
Politecnico di Milano
Scuola di Ingegneria Industriale e dell’Informazione

École Polytechnique Fédérale de Lausanne
Chair of Numerical Modelling and Simulation

Innovative integration techniques
on curvilinear elements

Master of Science in
Mathematical Engineering

Candidate:
Sara Zaninelli

ID Number 875728

Supervisors:
Prof. Annalisa Buffa

Prof. Paola F. Antonietti
Dr. Pablo Antolin
Ondine Chanon

Academic Year 2018 - 2019

A mio padre,
per avermi insegnato
a non mollare mai.

Abstract

The aim of this work is to find innovative techniques to approximate solutions
of partial differential equations (PDEs) on trimmed domains. As a matter of fact,
cutting a regular surface with a trimming curve can be an extremely powerful
method to represent arbitrary surfaces, but it arises many problems, for instance the
computation of integrals. Indeed, it requires a re-parametrization of the cut through
Bézier functions, which involves re-meshing that leads to complex geometrical
manipulations, in particular in three-dimensions (3D). Thus we propose the use of
the new techniques based on machine learning (ML), especially of convolutional
neural networks (CNNs), to compute mass and stiffness matrix entries and to
build new suitable quadrature formulae. We want to simplify the preprocessing
phase, avoiding the reconstruction of the curve. This could be done by passing
as input to the neural network (NN) images showing the visible boundary of the
domain. These inputs can be created easily both in two-dimensions (2D) and in
3D.

Contents

List of Figures i
List of Tables iii
Introduction 1
1 Isogeometric Analysis on trimmed geometries 3

1.1 Basis Functions and Curves . 3
1.2 Trimming . 8

1.2.1 PDE problems on trimmed domains 8
1.2.2 Element Detection or Slicing . 10

1.3 Integration . 14
1.3.1 Tailored Integration . 15
1.3.2 Adaptive Subdivision . 15
1.3.3 Reconstruction of the Trimming Curve with Bézier

functions . 16
1.4 Conclusions . 17

2 Neural Networks 21
2.1 Machine Learning and Neural Networks 21
2.2 Feed Forward Neural Networks . 22
2.3 Convolutional Neural Networks . 27
2.4 Conclusions . 28

3 Design of NN to compute matrix entries 31
3.1 The simplest integration problem . 31
3.2 Model to compute Mass and Stiffness Matrix Entries with Control Points 36
3.3 Model to compute Mass and Stiffness Matrix Entries with Images 39
3.4 The use of NN to compute matrix entries in an IGA code 41

4 Design of NN to compute Quadrature Points 45
4.1 Model to compute Quadrature Points with Images 45

4.1.1 NN for Quadrature Points in 1D 46
4.1.2 NN for Quadrature Points in Trimmed Domains 47

4.2 Intuitive Error Estimate . 48
4.3 Conclusions . 50

Conclusions 51
Ringraziamenti 53

i

ii Contents

List of Figures

1.1.1 Non-vanishing B-splines on knot span 4
1.1.2 Control of continuity of a quadratic spline 4
1.1.3 Cubic B-spline basis . 5
1.1.4 Control polygon . 6
1.2.1 Trimmed tensor product surface . 8
1.2.2 Cutting patterns . 11
1.2.3 Trimmered parameter space with corresponding type labels 11
1.2.4 Kim’s procedure for slicing . 12
1.2.5 Schmidt’s procedure for slicing . 13
1.2.6 Bézier clipping . 13
1.3.1 Distribution of quadrature points over a regular patch 14
1.3.2 Approximation of a trimming curve with its control polygon 15
1.3.3 Adaptive subdivision for integration . 16
1.3.4 Pull back of quadrature points . 18
1.3.5 Re-meshing of invalid cutting patterns 18

2.1.1 Examples of Underfitting and Overfitting 23
2.2.1 Feed Forward Neural Network . 24
2.2.2 Schematic diagram of a unit . 24
2.3.1 Example of how a convolutional neural network works 28

3.1.1 MAE and MSE for a simple problem (Adam) 34
3.1.2 MAE and MSE for a simple problem (SGD) 35
3.2.1 MAE and MSE for matrix entries with Control Points 38
3.3.1 Image with cutting curve and visible boundary 39
3.3.2 Rotations and symmetries of a cutting curve 40
3.3.3 Schematic explanation of CNNs . 41
3.3.4 MAE and MSE for matrix entries with Images 42

4.1.1 Loss function of a model to compute Quadrature Points with Images . . 48
4.1.2 Cutting curve with Quadrature points 49

iii

iv List of Figures

List of Tables

3.1.1 Validation of hyperparameters for a simple problem 33
3.1.2 MAE and MSE for a simple problem . 33
3.2.1 MAE and MSE for matrix entries with Control Points 38
3.3.1 MAE and MSE for matrix entries with Images 41

4.1.1 Results of a model to compute Quadrature points in 1D 47
4.1.2 Test errors of a model to compute Quadrature Points with Images 48

v

Introduction

Since when it has first been introduced in 2005, isogeometric analysis (IGA) [1] has
been a successful method to convert computer-aided design (CAD) geometries to finite
element (FE) computational domains. Splines have been proved to be powerful tools to
approximate solutions of partial differential equations (PDEs) and a solid mathematical
theory [2] has been developed over the years.

Nevertheless, the issue of the construction of CAD geometries suitable to IGA has
not been completely solved, in particular because CAD represents models through the
description of their boundaries rather than volume discretization [3]. In this context
trimming is a very powerful tool to describe arbitrary surface boundaries; indeed the
surface is cut through a curve that allows to identify superfluous areas. This means that
the visualization of the surface changes, but the underlying mathematical models to
construct it remain unchanged .

The cutting curve, that in principle could be any function, is often reconstructed
with B-splines basis functions [4]. When we use the isogeometric approach, we need to
simulate physical models directly on the trimmed patches and this needs the design of
suitable integration formulae on trimmed domains. At present, the design of integra-
tion quadrature rules requires re-parameterizations and re-meshing, often resulting in
laborious geometric manipulations, especially in three-dimensions (3D) and expensive
integration formulae. Indeed, given a mesh, first we need to detect cut elements and
transform them in the parametric space. Next, we need to reconstruct the curve, find
suitable quadrature points on the reference element and pull them back in the parametric
space by using suitable maps.

The aim of this work is to simplify the preprocessing phase, avoiding the reconstruction
of the cutting curves and the re-meshing. This could be done through Machine Learning
(ML) [24], which is a tool to find automatically inherent rules or dependencies from a
large amount of data. This is a new fast growing field that is opening new perspectives
in different sectors, including numerical analysis. It allows the creation of models that,
given a certain input, are able to predict in a good way unseen data. The process
of learning is done through the optimization of an appropriate loss function, that in
many cases is the mean squared error. After considering several possibilities, the Neural
Network (NN) algorithms we propose are trained using a large amount of images, that,
through a discretization of the domain in pixels, indicate the position of the cut and the
visible boundary. This way to describe the cutting curve is much more simple than the
construction of a quadrature rule which ask for re-meshing of cut elements, especially if
we want to extend it to 3D, where such re-meshing is expensive and a rather unstable
process. Our numerical examples have been performed in a two-dimensional (2D) space,
but the models have been created in such a way that it should be quite easy to extend

1

2 Introduction

them in higher dimensions, in particular to 3D. Convolutional Neural Networks (CNNs)
have been proved to be the perfect tool when the input of the model consists of images.
As we will explain in Chapter 2 Section 2.3, a CNN is able to extract the main features
of a curve, i.e. its slopes, and it reaches a stable state in fewer iterations.

When we deal with machine learning, the most delicate part of the whole precedure
is the creation of the dataset to train the model. In particular, we have to feed the model
with different types of cutting curves that are able to take into account more or less all
the possible scenarios. The generalization of this process to 3D is not straightforward and
requires special attention. Moreover, the same problem can be faced in different ways.
Indeed, in this work, we will show two different approaches to approximate solutions of
PDEs. The first one aims to directly compute the mass and the stiffness matrix entries.
Actually, this model performs quite well, but it is very demanding in terms of memory
usage. Thus the matrices should be computed online and the time of evaluation of the
model becomes an important factor to take into account. Besides it is not very easy to
embed it in existing codes, like GeoPDEs [39], which relies upon the use of quadrature
points. So, the goal of the second approach is to construct a new suitable quadrature
formula for cut elements. The idea is that the model receives the images of the cutting
curve and predicts the quadrature points and weights that are necessary to compute
integrals. In this way, not only it is easy to combine its use with existing codes, but
it is also less expensive in terms of memory. Moreover, the quadrature points can, in
principle, be used to solve any kind of problem and this opens infinite opportunities for
the employment of the method. Nonetheless, in this case the choice of an appropriate
loss function must be made. Indeed, so far, we have not been able to impose either in a
strong or in a weak way that the points must lay inside the visible area.

In order to provide a common background, first we will present a review on Bézier
basis functions in Chapter 1, c.f. Section 1.1, and we will explain trimming and the
problems we want to solve in Chapter 1, Section 1.2. Then we will show classical methods
of integration over cut elements in Chapter 1, Section 1.3. We will summarize new
machine learning techniques and the several types of networks that can be constructed in
Chapter 2. In the second part of the thesis (Chapter 3 and Chapter 4) we will illustrate
the models we have created and the different techniques we have adopted in order to
compute integrals over trimmed domains in a fast and reliable way. Finally, we will
draw some Conclusions.

Chapter 1

Isogeometric Analysis on trimmed
geometries

In this chapter we recall the basic properties of B-splines (Section 1.1) and how they
can be used to approximate complex geometries. Moreover we will explain the problem
of integration over trimmed domains (Section 1.3) when trying to solve elliptic partial
differential equations (Section 1.2).

1.1 Basis Functions and Curves
Following the article [4], let us consider a set of N + 1, with N ≥ 0 non-decreasing
coordinates, called knots, u0 ≤ u1 ≤ . . . ≤ uN , which are listed in a knot vector Ξ. A
non empty half open interval [ui, ui+1) is called the ith knot-span and supports p+ 1
B-splines (Fig 1.1.1) where p ≥ 0 is the degree of the polynomial. They are defined
recursively by a strictly convex combination of B-splines of degree p − 1, as follow:
∀u ∈ [u0, . . . , uN]

Bi,p(u) = u− ui
ui+p − ui

Bi,p−1(u) + ui+p+1 − u
ui+p+1 − ui+1

Bi+1,p−1(u), i = 0, . . . , I − 1 (1.1.1)

with
Bi,0(u) =

{
1 if ui ≤ u < ui+1
0 otherwise (1.1.2)

and where I is the total number of basis functions. In some cases the denominator
involved in the computation of the recursive formula may become zero, then the quotient
is defined to be zero by convention. Each Bi,p in a non-empty knot-span [us, us+1) is
a polynomial segment, which joins with the next one at knots. This means that the
knots are the points in which the function is not C∞ and, in general, the continuity
between adjacent segments is Cp−m. The control of continuity of a quadratic B-spline is
shown in Fig. 1.1.2. The knot multiplicity m points out if successive knots are equal, i.e.
ui = ui+1 = . . . = ui+m−1. If the first and last node have multiplicity m = p+ 1, then
the knot vector is called open knot. The classical pth-degree Bernstein polynomial is
defined on the open knot

Ξ = {u0 = . . . = up, up+1 = . . . = u2p+1}, (1.1.3)

3

4 Isogeometric Analysis on trimmed geometries

Figure 1.1.1. Non-vanishing B-splines Bi,p on knot span s defined for p = 0, 1, 2.

Figure 1.1.2. Polynomials segments of a quadratic B-spline, due to different knot vectors.
Note the different continuity between the segments based on the knot multiplicity. Image
taken from article [4].

which is usually defined in the interval [0, 1], but we can avoid this restriction by a
change of variables.

Given a knot vector Ξ, the B-splines based on it form a partition of unity, which
means

I−1∑
i=0

Bi,p(u) = 1, u ∈ [u0, uI+p] (1.1.4)

and they are linearly independent, i.e.
I−1∑

0
ciBi,p(u) = 0 ⇐⇒ ci = 0 ∀i ∈ [0, I − 1]. (1.1.5)

This means that they form a basis of the space

Sp,Ξ =
{
I−1∑
i=0

ciBi,p : ci ∈ IR
}
, (1.1.6)

so we can uniquely describe every piecewise polynomial fp,Ξ of degree p over a knot
sequence by a linear combination of the corresponding Bi,p. A cubic B-spline basis
defined by an open knot vector is visible in Fig. 1.1.3.

The first derivative of a B-spline is a linear combination of B-splines of lower degree,
i.e.

B
′

i,p(u) = p

ui+p − ui
Bi,p−1(u)− p

ui+p+1 − ui+1
Bi+1,p−1(u). (1.1.7)

1.1. Basis Functions and Curves 5

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
Cubic B-spline basis

B
0,3

B
1,3

B
2,3

B
3,3

B
4,3

B
5,3

B
6,3

Figure 1.1.3. Cubic B-spline basis defined by an open knot vector
Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}.

We can generalize the computation of the kth derivative in the following way

B
(k)
i,p (u) = p!

(p− k)!

k∑
l=0

ak,lBi+l,p−k(u) (1.1.8)

with
a0,0 = 1,

ak,0 = ak−1,0

ui+p−k+1 − ui
,

ak,l = ak−1,l − ak−1,l−1

ui+p+l−k+1 − ui+l
, l = 1, . . . , k − 1,

ak,k = −ak−1,k−1

ui+p+1 − ui+k
.

Again, if the denominator is zero, then the quotient is defined to be zero.
Moreover, a B-splines can always be written as a linear combination of polynomials

of higher degree. For simplicity, let us consider the interval [0, 1], then the ith Bernstein
polynomial of degree p− 1 can be written as

Bi,p−1(u) = p− i
p

Bi,p(u) + i+ 1
p

Bi+1,p(u). (1.1.9)

B-splines curves of degree p are defined using basis functions {Bi,p}I−1
i=0 and coefficients

{ci}I−1
i=0 , which are called control points, in the following way:

C(u) =
I−1∑
i=0

Bi,p(u)ci (1.1.10)

6 Isogeometric Analysis on trimmed geometries

Figure 1.1.4. Cubic B-spline curve. Orange circles correspond to control points green lines
indicate the convex hull.

and its corresponding derivative is given by

J(u) =
I−1∑
i=0

B
′

i,p(u)ci. (1.1.11)

In general, the control points of a curve do not lie on it and if we connect them by
straight lines we obtain the so called control polygon, which can be considered a good
approximation for the curve. Indeed, we can always replace each Bi,p in (1.1.10) with
basis functions of higher degrees by using (1.1.9), thus we will have more control points.
As their number increases, the corresponding control polygon converges to the curve
itself. A B-spline curve is always contained in the convex hull of its control polygon (Fig.
1.1.4); to be precise a polynomial segment due to a non-empty knot-span [us, us+1) is in
the convex hull of the control points cs−p, . . . , cs. To check the continuity of the curve
we need to analyze the continuity of its underlying basis functions, which means that
the knot multiplicity and the positions of the control points determine the continuity
at knots. If the curve consists of a single polynomial segment, then it is known as
Bézier curve and a polynomial segment of a B-spline is called Bézier segment if it can
be represented by a Bézier curve.

Rational functions can be represented by associating some weights wi to the control
points

chi = (wici, wi)T = (cwi , wi)T ∈ IRd+1, (1.1.12)
where d is the spatial dimension of the model space. In particular they define a B-spline
curve Ch(u) in IRd+1. In order to obtain curve C(u) in IRd we need a perspective
mapping P such that

C(u) = P
(
Ch(u)

)
= Cw(u)

w(u) , (1.1.13)

where Cw(u) =
(
Ch

1 , . . . , C
h
d

)T are the homogeneous vector components of the curve
and the weighting function is given by

w(u) =
I−1∑
i=0

Bi,p(u)wi. (1.1.14)

C(u) is called non-uniform rational B-splines (NURBS) curve, where the term rational
indicates that the resulting curve is a piecewise rational polynomial, whereas non-uniform
means that the knots values can be chosen arbitrarily.

1.1. Basis Functions and Curves 7

The derivative of the NURBS is

J(u) =
w(u)∂Cw(u)

∂u
− ∂w(u)

∂u
Cw(u)

(w(u))2 , (1.1.15)

with
∂w(u)
∂u

=
I−1∑
i=0

B
′

i,p(u)wi, (1.1.16)

∂Cw(u)
∂u

=
I−1∑
i=0

B
′

i,p(u)cwi . (1.1.17)

NURBS become B-splines if all the weights are equal and they have the same properties
if the weights are non-negative. Moreover, NURBS curves can be represented as

C(u) =
I−1∑
i=0

Ri,p(u)ci, (1.1.18)

with
Ri,p = wiBi,p(u)

w(u) . (1.1.19)

The weighting function is defined as in equation (1.1.14) and the weights wi are now
associated with B-splines Bi,p, so the mapping (1.1.18) employs control points ci of the
model space.

We can, also, approximate a function f with a B-spline patch Ihf =
∑I−1

i=0 Bi,pci.
The condition for the interpolation is

f(ūj) =
I−1∑
i=0

Bi,p(ūj)ci, j = 0, . . . , I − 1. (1.1.20)

In this way we can find the unknown coefficients ci, and we can impose

Au[j, i] = Bi,p(ūj), i, j = 0, . . . , I − 1, (1.1.21)

where Au is called the spline collocation matrix. According to the Schoenberg-Whitney
theorem [5, 6]

Au is invertible ⇐⇒ Bi,p(ūi) 6= 0, i = 0, . . . , I − 1. (1.1.22)

Its condition number increases if either ū approaches the limits of its allowed range or if
it is not collocated uniformly. In particular, it gets arbitrary large if two interpolation
points approach each other, whereas the others remain fixed. To avoid this problem, it
is suggested in [5, 7, 8] to interpolate the function at the Greville abscissae ug which are

ugi = ui+1 + ui+2 + . . .+ ui+p
p

, i = 0, . . . , I − 1. (1.1.23)

8 Isogeometric Analysis on trimmed geometries

Figure 1.2.1. Trimmed tensor product surface: (a) regular surface defined by a tensor product
basis, (b) trimmed curved and corresponding visible area AV given by the direction of Ct, (c)
resulting trimmed surface. Image taken from article [4].

1.2 Trimming

A trimmed surface is used to represent an arbitrary surface in space. Indeed, surfaces
are cut by a trimming or cutting curve Ct(ũ), which is usually a B-spline or a NURBS
curve. It can be expressed as

Ct(ũ) =
[
u(ũ)
v(ũ)

]
=

I−1∑
i=0

Ri,p(ũ)cti, (1.2.1)

where cti ∈ IR2 are the control points of the trimming curve in the parameter space of
the trimmed surface. Connecting trimming curves, we form loops that can include the
original boundary of the trimmed patch if it is intersected by the curve itself. These
loops have a direction that make us understand which is the visible area, called AV.
An example of trimmed patches is shown in Fig. 1.2.1. It must be noticed that the
mathematical models to construct the original patch and the related control grid do not
change and they are not updated to reflect the trimmed boundary. This means that
these curves are an useful tool to represent arbitrary surfaces and visible areas, but they
do not solve other problems, such as a smooth connection of two adjacent patches along
a trimming curve.

Now, we are going to present the problem of approximating the solution partial
differential equations on trimmed domains.

1.2.1 PDE problems on trimmed domains

Let us consider an elliptic partial differential equation posed on a domain Ω, then
Ω is called a non-conforming multipatch trivariate volume (nCMTV) [34] if it is con-
structed as a collection of patches (trivariate in IR3), T1, . . . , Tk. For each Tl we have
a parametrization Fl : T̂ 7→ Tl, l = 1, . . . , k, from the parameter space to the current
element, which are, in general, different for every edge or face. If the parametrizations
are the same the domain Ω is called conforming multipatch trivariate volume (CMTV)

1.2. Trimming 9

The computational domain is defined as

Ω = Ω0 r
N⋃
i=0

Ω̄i, (1.2.2)

where Ω1, . . . ,ΩN are nCMTV and Ω0 can be meshed by conforming meshes. Thus, the
boundary of Ω is composed by two parts: a non trimmed part ∂Ω ∩ ∂Ω0 and a trimmed
boundary ∂Ω r ∂Ω0. We indicate with ΓD ⊂ ∂Ω ∩ ∂Ω0 a connected non-empty subset;
this means that we can impose essential boundary conditions only on the non-trimmed
part of the boundary; if this is not the case the problem requires special care [30, 31, 32].
Consequently we have ΓN = ∂Ω r Γ̄D and we define

V =
{
u ∈ H(Ω)k : u|ΓD = 0

}
, (1.2.3)

where Hs(Ω) denotes the Sobolev space of order s ≥ 0, cf. [35], and where k = 1 when
we deal with diffusion problems and k = 3 for elasticity problems. We equip V with the
natural norm induced by the inner product and denoted by ‖·‖V . We assume to have a
bilinear form a(·, ·) acting on V × V which is

• continuous, i.e. ∃M > 0 such that a(u, v) ≤M ‖u‖V ‖v‖V ;

• coercive, i.e. ∃α > 0 such that a(u, u) ≥ α ‖u‖2
V .

Therefore, if the data f and g are sufficiently regular and ΓD 6= ∅, the following problem

Find u ∈ V : a(u, v) =
∫

Ω
fv +

∫
ΓN
gv ∀v ∈ V (1.2.4)

has a unique solution, thanks to Lax-Milgram theorem [40] and (1.2.4) is called weak
form.

In order to solve the corresponding numerical problem, Ω0 has been constructed in
such a way that it is described by n0 patches T0,1, . . . , T0,n0 and n0 parameterizations
F0,1, . . . ,F0,n0 , which let us transform the parameter space T̂ into the physical domain.
On each trivariate of Ω0, we have a collection of B-splines

B0,j = {B0,j,k = B̂0,j,k ◦ F−1
0,j , k ∈ I0,j}, (1.2.5)

where I0,j is the index of the B-spline function on the patch T0,j.

If h = maxj hj and hj is the diameter of the largest knot span in T0,j, we can define
a mesh Th(Ω), composed by a collection of elements Q ∈ Th(Ω). Among them, we can
distinguish between two families:

• T untr
h (Ω) is the collection of Q ∈ Th(Ω) such that Q ∩ Ω = Q, which means that

they are the non trimmed elements;

• T trim
h (Ω) is the collection of Q ∈ Th(Ω) such that Q ∩ Ω 6= Q, so they are the

trimmed elements.

10 Isogeometric Analysis on trimmed geometries

To find the approximated solution of a PDE, we need to compute integrals in all
the elements of the mesh Th(Ω), then the final result will be given by the sum of all
the contributes, i.e.

∫
Ω ξ =

∑
Q∈Ω

∫
Q ξ. Moreover, we can separate the integral into two

terms as follow ∫
Ω
ξ =

∑
Q∈T untr

h (Ω)

∫
Q
ξ +

∑
Q∈T trim

h (Ω)

∫
Q∩Ω

ξ. (1.2.6)

If the element is not cut, i.e. Q ∈ T untr
h (Ω), then the integral is computed in a standard

way, e.g. using Gauss-Legendre quadrature rule. Otherwise, if Q ∈ T trim
h (Ω) we need

to find a procedure to compute the integral over the active part Q = Q ∩ Ω of the cut
Bézier elements. First of all we need to identify cut elements and we show how to do it
in the following subsection, then we will dedicate an entire section to the procedures
that can be used to perform integration.

1.2.2 Element Detection or Slicing
Element detection is a local technique used to determine if an element must be treated
with particular care. Indeed we can have:

• Exterior elements, whose knot spans are completely out of the domain of interest
and that can be ignored;

• Interior elements, whose knot spans are completely contained in the domain of
interest and that can be treated as in "classical" isogeometric analysis;

• Cut elements, which contain the trimmed curve and must be treated separately.

In Fig. 1.2.2 there are the most common cutting patterns, e.g. [10, 11, 12, 13, 14], but
it is important to note that they are not the only possible cases; for instance in a single
element, there could be more than one trimming curve, especially if the grid is coarse.

We define the type of each cut element by its number of edges, so if we consider the
patterns in Fig. 1.2.2 we can have type 2, 3, 4, 5 or 6. For what concerns interior and
exterior elements, by convention, we indicate them as of type 1 and −1, respectively
(Fig. 1.2.3). The advantage of this local approach is that the complexity of the trimming
curve is reduced when it is restricted to a single element and so it is easier to deal with
it. Usually the more refined the grid is, the less complex the trimming curve is; this
is why local refinement is a common way to resolve invalid cutting patterns, as in Fig.
1.2.3. This refinement is particularly useful when it comes to integration, indeed no new
knots are introduced, but the invalid element is subdivided into several valid integration
regions.

Several algorithms to assign types have been proposed in literature; we will present
the one by Kim et al. [10, 11] and the one by Schmidt et al. [14]. The procedure
suggested by Kim is shown in Fig. 1.2.4. First of all we need to identify interior and
exterior elements; to do this, we compute the minimal signed distance di,j from the center
of the element to the curve for each non-zero knot-span. Then we identify cut elements,
comparing this distance with the radii rin

i,j and rout
i,j of the inscribed and circumscribed

circles of the element (Fig. 1.2.4(a)). Of course if rin
i,j < |d| then we can identify it as a

cut element. Otherwise if rin
i,j ≤ |di,j| < rout

i,j we need to compute also the signed distance

1.2. Trimming 11

Cutting Patterns

Figure 1.2.2. Most common valid cutting patterns. Red dots indicate the intersection
between the trimming curve and the element. The visible area could be both the one under
and the one above the curve.

Figure 1.2.3. Trimmered parameter space with corresponding type labels: 1 indicate internal
elements, -1 external ones, trimmed elements are referred to using their number of edges, i.e.
3, 4 or 5. The question mark indicates the invalid case.

12 Isogeometric Analysis on trimmed geometries

Figure 1.2.4. Kim’s procedure [10, 11] to detect cut elements: (right) first assessment based
on the inscribed and circumscribed circles of the element; (left) if necessary, further comparison
of the signed distance of element corners.

of the element corner nodes to the trimming curve (Fig. 1.2.4(b)). Finally, for each cut
element, we compute the intersections of the trimming curve with the grid.

On the other hand, Schmidt’s algorithm [14] first denotes all non-zero knot spans as
interior elements, then it computes the intersections with the grid and orders them in a
non-decreasing way with respect to ũ+. Then, for each cut element it assigns the right
type and detect exterior ones based on their position relative to the cut. The starting
point of this procedure is described in Fig. 1.2.5.

Both algorithms require an efficient method to identify the intersections of the
parameter grid with the trimming curve, together with the corresponding parametric
values ũ+; in order to do this we can use the Bézier clipping technique, which has
been introduced by Sederberg and Nishita [9]. Let us suppose we want to identify the
intersections between the curve and the ray l, defined as

ax+ by + c = 0 with a2 + b2 = 1. (1.2.7)

Then we can compute the distance between a point on the curve and the ray as

d(u) =
p∑
i=0

diBi,p with di = axi + byi + c, (1.2.8)

where di are the distances of the control points ci of the Bézier curve to the ray and
Bi,p are Bernstein polynomials of degree p. This means that equation (1.2.8) can be
seen as a non-parametric Bézier curve C̃(u, d(u)), with di related to the corresponding
Greville abscissae ui = i

p
; this relationship can be seen in Fig. 1.2.6. If we compute the

roots of C̃(u, d(u)) we obtain the intersections of C(u) and l. Exploiting the convex
hull property of Bézier curves we can select which part of the domain contains the

1.2. Trimming 13

Figure 1.2.5. Starting point for Schmidt’s [14] edge detection procedure [14]. White knot
spans are not classified yet. Circles are external nodes and crosses indicate intersections with
the grid. The arrow indicate the direction of the trimming curve.

Figure 1.2.6. Bézier clipping: (a) Intersection of C(u) with a ray and (b) the corresponding
non-parametric curve used to determine the interval [umin, umax] which contains the intersection
with the ray. Image taken from article [4].

14 Isogeometric Analysis on trimmed geometries

Figure 1.3.1. Distribution of quadrature points over a regular patch. Image taken from
article [4].

intersection, erase the other ones and repeat the procedure until a certain tolerance is
reached. In particular, if we consider Fig. 1.2.6, the domain is split in three parts by
the line that joins the first and the last point of the curve, but only [umin, umax] contains
the intersection. The curve in this region is extracted and the procedure is repeated.

1.3 Integration
In this section we will present several strategies for integration. Gauss-Legendre quadra-
ture formulae [40] are the most common ones and consist in replacing the integral by
a weighted sum of function evaluations at quadrature nodes. Usually, this formula is
performed on the reference element Q̃ = [−1, 1]2. This means that we need to deter-
mine the point for function evaluation by using a transformation G(ξ, η) : IR2 7→ IR2,
from the reference element to the parametric one Q̂, and the geometrical mapping
F (u, v) : IR2 7→ IR3, i.e. yg = F (ug, vg) = F (G(ξg, ηg)) from the parametric to the
physical, as in Fig. 1.3.1. Then the formula to compute the integral is given by

IQ̂ =
∫
Q̂

f(x)dΩQ̃ ≈
n∑
g=1

f(yg)Gr(ug, vg)JQ̃(ξg, ηg)wg. (1.3.1)

where Gr(u, v) and JQ̃ (ξ, η) keep into account the transformation from the reference
element to the current one and they are defined as

Gr(u, v) =
√

det (JT
F (u, v)JF (u, v)), (1.3.2)

where JF is the Jacobian matrix of the geometrical mapping and

JQ̃ (ξg, ηg) = det (J (ξg, ηg)) (1.3.3)

is the Jacobian determinant of G and it is evaluated with respect to the reference
coordinates ξg and ηg of the integration point yg. In case of regular elements the
definition of G is straightforward, but cut elements are more complex and they require
special attention. Numerical integration on cut elements may be performed in several

1.3. Integration 15

Figure 1.3.2. Trimming curve approximated by its control polygon, in order to create the
polytope. Circles indicate the control points.

ways because of different reconstructions of the trimming curve. In the next sections we
will present different methods to perform this reconstruction and thus the integration.
We will restrict our presentation to the 2D case, but it is relevant to remark that in 3D
the computations we are going to describe are much more complicated (see [30]).

1.3.1 Tailored Integration
The first scheme we are going to show is called tailored integration [15, 16, 17] and the
trimming curve is approximated by its control polygon, in order to represent Q̂ by a
polytope ρ̂ as shown in Fig. 1.3.2. Using Lasserre’s theorem [18] we can transform the
integrals over the polytope Q̂ in integrals over its edges, but Ωρ̂ must be convex. If this
is not the case we need to subdivide it in a combinations of convex regions. The line
integrals on the right hand side provide reference solutions

m∑
i=1

fj(ui, vi)wi =
∫

Ωρ̂
fj(u, v)dΩρ̂, j = 1, . . . , n, (1.3.4)

that are used to compute a suitable quadrature rule for all functions fj of the desired
function space. The integral in (1.3.4) is first computed using a large number of
integration points yi = (ui, vi), which is gradually reduced such that the error in (1.3.4)
remains below a certain tolerance. Of course, the goal is to minimize the number of
integration points. This method is efficient because all the cutting patterns are treated
using the same technique, but it involves a very accurate preprocessing phase due to the
fact that every cut element must be treated individually. Moreover, an approximation
error is introduced when the cut curve is replaced by its control polygon, even if it can
be reduced thanks to the property that the control polygon converges to the curve itself.

1.3.2 Adaptive Subdivision
Adaptive subdivision is often used combined with the finite cell method [19, 20, 21, 22].
The idea is to construct quadtrees in 2D and octrees in 3D, which means that each cut
element Q̂ in the parametric domain is subdivided into 4 axis-aligned cells Q̂�, which
are recursively refined into other 4 if they are cut by the curve until a maximal depth is

16 Isogeometric Analysis on trimmed geometries

Figure 1.3.3. Adaptive subdivision, sub-cells indicated with dotted lines : (a) conventional
approach, with black points in the valid domain and green points in the exterior one, and (b)
reduced approach, with orange points on the whole domain and black points in the valid one.
Image taken from article [4].

reached, as shown in Fig. 1.3.3(a). Then, if we identify with Ic the integral over the
original domain, we obtain

Ic =
I∑
i=1

Iv
Q̂�
i

(αv) +
J∑
j=1

I -
Q̂�
j

(α-) , (1.3.5)

where Iv and I - are the integrals over the valid domain AV and the complementary
exterior domain A−, respectively. Integration points in the valid domain are multiplied
by αv = 1, whereas points in the exterior are multiplied by a factor that is almost zero,
e.g. α- = 10−4, as suggested in [21]. A reduced approach is shown in Fig. 1.3.3(b) and
it can be written as follow

Ic =
I∑
i=1

Iv
Q̂�
i

(αv − α-) + I -
Q̂

(α-) , (1.3.6)

where I -
Q̂

(α-) represents the integral over the whole cut element, ignoring the cutting
curve. The integration over the valid domain is computed as before, but it has a different
weighting factor, i.e. (αv − α-) . As in the previous approach, every cutting pattern can
be addressed with a single algorithm and it is very easy to be implemented also in higher
dimensions. Again, an approximation error is introduced, but this time the sub-cells do
not necessarily converge to the curve.

1.3.3 Reconstruction of the Trimming Curve with Bézier
functions

In this section we are going to show how to use B-splines to represent the trimming
curve and place quadrature points in order to create suitable integration formulae.

First of all, for each cut element, we need to find a map F that transforms the
parametric domain Q̂ into the physical element Q. In principle, the cutting curve on Q̂

1.4. Conclusions 17

could be any kind of function, so we decide to approximate it with a B-spline of order
p ≥ 1 (in our numerical results we will consider p = 3); the analysis of the optimality of
this choice can be found in [34].

The process of reconstruction is very laborious. Indeed when the physical domain
Ω is cut, the trimming curve is sampled with a large number of points that are joined
by segments in order to create a broken line. Then each cut element Q is transformed
into Q̂ and all the points of the broken line in that element are mapped as well. At this
point a parameterization of the line is created and the points that correspond to the
parameterization variable ũ+ = {0, 1/3, 2/3, 1} are found on Q̂. Having the coordinates
of four points, we can find the lagrangian polynomial of degree 3 that interpolates them.
In 3D, finding appropriate interpolation points is far more complicated and implies
the creation of a grid with Gmsh [36] and Open CASCADE [33]. We will not show
the details on the reconstruction in three dimensions but we refer the reader to [30].
Then with a change of basis we obtain the control points of the corresponding Bézier
representation.

After that, we look for a map G to transform the reference element Q̃ = [0, 1]× [0, 1]
into the parametric one. This last procedure can be directly applied to elements of type
3 and 4, as in Fig. 1.3.4. Type 5 and 6 elements are divided into elements of type 3 and
4, as in Fig. 1.3.5.

The resulting map from the reference to the physical domain is

X = F (G(ξ, η)). (1.3.7)

Essentially we place into the reference element suitable quadrature points, i.e. we use the
Gauss Legendre rule, and then we pull them back into the parametric domain through F .
Using the map G we can transform integrals from the physical domain to the parametric
as: ∫

Q

ξ =
∫
Q̂

ξ ◦G−1 (1.3.8)

At this point we can apply the integration formula with the transformed quadrature
points and weights.

1.4 Conclusions
As it has been shown in previous sections the process to compute integrals over trimmed
surfaces requires many geometrical manipulations, that are sometimes rather unstable.
First of all, we need to identify trimmed elements, then we compute a re-parameterization
of cut Bézier in order to build suitable integration formulae. In the end, we need to pull
back quadrature points from the reference element to the parametric one. In 3D this is
even more complicated, as pointed out in [34], and the problem still has open questions.
In particular, computer-aided design (CAD) geometric descriptions represent only the
boundary and not the interior and they allow for boolean operations, such as union or
subtraction, among spline surfaces and primitives. This means that it is not easy to
derive a valid mesh and so the conversion to a finite element (FE) domain remains an
open problem. Thus a new method has been recently introduced by Elber et al. [29]

18 Isogeometric Analysis on trimmed geometries

Figure 1.3.4. For elements of types 3 and 4 we can find a transformation G to map the
quadrature points from the reference element to the one in the parametric space. Then, we look
for a transformation F to pass from the parametric to the physical space. In the parametric
domain the cutting curve is approximated with a Bézier curve of degree p.

Figure 1.3.5. On the left we have an element of type 6. It is divided into two elements of
type 3 and one element of type 4. On the right we have an element of type 5 which is divided
into two elements of type 4. In this way we can find for each new element the transformation
G from the reference element.

1.4. Conclusions 19

and it allows to see geometries as volumetric representations, which means they are
described through the geometric representation of the volume they occupy. For further
details we refer the reader to [34].

In the following we propose an approach to find a way to reduce the geometrical
manipulations required to compute those integrals. A promising idea is to use the new
techniques introduced by machine learning. In particular we decide to represent cut
elements through images. Every pixel will have value +1 if it contains the cutting curve
or the visible boundary. The process to create these images is simple and straightforward
even in 3D and it could simplify the computations.

20 Isogeometric Analysis on trimmed geometries

Chapter 2

Neural Networks

In this chapter we introduce the main tools from the huge and fast increasing field of
neural network (NN) that we are going to use in the design of our NN based integration
rules on trimmed Bézier elements. In particular, we will present Machine Learning (ML)
and the tasks for which it is used in Section 2.1. Then we will provide an overview on
Feed Forward Neural Networks in Section 2.2 and on Convolutional Neural Networks in
Section 2.3.

2.1 Machine Learning and Neural Networks
Machine learning [24] is the instrument we use to find inherent rules or dependencies
from a large amount of data, not intuitively or by expert’s insight but automatically.
The aim is to create a model that can be used for different tasks. The most common
ones are:

• Classification: given an input, the model must be able to recognize to which of
k categories it belongs to. The ways to achieve this task are several. For instance,
the model could train a function f : IRn 7→ {1, . . . , k} and the output y = f(x)
for a generic input vector x is a number that identifies the correct category. An
alternative could be to have an output that represents the probability a specific
input belongs to each of the k classes. An example of the use of the classification
task is object recognition, where the input is an image, for instance the MNIST
Database of handwritten digits [25], and the algorithm must identify the object
shown in the image itself. This process can be supervised or unsupervised; the
former means the network knows the output and it tries to adjust the weights in
order to make the computed output as close as possible to the desired one, the
latter means the network doesn’t know the correct results we want to obtain and
it is left to itself to find internal rules that can or can not lead to a stable state in
some number of iterations (epochs).

• Regression: in this case the model must be able to predict a value given an input.
More precisely, it has to learn a function f : IRn 7→ IR, which is similar to the
previous case except for the format of the output. A simple example for this task
is linear regression, where our output is given by y = wTx, where x is the input
vector and w ∈ IRn is a set of weights that determine how each feature xi affects

21

22 Neural Networks

the prediction. In particular if wi is positive, then increasing the value of the
corresponding feature means increasing the value of the prediction; on the other
hand a negative weight means that increasing xi makes the prediction decrease. If
the weight is zero then the feature is not meaningful for the predicted value.

There are several aspects that must be taken into account when using machine learning:

• Selection of the appropriate algorithm with correct input (training set and labels,
or teacher signal), output and hyperparameters;

• Cost of the preparation of the data we will use to train the model;

• Computational cost to train the model and acquire appropriate rules;

• Computational cost to apply those rules for classification or regression on new
data;

• Accuracy of the classification or the regression for unseen data.

If we consider a generic dataset, it is usually split into two parts. The portion used
to train the model is called train set and it is used to verify it is not underfitting, the
one used to assess the performance of the model on unknown data is called test set and
it is used to verify it is not overfitting. Underfitting occurs when the model is not able
to obtain a sufficient low error on the training set. Overfitting is "the production of an
analysis that corresponds too closely or exactly to a particular set of data, and may
therefore fail to fit additional data or predict future observations reliably" [23]. This
means that is performs very well on the training set, but it does not for unseen data.
An example of underfitting and overfitting can be seen in Fig. 2.1.1.

Dividing the dataset into two portions can be problematic when it is too small, so
we can use the so called k-fold cross validation. This procedure divides the dataset into
k subsets of equal size and uses k − 1 subsets to train the model and the remaining one
to test it. Then it iterates this process by choosing another subset as testing set until
all subsets are used as test once.

If we want to assess hyperparameters and choose the ones that give the best perfor-
mance we can use a validation set, which means that we train our model with different
hyperparameters, we assess the performance of each model created on the validation
set, we choose the ones with the best accuracy and with that values we train again our
model. The evaluation for unseen data is always done on the test set.

2.2 Feed Forward Neural Networks
Artificial neural networks (ANNs) [24] are networks of simple processing elements,
operating on their local data and communicating with other elements. These elements
are called ’neurons’ because the way in which the networks works reminds of the structure
of real brain, in which neurons receive signals that are processed and send output signals
to other units. The connections between neurons are marked by real numbers, called
weight coefficients; the higher the weight is the more important the connection between
the two neurons is considered.

2.2. Feed Forward Neural Networks 23

OverfittingAppropriateUnderfitting

Figure 2.1.1. (Left) The model is underfitting the data, indeed it cannot capture its curvature.
(Center) A quadratic function fit to the data generalizes well to unseen points. (Right) A
polynomial of high degree fit to the data suffers from overfitting. Indeed, even if it passes
exactly through all the training points, it has a deep valley between two points that does not
appear to describe the underlying function.

In principle, a neural network (NN) has the power of an universal approximator, i.e.
it can realize an arbitrary mapping of one vector space onto another vector space. The
process of ’capturing’ the unknown relationships between data is called training of neural
networks and the aim of the model is to predict in the best possible way unseen data.
An example of a feed-forward neural network is shown in Fig. 2.2.1, which consists in
multiple layers with fundamental processing components called units. A neural network
composed by N layers, where N ≥ 1 is called depth, means that is has a first layer,
which is the input layer, N − 1 hidden layers and a last layer which is the output. In
a standard fully-connected feed-forward NN each unit has a weighted connection with
every neuron in the neighboring layers, and there are no connections between units on
the same layer or in non-neighboring ones. The input is processed sequentially from the
input layer to the output via connections between neurons. If nI represents the number
of input units and nO one of output ones, then the neural network can be seen as a map

FNN : IRnI 7→ IRnO . (2.2.1)

The number of hidden layers and the number of units for each layer (width), are
hyperparameters that must be tuned in order to gain the best possible results in terms
of accuracy and complexity of the model. To be more precise, a unit is a multiple-input-
single-output processing device, whose inputs come from the previous layer and whose
output is a single value that has to be passed to the neurons to which it is connected.
Each unit in the hidden or output layer processes an input which is a weighted sum of
the outputs of the previous layer. The output signal is the result of a function, called
activation, for the sum as follow

Op
j = f(Up

j) = f

(
np−1∑
i=1

wp−1
i,j Ȯ

p−1
i + θpj

)
, (2.2.2)

24 Neural Networks

Figure 2.2.1. Feed forward neural network with N − 1 hidden layers.

Figure 2.2.2. Schematic diagram of a unit. At each layer every unit sends an output Op
j to

all the units of the following layer, after having processed multiple data given by the units in
the precedent layer.

where Op−1
i and wp−1

i,j are respectively the output and the connection weight of the ith
unit of the (p− 1)th layer, θpj , U

p
j and Op

j are respectively the bias, the input and the
output of the jth unit in the pth layer, f is the activation function and np−1 is the
number of units in the (p−1)th layer. A schematic diagram of how a unit works is shown
in Fig. 2.2.2. In general, a non-linear, non decreasing function is used as activation; the
most common ones are the logistic sigmoid, the hyperbolic tangent and the rectified
linear (ReLU) [24].

The sigmoid function is defined as

f(z) = σ(z) = 1
1 + exp(−z) , (2.2.3)

2.2. Feed Forward Neural Networks 25

whereas the hyperbolic tangent is

f(z) = tanh(z), (2.2.4)

but the two functions are linked by the relation

tanh(z) = 2σ(2z)− 1. (2.2.5)

They saturate to a high value when z is very positive, to a low value when it’s very
negative and they are only strongly sensitive to their input when it is near 0. This can
make gradient-based learning very difficult and it is why they are usually not used in
hidden layers. On the other hand, they are applied on the output, when the expected
result is bounded.

The ReLU function is defined as

f(z) = max{0, z}. (2.2.6)

Units with ReLU as activation function are very easy to optimize because they are very
similar to linear ones, the only difference is that they are zero if the input variable is
negative. The first derivative remains 1 when the unit is active, whereas the second
derivative is 0 almost everywhere. This means that the gradient direction is very useful
for learning.

A pair of the input data and the corresponding output data, or the teacher signal,
is called a training pattern, where the aim of the training is to find the rules implicitly
inherent in the large amount of training patterns. For the training algorithm the mean
square error (MSE) is usually adopted. Which means that the weights are chosen in
such a way that they minimize

MSEtrain = 1
n

n∑
i=1

(
ŷ(train) − y(train)

)2

i
, (2.2.7)

where y(train) are the value predicted by the model and ŷ(train) are the teacher signals.
One way of measuring the performance of the model is by checking the MSEtest, which is
computed using the y(test) and ŷ(test). Usually, the error defined in Eq. (2.2.7) gradually
decreases after every iteration (epoch). Indeed, if not initialized, the model starts its
training with random weights and it improves them after every iteration relying on
optimizers to reach a minimum.

The function we want to minimize is called loss and the optimizers used to find the
minimum can be several. In our numerical examples we will use Stochastic Gradient
Descend (SGD) [37] or Adam [38]. If we consider sum structured objective functions ,
such as

f(x,w) = 1
n

n∑
i=1

fi(x,w), (2.2.8)

where fi is the cost function of the i−th datapoint and a learning rate γ, then an iteration
of SGD is defined as in Algorithm 2.1. On the other hand, Adam algorithm adopts
different learning rates using estimates of first and second moments of the gradient. In
particular β1 and β2 control the decay of the exponential moving average of the gradient
and the squared gradient. This scheme is shown in Algorithm 2.2.

There is an universal approximation theorem [24] for feed-forward networks with
hidden layers which states the following

26 Neural Networks

Algorithm 2.1 SGD learning algorithm; the procedure ends when all training patterns
yield an error below a defined threshold.
Input: initial weights w0, cost function f(x,w), initial learning rate γ, tolerance ε and

maximum number of epochs T
Output: final weights wopt

1: t← 0
2: while t < T and f(x,wt) < ε do
3: sample i ∈ [n] uniformly at random
4: wt+1 ← wt − γ · ∇wfi(x,wt)
5: t← t+ 1
6: end while
7: wopt = wt

Algorithm 2.2 Adam learning algorithm; the procedure ends when all training patterns
yield an error below a defined threshold. Here g2

t indicates the elementwise square gt�gt.
Good choices for the parameters are β1 = 0.9, β2 = 0.999 and α = 0.001.
Input: initial weights w0, cost function f(x,w), initial learning rate γ, exponential

decay rates for the moment estimates β1, β2 ∈ [0, 1), tolerance ε and
maximum number of epochs T

Output: final weights wopt

1: t← 0
2: m0 ← 0 (Initialize 1st moment vector)
3: v0 ← 0 (Initialize 2nd moment vector)
4: while t < T and
5: t← t+ 1 f(x,wt) < ε do
6: gt ← ∇wf(x,wt−1) (Get gradients w.r.t. stochastic objective at timestep t)
7: mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)
8: vt ← β2 · vt−1 + (1− β2) · g2

t (Update biased second raw moment estimate)
9: m̂t ←mt/(1− βt1) (Compute bias-corrected first moment estimate)
10: v̂t ← vt/(1− βt2) (Compute bias-corrected second raw moment estimate)
11: wt ← wt−1 − γ ·mt/(

√
v̂t + 10−8) (Update parameters)

12: end while
13: wopt = wt

Theorem 2.2.1. of the fuction we want to minimize A linear output layer composed by
at least one hidden layer with any "squashing" activation function, such as the logistic
sigmoid, can approximate any Borel measurable function from one finite-dimensional
space to another with any desired zero amount of error, provided that the network is
given enough hidden units.

It is, also, proved that a feed-forward neural network of more than three layers
can simulate any non-linear continuous function with any precision desired [26, 27].
According to LeCun et al. [28], training a neural network with more than three hidden
layers is called deep learning. Usually, if we want to approximate complex non linear
problems in a better way, we can try to add more hidden layers or units, but of course

2.3. Convolutional Neural Networks 27

in this way it is more difficult to train the model and it can require more time to
gain a stable state. Moreover, in the creation of the model, the computational time
to predict an output must be taken into account, and we have to remember that it is
O(depth × (width)2). So we really need to be careful when we choose the number of
units for each layer because it could make the computational time explode. Nonetheless,
it is possible to reduce the evaluation time by checking the values of the weights after
every epoch and strongly impose to the ones below a certain tolerance to be equal to 0.
This reduces the number of connections and, consequently, the time for prediction.

However we need to keep in mind that machine learning promises to find rules that
are probably correct about most members of the set they deal with; this means that it
gives probabilistic and not certain rules. Unfortunately, there exists the so called no
free lunch theorem [24], which states that:

Theorem 2.2.2. Averaged over all possible data-generating distributions, every classifi-
cation algorithm has the same error rate when classifying previously observed points.

This means it does not exist a machine learning algorithm that is the best for all the
possible cases. Of course, this is true only if we average over all possible data-generating
distributions. If we make assumptions about the kinds of probability distributions we
have in real world applications, then we can design networks that work well on these
distributions. The goal of machine learning is not to find an universal learning algorithm,
but one that performs well on our specific data.

2.3 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) [24] are particularly useful when we have input
data with a grid-like topology. For instance, images are 2-D grids of pixels with one
channel if they are black and white or three channels if they are colored. These
networks are called convolutional because they perform a mathematical operation called
convolution in at least one of its layers. Formally, if we consider two functions f(·) and
h(·), then the convolution is defined as

s(t) = (f ∗ h)(t) =
∫
f(x)h(t− x)dx. (2.3.1)

In the context of neural networks convolution is a discrete operation where f is the
input I and h is the kernel K, that is usually a multidimensional array of parameters
that are adapted by the learning algorithm. We can express the operation in 2.3.1 in a
discrete way as

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n); (2.3.2)

this is the same as doing

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.3.3)

because it is commutative.

28 Neural Networks

Figure 2.3.1. Example of how a convolutional neural network works with an image composed
by pixels and a kernel of size 2× 2.

Convolution is particularly useful when we deal with edge detection or sparse input.
Indeed, traditional neural networks use matrix multiplication, ending up with a fully
connected model, whereas convolutional NNs have sparse interaction, also called sparse
connectivity or sparse weights, which is obtained using a kernel that is far smaller than
the input. An example is shown in Fig. 2.3.1. This sparse connectivity requires to store
fewer parameters and so it is less expensive in terms of memory and statistical efficiency.
The improvement is quite significant even in the evaluation time; indeed using a fully
connected model with nI inputs and nO outputs we have O(nI × nO) runtime. Whereas
if we have sparse connectivity with k as maximum number of connections, then we
end up with O(k × nO) runtime, where k is usually taken several orders of magnitude
smaller than nI . Channels are used to extract the main features present in the input
and the network is able to reach a local minimum in fewer iterations. Usually after the
convolution a pooling is performed; this means that a pooling function is used to replace
the output of a cell with a combination of its neighborhood. The most common ones are
max pooling, average pooling, the L2 norm of a rectangular neighborhood or a weighted
average based on the distance from the central pixel. These operations are useful to
make the representation invariant with respect to small translation of the input.

2.4 Conclusions
Machine Learning and Neural Networks have been introduced in many fields in the
last few years and the possibilities they offer are huge. The network is trained by a

2.4. Conclusions 29

proper input that is able to span many possible situations. The aim of the model is
to generalize in the best possible way unseen data. Of course, the most delicate part
is the construction of the training dataset, which is still an art. Even the choice of
hyperparameters can affect the results in a significant way, so it is possible that the
training phase requires a lot of time. The advantage is that it is done once and for all
and the evaluation should be much faster.

Moreover, CNNs will be very useful in the construction of networks to create integra-
tion rules on trimmed Bézier elements. Indeed, we will decide to avoid to reconstruct
the trimming curve and pass it to the model as an image. Thus, we will divide our
domain in pixels and assign values +1 to the ones that represent the cutting curve and
the visible boundary. Performing convolution on top of the network let us extract the
main features of the curve, i.e. its slopes, and this allows the training to reach a stable
state faster.

30 Neural Networks

Chapter 3

Design of NN to compute matrix
entries

In this section we are going to show the numerical results we obtained when integrating
several functions using neural networks. The aim is to obtain a tool to compute integrals
on cut domains. We have used the mean squared error (mse) as metric to minimize
the error between the output and the teacher signal (loss function) and Adam [38] as
optimization technique, unless otherwise specified.

As this is an almost unexplored field of research, we start to design NN algorithms
for simple problems and, progressively, we face more complex situations. In particular,
in Section 3.1 we will construct a model to integrate a very simple function in 1D, then
in Section 3.2 we will try to predict mass and stiffness matrix entries using as input the
control points of the trimming curve. Finally, in Section 3.3 we will predict the same
matrix entries using a new approach: we will pass to the model images that show the
visible boundary of cut elements and we will exploit CNNs to reach convergence faster.

3.1 The simplest integration problem
First of all we created a model to compute numerically∫ x1

x0

xpdx, (3.1.1)

whose exact integral is ∫ x1

x0

xpdx = xp+1
1 − xp+1

0
p+ 1 . (3.1.2)

We took p ∈ {1, . . . , 7}, x0 ∈ [0, 0.25] and x1 ∈ [0.75, 1] to avoid machine errors in the
exact computation of (3.1.2). Our training set was composed by 10000 sets of {x0, x1, p}
randomly chosen and our test by 100 points randomly chosen, as well. As labels, we
computed the exact value of the integral (3.1.2).

In order to optimize parameters we have created several models with different numbers
of hidden layers (depth) and units for each layer (width), specifically we considered
depth = {2, . . . , 6} and width = {50, 100, 150, 200, 250, 300}. As activation we have
imposed the ReLU function for the hidden layers and the sigmoid for the output; indeed

31

32 Design of NN matrix entry computation

when x ∈ [0, 1] then (3.1.1) belongs to the same interval. We tested those models on
our test set and we chose the one with not too high values for depth and width, but
able to predict integrals with sufficient accuracy. In Tab. 3.1.1 we report the results
we obtained. We can notice that the test error is often a bit smaller than the training
one, this is probably due to the fact that the set of testing points is far smaller than the
one used for training; indeed our training set is very large and it is able to cover many
cases. Moreover, increasing the complexity of the model does not automatically lead
to better results in terms of accuracy; usually that is because if the model is complex,
it is difficult to train. However this is not our case, because all the models we created
reached convergence in 3000 epochs, but as we will see later, there are oscillations that
may influence the final result.

Besides we want to avoid too complex models because of the computational time for
prediction. Indeed it is linearly proportional to the depth but quadratically to the width,
so if the number of units for each hidden layer is very large, then our computational time
will explode. In this case a good compromise between complexity and accuracy is given
by the model composed by 3 layers and 100 units for each layer. After having chosen our
hyperparameters, we have taken the 20% of the training dataset as validation to check
there is no overfitting and we have retrained the model for 3000 iterations (epochs). As
mentioned above, we can see in Fig. 3.1.1 that the MSE and MAE are oscillating; this
is probably due to the choice of Adam as optimizer. Indeed it is really fast to approach
a minimum, but then the exponential decay rates make the error oscillate. To be sure
we have reached a (local) minimum, we have taken the weights coming from this model
to initialize a new one with the same hyperparameters as before but that exploits SGD
as optimizer and we have run it for 10000 epochs. As shown in Fig. 3.1.2, the error is
not oscillating anymore and it has reached a stable state. Results are summarized in
Tab. 3.1.2.

These results are not as good as we would have liked, in particular because this is a
very simple case. Indeed, this is to be expected because, when we perform regression, it
is really hard to obtain a mean squared error which is below 1e− 09. As a matter of
fact, due to the strong non convexity of the minimization problem, we often attain local
minima. Nonetheless, it could be relevant to mention that we actually tried to create a
model to integrate

∫ x1

x0

1 dx. (3.1.3)

The related MSE was 1e− 16, which corresponds to a mean absolute error of 1e− 08,
but we definitely cannot do better than this because we are minimizing the mse and we
have already reached machine precision.

Moreover, as the accuracy is limited by the minimization process only, we can expect
it will not deteriorate in more complex situations.

3.1. The simplest integration problem 33

Depth Width MSE train MSE test MAE test
2 50 3.977e− 07 3.042e− 07 3.780e− 04

100 2.705e− 07 1.455e− 06 1.080e− 03
150 5.715e− 08 3.453e− 08 1.414e− 04
200 4.691e− 08 5.048e− 08 1.712e− 04
250 1.215e− 07 4.443e− 08 1.398e− 04
300 9.643e− 08 2.708e− 08 1.208e− 04

3 50 2.763e− 07 7.457e− 08 2.304e− 04
100 3.132e− 08 1.244e− 08 8.291e− 05
150 3.648e− 08 2.668e− 08 1.290e− 04
200 5.970e− 09 4.275e− 09 5.051e− 05
250 9.685e− 07 6.379e− 08 2.133e− 04
300 2.255e− 08 1.480e− 08 8.657e− 05

4 50 5.426e− 08 3.413e− 07 5.411e− 04
100 1.609e− 08 1.117e− 08 7.988e− 05
150 2.296e− 08 1.695e− 08 1.053e− 04
200 8.221e− 08 1.703e− 08 1.036e− 04
250 1.173e− 06 5.117e− 08 1.782e− 04
300 2.367e− 06 7.135e− 07 8.061e− 05

5 50 3.599e− 06 3.435e− 07 4.658e− 04
100 8.574e− 08 8.466e− 08 2.474e− 04
150 1.211e− 07 3.546e− 08 1.636e− 04
200 5.132e− 08 4.470e− 08 1.861e− 04
250 1.785e− 08 1.467e− 08 9.312e− 05
300 1.004e− 06 1.311e− 06 1.043e− 03

6 50 4.533e− 08 1.056e− 08 7.507e− 05
100 7.678e− 08 2.091e− 08 4.226e− 04
150 1.500e− 08 1.176e− 08 7.051e− 05
200 5.353e− 08 3.280e− 08 1.466e− 04
250 5.159e− 08 1.830e− 08 1.125e− 04
300 7.288e− 07 2.531e− 078 3.948e− 04

Table 3.1.1. Results in terms of mean squared error (MSE) and mean absolute error (MAE)
for training and test with different numbers of layers (depth) and units per layers (width) to
create a model to compute

∫ x1
x0

xpdx.

MSE train MSE test MAE train MAE test
Adam 3.468e− 07 3.549e− 08 3.972e− 04 1.647e− 04
SGD 5.900e− 09 6.078e− 09 5.576e− 05 5.561e− 05

Table 3.1.2. Results in terms of mean square error (MSE) and mean absolute error (MAE)
for training and test of a model to compute

∫ x1
x0

xpdx with depth= 3 and width= 100. The
first one uses Adam as optimizer. The second one has been initialized with the weights coming
from the first model and uses Stochastic Gradient Descend (SGD) as optimizer.

34 Design of NN matrix entry computation

0 500 1000 1500 2000 2500 3000
Epochs

10−8

10−7

10−6

10−5

10−4

10−3

M
ea

n
Sq

ua
re
d
Er
ro
r

Mean Squared Error vs Epochs
Train
Validation

0 500 1000 1500 2000 2500 3000
Epochs

10−4

10−3

10−2

M
ea

n
Ab

so
lu
te
 E
rro

r

Mean Absolute Error vs Epochs
Train
Validation

Figure 3.1.1. Semilogarithmic plot of (top) mean squared error (MSE) and (bottom) mean
absolute error (MAE) of the training and the validation set of a model to compute

∫ x1
x0

xpdx
with depth= 3, width= 100 and Adam optimizer. The training run for 3000 iterations (epochs)

3.1. The simplest integration problem 35

0 2000 4000 6000 8000 10000
Epochs

10−8

6×10−9

2×10−8
M
ea

n
Sq

ua
re
d
Er
ro
r

Mean Squared Error vs Epochs
Train
Validation

0 2000 4000 6000 8000 10000
Epochs

10−4

6×10−5

7×10−5

8×10−5

9×10−5

M
ea
n
Ab

so
lu
te
 E
rro

r

Mean Absolute Error vs Epochs
Train
Validation

Figure 3.1.2. Semilogarithmic plot of (top) mean squared error (MSE) and (bottom) mean
absolute error (MAE) of the training and the validation set of a model to compute

∫ x1
x0

xpdx
with depth= 3, width= 100 and Stochastic Gradient Descend (SGD) optimizer and weights
initialized using the previous model with Adam optimizer. The training run for 10000 iterations
(epochs)

36 Design of NN matrix entry computation

3.2 Model to compute Mass and Stiffness Matrix
Entries with Control Points

Let us consider the following Poisson equation in a 2D domain

{
−∆u = f in Ω
∇u · n = 0 on ∂Ω,

(3.2.1)

where Ω is the square (0, 1)× (0, 1) that has been cut. Moreover, we require
∫

Ω f = 0 as
a compatibility condition. Equation (3.2.1) can be rewritten in the weak form as

Find u ∈ V :
∫

Ω
∇u · ∇v =

∫
Ω
fv ∀v ∈ V, (3.2.2)

where V = H1
0 (Ω) \ IR. In order to solve the problem we construct a suitable mesh Th(Ω)

of size h, characterized by a collection of elements Q ∈ Th(Ω). The numerical solution
uh ∈ H1

0 (Ω) is a Bézier function when we restrict it to a single element, i.e.

uh(x, y) =
3∑
i=0

3∑
j=0

ci,jB{i,j},p(x, y), (3.2.3)

where B{i,j},p(x, y) =
(
p
i

)
xi(1−x)p−i

(
p
j

)
yj(1−y)p−j , with p = 3 in our numerical examples.

The same can be done with vh and fh. This means they only differ in the control points
ci,j and that if we are able to create a model to predict the mass and the stiffness
matrices, then we can solve 3.2.1. Thus the aim of this experiment is to compute the
following integrals

∫
Ω
B{i,j},p(x, y)B{k,l},p(x, y) dx dy i, j, k, l = 0, . . . , p (3.2.4)

and ∫
Ω
∇B{i,j},p(x, y) · ∇B{k,l},p(x, y) dx dy i, j, k, l = 0, . . . , p, (3.2.5)

which are the components of the mass (M) and the stiffness (S) matrix, respectively. M
and S ∈ IR16×16, so, in principle, we should predict 256 values, but they are symmetric
and this means we only need 136 values to create them. Actually, using 1.1.7 and 1.1.9,
integral 3.2.5 can be rewritten as follow

3.2. Model to compute Mass and Stiffness Matrix Entries with Control Points 37

∫
Ω

(
B
′

i,p(x)B′k,p(x) +B
′

j,p(y)B′l,p(y)
)
dx dy =∫

Ω
(p2 (Bi−1,p−1(x)−Bi,p−1(x)) (Bk−1,p−1(x)−Bk,p−1(x)) +

p2 (Bj−1,p−1(y)−Bj,p−1(y)) (Bl−1,p−1(y)−Bl,p−1(y))) dx dy =∫
Ω

(
p2
(
p− i+ 1

p
Bi−1,p(x) + i

p
Bi,p(x)− p− i

p
Bi,p(x)− i+ 1

p
Bi+1,p(x)

)
(
p− k + 1

p
Bk−1,p(x) + k

p
Bk,p(x)− p− k

p
Bk,p(x)− k + 1

p
Bk+1,p(x)

)
+

p2
(
p− j + 1

p
Bj−1,p(y) + j

p
Bj,p(y)− p− j

p
Bj,p(y)− j + 1

p
Bj+1,p(y)

)
+(

p− l + 1
p

Bl−1,p(y) + l

p
Bl,p(y)− p− l

p
Bl,p(y)− l + 1

p
Bl+1,p(y)

))
dx dy,

(3.2.6)

with i, j, k, l = 0, . . . , p. This means 3.2.5 can be computed with the same model we will
construct for the mass matrix, because this is a sum of integrals of multiplied Bernstein
polynomials of degree p.

Construction of the dataset based on control points Our very first attempt was
to take 5690 Bézier functions of degree p = 3 that cut the domain from left to right as
seen in Fig. 1.2.2 on the top left. The cut functions were of the form

C(x) =
3∑
i=0

ciBi,p(x), (3.2.7)

and we made sure that each curve had no self-intersections and that was entirely inside
the square [0, 1] × [0, 1]. In order to create these curves we have considered all the
possible combinations of 4 points of type:

{(
0, N1

10

)
,
(1

3 ,
N2
10

)
,
(2

3 ,
N3
10

)
,
(
1, N2

10

)}
, with

N1, N2, N3, N4 = 0, . . . , 10. Then we have constructed the Lagrangian curves of degree 3
able to interpolate our groups of 4 points and we have discarded the ones not entirely
inside the square. In the end, exploiting a change of basis, we have converted the
coefficients of the Lagrangian functions in such a way they were associated to Bézier
ones.

Construction of the model for mass and stiffness matrix entries At this point,
as training set we have used the four control points ci characterizing each cutting curve
and as labels the 136 exact integrals 3.2.4, computed as explained in Subsection 1.3.3,
where Ω is the unitary square cut by the curves 3.2.7. We have created a model composed
by 4 hidden layers with ReLU as activation function and 50 units each and an output
layer with 136 units and Sigmoid as activation. Indeed Bézier functions in the square
(0, 1) × (0, 1) have values between 0 and 1 and so when we multiply two of them the
result still remains in that range. Then we have trained the model for 300000 iterations
(epochs). In order to create the test set we have considered 900 groups of 4 points with
coordinates (0, y1),

(1
3 , y2

)
,
(2

3 , y3
)
and (1, y4) , where y1, y2, y3, y4 were random numbers

38 Design of NN matrix entry computation

0 50000 100000 150000 200000 250000 300000
Epochs

10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

M
ea
n
Sq

ua
re
d
Er
ro
r

Mean Squared Error vs Epochs

0 50000 100000 150000 200000 250000 300000
Epochs

10−4

10−3

10−2

10−1

M
ea

n
Ab

so
lu
te
 E
rro

r

Mean Absolute Error vs Epochs

Figure 3.2.1. Semilogarithmic plot of (top) mean squared error (MSE) and (bottom) mean
absolute error(MAE) of the training of a model to compute the mass matrix matrix of (3.2.2)
with control points. We have set depth= 5 and width= 50 and 300000 iterations (epochs).

MSE train MSE test MAE train MAE test
6.270e− 09 4.4408e− 08 4.258e− 05 5.673e− 05

Table 3.2.1. Results in terms of mean squared error (MSE) and mean absolute error (MAE)
for training and test of a models to compute the mass matrix of (3.2.2) with control points.
We have set depth= 5 and width= 50 and 300000 iterations (epochs).

∈ [0, 1]. As before we have constructed the Lagrangian curves that interpolated these
points and discarded the ones not entirely in the unitary square or self-intersecting
and performed a change of basis to obtain the Bézier coefficients. The behavior of the
training error is in Fig. 3.2.1 and the results are in Tab. 3.2.1. We can notice that they
are comparable to the ones obtained to integrate 3.1.1.

3.3. Model to compute Mass and Stiffness Matrix Entries with Images 39

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Discretization of a cutting
 curve with 128x128 pixels

Figure 3.3.1. Image of 128× 128 pixels that shows the cutting curve in yellow, together with
the visible boundary of the element.

3.3 Model to compute Mass and Stiffness Matrix
Entries with Images

Being encouraged by the previous experiment, we have tried to generalize it. First of all,
we have considered the cutting curves of the the form

C(x, y) =
3∑
i=0

3∑
j=0

ci,jBi,j(x, y), (3.3.1)

which took into account all the situations in Fig. 1.2.2. In particular, for the cases on
the top row in that figure, we have created Lagrangian curves interpolating points such
that:

• the first interpolation point was
(
0, N5

)
where N = 0, . . . , 5;

• the second and the third interpolation points were
(
N1
5 ,

N2
5

)
whereN1, N2 = 0, . . . , 5;

• the last interpolation point was
(
1, N5

)
where N = 0, . . . , 5.

We took all the possible combinations of these four points and discarded the curves not
entirely in [0, 1]× [0, 1] and the self-intersecting ones. We did the same procedure for the
other two cases in Fig. 1.2.2. For the one on bottom left the last interpolation point was(
N
5 , 0
)
where N = 0, . . . , 5, for the case on bottom right the first and the last points had

coordinates
(
N
5 , 0
)
, with N = 0, . . . , 5. Then we have divided our square [0, 1]× [0, 1] in

128× 128 pixels and identified each one with a boolean value. In particular we have set
+1 on cut elements and on the pixels on the visible boundary, in order to show which
part of the domain is the active one, as shown in Fig. 3.3.1. Moreover we have rotated

40 Design of NN matrix entry computation

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.3.2. Given the image on the top left we rotate it by 90, 180 and 270 degrees, we
take the symmetric with respect to x = 0.5 and we consider both the area under the curve and
the one above. The yellow area is the visible one.

each cutting curve by 90, 180 and 270 degrees, considering both the area under the
curve and the one above it and the symmetries with respect to the axes x = 0.5 and
y = 0.5. In total, from each curve, we ended up with 16 images, as in Fig. 3.3.2. With
this rough approximation some of the curves we had created gave us the same image,
so we have reduced our dataset, considering only unique ones. In the end, our training
set was composed by 12633 images of 128× 128 pixels as input and as labels the exact
integrals for the mass matrix, computed as in the previous example.

We have considered the ReLU activation function in the hidden layers and Sigmoid
in the the output layer. Due to the fact we are dealing with images, we have decided to
do convolution on top of our model in order to reach convergence faster, as explained in
Chapter 2 Section 2.3. So we have a first convolutional layer with 10 channels and 3× 3

3.4. The use of NN to compute matrix entries in an IGA code 41

Figure 3.3.3. Model to compute the mass matrix with 2 convolutional layers, 1 average
pooling, 2 hidden layers with width= 50. The training set is composed by images 128× 128
showing the visible boundary.

MSE train MSE test MAE train MAE test
8.174e− 08 1.3898e− 06 1.839e− 04 5.868e− 04

Table 3.3.1. Results in terms of mean squared error and mean absolute error for training
and test of a model to compute the mass matrix of (3.2.2) with images. The training set is
composed by images 128× 128 showing the visible boundary. It has has 2 convolutional layers,
1 average pooling, 2 hidden layers with width= 50, run for 200 iterations (epochs).

mask, then an average pooling, another convolutional layer as before and 2 hidden layers
with 50 units each. The output layer has 136 units and Sigmoid as activation function
and runs for 200 iterations (epochs). The structure of this model is shown in Fig 3.3.3.
The behavior of the training error is in Fig. 3.3.4 and the results are in Tab. 3.3.1.

3.4 The use of NN to compute matrix entries in an
IGA code

The idea to use images to indicate visible areas is definitely useful because it takes a
lot of effort to model cutting curves as Bézier functions, as we have seen in previous
chapters. Using this approximation with pixels we avoid this reconstruction and we
just need to sample our domain, which is very standard. The approximation we have
done is quite rough and if we indicate with h the size of the pixel, i.e. h = 1/128,
we cannot expect, in terms of mean absolute error, anything better than h−2. So our
method is performing rather well, in particular if we consider that this method can be
easily expanded to 3D, where computing integrals on cut domains is still expensive and
requires a lot of geometrical manipulations. Of course the idea to predict 136 values is
quite demanding and the integrals we are computing are not taking into account the

42 Design of NN matrix entry computation

0 25 50 75 100 125 150 175 200
Epochs

10−7

10−6

10−5

10−4

10−3

10−2

M
ea
n
Sq

ua
re
d
Er
ro
r

Mean Squared Error vs Epochs

0 25 50 75 100 125 150 175 200
Epochs

10−4

10−3

10−2

10−1

M
ea

n
Ab

so
lu
te
 E
rro

r

Mean Absolute Error vs Epochs

Figure 3.3.4. Semilogarithmic plot of (top) mean squared error (MSE) and (bottom) mean
absolute error (MAE) of the training of a model to compute the mass matrix matrix of (3.2.2)
with images. The training set is composed by images 128× 128 showing the visible boundary.
The model has 2 convolutional layers, 1 average pooling, 2 hidden layers with width= 50, run
for 200 iterations (epochs).

3.4. The use of NN to compute matrix entries in an IGA code 43

presence of the determinant of a possible transformation of the domain. To be precise,
let us suppose we want to solve (3.2.1) in a generic cut domain Ω. Then given a proper
mesh Th, which is composed both by a collection of trimmed elements Qtrim ∈ T trim

h and
by non trimmed ones Quntr ∈ T untr

h , the weak form for our numerical solution presents a
bilinear form as follow

a(uh, vh) =
∑
Q∈Th

aQ(uh, vh) =
∑
Q∈Th

∫
Q

∇uh · ∇vh =

∑
Qtrim∈T trim

h

∫
Qtrim
∇uh · ∇vh +

∑
Quntr∈T untr

h

∫
Quntr
∇uh · ∇vh

(3.4.1)

where aQ(uh, vh) is the bilinear form restricted to an element Q ∈ Th uh and vh ∈ H1
0 .

Moreover, uh and vh restricted to the single element are Bézier curves. Recalling (3.2.6),
it is enough to have a model to predict the mass matrix. Nonetheless, with the network
we compute its entries in the parametric domain Ω̂ with mesh T̂h, composed by elements
Q̂, i.e.

aQ̂(B̂{i,j},p, B̂{k,l},p) =
∫
Q̂

B̂{i,j},p(x̂) · B̂{i,j},p(x̂) dx̂, (3.4.2)

where B̂{i,j},p denotes a basis function on the parametric element, but what we really
need is

aQ(B{i,j},p, B{k,l},p) =
∫
Q

B{i,j},p(x)B{i,j},p(x) dx

=
∫
Q̂

B{i,j},p(F x̂)B{i,j},p(F x̂)(det F)(x̂) dx̂

=
∫
Q̂

(B{i,j},p ◦ F)(x̂)(B{i,j},p ◦ F)(x̂)(det F)(x̂) dx̂

=
∫
Q̂

B̂{i,j},p(x̂)B̂{i,j},p(x̂)(det F)(x̂) dx̂

(3.4.3)

where F is the transformation from the physical to the parametric domain. This means
that, to be able to use our network, we need the determinant of the transformation
to be either constant element by element or slowly varying in order to have a good
approximation if we compute it in the barycenter:

aQ(B{i,j},p, B{k,l},p) ≈ ãQ̂(B̂{i,j},p, B̂{k,l},p) =∫
Q̂

B̂{i,j},p(x̂, ŷ) · B̂{i,j},p(x̂, ŷ)(detF)(x̂B, ŷB) dx̂dŷ,
(3.4.4)

where (x̂B, ŷB) are the coordinates of the barycenter.
Another idea is to consider the determinant as a Bézier curve. In this case we should

create a model similar to the one of this experiment, by which we can predict the integral∫
Ω
B{i,j},p(x, y)B{k,l},p(x, y)B{m,n},p(x, y) dx dy i, j, k, l,m, n = 0, . . . , p. (3.4.5)

Our methods work rather well for the prediction of the matrix entries, but they have
some limitations. In particular, the assembly of the final matrix, that takes into account

44 Design of NN matrix entry computation

both trimmed and non trimmed elements, is very delicate and we must be careful in
assigning the right value in the correct position. Moreover, when we run a simulation we
must call the network every time we need to create the mass and stiffness matrix. Indeed,
it is not believable to to save all the integrals before running the simulations because it
would consume too much memory. So we need to take care of the computational time
that is required to predict the results. Of course, images are slower to process than the
control points of the curve but using convolutional networks with a small kernel as mask
let us overcome this issue, as pointed out in Chapter 2 Section 2.3.

However, we could save even more time if we were able to compute the integrals
off line. A successful idea, could be to try to predict quadrature points, instead of the
actual values of the integrals; indeed it is definitely less expensive to save them and,
once computed, in principle they can be used to solve any kind of problem. This is why
in the next Chapter we will show the design of a NN to predict quadrature points.

Chapter 4

Design of NN to compute
Quadrature Points

So far, the standard way to compute integrals is by using quadrature rules, as seen in
Chapter 1.1, cf. Section 1.3. Thus a successful idea could be to predict quadrature
points on trimming elements, instead of directly predicting the values of the integrals.
In this way it is far much easier to make our model interact with existing codes to
solve Partial Differential Equations (PDEs), like GeoPDEs [39]. Moreover, once we have
placed the quadrature points, in principle we can solve any kind of problems and we
can even map them for isogeometric ones. Moreover, it is possible to compute them off
line because they do not arise any memory issue, which means that the computational
time to evaluate the model does not play an important role anymore when we run a
simulation. This is why we have focused our efforts in the creation of a model compute
quadrature points on trimmed elements.

4.1 Model to compute Quadrature Points with Im-
ages

For this example, we have considered only cutting curves of types in Fig. 1.2.2. Indeed
we have decided not to perform rotations because we wanted to impose in a strong
way that when we rotate a curve we obtain the same rotated quadrature points. For
this reason we have 2495 curves of which we have considered both the area under the
curve and the one above it, ending up with 4990 images as Fig. 3.3.1. This choice
implies that when we run a simulation we need to identify cutting elements, create the
corresponding images with the visible boundary and then rotate them if they do not
match with the cases considered in the training set. The output contains the quadrature
points as x-coordinates, y-coordinates and the corresponding weights to compute 3.2.4.
In particular, if we use polynomials of degree p = 3 as we did before, we need at least
4 quadrature points in each direction. Indeed Gauss-Legendre [40] with q quadrature
points is able to exactly integrate polynomials of degree at most 2q − 1. When we
compute 3.2.4 if Bi ∈ IPp then BiBk ∈ IP2p, which means

2q − 1 ≥ 2p, (4.1.1)

45

46 Design of NN to compute Quadrature Points

then
q ≥ p+ 1/2. (4.1.2)

If p = 3 we need 4 quadrature points in each direction. In particular the 1/2 order of
precision that remains is used for the determinant of the transformation that will be
evaluated in the same quadrature points. The real issue with this model is that we
don’t know the exact quadrature points and weights, so we cannot minimize the mean
squared error as we did in previous examples. We need to create a specific loss function
which is able to tell us if the error we are committing in computing the integral with
the quadrature rule is large or small. Thus we have assembled our custom loss function
as follow

1
(2p)2

2p∑
i=0

2p∑
j=0

1
m

∑m
q=1

(∫
Ωq x

iyj dx dy −
∑p

k=0 x
i
k,qy

j
k,qwk,q

)
(∫ 1

0
∫ 1

0 x
iyj dx dy

)2 , (4.1.3)

where p is the number of quadrature points and m is the length of the training set, i.e.
the number of images with different cutting curves and visible areas. In this way we are
trying to minimize the error we commit integrating monomials of order up to 2p using
the integration points coming from the model. Indeed the goal is to compute 3.2.4 as
best as we can with BiBk ∈ IP2p. The term on the denominator is used to rescale the
error; indeed, without it, when the area to integrate is very small, high order monomials
become irrelevant in the computation of the error. In the end, as labels, we pass to the
models the exact integrals of the monomials over the cut element, i.e.∫

Ωq
xiyj dx dy, i, j = 0, . . . , 2p. (4.1.4)

4.1.1 NN for Quadrature Points in 1D
First of all we have tested our idea for the 1D case. This means that, taken the interval
[0, 1], we have cut it with 10000 random numbers b ∈ (0, 1). We have computed the
exact integrals as follow ∫ b

0
xi dx = bi+1

i+ 1 , i = 0, . . . , p, (4.1.5)

with p = 1. The aim is to predict two quadrature points, so our output will have 4 units,
2 for the points and 2 for the corresponding weights. They belong to the interval 0, 1 so
we have selected Sigmoid as activation. The model had 6 hidden layers, with 30 units
each and ReLU as activation function and it ran for 3000 iterations (epochs). In the
end we can conclude the model performs very well, indeed let us recall that 1D Gauss
quadrature points in the interval [−1, 1] with q = 2 are x1 = − 1√

3 and x2 = 1√
3 and that

the formula to determine them in a generic interval [a, b] is

x̃ = b− a
2 x+ b+ a

2 . (4.1.6)

We have tested our model with different values of b and a = 0 and we have noticed that
we recover Gauss quadrature points. The results are reported in Tab. 4.1.1.

4.1. Model to compute Quadrature Points with Images 47

b x1 x2
0.5 0.1045 0.3936
0.75 0.1585 0.5917
1 0.2111 0.7890

Table 4.1.1. Quadrature points to integrate (4.1.5) coming from a model with 6 hidden layers,
with 30 units each, run for 5000 iterations (epochs).

4.1.2 NN for Quadrature Points in Trimmed Domains
In order to compute (4.1.4), for each input image we have created a copy, which did not
contain only binary numbers. Indeed we have assigned 0 to outside elements and +1
to inside ones, whereas to cut elements we have computed a greyscale, which indicated
how large was the visible area for that element. Of course generating this kind of data
has been demanding and we had computed this values of greyscale as explained in
Subsection 1.3.3 for each element that contained the cutting curve. The advantage is
that the computation of the loss function is more accurate but we actually pass to the
model only the boundary of the visible area, so when we make predictions we do not
need the greyscale images anymore. Basically (4.1.4) becomes

∫
Ωq
xiyj dx dy =

n2
p∑

s=0
xisy

j
sgs, i = 0, . . . , p, (4.1.7)

where np is the number of pixels we have chosen, i.e. 128, xs and ys represent the
coordinate of the center of the pixel and gs the corresponding greyscale. On top of our
model we have performed convolution with 10 channels and 3× 3 mask, then an average
pooling, another convolutional layer as before and 2 hidden layers with 50 units each
and ReLU as activation. Unfortunately, even if we have created our own loss function,
we still needed to set a metric, which will be irrelevant for our purposes. Indeed the
output is composed by quadrature points and weights, whereas the labels are the correct
integrals, so it does not make sense to compute the mean squared error. Still, we have
set as metric mse and the number of units for the output layer must be equal to the
length of the labels, which is the number of the monomials we are trying to integrate, i.e.
(2p+ 1)2 = 49. Our real output has length 3(p+ 1) = 48, so the very last unit will just
be ignored. Again we have chosen sigmoid as activation function for the last layer and
we have run it for 400 iterations (epochs). The behavior of the loss function is in Fig.
4.1.1 and in Tab. 4.1.2 there are the results in terms of mean over all the test images of
the absolute error for all the monomials we are checking, i.e.

1
m

m∑
q=1

(∫
Ωq
xiyj dx dy −

p∑
k=0

xik,qy
j
k,qwk,q

)
, (4.1.8)

were m is the number of test images and p = 3, for i, j = 1, . . . , 6. The mean of the
absolute error over all the monomials is 4.164e− 02.

If we show the quadrature points we obtain for an image taken from the test set, we
can notice (Fig. 4.1.2) that they can lay outside the visible area. Indeed we have not

48 Design of NN to compute Quadrature Points

0 50 100 150 200 250 300 350 400
Epochs

10−4

10−3

10−2

10−1
Lo

ss
Loss function vs Epochs

Figure 4.1.1. Semilogarithmic plot of the loss function (4.1.3) of a model to compute
quadrature points. The training set is composed by images 128 × 128 showing the visible
boundary. The model has 2 convolutional layers, 1 average pooling, 3 hidden layers with
width= 50, run for 400 iterations (epochs).

j\i 0 1 2 3 4 5 6
0 6.255e−02 1.864e−01 1.228e−01 1.229e−01 9.842e−02 8.196e−02 6.990e−02
1 2.649e−02 5.098e−02 5.073e−02 6.135e−02 4.914e−02 4.087e−02 3.474e−02
2 1.475e−02 1.198e−02 5.457e−02 4.079e−02 3.269e−02 2.725e−02 2.323e−02
3 9.659e−03 9.786e−03 4.091e−02 3.050e−02 2.441e−02 2.036e−02 1.738e−02
4 1.528e−01 9.486e−03 3.283e−02 2.445e−02 1.955e−02 1.631e−02 1.394e−02
5 4.885e−02 8.538e−02 2.742e−02 2.041e−02 1.633e−02 1.362e−02 1.165e−02
6 2.347e−02 2.999e−02 2.343e−02 1.745e−02 1.396e−02 1.165e−02 9.968e−03

Table 4.1.2. Mean over all the test images of the absolute error for all the monomials
committed integrating with quadrature points and weights coming from a model with 2
convolutional layers, 1 average pooling, 3 hidden layers with width= 50, run for 400 iterations
(epochs). The training set is composed by images 128× 128 showing the visible boundary.

imposed them to be inside, the only requirement is that they integrate in a good way
monomials in the square [0, 1]× [0, 1].

4.2 Intuitive Error Estimate
For what concerns the new quadrature formula obtained with the Neural Network, we do
not have a clear error estimate, thus we cannot really produce a complete convergence
theorem for our algorithm. Nonetheless, we can provide an intuition of what we expect
to see in numerical results.

First of all, we must point out that the NN quadrature formula is used only on
trimmed elements, whereas untrimmed ones are treated in a standard way. Given a

4.2. Intuitive Error Estimate 49

Figure 4.1.2. Cutting curve with quadrature points computed with a model with 2 convolu-
tional layers, 1 average pooling, 3 hidden layers with width= 50, run for 400 epochs.

domain Ω with a mesh Th where h is the mesh size, then it is natural to assume that
the number of cut elements is proportional to 1/h. The weak form of the problem we
want to solve is

Find u ∈ V : a(u, v) = (f, v) ∀v ∈ V = H1
0 (Ω). (4.2.1)

If we consider our numerical solution uh ∈ Vh ⊆ H1
0 (Ω) where Vh is defined such that

uh is a Bézier curve when restricted to the single element Q ∈ Th, then the numerical
problem becomes

Find uh ∈ Vh : ah(uh, vh) = (f, vh)h ∀vh ∈ Vh, (4.2.2)

where ah(·, ·) and (f, v)h are obtained by replacing the integrals with a quadrature formula.
Let ah,Q(·, ·) and (f, v)h,Q be the bilinear form and the right hand side restricted to the
element Q. To fix ideas we consider

a(u, v) =
∫

Ω
∇u · ∇v, (4.2.3)

then, if Q is untrimmed, ah,Q(uh, vh) =
∫
Q
∇uh · ∇vh , whereas if it is trimmed

ah,Q(uh, vh) =
∫
h,Q
∇uh · ∇vh where

∫
h,Q

denotes the quadrature rule on Q.

50 Design of NN to compute Quadrature Points

Recalling the first Strang Lemma [40], we have:

‖u− uh‖ ≤ inf
wh∈Vh

[
‖y − wh‖+ sup

vh∈Vh,vh 6=0

a(wh, vh)− ah(wh, vh)
‖vh‖

]
+ sup

vh∈Vh,vh 6=0

|(f, vh)− (f, vh)h|
‖vh‖

≤ inf
wh∈Vh

‖y − wh‖+
∑

Q∈T trim
h

(aQ − ah,Q)(wh, vh)
‖vh‖

+

∑
Q∈T trim

h

|
∫
Q
fvh −

∫
h,Q

fvh|
‖vh‖

.

(4.2.4)

If we indicate with ENN the maximum integration error done by our NN, then, due to
scaling, we expect all terms within the summations to be bounded by h2ENN. As we
sum over 1/h elements, the final estimate we may expect is:

‖u− uh‖ ≤ c1h
p + c2hENN, (4.2.5)

where p is the degree of the basis functions and c1 and c2 are positive constants that do
not depend on h.

4.3 Conclusions
The proposed method is very promising because it is easily embeddable in existing codes,
like GeoPDEs [39], and it gives us the possibility to solve almost every problem. Indeed,
quadrature points do not change if we consider a different function to integrate, so we
can directly compute the mass and the stiffness entries without rearranging terms, which
could be a laborious and very delicate process. The phase of preprocessing is quite
simple, indeed creating images of 0 and 1 given a domain is straightforward both in 2D
and in 3D, it only remains to rotate images that does not match with the cases used
for the training. This is not complicated and it assures we obtain a consistent method,
because we need to obtain the exact rotated points if we rotate an image.

However, the fact that those points do not lay completely inside the visible area is
really not an ideal case; one way to solve this issue could be to add to the loss function a
penalization if the model finds points outside, but our first attempts in this sense show
that the convergence of our new loss is very poor. We believe that the reason for this is
quite simple: we initialize our network with random weights, thus at the beginning we
are far from the global minimum and we likely remain stuck in a local one. Moreover
the optimization problem is highly non convex. Otherwise a strategy to strongly force
the points to stay inside should be found.

Nonetheless our basis functions exist on the whole square, so it is not a big issue to
compute them outside the visible area. The right hand side might not be defined, even if
in many problems the data are simple quantities, i.e. gravity, or can be easily extended.

Conclusions

In this works we have proposed innovative techniques for the integration over trimming
surfaces that result in the numerical approximation of partial differential equations.

In order to represent arbitrary surfaces, a regular surface is cut by a cutting curve,
but we do not know the exact shape of the trimming function, which means that it has
to be approximated. Usually, Bézier basis functions are employed to represent the curve,
but this implies a great effort in terms of geometrical computations as seen in 1 Section
1.2, in particular in a 3D domain. Indeed we need to create very fine meshes in order to
find interpolations points to perform the reconstruction [34].

The idea is to limit the number of these geometrical operations, avoiding the recon-
struction phase and using techniques coming from the machine learning world. This is a
very fast growing field and as we have seen in Chapter 2 it offers many possibilities even
in numerical analysis. So far it has almost never been used due to the fact that it is still
not as precise as other methods, i.e. Galerkin, and a solid theoretical background has not
been developed yet. Nonetheless, the advantages it could offer in terms of computational
time, especially in 3D, could make it become an extremely powerful instrument to be
exploited. Usually, these models are very difficult to train, first of all because of choice of
the dataset that must be very accurate and whose creation could be expensive; moreover
the optimization in the training phase could require many iterations or epochs to reach
a stable state.

Neural Networks are able to learn internal rules given a certain input and a teacher
signal and they have the property to be universal approximators for functions. Of course,
being an almost unexplored field we have started our analysis with a very simple 1D
example, like the integration of xp over [x0, x1] ⊂ [0, 1]. As we have seen in Chapter
3, the results are not as good as we would have expected, given the simplicity of the
function to integrate. In particular, the main problem of machine learning seems to
be the fact that it attains a local minimum and it is not able to overcome this issue.
Indeed, it can be noticed that it is difficult to gain a MSE smaller than 1e− 9.

We have not let these results discourage us and we have tried to create models to
predict the mass and the stiffness matrix for a PDE, see Chapter 3. The results have
been promising because the corresponding MSE is similar to the one obtained for the
simpler case. We have used two different approaches to accomplish this task. The first
still needs a re-parameterization of the cutting curve. Indeed we have created several
curves able to span our parametric domain [0, 1]× [0, 1] and we have passed as input to
the model the control points of these curves. Of course this could be interesting but
does not solve the problem we need to compute laborious geometrical operations to
have the reconstruction of the trimming. So we have completely changed perspective
and we have passed images to the model as input, showing the cutting curve and the

51

52 Conclusions

visible boundary. Creating these kind of images is straightforward both in 2D and in
3D; indeed it is enough to divide the domain in pixels and assign value +1 to elements
containing the cutting curve or on the boundary. This could look like a very rough
approximation, in particular if it is considered that our element has 128× 128 pixels,
but it actually gives us good results and, thanks to the use of Convolutional Networks,
it does not require a lot of time to train.

Of course, these models have some limitations. First of all we directly predict the
values of the integral, without taking into account the presence of a possible transforma-
tion from the parametric to the physical domain. This problem could be overcome in
case of identity or constant determinant of the transformation, but otherwise we must
be conscious we are introducing further approximations. Moreover the predictions have
to be done runtime due to memory issues. It is not possible to save all the matrices for
every single cut element, so the computational time to run the model must be taken into
account. Finally the assembly of the matrices that contain both trimmed and untrimmed
elements is a very delicate operation and it is not so easy to make our model interact
with existing codes that rely upon quadrature points.

Thus a new model for the prediction of quadrature points has been created in Chapter
4. Not only it is far much easier to embed in existing codes like GeoPDEs, but the
points can be computed offline so that the computational time is not relevant anymore.
Moreover, in principle those points can be used to solve any kind of problem so they
open infinite opportunities. Again the network has been created using images, that have
proved to be a suitable tool in previous experiments. We had to construct a loss function
that made us minimize the error committed in integrating monomials up to order 6 in
our domain [0, 1]× [0, 1]. Actually the results are not entirely satisfactory. First of all
because we obtain points are not entirely contained in the active area. This is not ideal
even if the basis functions exist all over the domain and in many problems the right
hand side can be easily extended, but in future works it is better to try to impose a
penalization in the loss when points lay outside or to find a way to strongly force them
to stay inside. The first attempts in this sense has not given good results, probably
because the problem is highly non convex and the optimization is very hard. Moreover,
for instance, when we are computing the entries for the stiffness matrix we are not
integrating monomials, but polynomials. This means that our final error estimate could
be multiplied by a constant that makes it worse than the one obtained for monomials.

Still, we hope that this work opens the possibility to improve these models, in
particular introducing the 3D case. Indeed, they have been created with the aim to
extend them in three dimensions in future. The idea to use images should simplify the
final prediction, but the creation of a suitable dataset is still an open problem. First of
all because it is not possible to divide the cube [0, 1]× [0, 1]× [0, 1] uniformly taking all
the possible cases because the dataset would be too big. Indeed there would be memory
issues and it would be extremely difficult to train. So a good strategy to create the
most likely curves that can cut the domain has to be found. Moreover we have trained
our model to find quadrature points using the exact integrals in the loss function, so it
would be very laborious to compute them in 3D, but it must be taken into account that
if the network works well this is done once and for all.

Ringraziamenti

Per prima cosa voglio ringraziare mia madre per avere sempre creduto in me, per essere
stata la mia più grande sostenitrice e la mia roccia in tutto questo percorso e per avermi
permesso di realizzare tutti i miei sogni. Ringrazio mio padre che mi ha trasmesso tutta
la sua grinta e la sua determinazione e che sono certa sarebbe orgoglioso di potermi
vedere oggi. Mia sorella che mi ha sempre spronato e che è come una seconda madre per
me.

Un grazie speciale a Franco per avermi sostenuto, anche nei momenti di sconforto.
Grazie ad Andrea A. e al mio piccolo Alberto per avermi sempre fatto sorridere e svagare
quando ne avevo bisogno, ai miei nonni per avermi sempre accolto. Grazie ad Andrea R.
per esserci sempre!

Vorrei inoltre ringraziare le mie relatrici: la Prof. Annalisa Buffa e la Prof. Paola
Francesca Antonietti per avermi permesso di lavorare su un argomento innovativo e
stimolante e per essere state incoraggianti e disponibili. Infine, non posso non ringraziare
infinitamente i collaboratori della Prof. Buffa, Pablo e Ondine, per essere stati estrema-
mente presenti e per avere avuto idee meravigliose, che hanno reso questa tesi più ricca
e interessante.

53

54 Ringraziamenti

Bibliography

[1] T.J.R. Hughes, J.A. Cottrell, Y.Bazilevs (2005). Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl.
Mech. Engrg., 194:4135-4195.

[2] L. Beirão da Veiga, A. Buffa, G. Sangalli, R. Vázquez (2014). Mathematical analysis
of variational isogeometic methods. Acta Numer., 23:157-287.

[3] I.C.Braid (1974). Designing with Volumes. Cantab. Press., Cambridge.

[4] B. Marussig, T.J.R. Hughes (2017). A Review of Trimming in Isogeometric Analysis:
Challenges, Data Exchange and Simulation Aspects. The Institute for Computational
Engineering and Sciences, The University of Texas at Austin.

[5] C. de Boor (2001). A practical guide to splines, Applied Mathematical Sciences, vol.
27. Springer, New Yotk.

[6] G. Farin (2002). Curves and surfaces for CAGD: a practical guide. Morgan Kauf-
mann, San Francisco, Calif.[u.a.].

[7] F. Auricchio, L. Berãio Da Veiga, T.J.R. Hughes, A. Reali, G. Sangalli (2010).
Isogeometric collocation methods. Mathematical Models and Methods in Applied
Sciences 20(11), 2075-2107.

[8] K. Li, X. Qian (2011). Isogeometric analysis and shape optimization via boundary
integral. Computer-Aided Design 43(11), 1427-1437.

[9] T.W. Sederberg, T. Nishita (1990). Curve intersection using Bézier clipping.
Computer-Aided Design 22(9), 534-549.

[10] H.J. Kim, Y.D. Seo, S.K. Youn (1999). Isogeometric analysis for trimmed CAD
surfaces. Computer Methods in Applied Mechanics and Engineering 198(37-40),
2982-2995.

[11] H.J. Kim, Y.D. Seo, S.K. Youn (2010). Isogeometric analysis with trimming technique
for problems of arbitrary complex topology. Computer Methods in Applied Mechanics
and Engineering 199(45-48), 2796-2812.

[12] B. Marussig (2016). Seamless Integration of Design and Analysis through Boundary
Integral Equations. Monographic Series TU Graz: Structural Analysis. Verlag der
Technischen Universität Graz.

55

56 Bibliography

[13] B. Marussig, J. Zechner, G. Beer, T.P. Fries (2016). Stable isogeometric analysis of
trimmed geometries. Computer Methods in Applied Mechanics and Engineering.

[14] R. Schmidt, R. Wüchner, K.U. Bletzinger (2012). Isogeometric analysis of trimmed
NURBS geometries. Computer Methods in Applied Mechanics and Engineering
241-244, 93-111.

[15] A.P. Nagy, D.J. Benson (2015). On the numerical integration of trimmed isogeometric
elements. Computer Methods in Applied Mechanics and Engineering 284, 165-185.

[16] Y. Wang, D.J. Benson (2016). Geometrically constrained isogeometric parameterized
level-set based topology optimization via trimmed elements. Frontiers of Mechanical
Engineering pp. 1-16.

[17] Y. Wang, D.J. Benson, A.P. Nagy (2015). A multi-patch non-singular isogeometric
boundary element method using trimmed elements. Computational Mechanics 56(1),
173-191.

[18] J. Lasserre (1998). Integration on a convec polytope. Proceedings of the American
Mathematical Society 126(8), 2433-2441.

[19] Y. Guo, M. Ruess, D. Schillinger (2016). A parameter-free variational coupling
approach for trimmed isogeometric thin shells. Computational Mechanics 56(1),
173-191.

[20] E. Rank, M. Ruess, S. Kollmannsberger, D. Schillinger, A. Düster (2012). Geometric
modeling, isogeometric analysis and the finite cell method. Computer Methods in
Applied Mechanics and Engineering 249-252, 104-105.

[21] M. Ruess, D. Schillinger, Y. Bazilevs, V. Varduhn, E. Rank (2013). Weakly enforced
essential boundary conditions for NURBS-embedded and trimmed NURBS geometries
on the basis of finite cell method. International Jornal for Numerical Methods in
Engineering 95(10), 811-846.

[22] M. Ruess, D. Schillinger, A.I. Özcan, E. Rank (2014). Weak coupling for isogeometric
analysis of non-matching and trimmed multi-patch geometries. Computer Methods
in Applied Mechanics and Engineering 269, 46-71.

[23] Y.D. Seo, H.J. Kim, S.K. Youn (2010). Definition of "overfitting" at https://www.
oxforddictionaries.com/: this definition is specifically for statistics.

[24] I. Goodfellow, Y. Bengio, A. Courville (2016). Deep Learning. MIT Press, http:
//www.deeplearningbook.org.

[25] Y. LeCun, C. Cortes, C.J.C. Burges (2004). THE MNIST DATABASE of hand-
written digits. http://yann.lecun.com/exdb/mnist/.

[26] K. Funahashi (1989). On the approximate realization of continuous mappings by
neural networks. Neural Netw. 2, 183-192.

https://www.oxforddictionaries.com/
https://www.oxforddictionaries.com/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://yann.lecun.com/exdb/mnist/

Bibliography 57

[27] K. Hornik, M. Stinchcombe, H. White (2016). Multilayer feedforward networks are
universal approximators. Neural Netw. 2, 359-366.

[28] Y. LeCun, Y. Bengio, G.E. Hinton, R.J. Williams (2015). Deep Learning. Nature
521, 436-444.

[29] G. Elber, F. Massarwi (2016). A B-spline based framework for volumerti object
modeling. Computer Aided Design, 78, 36-47.

[30] A. Buffa, R. Puppi, R. Vzquez (2019). A minimal stabilization procedure for Isogeo-
metric methods on trimmed geometries. arXiv:1902.04937 [math].

[31] E. Burman, P. Hansbo (2012). Fictitious domain finite element methods using cut
elements: II. A stabilized Nitsche method. Appl. Numer. Math., 62(4), 328-341.

[32] E. Burman, P. Hansbo (2014). Fictitious domain methods using cut elements: III. A
stabilized Nitsche method for Stokes’ problem.. ESAIM Math. Model. Numer. Anal.,
48(3), 859-874.

[33] Open CASCADE SAS. (2018) Open CASCADE 7.3.0. https://www.opencascade.
com/.

[34] P. Antolin, A. Buffa, M. Martinelli (2019). Isogeometric Analysis on V-reps: first
results. arXiv:1903.03362v1 [math].

[35] R. Adams, J. Fournier (2003). Sobolev Spaces, Volume 140. Elsevier.

[36] C. Geuzaine, J.F. Remacle (2009). Gmsh: a three dimensional finite element
mesh generator with built-in pre- and post-processing facilities. Internat. J. Numer.
Methods Engrg., 79(11), 1309-1331.

[37] S.Boyd, L. Vandenberghe (2004). Convex Optimization. Cambrisge Univeristy Press,
New York, http://stanford.edu/~boyd/cvxbook/.

[38] D.P. Kingma, J.L. Ba (2017). Adam: A method for stochastic optimization. Cornell
University.

[39] R. Vazquez (2011). GeoPDEs 3.1.0. http://rafavzqz.github.io/geopdes/.

[40] A. Quarteroni, A. Valli (1994). Numerical Approximation of Partial Differential
Equations. Springer.

https://www.opencascade.com/
https://www.opencascade.com/
http://stanford.edu/~boyd/cvxbook/
http://rafavzqz.github.io/geopdes/

	List of Figures
	List of Tables
	Introduction
	Isogeometric Analysis on trimmed geometries
	Basis Functions and Curves
	Trimming
	PDE problems on trimmed domains
	Element Detection or Slicing

	Integration
	Tailored Integration
	Adaptive Subdivision
	Reconstruction of the Trimming Curve with Bézierfunctions

	Conclusions

	Neural Networks
	Machine Learning and Neural Networks
	Feed Forward Neural Networks
	Convolutional Neural Networks
	Conclusions

	Design of NN to compute matrix entries
	The simplest integration problem
	Model to compute Mass and Stiffness Matrix Entries with Control Points
	Model to compute Mass and Stiffness Matrix Entries with Images
	The use of NN to compute matrix entries in an IGA code

	Design of NN to compute Quadrature Points
	Model to compute Quadrature Points with Images
	NN for Quadrature Points in 1D
	NN for Quadrature Points in Trimmed Domains

	Intuitive Error Estimate
	Conclusions

	Conclusions
	Ringraziamenti

