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Abstract

The bankruptcy game is a cooperative game useful to model situations
in di�erent contexts. It consists of dividing a resource that is not su�cient
for the satisfaction of all questions among many agents and in a fair manner.
Each participant requires a fraction of the available resource. Some exam-
ples of application are the sharing of bandwidth or data within the context
of networking, the division of the remaining money after the bankruptcy of
a bank among creditors, the cache sharing, etc. This model can be reinter-
preted as an auction in which, for simplicity, we assume there is only one
seller, both the owner of the resource and the auctioneer, and more buyers
interested in the purchase. Each individual buyer reports his demands to
the seller at the same time as all the others so that the bids are private in-
formation known only to the bidder itself and the auctioneer. Aim of the
latter is to regulate the auction so that it is a fair procedure and avoiding
participants' cheating behaviours. For this reason, it is useful to de�ne a
price based on the amount of resource assigned. Once established a rule
for the resource allocation problem, it is necessary to de�ne a price mecha-
nism in such a way none of the participants has the incentive to lie or cheat
in order to obtain a greater quantity of resource. Within this context, we
study various auction mechanisms and in particular the work focuses on the
mechanism described by Myerson. This type of auction satis�es the property
called truthfulness : none of the participants bene�ts from lying by asking for
more or less than necessary. We analized also the possibility of collusion in
this particular mechanism: we asked ourselves whether or not players are
incentivates in forming coalitions. Since other mechanisms, as second-price
auctions, already analyzed in the literature, are sensitive to collusion, it is
quite reasonable to think that the participants in a Myerson auction are also
inclined towards collaboration. Through the use of numerical simulations,
we con�rm the starting hypothesis by verifying that also the Myerson's price
system is not robust to agreements between players.
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Sommario

Il gioco di bancarotta è un modello di gioco cooperativo che si presta a

modellizzare situazioni in contesti anche molto diversi tra loro. Esso consiste nel

dividere tra più agenti ed in modo equo una risorsa non su�ciente alla soddis-

fazione di tutte le domande. Ogni partecipante richiede una frazione della risorsa

a diposizione. Alcuni esempi di applicazione sono la condivisione di banda o dati

all'interno del contesto di networking, la divisione del denaro restante dopo il falli-

mento di una banca tra i diversi creditori, la condivisione di memoria ecc. Questo

modello può essere reinterpretato come un'asta in cui, per semplicità, ipotizziamo

ci sia un solo venditore, sia proprietario della risorsa, che banditore dell'asta, e

più compratori interessati all'acquisto. Ogni singolo compratore riferisce la sua

domanda al venditore in contemporanea a tutti gli altri, in modo che le domande

siano informazioni private conosciute solo dall'interessato e dal banditore. Obi-

ettivo di quest'ultimo è regolamentare l'asta a�nchè sia un procedimento equo e

senza imbrogli da parte dei partecipanti. Per questo motivo, è utile la de�nizione di

un prezzo in base alla quantità di risorsa assegnata. Stabilita quindi una regola per

l'assegnazione della risorsa, è necessaria la de�nizione di un meccanismo di prezzo

in modo che nessuno dei partecipanti sia incentivato a mentire o imbrogliare per

poter ottenere una maggiore quantità di risorsa. All'interno di questo contesto,

vengono studiati diversi meccanismi di aste e in particolare il lavoro si focalizza

sul meccanismo descritto da Myerson. Questo tipo di asta infatti soddisfa la pro-

prietà chiamata truthfulness: nessuno dei partecipanti trae vantaggio dal mentire

chiedendo di più o di meno del necessario. Viene inoltre analizzata la possibilità di

collusione in questo particolare meccanismo di asta: ci si è domandati se sia o meno

conveninete ai gicatori unirsi formando coalizioni. Siccome altri meccanismi come

le aste al secondo prezzo, già analizzati in letteratura, sono sensibili alla collusione,

è abbastanza ragionevole pensare che anche i partecipanti ad un'asta di Myerson

siano propensi alla collaborazione. Attraverso l'utilizzo di simulazioni numeriche,

l'ipotesi di partenza è stata confermata appurando che anche il sistema di prezzo

de�nito da Myerson non è robusto ad accordi trasversali tra i giocatori.

III



Contents

List of Figures 1

1 Cooperative and Non Cooperative Games 4

1.1 Introduction to Game Theory . . . . . . . . . . . . . . . . . . 4
1.2 Cooperative Games . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Solutions of Cooperative Games . . . . . . . . . . . . . 9
1.3 Non Cooperative Games . . . . . . . . . . . . . . . . . . . . . 19

2 Bankruptcy Games 22

2.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.1 Division Rules . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Game Theoretic Division Rules . . . . . . . . . . . . . . . . . 27
2.3 Rules' Properties . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Characterization . . . . . . . . . . . . . . . . . . . . . 31

3 Auction Design 36

3.1 Introduction to Mechanism Design . . . . . . . . . . . . . . . 36
3.2 Auction Design Basics . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Second Price Auctions . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Properties of second price auctions . . . . . . . . . . . 44
3.3.2 VCG Auction . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 The Revelation Principle . . . . . . . . . . . . . . . . . . . . . 48
3.4.1 Characterizations . . . . . . . . . . . . . . . . . . . . . 50

3.5 Myerson's Auction . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Myerson's Pricing Mechanism 53

4.1 Myerson's theorem . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Pricing Functions . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Price comparison . . . . . . . . . . . . . . . . . . . . . . . . . 62

IV



5 Collusion Analysis 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Collusion analysis . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Theoretical setting . . . . . . . . . . . . . . . . . . . . 68
5.2.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Core characterization . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 A simple application . . . . . . . . . . . . . . . . . . . . . . . 77

V



List of Figures

1.1 Core of the game . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Interpretation of the proportional using communicating vessels 26
2.2 Interpretation of the CEA rule using communicating vessels . 27

3.1 Women's badminton tournament at the 2012 Olympics . . . . 38
3.2 Example of participants in an auction . . . . . . . . . . . . . . 39

4.1 Payment rule in the tree cases . . . . . . . . . . . . . . . . . . 56
4.2 Price as the area above the curve . . . . . . . . . . . . . . . . 57
4.3 Allocation function for the Max-Min . . . . . . . . . . . . . . 59
4.4 Prices for di�erent congestion . . . . . . . . . . . . . . . . . . 63
4.5 Prices in game MM and GG . . . . . . . . . . . . . . . . . . . 65
4.6 Prices in game GM-GG, GM-MG and GM-MM . . . . . . . . 66

5.1 Utility as the area below the curve . . . . . . . . . . . . . . . 69
5.2 Comparison of utilities . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Example of results in the case of Mood Value allocation. . . . 75
5.4 Example of results in the case of proportional allocation. . . . 76

1



Introduction

Resource allocation is a common problem emerging when a resource has
to be shared between agents that have di�erent demands for the available
resource. Some examples are: cache allocation to content providers, spec-
trum sharing, money division, etc. There are multiple approaches to solve
the problem in the particular case in which the resource is scarce and not
able to ful�ll the user demands. The most well-known solutions are obtained
using the classical proportional rule and Max-Min Fair rule. The �rst one
consists simply in dividing the resourse proportinally to the demand, while
the second one �rstly maximizes the minimum allocation, then maximizes
the second lowest and so on. Other ways to solve allocation problems are
game-theoretic modelization through bankruptcy game or through an auc-
tion. In this way, the solution of the allocation problem coincides with the
solution of the correspondent game. For example, we can use the nucleolus,
the Shapley value or the mood value solution. The latter one derives from
the tau-value and it is not a standard resolution but has some interesting
fairness properties. The auction is a speci�c type of market wherein a given
agent sells a given set of commodities to interested buyers. For this reason,
it is a suitable model for allocation problems. Since usually the resource
is scarce, agents are in competition to obtain a bigger fraction of the total
estate and each of them has a demand that is a private information, known
only by himself and the seller. In this competitive environment, each agent
tries to cheat in order to obtain more resource.
In this work we are interested into analyze mechanisms that prevent agents'
cheating behaviour. In partiular, a partecipant can lie about his true demand,
asking for more or less resource, or can make agreements with some other
agents. Classically, in order to avoid the �rst type of cheating, strategy-proof
rules as the MMF are preferred, alternatively the resource allocation problem
is designed as a truthful auction mechanisms (e.g. the Vickrey-Clarke-Groves
(VCG) mechanism or the Myerson inspired auction). While classically the
auction mechanism most used is the VCG one, in this work we use the My-
erson's Lemma, to extend the work in [6].
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Myerson's mechanism associates to each allocation rule a price such that
partecipants are not incentivate to lie about their demands, in order to ob-
tain strategy-proof one-shot allocation rules and to avoid the use of complex
mechanism. This is possible thanks to the Revelation Principle [10] that
guarantees an equivalence between an auction mechanism and an incomplete
information resource allocation problem. Furthermore, we analyze the other
possible way for users to cheat, i.e. the possibility of making agreement
merging the demands. A subset of users can submit a single demand equal
to the sum of their demands trying to improve their utility, that is the di�er-
ence between the value of the obtained resource and the price. In particular,
we are interested into numerically compare the users utility, de�ned by the
Myerson lemma, for the most important allocation rules.
The work is structured as follows:

- In Chapter 1 we present the theoretical notions on cooperative and non-
cooperative games.

- In Chapter 2 we focuse on a particular subclass of cooperative games, that
is the bankruptcy game.

- In Chapter 3 we illustrate the auction mechanism. We start from the simple
single-item auction, arriving to Myerson's mechanism.

- In Chapter 4 we present the pricing mechanism given by Myerson and its
application considering di�erent allocation rules. We resume the work
done in [6] and we extend the analysis to the mood value solution.

- In Chapter 5 we analize another possible way that users have to cheat:
demands aggregation. We de�ne a new TU game and we study its
characteristic fuction.
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Chapter 1

Cooperative and Non Cooperative

Games

In this chapter we present all the basic theoretical concepts and de�ni-
tions related to cooperative and non-cooperative game theory, useful for the
next analysis. In our work we focuse on a particular type of games called
Bankrupcy games, belonging to the class of cooperative ones. These games
consist of players claiming a resource that is scarce and it is not enough
to satisfy all the requests. We are interested in the study ways to solve
bankruptcy games, thus in this chapter we illustrate �rst the general concept
of solution of a cooperative game: we de�ne the core of a game and how
it can be characterized. Moreover, we present some well known one point
solutions: the nucleolus, the shapley value and the tau value.
Since bankruptcy problems are essentially allocation problems, they can
be reinterpreted using auctions, models that belong to the class of non-
cooperative games. Thus, at the end of the chapter, we illustrate some basic
de�nitons related to non-cooperative models.

1.1 Introduction to Game Theory

Game theory is a branch of mathematics that deals with the analysis of
the optimal decision making in a context with two or more decision-makers.
Decision-makers are usually called agents or players. Game theory studies
not only the choice of a single agent but also the interactions among agents'
decisions: a game is an interactive decision making process. The two main
assumptions at the basis of game theory are that players are egoistic and
rational, meaning that they care only about their own preference, no matter
what other players do. The �rst assumption however has no ethical meaning:
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a player can decide "egoistically" that the happines of another person is his
goal. The key point is that this altruistic behaviour can be satisfactory for a
player whose aim is to maximize his utility function, usually indicated with
u, achiving his own ful�lment. The assumption of rationality is much more
complicated to explain. The crucial point is that players have preferences on
outcomes, so they are able to give an order on them. For this reason, it's
important to introduce a real value function u de�ned over the set of alterna-
tives, representing how much a player is satis�ed. This function, mentioned
before, is called utility function. Despite the aim of a player is to maximize
u, his payo� depends on other players' choice and behaviour.
Many situations can be modeled as games. There are two main classes of
games: the cooperative and the non-cooperative ones. As the name indi-
cates, the distinction is based on the possibility or not of cooperations among
agents. In this work we focus our attention on the cooperative setting. We
present some examples to give an idea of some possible applications of coop-
erative game theory.

Example (Buyers and Seller). There are one seller and two potential buy-
ers for an important indivisible good. The seller (player one) evaluates the
good a. The buyers (players two and three) evaluate it b and c respectively.
Suppose a < b < c.

Example (Children game). Three players must vote a name of them. If one
gets at least two votes, he win 1000 Euros. They can make agreement that
are binding. If no one gets more than one vote, the 1000 Euros are lost.

Example (Glove game). N players have a glove each, some of them a right
glove, some other a left glove. They need to reach an agreement in order to
obtain pair of gloves.

Example (Airport game). Three �ying companies need a new landing lane in
a city. The �rst company needs 1 km long landing �eld which costs c1. The
second one needs 2 km which cost c2, while the third one needs 3 km which
cost c3. Realistically c1 < c2 < c3, c2 < 2c1 and c3 < 3c1. How do they share
the cost?

All the examples illustrated before require cooperation or encourage
players to cooperate in order to reach a comprimise. We assume that the
agreements among agents are binding meaning that no player can break a
pact.
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1.2 Cooperative Games

It is fundamental to de�ne the chacteristic function, meaning to de�ne
how a game is represented. Let N denote the set of players and S any subset
of N . S is called coalition. The cardinality of these two sets is denoted by n
and s respectively. Let 2N denote the set of all possible coalitions.

De�nition 1.1. The characteristic function of a game is a function

v : 2N → R

such that v(∅) = 0.

This function assignes to each coalition S ⊆ N the value v(S), that is
the value that S can get once formed. The condition v(∅) = 0 is a normal-
ization condition. Recalling the previous examples:

Example (Buyers and Seller). For this game a reasonable characteristic func-
tion could be:

v({1}) = a v({2}) = v({3}) = v({2, 3}) = 0 v({1, 2}) = b v({1, 3}) = c v(N) = c

Example (Children game). In this case, we assume v of this form:

v(A) =

{
1000 if |A|≥ 2

0 otherwise

Example (Glove game). Denoting with {L,R} the partition of N that divides
players having a right glove from players having a left glove, the characteristic
function is:

v(S) = min{|L ∩ S|, |R ∩ S|}

Example (Airport game). In this case, v can be written as:

v(S) = min{ci : i ∈ S}

The cooperative game de�ned by v : 2N → R is indicated by the pair
(N, v). The function v is also called side payment or Transferable Utility

(TU). These terms highlight the fact that the amount v(A) can be freely
divided among the members of A, without restrictions. Let G(N) be the
class of all possible cooperative games with N as set of players.

De�nition 1.2. A TU game is said to be:

• Additive if ∀S, T ⊆ N s.t. S ∩ T = ∅ v(S) + v(T ) = v(S ∪ T )
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• Superadditive if ∀S, T ⊆ N s.t. S ∩T = ∅ v(S) + v(T ) ≤ v(S ∪T )

• Convex if ∀S ⊆ T ⊆ N \ i, then v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T )

• Monotone if ∀S ⊆ T ∈ 2N , v(S) ≤ v(T )

• Cohesive if ∀ S1, . . . , Sk s.t. Si∪Sj = ∅ and
⋃

i Si = N , then
∑

i v(Si) ≤
v(
⋃

i Si) = v(N)

Some properties are correlated each other. Trivially:

• Additivity ⇒ Superadditivity

• Superadditivity ⇒ Cohesivity

• Convexity ⇒ Superadditivity

Superadditive games are the most interesting ones, since the players
are encouraged to aggregate and cooperate.

Remark. The examples illustrated before (buyers and seller, children game,
glove game and the airport game) are all superadditive games. The airport
game is also a convex game, while the children game is not.

An interesting subclass of games is singled out from the following de�-
nition.

De�nition 1.3. A game (N, v) is called simple provided v is valued on {0, 1},
A ⊂ C implies v(A) ≤ v(C) and v(N) = 1.

Coalitions for which v(A) = 1 are called winning coalitions. Recalling
the children game in the example, it can be reinterpreted as simple game:

Example (Children game). This game is equivalent to a three players-game
(N, v) with v given by

v(A) =

{
1 if |A|≥ 2

0 otherwise

In this case the winning coalitions are :

{1, 2}, {1, 3}, {2, 3}, N

An important concept is the one of balanced game.

De�nition 1.4. A balanced map is a function λ : 2N \ ∅ → R+ such that∑
C⊆N λ(C)χC = χN .
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Here we denote with χA : N → {0, 1} the function:

χA =

{
1 if i ∈ A
0 otherwise

By de�nition, a map is balanced when the amount received over all the
coalitions containing an agent i sums up to 1.

De�nition 1.5. A game is balanced if, for each balanced map λ, we have∑
C⊆N,C 6=∅ λ(C)v(C) ≤ v(N).

De�nition 1.6. A family (S1, . . . , Sm) of coalitions is called balanced provided
there exists λ = (λ1, . . . , λm) such that λi > 0 ∀i and∑

k:i∈Sk

λk = 1 ∀i ∈ N.

λ is called balancing vector

Example 1.1. Given N players, a partition of N is a balanced family, with
balancing vector made by all ones.

Example 1.2. Consider a game with four players. The family

({1, 2}, {1, 3}, {2, 3}, {4})

is balanced with balancing vector(
1

2
,
1

2
,
1

2
, 1

)
Example 1.3. Consider a game with three players. The family

({1}, {2}, {3}, N)

is balanced with every vector of the form

(p, p, p, 1− p) p ∈ (0, 1)

Example 1.4. Consider again a game with three players. The family

({1, 2}, {1, 3}, {3})

is not balanced.

De�nition 1.7. A minimal balancing family is a balanced family such that no
subfamily is balanced.
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Example 1.5. Consider the case N = {1, 2, 3}. The minimal balancing fami-
lies are:

(1, 1, 1, 0, 0, 0, 0) with balanced family ({1}, {2}, {3})

(1, 0, 0, 0, 0, 1, 0) with balanced family ({1}, {2, 3})

(0, 1, 0, 0, 1, 0, 0) with balanced family ({2}, {1, 3})

(0, 0, 1, 1, 0, 0, 0) with balanced family ({3}, {1, 2})

(0, 0, 0, 0, 0, 0, 1) with balanced family (N)(
0, 0, 0,

1

2
,
1

2
,
1

2
, 0

)
with balanced family ({1, 2}, {1, 3}, {2, 3})

1.2.1 Solutions of Cooperative Games

The Core

Given a game (N, v), a solution is a vector (x1, x2, . . . , xn) ∈ Rn as-
signing each player i a utility xi. More in general, a set of solution vectors
is called solution concept. For each cooperative game it is not possible to
de�ne a solution concept providing a reasonable outcome for all the situa-
tions that a game can model. For this reason, a solution should satisfy some
requirements. Two basic requisites are:

1. xi ≥ v({i}) ∀i ∈ N (individual rationality): no player should receive
less than what he can get by his own.

2.
∑n

i=1 xi = v(N) (e�ciency): the total amount should be splitted
among players.

Solutions satisfying these two properties are called imputations. For-
mally:

De�nition 1.8. Given a cooperative game (N, v), the imputation is a solution
that satis�es individual rationality and e�ciency.

We denote the set of all imputations with the symbol I(v). This set is
large, therefore we consider subsets of I(v) containing signi�cant solutions.
The �rst subset we consider is the core which is interesting for the stability
property.
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De�nition 1.9. Given a TU game (N, v), the core C(v) is the set of solutions
such that

C(v) =

{
x ∈ Rn :

∑
i∈N

xi = v(N) ∧
∑
i∈S

xi ≥ v(S) ∀S ⊂ N

}

The core, as said before, is a subset of the imputation set: C(v) ⊂ I(v).
While imputations are feasible solutions accepted by single players, the core
contains feasible solutions accepted by all coalitions. This is due to the
condition ∑

i∈S

xi ≥ v(S) ∀S ⊂ N

imposed in de�nition 1.9. In fact, it guarantees that no player has incentive
to leave the coalition S. In this sense C(v) is the set of feasible, e�cient and
stable solutions. The core of a game is not easy to compute or describe with
the exception of some simple cases.

Example 1.6. Consider a game with two players N = {1, 2} and a character-
istic function given by: v({1}) = 5, v({2}) = 5 and v({1, 2}) = 20.

Then the core is the set

C(v) =
{
x = (x1, x2) ∈ R2 : x1 ≥ 5, x2 ≥ 5, x1 + x2 = 20

}
that can be represented by the area of the red triangle in the center of the
picture.

Figure 1.1: Core of the game

Example (Buyers and seller). The core is described by the system:
x1 ≥ a, x2 ≥ 0, x3 ≥ 0

x1 + x2 ≥ b, x1 + x3 ≥ c, x2 + x3 ≥ 0

x1 + x2 + x3 = c

10



The result is the set:

C(v) = {(x, 0, c− x) : b ≤ x ≤ c}

The core of a game can be empty.

Example (Children game). Using for simplicity the characteristic function
given by:

v(A) =

{
1 if |A|≥ 2

0 otherwise

To guarantee stability, we should impose:

x1 + x2 ≥ 1

x3 + x2 ≥ 1

x1 + x3 ≥ 1

summing up all the tree inequalities, we get 2x1 + 2x2 + 2x3 ≥ 3. Imposing
the e�ciency condition, we obtain

x1 + x2 + x3 = 1.

The core is empty since the system has no solution.

The following theorems give a characterization of the core of a game if
it satisfy some properties.

Theorem 1.1. Given a game (N, v), if it is convex then the core is always non
empty C(v) 6= ∅.

Theorem 1.2 (Bondareva-Shapley). A TU game (N, v) has non empty core
if and only if it is balanced.

This means that convexity is only a su�cient condition for the non
emptiness of the core of a TU game, while the balancedness is both neces-
sary and su�cient. Despite the fact that the Borandeva-Shapley theorem
completely characterizes the set of games with non empty core, it is not
always possible or feasible to check the balancedness condition. Another
possible way to characterize the core is to use results from linear optimiza-
tion exploiting the fact that, by de�nition, it can be identi�ed by a set of
linear contraints.
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Given a game (N, v), we can consider the following Linear Programming
(LP) problem:

min
n∑

i=1

xi∑
i∈S

xi ≥ v(S) ∀S ⊆ N
(1.1)

Theorem 1.3. The LP problem, desciribed in 1.1, has always non empty set
of solutions C. The core C(v) is non empty and C = C(v) if and only if the
value of the LP is v(N).

Using the dual formulation of the problem 1.1, we have the following
theorem:

Theorem 1.4. Given a game (N, v), the core C(v) is not empty if and only if
every vector (λS)S⊆N ful�lling the conditions{

λS ≥ 0 ∀S ⊆ N∑
S∈Ni∈S⊆N λS = 1 ∀i = 1, . . . n

(1.2)

veri�es also ∑
S⊆N

λSv(S) ≤ v(N)

Proof. The LP problem 1.1 has the following matrix form{
min cTx

Ax ≥ b

where

• c = (1 . . . 1)T ∈ Rn

• A is a (2n − 1)× n matrix:

(A)i,j =

{
1 j ∈ Si

0 otherwise

• b = (v({1}), v({2}), . . . , v(N))T

12



The dual problem takes the form:
max

∑
S⊆N λSv(S)

λS ≥ 0∑
S:i∈S⊆N λS = 1 ∀i

Since the primal has solution, the fundamental duality theorem states that
also the dual has solution and there is no duality gap. Thus, the core C(v)
is non-empty if and only if the value V of the dual problem is such that
V ≤ v(N).

Usually, the dual problem is easier to solve than the primal, even if at
a �rst reading could look uninteresting. The coe�cient λS has the interpre-
tation of how much in percentage a coalition represents the players. This
meaning is suggested by the constraint∑

S:i∈S⊆N

λS = 1 ∀i

together with nonnegativity constraints. Hence, the theorem states that no
matter the players decide their quota in the coalitions, the corresponding
weighted values must not exceed the available amount of utility v(N).
The geometry of the set of λS is simple to describe: it is the intersection of
various planes with the cone made by the �rst octant. As result, we get a
convex polytope with a �nite number of extreme points that they correspond
to possible and valid solutions. These extreme points are characterized by
the theory throught the following theorem:

Theorem 1.5. The positive coe�cient of the extreme points of the constraint
set in 1.2 are the balancing vectors of the minimal balanced coalitions.

The core of a game is not easy to characterize but for superadditive
games the following theorem gives a necessary and su�cient condition:

Proposition 1.6. Given a superadditive game (N, v) with N = {1, 2, 3}. The
core C(v) is non empty if and only if

v({1, 2}) + v({1, 3}) + v({2, 3}) ≤ 2v(N)

An elegant result about the non emptiness of the core is the following.

De�nition 1.10. In a simple game (N, v), a player i is a veto player if v(A) = 0
for all A such that i /∈ A.
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Theorem 1.7. Let (N, v) be a simple game. Then C(v) 6= ∅ if and only if
there is at least a veto player.

Proof. If there is no veto player, then for every i there is Ai such that i /∈ Ai

and v(Ai) = 1. Suppose (x1, . . . , xn) ∈ C(v). It follows that∑
j 6=i

xj ≥
∑
j∈Ai

xj = 1

for all i = 1, . . . , n. Summing up the above inequalities as i runs from 1 to
n, it provides:

(n− 1)
n∑

j=1

xj = n.

This is a contraddiction since
∑n

j=1 xj = 1. Conversely, any imputation
assigning 0 to all the non-veto players is inside the core.

Moreover, if there is at least a veto player the core is the convex poly-
tope having as extreme points the vectors (0, 0, . . . , 1, 0, . . . , 0) where 1 cor-
responds to the position of a veto player.

Example 1.7. Consider the game (N, v) with n = 3 and v given by:

v(A) =

{
1 if 2 ∈ A
0 otherwise

It is easy to see that player two is a veto player. Thus the core is not empty
and it is exactly the singleton:

C(v) = {(0, 1, 0)}

One-point Solutions

As said before, there are many possible solution concepts for a game.
They di�erentiate each other in terms of fairness or/and according to prop-
erties that they satisfy. Given a TU game (N, v), we introduce the most
common and well known one-point solutions illustrating for each one the
properties they satisfy.
The �rst important solution concept for coopertive games is the nucleolus.
To introduce it, we had to de�ne the excess.

De�nition 1.11. Given a TU game (N, v) and an imputation x ∈ I(v), the
excess e(A, x) of a coalition A is

e(A, x) = v(A)−
∑
i∈A

xi

14



The excess is a measure of the dissatisfaction of a coalition since it is
de�ned as the di�erence of what a coalition can get and what it gets with
respect to the imputation. Lower is the excess, happier is the coaltion.

De�nition 1.12. Given a TU game (N, v) and an imputation x, the lexico-

graphic vector attached to the imputation is the vector θ(x) ∈ R2n−1 such
that:

• θ(x) = e(A, x) for some A

• θ1 ≥ θ2 ≥ . . . θ2n−1

De�nition 1.13. Given a TU game (N, v), the nucleolus is the solution ν(v)
such that

ν(v) = {x ∈ I(v) : θ(x) ≤L θ(y) ∀y ∈ I(v)}

With x ≤L y we want to denote that x is greater in the lexicographic
order than y, meaning that one of these two alternatives holds:

• x = y

• ∃j ≥ 1 such that xi = yi ∀i < j and xj < yj

Thus, the nucleolus is the lexicographically minimal imputation. In
other words, it is the imputation that minimizes the excess.

Example (Children game). We have already seen that the core of this game
is empty. In order to �nd the nucleolus, suppose x = (a, b, 1 − a − b) with
a, b ≥ 0 and a+ b ≤ 1. The excesses are given by

e({1, 2}) = 1− (a+ b)

e({1, 3}) = b

e({3, 2}) = a

We want to minimize the quantity: max{1− a− b, b, a}. The result is

ν(v) = (
1

3
,
1

3
,
1

3
).

Theorem 1.8. Let (N, v) be a TU game. If I(v) 6= ∅, then the nucleolus ν(v)
is a singleton.

Theorem 1.9. Let (N, v) be a TU game. If C(v) 6= ∅, then ν(v) ∈ C(v)

Proof. Take x ∈ C(v). Then θ1(x) ≤ 0. Thus θ1(ν) ≤ 0.
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Example (Buyers and Seller). As we had already seen, the core of this game
is described by the set

C(v) = {(x, 0, c− x) : b ≤ x ≤ c}

For the theorem 1.9, the nucleolus belongs to the core. Take a general solution
of the core (x, 0, c − x) with x ∈ [b, c]. We had to �nd x such that all the
excesses are minimized. The relevant excesses are

e({1, 2}) = b− x e({3, 2}) = x− c

Thus

ν(v) =

(
b+ c

2
, 0,

c− b
2

)
The second solution we present is the Shapley value. It is a very impor-

tant solution concept, having a wide range of applications. The idea at the
basis of its de�nition was to �nd a reasonable list of properties charactering
the solution, meaning that the only solution ful�lling the list of properties
was the proposed one.

Formally, the formula is the following one:

De�nition 1.14. Given a TU game (N, v), the Shapley value is the solution
φ(v) such that

φi(v) =
∑

S∈N\{i}

s! (n− s− 1)!

n!
{v(S ∪ {i})− v(S)} (1.3)

Theorem 1.10 (Shapley theorem). The Shapley value de�ned in 1.14 is the
unique solution having the following properties:

1. E�ciency :
∑n

i=1 φi(v) = v(N)

2. Simmetry : if i, j ∈ N v(A∪{i}) = v(A∪{j}) ∀A ∈ 2N\{i,j} ⇒ φi =
φj

3. Null player property : if i ∈ N v(A∪{i}) = v(A) ∀A ∈ 2N ⇒ φi = 0

4. Linearity : ∀v, w ∈ G(N)⇒ φ(v + w) = φ(v) + φ(w)

The solution given by Shapley distributes the total amount v(N) to
players. The formula is made by two terms:

• The Shapley coe�cient: s!(n−s−1)!
n!

, that depends only on the cardinality
of the coalition S ∈ 2N
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• The marginal contribution of player i to the coalition S: v(S∪{i})−v(S)

The result is a weigthed sum of all marginal contributions of players.

The Shapley coe�cient, appearing in the formula 1.3, has a probabilis-
tic interpretation. Suppose the players plan to meet at a certain place at a
�xed hour and suppose the order of arrival is equally likely. Moreover, sup-
pose player i enters into coalition S if and only if he �nds all the members
of S and only them when arriving. The coe�cient represents exactly the
probability that player i enters in S.

In case of a simple games, the Shapley value assumes the form:

φi(v) =
∑
A∈Ai

(|A|−1)! (n− |A|)!
n!

where Ai is the set of the coalitions such that:

• i ∈ A

• A is a winning coalition

• A \ {i} is not a winning coalition

Example (Children game). Suppose we want to calculate the Shapley value
for the children game. N = {1, 2, 3} and the characteristic function is given
by v({1}) = v({2}) = v({3}) = 0 v({1, 2}) = v({1, 3}) = v({2, 3}) =
v(N) = 1. Player one gives a marginal contribution of 1 to coalition {3} and
{2}, thus applying the formula we get:

φ1 =
1

6
+

1

6
=

1

3

Since all players are symmetric and the Shapley value gives equal value to
symmetric players, the solution is

φ(v) = (
1

3
,
1

3
,
1

3
).

In simple games, Shapley value assumes the meaning of measuring the
fraction of power every player had. The Shapley value is an example of the so
called power indeces : it takes into account marginal contributions of player
i to any coalition S, indicated as mi(v, S), and weights them according to a
probabilistic coe�cient. This can be generalized:
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De�nition 1.15. A power index ψ is called a probabilistic index provided for
each player i there exists a probability measure pi on 2N\{i} such that

ψi(v) =
∑

S∈2N\{i}
pi(S) mi(v, S)

In the set of the probabilistic indeces, there is an important subfamily,
that one of the semivalues. For this subclass, the coe�cient pi(S) does not
depend from the player i but only from the size of the coalition S:

pi(S) = pi(s)

Furthermore, if pi(s) > 0 for all s, then the semivalue is called regular semi-

value. It is easy to see that the Shapley value is a regular semivalue with

p(s) =
1

n
(
n−1
s

)
Another well known regular semivalue is the Banzhaf index β. This is

de�ned as

βi =
∑

S∈2N\{i}

1

2n−1 (v(S)− v(S \ {i}))

In this case the coe�cient p(s) is constant: it is assumed that player i
has the same probability to joint any coalitions. Banzhaf value satis�es all
properties characterizing the Shapley value except one: the e�ciency.

Example (Children game). Suppose we want to calculate the Banzhaf index
for the children game. N = {1, 2, 3} and the characteristic function is given
by v({1}) = v({2}) = v({3}) = 0 v({1, 2}) = v({1, 3}) = v({2, 3}) =
v(N) = 1. Recalling that player one gives a marginal contribution of 1 to
coalition {3} and {2}. We get:

β1 =
1

3

Since all players are symmetric:

β(v) = (
1

3
,
1

3
,
1

3
).

Thus in this case, Banzhaf index coincides with the Shapley value.
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A third solution we present is the tau-value solution. It was introduced
the �rst time by Tijs in 1981. This is based on the idea of a compromise
between an upper and a lower value for each player in the game. Given the
TU game (N, v), we can de�ne as m(v) the minimum right payo�, that is
the vector with entries equal to

mi(v) = v({i})

and we can indicate with M(v) the utopia point, that is the marginal con-
tribution of player i to the grand coalition N that utopistically could be
assigned to i:

Mi(v) = v(N)− v(N \ {i})
It makes sense to consider a compromise between the lower and the upper
vectors if the following two conditions are satis�ed:

1. m(v) ≤M(v)

2.
∑

imi(v) ≤ v(N) ≤
∑

iMi(v) ∀i ∈ N

A game (N, v) satisfying these two conditions is said to be quasi bal-

anced.

De�nition 1.16. The τ -value is de�ned as a convex combination of the mini-
mum right payo� and the utopia point:

τ(v) = αm(v) + (1− α)M(v) α ∈ [0, 1]

Note that it is de�ned only for quasi balanced games. This class of
games contains all games with non-empty core.

1.3 Non Cooperative Games

To proceed in our analysis, we need to formally de�ne some basic con-
cepts related to the non-cooperative games. Since our aim is to analyze
deeply the auction mechanism, we formalize the main concepts referring to
one-shot simultaneous move games. This is a speci�c type of non-cooperative
game in which all players choose simultaneously an action from the set of all
possible actions.

One-shot simultaneous move games consist of a set of players N =
{1, 2, . . . , n}, each of them has his own set of possible strategies Si. A strategy
must not be confused with a move: with the term strategy we indicate any
options that a player chooses with respect to other players' actions.
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Example 1.8. Consider for simplicity the known game "rock, scissor, paper".
The game is described by the following bimatrix:

Rock Scissor Paper

Rock 0,0 1,-1 -1,1
Scissor -1,1 0,0 1,-1
Paper 1,-1 -1,1 0,0

where the �rst player selects the row, while the second player the col-
umn. A strategy is de�ned by a vector

s = (Scissor, Paper, Rock)

specifying an action for each other players' possible move.

Player i has a set of possible strategies denoted with Si. Let S = ×iSi

denote the set of all possible ways in which players can pick strategies. In
order to specify the game, it is necessary to give each player an ordere of
preference on the set of possible outcomes. As seen in the previous section,
the easiest way to specify an order is to de�ne a utility function on the set of
alternatives. Let ui(si, s−i) denote the utility of player i when the strategy
si is played and the strategies of all other players are described by the vector
s−i. Using this notation, we can de�ne the concept of dominant strategy
solution.

De�nition 1.17. A solution s̄ is a weakly dominant strategy solution if for
each player i, for each strategy si and each startegy vector s−i ∈ S−i, we
have that

ui(s̄i, s−i) ≥ ui(si, s−i) (1.4)

The de�niton of strong dominant strategy solution is the same but has
a strict inequality in 1.4, formally:

De�nition 1.18. A solution s̄ is a strongly dominant strategy solution if for
each player i, for each strategy si 6= s̄i and each startegy vector s−i ∈ S−i,
we have that

ui(s̄i, s−i) > ui(si, s−i) (1.5)

Example 1.9. Consider the well known prisoner's dilemma. Two prisoners
are on a trial for a crime and each one faces a choice of confessing to the
crime or remaining in silent. If they both remain silent, the authorities will
not be able to prove charges against them and they will both serve a short
prisoner term of two years. If only one of them confesses, his term will be
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reduced to one year and he will be used as a witness against the other, who
in turn will get a sentence of �ve years. Finally if they both confess, the both
will get a small break for cooperating and will have to serve prison sentence
of four years each.

We can summarize the game with the following bimatrix:

Confess Silent

Confess 4,4 1,5
Silent 5,1 2,2

It is easy to see that they have a strictly dominant strategy that it
consists in confessing. The unique stable solution, assuming both prisoners
rational, is the one with outcome (4, 4).

It is important to notice that a dominant strategy solution may not give
an optimal payo� to any player. This is the case illustrated in the example
1.9: it is possible to improve the payo�s of all players simultaneously achiev-
ing the more appealing outcome (2, 2). Having a single dominant strategy
for each players is an extremely stringent requirement for a game and very
few games satisfy it. Thus, we need to seek a less stringent solution concept.
A desirable game-theoretic solution is one in which players act in accordance
with their incentives, maximizing their own payo�. This idea is captured by
the notion of Nash equilibrium.

De�nition 1.19. A strategy vector s ∈ S is said to be a Nash equilibrium if
for all players i and each alternate strategy s̄i ∈ Si, we have that

ui(si, s−i) ≥ ui(s̄i, s−i)

In other words, a strategy is a Nash equilibrium if no player i can
change his chosen strategy si to s̄i and improve his payo�, assuming all other
players' strategy �xed. Such a solution is self-enforcing in the sense that it
is in every player's interest to persist in his strategy once players are playing
such a solution. Clearly a dominant strategy solution is a Nash equilibrium.

The next chapters start from the de�nitions illustrated above. We �rst
analize a particular class of cooperative games that are the bankrupcty games
and then we proceed illustrating the auction mechanism.
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Chapter 2

Bankruptcy Games

Bankruptcy games belong to a speci�c class of games modeling situa-
tions in which a number of agents claim a certain resource that cannot satisfy
the total demand. They �nd many application in reality describing several
situations in which a limited resource has to be shared. Some examples are
given by sharing internet data, manage the cache of a device, distributing
the money between creditors after a bank failure etc. Bankruptcy games can
be solved in many di�erent ways. One is to use the allocation method.

In this chapter, we �rst illustrate the mathemathical model, then we dif-
ferentiate bankruptcy games from bankruptcy problems. Finally, we present
three main solutions that are used in next analysis: the proportional rule,
the adjusted proportional rule and the constrained equal award rule. For
each of them we give the main properties and a characterization.

2.1 Mathematical model

A bankruptcy problem is de�ned by the pair (c, E) ∈ Rn
+ ×R, where c

is the vector of the demands and E is the total amount of avaiable resource.
Furthermore, by de�nition, the following condition holds∑

i

ci > E > 0

in order to model a non trivial bankruptcy situation. In fact, if the sum of
all claims is less than the total estate E, the solution consists in giving all
claimants a quantity equal to their demand. If E = 0 meaning that there is
no resource available, all claimants receive 0.
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Let BN denotes the class of all bankrupticy problems withN = {1, 2, 3, . . . , n}
as set of players. A division rule is a function f : BN → Rn assigning
each player i ∈ N a nonnegative real value. In particular, the division rule
f(c, E) = (x1, x2, x3, . . . , xn), called also allocation rule, provides solutions
satisfying properties as the following ones:

• E�ciency :
∑n

i=1 xi = E

• Demand boundendess : xi ≤ ci ∀i ∈ N

• Individual rationality : xi ≥ 0 ∀i ∈ N

Bankruptcy problems are not necessarily cooperative games and can
be solved without a game-theoretical approach. One method, for example, is
to use a proportional division rule, dividing the estate proportionally to the
claim. This means that each agent receives xi = ci∑

j cj
E. The proportional

allocation rule is not a game theoretical method since it is not invariant under
strategic equivalence. To better understand what it means, we can consider
the following example.

Example 2.1. Consider two bankruptcy problems with two claimants:

• First problem: (c, E) = ((60, 40), 60)

• Second problem: (c, E) = ((80, 40), 80)

The proportional rule gives x = (36, 24) and x = (53.3̄3, 26.6̄6) respectively.
The claim of the second player is equal in both problems c2 = 40 and one
may argue that the resource allocated to him should be equal. It is cleaar
that the proportional rule do not give the same amount to player two. Thus,
it is not invariant under strategic equivalence.

2.1.1 Division Rules

As shown in the example 2.1, the proportional rule could not be the
best choice to solve a bankruptcy problem. However, it is the most used and
known one since it is the simplest way to divide a resource.
We proceed in the analysis illustrating the most common division rules. The
�rst one, already mentioned, is the proportional rule. Its formal de�nition is
the following:

De�nition 2.1. Given a backruptcy problem (c, E) ∈ BN , the proportional

rule P is de�ned as P (c, E) = λc where the parameter λ is chosen in such a
way

∑
i∈N λci = E
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This rule is the easiest one since it is simple to understand and to apply
in many practical situations.

Example 2.2. Consider the problem with three claimants:

(c, E) = ((3, 5, 7), 10)

The parameter λ can be computed as λ = E∑
i ci

= 2
3
. The proportional

allocation results multiplying λ and the vector c:

x =
2

3
(3, 5, 7) =

(
2,

10

3
,
14

3

)
' (2, 3.3, 4.7)

A modi�cation of the proportional rule is the so called adjusted propor-

tional. This rule takes into account the minimal right of an agent. Formally,
for each bankruptcy problem (c, E) ∈ BN and each i ∈ N , let

mi(c, E) = max

E − ∑
j∈N\{i}

cj, 0


be the minimal right of claimant i, that is the minimum that he can asks
after all other claimants have been satis�ed. Denote with m(c, E) the vector
in Rn having as entries the minimum rights of agents.

De�nition 2.2. Given a backruptcy problem (c, E) ∈ BN , the adjusted pro-
portional rule A is de�ned as

A(c, E) = m(c, E)+P

min

ci −mi(c, E), E −
∑
j

mj(c, E)




i∈N

, E −
∑
j

mj(c, E)


To better understand how calculate the adjust proportional value using

the de�nition, we report some examples.

Example 2.3. Consider the same problem of the example 2.2:

(c, E) = ((3, 5, 7), 10)

The vector of minimum rights is m(c, E) = (0, 0, 2). The adjusted propor-
tional gives

x =

0
0
2

+ P

min{3− 0, 8}
min{5− 0, 8}
min{7− 2, 8}

 , 10− 2

 = m + P(c̄, Ē)
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We want to �nd the proportional allocation for the new problem (c̄, Ē) =
((3, 5, 5), 8). The new parameter λ is given by 8

13
and the solution is P =(

24
13
, 40
13
, 40
13

)
. The �nal result for the adjusted proportional rule is

x =

0
0
2

+

24
13
40
13
40
13

 =

24
13
40
13
66
13

 '
1.8

3.1
5.1


From the comparison of this result with the one in the example 2.2,

the adjusted proportional gives a di�erent outcome with respect the simple
proportional rule. In fact, it considers the type of each claimant, meaning
that it takes into account if player i's demand is lower or greater than the
estate E, and his minimum right.

For backruptcy problems in which all claimants have minimum right
equal to zero and in which all the demands are lower than the estate (called
zero-normalized problems), the adjusted proportional reduces to the propor-
tional rule.

Example 2.4. Consider the bankruptcy problem (c, E) = ((4, 6, 6), 10). It is
easy to see that is a zero normalized problem:

1. All players' claims are lower than E: ci < E ∀i ∈ N

2. The minimum right is equal to zero for all players, since 4+6 = 10 and
6 + 6 > 10.

With some calculation, we can verify that

P(c, E) = A(c, E) =

(
5

2
,
15

4
,
15

4

)
= (2.5, 3.75, 3.75)

Another classical allocation rule, especially used in networking applica-
tion, is the one which gives every claimant the same amount until his demand
is not satis�ed and the estate is not �nished.

De�nition 2.3. Given a backruptcy problem (c, E) ∈ BN , the constrained

equal award rule CEA is de�ned as CEA(c, E) = min{λ, ci} where the pa-
rameter λ is chosen in such a way that

∑
i∈N min{λ, ci} = E.

This rule is known in networking with the name of Max-Min Fair allo-
cation. Re-ordering the demands in a non decreasing order c1 ≤ c2 ≤ c3 ≤
. . . ≤ cn, the Max-Min allocation for player i can be also de�ned as

MMFi(c, E) = min

(
ci,
E −

∑i−1
j=1MMFj(c, E)

n− i+ 1

)

25



Example 2.5. Consider the same problem of the example 2.2:

(c, E) = ((3, 5, 7), 10)

First, the constrained equal award rule assignes 3 to all players x = (3, 3, 3).
We obtain the problem (c̄, Ē) = ((0, 2, 4), 1). The �rst claimant is fully
satis�ed, so the CEA rule assignes 0.5 to the other two agents. Thus, the
solution is given by the vector x = (3, 3.5, 3.5).

As we can see from the example, the constrained equal award protects
players having a lower demand. An easy interpretation of the proportional
and the CEA allocation can be given through the idea of communicating
vessels.

The proportional rule is the most intuitive one, so, if we imagine the
resource E as a liquid in a tank, we have that each player is represented by
a container whose section is equal to the demand ci. All the containers have
the inferior basis at the same level.

Figure 2.1: Interpretation of the proportional using communicating vessels

Consider the constrained equal award rule. Each claimant can be rep-
resented by a container with unitary section but having height equal to the
demand ci. As for the proportional rule, they have the inferior basis at the
same level.
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Figure 2.2: Interpretation of the CEA rule using communicating vessels

2.2 Game Theoretic Division Rules

We can model bankruptcy problems as bankruptcy game, solving them
with classical solution of TU games. In order to fully describe a bankrupcty
game, we should de�ne the characteristic function v : 2N → R. There are
two natural ways to de�ne it starting from the problem (c, E): the �rst one is
called pessimistic since it consists in assigning to a coalition S the remaining
estate after all players in N \ S have been satis�ed; the second one is called
optimistic and it gives to the coalition S a quantity equal to the demand if
the latter is less than the estate E.
Formally, the pessimistic characteristic function is de�ned by

vP (S) = max

0, E −
∑

i∈N\S

ci


while the optimistic one is given by

vO(S) = min

(
E,
∑
i∈S

ci

)

The pessimistic description is more realistic then the optimistic one.
To better understand the reason, we give the following example:

Example 2.6. Consider the problem (c, E) = ((6, 4), 8).

The pessimistic function gives

v({1}) = 4, v({2}) = 2, v({1, 2}) = 8
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While, the optimistic one gives

v({1}) = 6, v({2}) = 4, v({1, 2}) = 8

If player one and player two do not coalize, the optimistic description
gives each one a quantity equal to the demand but the sum c1 + c2 is greater
than the available resource E = 8.

A bankruptcy problem can be modeled as a TU game having the char-
acteristic function vP de�ned above. An important property of these type of
games is that they are convex.

Theorem 2.1. Bankruptcy games are convex.

Proof. Let (N, v) be a bankruptcy game. Let S ⊆ T ⊆ N \ {i}. Recalling
the de�nition of convex game, we want to show that

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T )

or equivalently that

v(S ∪ {i}) + v(T ) ≤ v(T ∪ {i}) + v(S).

For all C ⊆ N , we donete c(C) =
∑

j∈C cj, then we can write:

E −
∑

j∈N\C

cj = E −
∑
j∈N

cj −
∑
j∈C

cj = E − c(N) + c(C).

Let ∆ = E −
∑

j∈N cj = E − c(N). We have E −
∑

j∈N\C cj = ∆ + c(C).

First, observe that ∀(x, y) ∈ R2, max{0, x}+max{0, y} = max{0, x, y, x+y}.

v(S ∪ {i}) + v(T ) = max

0, E −
∑

j∈N\(S∪{i})

cj

+ max

0, E −
∑

j∈N\T

cj


= max{0,∆ + c(S) + ci}+ max{0,∆ + c(T )}
= max{0,∆ + c(S) + ci,∆ + c(T ), 2∆ + c(S) + c(T ) + ci}

In the same way

v(T ∪ {i}) + v(S) = max{0,∆ + c(T ) + ci,∆ + c(S), 2∆ + c(S) + c(T ) + ci}

We can notice that since S ⊆ T , c(S) ≤ c(T ). Thus
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max{0,∆ + c(T ) + ci,∆ + c(S), 2∆ + c(S) + c(T ) + ci} =

max{0,∆ + c(T ),∆ + c(T ) + ci, 2∆ + c(S) + c(T ) + ci}

We also have

∆ + c(S) + ci ≤ ∆ + c(T ) + ci

∆ + c(T ) ≤ ∆ + c(T ) + ci

It follows that:

max{0,∆ + c(S) + ci,∆ + c(T ), 2∆ + c(S) + c(T ) + ci}
≤ max{0,∆ + c(T ) + ci, 2∆ + c(S) + c(T ) + ci}

which proves that v(S ∪ {i}) + v(T ) ≤ v(T ∪ {i}) + v(S)

As consequence, the core of these games is always non empty by theorem
1.1.
The crucial point is to establish how the total resource should be splitted
among players, meaning �nd a solution of the TU game (N, v) associated.
Curiel et al. in [1] call a division rule f for a bankruptcy problem a game

theoretical division rule if it is possible to construct a solution concept F such
that f(c, E) = F (v(c,E)) for all bankruptcy problems (c, E). Let cT denote
the vector having as entries cTi = min{ci, E}. Since the game corresponding
to (c, E) and (cT , E) is the same, a necessary conditions for a division rule f
to be a game theoretic division rule is that f(c, E) = f(cT , E). Curiel et al.
proved that is also a su�cient condition:

Theorem 2.2. A division rule f for a bankrupty problem (c, E) is a game
theoretic division rule if and only if f(c, E) = f(cT , E).

As we have already noticed, the proportional rule is not a game the-
oretical division rule. Conversely, the Max-Min allocation (or CEA) is a
game theoretic division rule. In fact, CEAi = min{ci, α} where α is deter-
mined by imposing e�ciency. It follows that α ≤ E, hence CEA(cT , E) =
min{ci, E, α} = min{ci, α} = CEA(c, E).
The adjusted proportional rule is also a game theoretic division rule (see
the proof given by Curiel et al. in [1]). Indeed can be shown that, for a
banckruptcy problem, the adjusted proportional yields the τ -value for the
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corresponding bankruptcy game 1. Given a bankruptcy game (N, v), we can
give an easier formula for the τ -value:

xi = mini +
E −

∑
imini∑

imaxi −
∑

imini

(maxi −mini)

wheremini = v({i}) is the minimal right andmaxi = v(N)−v(N \{i}) is the
maximal right for player i. Following the article [4], we call this allocation
rule mood value.
An interesting fact is that the core of a bankruptcy game (N, v), having as

characteristic function v(S) = max
(

0, E −
∑

i∈N\S ci

)
, coincides with the

set of all admissible solutions.

Proposition 2.3. Let (c, E) ∈ BN be a bankruptcy problem and (N, v) be
the associated bankrupcty game with the pessimistic characteristic function.
Then, x ∈ C(v) if and only if we have that:{∑

i∈N xi = E

0 ≤ xi ≤ ci ∀i ∈ N

Proof. Proof of the only if part. The �rst condition is equal to the e�ciency
condition. For the second one, we have ∀i ∈ N , 0 ≤ v({i}) ≤ xi and
E − xi =

∑
j∈N\{i} xj ≥ v(N \ {i}) ≥ E − ci which implies xi ≤ ci.

Proof of the if part. The e�ciency condition is satis�ed. Moreover for
every possible coalition S ∈ 2N , we have two possibilities:

1. v(S) = 0 ≤
∑

i∈S xi

2. v(S) = E −
∑

i∈N\S ci ≤ E −
∑

i∈N\S xi ≤
∑

i∈S xi

From this theorem, it follows that for a bankruptcy problem (c, E)
every game theoretical division rule provides allocations inside the core of the
associated cooperative game. Hence, given a problem (c, E), the constrained
equal award rule and the adjusted proportional provide outcomes belonging
to the core C(v) of the game (N, v).

1In the speci�c case of bankruptcy games, the τ -value is uniquely determined by choos-

ing the parameter α in such a way results an e�cient solution
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2.3 Rules' Properties

We have seen three division rules: the proportional rule, that is the
most natural way to divide a resource, the adjusted proportional and the
constraint equal award, that are based on the idea of equity. These rules
di�erentiate each other for the properties that they satisfy. Specifying which
property a rule satis�es is an important starting point to understand which
one use to model a situation.

2.3.1 Characterization

Referring to the work of Herrero and Villar (2001) [5] and to the work
of Curiel (1987) [1], in this section we present the most useful properties
characterizing the division rules seen so far. Some properties may be required
from allocation rules. Probably, the most basic requirement is the equity:
agents with identical claims should be treated identically. Formally:

Property 2.1 (Equal treatment of equals). For all N ∈ N , all (c, E) ∈ BN

and all i, j ∈ N we have that ci = cj implies

fi(c, E) = fj(c, E)

Equal treatment of equals imposes impartiality, since it establishes that
all agents with the same claims will receive the same amount. It excludes
di�erentiating agents on the basis of names, gender, religion etc. A second
requirement is that rules should be invariant with respect changements in
scale, meaning that division rules do not depend on the unit of measure.

Property 2.2 (Scale invariance). For all N ∈ N , all (c, E) ∈ BN and all γ > 0
we have that

f(γc, γE) = γf(c, E)

We can observe that the scale invariance property implies that the
size of the estate and the claims are not important. Thus, we cannot distin-
guish analytically between a change of measurement units and a proportional
change in the estate and the claims. A third property states that a banck-
ruptcy problem can be solved with two steps which consist in solving two
partial bankruptcy problems.

Property 2.3 (Composition). For all N ∈ N , all (c, E) ∈ BN and all E1, E2 ∈
R+ such that E = E1 + E2, we have:

f(c, E) = f(c, E1) + f(c− f(c, E1), E2)
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The �rst corresponds to a problem with initial claims equal to c and a
fraction E1 of the estate; the second problem is made out of the outstanding
claims and the reminder estate. The fourth property is the following one:

Property 2.4 (Path independence). For all N ∈ N , all (c, E) ∈ BN and all
E ′ > E, we have that

f(c, E) = f(f(c, E ′), E)

This means that if we �rst solve the problem (c, E ′) and then, using as
claims the result obtained, we solve a problem with estate E less than E ′,
the solution coincides with the solution of the original problem (c, E).
It is easy to see that if a rule satis�es either composition or path-independence,
it is monotonic with respect to the estate. That is:

Property 2.5 (Monotonicity). For all N ∈ N , for any two problems (c, E)
and (c, E ′) ∈ BN , E ≤ E ′ implies that

fi(c, E) ≤ fi(c, E
′)

for all i ∈ N

The property of consistency links the solution of a problem for a given
societyN with the solutions of the problems corresponding to its sub-societies.
Denoting with S any proper subset of N and with cS = (ci)i∈S, we have the
following formal de�nition:

Property 2.6 (Consistency). For all N ∈ N , for all S ⊂ N and all (c, E,N) ∈
B, all i ∈ S, we have that

fi(c, E,N) = fi(cS,
∑
i∈S

fi(c, E,N), S)

for all i ∈ N

The property of consistency is related to stability. In fact, it prevents
subgroups of agents to renegotiate once there is a solution proposed for the
society.
By the theorem stated in the article [5], the proportional rule and the con-
strained equal award rule satisfy simultaneously equal treatment of equals,
scale invariance, composition, path-independence and consistency. Thus,
they are monotonic rules. It is easy to see that the adjusted proportional
satis�es only scale invariance and equal treatment of equals since it allocates
resource according to the type of a player, meaning if he demands more or
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less than the state. Even if it does not satisfy composition and path inde-
pendence, it can be proved that the adjusted proportional rule is monotonic
(see [1] for the proof).
After enumerating �ve common properties between the proportional and the
CEA rule, we present some other characterizing each single rule. The CEA
rule gives priority in the distribution of the resource to agents with smaller
claims, while the proportional does not give any priority in the distribution.

The �rst property we illustrate represents principles of claims enforce-
ability. It focuses on the case in which there is some agent whose individual
claim exceeds the available estate. It proposes to scale down this unfeasible
claim to reality. Formally:

Property 2.7 (Independence of claim truncation). For all N ∈ N , for all
(c, E) ∈ BN , we have

f(c, E) = f(cT , E)

where cTi = min ci, E for all i ∈ N .

This property establishes that if an individual claim exceeds the total
to be allocated, the excess claim should be considered irrelevant. We have
the following theorem characterizing the CEA rule:

Theorem 2.4 (Dagan 1996). For all N ∈ N the constrained equal awards
rule is the only rule satisfying equal treatment of equals, composition and
independence of claims truncation.

To characterize the proportional rule, we need to de�ne the concepts
of duality and self-duality. These properties introduce symmetry in the be-
haviour of the solution with respect to awards and losses.

De�nition 2.4. For all N ∈ N and all (c, E) ∈ BN , given a division rule f ,
its dual is de�ned as

f ∗(c, E) = c− f(c, L)

where L =
∑n

i=1 ci − E.

Property 2.8 (Self duality). For all N ∈ N , for all (c, E) ∈ BN , we have
f(c, E) = f ∗(c, E).

Even for the proportional, we have a theorem characterizing it:

Theorem 2.5 (Young 1988). For all N ∈ N the proportional rule is the only
rule satisfying equal treatment of equals, composition and self duality.
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Finally, we consider the adjusted proportional rule. The �rst property
characterizing it is called composition from minimal right and it guarantees
each player his minimal right mi. This property is a special case of compo-
sition and the formally it is de�ned as:

Property 2.9 (Composition from minimal rights). For all N ∈ N , for all
(c, E) ∈ BN , we have

f(c, E) = m(c, E) + f(c−m(c, E), E −
∑
i∈N

mi(c, E))

where mi(c, E) = max
{

0, E −
∑

i 6=j cj

}
.

A second property is called the additivity of claims property.

Property 2.10 (Additivity of claims). For all N ∈ N , for all (c, E) ∈ BN , a
division rule f is said to satisfy addivity of claims if for every zero-normalized
simple claims bankruptcy problem (c, E) = ((c1, c2, c3, . . . , cn), E) with changes
by splitting up ci in ci,1, ci,2, . . . , ci,k into a bankruptcy problem

(c′, E) = ((c1, . . . , ci−1, ci,1, ci,2, . . . , ci,k, ci+1, . . . , cn), E)

we have that

fj(c
′, E) = fj(c, E) for every j ∈ N \ {i}

Suppose that one of the claimants dies leaving behind parts of his claim
to di�erent heirs. These heirs become new claimants, each one claiming the
part of the original claim he received. Their claims together sum up to
the original claim. The additivity property states that if the bankruptcy
problem is a zero-normalized simple claims problem, nothing changes for the
other claimants. This is called even strategy-proofness and it is satis�ed also
by the CEA rule. Finally, it is trivial to prove that the adjusted proportional
is a simmetric rule and it satis�es equal treatment of equals. The following
theorem characterizes the adjusted proportional rule:

Theorem 2.6. The adjusted proportional rule is the unique game theoretic
division rule for bankruptcy problems which satis�es the composition from
minimal right, equal treatment of equal and additivity of claims.

We sum up all the properties in a table 2.1.
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Property Prop. Adj. Prop. CEA

Equal treatment of equals X X X
Scale invariance X X X
Composition X X
Path independence X X
Monotonicity X X X
Consistency X X
Composition from minimal right X
Additivity of claims X X
Independence of claim truncation X
Self duality X

Table 2.1: Table summarizing the properties
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Chapter 3

Auction Design

The best known type of auction is the one we see in movies, where there
is an auctioneer selling a good and there are many buyers trying to win it
progressively increasing the bid. This is the simplest model: it is a single-
item auction, since there is one indivisible good that has to be allocated,
and we call the mechanism english auction. Nowadays there are many types
of auctions, for example are used even auctions in which the winner o�ers
less then the others. In this chapter we present the most known type of
auction, starting from the simple single item auction and arriving to more
complex mechanisms. We also give the mathematical description and we
show many applications of this model. In particular, the auction can be used
to solve bankruptcy problems, extending the usual single-item auction. In
this case, the seller has a resource that should be divided among the bidders
that propose him a valuation of the resource. We start our analysis with a
general introduction on mechanism design and then we introduce the auction
model. From the single-item, we arrive to more complex mechanisms as the
second price auction.

3.1 Introduction to Mechanism Design

Mechanism design is the sub�eld of microeconomics and game theory
that deals with the implementation of a good system to solve problems in-
volving multiple self-interested agents, assuming that they act rationally in a
game theoretic sense. In recent years mechanism design has found many im-
portant applications. Some examples are scheduling and resource allocation
problems. In general, the rules are given and the goal is to �nd a possible
outcome of the game, while here we face the inverse problem: design the
rules in order to achieve an appealing result. The main issue is to create
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incentives in order to extract the relevant private information from the play-
ers to reach a socially e�cient outcome. The goals of mechanism design are
called with the abstract term of social choice that is simply an aggregation of
participants' preferences toward a single joint decision. We give some basic
examples:

• Elections. In political elections each voter has his own preference among
many candidates. The outcome of an election is a single social choice.

• Auctions. Consider an auction involving multiple buyers and a single
sellers. Its rules de�ne the social choice that in this speci�c case is the
identity of the winner.

• Market. Generally in reality there are multiple buyers and multiple
sellers. Each participant has his own preferences but the outcome is a
single social choice that is the allocation of money and goods.

In order to better understand the importance of designing systems to
reach desirable results, we report an episode regarding women's badminton
in 2012 at the London Olympics.

The tournament design used is the usual one used even in the World
Cup soccer. There are four groups (A, B, C, D) of four teams each. The
tournament has two phases. In the �rst phase, each team plays against the
other three teams in its group, and does not play teams in other groups.
The top two teams from each group advance to the second phase, while the
bottom two teams from each group are eliminated. In the second phase, the
remaining eight teams play a standard knockout tournament. There are four
quarter�nals, with the losers eliminated, followed by two semi�nals, with the
losers playing an extra match to decide the bronze medal. The winner of the
�nal gets the gold medal, the loser the silver one.

To understand the issue, we had to explain how the eight winners are
paired up in the quarter�nals. The team with best score from group A plays
with the second best team from goup C in the �rst quarter�nal, similarly
the best team from group C plays with the second best one from group A
in the third quarter�nal. The top two best ones from B and D are paired
up analogously in the second and fourth quarter�nals. The problems arises
when the Danish team (PJ) beated the Chinese team (TZ), and as a result
PJ won group D with TZ coming in second. Both teams advanced to the
knockout stage of the tournament. The �rst controversial match involved
another team from China (WY), and the South Korean team (JK). Both
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teams had a 2-0 record in group A play. Thus, both were headed for the
knockout stage. The issue was that the group A winner would likely meet
the fearsome TZ team in the semi�nals of the knockout stage, where a loss
means a bronze medal at best, while the second-best team in group A would
not face TZ until the �nal, with a silver medal guaranteed. Then both the
WY and JK teams try to deliberately lose the match. This unappealing
spectacle led to scandal and the disquali�cation of the two teams.

Figure 3.1: Women's badminton tournament at the 2012 Olympics

The episode shows that rules matter and poorly designed systems can
lead to undesirable behaviour. Usually rules are not designed from scratch
but the designer wants to understand a game that already exists in order
to add or modify rules to obtain an appealing outcome. In particular the
designer studies the equilibria. In most games, the best action that a partic-
ipant could play depends on what the other players do and, informally, an
equilibrium is a steady state of a system where each participant, assuming
everything else stays the same, wants to remain as it is. The goal of mech-
anism design is to give rules in order to obtain the desirable outcomes as
equilibria of the game. Often mechanism designers try to achieve outcomes
satisfying properties as truthfulness, budget balance etc. Recalling the ex-
ample of auction made before, one may want to know what are the rules
that incentivate players to reveal their real valuation of the good. In next
sections, we �rstly formally explain the auction model and then we give the
rules that make an auction truthful.

38



3.2 Auction Design Basics

Auctions are a widely used model in economic theory. They are a form
of market where the roles of participants are the following:

1. Seller : is the agent willing to sell the goods it possesses. An auction can
have a single or multiple sellers. We limit our analysis to the case of a
single seller but all the de�nitions and theorems can be easily extended
to multiple sellers' case.

2. Bidders : is the set of potential buyers that will be participating in the
auction and competing for the goods. In general, we assume bidders
to be sel�sh and capable of lying about their valuation of the goods, in
order to make the maximum pro�t.

3. Auctioneer : is the third party between buyers and seller. An auctioneer
initiates the auction and decides about the winner and the pricing that
winner has to pay. In the scenario we consider there is a single seller
that is itself the auctioneer, so we use the term auctioneer or seller with
no di�erence.

Figure 3.2: Example of participants in an auction

There are many types of auctions di�erent for the mechanism that
chooses the winner and the price the winner should pay. Some of the most
known are the english auction, the dutch auction, the �rst price and the
second price auctions.
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• English auction. This method is called "ascending price auction" since,
starting from a low �rst bid, the auctioneer solicits increasingly higher
bids. The process continues in case of a single item until that item is
sold to the last and highest bidder.

• Dutch auction. This method is called "descending price auction" and
it is an auction in which the auctioneer begins with a high asking price,
and lowers it until some participant accepts the price, or it reaches a
predetermined reserve price.

• First price auction. In this type of auction, the bidders propose to the
seller a private valuation and the seller gives the item to the highest
bid. The winner has to pay an amount equal to his bid.

• Second price auction. In this case, the winner is determined in the same
way of �rst price auction but he pays an amount equal to the second
highest bid.

The �rst price and second price auctions are types of sealed-bid auc-
tion, as opposed to the �rst two formats that belong to the category of open
auctions.
The auction model is simply a method for allocating goods. For this reason
it is very used and some examples of applications are cache allocation, spec-
trum sharing etc.
We start our analysis from the single-item auction that is the easiest mech-
anism one could think almost.

Single Item Auctions. A single-item auction is an auction where a seller
has an item and there are n bidders that are potentially interested in buying
it. The goal is to analyze bidder's behaviour.
The �rst step is to model what a generic bidder wants. The �rst assumption
is that each participant i has a nonnegative valuation vi of the item: vi is his
maximum willingness-to-pay for the item being sold. The second assumption
is that this valuation is private, meaning that vi is unknown to all other
bidders and initially to the seller too. The third assumption is that bidders
have a quasi-linear utility : if a bidder lose the auction then his utility is 0,
while, if he wins, it is vi − p, where p is the price he must pay to obtain the
item. To describe the utility function, we can introduce a binary variable xi
for each player. xi is 1 if player i wins, 0 otherwise. A feasibility constraint
is
∑

i xi ≤ 1. The utility formally becomes:
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ui =

{
0 if xi = 0

vi − pi if xi = 1

Since our aim is to analyze the second price auction mechanism that
belongs to the class of the sealed-bid auctions, we formally describe these
ones.

Sealed-Bid Auctions. The sealed-bid auction can be summarized by
the following mechanism:

1. Each bidder communicates a bid bi to the seller

2. The seller decides who gets the item

3. The seller decides the price the winner has to pay

Remark. Recalling the concepts of non-cooperative game theory illus-
trated in chapter one, an auction can be modelize as a non-cooperative
game where players are the potential buyers and a strategy is simply the
evaluation bi declared by bidder i to the seller. This must not be confused
with the real evaluation vi, that is a private information known only by
the bidder i. This distinction is necessary to analyze players' cheating
behaviour.

Procedures of this type are called direct-revelation mechanism, because
in the �rst step agents are asked to reveal directly their private evaluations.
The direct revelation mechanism can be described by a pair (f, p) where

• f : V → A is a function de�ned on the set V = ×iVi of all possible
players' valuations and it is called as action rule. It models the step
two, namely the decision of the seller.

• p : V → Rn takes real value and is called payment rule, determining
the payment each player has to pay to the seller.

Remark. There exists indirect mechanisms: some examples are the dutch
and english auction explained before.

In the second step of the direct mechanism we trivially assumed that the
seller choose the bidder with the highest bid, as in the case of �rst and second
price auctions. The third step, instead, can be implemented in multiple ways.
For example, the seller could �x the price to be 0 or to be �xed (constant).
The pricing rule a�ects signi�cantly bidder behaviors. Consider two natural
choices:
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• No payment. In this version we give the item for free to the player with
the highest bi. Clearly, this method is easily manipulated: every player
will bene�t by exaggerating his bi, reporting a much higher b̄i � bi that
can cause to him to win the item, even if his real evaluation is not the
highest.

• Pay the bid. An attempt to avoid this behaviour could be having the
winner pay the declared bid. However, also this system is open to
manipulations: a player bidding bi and paying bi has 0 utility. Thus,
he should attempt to declare a lower value b̄i < bi that still wins. In
this case he can win the item and get a positive utility ui = bi − b̄i.
To determine the value b̄i, player i should only know the value of the
second highest bid and declare a value just above it.

Example 3.1. Consider an auction with four bidders whose bids are
given by the vector b = (100, 80, 75, 50). Suppose that the vector of bids
corresponds to their real evaluation: b = v. If the �rst player knows
the evaluation of the second player, he can obtain a non negative utility
bidding a value slightly higher than 80, for example b1 = 81. Clearly
he wins the auction with utility u1 = 100− 81 > 0.

In order to prevent player's cheating behaviour and to assign the item
to the bidder with highest real evaluation, a solution could be use the method
already mentioned in the previous section, called second price auction.

3.3 Second Price Auctions

Second price auctions are the most common ones in practice. These
are sealed-bid auctions in which the highest bidder wins and pays a price
equal to the second highest bid. This mechanism is also known as Vickrey
auction from the name of the economist William Vickrey that �rst analyzed
the mechanism in the article "Counterspeculation, auctions and competitive
sealed tenders" in 1961.
Suppose n players, each one having a non negative valuation of the object
vi ≥ 0, and suppose that v1 > v2 > · · · > vn. In a �rst price auction the
winner is always player one bidding v2 ≤ b1 ≤ v1. So the seller gives the item
to the player whose valuation is higher. In second price auctions, it does
not always happen. In fact, (v2, v1, 0, 0, . . . , 0) is a Nash equilibrium. In this
case the winner is player two and all agents have zero utility. This example
show that second price auctions are more complex than �rst price auctions.
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Despite this fact, Vickrey's mechanism has an interesting property. In fact,
it is truthful meaning since no player has incentive in lying on his valuation.
This result is the reason why second price auctions are widely used. A bidder
when deciding a strategy by selecting a bid does not need to speculate about
other bidders valuation. This is completely di�erent from �rst price auctions
where, instead, the optimal strategy depends on other players' behaviour.

Proposition 3.1. In a second price auction, a weakly dominant strategy for
every bidder i is to set the bid bi equal to his private valuation vi.

Proof. Consider an arbitrary bidder i with valuation vi. Assume that all
bids of the other bidder are �xed and denote with b−i the vector of all bids
b but with the i-th component removed. We want to show that vi = bi. Let
B = maxj 6=i bj denote the highest bid by some other bidder. Since we are
considering a second price outcome, the possible outcomes are only two:

1. bi < B, meaning that i loses and receives utility equal to 0

2. bi ≥ B, then i wins at price B and receives utility equal to vi −B

Finally, consider two cases:

1. vi < B: in this case the maximum utility bidder i can obtain is
max{0, vi −B} = 0. But the same result is achieved by bidding truth-
fully.

2. vi ≥ B: in this case the maximum utility bidder i can obtain is
max{0, vi − B} = vi − B. But the same result is achieved by bidding
truthfully.

Thus, declare bi = vi is a weakly dominant strategy.

Example 3.2. Consider again the case of an auction with four bidders and
bid vector given by b = (100, 80, 75, 50). Consider the second player with bid
b2 = 80 and suppose v2 = b2. Moreover, suppose other bids to be �xed. If
second player declares less than 100, he loses. Instead declaring a bid b̄2 ≥ 100
makes him win with utility u2 = max{v2 − 100} = max{80 − 100, 0} = 0.
But the same utility is obtained bidding truthfully v2 = 80. Thus the second
player has no interest in lying on his evaluation.

The second important property is that each truthful bidder never re-
grets partecipating in a second price auction. Formally:

Proposition 3.2. In a second price auction, every truthful bidder is guaranteed
a nonnegative utility.
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Proof. Each bidder in a second price auction can lose or win. If a player
loses, he receives 0 utility. If a bidder i wins, then he receives utility equal
to vi − p, where p is the second highest bid. Since i is the winner (hence,
bi is the highest evaluation) and he bids truthfully bi = vi then p ≤ vi and
vi − p ≥ 0

Despite the truthfulness property, second price auctions are susceptible
to collusion. With this term, we indicate the propensity of players to form
coalitions in order to obtain more at a lower price. To better understand, we
give the following example:

Example 3.3. Consider the auction with four players described by the vector
of bids b = (100, 80, 75, 50). By the theorem 3.1, we know that bids corre-
spond to the real evaluations vi = bi ∀i = 1, 2, 3, 4. This means that player
one wins paying a price of 80. Player two, knowing he loses, can negotiate
with player one to declare a smaller evaluation b̄2 = 75 and to split half and
half of the 5 extra units of utility that player one will save.

As shown, the players can lie on their evaluation and can make deals
with the winner to achieve a positive utility.

3.3.1 Properties of second price auctions

Second price single-item auctions are ideal since they satisfy three
desiderable properties. The �rst is formalized by the following de�nition:

De�nition 3.1. An auction isDominant-Strategy Incentive Compatible (DSIC)
if truthful bidding is always a weakly dominant strategy for every bidder and
if truthful bidders always obtain nonnegative utility.

The condition of non negative utility is usually considered a separated
requirement and is called individual rationality. We de�ne the social welfare
of an outcome of a single-item auction as

n∑
i=1

vixi

where xi is 0 if bidder i lose, 1 if he win. Since we are considering single-
item auctions,

∑n
i=1 xi ≤ 1 is a feasibility constraint. The social welfare in

this case is equal to winner's valuation or 0 if there is no winner.

De�nition 3.2. An auction is welfare maximizing if, when bids are truthful,
the auction outcome has the maximum possible social welfare.
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Welfare maximization states that even if the bids are a priori unknown
to the seller, the designed auction mechanism identi�es the bidder with the
highest valuation. The properties for a second price auction can be summa-
rized by the following theorem.

Theorem 3.3. A second price single-item auction satis�es the following:

1. Strong incentive guarantees. It is a DSIC auction

2. Strong performance guarantees. It is a welfare maximizing auction

3. Computational e�ciency. It can be implemented in time polynomial in
the size of the input, meaning the number of bits necessary to represent
the numbers v1, v2, . . . , vn.

The proof of the points 1 and 2 of the theorem derives from the propo-
sitions 3.1 and 3.2. Truthfulness makes easy for a bidder to choose a strategy,
moreover guarantees to the seller that no one lies in evaluating the object
allowing to assign the item to player whose valuation is the most. The third
point 3 derives from theorem 11.24 in [11], since a snigle item auction is a
simpler case of a combinatorial auction, a generalized model that we do not
consider in the analysis. The importance of the third property can be seen
in applications since an auction should run in a reasonable time. This can be
better understand with an example of real application: the sponsored search
auction.

Example 3.4. Every time we use search engine on web typing a query, an
auction is run in real time to decide which advertisers' link are shown, how
these links are arranged visually and what the advertisers are charged. These
types of auction are called spondored search auctions.

As we already said, the goal is to desing a truthful auction whose equi-
libria lead to an e�cient action. This is satis�ed by second price auctions.
Until now, we have analyzed single-item auctions. From now on, we consider
a more general setting assuming that a resource has to be sold to the partici-
pants of an auction. Thus, recalling the binary variable xi introduced to take
into account the winner, from now on, we have that xi is a continuos variable
taking values in [0, 1] and representing the fraction of resource assigned to
player i. This is a useful generalization that allows us to model more complex
mechanisms such as bankruptcy games.
The next sections introduce a well-known model: the VCG mechanism. It is
used in practice because it has many advantageous properties.
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3.3.2 VCG Auction

The Vickrey-Clarke-Groves mechanism (VCG) is a generalization of the
second price auction mechanism. Reference articles are [19], [16] and [3]. The
formal de�nition is the following one:

De�nition 3.3. A VCG mechanism is a direct mechanism (f, p) such that:

• It implements a social optimum

f(v1, v2, . . . , vn) ∈ arg max
a∈A

∑
i

vi(a)

• For some functions hi : V−i → R, we have that for all v1 ∈ V1, . . . , vn ∈
Vn

pi(v1, . . . , vn) = hi(v−i)−
∑
j 6=i

vj(f(v1, . . . , vn))

Note that the terms
∑

j 6=i vj(f(v1, . . . , vn)) is exactly the social welfare
minus the value of the player i, vi(f(v1, . . . , vn)). Thus, this mechanism aligns
all players' incentives with the goal of maximizing social welfare, which is
exactly obtained telling the truth. The other term in the payment formula
hi(v−i) has no strategic implication for player i since it does not depend in
any way on his valuation. Hence, for player i, hi(v−i) is just a constant.
Nevertheless, the choice of this term a�ects signi�cantly how much player i
has to pay and in which direction (depending on the sign, we have that either
player gives money to the system or the reverse). We have the following
result:

Theorem 3.4 (Vickrey-Clarke-Groves). Every VCG mechanism is incentive
compatible, meaning that truthful bidding is always a weak dominant strat-
egy.

Proof. Fix i, v−i, vi and v̄i. We need to show that for a generic player i
with true valuation given by vi, the utility when declaring vi is not less than
the utility when declaring v̄i. Denote a = f(vi, v−i) and ā = f(v̄i, v−i). The
utility of i, when declaring vi, is

vi(a) +
∑
j 6=i

vj(a)− hi(v−i)

while, when declaring v̄i, is

vi(ā) +
∑
j 6=i

vj(ā)− hi(v−i)
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Since a = f(vi, v−i) maximizes social welfare over all alternatives,

vi(a) +
∑
j 6=i

vj(a) ≥ vi(ā) +
∑
j 6=i

vj(ā)

and thus the same inequality holds when subtracting the term hi(v−i) from
both sides.

The problem is now to determine the term hi. One trivial possibility
is choosing hi = 0. This has the advantage to be simple but does not make
sense because the mechanism pays here a great amount to the players, since
the price has negative sign. Intuitively, we would prefer that players pay the
seller. Two requests seem resonable:

1. Non negative utilities for all players: ui ≥ 0

2. Non negative payments from the players to the system: pi ≥ 0

The following choice provides the two properties:

De�nition 3.4. The choice

hi(v−i) = max
b∈A

∑
j 6=i

vj(b)

is called the Clarke pivot payment.

Under this rule, the payment of player i is

pi(v1, . . . , vn) = max
b∈A

∑
j 6=i

vj(b)−
∑
j 6=i

vi(a)

where a = f(v1, . . . , vn).
Intuitively, player i pays an amount equal to the di�erence between the
social welfare of the other players without i's partecipation and with i's
partecipation. With this choice of the functions hi, we have the following
theorem:

Theorem 3.5. A VCG mechanism with Clarke pivot payments makes no pos-
itive transfers to the seller. If vi(a) ≥ 0 for every vi ∈ Vi and a ∈ A, then the
utility is always nonnegative.
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Proof. Let a = f(v1, . . . , vn) be the alternative maximizing
∑

j vj(a) and
b be the alternative maximizing

∑
j 6=i vj(b). To show that the utilities are

nonnegative, note that utility for a generic player i is given by:

vi(a) +
∑
j 6=i

vj(a)−
∑
j 6=i

vj(b) ≥
∑
j

vj(a)−
∑
j

vj(b) ≥ 0

where the �rst inequality holds because vi(b) ≥ 0 and the second because a
was chosen in such a way

∑
j vj(a) is maximimum. To show that there are

not positive transfers from players to the system, namely pi ≥ 0, note that

pi(v1, . . . , vn) =
∑
j 6=i

vj(b)−
∑
j 6=i

vj(a) ≥ 0

since b was chosen in such a way that
∑

j 6=i vj(b) is maximum.

In other words, the mechanism is DSIC.
The Clarke pivot rule does not �t many situations where valuation are neg-
ative, meaning when alternatives have a cost for the players. In such cases
the function hi can be properly modi�ed.

3.4 The Revelation Principle

Until now, we have consider only direct mechanisms. We now formal-
ize the general notion of mechanism. The idea is that each player has some
private information ti ∈ Ti that captures his preferences over a set of alter-
natives A. This means that vi(ti, a) is the value that player i assignes to
a when his private information is ti. The aim is to implement some func-
tion F : T1 × . . . × Tn → A that aggregates these preferences. We denote
with Xi the set of all possible actions for player i. The outcome function
a : X1 × . . .×Xn → A choses an alternative in A for each pro�le of actions.
The payment function p : X1 × . . .×Xn → R speci�es the payment of each
player for every pro�le of actions. The general formal de�nitions are the
following ones:

De�nition 3.5. A mechanism for n players is given by:

1. players' type spaces T1, . . . , Tn

2. players' action spaces X1, . . . , Xn

3. a set of alternatives A
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4. players' valuation functions vi : Ti × A→ R

5. an outcome function a : X1 × . . .×Xn → A

6. payment functions p1, . . . , pn

The game induced by the mechanism is given by using the type spaces Ti,
the action spaces Xi and the utilities

ui(ti;x1, . . . , xn) = vi(ti; a(x1, . . . , xn))− pi(x1, . . . , xn)

De�nition 3.6. The mechanism implements f : T1×. . .×Tn → A in dominant
strategies if for some dominant strategy equilibrium s1, . . . , sn of the induced
game, where si : Ti → Xi, we have that for all ti

f(t1, . . . , tn) = a(s1(ti), . . . , tn(sn))

The introduction of a more general de�nition of mechanism seems to be
reasonable and apparently allows us to do more than what is possible using
incentive compatible direct revelation mechanisms. But this is not true: any
general mechanism that implements a function in dominant strategies can
be converted into an incentive compatible one. The result is summarized in
the theorem:

Proposition 3.6 (Revelation principle). If there exists an arbitrary mechanism
that implements f in dominant strategies, then there exists an incentive com-
patible mechanism that implements f . The payments of the players in incen-
tive compatible mechanism are identical to those, obtained at equilibrium,
of the original mechanism.

Proof. Let s1, . . . , sn be a dominant strategy equilibrium of the original mech-
anism. De�ne a new direct revelation mechanism:

f(t1, . . . , tn) = a(s1(t1), . . . , sn(tn))

and
p̄i(t1, . . . , tn) = pi(s1(t1), . . . , sn(tn)).

Since each si is a dominant strategy for player i, then for every ti, x−i, x̄i, we
have that

vi(ti, a(si(ti), x−i))− pi(si(ti), x−i) ≥ vi(ti, a(x̄i, x−i))− pi(x̄i, x−i)

Thus in particular it is true for all x−i = s−i(t−i) and any x̄i = si(t̄i) which
gives the de�nition of incentive compatibility of the mechanism (f, p̄1, . . . , p̄n).

As consequence, without loss of generality, we restrict our analysis to
the case of direct incentive compatible mechanisms.
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3.4.1 Characterizations

Since our analysis is focused on incentive compatible mechanisms, we
give some useful characterizations without reporting the proof, that can be
found in [11].

Proposition 3.7. A mechanism is incentive compatible if and only if it satis�es
the following conditions for every i and for every v−i:

1. The payment pi does not depend on vi, but only on the alternative
chosen f(vi, v−i). That is, for every v−i, there exists prices pa ∈ R
for every a ∈ A, such that for all vi with f(vi, v−i) = a, we have that
p(vi, v−i) = pa

2. The mechanism optimizes for each payer. That is, for every vi, we have
that f(vi, v−i) ∈ arg maxa(vi(a)− pa), where the quanti�cation is over
all alternatives in the range of f(., v−i)

De�nition 3.7. A single parameter domain Vi is de�ned by a publicy known
subset of winning alternatives Wi ⊂ A and a range of values [t0, t1]. Vi is the
set of vi such that for some t0 ≤ t ≤ t1, vi(a) = t for all a ∈ Wi and vi(a) = 0
for all a /∈ Wi. In such setting we will abuse notation and use vi as the scalar
t.

For this setting it is easy to completely characterize incentive compat-
ible mechanisms.

De�nition 3.8. A social choice function f on a single parameter domain is
monotone in vi if for every v−i and every vi ≤ v̄i ∈ R we have that

f(vi, v−i) ∈ Wi ⇒ f(v̄i, v−i) ∈ Wi

Meaning that if vi makes i win, then so will every higher valuation v̄i.

For a monotone function f , for every v−i for which player i can both
win and lose, is called critical value the value below which i loses and above
which he wins.

Example 3.5. In second price auctions the critical value for each player is the
highest value declared by the others.

Consider the single parameter domain. We call normalized a mecha-
nism if the established payment for losing is always 0. It is easy to see that
every incentive compatible mechanism can be turned into a zero normalized
one.
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Theorem 3.8. A normalized mechanism (f, p1, . . . , pn) on a single parameter
domain is incentive compatible if and only if the following conditions holds:

1. f is monotone in every vi.

2. Every winning bid pays the critical value to the winner.

It can be proved that the payment function is uniquely determined
by the social choice function f . From these results, we get that the only
incentive compatible mechanism that maximizes the social welfare are those
with VCG payements.

3.5 Myerson's Auction

Another possible way to design truthful auctions whose equilibria are
e�cient solutions is the Myerson's mechanism. It was introduced for the �rst
time in 1981 by Myerson in the article "Optimal auction design" [10]. Here
we want to give the mathematical framework and state the main properties
of the mechanism. This type of auction is better analyzed in the fourth chap-
ter.
Recalling the sealed-bid auction, even in this case the seller has to make two
choices: the action rule, in order to allocate the resource, and the pricing
rule. Consider the direct revelation mechanism described by the pair (f, p).
Here we denote with x the result of the action function, meaning x is a vec-
tor containing the resource allocated for each player. We denote with p the
result of the payment function, meaning that p is a vector with entries equal
to the price players have to pay to the seller. Thus, the direct revelation
mechanism can be described by the pair (x, p).
The di�erence from VCG auction mechanism is the designer's goal. While the
VCG auction maximizes the social welfare, the Myerson's auction maximizes
the seller's pro�t. All the mechanisms that achieve this goal are called opti-

mal mechanisms. We focus our attention on the design of pro�t-maximizing
auctions in which an auctioneer is selling (or buying) a set of services. As
usual, we assume n agents. Each one is single parameter, i.e. agent i's valu-
ation for receiving service is vi and the valuation for no service is normalized
to zero. The mechanism takes as inputs sealed bid from agents b and com-
putes an outcome consisting of an allocation x = (x1, x2, . . . , xn) and prices
p = (p1, p2, . . . , pn). We assume quasi linear utilities expressed by

ui = vixi − pi
where xi takes value in [0, 1]. Thus agent's goal is to maximize the di�er-
ence between his valuation and his payment. To generalize, we assume that
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there is a cost c(x) in producing the outcome x, which must be paid by the
mechanism. The goal is then to design a mechanism so that the auctioneer's
pro�t, de�ned as

Pro�t =
∑
i

pi − c(x),

is maximized and the mechanism is truthful.

The next example shows that the VCG mechanism maximizing the
social welfare is a poor mechanism if the goal is pro�t maximization.

Example 3.6. In a digital goods auction, an auctioneer is selling multiple
units of an item, such as downloadable audio �le or a pay-per-view television
broadcast, to consuler each interested in one unit. Since the marginal cost of
duplicating a digital good is negligible and digital goods are free disposal, we
can assume that the auctioneer has unlimited supply of unit for sale. Thus,
in this case we have c(x) = 0 for all x. The pro�t of the VCG mechanism
for digital goods auction is 0. Indeed, since items are available in unlimited
supply, no bidder places any externality on any other bidder, meaning that
an allocation does not in�uence any other future allocation and the other
valuations.

Myerson's auction belongs to the family of Bayesian auctions, assuming
that agents' private valuations are drawn from a known a priori distribution.
The Bayesian optimal mechanism is the one that maximizes the auctioneer's
expected pro�t, where the expectation is taken over the randomness agent's
evaluation. We do not analyze this type of models but in the next chapter
we provide an easier characterization of Myerson's auction without the in-
troduction of bayesian games.
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Chapter 4

Myerson's Pricing Mechanism

This chapter illustrates the pricing mechanism introduced by Myerson
in 1981 [10]. Following the article [6], we explain how this mechanism can be
applied in the case of the proportional rule, the Max-Min fair, the nucleolus
solution and the shapley value. Moreover, we add the application for the
mood value, illustrated in chapter one and in the article [4].
The proportional and the Max-Min are more used in application for exam-
ple in networking, the mood value solution is derived from the theoretical
tau-value solution, while the last two rules are classical solutions of TU coop-
erative games. All these allocations can be used to solve bankruptcy games.
Thus, we can use an auction mechanism to solve it. The application of
Myerson's mechanism to bankruptcy games is useful because it exploits the
property of being truthful: every claimant is encouraged to give his true
evaluation of the resource.

Given a bankruptcy problem, we �x the allocation rule to divide the
estate, we apply the pricing mechanism given by Myerson and we determine
the cost every player have to pay. The basic assumption is that the demands
are private information, even if we consider a bankruptcy problem. We apply
the revelation principle analyzed in chapter three. Finally, to better analyze
the pricing function obtained, we run some simulations and we compare
results for the �ve mentioned allocation rules.

4.1 Myerson's theorem

Recalling Myerson's setting illustrated in the previous chapter, we as-
sume quasi-linear utility for each player. Private valuations per unit of sta�
are denoted with vi ∀i ∈ N . Utilities are given by the following formula
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ui = vixi(b)− pi(b)

with the restriction pi(b) ∈ [0, bixi(b)] so that truthful agents receive
nonnegative utility and the seller cannot pay an agent. We assume xi(b)
takes values in [0, 1]. The setting is a single parameter environment with n
agents.

De�nition 4.1. An allocation rule x for a single-parameter environment is
implementable if there is a payment rule p such that the direct-revelation
mechanism (x, p) is DSIC.

We recall the de�nition of monotonicity:

De�nition 4.2. An allocation rule x for a single-parameter environment is
monotone if for every agent i and bids b−i by the other agents, the allocation
xi(z, b−i) to i is nondecreasing in his bid z.

Remark. The proportional rule, the max-min fair, the mood value, the nu-
cleolus and the shapley value are monotone rules.

We now state and prove the Myerson's theorem, useful to understand
the computations of prices for the �ve allocations.

Theorem 4.1 (Myerson). Fix a single-parameter environment.

1. An allocation rule x is implementable if and only if it is monotone.

2. If x is monotone, then there is a unique payment rule for which the
direct-revelation mechanism (x, p) is DSIC and pi(b) = 0 whenever
bi = 0.

3. The payment rule in (2) is given by an explicit formula.

Proof. Fix a single-parameter environment and consider an allocation rule x,
which may or may not be monotone. Fix i and b−i arbitrarily. For simplicity,
denote with x(z) and p(z) the allocation xi(z, b−i) and the payment pi(z, b−i)
of agent i when she bid z, respectively.
Suppose (x, p) is DSIC and consider any 0 ≤ y < z. Since agent i might well
have private valuation z and is free to submit the false bid y, DSIC demands
that

zx(z)− p(z) ≥ zx(y)− p(y) (4.1)

Similarly, since agent i might well have the private valuation y and could
submit the false bid z, (x, p) must satisfy

yx(y)− p(y) ≥ yx(z)− p(z) (4.2)

54



Rearranging inequalities 4.1 and 4.2 yields

z [x(y)− x(z)] ≤ p(y)− p(z) ≤ y [x(y)− x(z)] (4.3)

This implies that every allocation rule x is monotone.
Consider the case where x is a piecewise constant function. Then the graph
of x is �at except for a �nite number of "jumps". Fix z and let y tend to z
from above. Taking the limit y ↓ z, the left and the right-hand side of 4.3
becomes 0 if there is no jump in x at z. If there is a jump of magnitude h at
z, then the left and the right-hand side both tends to h z. This implies the
following constraint on p:

∀ z jump in p at z = z [jump in x at z] (4.4)

Combining this with the initial condition p(0) = 0, the payment formula is
the following:

pi(bi, b−i) =
l∑

j=1

zj [jump in xi(·, b−i) at zj] (4.5)

where z1, . . . , zl are the breakpoints of the allocation function xi(·, b−i) in the
range [0, bi].
Similarly, consider x monotone and di�erentiable 1. Divide all terms in 4.3
by y − z and let y ↓ z, then

p′(z) = zx′(z) (4.6)

Combining this with the initial condition p(0) = 0 yields the payment for-
mula:

pi(bi, b−i) =

∫ bi

0

z
d

dz
x(z, b−i)dz ∀i ∈ N, bi and b−i (4.7)

This formula gives the only possible payment rule that has a chance
of extending the given allocation rule x into a DSIC mechanism. Thus, for
every allocation rule x, there is at most one payment rule p such that (x, p)
is DISC.
We give a proof by picture that, when x is monotone and piecewise con-
stant and p is de�ned by 4.5, then (x; p) is a DSIC mechanism. The same
argument works more generally for monotone allocation rules that are not
piecewise constant, with payments de�ned as in 4.7. This will complete the

1With some additional facts from calculus, the proof extends to general monotone

functions. The details are omitted.
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proof.

Figure 4.1: Payment rule in the tree cases

Figure 4.1 depicts the utility of a bidder when player i bids truthfully,
overbids, and underbids. The allocation curve x(z) and the private valuation
v of the bidder are the same in all three cases. We depict the �rst term
v x(b) as a shaded rectangle of width v and height x(b). Using the formula
4.7, we see that the payment p(b) can be represented as the shaded area
to the left of the allocation curve in the range [0, b]. The bidder's utility is
the di�erence between these two terms. When the bidder bids truthfully,
its utility is precisely the area under the allocation curve in the range [0, v].
When the bidder overbids, its utility is this same area, minus the area above
the allocation curve in the range [v, b]. When the bidder underbids, its utility
is a subset of the area under the allocation curve in the range [0, v]. Since
the bidder's utility is the largest in the �rst case, the proof is complete.

Following the calculation done in the proof of Myerson's thorem and
assuming continuous allocation rules x̄i ∈ [0, 1] with continuous derivatives,
we can apply the formula for the integration by parts, obtaining

pi(bi, b−i) = bi
xi(bi, b−i)

E
− 1

E

∫ bi

0

xi(zi, b−i)dz
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Since the allocation rule is normalized and divided by the available re-
source E, then we obtain the fraction of resource x̄i given to each player i.

Remark. All the analyzed allocation rules are continous with continuous
derivatives. Thus, the formula 4.1 can be applied.

The pricing function has an easy interpretation: it is the area above
the curve x̄i(bi, b−i). For example, taking a generic monotone allocation, the
price is the area in purple in the following picture

Figure 4.2: Price as the area above the curve

Since we have assumed the utility ui = vixi(b)− pi(b), ui can be inter-
preted as the area between 0 and z, that is the area under the curve. These
are useful results for the implementation of pricing functions in R.

4.2 Pricing Functions

In this section, following the article [6], we report how to calculate
the price for the proportional rule, the max-min fair, the nucleolus and the
Shapley value. We add calculation for the mood value, an allocation solution
having interesting fairness property.
Given a bankruptcy problem (c, E), we can solve it assuming that every
claimant i is a partcipant of an auction described by a direct revelation
mechanism (x, p), for a �xed allocation rule x. Furthermore, we assume that
each player bids bi = ci and that the valuations are private. The price pi is
determined following the theorem 4.1.
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Proportional Rule

We recall that the proportional allocation rule function for every player
i, condering all other players' bids b−i �xed, has the form:

xi(z, b−i) =
Ez

z +
∑

j 6=i bj

All the hypotheses are satis�ed, so we can apply the formula 4.1 inte-
grating from zero to bi. We obtain the following pricing function:

pi =
b2i∑
j bj
− bi +

(∑
j 6=i

bj

)
log

( ∑
j bj∑

j 6=i bj

)
(4.8)

Max-Min Fair

For the Max-Min fair allocation, assuming that the bids are in incresing
order b1 ≤ b2 ≤ . . . ≤ bn, we recall that the function for player i has the form:

xi(z) = min

(
z,
E −

∑i−1
j=1 xj(b, E)

n− i+ 1

)
For simplicity, we have omitted b−i among the arguments of the alloca-

tion function, since the vector is considered �xed. The equation shows that
as we increase z from 0 to bi we have

xi(z) =

{
z if z ≤ Ci

Ci if z > Ci

where Ci is the critical point where the curve becomes constant. To
determine Ci, we can calculate xi for any su�ciently large z. This point

can be chosen to be E because
E−

∑i−1
j=1 xj(b,E)

n−i+1
≤ E for any vector b. Then

Ci = xi(E). The allocation function is shown in the �gure:

58



Figure 4.3: Allocation function for the Max-Min

Thus, the integral can be calculated as the area below the curve:∫ bi

0

xi(z)dz =

{
b2i
2

if bi ≤ Ci

C2
i

2
+ (bi − Ci)Ci if bi > Ci

And the �nal pricing function has the form:

pi = bi
min(bi, xi(E))

E
− min2(bi, xi(E))

2E

Mood Value

Recalling the de�nition of mood value

xi = mini +m(maxi −mini)

where

mini = max

{
E −

∑
j 6=i

bj, 0

}
and maxi = min{bi, E}

we can write the allocation rule as

xi(z) =

mini +
E−

∑
j minj∑

j 6=i maxj−
∑

j minj+z
(z −mini) if z < E

mini +
E−

∑
j minj∑

j 6=i maxj−
∑

j minj+E
(E −mini) if z ≥ E

Since supponsing b−i �xed implies that player i kwnows the value of his
minimum allocation, the function can be consequently modi�ed as follows:
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xi(z) =


z if z < mini

mini +
E−

∑
j minj∑

j 6=i maxj−
∑

j minj+z
(z −mini) if mini < z < E

mini +
E−

∑
j minj∑

j 6=i maxj−
∑

j minj+E
(E −mini) if z ≥ E

The integral
∫ bi
0
xi(z, b−i)dz inside the pricing function has to be cal-

culated in three di�erent cases:

1. bi ≤ mini: ∫ bi

0

xi(z)dz =
b2i
2

2. mini < bi < E:

∫ bi

0

xi(z)dz =
∫ bi
mini

xi(z)dz +
min2

i

2
=

mini(bi −mini) +
(
E −

∑
j minj

)
(bi −mini)−(

E −
∑

j minj

)∑
j 6=i (maxj −minj) ln

( ∑
j(maxj−minj)∑

j 6=i(maxj−minj)

)
+

min2
i

2

3. bi ≥ E:

∫ bi

0

xi(z)dz =
min2

i

2
+

∫ E

mini

xi(z)dz +

∫ bi

E

xi(z)dz

where the �rst integral is

∫ E

mini

xi(z)dz = mini(E −mini) +
(
E −

∑
j minj

)
(E −mini)−(

E −
∑

j minj

)∑
j 6=i (maxj −minj) ln

( ∑
j(maxj−minj)∑

j 6=i(maxj−minj)

)
and the second is

∫ bi

E

xi(z)dz =
[
mini +

E−
∑

j minj∑
j maxj−

∑
j minj

(E −mini)
]

(bi − E)

From these calculations we derive the pricing formula.
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Nucleolus

The nucleolus solution has not a closed and simple formula. We use the
package [14] to calculate the nucleolus for given a bankruptcy problem, while
for the price we approximate the integral inside the formula 4.1. Knowing
that the slope of the function xi(z) cannot change more than 2n−1 times, we
divide the interval [0, bi] into sub intervals of length given by

∆ =
bi

2n−1 + 1

In this way, the integral can be discretized as follows:

∫ bi

0

xi(z)dz ≈
2n−1∑
k=0

(
xi(k∆)∆ +

∆

2
[xi((k + 1)∆)− xi(k∆)]

)
The formula above is a second order approximation 2 and the error for

∆ → 0 is err = O(∆2), since xi(z) is a regular function. We consequently
calculate the pricing function.

Shapley Value

We recall the formula of the Shapley value:

xi(b) =
∑

S∈N\{i}

s! (n− s− 1)!

n!
{v(S ∪ {i})− v(S)}

where

v(S) = max

0, E −
∑

i∈N\S

bi


for each coalition S ⊆ N .

The allocation xi given by Shapley on the interval [0, bi] is piece-wise
linear with respect player i's bid bi. We konw that xi(0) = 0 and the deriva-
tive is a stepwise function given by:

∂xi(z)

∂z
=


∑2n−1

j=1 Θ̂j for 0 < z < Φ̂1∑2n−1
j=k+1 Θ̂j for Φ̂k < z < Φ̂k+1 k = 1, 2, . . . 2n−1 − 1

0 for Φ̂2n−1 < z < bi

2Trapezoid rule
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where

• Φ ∈ R2n−1 is the vector having as entries the image of the function

q(S) = max

0, E −
∑

j∈N\{S,i}

bj

 ∀S ∈ N \ {i}

• Θ is the corresponding vector having as elements all the shapley coef-
�cients:

αS =
s! (n− s− 1)!

n!

• Φ̂ is the vector Φ sorted in increasing order

• Θ̂ is the vector of coe�cients which corresponds to Φ̂

Thus, the integral can be calculated as the area under the curve sum-
ming up all the areas of triangles and rectangles.

4.3 Price comparison

In order to have an idea of the magnitude and trend of the prices, we
use the software R to simulate bankruptcy games and to calculate the price
for the �ve allocation solutions mentioned before.
First, we write functions that implements the price for the allocation rule
illustrated before and then we run some simulations. For simplicity, we sim-
ulate games with a number of players equal to n = 3. Each bid bi for i =
1, 2, 3 is assumed to be independent from all the others. It is drawn from a
uniform distribution U{1, 2, 3, . . . , 100}. Furthermore, we assume bids to be
integer numbers. The hypothesis of independence is not restrictive since we
suppose that all valuations are private information and that players do not
communicate each other. To ensure that the simulated game is a bankrupcty
game, we choose E to be a fraction of the sum of the bids. We call this frac-
tion congestion C since it indicates the percentage of demand satis�ed by
the resource:

E = C
∑
i

bi

Greater is the congestion, greater is the fraction of requests that can
be satisfy. We choose C = 0.05, 0.35, 0.65 and 0.95. Since all the prices are
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normalized, we can compare them for di�erent allocation solutions and dif-
ferent players. These are the results for 280 simulated games, di�erentiating
games with respect to congestion.

Figure 4.4: Prices for di�erent congestion

As we can see from the boxplots, the prices are not so di�erent if C
is high. This is a reasonable result since values of C near to one give a
non-meaningful bankruptcy game∑

i

ci ≈ E
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Going to the limit C → 1, all the solutions gives the same result: all players
receive a quantity equal to the demand.
The price obtained from the Max-Min allocation presents higher variability
in the magnitude with respect to the others. This is because Max-Min fair
allocation depends strictly on player's type.
Considering a bankruptcy game, we can classify a player i into four categories,
named: MM, MG, GM and GG. If a player asks less than the total amount
of resource, we call it moderate player (M) while, if he asks more, he is called
greedy player (G). In a similar way, if the sum of the demand of the remaining
n−1 players exceeds the total resource E, meaning that v({i}) = 0, the group
is a group of greedy players (G), otherwise we have a group of moderate
players (M). This classi�cation can be summarized in the table:

bi < E bi ≥ E∑
j 6=i bj < E MM MG∑
j 6=i bj ≥ E GM GG

Table 4.1: Types of player

The �rst letter refers to the group of players while the second one refers
to the player itself (G=greedy or M=moderate).
This classi�cation arises in a natural way looking at the formula of the mood
value xi = mini+m(maxi−mini) because, depending on the case MM, MG,
GM or GG, we have that mini or maxi can be equal to 0.
Considering all possible combinations of n = 3 players, it is possible to
characterize the type of game. In the article [4] it is proved that only six
combinations are possible and the game can be:

• GG: all players are in scenario GG

• MM: all players are in scenario MM

• GM: all players are in scenario GM

• GM-MG: some players are in scenarion GM, others in scenario MG

• GM-GG: some players are in scenarion GM, others in scenario GG

• GM-MM: some players are in scenarion GM, others in scenario MM

This characterization can be useful to compare prices in a di�erent way
and see if there are some interesting patterns. We report the results for the
simulations analyzed before.
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Figure 4.5: Prices in game MM and GG

As we expect, boxplots for games MM and GG are not so di�erent from
the ones for congestion C = 0.95 and C = 0.05 respectively. In games where
there are two types of players, we di�erentiate them with di�erent colors.
The point in the center is the median, the other two are the �rst and the
third quantile, similarly to a boxplot.

65



Figure 4.6: Prices in game GM-GG, GM-MG and GM-MM

As we can see from �gure 4.6, there are some type of players that pays
more. This happens for all allocation rules. We omit the plots for the game
GM since to obtain a large number of games of this type, we should run more
simulations or we should construct games ad hoc to obtain all GM players
inside a game. Simulations with a greater number of players n > 3 are ex-
pensive and an increase in n let the number of MG players become negligible,
as shown by the results obtained in [4].
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Chapter 5

Collusion Analysis

In this chapter, we analyze the possibility of collusion in Myerson's
auction. Even if the pricing rule ensures that there is no incentive to lie about
the true demand, users can aggregate each other trying to obtain more at a
lower price. It is important to determine if there is this possibility in order
to prevent users' cheating behaviour. We already know that second price
auctions, as the VCG one, are not robust to collusion, thus it is reasonable
to suppose that even Myerson's auction is sensitive to aggregation. We run
some simulations in order to prove or disprove this hypothesis. In order to
compare the case of single players with the case of coalitions, we �rst consider
the price given by Myerson and then we contruct a new cooperative game:
for each allocation rule, we de�ne the characteristic function. Since the core
of a game represents the chance for players to reach an agreement, we try to
characterize it using theorems illustrated in chapter one. Finally, we present
an application that, with simple calculations, con�rms our hypothesis.

5.1 Introduction

As �rst step of our analysis, we want to de�ne more precisely what we
mean with the term collusion. We have already used it in the third chapter,
saying that it indicates the propensity of players to form coalitions. This is
not entirely accurate since this term has a broader meaning. The general
de�nition is the following:

Collusion is an agreement, usually illegal and therefore secretive,
which occurs between two or more persons to limit open com-
petition by deceiving, misleading, or defrauding others of their
legal rights, or to obtain an objective forbidden by law typically
by defrauding or gaining an unfair advantage.
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In general, collusion at an auction can involve bidders, sellers, and/or
auctioneers. We focus our attention on buyers' collusion, since is the easiest
to analyze, considering auctions with only one auctioneer and many poten-
tial buyers. The auction model assumes that all players have independent
strategies. This is no longer valid as soon as some bidders make prior agree-
ments, as is often seen in practice. Facing a well-de�ned bidding procedure,
potential buyers cooperate sharing information and making agreements on
a predetermined behavior during the auction. We analyze the propensity of
players to aggregate forming coalitions. It is therefore essential to study the
stability of these ones.
Classic auction mechanisms, such as the second-price auction, are not de-
signed to withstand collusion among actors. The aim of our analysis is to
indagate if Myerson's auction mechanism is robust to buyers' collusion.

5.2 Collusion analysis

To analyze collusion, we have to compare utility functions. Utilities
give an order of preferences for players on the set of possible outcomes. This
means that if we want to know what result is better between x1 and x2 for
player i, we have to compare utility calculated at these two points: u(x1) and
u(x2).
The auction is a non-cooperative model, thus aggregation among agents is
not considered. To compare the case of single players with the case in which
there are coalitions, we had to de�ne a new cooperative game, allowing, as
the name said, cooperations among participants. We start our analysis with
the de�nition of a new game (N, v), starting from the given bankruptcy one
(c, E).
This section is structured as follows:

• First part: theoretical framework introducing the new cooperative game
(N, v).

• Second part: simulations and results.

5.2.1 Theoretical setting

We have already seen in the previous chapter that Myerson's auctions
satisfy the truthfulness property: no player has incentive in lying on his val-
uation. This property ensures that all the bids presented to the auctioneer
are equal to the true valuation of the resource. Nevertheless, there is another
possibility that agents have to cheat the system. This consists in aggregating
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each others trying to reach a more attractive outcome, that in our case is
a higher value of allocation and/or a lower price. The preferences over out-
comes are described, as said before, by utility functions ui ∀i ∈ N . Given
a bankruptcy problem (c, E), we recall that the utility in case of Myerson's
mechanism is

ui = vixi(b)− pi(b)

where

pi(bi, b−i) = bi
xi(bi, b−i)

E
− 1

E

∫ bi

0

xi(zi, b−i)dz

and recalling that 4.1 vi = bi
E
, then we obtain:

ui(bi, b−i) =
1

E

∫ bi

0

xi(zi, b−i)dz (5.1)

Thus, the utility is exactly the area below the curve 1 represented in
the following picture

Figure 5.1: Utility as the area below the curve

Inside the contest of Myerson mechanism, once the allocation rule is
�xed and the bankruptcy problem (c, E) is given, we want to know if it is
convenient for two or more players form a coalition aggregating demands and
partecipating as a single player. In order to analyze player's behaviour, we

1Recall that the allocation rule is normalized in such a way x̄i ∈ [0, 1]
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de�ne a new cooperative game. Given n agents, this new game is character-
ized as usual by the pair (N, v) where v is the characteristic function de�ned
in the following way:

v(S) = uS ∀S ⊂ N (5.2)

where the utility is given by the formula 5.1. In particular:

• For coalitions of two or more players, the characteristic function cor-
responds to the utility of an agent having as demand the sum of the
demands, considering �xed all other players outside the coalition. This
is better explained by the example below 5.1.

• For singletons {i}, it corresponds to the utility in Myerson's auction.

• For the grand coalition, it corresponds exactly to the the sum of all
demands, since we are considering a single bidder auction. This is
because all players partecipate together as a single player and, as con-
sequence, the price is zero and all the available resource is allocated for
every possible value of the demand. Recalling that the utility is the
area below the curve 5.1, the area in this case is a rectangle where the
base is

∑
i ci and the height is E. Thus, for a bankruptcy game (c, E),

v(N) =
∑

i ci, since the area is normalized and divided by E.

With these assumptions, it seems pro�table to form the grand coalition
since no money is due to the seller and the utility is higher than in all other
cases.

uS =
bS
E
× xS(b)− pS(b) ≤ uN = vN × E − 0 =

∑
i∈N

bi ∀S ⊆ N

However, if this happens, the problem becomes how to divide fairly the
resource among players bringing us back to the initial problem. Moreover,
thinking to applications as the networking one (e.g. spectrum allocation),
the grand coalition of all players is a rare event: claimants are spread on a
large region and it is unconvient for faraway players to coalize and share the
band.

We assume the demand of a coalition to be equal to the sum because
the mechanism is truthful and each participant already know that there is
no gain in giving a higher or a lower bid. Reasonably, each one gives to
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the seller the true valuation and the same happens when players form coali-
tions. Hence, we simply consider the case in which agents add up together
the claims.

To better understand the construction of the characteristic function v,
we provide an example.

Example 5.1. Consider a bankruptcy game with three players N = {1, 2, 3}
described by the couplet

(c, E) =

2
5
7

 , 10


Suppose the allocation rule x(b) to be �xed. For singletons

v({1}) = u1 =
1

E

∫ b1

0

x1(z)dz

v({2}) = u2 =
1

E

∫ b2

0

x2(z)dz

v({3}) = u3 =
1

E

∫ b3

0

x3(z)dz

where b = (b1, b2, b3) = (2, 5, 7). For the grand coalition v(N) =∑
i ci = 14, while for coalitions of two players v({i, j}) = u{i,j} where u{i,j} is

the utility of the �rst agent in the game characterized by b = (bi + bj, bz); z
is the third player outside the coalition. For instance, if we consider {1, 2},
then

v({1, 2}) = u{1,2} =
1

E

∫ b1+b2

0

x{1,2}(z)dz

with b = (5 + 2, 7) = (7, 7) and E = 10.
We give the precise result for all the allocation rules we consider in the
analysis:

Proportional

v({1}) = 1, 15 v({2}) = 1, 02 v({3}) = 2, 15
v({1, 2}) = 2, 15 v({1, 3}) = 3, 85 v({2, 3}) = 8, 11

Max-Min
v({1}) = 0, 2 v({2}) = 0, 8 v({3}) = 0, 8

v({1, 2}) = 1, 25 v({1, 3}) = 1, 25 v({2, 3}) = 3, 2

71



Nucleolus
v({1}) = 0, 1 v({2}) = 0, 97 v({3}) = 2, 17

v({1, 2}) = 2, 02 v({1, 3}) = 3, 6 v({2, 3}) = 6, 6

Mood value

v({1}) = 0, 13 v({2}) = 1, 01 v({3}) = 2, 21
v({1, 2}) = 2, 14 v({1, 3}) = 3, 74 v({2, 3}) = 6, 72

Shapley value

v({1}) = 1, 33 v({2}) = 0, 95 v({3}) = 2, 15
v({1, 2}) = 2, 05 v({1, 3}) = 3, 65 v({2, 3}) = 6, 7

5.2.2 Simulations

We run 200 simulations of bankruptcy games. As done in chapter
four, we consider n = 3 players, bids independent and drawn from a uniform
distribution U{1, 2, 3, . . . , 100} on integer numbers and the resource E chosen
as a percentage of the sum of the demands, called congestion. Then, having
these initial data, we calculate the value of the characteristic function v of the
cooperative game (N, v) described in 5.2. To compare utilities, we calculate
the di�erence between the marginal value of player i, that is

v(S)− v(S \ {i}) ∀S ⊆ N,

and the value of the single player v({i}). We use boxplot to show results
and we di�erentiate games on the congestion rate. We repeat the procedure
using all the allocation rules seen in the previous analysis: the proportional
rule, the mood value, the Max-Min fair allocation, the nucleolus and the
Shapley value.
Note that all the values have been normalized in order to better compare
them. The boxplots show the di�erence divided by the total resource:

v(S)− v(S \ {i})− v({i})
E
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Figure 5.2: Comparison of utilities
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As we can see from the �gure 5.2, the di�erences are equal or greater
than 0 for all allocations and for all congestion rates. In particular, we can
observe that the �rst quartile is always greater than 0. This means that
coalize is a weakly dominant strategy for most of the simulated games: the
utility is greater or equal if players are aggregated than in the case they play
alone. Looking at the boxplots for the proportional allocation rule, they are
all equal. This is due to the construction of simulations: we randomly draw
c and we let the congestion varying, moreover, for this allocation rule, the
utility does not depend on the resource E but only on the bids b. As we
already noticed in the analysis of pricinig function done in chapter four, the
Max-Min allocation is the one for which we see the highest variability.
This result is not a theoretical result, since it is the outcome of a numerical
analysis. Moreover, all simulations are done in case of three players since the
number of possible coalitions grows exponentially with respect the number of
players n. For these reasons we would like to verify the result using another
method, in particular exploiting the interpretation of core of the game de�ned
in 5.2.

5.3 Core characterization

Given a cooperative game (N, v), we recall the de�nition of the core:

C(v) =

{
x ∈ Rn :

∑
i∈N

xi = v(N) ∧
∑
i∈S

xi ≥ v(S) ∀S ⊂ N

}

Considering the contest of bankruptcy problems and interpreting x as
allocation, the core has the interpretation of set of solutions accepted by
coalitions. Allocations inside the core are solutions for which cooperation
is convenient and aggregation among players is encouraged. Thus, we can
conclude that if a game has non empty core, then exists the possibility for
players to cheat the system by aggregating in groups.

Taking into account this meaning, we try to characterize the core using
the R package CoopGame [14]. Since the direct characterization is di�cult,
we use theorems proved in chapter one to prove or disprove the emptiness
of the core. We simulate games with the procedure already described: we
run 200 simulations of bankruptcy games for each allocation rule consider-
ing n = 3 players and bids independently drawn from U{1, 2, 3, . . . , 100}; we
chose E as a percentage of the sum of the demands. Then, we calculate the
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value of v described in 5.2.
After obtaining the game (N, v), we proceed in our analysis exploiting the-
orem 1.6. We �rst check superadditivity, using the function implemented in
the R package isSuperadditiveGame that takes as argument the vector hav-
ing as entries v calculated for all possible coalitions. Then, for superadditive
games, we check the condition

v({1, 2}) + v({1, 3}) + v({2, 3}) ≤ 2v(N)

Once �xed the allocation rule, the data are summarized in a table: each
simulation is a row and in every column there is v(S) ∀S ⊆ N . Moreover,
we add two columns showing the results: the �rst gives information on the
superadditivity of the game and the entry is yer or no; the second gives
information on the core and the variable is:

• 1 if the core is nonempty

• 0 if the core is empty

• NA, i.e. Not Available, if the game is not superadditive, meaning that
we cannot use the characterization given by the theorem. This means
that we have not any information on the core

We give below an example of header of the resulting table in case of
mood value allocation.

Figure 5.3: Example of results in the case of Mood Value allocation.
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Results for n=3

The simulations show that in case of three players all games are su-
peradditive games for all allocation rules condidered. Thus, the theorem 1.6
holds and, checking the condition, we obtain a characterization of the core.
We �nd that for all simulated games, the core is non empty. This means that
there is convenience for a player to form coalitions with other players. We
run more simulations obtaining the same result. However, the non emptiness
of the core is not a rule: the outcome is obtained through a numerical anal-
ysis, thus we cannot say the core is empty in all three players bankruptcy
games. Despite this fact, it is unlikely that in many simulations there is not
any game with empty core. Moreover, since even second price auctions are
not designed to withstand collusion among actors, it is reasonable to suppose
that this holds also for Myerson's auctions.

Since for core characterization only the table is needed, we can extend
our analysis to the four players' case. To obtain information on the core,
we use a di�erent procedure than in the three players' case. In particular,
for n = 4 we use the theorem 1.2. This one gives a necessary and su�cient
condition for the non emptiness of the core: the core is non empty if and
only if the game is balanced. We recall that if the core is non empty, there is
the conveninece for players to form coalitions. For this reason, we check the
balancedness with the function implemented in the R package [14] and called
isBalancedGame. The input is a TU cooperative game in the same form as
the one for the function isSuperadditiveGame, while the output is TRUE if
the game is balanced, FALSE otherwise.
As in the three players' case, the result can be described by a table. We give
an example of header in the case of proportional allocation.

Figure 5.4: Example of results in the case of proportional allocation.
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Results for n=4

The simulations for n = 4 players show that all games are balanced
for all allocation rules. This means that by theorem 1.2, all games have
non empty core. Thus, cooperation is convenient for agents that have the
possibility to cheat the designed system. As said before, we can not take
these results as a general rule. Using the function already implemented, we
obtain that there are some simulated games not superadditive and/or not
convex. This fact underlines that an increase in the number of players n
could show di�erent behaviours, obtaining games with di�erent properties.
Unfortunatly, the simulations with more than four players are computational
expensive.

5.4 A simple application

Considering the context of networking, the possibility of collusion inside
a Myerson's auction can be viewed from another perspective. In particular,
we can consider an allocation problem in which each player has an account
and we wonder if it is convenient for a player to have multiple accounts
instead of one single account. In this case, the possibility of collusion is
positive, meaning that a user has not incentive in the creation of multiple
accounts, so that he has not incentive in cheating the system.
Since calculations for the comparison of utilities are very complex, we con-
sider the case of the proportional allocation. Thus, we �x the rule to be the
PF and, recalling that the price is given by 4.8, player i's utility is given by:

ui = bi −
∑
j 6=i

bj ln

( ∑
j bj∑

j 6=i bj

)
Suppose the two player's case N = {1, 2}, we want to know if player

one has interest in having two accounts. His utility in case of one unique
account is given by:

u1 = b1 − b2 ln
(
b1 + b2
b2

)
Suppose he divides his demand into two accounts: with the �rst, he

asks b1 − x, while using the second, he asks x. For simplicity, we assume
x ∈ [0, b1]. Is it convenient?
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The utility of player one, considering his �rst account, is

ū1(x) = (b1 − x)− (b2 + x) ln

(
b1 + b2
b2 + x

)
(5.3)

The question is where the function ū1 with respect to x, described by
the formula above 5.3, has its maximum: if it has maximum for x = 0 means
that player one has no convenience in having a fake identity and in dividing
his demand; if the maximum is reach for x = b1, then player one has interest
in owning more accounts.
The derivative is

ū′1(x) = −ln
(
b1 + b2
b2 + x

)
It is a decreasing function, thus player 1's utility has maximum for

x = 0. This con�rms our thesis: there is incentinve in collusion. In this case
can be view as a positive property since it makes sure that none of the users
has multiple accounts.
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Conclusion and Further Developments

The aim of this work was to analyze a di�erent way to solve bankruptcy
problems. In particular, we reviewed the usual bankruptcy situation ap-
proaching it as a non-cooperative game. We rewrote the allocation problem
as an auction using the game theoretical model. We focused our attention
on the Myerson's auction mechanism. As second price auctions, it is de-
scribed by an allocation rule and a princing rule. It is proved that this type
of auction is truthful, so users are not incentivate in lying on their true eval-
uation. For this reason, we �xed an allocation rule and we calculated the
pricing function that makes this property hold. Thus, thinking about the
bankruptcy situation, it ensures that players' demand is the real one. Then,
we wondered if it exists another possibility to cheat the system. For this
reason, we analyzed if partecipants are incentivated in aggregation, forming
coalitions and obtaining a larger fraction of the available resource and/or a
lower price. Following literature, we called this possibility collusion. It can
be proved that second price auctions are not robust, hence we supposed that
the same holds for Myerson's mechanism.
To prove or disprove our assumption, we run numerical simulations. For all
the resulting games, the plots we have obtained show that aggregation is
convenient for all the allocation rules considered. Thus, since the behaviour
chosing a proportional rule is not di�erent from the one obtained chosing the
mood value or any other among the considered, we can �x the rule accord-
ing the problem we have to model. The analysis done seems to con�rm the
hypothesis that Myerson's auction, as the second price one, is not designed
to withstand collusion among players. However, this result is not a general
rule. In order to prove that collusion is always possible, we have to verify
it in a theoretical way, starting from the de�nition in 5.2. We tried to ana-
lyze the marginal value in the simplest possible case that is considering the
proportional allocation. Since the utility given by Myerson's mechanism is
complicated even in this case, we could not reach a conclusion. Despite this
fact, it seems unlikely that in many simulations there is not any game in
which collusion is not possible.
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To conclude, we report some points that can be better analyzed in
further analysis.

- First of all, with the use of more powerful calculator, we can extend the
simulations to more than three or four players.

- Second, the simulations can be constructed in another way for example
chosing E at random and then consequently chose the vector c, in
order to see if some results or some games' properties are di�erent.

- Extend the analysis to all semivalues, described in chapter one, starting
from the pricing function already implemented for the Shapley solution.

- Apply the resulting pricing function to a real applicated problem.

- Extend the model considering more than one seller.

- Finally, we can try to obtain theoretical results on the possibility of collu-
sion using for example an allocation rule made ad hoc in such a way
that calculations are easier.
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