIDRegistry 1,539,232 $3.07
deploy CredentialStatusRegistry 484,875 $0.97
add delegates (first time) 561,147 $1.12
submit add delegates 227,000 $0.45
confirm and execute 100,000 $0.20
confirm without execution 50,000 $0.10
deploy MultiSigWallet 2,578,288 $5.16
submit add delegate 230,000 $0.46
confirm without execution 78,000 $0.16

Table 7.1: Smart Contracts transaction cost

We ran experiments to see how much the main tasks use in terms of Ethereum gas
and we compared against the alternative: our novel MultiSigOperation contract
against a generic Multi Signature Wallet. The results are summarized in the table
7.1.

The table shows the most relevant costs to take into account and compares the
two approaches: our SSI contracts vs a generic Multi Signature Wallet. Few notes
before digging in the figures:

• the Multi Sig Wallet used is https://github.com/gnosis/MultiSigWallet. it is
a popular implementation and used in production environments

• the gas price per Gwei is based on the average transfer time (2 blocks or 30
seconds confirmation) according to https://github.com/gnosis/MultiSigWallet

• the fiat cost per Gwei is estimated according to https://coinmarketcap.com/.
The final figure is the 0.20 dollars per 100.000 gas used, that is

gas_used ∗ 100.000 ∗ avg_gas_price ∗ ether_to_dollar_price

.

Once that is clear, we can appreciate how on average end-user usage of such a
system, it is four times cheaper to use our contracts. An average scenario is
considered one that sees an end user creating a DID and then changing the address
owning the identity into a newly generated address associated with his DID to a
safer multi signature wallet. This is the common way, the one that also uPort uses,
which involves the deployment of a new Multi Sig Contract for that user so that he
can handle operations in a multi signature manner. Indeed, the cost of deploying
such a contract is around $5.2. By deploying the contract with the right params
and the desired delegates the user reaches an initial state by which operations can
be handled by having a quorum of trusted parties endorsing the operation before
execution, that is the desired state.

https://github.com/gnosis/MultiSigWallet
https://ethgasstation.info/index.php
https://coinmarketcap.com/

76 Chapter 7. Results

On the other side, in Pisits it only takes to deploy the contracts once, and
NOT per user such as the case of the MultiSigWallet. In Pistis scenario, the user
would execute the addDelegate function with the desired amount of delegates. That
cost is roughly $1.10 dollars, being the first time addDelegate called followed by
a submitAddDelegate and a subsequent confirmation executed. That is around 5
times cheaper.

Bear in mind that user experience (which is arguably better in Pistis as it does
not involve switching to a third party multi sig enabled wallet) is not taken into
account in this comparison.

7.2 System Limitations

Just like any software, Pistis does not come without limitations. Below are
described the ones addressed as most relevant:

7.2.1 Data Transports

QR transport with the lowest resolution cannot surpass 3KB on single request.
This limitations impacts a practical use case if the Issuer is willing to share a lot
of Verifiable Credentials at once. Giving an average size of a VP of 274 bytes
of overhead plus 1.1KB for each credential, we can carry up to 2 average sized
credentials at one, or 4 little credentials (roughly half of an average sized credential).
In most common scenarios this is not a great issue, however it is important to state
this limitation and to provide a potential workaround.

Indeed, a possible solution is the use of push notifications as a transport layer.
This solution, although beating the maximum size wall, would imply to use a server
to rely the notifications. These services create one more hop that becomes a single
point of failure if not structured properly with some replication in order to increase
availability. Another possibility comes from the splitting of the data into multiple
QRs to be scanned one after the other. Usability would be a little penalized in
such a scenario but still the user friendliness of QRs would be preserved.

7.2.2 Data Backup

Pistis does not rely on any third party service to function, therefore the user
can freely store his data on his mobile phone. When sharing, direct upload of
a Verifiable Credential to an https endpoint is used, thus the data only need to
transact through the world wide web but without the need to ask permission or
access some other service. On one side this is an extremely important feature and
truly gives users control over their data. On the other side it could be risky and not
very user friendly to only rely on the personal mobile phone to store all the data, a
backup is somehow needed. What happens when the user loses or breaks his mobile
phone? All the credentials are lost and the user would need to request back all the
credentials, just like it would happen when dropping your physical wallet. Well,
technology comes in handy and allows to overcome this current limitation.

7.2. System Limitations 77

The problem actually goes far beyond. How do we store application data, such as
Verifiable Credentials, in a way that is controlled and administered by us, encrypted
by default from parties that may not have our best interests in mind, and most
importantly in a standards-compliant manner?

There is a handful of groups working on it like Hyperledger Aries[36], Decentral-
ized Identity Foundation’s Identity Hubs[18], at Solid/Inrupt[5], and elsewhere in
the world. Each of them in their own way offer a what is being addressed as Secure
Data Hubs. Taking from the Abstract of the Identity Hub, DIF’s specification:

“We store a significant amount of sensitive data online such as personally
identifying information, trade secrets, family pictures, and customer
information. The data that we store should be encrypted in transit
and at rest but is often not protected in an appropriate manner. This
specification describes a privacy-respecting mechanism for storing, in-
dexing, and retrieving encrypted data at a storage provider. It is often
useful when an individual or organization wants to protect data in a
way that the storage provider cannot view, analyze, aggregate, or resell
the data. This approach also ensures that application data is portable
and protected from storage provider data breaches.“ [46]

A Secure Data Hub is what perfectly fits as a self-sovereign back up place for
Credentials and other data currently only locally stored in Pistis. This would be a
great leap forwards in terms of usability for end users.

7.2.3 Need to fund Ethereum transactions

Ethereum transactions need to be funded. The Ethereum clients work 24/7
for us but they want something in return. Pistis is based on Ethereum, and even
though for many operations it is not needed to transact through the blockchain,
there are cases where it is not avoidable. Adding delegates and revoking credentials
are the most relevant for respectively end users and issuers. This implies all system
users to hold some Ether to pay for these operations. There are a variety of concepts
that users need to know in order to be able to safely use a crypto wallet and there
are a lot of challenges still to be overtaken before every-day use can become a
common thing [13].

We already provided the idea of a Permissioned Faucet to smooth the way for
transparent transactions payment without the need of holding Ether.

Possible alternative to the faucet is to have anonymous transactions which
only carry the signed payload and that can then be paid by a Transaction Relay
service. This solution would speed up the time to run a transaction as there is no
intermediate step of asking for ether, way for the ether and then perform the actual
operation.

Still, someone needs to pay for those fees and in such a widely system a business
model which allows for a Nation or any other Entity willing to carry those expenses
need to be found. A big discussion may be opened up here and it would simply be
off topic from the work of this thesis. A permissioned blockchain with consensus
protocol that doesn’t require paying transactions fee as an incentive for miners to
keep the network up and running would surely solve the issue.

78 Chapter 7. Results

7.2.4 Offline support

Offline support is not a vital capability, even though it may turn out to be quite
useful in some situations. Verifiable Credentials are locally stored, which scores a
first point in favour of offline support. The process of verifying the signature and
the content of a Credential, however requires to check whether the signing address
has permission over a certain DID and that the credential is not being revoked or
suspended. The former involves the resolution of a DID document which needs to
be done throughout an Ethereum node. The latter involves checking the Credential
Status Registry contract, and again an Ethereum node is needed. Therefore fully
offline capabilities can’t be achieved in lack of an internet connection. However,
verifiable credentials are still fully visible even if no internet connection is present.

7.3 About Smart Contract security issues

Smart Contracts running on a public blockchain are quite a novel concepts.
Unlike other blockchain systems2, Ethereum smart contracts are not capable of
being formally verified against security vulnerabilities. Indeed, in the past this has
shown to be quite an issue. We tried our best in ensuring smart contracts security
by looking at a list of common attacks relevant to our contracts and see how we
can mitigate or just be safe from it:

7.3.1 Re-entrancy Attacks

A Re-entrancy Attack, according to Solidity documentation [15], could be
present anytime there is an interaction from a contract (A) with another contract
(B) and any transfer of Ether hands over control to that contract B. This makes it
possible for B to call back into A before this interaction is completed. If contract
A has not yet modified its internal storage, when contract B calls back A, then
B could recursively call A an undefined number of times (until gas limit is not
reached) drawing for example the contract A balance.

In our smart contracts we do make external calls to other contracts, but no
one of those handle Ether transfers. Besides that, any external call which we make
is towards a contract which is known at deploying time and can not be changed.
Hence no unexpected behaviour could happen. The only call towards an unknown
contract happens in the method executeOperation of MultiSigContract. This
call doesn’t handle any transfer of Ether and it is made at the end of the function,
when all the internal storage update have been already made. Indeed an attacker
could recursively call back our contract, but it will not be able to act maliciously.

7.3.2 Integer Overflow and Underflow

According to the solidity documentation [15], an overflow occurs when an
operation is performed that requires a fixed size variable to store a number (or
piece of data) that is outside the range of the variable’s data type. An underflow is

2see Tezos blockchain for instance

https://tezos.com/

7.4. GDPR compliance 79

the converse situation. These situations are problematics when an integer variable
could be set by user inputs.

The only function which accepts integer variable as user input is the confirm-
Operation in MultiSigOperation contract. In this case the function accepts in
input an uint256 as an identifier number for an operation to be confirmed, if this
variable underflows or overflows there are no problems. This is because if the sender
could not confirm an operation already confirmed or executed, and can not confirm
an operation which is not already been submitted.

7.3.3 Denial of Service by Block Gas Limit (or startGas)

A Denial of Service by Block Gas Limit could happen when the execution of a
function requires more gas than the Block Gas Limit. This could easily happen
when contract functions works with unlimited size array or string.

In the contracts we do make use of un-sized arrays, primarily for future ex-
tendability to allow the execution of unknown function in the execute pattern.
The important thing is that we do not loop over them, and we don’t need to do
that, because an Operation Executor knows always in advance which parameters
is receiving and in which position they are. Basically the array is used just as a
universal container for unknown parameters, which the executor knows.

7.4 GDPR compliance

Until May 2018 there was no proper law enforcing a certain usage with data at
a European level, but just a directive giving out guidelines, that is the EU Data
Protection Directive. With the General Data Protection Regulation (also known as
GDPR) a new legal framework has taken over and it has shown to be very strict
and penalties are quite a big deal.

GDPR aims at protecting personal data and how companies deal with data they
collect, process and eventually destroy. The other target GDPR has been aiming at
is the free data circulation among the European countries. Personal Data is defined
in article 4 of the law:

‘personal data’ means any information relating to an identified or iden-
tifiable natural person (‘data subject’); an identifiable natural person
is one who can be identified, directly or indirectly, in particular by
reference to an identifier such as a name, an identification number,
location data, an online identifier or to one or more factors specific to
the physical, physiological, genetic, mental, economic, cultural or social
identity of that natural person; [33]

Addressing what personal data Pistis deals with is the first milestone to be achieved.
Trivally, all the information inside a Verifiable Credential are considered personal
data. On the other side, DIDs and DID Documents being personal data is definitely
a more intricate case which needs closer attention. The issue here comes when
reading recital 26:

80 Chapter 7. Results

“[...]The principles of data protection should therefore not apply to
anonymous information, namely information which does not relate to
an identified or identifiable natural person or to personal data rendered
anonymous in such a manner that the data subject is not or no longer
identifiable.” [35]

That is, if DID were truly anonymous it would not be considered personal data,
taking it out from GDPR appliance. Unfortunately we cannot ensure this is the
case and a jurisdictional study should be carried out, going out of scope of this
work. We’ll keep the discussion with DIDs out of the way and only focusing on
Verifiable Credentials that surely fall under the category of personal data.

Being our system Self-Sovereign, it naturally finds itself a good fit with GDPR,
indeed many of the rights stated in the law are definitely shared by Pistis. The law
wants to return more power to data owners, stating eight main specific rights [27].
However, it takes a risks-based approach to data protection, outlining certain data
subject rights without dictating how these principles should be enforced.

We mainly look at the Articles 12-23 of the Regulation[34], that is the Rights
of the data subject. We’ll go through them one by one and see how Pistis deals
with each:

Right to be informed:

This provides transparency over how your personal data is used.

Blockchain is all about transparency. Code enabling the core features of the system
would surely be fully open-source. The Ethereum ecosystem includes a service,
Etherscan, which allows to explore the transactions being executed in the Ethereum
blockchain and to see the data created by the blocks. That includes Smart Contracts.
Etherscan allows developers to upload the source code of a Smart Contract deployed
at a certain address, and it will match the compiled code with that on the blockchain.
This way, just like contracts, a "smart contract" provides end users with more
information on what they are "digitally signing" for and give users an opportunity
to audit the code to independently verify that it actually does what it is supposed
to do.

Right to access:

Provides access to your data, how it is used, and any supplemental data that may
be used alongside your data.

In some scenarios this is outsourced to those you share your credentials with. Let’s
say I share my diploma VC with an employee, it would be up to them to make
sure they treat my data properly. Looking at Pistis as it is, it grants access simply
because users hold their own credentials.

Right to rectification:

Your right to have your personal data rectified if it is incorrect or incomplete.

7.4. GDPR compliance 81

This is not granted by the system as it is. Indeed, a credential cannot be tampered
with once created and thus rectification can be done by issuing another credential
and revoking the previous one. This needs communication between the issuer and
the user willing to rectify the data.

Right to erasure (or the right to be forgotten):

Your right to have personal data removed where there Is no compelling reason to
store it.

In terms of Verifiable Credentials again that goes out of the system native capabilities.
Who you share the credential with has to comply with GDPR in turn. Pistis alone
does not store any Verifiable Credential on the blockchain, making this requirement
achievable. One exception might be the revocation status written on the smart
contract. While there should be no explicit reference to the user, it is up to the
issuer to be compliant.

Right to restrict processing:

You can allow your data to be stored but not processed. This also involves having
personal data being just what is needed and relevant to the processing being made.

This goes under the Data Minimization principle of SSI. We believe Pistis just
exactly accomplished this by allowing selective disclosure.

Right to data portability:

You can request copies of information stored about you to use elsewhere, such as if
applying for financial products across a number of vendors.

Having credentials aiming at being interoperabile, portability is a must in our
system. Being fully W3C compliant is the first fundamental step we took on the
road to interoperability. On the DID side there is a lot of work going on through
the community for different DID methods interoperability, on top of the already
standardized Universal DID Resolver we are compliant with.

Right to object:

You can object to your data being processed. One example may be in that you
object to your data being used by direct marketing organizations. If you object,
the regulation specifies they must comply.

Verifiable Credentials are held by users in the first place. Others that can access
those data are the issuer of that credential itself and those who the users has shared
that credential with. Objections have to be carried by other channels which again
is delegated to those who process verifiable credentials information. Pistis itself
does not go against the regulation from this viewpoint.

82 Chapter 7. Results

Rights to automated decision making and profiling:

You can object to automated decisions being made based on your personal data.
Automated means without human intervention. An example may be online shopping
habits being determined based on previous online behaviour.

Just like the previous point, Pistis does not involve automated decision making out
of the box, even though automatic Verifiable Credential processing would likely
being extensively used in a real world scenario. However, being compliant with the
regulation would not be Pistis’s concern but processors’.

Chapter 8

Known Alternatives

Surely Pistis is not the first of its kind and we are not the first ones to give a
reference implementation of an SSI based system. There are many different projects
under development, varying in maturity, blockchain usage extent, geographical
location of the team and intended scope of the project. We valued many of them
before starting our work, choosing the most mature and SSI compliant ones, and in
the following lines we carry out a brief comparison giving out a short description of
the project highlighting the differences against Pistis. It is worth noting that some
of them are not focused on credentials management only, but aim at being broader
systems as they intend to handle digital identity as a whole.

8.1 Ethense

Ethense [26] [14] is the most similar to our solution. Indeed, it builds on top of
uPort and is backed by Consensys. The main goal of the project is the issuing of
diplomas in the form of Verifiable Credentials[53] and/or Open Badges[22]. The
issued credentials are sent to users (i.e. students) via emails. The email could
contain both the QR with the Verifiable Credential or an Open Badge. The student
can then scan the QR with the uPort app in order to import the verifiable credential
in his uPort wallet, or share the Badge compliant devices.

A great benefit of such a solution is the use of both Verifiable Credential and
Open Badges standards as it would greatly benefit an initial adoption.

However, the project is no longer actively supported by Consensy Team and
the development has been at a standstill for more than a year. On top of this it is
completely based on uPort, leading to a rejection of Ethense a good solution for
the same reasons we drove off uPort project, as explained in Chapter 2.

8.2 OpenCerts

The project is actively being tested in Singapore for the issuing and verification
of academic credentials.

“OpenCerts [31] is the umbrella trademark under which we have released
a few key components:

83

84 Chapter 8. Known Alternatives

1. An open source schema for publishing educational credentials

2. A set of tools for generating cryptographic protections for educa-
tional credentials

3. An online website for verifying the authenticity of OpenCerts files.”
[30]

Under the hood, it creates a digital certificate, then writing its hash on-chain.
This allows an easy verification process as it only involves hashing the plain text
credential and compare it against the hash stored on the blockchain. That proves
the certificate has not been tampered with and also gives a guarantee on the time of
issuing by exploiting the timestamped version of the certificate on the blockchain.

They do use DID to associate a credential to an identity, but their identity
registry, at the time of writing, is a json file hosted directly by OpenCerts, which
means that is not decentralized at all. Currently they are working on decentralization
adopting the same concept of DNS (Domanin Name Server) as an identity registry.

When it comes to the standard used for the credentials, it relies on Open
Attestation based on Json schema [32]. The huge downside is that it is not
supported by W3C, nor any other standardization group.

Hence we rejected OpenCerts because they don’t follow a standard for the
Credential, but they propose one. Also, the solution adopted for the identity
management is far from the concept of Self sovereign Identity, indeed it even lacks
decentralization at all. Another huge downside is the extensive use of the blockchain
forcing issuers to write on blockchain each time a credential is issued. Our approach,
instead, limits writing on blockchain in very few cases, in order to minimize costs
of transaction fees and not to saturate a system which is not capable of high
Transactions Per Second (TPS).

8.3 Blockcerts

Blockcerts [8] is an open standard for creating, issuing, viewing, and verify-
ing blockchain-based certificates. It currently uses both Bitcoin and Ethereum
blockchains.

Just like OpenCerts, the main difference against Pistis lies in the fact that it
involves writing the certificate hash on the blockchain, in order to guarantee that
they are tamper proof.

Also, it does not address the problem of associating blockchain addresses to a
real entity as we have done using the TCM. Citing their FAQ page:

“Blockcerts has a claims-orientation to identity. This means that iden-
tity is always self-curated by the individual through the claims about
themselves that they disclose. All claims have to be assessed in some
manner. Those claims that are blockchain verifiable are guaranteed to
represent what was originally issued. So, Blockcerts is not attempting
to prove identity directly. In other words, this solution does not certify
the mapping of public keys to individuals or organizations. Further,
there is no registration process in this system, so any issuer may issue

8.4. Accredible 85

certificates and recipients may provide any Bitcoin address. However, it
is in the issuer’s and recipient’s interest to provide public addresses they
own, because this is the only way either can demonstrate ownership of
or revoke certificates.” [7]

8.4 Accredible

Accredible [1] is a platform quite similar to the previous two solutions, which
aims to adopt more than one standard for the credential structure in order to be
more flexible and easily adoptable.

Like OpenCerts and Blockcerts, it writes on the Bitcoin blockchain the certificate
hash to guarantee that they are tamper proof.

Differently from the previous two solutions they use both Open Badges and an
internal standard called Digital Certificate as the standards of their credential. As
explained in Chapter 2, Pistis aims at broad adoption and interoperability, thus
adhering to a global standard is a key point. Another hint that led to rejection is
the frequent writing on the blokchain. The cost of doing so would badly impact
system scalability.

8.5 Metadium

Metadium [28] is not a simple platform or tool like the ones presented just
above, it is a whole new blockchain ecosystem.

It makes use of DID specifications[51] provided by W3C standard. They also
have their own DID formally registered at the W3C-CCG DID Method Registry[52].
Creating a DID involves deploying two smart contracts to the Metadium blockchain.

In Metadium there is no such a concept as credential, it is a matter of associating
attributes to the DIDs. These are not publicly visible by everyone, the user needs
to give permission in order to share his personal attributes, and select what others
can see, enabling selective disclosure.

Overall, Metadium is a quite different approach from the one we have adopted.
The main difference relies on the need of deploying a brand new blockchain. We
totally disagree with such a system as setting up a global chain is quite a big deal,
and, failing at doing so it would end up to be a totally centralized system under
the control of the Metadium team. Also adoption of a system with this prerequisite
surely has a slower adoption rate. Instead, our solution is based on the more tested
and widely adopted Ethereum blockchain.

8.6 Civic

Civic [9] is a platform that aims at fully digitalizing the identity using the
Bitcoin blockchain.

Currently, the team behind the project is running a platform called SIP (Secure
Identity Platform) where the user can create his own identity using a mobile
application, the Civic app. Before creating a new identity the user needs to go

86 Chapter 8. Known Alternatives

Figure 8.1: Current Civic Architecture

through a KYC (Know Your Customer) process, providing personal data to the
application, which is in turn reviewed by Civic or one of its partner. If the data are
successfully validated, they are hashed and stored on the blockchain. This is achieved
by embedding these data in a new Bitcoin address, created by arithmetically adding
the hashed data to the private key of the user. This way they ensure that:

• the data are tamper proof

• they are associated to a certain user,

• only the user can access them, or give access to who he wants.

On top of that, a new ecosystem is under development at Civic. It involves
the use of a token (the CVC) in order to incentive all the parties in the ecosystem.
It runs on top of Rootstock (RSK)[38], a layer on top of the Bitcoin blockchain
to bring smart contracts support to it. The token can then be spent inside the
ecosystem to buy services from Civic itself or from other service providers inside
the ecosystem.

Again the main difference lies in the need to write on the blockchain to enrich
the attributes associated with a user. That has huge costs as already stated in
the previous sections. Another key difference against Pistis is in the use of the
token as an incentive. We believe the main driver for such a choice is business
factor rather than true technological benefits, that is not something that will benefit
the ecosystem. Also, Civic forces users to perform a KYC to enter the ecosystem
which is currently audited by Civic itself. This is a clear point of centralization,
which turns Civic away from a truly SSI solution, giving the auditors the power of
censorship.

8.7. ION 87

8.7 ION
ION is a solution developed by Microsoft together with DIF (Decentralize

Identity Foundation).

“ION is a public, permissionless, Decentralized Identifier (DID) network
that implements the blockchain-agnostic Sidetree protocol on top of
Bitcoin (as a ’Layer 2’ overlay) to support DIDs/DPKI (Decentralized
Public Key Infrastructure) at scale”. [19]

Their solution has two main differences compared with Pistis:

1. It doesn’t store anything on the user devices, instead, they use Identity
Hubs[46] as a secure place to store users’ data following a semantic data
model, where data are represented as JSON schema.

From the Azure Blog:

“Identity Hubs are decentralized, off-chain, personal datastores that
put control over personal data in the hands of users. They allow
users to store their sensitive data—identity information, official
documents, app data, etc.—in a way that prevents anyone from
using their data without their explicit permission. Users can use
their Identity Hubs to securely share their data with other people,
apps, and businesses, providing access to the minimum amount of
data necessary, while retaining a record of its use.”[43]

2. Secondly, they use the sidetree protocol to anchor tens of thousands of
DID/DPKI operations on a target chain (in ION’s case, Bitcoin) using a
single on-chain transaction. This allows to build a solution that scales.

This is a valuable solution, however there are some criticalities in the use
of Secure Data Hubs to fully store users’ data. We believe that giving full
control of data means storing it locally, and have a system such that just
for backups. Also, the Sidetree protocol is quite an overhead to carry along,
which is needed in ION’s scenario as the blockchain usage is quite extensive.
As already states we do not agree with extensive use of blockchain, indeed
Pistis limits the use to the bare minimum.

8.8 Sovrin
Sovrin [44] is the major competitor of uPort in terms of maturity and adoption.
Differently from uPort and Pistis, Sovrin runs its own DLT based on Hyperledger.

Reading the blockchain happens in a permissionless manner, however the writing is
limited to some.

Like Civic they have their own token to create trust and incentivize the good
behaviour between parties. From the Sovrin white paper:

“The result is a marketplace where any source of trust—from a govern-
ment to a family—now has an incentive to realize value from helping

88 Chapter 8. Known Alternatives

build trust with others. And those who have earned that trust—the
identity owners—can now benefit from the ability to transfer that trust
to other relationships. Verifiers, for their part, can now take advantage
of a vastly expanded marketplace for trust information—a marketplace
in which issuers are constantly competing to fill any “trust gaps.” ” [45]

When it comes to the standard used, they completely adhere to the W3C
verifiable credentials, like Pistis does.

The main pain points identified are the use of a brand new blockchain and the
use of a token to incentivize the creation of an ecosystem. They are what made us
reject Sovrin at last. It has already been expressed our negative judgment about
those points in the previous sections.

Chapter 9

Conclusion & Future Work

9.1 Future Work

What we see as the immediate upgrade of such a system is the extension from
Credentials Management only to a full fledged digital identity system. The gap to
be filled in order to take this leap forward is not really that big as can be seen from
the comparison with other SSI alternatives being Pistis similar in terms of features
needed to be able to fully handle a digital identity, also thanks to the multi purpose
smart contract and the versatility of the system as a whole.

Below we discuss what we see as possible improvements for Pistis.

9.1.1 Explore pairwise DIDs

Conceptually, DIDs can fall into two classes: public DIDs and pairwise DIDs.
Public DIDs are IDs that users choose to knowingly link themselves with data
intended for the public—for example, a small bio that includes a photograph and a
brief description. Public DIDs are suitable if you intend an activity or interaction to
be linked to yourself in a way that can be verified by others. But having everything
you do tied to a single DID and traceable across the web poses serious privacy and
safety risks. This is why pairwise DIDs are useful. Pairwise DIDs are generated
whenever users want to isolate their interactions and prevent correlation. For many
users, pairwise DIDs might be the primary mechanism they use to conduct identity
interactions. It would be reasonable to explore the pairwise DIDs to be used by
end users in Pistis.

9.1.2 Implement Full Key Management

Being a well known theme we decided not to provide our implementation, but
just to reuse one of the battle tested solutions. But we didn’t implement it yet.

Both the mobile application and the web dashboard should implement the well
known key management used by every crypto wallet. That is based on BIP39 [6],
the mnemonic phrase generator used for the first time for bitcoin wallet and then
used for all the other wallet.

89

90 Chapter 9. Conclusion & Future Work

9.1.3 Improve Selective Disclosure

A possible improvement to selective disclosure could be obtained exploiting the
Merkle Tree.

Every time a VC is created, alongside it also the merkle tree of its csu field
is created following a parent first order. This means that the csu field of the VC
get parsed and every key/value pair is hashed and inserted as a leaf of the Merkle
tree. If the value is an object, then first is inserted the complete object and then
its children. Finally, following the merkle tree strategy, the leaves are hashed in
pairs and the resulting hashes are hashed again in pairs until just one hash remain
which is the merkle root. The final result is a VC with the merkle root as value of
the csu field.

Every time the subject of the VC wants to share such a VC he has to select
which field wants to selectively disclose, creating a subset of the original VC, then
in the data field of the Verifiable Presentation will be inserted just this subset with
the key concatenated with the index of the leaf that they occupy in the merkle tree,
plus an array of the needed hash to compute the merkle root hash.

Upon the receiving of a VC, it has to be parsed and if a leaf is missing (
the difference between two consecutive keys is more than one), then the first
(currentKeyNumber− previousKeyNumber− 1)/2 hashes are retrieved from the
array of hashes and used to compute the parent hashes until the merkle root is
retrieved, which is finally compared with the one inserted in the csu field.

9.1.4 Sign Any Transactions with Pistis Mobile App

In an ideal scenario, Pistis mobile app can be used to sign any kind of transactions.
It is quite relevant in some scenario where Issuer/Verifier dashboard overlaps on
an end user needs, and the user may end up needing a duplication of wallet in
both Pistis mobile app and Metamask to interact with the dashboard. Having the
mobile app sign any Ethereum transaction would allow to get rid of Metmask so
that the user can have full control over his keys within the Pistis mobile app.

While this may not be a great deal in many cases, duplicating wallets reduces
security and usability, two key factors we have had in mind during the whole work.

9.1.5 On-Chain Automatic VC Verification

Solidity has a built it function, ecrevocer, which returns the public key that
signed the input data using elliptic curve cryptography. If the input data to that
function was a Verifiable Credential, the public key that signed the relative JWT
can be recovered, a DDO can be wrapped around the VC signer, and any other
operation might be performed on that credential.

A smart contract capable of doing this kind of automated VC verification (or
any other sort of operation on that credential) would enable use cases of extreme
interest such as the ability to add a certain criteria to the transfer of fungible
or non-fungible tokens. Those criteria can be certified by the sender/receiver by
proving the ownership of a certain verifiable credential.

9.2. Conclusion 91

One major limitation to this may be the gas limit per block imposed by Ethereum.
It currently runs at 8000000 gas1.

9.1.6 Smart Contracts Improvements

This version 1.0 that we currently have in our reference implementation has
shown to be working fine and it scores great in terms of costs as well. However,
improvements are always possible and we do have some in mind:

• Operations need an expiry time to avoid unexpected results. A maximum
of 24 hours should be allowed to confirm an operation otherwise it must be
voided.

• Settable minimum quorum. Currently the MultiSigOperation smart contract
can be deployed with a default_quorum parameter. However, it may be
the case that each DID needs to set a different quorum based on its specific
scenario.

• MultiSigOperation contract contains a generic Operation struct whose task
is to pack any kind of parameters a function may need. Currently they are
packed into dynamic arrays, however there are potentially more efficient ways
to explore. One of them could be packing the params into a single bytes
argument and then use low level EVM opcodes to fetch back the needed params
after casting. It would surely be a neater solution, whereas performance needs
to be tested.

9.2 Conclusion
Looking at the broad picture all over the world we found out that there is a

great barrier which stops any kind of new digital system of this kind, and especially
SSI based systems, that is due to the legacy systems being used and the previous
economic effort carried on in order to get to this point. Especially architectural
costs incurred (see Italian SPID server to carry the load), or current jobs created
(see CAs created in Dubai and that are not willing to go away) are there and are
not happy to be discarded and be replaced by a blockchain and newer systems of
that kind.

We really believe it works, however there is a non-trivial barrier to take down
before having an SSI system to gain traction.

We believe Pistis can give a nice guideline on the progress of the Self Sovereign
Identity approach, at the very least just by spreading the word about the new
extremely promising paradigms to invert the centralized and dangerous trend of
centralized identity management approaches.

At the end of the day we believe this work achieved, even though just at a Proof
of Concept level of maturity, a system protecting data privacy of identity owners
and enabling seamless, efficient credentials exchange.

1According to https://ethstats.net/

Appendix A

Screenshots

A.1 Mobile Screenshots

(a) OnBoarding Screen (b) Welcome Screen

Figure A.1: First time using mobile application

93

94 Appendix A. Screenshots

(a) Credential Component (b) Contacts Component

(c) History Component (d) Disclosure Component

Figure A.2: Mobile Application Components

A.1. Mobile Screenshots 95

(a) Credential Subject sample (b) Sub field of a credential subject

Figure A.3: SSI Verifiable Credential example

96 Appendix A. Screenshots

A.2 Dashboard Screenshots

Figure A.4: VC Reader and dashboard overview

A.2. Dashboard Screenshots 97

Figure A.5: VC Reader details

98 Appendix A. Screenshots

Figure A.6: Delegates Management

Figure A.7: Example of an on going transaction

A.2. Dashboard Screenshots 99

Figure A.8: Credential Management

Figure A.9: Trusted Contact Management

100 Appendix A. Screenshots

Figure A.10: VC Builder utility

Figure A.11: Object Viewer

A.3. DDO example 101

A.3 DDO example

Figure A.12: DDO example

Appendix B

Communication protocol objects

1 "header":{
2 "typ": "JWT",
3 "alg": "ES256K-R"
4 }
5 "payload":{
6 "type": "attestation",
7 "credentialSubject": [
8 eyJ0eXBaOwJSQ1.... HdHrgh -EnAA ,
9 eyJ0eX2dsisdc2.... HoHthh -TmZZ ,

10 eyJ0eXqiergGC3.... HoHthh -TmZZ
11],
12 "aud": "did:ethr:0x7da253add95f4fe6gh269cf173c586s6g46d

7va24",
13 "iat": 1554889743,
14 "exp": 1554890343,
15 "iss":"did:ethr:0x9fe146cd95b4ff6aa039bf075c889e6e47f8

bd18",
16 "file": {encodingFormat: "SHA256", value: [...],
17 "data": {econdingFormat: "SHa256", value: [...]}
18 }
19 signature:{...}

Codice B.1: Attestation sample

1 "header":{
2 "typ": "JWT",
3 "alg": "ES256K-R"
4 }
5 "payload":{
6 "type": "shareReq",
7 "requested": [
8 "Thing/CreativeWork/EducationOccupationalCredential

/*",
9],

103

104 Appendix B. Communication protocol objects

10 "callback": "https:// verifierWebSite/verifyDegree?
socketId =...",

11 "aud": did:ethr:0x7da253add95f4fe6gh269cf173c586s6g46d7
va24

12 "iat": 1554889743,
13 "exp": 1554890343,
14 "iss": "did:ethr:0x9fe146cd95b4ff6aa039bf075c889e6e47f8

bd18"
15 }
16 signature:{...}

Codice B.2: ShareReq sample

1 "header":{
2 "typ": "JWT",
3 "alg": "ES256K-R"
4 }
5 "payload":{
6 "type": "shareResp",
7 "req": [eyJ0eXAiOiJKV1.... HoHthh -TmZZ],
8 "credentialSubject": [
9 eyJ0eXBaOwJSQ1.... HdHrgh -EnAA ,

10 eyJ0eX2dsisdc2.... HoHthh -TmZZ ,
11 eyJ0eXqiergGC3.... HoHthh -TmZZ
12],
13 "aud": "did:ethr:0x9fe146cd95b4ff6aa039bf075c889e6e47f8

bd18",
14 "iat": 1554889743,
15 "exp": 1554890343,
16 "iss":"did:ethr:0x7da253add95f4fe6gh269cf173c586s6g46d7

va24",
17 "file": {encodingFormat: "SHA256", value: [...],
18 "data": {econdingFormat: "SHa256", value: [...]}
19 }
20 signature:{...}

Codice B.3: ShareResp sample

Appendix C

PoC for the Maltese Government

Figure C.1: Actors involved

105

106 Appendix C. PoC for the Maltese Government

Figure C.2: User On boarding

Figure C.3: Book an X-Ray Scan

107

Figure C.4: Do the X-Ray Scan

Figure C.5: Receive the scan via e-mail

108 Appendix C. PoC for the Maltese Government

Figure C.6: Show the scan to the doctor

Appendix D

Smart Contracts Documentation

D.1 MultiSigOperations

MultiSigOperations - Generalized multi signature operations contract for a Self
Sovereign Identity approach

constructor

sets the deployer of the contract equals to message sender

setPermissionRegistry

Development notice: need to set PermissionRegistry contract address before
the contract can start operating

Parameters:

• registryAddress address: (address) any contract address extending Permis-
sionRegistry interface

enableCircuitBreaker

in case of emergency it can be called by the deployer to block the contract
confirming any operation

disableCircuitBreaker

used to go back functioning after an emergency stop

submitOperation

entry point to submit a generic operation
Development notice: operation’s parameters are packed into generic arrays.

Execute methods of each executor contract expects its own params
Parameters:

• identity address: (address) identity subject of the operation

109

110 Appendix D. Smart Contracts Documentation

• executor address: (address) contract address extending OperationExecutor
interface on which the operation will be executed

• intParams uint256[]: () generic integer parameters for the operation

• stringParams string: (string) generic string parameter for the operation

• addressParams address[]: () generic address parameters for the operation

• bytesParams bytes32[]: () generic bytes parameters for the operation

Return Parameters:

• uint256

confirmOperation

entry point to confirm an operation. Only authorized addresses for that executor
and for that identity are authorized

Parameters:

• opId uint256: (uint256) operation identifier to be confirm

confirm

Parameters:

• opId uint256: (uint256) operation identifier to be confirmed

revokeConfirmation

allows to revoke a confirmation already placed for a certain operation, as long
as that operation has not been executed yet

Parameters:

• opId uint256: (uint256) operation identifier for which to revoke confirmation

executeOperation

Development notice: generic operation executor. it checks the operation has
enough confirmation, then calls the execute method on the intended OperationEx-
ecutor contract

Parameters:

• opId uint256: (uint256) operation identitifier to execute

Return Parameters:

• bool

D.2. CredentialStatusRegistry 111

D.2 CredentialStatusRegistry

CredentialStatusRegistry

constructor

Parameters:

• multiSigContract address: (address) address of the multiSigOperations con-
tract to handle multi sig updates on this contract structure

execute

Development notice: change the status of a credential
Parameters:

• identity address: (address) identity relative to changes to make

• intParams uint256[]: (uint256[]) index 0 has to carry the id of the credential
to be changed. index 1 has to carry the credential Status code. other indexes
not used

• stringParams string: (string) not used

• addressParams address[]: (address[]) not used

• bytesParams bytes32[]: (bytes32[]) index 0 has to carry the status reason.
other indexes not used

Return Parameters:

• bool

D.3 PermissionRegistry

PermissionRegistry abstract contract

constructor

Parameters:

• multiSigContract address: (address) address of the multiSigOperations con-
tract to handle multi sig updates on this contract structure

112 Appendix D. Smart Contracts Documentation

actorHasPermission

Parameters:

• identity address: (address) identity to check permissions for

• executor address: (address) executor to check permissions for

• actor address: (address) acot to check permissions for

Return Parameters:

• bool

quorumSatisfied

Parameters:

• identity address: (address) identity to check quorum for

• executor address: (address) executor address to check quorum for

• confirmationCount uint8: (uint8) how many confirmations

Return Parameters:

• bool

execute

Development notice: this is the only function that will be called from the
MultiSigOperations contract. If multiple operations have to be executed use one
param to select one or another

Parameters:

• identity address: (address) identity subject of the operation to be executed

• intParams uint256[]: () generic integer parameters for the operation

• stringParams string: (string) generic string parameter for the operation

• addressParams address[]: () generic address parameters for the operation

• bytesParams bytes32[]: () generic bytes parameters for the operation

Return Parameters:

• bool

ı

Acronyms

DLT Distributed Ledger Technology

VC Verifiable Credential

VP Verifiable Presentation

DID Decentralized Identifier

DDO Decentralized Document

TCM Trusted Contacts Management

TCL Trusted Contacts List

SSI Self Sovereign Identity

DIF Decentralized Identity Foundation

W3C World Wide Web Consortium

EBSI European Blockcahin Service Infrastructure

CEF Connecting Europe Facility

EHEA European Higher Education Area

MIUR Ministero dell’istruzione, dell’università e della ricerca

CBA Canadian Association Bank

CVC Civic Token

RSK RootStock

113

Bibliography

[1] Accredible. Accredible main page. url: https://accredible.com (cit. on
p. 85).

[2] Agid. Linee guida per il contrassegno generato elettronicamente. 2013. url:
https://www.agid.gov.it/sites/default/files/repository_files/
linee_guida/circolare_n._62_recante_linee_guida_contrassegno_
elettronico_art_23_ter_cad_0.pdf (cit. on p. 6).

[3] Christopher Allen. The Path to Self-Sovereign Identity. url: http://www.
lifewithalacrity . com / 2016 / 04 / the - path - to - self - soverereign -
identity.html (cit. on p. 10).

[4] Canadian Banks Association. White Paper: Canada’s Digital ID Future - A
Federated Approach. 2018. url: https://cba.ca/embracing-digital-id-
in-canada (cit. on p. 1).

[5] Tim Berners-Lee. Solid Inrupt. url: https://solid.inrupt.com/ (cit. on
p. 77).

[6] Bitcoin. Mnemonic code for generating deterministic keys. url: https://
github.com/bitcoin/bips/blob/master/bip-0039.mediawiki (cit. on
p. 89).

[7] Blockcerts. Blockcerts faq page. url: https://www.blockcerts.org/guide/
faq.html (cit. on p. 85).

[8] Blockcerts. Blockcerts main page. url: https://www.blockcerts.org/
(cit. on p. 84).

[9] Civic. Civic main page. url: https://civic.com (cit. on p. 85).

[10] Paris Communiquè. Final Draft. url: http://www.ehea.info/media.ehea.
info/file/BFUG_Meeting/48/8/BFUG_BG_SR_61_4_FinalDraftCommunique_
947488.pdf (cit. on p. 2).

[11] Consensys. How to generate an ethereum address. url: https://github.
com/ConsenSys-Academy/ethereum-address-generator-js (cit. on p. 28).

[12] Ashish Dhawan and Aditi R. Ganesan. Handwritten Signature Verification.
url: https://pdfs.semanticscholar.org/7244/79ac337d5c1262fb151281b900a4f4210426.
pdf (cit. on p. 5).

[13] Shayan Eskandari et al. A first look at the usability of bitcoin key management.
url: https://arxiv.org/abs/1802.04351 (cit. on p. 77).

115

https://accredible.com
https://www.agid.gov.it/sites/default/files/repository_files/linee_guida/circolare_n._62_recante_linee_guida_contrassegno_elettronico_art_23_ter_cad_0.pdf
https://www.agid.gov.it/sites/default/files/repository_files/linee_guida/circolare_n._62_recante_linee_guida_contrassegno_elettronico_art_23_ter_cad_0.pdf
https://www.agid.gov.it/sites/default/files/repository_files/linee_guida/circolare_n._62_recante_linee_guida_contrassegno_elettronico_art_23_ter_cad_0.pdf
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://cba.ca/embracing-digital-id-in-canada
https://cba.ca/embracing-digital-id-in-canada
https://solid.inrupt.com/
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://www.blockcerts.org/guide/faq.html
https://www.blockcerts.org/guide/faq.html
https://www.blockcerts.org/
https://civic.com
http://www.ehea.info/media.ehea.info/file/BFUG_Meeting/48/8/BFUG_BG_SR_61_4_FinalDraftCommunique_947488.pdf
http://www.ehea.info/media.ehea.info/file/BFUG_Meeting/48/8/BFUG_BG_SR_61_4_FinalDraftCommunique_947488.pdf
http://www.ehea.info/media.ehea.info/file/BFUG_Meeting/48/8/BFUG_BG_SR_61_4_FinalDraftCommunique_947488.pdf
https://github.com/ConsenSys-Academy/ethereum-address-generator-js
https://github.com/ConsenSys-Academy/ethereum-address-generator-js
https://pdfs.semanticscholar.org/7244/79ac337d5c1262fb151281b900a4f4210426.pdf
https://pdfs.semanticscholar.org/7244/79ac337d5c1262fb151281b900a4f4210426.pdf
https://arxiv.org/abs/1802.04351

116 Bibliography

[14] Ethense. github repository of ethense project. url: https://github.com/
ethense (cit. on p. 83).

[15] Ethereum. Security consideration. url: https://solidity.readthedocs.
io/en/v0.5.11/security-considerations.html (cit. on p. 78).

[16] Facebook. React native framework. url: https://facebook.github.io/
react-native/ (cit. on p. 53).

[17] Connecting Europe Facility. Introducing the European Blockchain Service
Infrastructure (EBSI). url: https://ec.europa.eu/cefdigital/wiki/
display/CEFDIGITAL/ebsi (cit. on p. 1).

[18] Decentralized Identity Foundation. DIF Identity Hubs. url: https://github.
com/decentralized-identity/identity-hub/blob/master/explainer.
md (cit. on pp. 37, 77).

[19] Decentralized Identity Foundation. ION github page. url: https://github.
com/decentralized-identity/ion (cit. on p. 87).

[20] P2P Foundation. Evolution of Online Identity. url: https://wiki.p2pfoundation.
net/Evolution_of_Online_Identity (cit. on p. 10).

[21] P2P Foundation. Self-Sovereign Identity. url: https://wiki.p2pfoundation.
net/Self-Sovereign_Identity (cit. on p. 10).

[22] IMS GLOBAL. Open Badges v2.0. url: https://www.imsglobal.org/
sites/default/files/Badges/OBv2p0Final/index.html (cit. on pp. 19,
83).

[23] IETF. The Base16, Base32, and Base64 Data Encodings. url: https://
tools.ietf.org/html/rfc4648#page-5 (cit. on p. 74).

[24] Infura. Infura. url: https://infura.io/ (cit. on p. 54).

[25] Terence Lee. Singapore to roll out blockchain-based education certification
system nationwide. 2019. url: https://www.techinasia.com/singapore-
rolls-blockchainbased-education-certification-system-nationwide
(cit. on p. 1).

[26] Ania Lipińska. Ethense and uPort bring educational certificates to Self-
Sovereign Identity. url: https://medium.com/uport/ethense-and-uport-
bring - educational - certificates - to - self - sovereign - identity -
7a6b6c2f41c0 (cit. on p. 83).

[27] Donnie MacColl. What Is GDPR? url: https://www.srcsecuresolutions.
eu/news-media/news/what-is-gdpr (cit. on p. 80).

[28] Metadium. Metadium main page. url: https://metadium.com (cit. on
p. 85).

[29] Metamask. Metmask Browser Extension. url: https://metamask.io/ (cit.
on p. 55).

[30] OpenCerts. OpenCerts faq page. url: https://opencerts.io/faq (cit. on
p. 84).

https://github.com/ethense
https://github.com/ethense
https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html
https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/ebsi
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/ebsi
https://github.com/decentralized-identity/identity-hub/blob/master/explainer.md
https://github.com/decentralized-identity/identity-hub/blob/master/explainer.md
https://github.com/decentralized-identity/identity-hub/blob/master/explainer.md
https://github.com/decentralized-identity/ion
https://github.com/decentralized-identity/ion
https://wiki.p2pfoundation.net/Evolution_of_Online_Identity
https://wiki.p2pfoundation.net/Evolution_of_Online_Identity
https://wiki.p2pfoundation.net/Self-Sovereign_Identity
https://wiki.p2pfoundation.net/Self-Sovereign_Identity
https://www.imsglobal.org/sites/default/files/Badges/OBv2p0Final/index.html
https://www.imsglobal.org/sites/default/files/Badges/OBv2p0Final/index.html
https://tools.ietf.org/html/rfc4648#page-5
https://tools.ietf.org/html/rfc4648#page-5
https://infura.io/
https://www.techinasia.com/singapore-rolls-blockchainbased-education-certification-system-nationwide
https://www.techinasia.com/singapore-rolls-blockchainbased-education-certification-system-nationwide
https://medium.com/uport/ethense-and-uport-bring-educational-certificates-to-self-sovereign-identity-7a6b6c2f41c0
https://medium.com/uport/ethense-and-uport-bring-educational-certificates-to-self-sovereign-identity-7a6b6c2f41c0
https://medium.com/uport/ethense-and-uport-bring-educational-certificates-to-self-sovereign-identity-7a6b6c2f41c0
https://www.srcsecuresolutions.eu/news-media/news/what-is-gdpr
https://www.srcsecuresolutions.eu/news-media/news/what-is-gdpr
https://metadium.com
https://metamask.io/
https://opencerts.io/faq

Bibliography 117

[31] OpenCerts. OpenCerts main page. url: https://opencerts.io/ (cit. on
p. 83).

[32] Json Schema Organization. json schema. url: https://json-schema.org/
(cit. on p. 84).

[33] European Parliament and Council of the European Union. GDPR, Article 4,
Definitions. url: https://gdpr-info.eu/art-4-gdpr/ (cit. on p. 79).

[34] European Parliament and Council of the European Union. GDPR, Chapter 3,
Rights of the data subject. url: https://gdpr-info.eu/chapter-3/ (cit. on
p. 80).

[35] European Parliament and Council of the European Union. Recital 26 EU
GDPR. url: http://www.privacy- regulation.eu/en/recital- 26-
GDPR.html (cit. on p. 80).

[36] The Linux Foundation Projects. Hypeledeger Aries. url: https://infura.
io/ (cit. on p. 77).

[37] Redux.org. Redux design pattern. url: https://redux.js.org/ (cit. on
p. 53).

[38] RootStock. RSK. url: https://www.rsk.co/ (cit. on p. 86).

[39] Osvaldo A. Rosso, Raydonal Ospina, and Alejandro C. Frery. Classification
and Verification of Handwritten Signatures with Time Causal Information
Theory Quantifiers. url: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5131934/ (cit. on p. 5).

[40] Timothy Ruff. Linee guida per il contrassegno generato elettronicamente. 2018.
url: https://medium.com/evernym/the-three-models-of-digital-
identity-relationships-ca0727cb5186 (cit. on p. 11).

[41] Schema.org. Data Model. url: https://schema.org/docs/datamodel.html
(cit. on p. 31).

[42] Dieter Shirley. ERC 721 standard. url: http://erc721.org/ (cit. on p. 42).

[43] Alex Simons. Identity Hubs as personal datastores. url: https://techcommunity.
microsoft.com/t5/Azure-Active-Directory-Identity/Identity-Hubs-
as-personal-datastores/ba-p/389577 (cit. on p. 87).

[44] Sovrin. Sovrin main page. url: https://sovrin.org/ (cit. on p. 87).

[45] Sovrin. Sovrin whitepaper. url: https : / / sovrin . org / wp - content /
uploads / 2018 / 03 / Sovrin - Protocol - and - Token - White - Paper . pdf
(cit. on p. 88).

[46] Manu Sporny et al. Secure Data Hubs. url: https://github.com/WebOfTrustInfo/
rwot9-prague/blob/master/topics-and-advance-readings/secure-
data-hubs.md (cit. on pp. 77, 87).

[47] Nick Szabo. Formalizing and Securing Relationships on Public Networks. url:
https://nakamotoinstitute.org/formalizing-securing-relationships/
(cit. on p. 23).

https://opencerts.io/
https://json-schema.org/
https://gdpr-info.eu/art-4-gdpr/
https://gdpr-info.eu/chapter-3/
http://www.privacy-regulation.eu/en/recital-26-GDPR.html
http://www.privacy-regulation.eu/en/recital-26-GDPR.html
https://infura.io/
https://infura.io/
https://redux.js.org/
https://www.rsk.co/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131934/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131934/
https://medium.com/evernym/the-three-models-of-digital-identity-relationships-ca0727cb5186
https://medium.com/evernym/the-three-models-of-digital-identity-relationships-ca0727cb5186
https://schema.org/docs/datamodel.html
http://erc721.org/
https://techcommunity.microsoft.com/t5/Azure-Active-Directory-Identity/Identity-Hubs-as-personal-datastores/ba-p/389577
https://techcommunity.microsoft.com/t5/Azure-Active-Directory-Identity/Identity-Hubs-as-personal-datastores/ba-p/389577
https://techcommunity.microsoft.com/t5/Azure-Active-Directory-Identity/Identity-Hubs-as-personal-datastores/ba-p/389577
https://sovrin.org/
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
https://github.com/WebOfTrustInfo/rwot9-prague/blob/master/topics-and-advance-readings/secure-data-hubs.md
https://github.com/WebOfTrustInfo/rwot9-prague/blob/master/topics-and-advance-readings/secure-data-hubs.md
https://github.com/WebOfTrustInfo/rwot9-prague/blob/master/topics-and-advance-readings/secure-data-hubs.md
https://nakamotoinstitute.org/formalizing-securing-relationships/

118 Bibliography

[48] UNESCO. Global Convention on the Recognition of Qualifications concerning
Higher Education. url: https://www.chea.org/sites/default/files/
2019-06/Global-Convention-on-the-Recognition-of-Qualifications-
concerning-Higher-Education.pdf (cit. on p. 2).

[49] Council of theEuropean Union. Council Recommendation on promoting auto-
matic mutual recognition of higher education and upper secondary education
and training qualifications and the outcomes of learning periods abroad. url:
http://data.consilium.europa.eu/doc/document/ST-14081-2018-
INIT/en/pdf (cit. on p. 2).

[50] Everis US. Handwritten Signature Verification with Neural Network. url:
https://medium.com/@everisUS/handwritten-signature-verification-
with-neural-networks-94da5cbe0c5f (cit. on p. 5).

[51] W3C. Decentralized Identifiers. url: https://w3c-ccg.github.io/did-
spec/ (cit. on pp. 21, 85).

[52] W3C. DID Method Registry. url: https://w3c- ccg.github.io/did-
method-registry/ (cit. on p. 85).

[53] W3C. Verifiable Credentials Data Model 1.0. 2019. url: https://www.w3.
org/TR/vc-data-model/ (cit. on pp. 19, 24, 83).

https://www.chea.org/sites/default/files/2019-06/Global-Convention-on-the-Recognition-of-Qualifications-concerning-Higher-Education.pdf
https://www.chea.org/sites/default/files/2019-06/Global-Convention-on-the-Recognition-of-Qualifications-concerning-Higher-Education.pdf
https://www.chea.org/sites/default/files/2019-06/Global-Convention-on-the-Recognition-of-Qualifications-concerning-Higher-Education.pdf
http://data.consilium.europa.eu/doc/document/ST-14081-2018-INIT/en/pdf
http://data.consilium.europa.eu/doc/document/ST-14081-2018-INIT/en/pdf
https://medium.com/@everisUS/handwritten-signature-verification-with-neural-networks-94da5cbe0c5f
https://medium.com/@everisUS/handwritten-signature-verification-with-neural-networks-94da5cbe0c5f
https://w3c-ccg.github.io/did-spec/
https://w3c-ccg.github.io/did-spec/
https://w3c-ccg.github.io/did-method-registry/
https://w3c-ccg.github.io/did-method-registry/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/

	Colophon
	Contents
	List of Figures
	List of Tables
	Listings
	Sommario
	Abstract
	Introduction
	Problem Framing
	The Need for Such a Solution
	Thesis Contribution
	Thesis Structure

	State of the art
	Known Models
	Paper Model
	Digital Signature Model
	Self Hosted
	SaaS (Software as a Service)

	Shortcomings of previous models
	Self Sovereign Identity approach
	Introduction
	Our definition of Self Sovereign Identity

	Models Comparison
	Known Alternatives

	Proposed Solution
	Building Blocks
	DID & DDO
	Blockchain
	Why we need the blockchain?

	Smart Contracts
	Verifiable Credential
	Verifiable Presentation
	Actors

	Pistis Specification
	DID & DDO
	DDO Structure
	DID Method
	Service Endpoints

	Naming Schema
	Naming System
	Abstraction Granularity
	Extending the Naming Schema
	Choosing a Verifiable Credential naming

	Verifiable Credentials
	Simple VC
	VC containing large files
	VC with selective disclosure
	VC as a Verifiable Ticket

	Verifiable Presentation
	Smart Contracts
	Multi Signature Operation
	Operation Executor
	Permission Registry
	Pistis DId Registry
	Credential Status Registry
	Trusted Contacts Management
	Design Pattern Decisions

	Communication
	Protocol
	Transport Methods

	Pistis Architecture
	Mobile Application
	Issuer/Verifier System
	Blockchain Integration
	Infura
	MetaMask
	Permissioned Faucet for On-Chain operations
	Faucets discovery

	Processes
	Issue Verifiable Credentials
	Share Verifiable Credentials
	Revoke Verifiable Credentials
	Entity Resolution (Trusted Contacts Management)

	Pistis Components Details
	User App
	Identity Management
	Credential Storing
	Data Sovereignty
	Issuer Trust

	Issuer/Verifier Dashboard
	Credential Management
	Identity Management
	Trusted Contacts Management
	Verifiable Credential Builder Utility
	Verifiable Credential Reader Utility
	Trusted Contacts List

	Results
	System Performance
	How much space does a credential take up?
	Smart Contracts transaction cost

	System Limitations
	Data Transports
	Data Backup
	Need to fund Ethereum transactions
	Offline support

	About Smart Contract security issues
	Re-entrancy Attacks
	Integer Overflow and Underflow
	Denial of Service by Block Gas Limit (or startGas)

	GDPR compliance

	Known Alternatives
	Ethense
	OpenCerts
	Blockcerts
	Accredible
	Metadium
	Civic
	ION
	Sovrin

	Conclusion & Future Work
	Future Work
	Explore pairwise DIDs
	Implement Full Key Management
	Improve Selective Disclosure
	Sign Any Transactions with Pistis Mobile App
	On-Chain Automatic VC Verification
	Smart Contracts Improvements

	Conclusion

	Screenshots
	Mobile Screenshots
	Dashboard Screenshots
	DDO example

	Communication protocol objects
	PoC for the Maltese Government
	Smart Contracts Documentation
	MultiSigOperations
	CredentialStatusRegistry
	PermissionRegistry

	Acronyms
	Bibliography

