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Abstract 

The battery energy storage systems (BESS), as a promising solution to deal with variability 

and uncertainty of intermittent renewable energy sources (RES) and loads, could play a pivotal role 

in the power grid. The high capital expenditure of these assets leads to deploying batteries not only 

for storing the surplus energy of renewable sources but also to provide different services to the grid. 

In general, behind the meter batteries are a good candidate to participate in the electricity market 

either as a flexible load or generator along with improving the RES performance for demand-side 

management (DSM). To this end, optimal and comprehensive scheduling for BESS which considers 

different types of uncertainties variables is vital. This research presents the optimal scheduling 

solution for BESS to DSM along with the electricity market based on California Independent 

System Operator (CAISO) regulations. BESS can be deployed in a power grid to optimize the 

operation of the system. However, due to the high initial cost of BESS, the efficient operation of 

this asset is imperative. In addition, to deal with the stochastic nature of load and generation as well 

as uncertainties in the electricity market, stochastic optimization methods should be deployed. This 

study introduces the data-driven distributionally robust optimization (DRO) model to address the 

uncertainties by defining an ambiguity set, i.e., Wasserstein ball over historical data. Participation in 

energy, spinning reserve, regulation up and down markets, both in day-ahead and real-time markets, 

beside the DSM are considered in this paper. Finally, the proposed method is tested and verified 

using real market data by comparing different optimization methods such as deterministic and 

robust with DRO.    

Keywords: Battery Energy Storage, California ISO energy market, data-driven decision 

making, distributionally robust optimization, Wasserstein metric 
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Sommario 

I sistemi di accumulo dell'energia a batteria (BESS), rappresentano una soluzione promettente 

per affrontare la variabilità e l'incertezza delle fonti di energia rinnovabile intermittente (RES) e dei 

carichi, essi potrebbero quindi svolgere un ruolo fondamentale nella rete elettrica. L'elevata spesa in 

conto capitale di queste attività porta a distribuire batterie non solo per immagazzinare l'energia in 

eccesso di fonti rinnovabili, ma anche per fornire diversi servizi alla rete. In generale, le batterie 

installate presso gli impianti degli utenti finali sono un buon candidato per partecipare al mercato 

dell'elettricità sia come carico flessibile che come generatore, oltre a migliorare le prestazioni FER 

per la gestione della domanda (DSM). A tal fine, la pianificazione ottimale e completa per BESS 

che considera diversi tipi di incertezze variabili è vitale. Questa ricerca presenta la soluzione di 

pianificazione ottimale per BESS (Battery Energy Storage Systems) per partecipare a Demand Side 

Management (DSM) insieme al mercato dell'elettricità basato sulla normativa California 

Independent System Operator (CAISO). I BESS possono essere implementati essere implementato 

nella rete elettrica per ottimizzare il funzionamento del Sistema, tuttavia, a causa dell'elevato costo 

iniziale, il funzionamento efficiente di questa risorsa è indispensabile. Inoltre, per gestire la natura 

stocastica del carico e della generazione, nonché le incertezze nel mercato dell'elettricità, 

dovrebbero essere impiegati metodi di ottimizzazione stocastica. Questo studio introduce il modello 

di ottimizzazione distributiva robusta (DRO) basata sui dati per affrontare le incertezze definendo 

un insieme di ambiguità, ovvero la sfera di Wasserstein sui dati storici. Nell'ambito del lavoro di tesi 

si è investigata la fornitura di servizio di energia, si riserva rotante, di regolazione a salire e a 

scendere, la partecipazione a servizi di DSM. Infine, il metodo proposto viene testato e verificato 

utilizzando dati di mercato reali confrontando diversi metodi di ottimizzazione come deterministico 

e robusto con DRO. 

Parole chiave: accumulo di energia, mercato energetico ISO della California, processo 

decisionale basato sui dati, ottimizzazione distributiva solida, metrica di Wasserstein 
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NOMENCLATURE 

A.  Indices and Sets 

𝑡 Time index. 

𝑆𝑝𝑖𝑛 Subscribe for Spinning Reserve. 

𝑅𝑒𝑔𝑈 Subscribe for Regulation Up. 

𝑅𝑒𝑔𝐷 Subscribe for Regulation Down. 

𝐸 Subscribe for Energy Market. 

𝐷 Subscribe for Demand. 

𝑃𝑉 Subscribe for Photovoltaic. 

𝕍 Set of decision variables. 

𝑣 Subscribe for decision variables. 

𝜋 Subscribe for uncertain variables 

(price). 

𝑇 Set of time. 

𝐿 Subscribe for Load. 

𝑐ℎ Subscribe for Charge. 

𝑑𝑐ℎ Subscribe for Discharge. 

𝑃𝑒𝑟𝑓 Superscript for regulation 

performance. 

𝑚𝑖𝑙𝑒 Superscript for regulation mileage. 

𝑡𝑒𝑛𝑑 Last time interval 

𝑃𝑉2𝐿 Subscribe for delivered from PV to 

Load. 

𝑃𝑉2𝐵𝑎𝑡 Subscribe for delivered from PV to 

battery. 

𝐵𝑎𝑡2𝐿 Subscribe for delivered from 

battery to Load. 

𝐵𝑎𝑡2𝐺 Subscribe for delivered from 

 

 

battery to grid. 

𝐺2𝐵𝑎𝑡 Subscribe for delivered from grid 

to battery. 

𝐺2𝐿 Subscribe for delivered from grid 

to Load. 

𝐷𝐴 Subscribe for day-ahead market. 

𝑅𝑇 Subscribe for real-time market. 

𝑂𝑝 Subscribe for Operational cost. 

𝐼𝑚 Subscribe for Import energy from 

grid. 

𝐸𝑥 Subscribe for Import energy to 

grid. 

ξ Subscribe for uncertainty. 

Ξ Uncertainty set. 

𝑁 Number of training data set. 

𝒫̂𝑁 Ambiguity set. 

ℚ Probability distribution.  

()̂ Index for training data-set.  

B. Parameters and Constants 

𝑡
(.)

 Market price at time t [$/kWh]. 

𝜌𝑡 Energy price at time t [$/kWh]. 

𝜂(.) Charging/discharging efficiency of battery. 

𝑃𝑀𝑎𝑥 Nominal capacity of inverter 

𝐶𝑎𝑝𝑡
(.)

 Nominal capacity at time t [kW] 

𝑙(.) Penalty rate for energy deviation [$/kWh] 

𝜗(.) Energy deviation threshold. 

𝜀 Confidence level of Wasserstein ball 

𝛼 Confidence level of CVaR. 

𝜁 Investor’s risk-aversion. 

C. Variables 

𝑅𝑡
(.)

 Market Revenue at time t. 

𝐶𝑡
𝑂𝑝

 Operational Cost at time t.  
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𝐶𝑡
𝐷 Demand Cost at time t.  

𝑆𝑜𝐶𝑡 State of Charge of Battery at 

time t. 

𝑃𝑡
(.)

 Capacity offered in market [kW]. 

𝑃𝑒𝑟𝑓𝑡
𝑅𝑒𝑔

 Performance Payment for 

regulation market [$]. 

𝑚𝑡 
Regulation Mileage Multiplier at 

time t. 

𝑎𝑐𝑐𝑡 
accuracy of Performance 

response at time t. 

𝑀𝑡 
Binary variable for 

Charging/Discharging mode. 

𝐸𝑡
(.)

 
Total energy exchange at time t 

[kWh]. 

∆𝐸𝑡
(.)

 
Energy deviation from day-ahead 

at time t [kWh]. 

𝑈𝑡
(.)

 Penalty for energy deviation [$]. 

INTRODUCTION 

THE battery energy storage systems (BESS), 

as a promising solution to deal with variability 

and uncertainty of intermittent renewable 

energy sources (RES) and loads, could play a 

pivotal role in the power grid. The high capital 

expenditure of these assets leads to deploy 

batteries not only for storing the surplus energy 

of renewable sources but also to provide 

different services to the grid [1, 2]. In general, 

behind the meter batteries are a good candidate 

to participate in the electricity market either as 

a flexible load or generator along with 

improving the RES performance for demand-

side management (DSM). To this end, optimal 

and comprehensive scheduling for BESS 

which considers different types of uncertainties 

variables is vital.  

The literature on the scheduling of storage 

systems can be predominantly categorized into 

three main groups. In the first group, the main 

aim is to provide services directly for 

ISO/RTO. These services are including energy 

arbitrage [3, 4, 5, 6, 7], frequency regulation 

[4, 5, 7], spinning reserve [3, 5, 7] and black 

start. These storages can either connect to 

transmission system stand alone [3] or join 

with other distributed generators such as wind 

farms [8]. In [3], independent storage units in 

the day-ahead and hour-ahead energy and 

reserve markets bidding have been studied 

where a significant portion of the power 

generated in the grid is from wind and other 

intermittent renewable energy resources. 

Authors in [4] have been investigating 

different revenue stream such as energy 

frequency regulation market both in DA and 

RT market by considering the grid limitation in 

the presence of PV generators in different 

locations in network. Reference [5] focused on 

stand-alone battery participating in DA 

ancillary services. Authors in [7] included the 

battery cycle life model into a revenue 

maximization model to find the optimal 

bidding for participating in DA energy, 

spinning reserve and regulation market.         

Second group focused on utility serves such 

as resource adequacy, transmission congestion 

relief, distribution and transmission deferral 

[9]. Reference [9] suggests a possible 

investment saving using ESS to defer 

investment in distribution network elements 

that are near to their technical limits. It avoids 

economical and focuses on technical analysis 

and suggests required ESS size based on load 

curve shape and loading growth rates 

compared with allowed loadings. In [10], 

authors looked for optimal installation place of 

a predefined number of BESS, Wind plant and 

capacitors. The objective function is the 

minimize of investment and reactive power 

costs. In the last set of articles, the problem of 

ESS scheduling has been solved from 

costumer perspective who installed ESS 

behind meters. Traditionally, behind the meter 

batteries had been used for time of use (TOU) 

management [11], demand charge reduction 
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[12, 11, 13], backup power [14, 15] and finally 

improving roof top PV self-consumption [16]. 

In [11] net present value (NPV) performed for 

hybrid PV-ESS system for optimized energy 

dispatch schedule by considering TOU pricing 

and reduction of peak demand minimization. 

Optimal scheduling of PV-ESS system in 

presence of incentives such as feed-in tariffs to 

maximize the daily operational saving through 

demand charge reduction has been presented in 

[12]. Authors in [16] developed closed loop 

controller with model predictive control 

(MPC) method to improve the performance of 

residential PV-ESS system and enhance the 

cost saving. The present paper is categorized in 

the first and third group in line with [17, 18] 

and model a battery energy storage system 

jointly with PV panels. It performs optimal 

scheduling by considering both an electricity 

market including energy, spinning reserve, 

regulation services in line with [7, 5, 4] as well 

as demand-side management in line with [16, 

12] cooperatively.  

Behind the meter BESS joint with RES 

scheduling problem to participate in market 

and demand side management suffer from 

three kinds of uncertainties including market 

clearing price, demand fluctuation, and adverse 

weather conditions. To accommodate these 

uncertainties in the power system problems, 

two major techniques are stochastic 

optimization (SO) [19, 20] and robust 

optimization [21, 22, 23]. H. Alharbi and K. 

Bhattacharya [24] formulate SO for the 

uncertainty of solar and wind along with power 

demand with separate probability distribution 

(PD) to find optimal power and energy size of 

BESS. Akhavan-Hejazi and Mohsenian-Rad 

[3] applied SO for dealing with market price 

fluctuation to choose optimal offering bids. 

Authors in [4] used SO for three types of 

uncertainties to determine optimal scheduling 

plan for joint PV-BESS. Mohsenian-Rad in [6] 

proposed a novel two stage SO for bulk battery 

system considering different design factors 

such as day-ahead and real-time market prices 

and the location, size, efficiency, lifetime, and 

charge/discharge rates of the batteries. In [25], 

a two-stage SO for grid connected battery 

developed and uncertainties such as wind, 

solar plugin vehicles had been covered. In 

general, in stochastic optimization, the PD of 

uncertain values assumed to be known or can 

be estimated based on historical data and aims 

to minimize the expected value of cost 

function by generating scenarios as many as 

possible.     

Stochastic optimization suffers from two 

main drawbacks. First, usually enough 

historical data are not available which makes 

PD inaccurate. Second, high number of 

scenarios cause burdensome calculation time 

[21]. The second possible approach, which has 

been used in literature, is robust optimization 

(RO). RO does not require the exact 

knowledge about PD, and minimize the cost 

function under worth-case realization. Kazemi 

et al. [5] proposed the confidence gap around 

uncertainties to deal with market signal and 

price. In [22], authors used the combination of 

stochastic and robust optimization for day-

ahead and real-time market, respectively. 

However, the worst-case scenario is always the 

extreme case with relatively low probability, 

therefore, the solution could be conservative 

and thus not the most economical solution. To 

deal with this problem few methods such as 

adoptive robust optimization [26] has been 

introduced.  

 The alternative solution to deal with 

uncertainties is data-driven distributionally 

robust optimization (DRO). In conventional 

stochastic optimization, the probability 

distribution is tuned based on the specific data 

set, however, it is quite often that PD performs 

poorly when confronted with a different data 

set, even if it is drawn from the same 

distribution [27]. Thus, the main feature in 

DRO is to immunize the optimal solution by 

finding the worst-case expected value over a 
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family of uncertainty sets (ambiguity sets) 

instead of worst-case observations (robust 

optimization). The ambiguity set must be rich 

enough to cover all possible distributions with 

high confidence, meantime, it must be small 

enough to prevent the over-conservative results 

[27]. Two main approaches to construct the 

ambiguity sets for DRO are a moment-based 

and statistical-distance. In the moment-based 

approach, all distributions, which are 

applicable with certain known moments (mean 

and covariance matrix), are considered as 

ambiguity sets [28, 29]. In literature, this 

approach has been deployed widely since only 

the moment condition is required [30, 31, 18], 

however, by considering specific mean-

variance based on historical data some 

important information might be discarded [32]. 

On the other hand, the statistical-distance 

approach constructs all distributions that are 

close enough to the target distribution with 

predefined probability specification. In this 

way, the degree of conservatism can be 

controlled by adjusting the radius (distance) of 

ambiguity set. To implement statistical-

distance several methods such as the Prohorov 

metric [33], the Kullback–Leibler divergence 

[34], or the Wasserstein metric [27, 35] has 

been introduced. This research focuses on 

data-driven distributionally robust optimization 

over Wasserstein ball in line with [27, 36, 37], 

since it has a tractable reformulation and out-

of-sample performance has been guaranteed 

[27, 38].  

This paper presents a novel solution for 

scheduling of the behind the meter battery 

energy storage system joint with PV-cells. The 

main objective is to minimize the electricity 

cost of demand-side by participating in 

multiple electricity markets in Day-Ahead 

(DA) and Real-Time (RT) interval. In this 

way, the feasible markets such as spinning 

reserve, frequency regulation up, regulation 

down, and energy market as well as demand 

profile in both DA and RT have been 

investigated. Moreover, to deal with market 

uncertainty data-driven distributionally robust 

optimization (DDRO) have been developed 

and for RT both model predictive control 

(MPC) with the rolling time horizon and 

DDRO have been deployed. The main 

contributions of this paper include: 

• Simultaneous participation model in 

electricity market and demand side 

management for PV-BESS by 

considering the market price 

uncertainties in both DA and RT.  

• Developing the distributionally robust 

optimization for scheduling of BESS.  

The rest of this paper is laid out as follow. In 

Section II, the market structure is described, 

and battery model is provided. Based on this 

model, problem reformulation for 

distributionally data-driven robust optimization 

is developed in Section III. In Section IV, the 

case study based on California wholesale 

energy market and Time-of-Use is studied and 

finally in Section V, the conclusion is 

discussed.   

Problem formulation 

The main scope of this research is to 

maximize the total revenue of battery energy 

storage systems installed behind the meter by 

participating in energy, spinning reserve and 

regulation market as well as simultaneous 

management of the demand side usage. 

However, due to uncertain nature of the market 

price, demand and PV production, the main 

challenge would be developing the proper 

optimization method for BESS scheduling. 

The problem formulation consists of two 

stages. In first stage, day-ahead optimization is 

developed to determine preliminary charging 

and discharging strategy of the battery and 

commitments for day-ahead market. The 

second stage would be in real-time interval 

(intra-hour) to update the initial scheduling 

based on updated values of the demand and 
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real-time markets. In this section, first the 

market modeling formulation for both DA and 

RT has been presented and then in second part 

the reformulation based on DRO is provided. 

A. Day-Ahead Scheduling 

According to the Federal Energy Regulatory 

Commission (FERC) order 841 [39] in 2018, 

by removing participation barriers for electric 

energy storage, it is expected to have BESS 

with higher capacity in the market. BESS 

participation in market is promoted by 

different Independent System Operators (ISO) 

regulations such as NYISO [40], PJM [41] and 

CAISO [42]. In this research, CAISO Day-

Ahead (DA) and Real-Time (RT) market 

structure is considered. CAISO wholesale 

energy markets provides the opportunity to 

buy and sell both power and energy which is 

comprised of energy market and Spinning 

reserve, regulation up and down market 

through DA and RT interval. Based on this 

market structure, the total cost and revenue of 

PV-BESS participating in DA multiple market 

and demand side can be formulated as (1): 

𝐉𝐓(𝒗𝒕) ∶= 𝐦𝐢𝐧
𝒗𝒕

 ∑{
(𝑪𝒕

𝑫 + 𝑪𝒕
𝑶𝒑
)

−(𝑹𝒕
𝑺𝒑𝒊𝒏

+ 𝑹𝒕
𝑹𝒆𝒈

+ 𝑹𝒕
𝑬)
}

𝑻

𝒕=𝟏

 (1) 

Where 𝐶𝑡
𝐷 and 𝐶𝑡

𝑂𝑝
 are the demand and 

operational cost and 𝑅𝑡
(.)

 is the revenue of 

different markets at each time interval. 𝐶𝑡
𝐷 in 

equation (2) depends on time of use 𝜌𝑡
𝐷𝐴 price 

and the total energy that delivered from grid to 

procure demand 𝑃𝑡
𝐺2𝐿, charge the battery 

𝑃𝑡
𝐺2𝐵𝑎𝑡 and regulation down market 𝑃𝑡

𝑅𝑒𝑔𝐷
 

usage. The operational cost 𝐶𝑡
𝑂𝑝

 is proportional 

to the total exchange energy in storage for 

charging and discharging of battery, as derived 

in (3).   

𝐶𝑡
𝐷 = 𝜌𝑡

𝐷𝐴. (𝑃𝑡
𝐺2𝐿 + 𝑃𝑡

𝐺2𝐵𝑎𝑡 + 𝑃𝑡
𝑅𝑒𝑔𝐷

)  ; ∀𝑡 ∈ 𝑇 (2) 

𝐶𝑡
𝑂𝑝
= 𝑐𝑜𝑝 . ( [𝑃𝑡

𝑅𝑒𝑔𝐷
+ 𝑃𝑡

𝐺2𝐵𝑎𝑡 + 𝑃𝑡
𝑃𝑉2𝐵𝑎𝑡] +

[𝑃𝑡
𝐵𝑎𝑡2𝐿 + 𝑃𝑡

𝑆𝑝𝑖𝑛
+ 𝑃𝑡

𝑅𝑒𝑔𝑈
+ 𝑃𝑡

𝐸]). ℎ        ; ∀𝑡 ∈ 𝑇  
(3) 

The revenue of spinning reserve 𝑅𝑡
𝑆𝑝𝑖𝑛

 is 

determined by spinning reserve capacity 𝑃𝑡
𝑆𝑝𝑖𝑛

 

and spinning price at each moment 𝑡
𝑆𝑝𝑖𝑛

 in 

(4). The regulation market revenue 𝑅𝑡
𝑅𝑒𝑔

 is 

structured as capacity payment and 

performance payment based on FERC order 

755 [43]. The capacity payment is related to 

committed capacity for regulation market 𝑃𝑡
𝑅𝑒𝑔

 

and its price 𝑡
𝑅𝑒𝑔

, first part in (5), and 

performance payment is paid based on 

participants’ accuracy 𝑎𝑐𝑐𝑡 and mileage price 

𝜋𝑡
𝑀𝑖𝑙𝑒 by calculating how accurately service 

provider can follow the automated generation 

control (AGC) signal as shown in in second 

part of (5), where 𝑚𝑡 is regulation multiplier 

estimated by CAISO and is the amount of total 

expected resource movement (up or down), or 

Mileage, for 1 MW of Regulation Up or Down 

capacity.     

𝑅𝑡
𝑆𝑝𝑖𝑛

= 𝑃𝑡
𝑆𝑝𝑖𝑛

. 𝑡
𝑆𝑝𝑖𝑛

. ℎ               ; ∀𝑡 ∈ 𝑇 (4) 

𝑅𝑡
𝑅𝑒𝑔

= 𝑃𝑡
𝑅𝑒𝑔

𝑡
𝑅𝑒𝑔

. ℎ + 𝑃𝑡
𝑅𝑒𝑔

.𝑚𝑡 . 𝜋𝑡
𝑀𝑖𝑙𝑒 . 𝑎𝑐𝑐𝑡   

; ∀𝑡 ∈ 𝑇 

(5) 

And finally, the energy revenue 𝑅𝑡
𝐸 comes 

from all energy sectors delivered to grid 

including regulation up 𝑃𝑡
𝑅𝑒𝑔𝑈

, spinning 

reserve 𝑃𝑡
𝑆𝑝𝑖𝑛

capacity and extra energy from 

battery to the grid 𝑃𝑡
𝐸 and energy price at time 

t 𝑡
𝐸,𝐷𝐴

 as illustrated in (6). 

𝑅𝑡
𝐸 = 𝑡

𝐸,𝐷𝐴. (𝑃𝑡
𝑅𝑒𝑔𝑈

+ 𝑃𝑡
𝑆𝑝𝑖𝑛

+ 𝑃𝑡
𝐸). ℎ  ; ∀𝑡 ∈ 𝑇 (6) 

In objective function (1), the optimization 

variables are participation capacities 𝑃𝑡
(.)

, and 

market prices are uncertain parameters. Total 

charging and discharging powers are defined 

as (7) and (8) respectively. Equations (9) – 

(15) are the problem constraints. The 

constraints (9) and (10) are power limits of 

battery storage in charging and discharging 

mode respectively as well as complementary 
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charging and discharging constraints for the 

battery which prevent battery to simultaneous 

charge and discharge.  

𝐏𝐭
𝐜𝐡 = 𝐏𝐭

𝐑𝐞𝐠𝐃
+ 𝐏𝐭

𝐆𝟐𝐁𝐚𝐭 + 𝐏𝐭
𝐏𝐕𝟐𝐁𝐚𝐭   ;  ∀𝐭 ∈ 𝐓 (7) 

𝑃𝑡
𝑑𝑐ℎ = 𝑃𝑡

𝑅𝑒𝑔𝑈
+ 𝑃𝑡

𝑆𝑝𝑖𝑛
+ 𝑃𝑡

𝐸 + 𝑃𝑡
𝐵𝑎𝑡2𝐿  

;  ∀𝑡 ∈ 𝑇 

(8) 

0 ≤ 𝑃𝑡
𝑐ℎ ≤ 𝑃𝑀𝑎𝑥.𝑀𝑡                              ;  ∀𝑡 ∈ 𝑇 (9) 

0 ≤ 𝑃𝑡
𝑑𝑐ℎ ≤ 𝑃𝑀𝑎𝑥. (1 − 𝑀𝑡)                 ;   ∀𝑡 ∈ 𝑇 (10) 

State of charge of battery is defined as 

equation (11), which depends on previous 

𝑆𝑜𝐶𝑡−1 and the charging and discharging 

capacity at that moment. 𝑆𝑜𝐶 must be kept in 

certain limit as shown in (74). Equation (13) 

forces the final values of 𝑆𝑜𝐶 to be more than 

or equal to initial value of the 𝑆𝑜𝐶 at the 

beginning to prepare the battery for the next 

day.  

𝑆𝑜𝐶𝑡 = 𝑆𝑜𝐶𝑡−1 + 𝜂
𝑐ℎ𝑃𝑡

𝑐ℎ. ℎ −
1

𝜂𝑑𝑐ℎ
𝑃𝑡
𝑑𝑐ℎ. ℎ  

; ∀𝑡 ∈ 𝑇 

(11) 

𝑆𝑜𝐶𝑀𝑖𝑛 ≤ 𝑆𝑜𝐶𝑡 ≤ 𝑆𝑜𝐶𝑀𝑎𝑥           ; ∀𝑡 ∈ 𝑇 (12) 

𝑆𝑜𝐶𝑡=0 ≤ 𝑆𝑜𝐶𝑡𝑒𝑛𝑑 (13) 

Constraint (14) provides the demand side 

management where the total demand power 

request 𝐶𝑎𝑝𝑡
𝐷 is procured by PV 𝑃𝑡

𝑃𝑉2𝐿 , 

battery 𝑃𝑡
𝐵𝑎𝑡2𝐿 and grid 𝑃𝑡

𝐺2𝐿. Finally, 

constraint (15) shows the PV production 

𝐶𝑎𝑝𝑡
𝑃𝑉at each moment. 

𝑃𝑡
𝑃𝑉2𝐿 + 𝑃𝑡

𝐵𝑎𝑡2𝐿 + 𝑃𝑡
𝐺2𝐿 = 𝐶𝑎𝑝𝑡

𝐷 (14) 

𝑃𝑡
𝑃𝑉2𝐿 + 𝑃𝑡

𝑃𝑉2𝐵𝑎𝑡 + 𝑃𝑡
𝑃𝑉2𝐺 ≤ 𝐶𝑎𝑝𝑡

𝑃𝑉 (15) 

B. Real Time Scheduling 

In context of RT scheduling, not only RT 

markets and demands but also the committed 

values in DA must consider. Specifically cost 

function (1) will modify as (16).  

JT
RT(𝑣𝑡) ∶= min

𝑣𝑡
 ∑{

(𝐶𝑡
𝑅𝑇,𝐷 + 𝐶𝑡

𝑂𝑝
)

−(𝑅𝑡
𝑆𝑝𝑖𝑛

+ 𝑅𝑡
𝑅𝑒𝑔

+ 𝑅𝑡
𝑅𝑇,𝐸)

+𝑈𝑡
𝐷 +𝑈𝑡

𝐸

}

𝑇

𝑡=1

 (16) 

𝐶𝑡
𝑅𝑇,𝐷 = 𝜌𝑡

𝐷𝐴. 𝐸𝑡
𝐷𝐴,𝐼𝑚 + 𝜌𝑡

𝑅𝑇 . ∆𝐸𝑡
𝑅𝑇,𝐼𝑚

 (17) 

𝑅𝑡
𝑅𝑇,𝐸 =  𝑡

𝐸,𝐷𝐴. 𝐸𝑡
𝐷𝐴,𝐸𝑥 + 𝑡

𝐸,𝑅𝑇 . ∆𝐸𝑡
𝑅𝑇,𝐸𝑥

 (18) 

subject to  

𝑈𝑡
𝐷 ≥ 𝑙𝐼𝑚. (∆𝐸𝑡

𝑅𝑇,𝐼𝑚 − 𝜗𝐼𝑚. 𝐸𝑡
𝐷𝐴,𝐼𝑚)  (19) 

𝑈𝑡
𝐸 ≥ 𝑙𝐸𝑥. (∆𝐸𝑡

𝑅𝑇,𝐸𝑥 − 𝜗𝐸𝑥 . 𝐸𝑡
𝐷𝐴,𝐼𝑚) (20) 

Where 𝐶𝑡
𝑂𝑝
, 𝑅𝑡

𝑆𝑝𝑖𝑛
and 𝑅𝑡

𝑅𝑒𝑔
 are following 

equations (3), (4) and (5) respectively. 

However, demand cost and energy income 

have been updated as (17) and (18) where 

𝐸𝑡
𝐷𝐴,𝐼𝑚

 is total energy import from grid in DA 

including grid to battery, grid to load and 

regulation down and ∆𝐸𝑡
𝑅𝑇,𝐼𝑚

 is its deviation 

from day-ahead amount which must calculate 

based on real-time price 𝜌𝑡
𝑅𝑇 instead of day-

ahead. In the same way, energy income must 

update based on value committed to export to 

grid in DA  𝐸𝑡
𝐷𝐴,𝐸𝑥

, including spinning reserve, 

regulation up and committed energy which 

must calculated in DA energy price 𝑡
𝐸,𝐷𝐴

 and 

second part that is deviation from DA values 

∆𝐸𝑡
𝑅𝑇,𝐸𝑥

. Two last terms in RT cost function 

(16) is penalty for deviation from DA 

commitments. Accordingly, 𝑈𝑡
𝐷 and 𝑈𝑡

𝐸 are 

introduced to, respectively, present the 

penalties for deviation form committed values 

in RT at hour 𝑡  in $. 𝑙𝐼𝑚 and 𝑙𝐸𝑥 are, 

respectively, the price penalties for energy 

import and export, in $/kWh. 𝜗𝐼𝑚 and 𝜗𝐸𝑥 are, 

respectively, 𝜗𝐼𝑚 threshold which can be used 

for RT markets and uncertainties fluctuations, 

expressed as the percentage of the DA 

quantity, above which energy deviations are 

penalized. 

In order to update general problem (16) with 

last estimation of demand power request and 

PV power production, model predictive control 

(MPC) algorithm over planning horizon ℋ𝑡 is 

developed. In this term, 𝐶𝑎𝑝𝑡
𝑃𝑉= 𝑃̅𝑡

𝑃𝑉 + 𝑃̃𝑡
𝑃𝑉 

has been redefined as a summation of nominal 
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value  𝑃̅𝑡
𝑃𝑉 and forecasted error 𝑃̃𝑡

𝑃𝑉 in RT. 

Likewise, for  𝐶𝑎𝑝𝑡
𝐷 =  𝑃̅𝑡

𝐷 + 𝑃̃𝑡
𝐷. 

J T
∗ (𝑣𝑡)  =  min

𝑣𝑡
 ∑ ∑ JT

RT(𝑣𝑡 , ξ𝜏)

𝑡+ ℋ𝑡

𝜏=𝑡

𝑇

𝑡=1

 (21) 

Only the immediate control decisions for 

time 𝑡 till ℋ𝑡 are considered as BESS plan. 

Then time shifts forward one step, new 

forecast errors are realized, the optimization 

problem (21) is re-solved at time 𝑡 +  1 hour, 

and the process repeats. This approach allows 

any forecasting methodology to be utilized to 

predict uncertainties over the planning horizon 

and recalculate intra hour decisions based on 

short term and more accurate forecasting. 

C. Proposed distributionally robust 

optimization formulation 

In Equation (21), described in preceding 

section, the mean value of historical data is 

assumed instead of uncertain parameters such 

as market prices. In order to consider the risk 

of different uncertainties, data-driven 

distributionally robust optimization method is 

introduced in this section. The conventional 

approach to optimize the objective function is 

the stochastic approach where the different 

scenarios based on assumed PD will be defined 

and the main aim is to minimize the expected 

cost expressed in (22). 

   𝐽∗ = inf
𝑣∈𝕍
{𝔼ℙ[ℎ(𝑣, 𝜉)] ∶= ∫ ℎ(𝑣, 𝜉)ℙ(𝑑𝜉)

 

Ξ
}  (22) 

with decision variable 𝑣 ∈ 𝕍 ⊆ ℝ𝑛, random 

vector 𝜉 with probability distribution ℙ 

supported on uncertainty set Ξ ⊆ ℝ𝑚  and cost 

function ℎ:ℝ𝑛 × ℝ𝑚 → ℝ̅. A common 

approach to find ℙ is to estimate the 

distribution from limited available data which 

lead to a poor out-of-sample performance since 

it is not precise. Moreover, more accurate 

results require more scenarios to be generated 

which increases the computational burden and 

time. The possible approach to guaranty out-

of-sample performance is to define an 

ambiguity set 𝒫̂𝑁 which contains all possible 

distributions from training data [27]. In this 

way, the distributionally robust optimization 

(58) defines as the minimum worst-case 

expected cost over 𝒫̂𝑁. 

𝐽𝑁 ∶= inf
𝑣∈𝑉

  sup
ℚ∈𝒫̂𝑁

𝔼ℚ[ℎ(𝑣, 𝜉)] (23) 

To instruct the ambiguity set, in this 

research, we focus on the Wasserstain metric 

since it has a tractable reformulation and out-

of-sample performance guarantees [27], [38]. 

We construct  𝑃̂𝑁   as a ball around empirical 

distribution with radius based on Wasserstain 

metric to measure the distance between true 

PD and estimated one.   

Definition [Wasserstein metric]. The 

Wasserstein metric is defined as a distance 

function between two probability distributions 

on a given supporting space ℳ(Ξ). More 

specifically, given two probability distributions 

ℚ1 and ℚ2 on the supporting space ℳ(Ξ), the 

Wasserstein metric is defined as (63): 

𝑑𝑤(ℚ1, ℚ2) ∶= inf
Ξ
 {𝔼Ξ[𝜌(𝑋, 𝑌)]: 𝑋~ℚ1, 𝑌~ℚ2} (24) 

Where 𝜌(𝑋, 𝑌) is distance between to 

random variable 𝑋 and 𝑌 from ℚ1 and ℚ2. The 

Wasserstein metric quantifies the minimum 

“transportation” cost to move mass from one 

distribution to another.  

The ambiguity set 𝔹𝜀(ℙ̂𝑁) can be 

formulated as Wasserstein ball centered at a 

uniform empirical distribution ℙ̂𝑁 on training 

dataset Ξ𝑁 and within 𝜀 as confidence level 

(25). The 𝜀 is a control variable for 

conservativeness and robustness of 

optimization compare to specific features of 

dataset. 

𝒫̂𝑁 = 𝔹𝜀(ℙ̂𝑁) ∶= {ℚ ∈ ℳ(Ξ𝑁) ∶ 𝑑𝑤(ℙ̂𝑁, ℚ) ≤ 𝜀} (25) 

In this research, the mean-risk portfolio for 

our problem structure in Equation (1) has been 

developed to solve single stage stochastic 
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optimization which minimizes a weighted sum 

of the mean and the conditional value-at-risk 

(CvaR) of the portfolio revenue amount 〈𝑣, 𝜋〉. 

Consider a total capacity of battery is divided 

between multiple services at each time interval 

and is encoded by a vector of percentage 

weights 𝑣 = [𝑣1, … , 𝑣𝑚]
𝑇 ranging over 

probability simplex 𝕍 = {𝑣 ∈ ℝ+
𝑚: ∑ 𝑣𝑖 =

𝑚
𝑖=1

1}. Uncertain price for each service is shown 

by the vector 𝜋 = [𝜋1, . . . , 𝜋𝑚]
𝑇 (26).  

J T
∗ (𝑣𝑡) = 𝑖𝑛𝑓

𝑣𝑡∈𝕍
{𝔼ℚ[−〈𝑣𝑡 , 𝜋〉] + 𝜁.ℚ_𝐶𝑉𝑎𝑅𝜀(−〈𝑣𝑡, 𝜋〉)} (26) 

Here 𝐶𝑉𝑎𝑅𝜀  is conditional value at risk with 

confidence level of 𝛼 ∈ (0,1] (Wasserstein 

radius) and 𝜁 ∈ ℝ+ quantifies the investor’s 

risk-aversion. The formula (26) can be reduced 

to piecewise affine form such as (116) by 

replacing CvaR in with its formal definition 

[44].   

𝐽∗ = inf
𝑣∈𝕍

{
𝔼ℚ[−〈𝑣, 𝜋〉] +

𝜁 inf
𝜏∈ℝ

𝔼ℚ[𝜏 +
1

𝛼
max
𝑣∈𝕍

{−〈𝑣, 𝜋〉 − 𝜏, 0}]
} 

= inf
𝑣∈𝕍,𝜏∈ℝ

𝔼ℚ[max
𝑘=1,2

𝑎𝑘〈𝑣, 𝜋〉 + 𝑏𝑘𝜏]  

(27) 

where 𝑘 = 2, 𝑎1 = −1, 𝑎2 = −1 −
𝜁

𝛼
, 𝑏1 =

𝜁, and 𝑏2 = 𝜁( 1 −
1

𝛼
). Supposed that 

uncertainty Ξ ∶= {𝜋 ∈ ℝ𝑚: 𝐶𝜋 ≤ 𝑑} and a 

polytope, then the stochastic formula of (116) 

can be solve in distributionally robust form 

counterpart of (58) with respect to the 

Wasserstein ambiguity set 𝔹𝜀(ℙ̂𝑁) such as:  

ĴN ∶= inf
𝑣∈𝕍,τ∈ℝ

sup
ℚ∈𝔹ε(ℙ̂N) 

𝔼ℚ[max
k≤2

ak〈𝑣, π〉 + bkτ ] (28) 

It is shown in [27] that the affine function 

(28) can be reformulated as linear 

programming such as (29) equivalently.   

𝐽𝑁,𝑡(𝜀)

=  

{
 
 
 

 
 
 inf

𝑣𝑡,𝜏𝑡,𝜆𝑡,𝑠𝑡,𝑖,𝛾𝑡,𝑖,𝑘 
𝜆𝑡𝜀 + 

1

𝑁
 ∑𝑠𝑡,𝑖  

𝑁

𝑖=1

𝑠. 𝑡.    𝑣𝑡 ∈ 𝑉

𝑏𝑘𝜏𝑡 + 𝑎𝑘〈𝑣𝑡, 𝜋̂𝑖,𝑡 〉 + 〈𝛾𝑡,𝑖,𝑘 , 𝑑 − 𝐶𝜋̂𝑖,𝑡〉 ≤ 𝑠𝑡,𝑖

‖𝐶𝑇𝛾𝑡,𝑖,𝑘 − 𝑎𝑘𝑣𝑡‖∞ ≤ 𝜆𝑡

𝛾𝑡,𝑖,𝑘 ≥ 0              ; ∀𝑖 ∈ 𝑁𝑠 , 𝑘 ≤ 1,2

 (29) 

Where 𝜏𝑡 is a CvaR auxiliary variable and 

𝑠𝑡,𝑖, 𝛾𝑡,𝑖,𝑘 and 𝜆𝑡 are auxiliary variables 

associated with the distributionally robust 

Wasserstein ball reformulation. In formula 

(117), the optimum cost 𝐽𝑁,𝑡 for each time 

interval 𝑡 and 𝑁 training samples is calculated. 

Subsequently, the final objective function for 

our problem will be formulated as (30) in DRO 

form with the constraints (9) – (14) and (117). 

ĴT = min
𝑣𝑡,𝜏𝑡,𝜆𝑡,𝑠𝑡,𝑖,𝛾𝑡,𝑖,𝑘

∑𝐽𝑁,𝑡(𝜀)

𝑇

𝑡=1

 (30) 

Case studies 

In this section, after introducing the data 

used for these studies (i.e. PV and BESS 

ratings, market prices in DA and RT, load and 

PV profile and their uncertainties), we 

compare the effectiveness of different 

optimization methods (i.e. deterministic, robust 

and DRO) for both winter and summer.  

A. Parameter Settings 

In this study the main aim is to manage 

behind the meter battery join with rooftop PV. 

The nominal characteristic of battery and 

installed PV is described in Table 1. For 

market price, this study focused on CAISO 

wholesale energy market and market data is 

collected from [45]. We assume that each 

participant called for all ancillary services 

simultaneously and just for 8 times/day. On the 

other hand, as we are dealing with low 

capacity, system can participate in energy 

market in all day long. We select 30 random 

working days for winter (January 1 to May 30) 
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and summer (June 1- September 30) in 2016 

for the training data (Fig. 1)  full winter and 

summer data of 2017 used for test. Solar 

irradiance data for Los Angeles area has been 

collected from Photovoltaic Geographical 

Information System (PVGIS) [46]. Mean value 

of PV generation and Load profile has been 

shown separately for winter and summer in 

Fig. 2. In RT cost function (16), penalty rate for 

import 𝑙𝐼𝑚 and export 𝑙𝐸𝑥  both assumed as 

0.15 $/kWh and the threshold for deviation 

(i.e., 𝜗𝐼𝑚and 𝜗𝐸𝑥) are all set as 20% [48].    

Table 1 

Parameters of PV-battery system 

Nominal Battery Capacity  30 kWh 

Battery Charge Efficiency  85% 

Battery Discharge Efficiency 95% 

Initial State of Charge  16 kWh 

Minimum SoC 15% 

Maximum SoC 90% 

PV array’s and inverter nominal capacity 5 kW 

The optimization is conducted with CVX 

integrated in MATLAB. MOSEK [47] has 

been chosen as solver for mixed-integer linear 

optimization problem. The environment is a 

desktop with Intel Core™ i5-2430 M, 2.4 

GHz CPU and 8 GB RAM.  

In this study, three optimization method 

including conventional deterministic, robust 

and DRO performed. Stochastic programming 

method neglected due to limitation of data and 

unavailability of accurate probability 

distribution. For deterministic solution, mean 

value of collected data has been used as 

reference value for markets. In robust 

programming, in line with ref [5], robustness 

gap ±20% is assumed as confidence gap in 

each hour both in DA and RT interval  

 

Fig. 1. Mean value of CAISO market in 2016 for 

Winter (left) and Summer (right) season. 

 

Fig. 2. Load and PV profile including forecasted 

uncertainties in RT interval, in left for winter 

period and in right for summer. 

In final DRO formulation (29), the number 

of samples for each season including data set Ξ 

is limited to 30. The polytope parameter for 

each uncertainty sets C and d is assumed as 

one and the maximum of collected data 

respectively. In DRO, there is tradeoffs 

between final cost and robustness to price 

error. The conservativeness of the optimization 

is controlled by adjusting confidence level of 

CVaR α, the radius of Wasserstein ball ε and 

risk aversion value ζ. Here α and ε are assumed 

as 0.001 and ζ = 0.9. 

B. Numerical Results  

The main aim of this research is to study the 

influence of the participation of battery in 

electricity market simultaneously with demand 

side management. In this regard, the feasible 
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markets for participation in CAISO wholesale 

market are energy market, spinning reserve, 

regulation up and down both in day-ahead and 

real-time market. It is also important to 

consider different types uncertainties such as 

price, load and solar. In this way, first the 

conventional PV joint battery without 

participating in any market has been studied. 

Then we scheduled the battery for two 

different scenarios in winter and summer based 

on three different approach. In the first stage in 

DA, preliminary values for each power flow 

determined then MPC design to update the 

values due to updated values of load and PV 

production and RT market in each hour. 

Finally, the total revenue is calculated for two 

months in winter (January and February) and 

summer (June and July) based on real data of 

following year. The summery of test results for 

selected period of test is illustrated in Table 2. 

Moreover, daily revenue of these period has 

been shown in  Fig2 and Fig3. These figures 

show that in all days, DRO method has a better 

result compare to others. However, RO lowest 

income compared with deterministic specially 

in summer due to conservativeness of this 

method. Consequently, the total result in all 

approaches shows higher revenue in case of 

participating in market instead only managing 

the demand load.       

Table 2 

Total Revenue in two months in winter and summer with 

different optimization approach 
 

No market Deterministic RO DRO 

Winter -$45.85 -$26.41 -$30.41 -$17.35 

Summer  -$77.13 -$29.41 -$41.52 -$22.72 

 

(a) 

 

(b) 

Fig. 3. Daily revenue of hybrid PV-battery system 

with and without participation in markets with 

different optimization approach in (a) Winter and 

(b) Summer. 

In the second part, we studied the influence 

of different market in total revenue. As we 

expected the maximum profit comes from 

energy market since in real market, each 

participant calls for ancillary services for 

limited time. The interesting point is that in 

DRO method it almost doesn’t contribute in 

spinning reserve markets since it has high 

fluctuation and low price which is not 

considered in deterministic method. The other 

conclusion is that in general due to higher cost 

of energy in summer and higher load 

consumption, whole system participates less in 

energy market and more in regulation services 

since these markets have double payment both 

for power commitment and real-time dispatch. 
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conclusion  

This paper proposed new approach for a 

short-term scheduling of PV-battery system in 

joint day-ahead and real-time energy, spinning 

and regulation markets along with demand side 

management. Date-driven distributionally 

robust optimization based on Wasserstein 

metric developed to deal with market 

uncertainties. This method has been compared 

with other conventional methods such as 

deterministic and robust optimization. The 

numerical results show the improvement of 

general performance in proposed solution both 

in winter and summer season. Moreover, it 

proved that in unpredictable area with limited 

data a degree of conservativeness is required. 

One remained challenge for future work would 

be design adoptive method for tuning of DRO 

parameters based on sample data. 

 

(a) 

 

(b) 

Fig. 4. Segmented total revenue based on 

different market profit and importing energy costs 

for (a) winter and (b) summer season.  
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Introduction  

In the last decade, PV cell installation has experienced an average annual growth rate of 

50%. At the meantime, in the U.S. the average cost of PV system drops to its lowest level in 

history in Q1 2019. An average-sized residential system has dropped from a pre-incentive price 

of $40,000 in 2010 to roughly $18,000 today, while recent utility-scale prices range from 

$28/MWh - $45/MWh, competitive with all other forms of generation [1]. On the other hand, 

the grid-scale battery storage systems are expected to grow to 12 GW by year the 2024 [2]. 

Two main factors slowed down grid-connected battery systems’ development in the past 

decade, high capital cost and lack of regulatory initiatives. By recent development in battery 

technologies, they have reached to a point that their costs have become more attractive. It is 

also estimated that the installation cost of battery storage systems will drop by 25% by 2017, 

compared to 2015 [3]. Accordingly, in some developed markets such as California, U.S., the 

revision of the market regulation is already started. In the road map of CAISO on BESS [4], the 

necessity of clarifying the existing ISO requirements, rules and market products for  

participation of energy storage in the market as well as defining and developing models for 

multi-contribution of storage systems are mentioned as two important factors toward the 

maximum participation of BESS in the market. Consequently, there has been a growing interest 

in finding new and efficient applications for batteries in power systems. 

The main aim of this research is to investigate the possible additional revenues for behind 

the meter’s (BTM) battery storage system joint with rooftop PV in well-developed grid and 

regulations such as California wholesale energy market. Traditionally, BTM batteries just had 

been used for improving PV cell self-consumption and back-up usage. In such condition, these 

assets remained intact for most of the hours of day and they couldn’t show their maximum 

performance. In the recent year, by new changes in market regulations, these assets are allowed 

to participate in various electricity markets such as spinning reserve and frequency regulation.  

This research conduct between Winston Chung Global Energy Centre (WCGEC) in the 

University of California in Riverside and Politecnico di Milano to propose a practical solution 

for BTM batteries for joint participation in the electricity market and manage demand side load. 

In this way, different electricity market had been reviewed and CAISO market has been chosen 

as a reference due to it is recent regulatory development toward battery participation in the 

market and highly installation of rooftop PV in this region. The main challenge toward finding 

the most accurate and feasible solution in this problem is the stochastic nature of the problem 

and different types of uncertainties. Mainly, these uncertainties come from intermittency of PV 
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production, load fluctuation, and the most challenging which the market price instabilities. To 

deal with these parameters different optimization approaches had been reviewed and finally, 

novel data-driven distributionally robust optimization (DRO) had been developed for proposed 

problem. 

This thesis is organized as follows, in Chapter 1 a comprehensive comparison between 

different electricity market has been done. In this chapter first different regional markets in 

North America introduced and the market process has been described and then the European 

market and specifically Italian market studied for further global comparison. In Chapter 2 

different possible usage for battery energy storages based on deployment location studied. In 

Chapter 3, different proposed optimization methods in the literature studied and the proposed 

DRO method described. In Chapter 4, the fundamental problem model formulation and 

different optimization approaches to solve the problem have been described. In Chapter 5 and 

Chapter 6, the feasibility proposed methodology has been tested with respect to real demand 

and market data in different scenarios as well as simulation results and finally in Chapter 7 the 

conclusion discussed. 
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1  Electricity Market 

In an ideal world, the required energy could be traded in a real-time and nodal based price. 

In fact, the energy value changes in each node of the network because of the location of load 

which shows the loss and delivery cost and uncertainty of production and requested energy. 

However, this kind of ideal market design is not possible in the real world and some 

standardizations must be introduced. The standardization can be on: 

• Temporal basis: markets do not refer to instants of time but to time intervals (from 

1 hour until 5 minutes time steps); 

• Spatial basis: some markets refer to grid nodes (US markets in general), others to 

market zones, which are market areas where there should not be congestions (like 

the Italian market), others still to the whole country (like the German energy 

market). The larger is the zone area, the more probable is that some congestions 

inside the area itself will occur. 

If nodal market is adopted, further interventions - like re-dispatch - to ensure the line 

constraints respect are not needed and a reduction of the system costs is more probable. 

However, zonal markets are simpler to manage (also as regard to computational efforts) and, 

hence, more adopted in the European Union. For these reasons, the European electricity system 

is administrated in two essential phases separated by the so-called gate closure, as shown in 

Figure 1-1. 

 

Figure 1-1- Temporal ordering of the different electricity market  

The first phase before gate closure is characterized by electricity market transactions 

(decentralized decisions) and system operations (central coordination) prevails in real-time.  

Meanwhile, there is also a preliminary phase, known as a forward and future markets that runs 

years to days ahead of delivery time. Forwards and futures are contracts to deliver/consume a 

certain amount of electricity at a certain time in the future for a price agreed upon today, 
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reducing the vulnerability to possible energy price decrease/increase to those generators and 

large consumers which choose these forms of negotiation. The difference between these 

markets is that futures are standardized contracts that can be further traded on power exchanges, 

whereas forwards are mainly traded by means of bilateral over-the-counter (OVC) non-

standardized contracts, giving more flexibility to the involved parties. 

In general, developed electricity markets have been designed based on two phases, these 

phases of the electricity market are subdivided into two different markets: The Day-Ahead spot 

Market (DAM) and the intra-day market. In DAM, each participant submits its bid for specific 

amount of energy which can be delivered to grid for following day. At the end of the DAM, 

each operator submits a balanced portfolio to the TSO, the so-called nominations, which give 

the planned generation or consumption for the following day. In general, DAM has important 

role in providing foreseen demand and the system-wide dispatching decisions of the various 

generators. However, DAM cannot ensure the reliability and security of service. These 

advantages can be enhanced by means of an Intra-day Market (IM), which allows market 

participants to correct their energy bids near the gate closure. In this second market, indeed, 

electricity is traded on the delivery day itself, enabling market participants to correct for shifts 

in their day-ahead nominations due to better forecasts and unexpected plant outages. The intra-

day nominations are added to the day-ahead nominations. After the real-time, the unbalance 

discipline, that is the difference between the scheduled and the real energy exchanges, occurs. 

Such operations assume a role (and a cost) as much important as the previous markets do not 

consider the real actual conditions. 

Currently, the electricity market in Europe is mainly an energy-only market, meaning that 

generators are remunerated for generated electric energy. The alternative is a capacity market in 

which power units are remunerated for the capacity commitment which is already using in 

CAISO is explained in following sub-section.  The remuneration price can be formed according 

with two different mechanisms, as shown in Figure 1-2: 

1. System Marginal Price (SMP): In this method, there is a uniform price which is 

the market clearing price and obtained by the intersection between the demand 

and the supply curves. This intersection identifies the equilibrium situation of the 

market. Awarded bids/offers are those having a selling price not higher than the 

clearing price and a purchasing price not lower than the equilibrium price.  

2. Pay as Bid (PAB); is a discriminatory price mechanism. The awarded bids are 

valued at the offered price, so the operator is induced to present its offer betting on 

the maximum price of the last accepted bid. In this way, it is more probable that 
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the offered bids are higher than the marginal costs of the generation units where 

the offered price would be the variable cost plus a mark-up arbitrarily defined to 

recover the fixed costs. 

 

Figure 1-2- Comparison of System Marginal Price and Pay as Bid 

Both SMP and PAB method has their own advantages. In SMP, there is more transparent 

market and in average and less competitive market the total cost would decrease. On the other 

hand, PAB gives more chance to different participants to influence on market and in highly 

compatible market it can ensure more reliable and cheaper energy. 

In this research, the main focus is on California electricity market based on California 

Independent System Operator (CAISO) regulation. The wholesale energy and ancillary service 

market for BESS reviewed and the most updated regulations have been used for modelling. In 

the rest of this chapter, first north America electricity market and CAISO described in section 

1.1 and then in second section (1.2) EU and Italian market studied for further comparison of 

results.   

1.1 Energy and Ancillary Services Market Design in 

North America 

The US electric power system is widely understood to be complex but is rarely 

represented in its entirety with appropriate regional and industry segment variations; nor is the 

control structure of what is commonly referred to as “the grid” available in a single depiction. 

Certain aspects are widely depicted, however, as illustrated in the two figures below. The US 

power grid is divided geographically at many levels, the top three of which are 

interconnections, reliability regions, and balancing authority areas. Each interconnection is a 

single synchronous machine, and the three interconnections in the contiguous states are 
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controlled separately, although power exchanges between interconnections are provided via 

inter-tie stations [5] 

 

Figure 1-3- US Interconnections 

Within interconnections, grids are divided into reliability regions, with reliability 

coordinators overseeing each. Reliability coordinators have an event-driven kind of control 

function, in which they continuously monitor grid state within their regions, and perform 

various operational and contingency analyses, issuing alerts and directives when certain 

reliability issues occur or are forecasted to occur. Within the reliability regions, grids are further 

broken into Balancing Authority Areas, each with a Balancing Authority (BA) that performs 

certain control functions, including generation dispatch and balance, interchange scheduling 

with neighbouring balancing authority areas, and load frequency control. 

Various changes to BA structure have been investigated. 

 

Figure 1-4- Reliability Regions and Balancing Authorities [6] 
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On the other hand, there are seven distinct power markets in the United States (Figure 

1-5). In addition, there are three similar markets located within Canada. These markets are each 

operated by an Independent System Operator (ISO) or Regional Transmission Organization 

(RTO), hereafter jointly referred to as an ISO/RTO, which manages the transmission 

infrastructure in its service territory, administers markets for energy and ancillary services, and 

is responsible for ensuring that system reliability requirements that are established by North 

American Electric Reliability Corporation (NERC) are met. With the exception of the Electric 

Reliability Council of Texas (ERCOT) system in Texas, each ISO/RTO is subject to the 

jurisdiction of the Federal Energy Regulatory Commission (FERC). As the ERCOT system is 

wholly contained within a single state, it does not participate in interstate commerce and is 

therefore not subject to FERC jurisdiction. Roughly two-thirds of all energy demand in the 

United States falls in territory served by an ISO/RTO; however, large portions of the Western 

and South-eastern United States are not served by an ISO/RTO. Generators and utilities in these 

regions do not participate in wholesale power markets, but rather fulfil service obligations 

through power purchase agreements, bilateral trades, and as vertically integrated utilities. Each 

ISO/RTO operates markets for ancillary services. While these services typically fall into the 

three general categories outlined previously, Regulation, Spinning Reserves, and Non-spinning 

Reserves, the names and details of each service can differ from market to market. Table 3 

summarizes the services offered in each ISO/RTO. 

 

Figure 1-5 - Map of the transmission operators that serve the United States 
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ISO/TSO Spinning Reserves Non-Spinning Reserves Frequency Regulation 

CAISO Spinning Non- Spinning 

Regulation-up 

Regulation-down 

Regulation Mileage-up 

Regulation Mileage-down 

ERCOT Responsive Non- Spinning 
Regulation-up 

Regulation-down 

ISO-NE 
Ten-minute 

Synchronized 

Ten-minute Non-

synchronized 

Thirty-minute Operating 

Regulation 

MISO Spinning Supplemental Regulation 

NYISO 
Ten-minute Spinning 

Thirty-minute Spinning 

Ten-minute Non-

synchronized 

Thirty-minute Non-

synchronized 

Regulation 

PJM Synchronized Primary Regulation 

SPP Spinning Supplemental 
Regulation-up 

Regulation-down 

Table 3- Overview of the ancillary services offered by each ISO/RTO 

 It is also worth to introducing North America institutions and agreements before 

covering each regional market. The most important and critical institutions and agreements are 

listed below: 

• North American Electric Reliability Corporation (NERC): A not-for-profit 

international regulatory authority that seeks to assure the reliability of the bulk 

power system in North America, including the continental United States, Canada, 

and the northern portion of Mexico in Baja, California. NERC is the official 

electric reliability organization for North America, and receives oversight from 

FERC as well as Canadian government authorities. NERC’s responsibilities 

include the development and enforcement of reliability standards, annual 

assessment of seasonal and long-term reliability, monitoring of the bulk power 

system, and the education, training, and certification of industry workers [7]. The 

NERC Reliability Regions are shown in Figure 1-4. 

• North American Free Trade Agreement (NAFTA): In effect since January 1, 

1994, NAFTA is a trilateral free trade agreement between Canada, the United 

States, and Mexico, which sets the rules of trade and investment in the three 

countries. NAFTA limited tariffs on a majority of goods traded trilaterally, and 

called for the gradual elimination (over 15 years) of most remaining barriers to 
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cross-border investment, as well as the movement of goods and services. While 

the agreement was, and continues to be highly controversial in all three countries, 

it is credited with modest economic gains and labor market restructuring [8]. 

Mexico, due to constitutional restrictions at the time, took exception to opening 

the oil and gas drilling sector to foreign competition, but trade in crude oil and 

natural gas was covered by the agreement, and did increase over the following two 

decades. Electricity trade was also included under tariff elimination rules under 

NAFTA, though its classification can become complicated as different elements 

of the power sector (generation, transmission, and distribution) defy simple 

definitions as “goods” or “services.” There are, however, a number of conditions 

where NAFTA members may restrict or prohibit electricity flows, including cases 

where the energy is being resold to a non-NAFTA member, or where restricting 

trade will relieve critical shortages. Mexico – which entered NAFTA before the 

recent energy reforms -- also filed “reservations” on strategic activities to reserve 

the right to supply electricity within Mexico and exclude foreign parties from 

entering the sector, except under excepted circumstances [9]. 

• Open Access non-discriminatory Transmission Tariff (OATT): On April 24, 

1966, FERC issues Order No. 888 [10], which required public utilities to “provide 

open access transmission service on a comparable basis to the transmission 

service they provide themselves”. This includes a requirement that public utilities 

that own transmission infrastructure file open access transmission tariffs that 

contain minimum terms and conditions for non-discriminatory service; and allows 

public and transmitting utilities to seek recovery of “legitimate, prudent, and 

verifiable stranded costs associated with providing open access”. Order No. 888 

was reformed slightly in 2007 to reflect recent changes in the utility industry, 

which were adopted in Order No.890 [11, 12]. 

1.1.1 Electricity Reliability Council of Texas (ERCOT) 

The Electricity Reliability Council of Texas (ERCOT) was established in its current form 

as a power market operator in 2001. ERCOT currently serves approximately 85% of the 

electrical load in Texas and, as its service territory is entirely within the state of Texas, is the 

only ISO/RTO in the United States that is not regulated by FERC. ERCOT operates a DAM for 

four ancillary services, Responsive Reserves, Regulation-up, Regulation-down, and Non-

spinning Reserves. These services are co-optimized along with energy provisions in the DAM. 

In addition, ERCOT implemented a real-time Operating Reserve Demand Curve (ORDC) 



Electricity Market 

  8 

methodology in 2014. Through this process, price adders are generated to reflect the value of 

available reserves in the market in real time. These price adders are based on the 

administratively determined value of lost load in the system and the probability that load would 

have to be shed, given the realized reserve levels. Price adders are calculated for both online 

(synchronized) and offline (unsynchronized) reserves and are added to the real-time locational 

marginal price (LMP) to determine settlement price points. This process is intended to 

approximate the co-optimization of energy and reserves in real-time. ERCOT is subject to 

reliability standards that are developed by the Texas Reliability Entity, Inc. (Texas RE) through 

FERC approved processes. According to Texas RE, its standards “go beyond, add detail to, or 

implement NERC Reliability Standards.” ERCOT also updated their procedure for determining 

reserve requirements on June 1, 2015. The following discussion reflects these updated 

procedures. 

There is only a single ERCOT region related to ancillary services, which spans the entire 

ERCOT service territory (Figure 1-6). The real-time ORDC price adders for Spinning and Non-

spinning Reserves are added to the real-time energy LMPs that are calculated for each energy 

settlement point. A single system-wide price adder is calculated for both Spinning and Non-

spinning Reserves. These are then each added to energy prices at each node throughout the 

ERCOT system. [13, 14, 15] 

 

Figure 1-6- Map of the ERCOT service territory 
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1.1.1.1 ERCOT Market Process 

In the DAM, ERCOT establishes an Ancillary Services Plan and publishes relevant system 

information each day by 0600 hours Central time. This Ancillary Services Plan identifies the 

ancillary service obligations of all Qualified Scheduling Entities3 (QSEs) during each hour of 

the following day. QSEs can meet their obligations either through self-supply, bilateral trades 

with other QSEs, or purchases from ERCOT through the DAM. QSEs must submit their bids 

and offers for ancillary services by 1000 hours Central time. The day-ahead market is executed 

between 10:00 and 13:30 hours Central time, at which point results are posted. QSEs then have 

the opportunity to make bilateral trades with other QSEs based upon the results of the day-

ahead market; any such trades must be reported to ERCOT by 14:30 hours Central time. In real-

time operations security constrained economic dispatch (SCED) is conducted every five 

minutes and two price-adders are calculated based on the reserve levels that are realized during 

each settlement period—currently every 15-minute interval. One adder is calculated based on 

the realized level of online reserves and the other is calculated on the basis of the sum of the 

realized levels of online and offline reserves. These adders are then added to the LMP-based 

energy price that is paid to generating entities and charged to load-serving entities in each 

settlement period. If the Responsive Reserve level falls below a 2000 MW minimum 

contingency in any period, ERCOT will set the price adder to the administratively determined 

value of lost load (VOLL) in the system, which is currently $9000/MWh. 

1.1.2 ISO New England (ISO-NE) 

ISO New England (ISO-NE) was established in 1997 and began operating a wholesale 

power market in 1999. It currently operates a forward reserve market and a real-time reserve 

pricing market, as well as a regulation market. 

The forward reserve market secures commitments for Ten-minute Non-synchronized 

Reserves (TMNSR) and Thirty-minute Operating Reserves (TMOR) in the system during peak 

hours. A real-time reserve pricing market is also conducted throughout the operating day for 

both TMNSR and TMOR, as well as for an additional product, Ten-minute Synchronized 

Reserves (TMSR). This market is designed to offset the opportunity cost a resource faces when 

it is selected to provide reserves instead of energy in real-time. It also provides additional 

revenues that are consistent with the increased value of reserves and energy when the system is 

short. 
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1.1.2.1 ISO-NE Market Process 

A forward market auction for reserve (non-energy) capacity occurs twice per year, prior to 

the beginning of each seasonal capability period. These periods run from June through 

September (summer) and October through May (winter). Forward reserve resources are 

assigned hourly schedules one day in advance of the operating day. The market is designed to 

set threshold prices at approximately the marginal cost of a peaking plant with a 2–3% capacity 

factor. 

In real-time operations, ISO-NE co-optimizes energy and reserves, finding the least-cost 

means of serving energy demand and meeting reserve requirements for TMSR (whole-system), 

TMNSR (whole system) and TMOR (whole-system and the three specified zones). If necessary, 

the system will redispatch resources to increase the amount of reserves that are available. This 

typically involves reducing the output of fast-response resources, which may increase the real-

time energy LMP. There are administratively defined limits on these potential LMP increases, 

known as Reserve Constraint Penalty Factors. In addition to these real-time reserve prices, a 

regulation clearing price is also calculated on the basis of the offer of the highest marginal cost 

resource providing regulation capacity in each 5-minute settlement period [16, 17]. 

1.1.3 Midcontinent Independent System Operator (MISO) 

The Midcontinent Independent System Operator (MISO) operates an Ancillary Services 

Market for Regulation and Contingency Reserves, which began operation in 2009. Currently, 

MISO operates both a DAM and RTM for ancillary services, which are simultaneously co-

optimized with its Day-ahead and Real-time energy market. MISO’s contingency reserve 

consists of two separate products for Spinning Reserves and Supplemental (Non-spinning) 

Reserves. 

MISO manages the transmission network and energy markets throughout a geographic 

area from Montana to Michigan, and Manitoba, Canada. In late 2013, MISO expanded to 

include the new MISO South sub-region, which spans portions of Texas, Louisiana, 

Mississippi, and Arkansas. MISO determines the ancillary service requirements on both a 

system-wide level and a zonal level. Figure 1-7 illustrates the MISO reserve zones, also known 

as MCP zones. Separate MCPs are calculated for Regulating, Spinning and Supplemental 

Reserves in each zone. There are seven such zones in MISO related to ancillary services 

provision. 
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1.1.3.1 MISO Market Process 

In the MISO market, resource owners who wish to participate in the DAM must submit 

offers no later than 11:00 hours EST on the day prior to the operating day for use in clearing the 

market. At 15:00 hours EST, the results for the DAM are posted. From 15:00 to 16:00 hours 

EST, participants can revise offers for RAC Post Day-Ahead (with knowledge of DAM results). 

MISO calculates ex-ante and ex-post MCPs for Regulation Reserves, Spinning Reserves 

and Supplemental Reserves at all Resource nodes in the system. These ancillary service prices 

are determined through co-optimization with the energy market using a SCED-pricing 

algorithm, in both Day-ahead and Real-time operations. In the Day-ahead Operating Reserve 

Market, ex-ante MCPs and expost MCPs are calculated on an hourly basis. In the Real-time 

Operating Reserve Markets, MCPs are calculated for each five-minute dispatch interval on both 

an ex-ante and ex-post basis. 

 

Figure 1-7 – MISO reginal map [18] 

When the market is short of one or more of its ancillary service products, MISO uses an 

administratively defined demand curve to set prices. This price of each ancillary service is also 

included in the price of all higher-valued reserves and the energy price because of co-optimized 

market clearing. The demand curves are designed such that first, under abundant conditions, the 

supply curve sets the price and the demand curve determines the amount supplied, and second, 

under scarcity conditions, the demand curve sets the price and the supply curve determines the 

amount supplied. Separate demand curves are applied both to the entire market (Market-Wide 

Operating Reserve, etc.) and to each Reserve Zone (Zonal Operating Reserve, etc.) [19, 20]. 
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1.1.4 New York ISO (NYISO) 

In December 1999, New York ISO (NYISO) took over responsibility for the electric grid 

in New York. NYISO operates DAMs for both ancillary services and energy, which are co-

optimized. In February 2005, a number of enhancements to the RTM systems were 

implemented, and a two-settlement system was designed for the Reserve and Regulation 

Markets. NYISO operates markets for Regulation Reserves and four Operating Reserve 

products: Ten-minute Spinning Reserves, Ten-minute Non-synchronized Reserves, Thirty-

minute Spinning Reserves, and Thirty-minute Non-synchronized Reserves [21]. 

NYSIO consists of three zones for reserve products: 

1. West of Central-East (West or Western) 

2. East of Central-East, Excluding Long Island (East or Eastern) 

3. Long Island 

NYISO determines separate DAM and RTM prices for Regulation and each of the three 

Operating Reserve products in the East and West regions. NYISO also calculates separate 

reserve prices in the Long Island Region but does not post them or use them for settlement 

purposes. The regions are illustrated in Figure 1-8. 

 

Figure 1-8 – NYISO East, West, and Long Island regions [22] 

1.1.4.1 NYISO Market Process 

Ancillary services are procured through a DAM, HAM, and RTM. The DAM ancillary 

service prices are posted at approximately 1100 hours Eastern time for the East and West 
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regions. In the DAM, resources may submit availability bids for each hour of the upcoming day. 

NYISO selects operating reserve suppliers for each hour of the upcoming day through a co-

optimized day-ahead commitment process that minimizes the total cost of energy, operating 

reserves, and regulation service, according to the bids submitted by market participants. The 

HAM ancillary service prices are posted approximately 75 minutes before each Real-time 

Commitment (RTC) interval for the East and West regions. 

The RTM ancillary service prices for the selected date are posted every five minutes for 

the East and West regions. NYISO will automatically select operating reserve suppliers in the 

RTM from eligible resources. All suppliers will automatically be assigned a real-time operating 

reserves availability bid of $0/MW. Suppliers will thus be selected based on their response 

rates, their applicable upper operating limit, and their energy bid (which will reflect their 

opportunity costs). This selection takes place through a co-optimized RTC and dispatch process 

that minimizes the total cost of energy, regulation, and operating reserves. 

In order to balance operating reserve settlements, when the real-time schedule is less than 

the day-ahead schedule, the supplier pays a charge for the imbalance equal to the product of (i) 

the RTM Clearing Price for the relevant operating reserves product in the relevant location and 

(ii) the difference between the supplier’s day-ahead and real-time operating reserves schedules. 

When the supplier’s real-time operating reserves schedule is greater than its day-ahead 

operating reserves schedule, the NYISO pays the supplier for the imbalance equal to the 

product of (i) the RTM clearing price for the relevant operating reserve product in the relevant 

location and (ii) the difference between the supplier’s day-ahead and real-time operating 

reserves schedules [23, 24]. 

1.1.5 Pennsylvania New Jersey Maryland (PJM) 

PJM implemented several coordinated ancillary service markets in 2001 to co-optimize 

the provision of energy, regulation and operating reserves. These include a Day-Ahead Energy 

Market, Real-Time Energy Market, Forward Regulation Market, Forward Synchronized 

Reserve Market, and Forward Day-Ahead Scheduling Reserve Market. Both generation and 

demand resources are allowed to participate in each ancillary service market with eligibility 

validation. Load-serving entities are obliged to acquire a share of the PJM ancillary services 

requirement in any of three ways: self-scheduling the entity’s own resources; bilateral contracts 

to purchase services from other participants; and purchasing services from the ancillary service 

markets. The share of obligation is determined on the basis of the entity’s total load in the PJM 

RTO. 
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PJM consists of two zones for reserve products: 

1. PJM RTO 

2. PJM Mid-Atlantic Dominion (PJM MAD) 

The PJM RTO zone spans the entire PJM territory (including PJM MAD), while PJM 

MAD is a sub-zone covering the eastern portion of the PJM territory. PJM applies a unified 

regulation requirement for the whole PJM RTO region. Owing to potential deliverability issues, 

PJM also established the MAD sub-zone for synchronized reserve and primary reserve services, 

as illustrated in Figure 1-9. 

 

Figure 1-9 - PJM RTO territory and MAD Sub-Zone 

1.1.5.1 PJM Market Process 

PJM secures energy and reserve through coupled market-based processes [25, 26]. 

Specifically, PJM’s scheduling of energy and reserve for each operating day D is handled by 

means of a forward Day-Ahead Energy Market (DAEM), a Real-Time Energy Market (RTEM), 

a forward Regulation Market, a forward Synchronized Reserve Market, a forward Day-Ahead 

Scheduling Reserve Market (DASRM), and an hourly re-scheduling process.  

The DAEM, which produces energy prices and energy commitment and dispatch levels 

for each hour H of an operating day D, closes at hour 12 on day D-1 [25]. Up to this close, 

market participants can submit energy demand bids and energy supply offers for each hour of 

day D. After this close, PJM performs analysis to clear the DAEM. The market-clearing prices 

for the DAEM are LMPs calculated as the shadow prices for nodal energy balance constraints. 
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The RTEM is a balancing mechanism in which market-clearing LMPs for imbalance 

energy are calculated every five minutes based on actual system conditions [27]. Separate daily 

accounting settlements are performed for the DAEM and RTEM markets. The DAEM 

settlement is based on scheduled hourly quantities and on day-ahead hourly prices, whereas the 

RTEM settlement is based on actual hourly quantity deviations from day-ahead scheduled 

quantities and on hourly real-time LMPs calculated from the five-minute real-time LMPs 

determined for each hour. 

In Day-Ahead Scheduling Reserve Market (DASRM), ancillary service prices and cost-

related data must be supplied by 18:00 hours Eastern time one day ahead of operation and are 

applicable for the entire 24-hour period. All data can be revised until 60 minutes before the 

operating hour. Sixty minutes prior to the operating hour, PJM executes the Ancillary Services 

Optimizer to jointly optimize energy, Synchronized Reserves, Primary Reserves, and 

Regulation on the basis of forecasted system conditions to determine an economical set of 

inflexible reserve resources to commit for the operating hour. 

In the PJM regulation market, resource owners also submit specific offers for regulation 

capability and regulation performance. PJM optimizes the RTO dispatch profile and forecasts 

LMPs to calculate an hourly regulation market clearing price (RMCP), regulation market 

performance clearing price (RMPCP), and regulation market capability clearing price 

(RMCCP). For each hour, RMCP is the total of RMPCP and RMCCP. 

PJM calculates real-time prices for Synchronized Reserves and Primary Reserves 

simultaneously with the LMP every five minutes in real time. When there is no Synchronized 

Reserve shortage, the prices will be determined by the cost of the marginal Synchronized 

Reserve resource, which is defined as the Synchronized Reserve offer plus any opportunity cost 

for this resource relative to forgone energy or other ancillary service payments. When there is 

no Primary Reserve shortage, the prices will be determined by the cost of the marginal Primary 

Reserve resource, which is defined as the opportunity cost for this resource relative to forgone 

energy or other ancillary service payments. When there is a shortage in Synchronized Reserves, 

then the price will be the sum of the Primary Reserve and Synchronized Reserve penalty 

factors. When there is a shortage in Primary Reserves, the Primary Reserves price will be equal 

to the penalty factor of the location where the shortage occurred [28, 27]. 

1.1.6 Southwest Power Pool (SPP) 

In March 2014, the Southwest Power Pool (SPP) began operating an Integrated 

Marketplace that conducts a market-based procurement of three types of ancillary services: 
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Regulation (Regulation-up and Regulation-down), Spinning Contingency Reserves, and Non-

spinning Contingency Reserves. These services are supplied by generators and are purchased by 

SPP on the basis of a pre-determined requirement. The market-based mechanisms for ancillary 

service procurement are part of the SPP Integrated Marketplace, whereby ancillary services are 

introduced in conjunction with the SPP’s day-ahead energy and the real-time balancing 

markets. Furthermore, SPP co-optimizes procurement of ancillary services with day-ahead and 

real-time energy. Regulation is a power supply product that is used to continuously supply the 

SPP balancing authority area in order to maintain Area Control Error in accordance with NERC 

control performance criteria. Regulation-up and Regulation-down services are provided by 

generators that are specially equipped with AGC, which allows near-continuous adjustment to 

meet the regulation set points. Contingency Reserves are supplied by resources that are able to 

supply energy to the system within ten-minutes of a contingency event (unexpected generator or 

transmission equipment outages). Contingency Reserves are comprised of Synchronized 

(Spinning) Reserves, from online resources that are synchronized with the system, and Non-

spinning (Supplemental) Reserves, from offline resources. SPP operates both a DAM and RTM 

for ancillary services. 

The SPP region covers Kansas, Oklahoma, and parts of New Mexico, Texas, Louisiana, 

Missouri, Mississippi, and Arkansas. As illustrated in Figure 1-10, the SPP regional footprint is 

composed of 16 balancing authorities. 

1.1.6.1 SPP Market Process 

 The SPP is set to launch its New Integrated Marketplace on March 1, 2014 [29, 30, 31]. 

The Integrated Marketplace will support the integrated co-optimization of energy, Regulation 

Up/Down, Spinning Reserve, and Supplemental Reserve in both a Day-Ahead Market (DAM) 

and a Real-Time Balancing Market (RTBM). 

On the morning of each day before (D-1), SPP market participants will be able to submit 

energy demand bids, energy supply offers, and reserve supply offers into a DAM for each hour 

of day D. The SPP will set the hourly reserve requirements for each of the twenty-four hours of 

day D. The DAM will then be cleared to produce a 24-hour schedule of hourly price, 

commitment, and dispatch levels for energy and reserve for day D. 

After the close of the DAM, a Reliability Unit Commitment (RUC) process will be 

conducted to ensure there is enough capacity committed for day D to cover the forecasted 

system load and reserve requirements for day D. The RUC process will be executed several 

times (every four hours at a minimum) during the remainder of day D-1. Both commitment and 
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decommitment decisions will be made during these RUC processes. Resources committed or 

decommitted during any RUC process will be subject to make whole payments. An RTBM 

permitting co-optimization of imbalance energy and reserve will be run in parallel with the 

DAM and RUC processes. The RTBM will be cleared every five minutes to produce dispatch 

and price levels for both imbalance energy and reserve. 

 

Figure 1-10- The SPP territory [32] 

1.1.7 California Independent System Operator (CAISO) 

The California Independent System Operator (CAISO) was established in 1996 to operate 

the region’s power grid and wholesale electric markets, which include an energy market, an 

ancillary service market, and a financial transmission rights market. CAISO procures 

Regulation-up, Regulation-down, Spinning Reserves, and Non-spinning Reserves in the Day 

Ahead Market (DAM) and Hour Ahead Market (HAM). Spinning and Non-spinning Reserves 

are jointly referred to as Contingency Reserves. 

CAISO maintains two Ancillary Service Regions and eight Ancillary Service Sub-

Regions. The two Ancillary Service Regions are the CAISO System Region and the CAISO 

Expanded System Region. The CAISO Expanded System Region is defined as the entire 

CAISO balancing authority area plus all system resources at scheduling points outside of the 

CAISO balancing authority area. The CAISO System Region is defined as the subset of 

certified resources defined in the CAISO Expanded System Region that are located internal to 

the CAISO balancing authority area. 
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There are eight sub-regions, each of which may have its own minimum ancillary service 

requirements based on system reliability conditions. Figure 1-11 – CAISO reginal territory 

illustrates the territory of the CAISO, and its subregions. Zone ZP26 in Figure 1-11 – CAISO 

reginal territory is divided into SP26 (South of Path 26) and NP26 (North of Path 26). There is 

an expanded region1 for each of the four regions, with a total of eight sub-regions. 

 

Figure 1-11 – CAISO reginal territory [33] 

1.1.7.1 CAISO Market Process 

CAISO manages a Day-Ahead Market (DAM) and a Real-Time Market (RTM) for the 

integrated co-optimization of energy, Regulation Up/Down, Spinning Reserve, and Non-

Spinning Reserve [34, 35, 36]. The operation of CAISO’s DAM and RTM is similar to the 

operation of the DAM and RTM in both MISO and NYISO. 

Seven days before each operating day D, the DAM is opened and ready to accept virtual 

and physical bid/offer information from entities called Scheduling Coordinators (SC). Two days 

before day D, CAISO produces a forecast of CAISO demand. By hour 18 two days ahead of 

day D, CAISO publishes forecasted reserve requirements and regional constraints by Ancillary 

Service Region. 

Any SC wishing to participate in the DAM for operating day D must submit its bids/offers 

prior to hour 10 on day D-1. These bids/offers include energy demand bids, energy supply 

offers, and supply offers for Regulation Up/Down, Spinning Reserve, and Non-Spinning 

Reserve. CAISO sets hourly reserve requirements for each of the twenty-four hours of day D 

based on its forecasted reserve requirements and regional constraints. 

After the close of the DAM at hour 10 on day D-1, CAISO undertakes an Integrated 

Forward Market (IFM) process to determine the day-ahead schedule for energy prices (LMPs), 
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energy commitment and dispatch levels, reserve prices, and reserve commitment and dispatch 

levels. After the completion of the IFM, CAISO carries out multi-interval real-time 

optimizations to minimize the cost of dispatching imbalance energy and procuring additional 

needed reserve, subject to resource and network constraints. The Hour-Ahead Scheduling 

Process (HASP) is included in a special hourly run of real-time unit commitment (RTUC). 

Reserve procurement in the HASP is done through an optimization process that is based on 

repeatedly updated system conditions. After the HASP closes for a particular operating hour H, 

the bids/offers for hour H are validated and a Market Power Mitigation and Reliability 

Requirement Determination (MPM-RRD) process is performed. Real-time dispatch levels and 

settlement prices for imbalance energy and reserve are then determined in the RTM for hour H. 

The reserve procurement cost allocation for all reserve products is hourly, system-wide, 

and across IFM, HASP, and RTMs. The cost of procuring reserve is viewed by CAISO as being 

on behalf of demand and is therefore allocated to demand using a system-wide user rate. The 

user rate for each form of reserve is the average cost of procuring this form of reserve in both 

the DAM and RTM for the whole CAISO system. 

Ancillary service marginal prices (ASMPs) are produced as a result of the co-optimization 

of energy and ancillary service for each ancillary region. They represent the marginal cost of 

providing an additional unit of that service. In supply shortage conditions, when co-

optimization fails to clear the market and there is not a well-defined ASMP, CAISO will use 

scarcity reserve demand curves to set the administrative values for ASMPs. These are based 

upon a stepwise demand curve corresponding to the shortage of three upward reserve products 

(i.e. Spinning Reserves, Non-spinning Reserves, and Regulation-up) and a stepwise demand 

curve corresponding to shortage of Regulation-down service. 

1.1.7.2 CAISO Ancillary Services 

Based on FERC definition, AS are: “Those services necessary to support the transmission 

of electric power from seller to purchaser given the obligations of control areas and transmitting 

utilities within those control areas to maintain reliable operations of the interconnected 

transmission system” [37]. In general, operating reserve is partitioned into three distinct 

categories of frequency control: primary, secondary, and tertiary. Each responds faster than the 

next. Moreover, the mechanism activating reserve in each of these categories is different [38, 

39, 40]. “Primary frequency” control is a local automatic control that rapidly (within seconds) 

adjusts generator output or load to offset large changes in frequency. The adjustment of 

generator output is termed governor response, as it is provided by controllable synchronous 
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generators fitted with a speed governor. An important aspect of primary frequency control is 

that, even when fitted with a speed governor, a generator can provide additional power (to 

oppose frequency drops) only if it is operating at less than full capacity. 

“Secondary frequency” control is a central automatic control that acts to adjust active 

power production to restore the frequency and power interchanges with other systems to their 

nominal levels following an imbalance [39]. This automatic process, generally termed 

automatic generation control (AGC) in North America, acts on a time frame of several seconds 

to counteract frequency deviations. While secondary frequency control can serve to restore 

frequency following a contingency or the loss of a large block of load, it cannot serve to limit 

the magnitude of the initial frequency swing following such an event. 

Finally, tertiary frequency control consists of manual changes in scheduled unit 

commitment and dispatch levels in order to bring frequency and/or interchanges back to 

nominal values when secondary frequency control is unable to perform this task. While primary 

and tertiary frequency controls are essential for reliable grid operations, secondary frequency 

control is not. Smaller power systems can be operated using only primary frequency control and 

manual tertiary control. All large interconnected systems, however, use secondary frequency 

control because manual control cannot remove transmission line overloads quickly enough [44, 

45].  

In north America energy market, none of regions defined specific targets or markets for 

Primary Frequency Control, However in all of them, they defined AS market for secondary and 

tertiary frequency control as already described in Table 3 [41]. 

AS is necessary to maintain voltage and frequency in an allowable range by balancing 

generation and consumption under different contingencies. CAISO divides the AS to four 

categories including spinning and non-spinning reserve, frequency regulation up, and frequency 

regulation down while all of the programs can be procured in DA and RT market. AS is one of 

the most profitable markets meanwhile most challenging since it is erratic and not easy to be 

predicted. In general, CAISO procures around 90% of its AS from DA market bidding and the 

rest in RT to have a more accurate forecast on procured capacity and costs. The minimum rated 

capacity requirement for a resource to participate in AS is 500 kW and participants must be able 

to reach their maximum offered capacity within 10 minutes [42]. There are three AS markets 

applicable to BESS described as follows.  
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1.1.7.2.1 Spinning Reserve 

Spinning Reserve is an extra online capacity to reserve capacity that is synchronized to the 

grid system and ready to meet electric demand within 10 minutes of a dispatch instruction by 

the ISO. Non-Generative Resources (NGR) is a proper candidate for this market due to their 

fast ramping and instant adjustment of power. In CAISO the spinning reserve providers should 

reach to the specified level of operation reserve within 10 minutes and provide service for two 

hours. The ISO calculates the operating reserve capacity based on imports capacity, available 

generation of hydroelectric and other existing resources along with possible contingencies in the 

system [43]. To participate in the spinning reserve, each service provider can bid in DA and RT 

(FMM) market for capacity and price. After ISO clears the price and defines awarded capacity 

in DA and RT, each provider is obligated to dedicate the awarded capacity. In case of failure to 

deliver the committed capacity, the provider should pay penalty based on the amount of failure 

and the impact level. In case of full failure, the ISO disqualifies the provider for all AS markets 

and it should pass the requirement tests again.  

The net revenue from spinning reserve market depends on the awarded capacity, ancillary 

services marginal price (ASMP), which is cleared price in DA and RT markets. The revenue 

from this service can be formulated as (31). 

𝐼𝑛𝑆𝑝𝑖𝑛 =  𝐼𝑛𝑆𝑝𝑖𝑛−𝐷𝐴 + 𝐼𝑛𝑆𝑝𝑖𝑛−𝑅𝑇 (31) 

𝐼𝑛𝑆𝑝𝑖𝑛−𝐷𝐴 = ∑ (𝐶𝑎𝑝(𝜏)𝑆𝑝𝑖𝑛−𝐷𝐴. 𝑃𝑟(𝜏)𝑆𝑝𝑖𝑛−𝐷𝐴)

𝜏∈𝑇𝐷𝐴

 (32) 

𝐼𝑛𝑆𝑝𝑖𝑛−𝑅𝑇 = ∑ (𝐶𝑎𝑝(𝜏′)𝑆𝑝𝑖𝑛−𝑅𝑇 . 𝑃𝑟(𝜏′)𝑆𝑝𝑖𝑛−𝑅𝑇 . ℎ𝑆𝑝𝑖𝑛−𝐷𝐴)𝜏′∈𝑇𝑅𝑇   (33

) 

Equation (1) shows the total income of spinning reserve. 𝐶𝑎𝑝(𝜏) is the awarded (called) 

power in kW for each interval and 𝑃𝑟(𝑡) is its cleared price in $/kWh for the same interval. 

Equation (2) shows the DA income where τ is one-hour time interval within 24 hours of a day 

(𝑇𝐷𝐴) and for RT market 𝜏′ in (3) is 15min time interval for entire day and h is time duration of 

operation interval, while it is one for DA market. In (2) and (3), 𝐶𝑎𝑝(𝜏) and 𝐶𝑎𝑝(𝜏′) are the 

decision variable and Pr(t) is uncertain parameter of scheduling optimization problem. Spinning 

reserve in DA pays for committed capacity. In addition, if participants are asked to deliver the 

committed capacity, they will earn extra revenue based on the delivered energy and energy 

price in the RTD.  
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In practice, the non-spinning/spinning reserve has an important role in grid management, 

and when this service is called, it is vital to deliver all committed capacity. Therefore, the 

penalty rate for this service is high, and in most cases, the participants avoid it. Consequently, 

for sake of simplicity in many studies, this penalty is not taken into the account. 

1.1.7.2.2 Frequency Regulation 

The frequency regulation is an ancillary service to mitigate small fluctuations in the grid 

frequency. Regulation capacity must follow the automated generation control (AGC) signal in a 

range of couple of seconds. In CAISO, the regulation market is divided into regulation up and 

down. The regulation up is used to increase the grid frequency and regulation down is the act of 

absorbing more energy to decrease the frequency. The BESS as a fast and controllable NGRs is 

one of the best choices for regulation market while this market is a suitable market for NGRs 

due to its high return. In general, the average clearing price in regulation market is higher than 

the one in spinning and non-spinning reserve [44]. The frequency regulation can be offered in 

both DA and RT (FMM) markets. FERC order 755 [45] structured the payment for regulation 

service by including the performance payment. That is, ISO not only pays for providing this 

service (capacity payment) but also for the quality of the service (performance payment). The 

performance is paid based on participants’ accuracy and mileage by calculating how accurately 

service provider can follow the AGC signal. The performance payment is formulated as (34): 

{
Performance
Payment

} = {
Actual
Mileage

} × {
Mileage 
Price

} × {
Performance 
Accuracy

} (34) 

The actual mileage is the sum of absolute change of AGC signal, which is updated every 

four seconds, in a 15-minute interval. This term indicates what mileage the ISO would expect 

from each provider [46]. The second term in (34) is mileage price, which is mileage cleared 

price and can be considered as a constant value since the mileage cleared price range is 

relatively small [47]. The performance accuracy is defined as the level of accuracy in 

following the AGC signal. Performance accuracy is calculated as the weighted average of 

absolute deviation from AGC signal, using actual mileage as the weight, during 15 minutes 

intervals for a calendar month. The minimum performance accuracy must be over 25% and if 

accuracy drops to less than 25%, the unit should re-certify to provide the corresponding service 

within ninety days from the date the CAISO provides notice to the provider. 

The revenue from regulation market for NGR is calculated based on the regulation 

awarded capacity, the total cleared capacity price, and mileage price in both DA and RT, see 
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(35)-(41). In case of failure to deliver committed capacity, the regulation and the mileage 

payments, awarded in advance, will be cancelled, also the penalties will be applied.  

𝐼𝑛𝑅𝑒𝑔 = 𝐼𝑛𝑅𝑒𝑔−𝐷𝐴 + 𝐼𝑛𝑅𝑒𝑔−𝑅𝑇   (35) 

𝐼𝑛𝑅𝑒𝑔−𝐷𝐴 = ∑ (𝐼𝑛(𝜏)𝑅𝑒𝑔−𝐷𝐴.𝑈𝑝 + 𝐼𝑛(𝜏)𝑅𝑒𝑔−𝐷𝐴.𝐷𝑜𝑤𝑛𝜏∈𝑇𝐷𝐴 )    (36) 

𝐼𝑛(𝜏)𝑅𝑒𝑔−𝐷𝐴.𝑈𝑝 = 𝐶𝑎𝑝(𝜏)𝑅𝑒𝑔−𝐷𝐴.𝑈𝑝 . 𝑃𝑟(𝜏)𝑅𝑒𝑔−𝐷𝐴.𝑈𝑝 . ℎ𝑅𝑒𝑔−𝐷𝐴.𝑈𝑝 + 𝑃𝑒𝑟𝑓𝑜𝑟𝑚(𝜏)𝐷𝐴.𝑈𝑝 (37) 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚(𝜏)𝐷𝐴.𝑈𝑝

= [(𝐶𝑎𝑝(𝑡)𝑅𝑒𝑔−𝐷𝐴.𝑈𝑝. 𝑚(𝜏)𝐷𝐴.𝑈𝑝). 𝑃𝑟(𝜏)𝑚𝑖𝑙𝑒−𝐷𝐴.𝑈𝑝 . 𝑎𝑐𝑐(𝜏)𝑈𝑝. ℎ𝑅𝑒𝑔−𝐷𝐴.𝑈𝑝] 
(38) 

𝐼𝑛𝑅𝑒𝑔−𝑅𝑇 = ∑ (𝐼𝑛(𝑡)𝑅𝑒𝑔−𝑅𝑇.𝑈𝑝 + 𝐼𝑛(𝑡)𝑅𝑒𝑔−𝑅𝑇.𝐷𝑜𝑤𝑛

𝑡∈𝑇𝑅𝑇

 (39) 

𝐼𝑛(𝑡)𝑅𝑒𝑔−𝑅𝑇.𝑈𝑝 = 𝐶𝑎𝑝𝑡
𝑅𝑒𝑔−𝑅𝑇.𝑈𝑝

. 𝑃𝑟𝑡
𝑅𝑒𝑔−𝑅𝑇.𝑈𝑝

 . ℎ𝑅𝑒𝑔−𝑅𝑇.𝑈𝑝 + 𝑃𝑒𝑟𝑓𝑜𝑟𝑚(𝜏)𝑅𝑇.𝑈𝑝 (40) 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚(𝜏)𝑅𝑇.𝑈𝑝 =

(𝐶𝑎𝑝(𝑡)𝑅𝑒𝑔−𝑅𝑇.𝑈𝑝.𝑚(𝜏)𝑅𝑇.𝑈𝑝) . 𝑃𝑟(𝜏)𝑚𝑖𝑙𝑒−𝑅𝑇.𝑈𝑝 . 𝑎𝑐𝑐(𝜏)𝑈𝑝. ℎ𝑅𝑒𝑔−𝑅𝑇.𝑈𝑝 
(41) 

In (35) to (40), 𝐼𝑛(. ) indicates the income and indices “𝑈𝑝” and “𝐷𝑜𝑤𝑛” show the 

regulation up and down, respectively. According to (35), the total revenue of regulation market 

is the summation of revenue from RT and DA market. In (36) and (39) the DA and RT market 

revenue are divided into regulation up and down revenues. (37) and (40) calculate the 

regulation up revenue in DA and RT, respectively. Equations (38) and (41) describe the 

performance payment 𝑃𝑒𝑟𝑓𝑜𝑟𝑚(𝜏)(.) in DA and RT, respectively. The same formulas can be 

applied to regulation down. The optimization variable is the regulation capacity, 𝐶𝑎𝑝𝑅𝑒𝑔 in kW 

for each interval. The uncertain parameter of the optimization includes 𝑃𝑟𝑅𝑒𝑔, the cleared 

capacity price at $/kWh for each interval, and 𝑃𝑟𝑚𝑖𝑙𝑒 is the cleared mileage price. 𝑎𝑐𝑐(𝑡) 

indicates the accuracy of performance response to the AGC signal and is estimated by ISO for 

the upcoming market interval based on the historical deviation from the AGC signals for the 

upcoming market interval [48], and 𝑚(𝑡) is the regulation mileage multiplier estimated by 

CAISO and is the amount of total expected resource movement (up or down), or Mileage, for 1 

MW of Regulation Up or Down capacity. CAISO, based on historical data and how close the 

resources follow the AGC signal, calculates the multiplier. The resource mileage multiplier 

informs how much mileage the CAISO may expect from bid-in or self-provided capacity [47]. 

Although the AGC signal changes happen every 4 seconds, ℎ𝑅𝑒𝑔−𝐷𝐴.𝑈𝑝 in (37) is the settlement 
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interval which is in range of several minutes, and ℎ𝑅𝑒𝑔−𝑅𝑇.𝑈𝑝 in (40) is 15 minutes interval 

which is operational interval. 

 

 

1.1.7.2.3 Energy Market 

The energy market defines as delivering energy to the grid to compensate forecasted 

demand error. In general, the energy market in CAISO includes DA market, RTD and FMM. 

The main difference of energy market and other markets such as AS is that participants just bid 

for the amount of energy based on their available capacity and the local marginal price (LMP) 

defined by the ISO. The LMPs will be calculated according to System Marginal Energy Cost 

(SMEC), Marginal Cost of Losses (MCL) and Marginal Cost of Congestion (MCC) from (42). 

The SMEC is the same for each Aggregated Pricing Node (PNode) and constant in every time 

interval. On the other hand, MCL and MCC could be negative or positive and might be different 

for each node. It should be noted that at each time interval new LMPs will be published. 

{
Local Margial

Price
} = {

System Marginal 
Energy Cost

} + {
Marginal Cost 
of Losses

} + {
Marginal Cost 
of Congestion

}  (42) 

     The energy market revenue could be calculated by summation of DA, FMM and RTD 

incomes.  

𝐼𝑛𝐸 = 𝐼𝑛𝐸−𝐷𝐴 + 𝐼𝑛𝐸−𝐹𝑀𝑀 + 𝐼𝑛𝐸−𝑅𝑇𝐷 − 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐸(𝜏) (43) 

𝐼𝑛𝐸−𝐷𝐴 = ∑ 𝐸(𝜏)𝐷𝐴. 𝐿𝑀𝑃(𝜏)𝐷𝐴

𝜏∈𝑇𝐷𝐴

 (44) 

𝐼𝑛𝐸−𝐹𝑀𝑀 = ∑ 𝐸(𝜏)𝐹𝑀𝑀 . 𝐿𝑀𝑃(𝜏)𝐹𝑀𝑀

𝜏∈𝑇𝐹𝑀𝑀

 (45) 

𝐼𝑛𝐸−𝑅𝑇𝐷 = ∑ 𝐸(𝜏)𝑅𝑇𝐷 . 𝐿𝑀𝑃(𝜏)𝑅𝑇𝐷

𝜏∈𝑇𝑅𝑇𝐷

 (46) 

Equations (44) - (46) demonstrate the energy market income in DA, FMM and RTD 

interval where 𝐸 is the delivered energy and optimization variable and LMP is the cleared 

energy price. 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑅𝑒𝑔 is the penalty cost for violation from committed capacity and can be 

formulated as (47). 𝑃𝑟𝑎𝑡𝑒(𝜏) is the penalty rate in $/kWh, 𝐸(𝜏)𝐴𝑤 is awarded and 𝐸(𝜏)𝑑𝑒𝑙 is 

actual delivered energy [34]. 
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𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐸(𝜏) = 𝑃𝑟𝑎𝑡𝑒(𝜏). |𝐸(𝜏)𝐴𝑤 − 𝐸(𝜏)𝑑𝑒𝑙| (47) 

1.1.7.2.4 Energy Imbalance Market  

Since 2014, a new market called the California Western Energy Imbalance Market (EIM) 

has been introduced in the West region. The main purpose of this market is to export surplus 

energy production from western states to central and eastern states in U.S. EIM is run as real 

time dispatch (RTD) in every 5 min by choosing the least-cost resource to meet the needs of the 

grid and uses the data of DA and FMM and the online load forecasting to make the best 

decision for maximum profitability based on the latest information. Although EIM has been 

recognized as CAISO markets, but despite of other markets, external participants out of 

California region can register and participate in this market. In Figure 1-12 western EIM active 

and pending participants for following years are illustrated.  

 

Figure 1-12 - Western EIM active and pending participants [49] 
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1.2 Energy and Ancillary Services Market Design in 

Europe 

Based on Directives 96/92/EC and 2003/54/EC and the Third Legislative Package (2009), 

European Union counties start to move from monopoly companies which had control over 

generation, transmission and distribution to more competitive environment for entering new 

participants. To achieve the imposed environmental targets and to provide electricity companies 

competitive electricity markets, the following steps are necessary [50]: 

• Privatization to enhance performance and reduce the ability of the state to use these companies 

as a mean to achieve costly political agendas. 

• Unbundling, which means the separation of the electricity business that can be 

conducted competitively (generation and retail) from the natural monopolies 

(transmission and distribution), which must be regulated. 

• Horizontal restructuring to ensure competition. 

• Designation of a System Operator responsible to maintain network stability and to 

ensure open entry to the wholesale market and full access to the transmission network. 

This System Operator can be a Transmission System Operator (TSO), which also owns 

the electrical grid, or an Independent System Operator (ISO), which is not the owner of 

the grid. 

• Establishment of a wholesale market were generators compete to supply electricity on 

different time interval basis. This market has to suitably integrate market-based 

mechanisms aimed to acquire operational reserves services. 

• Unbundling of retail tariffs and rules to enable access to the distribution networks to 

promote competition at retail level.  

Hence, a liberalized market is a means to obtain the economic efficiency in the energy 

sector, not only in short term – allocative and productive efficiency – but also in long term 

because a smart market is capable to provide dynamic efficiency, which means that is able to 

provide price signals for investments (demand-side and generation-side). In general, most of the 

electricity industry in Europe is vertically unbundled. Transmission and distribution of 

electricity are regulated natural monopolies, while generation, suppliers and load operate in a 

liberalized market. In this situation, generators compete in the wholesale electricity market to 

sell electricity to large industrial consumers and suppliers, whereas suppliers and load compete 

in the retail market to acquire electricity at a best price.  
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The market description presented here is the general structure of electricity markets in EU. 

In the following chapters, more detailed analysis of the Italian markets is reported. 

1.2.1 The Italian Energy Market 

In Italy, the production, transmission and distribution of electricity are performed by 

different companies and controlled by many entities, each one with a specific role: 

• The Ministry of Economic Development (“Ministero dello Sviluppo Economico”, 

MSE): it is a government ministry responsible for a variety of policies concerning 

among others the economic development of the power system. It defines strategic 

and operational guidelines for the production and the economic activities around 

the energy and the mineral resources, guarantying the security and the cheapness 

of the system; 

• the Italian Regulatory Authority for Energy, Networks and Environment 

(“Autorità di Regolazione per Energia Reti e Ambiente”, ARERA) is the 

independent regulatory entity of the energy markets and the integrated water 

services. It was established by law n.481in 1995 with the purpose to protect the 

interests of users and consumers, promote competition and ensure efficient and 

profitable services, keeping satisfactory quality levels in the electricity and gas 

sectors. With law n.214 in 2011, new regulatory competences in the integrated 

water services sector were attributed to ARERA, while Legislative decree n.102 in 

2014, new tasks in the district heating and cooling sector. The Authority has to 

define reliable and transparent tariff system, set quality of service standards, 

define a framework aimed at the protection and empowerment of consumers in 

competitive markets, provide specialized advice and report to the Government and 

Parliament on the regulated sectors, formulating observations and 

recommendations for further policy actions; 

• “Gestore dei Servizi Energetici” (GSE S.p.A.) is the public holding company, 

wholly owned by the Ministry of Economy and Finance, responsible of the 

development of renewable energy sources by managing support schemes and 

granting the related incentives; 

• “Gestore dei Mercati Energetici” (GME): it is the entity, founded by GSE, which 

organizes and manages the Electricity Market, respecting regulatory forecast 

defined by the Italian Government and AEEGSI, and it is responsible of the 

proper functioning of the system. GME maintains obligations and principles 
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which guarantee the neutrality, transparency, cost-effectiveness of the Italian 

Electricity Market; 

• Terna, the Italian Transmission System Operator (TSO) instituted with Bersani 

Decree n.79/99, manages the national transmission grid under security conditions 

by balancing supply and demand of electricity. Terna’s objective is to guarantee 

the greatest efficiency of its infrastructures and their maintenance, monitoring 

their operation and activity through remote control centers. 

• Single Buyer (“Acquirente Unico”, AU) is a public company owned by GSE. Its 

mission is to procure continuous, secure, efficient and reasonably-price electricity 

supply for households and small business. AU buys electricity from the market on 

favorable terms and re-sells it to the distributors of the standard offer market for 

supplying who did not switch to the open market. 

• Antitrust Authority (“Autorità Garante della Concorrenza e del Mercato”, 

AGCM) is an administrative independent authority, established by law n.287 in 

1990, which introduced antitrust rules in Italy. The missions of AGCM is to 

guarantee the security of the competition and of the market, counteracting 

incorrect commercial practices with respect to consumers and small business and 

avoiding harassment clauses between companies and consumers. 

The Italian energy market is characterized by an annual electricity consumption of about 

321.9 MWh in 2018 which is highest in past 6 years and an installed capacity of around 120 

GW [51] . 

The Italian Power Exchange (IPEX) [52] was created with the legislative decree 16th 

March 1999, n.79 (D.lgs. n.79/99) to set up an internal energy market, as part of the process of 

transposition of the EU directive 96/92/CE. It is active since April 2004 and allows demand 

participation since January 2005. The purpose of the creation of this market was to promote 

competition in generation sector and in the wholesale market and to favor transparency and 

efficiency in the dispatching activity, which is a natural monopoly. The electric system is 

subdivided into transmission network portions, the so-called market zones, characterized by 

physical limits of electricity exchange to and from the corresponding neighboring zone.  

The electric system is subdivided into transmission network portions, the so-called market 

zones, characterized by physical limits of electricity exchange to and from the corresponding 

neighboring zone. The interface of these zones consists of all lines having the highest 

probability to be congested when injection and withdrawal programs are executed. In addition, 

inside the area no congestions are assumed when these programs are executed and the location 
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of injections and withdrawals inside one zone does not impact the transport capacity between 

zones. 

The zones identification process takes into account the three-years development plan of 

the national transmission system and the zones can correspond to physic geographical areas, 

virtual areas (without a direct physical correspondent) or limited production poles (virtual areas 

in which the electricity production is subject to constraints to maintain the security of the 

system). The national transmission grid is interconnected with neighboring countries via 23 

lines: 4 with France, 12 with Switzerland, 1 with Austria, 2 with Slovenia and 2 submarine 

cables with Greece and Malta. 

1.2.1.1 Structure of the Italian Electricity Market 

The Electricity Market is managed and organized by GME and it consists of the Spot 

Electricity Market (“Mercato a Pronti”, MPE), Forward Electricity Market (“Mercato a 

Termine”, MTE) and the Forward Market Accounting Platform, which is a platform for the 

physical delivery of the financial contracts concluded in the IPEX. From 2007 operators can 

buy and sell electricity also by stipulating bilateral contracts (Over the Counter, OTC) out with 

the bidding system. These transactions must be registered on the Forward Market Accounting 

Platform (PCE). 

1.2.1.1.1 The Spot Electricity Market 

In the Spot Market, each participant submits its bids for each time interval. Bids could be 

Simple or Multiple. “Simple” bids just include value and price for each interval on the other 

hand, in “multiple” bids, bids are included several volume and prices for different period. 

The MPE is composed of Day-Ahead Market (“Mercato del Giorno Prima”, MGP), Infra-

Day Market (“Mercato Infragiornaliero”, MI) and Ancillary Services Market (“Mercato del 

Servizio di Dispacciamento”, MSD). Day-Ahead Market is a wholesale electricity market 

hourly based and opens at 8 a.m. of the ninth day before the day of delivery and closes at 9:15 

a.m. of the day before the day of delivery. Before starting the market resolution process, Terna 

communicates the programs related to bilateral contracts to GME, which is the central 

counterpart, as virtual offers with zero price and as virtual bids without price detailed. At the 

closure, clear prices and volumes would be determined to maximum the transmission limits 

between zones. So, Market ranks all the valid supply offers in increasing price order and all the 

valid demand bids in decreasing order. The intersection of these two curves identifies the 

equilibrium of traded volume and market clearing price. In addition, demand bids in respect of 

consuming units belonging to geographical zones are always valued at the National Single Price 
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(named “PUN” – “Prezzo Unico Nazionale”), computed as the average of zonal prices, 

weighted for the total purchases; while supply offers are valued at the zonal equilibrium price in 

which the respective generating unit is placed. 

The Infra-Day Market (“Mercato Infragiornaliero”, MI) where operators can adjust their 

sales and purchase bids/offers and commercial positions with respect to those trading on MGP. 

Hence, MI allows market participants to submit last updated bids for to modify their own 

schedules in the DAM. The central counterpart, that is the GME, manages the mechanism of 

trading and communicates with Terna, aiming the sustainability of the network. Like in the 

DAM, demand bids and supply offers can be multiple, simple or pre-defined and the price 

forming mechanism is the same of the previous market (that is adopting the system marginal 

price method), but the equilibrium price PUN is not anymore computed, and all the sales and 

the purchases are valued at the zonal price. It consists of four sessions: the first two after DAM 

closing (MI1 and MI2), in day before, while the other two sessions are infra-day sessions (MI3, 

MI4) and, hence, occur in day same day. After the market closure, the GME notifies the result 

to Terna, which needs them to determine preliminary information about residual transmission 

capacities between zones. 

Finally, The Ancillary Services Market (“Mercato del Servizio di Dispacciamento”, MSD) 

in which Terna procures the resources needed to manage and control the system. It is composed 

by an ex-ante session (MSD ex-ante), aiming to procure those services needed to solve 

congestions and to create reserve, and an infra-day session (MB), aiming to balance the system 

in real-time. MSD ex-ante is in turn subdivided into three sub-stages MSD1, MSD2, MSD3, 

while MB into five sub-stages: MB1, MB2, MB3, MB4, MB5. In the 1.2.1.1.2, this market will 

be described in a more detailed way. 

The scheduling of different sessions of MPE is summed up in Table 4 below:  

 



Electricity Market 

  31 

Table 4- Scheduling of the Spot Electricity Market in Italy 

1.2.1.1.2 The Italian Ancillary Service Market (MSD) 

The Italian MSD [53, 54] is the market where Terna procures the resources needed to 

manage, operate, monitor and control the power system, acting as the central counterparty for 

the overall presented bids. As previously mentioned, it is subdivided into the MSD ex-ante, that 

takes place in specific interval in the day ahead the reference day in which Terna accepts bids  

to resolve congestions appearing after MGP and forms an adequate reserve margin that takes 

place in five different intervals, from 11 p.m. of the day before the reference day to one and half 

hour before the first hour that can be negotiated in each session, and in which Terna accepts 

bids to balance injections and withdrawals and to provide secondary regulation. In the MSD, 

differently from the previous markets, all the offers/bids which expect a remuneration, are 

recompensed with the pay as bid method [53, 55]. 

The submitted bids must follow some constraints to allow the convergence of the bidding 

process in reasonable times such that each enabled PU and for each time period of the reference 

day, the bids must be composed by:  

− One price for the purchasing and selling offer [€/MWh] for the Secondary 

Reserve, if the PU is qualified to supply this service; 

− From one to three pairs of quantities and prices [MWh and €/MWh] for bids 

the other services for possible increment of energy starting from the 

quantity defined by the previous MGP or MI section up to the maximum 

quantity; 

− One turn-on bid (valid for each hour of the day); 

− One price [€/MWh] for offering minimum power starting from a power 

lower than the minimum value; 

− One price [€/MWh] to turn-off the unit (decrease the power to 0 MW). 

As mentioned, the MSD has critical rule for Terna which provides services needed to maintain 

the security and stability of the system. However, it is not the unique one, the Italian TSO could 

adopt impositions (also not remunerated) or bilateral contracts. In this situation, System services 

are distinguished as: 

• Ancillary service for “congestion management”, it consists in the availability, from 

operators, to accept modification, up or down, to their updated cumulative programs. 

The qualified PU must provide to the TSO, the residual margins with respect to the 

maximum power and the zeroing of the injection (or the minimum power in case of PU 

not qualified to the turn-off offer). Terna modifies the programs, with a dispatching 
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action, accepting the presented bids according to an economic merit order. This service 

is provided through the MSD and it is remunerated with the PAB method. 

• “Primary reserve”, it is used to automatically correct the imbalances between 

instantaneous total production and the total load of the whole European electricity 

system in real-time (a few seconds/minutes). The primary reserve must be continuously 

available and must be distributed in the network as much uniform as possible. In Italy, 

this service is provided throughout impositions and it is not remunerated. 

• “Secondary reserve”, in the operating planning stage, the secondary reserve provides 

remained production in order to make the half-band reserve available; while in real time 

it is under the control of an automatic devices that able to modulate the electrical power 

produced as a function of the signal of level sent by the TSO (within 200 seconds). The 

dispatching user must ensure at least a band for secondary reserve greater than the 

minimum quantity defined by the TSO which is ±15% of the maximum power for 

hydroelectric units and greater than ±10 MW and ±6% of the maximum power for 

thermoelectric PU. In Italy, this service is provided by means of MSD and are 

remunerated according to market criteria. 

• “Tertiary reserve”, in the operational planning phase, it is used to establish appropriate 

margins with respect to the minimum and maximum power; while in real time these 

margins are activated manually by sending dispatching orders to provide balance 

service. Two different types of tertiary reserve are “up reserve”, which increase the 

power production in real time; and the “down reserve”, which curtails the margin for 

decreasing the power production. Furthermore, tertiary reserve can be subdivided into 

ready reserve and replacement reserve. The first one is made up by the  

increase/decrease of the production that can be injected/withdrawn into the network 

within 15 minutes and with a power gradient of 50 MW/min after the request of the TSO 

and it has been used to replenish the secondary band and keep the system balanced in 

case of rapid changes in the demand. The replacement reserve, instead, is constituted by 

the increase/decrease of the production that can be injected/withdrawn into the network 

within 120 minutes with a gradient of 0.67 MW/min, it can be sustained indefinitely and 

it is used to reconstitute the tertiary ready reserve in front of deviations of the loads, 

deviations of the production of non-programmable renewable sources and failures in the 

generation groups. This service, in Italy, is provided throughout MSD as well. 
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1.2.1.2 New structure of Italian Ancillary Services 

The current electricity grid faces some critical issues due to the increasing amount of 

energy produced by renewable energy sources. In particular, the installed capacity of non-

programmable energy sources, such as wind and solar photovoltaic (PV), have undergone a 

rapid increase from 1.6 GW in 2005 up to 28.054 GW in 2015 [56] in Italy to reach the 

European climate/energy target [57]. Unfortunately, these sources are characterized by 

intermittency and uncertainty which need a provision of a larger amount of tertiary reserve on 

MSD and require conventional power plants (thermo and hydroelectric) a greater flexibility for 

balancing purposes. It has also to be considered that the development of these technologies 

started in 2005 and was followed by the economic crisis 2007-2008, which caused a demand 

reduction. Consequently, the electricity requirement covered by Renewable Energy Sources 

(RES) increased (up to 17.5% in 2015), reducing both the available power from traditional 

generating units, due to dismissing and the reserve margins made available by such plants. 

Therefore, conventional plants are required to work at partial load to cover the peak load, 

causing, among other things and reduction of their efficiencies [58] due to continuous turn 

off/on. 

Furthermore, NPR power plants are not homogenously distributed in the whole Italy 

(Figure 1-13), especially wind plants are present mostly in Southern Italy and in the islands 

(Figure 1-14), giving rise line congestion problems and wind curtailment, which means 

limitation of the potentially producible wind generation. 
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Figure 1-13 - Regional distribution of photovoltaic plant production in 2017 [56] 

 

Figure 1-14 - Regional distribution of the number of wind farms at the end of 2017 [56] 
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As already mentioned, non-programmable renewable energy sources are often placed in 

zones characterized by low load and, consequently, change electrical fluxes in the grid, causing 

line congestions and making necessary new infrastructures or transmission network 

enhancements. Moreover, DG plants which are located in distribution network that were not 

designed to accept energy injections; for all these reasons new intervention are needed in order 

to make the grid “smart”. 

The reduction of energy production by conventional power plants reduces the system 

inertia, which is the ability of the system to ensure that the frequency excursion remains in 

acceptable ranges to guarantee the system security [59].This problem is common in all the EU 

members, but it is more stressed in Italy due to the expansion of NPR plants in areas 

characterized by poorly developed grid, with stringent transient limits and with a reduced local 

load compared to the installed capacity. 

Hence, the revision of the dispatching discipline is needed in order to make the electric 

system more flexible and introducing the controllable demand, non-programmable RES, DG 

and storage system in the electricity market. In this sense, with the Decision 393/2015/R/eel 

[60], the Authority has started a procedure, named RDE (“Riforma Dispacciamento Elettrico”) 

finalized to the reformation of the dispatching service, coherently with the strategic framework 

2015-2018. The Authority is oriented to: 

1. Reviewing the criteria that Terna has to define for selection and remuneration of 

the dispatching services in order to allow a wider participation into the ancillary 

services from the generating units, the demand and the energy storage according 

to technology neutrality criteria; 

2. Editing the unbalance fees in order to reflect the true value of the electrical 

energy. 

The first phase of this project (RDE-1) was proposed in consultation with the document 

for consultation 298/2016/R/eel [61], in which the ARERA suggested the first steps toward to 

allow the DG, demand and non-programmable renewable energy sources to quickly access to 

MSD. RDE-1 is characterized by technology neutrality, possibility to introduce “variable 

geometry” aggregation levels, the aggregator figure and by the requirement to define the plant 

controller to be installed in PU connected to LV or MV. The aggregation geometry has to be 

large enough to encourage the widespread participation users, but it has not to violate the grid 

constraints. Moreover, the Authority requires the Italian TSO to allow the participation on MSD 

to both relevant non-programmable renewable energy sources and non-relevant PU and CU and 
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believes that RDE-1 must be characterized by a double enabling regime: compulsory regime for 

the relevant PU already enabled on MSD, and a voluntary one for others. 

The first MSD opening has been concretized with the Resolution 300/2017/R/eel [62] in 

which the ARERA has deliberate the pilot projects, identified by Terna, are set up to gain useful 

information for defining the reform of the MSD and has defined two new aggregate units, in 

addition to the already existing UVAP (virtual enabled production unit - “Unità Virtuali 

Abilitate di Produzione”) and UVAC (virtual enabled consumption unit “Unità Virtuali 

Abilitate di Consumo”), the UVAM (virtual enabled mixed unit “Unità Virtuali Abilitate 

Miste”) and UVAN (virtual enabled nodal unit “Unità Virtuali Abilitate Nodali”). The TSO 

must define the aggregation geographical borders that cannot exceed the market zone but may 

not coincide with them. The UVAP, which includes non-relevant PU regardless the technology 

and the programmability placed in a unique aggregation border and for which the enabling for 

bid submission has requested, and the UVAC, which includes CU placed in a unique 

aggregation perimeter and for which the enabling for bid submission has requested and that 

have not been contracted for the interpretability, (or super interpretability, described in the 

Resolution 1/2016/R/eel) service, described in the resolution 301/2017/R/eel, for the whole 

power of the withdrawn point, can participate only to MSD. The UVAN, which includes PU 

subject of voluntary enabling and CU under the same node of the transmission network, and the 

UVAM, which includes non-relevant PU and CU placed in a unique aggregation perimeter, 

instead, can participate to both the ancillary service and the energy markets. It has to be 

specified that the Balance Service Provider, which is the responsible for managing the UVA on 

the MSD, can be different from the one on MGP/MI for the UVAC and UVAP, whilst must be 

coincident for the UVAM and UVAN. The aggregation units and the production units subject to 

voluntary enabling can require the participation to the MSD even for just one of the services 

and have to equip themselves suitable devices to ensure them integration into Terna control 

systems. The purpose of the Authority is the compilation within 2017 of the new integrated 

dispatching text (TIDE - “Testo Integrato del Dispacciamento Elettrico”) with the aim of 

highlighting the actual necessary network services, discussing the concept of aggregation, and 

the revision of the unbalances regulation.  

The first pilot project [63], identified by Terna and accepted by the Authority with the 

Resolution 372/2017/R/eel [64], regards the participation of the demand to the MSD for the 

provision of resources for the tertiary replacement reserve and balancing. This project is 

articulated in two proposals to be implemented in parallel: the qualification of CU plants for 

participation to MSD and the term supply between June and September 2017. The modulation 
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capacity of CU plants must be associated to an UVAC for the provision of dispatching 

resources. One UVAC can be associated with one or more power supplies in HV, MV and LV, 

placed in the same geographical perimeter and each unit must be equipped with a peripheral 

detachment unit. To be enabled, the maximum control power of the UVAC, which is the 

maximum withdrawn power that can be modulated in reduction, has to be at least 10 MW and 

the virtual consumption unit has to be able to modulate the withdrawal of the associated plants 

within 15 minutes of receiving the dispatching order and keep this reduction for at least 4 

consecutive hours. Once enabled, the UVAC acquire the same obligations and faculties 

expected by the dispatching users’ owner of enable PU for these services. 

The second pilot project [65], instead, approved with the Resolution 583/2017/R/eel [66], 

regards the participation on the MSD of the distributed generation, which means of the UVAP, 

and it is also divided into two proposals: the qualification of the UVAP for the participation on 

MSD and the bid/offer submission on the aforesaid market. One UVAP can be associated with 

one or more injection points in HV, MV and LV, placed in the same geographical perimeter, 

defined by Terna. To be enabled, each injection point must be equipped with a peripheral 

monitoring of generation unit and the production unit associated with the UVAP must be non-

relevant. The new opening of the Italian ASM is a fundamental process that should allow the 

distributed non-programmable renewable energy sources (in terms of UVAP), the demand 

(UVAC) and the storage (in terms of UVAP, being classified as PU in the Decision 

574/2014/R/eel) to participate in the maintenance of the electrical system in safety and stability 

condition and, therefore, to develop without burdening on conventional plants. 

1.3 Electricity market structure impact on the BESS 

viability 

The conventional electricity market structure had been designed for participation of grid 

connected and big plants such as nuclear plants or hydro turbine generators rather than fast 

response, flexible and two-way recourses such battery storage, however, in past decade by 

significant increases of distributed generators such wind farms, different countries start to revise 

the market structure for more efficient and profitable participation of these assets in market. In 

this procedure, regulators face different challenges such as grid limitation, compatibility of new 

structure with past and future technologies. In this regard, the Italian market start these 

discussions under the name of RDE (“Riforma Dispacciamento Elettrico”) from 2015, which is 

discussed in sub-section 1.2.1.2. This program is still under review and progress based on two 

different pilot projects. Following this program and to achieve EU regulations 2015/1222 
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(CACM) and EU 2017/2195 (Balancing) and on the Clean Energy Package, with references to 

the new Regulation on the internal electricity market EU 2019/943 (Electric Regulation) and to 

the new Directive on the internal electricity market EU 2019/944 (Electrical Directive), 

ARERA introduced consultation document 322/2019/R/eel [67] recently for further 

consideration of distributed generator for participation in national and international market. The 

main issue in these discussions are that in new structure the behind meters’ assets are still out of 

scope and they are not allowed to participate in market. Moreover, the focus of these changes is 

on renewable sources and battery energy storages gained less attention, which by different 

behaviour of these assets new upgrade to deal with batteries energy storage is necessary.  

On the other hand, in North America and specifically California market structure, 

preparation and revision of the market structure for distributed generators and battery storage 

systems started since 2007 by FERC order 890 [68] which was aimed at preventing undue 

discrimination and preference in transmission service. The design of the rule required that non-

generator resources like demand response be evaluated comparably for services provided by 

generation resources in the areas of reliability standards, ancillary services, and transmission 

expansion planning [69]. In CAISO, the discussion on non-generator resources (NGR) started 

on 2011 [70] to address the new type of energy producers in market such as EV or batteries. By 

definition NGRs are “resources that operate as either Generation or Load and that can be 

dispatched to any operating level within their entire capacity range but are also constrained by a 

MWh limit to (1) generate Energy, (2) curtail the consumption of Energy in the case of demand 

response, or (3) consume Energy”. At the mean time FERC order 755 [47],  to provide more 

secure and just market for fast response resources such batteries, introduced a payment for 

performance along with capacity payment for providers of frequency regulation, including 

energy storage. In next step, CAISO initiated the “Energy storage and distributed energy 

resources” (ESDER) [71] which focuses on enhancing the ability of ISO connected and 

distribution-connected resources to participate in the ISO market, including rooftop solar, 

energy storage, plug-in electric vehicles, and demand response to address issues identified in 

the California Energy Storage Roadmap in 2014 (CESR) [4]. ESDER defined in four phases 

which are including:  

➢ Phase 1    The improvements such as the ability for submitting the state of 

charge as a daily bid parameter in the day-ahead market, as well as an option to 

not provide state of charge limits or not have the ISO co-optimize non-generator 

resources based on state of charge discussed in this phase – Fall 2016 finalized 

[72].  
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➢ Phase 2  This initiative provided three new types of demand response 

performance evaluation methods, clarified Station Power treatment for storage 

resources, and incorporated additional gas indices into the net benefits test 

calculation to reflect all real-time participation regions. The enhancements are 

anticipated to lower barriers and enhance the ability of energy storage and 

distributed energy resources to participate in the ISO market  - November 1, 2018, 

finalized [73].  

➢ Phase 3   It will continue to identify and evaluate opportunities for 

increased participation of transmission grid-connected energy storage and 

distribution-connected resources in the ISO market.  Topics suggested by 

stakeholders in the ESDER Phase 2 initiative will also be addressed in this phase -  

Started from 2017 and still in progress [74].  

➢ Phase 4   It will explore refinements to the distributed energy resource 

(DER) and storage participation models, as well as lower integration barriers for 

demand response resources. This initiative will also explore expanding the models 

to optimally capture their value, as well as leverage resource design attributes that 

support grid reliability and allow for multiple-use applications  -  Started from 

2018 and still in progress [75].  

Simultaneously, in Feb 2018 the first draft of FERC order 841 [76] published to remove 

barriers to the participation of electric storage resources in the capacity, energy, and ancillary 

service markets operated by Regional Transmission Organizations (RTO) and Independent 

System Operators (ISO) (RTO/ISO markets). Specifically, this order requires each RTO and 

ISO to revise its tariff to establish a participation model consisting of market rules that, 

recognizing the physical and operational characteristics of electric storage resources, facilitates 

their participation in the RTO/ISO markets. This model must satisfy the following 

specifications:  

(1) Ensure that the eligible resouce which are using this model to provide all capacity, 

energy, and ancillary services, is technically capable and compatible to participate in 

the RTO/ISO markets; 

(2) Ensure that a resource using the participation model can set the wholesale market 

clearing price as both a wholesale seller and wholesale buyer with respect to existing 

market rules that govern when a resource can set the wholesale price.  

(3) This model must account for the physical and operational characteristics of electric 

storage resources through bidding parameters or other means; 
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(4) Set the minimum requirement size for participation in the RTO/ISO markets that does 

not exceed 100 kW. Additionally, each RTO/ISO must specify that the sale of electric 

energy from the RTO/ISO markets to an electric storage resource that the resource 

then resells back to those markets must be at the wholesale locational marginal price. 

Consequently, this order addressed the practical challenges of BTM battery storage for 

market participation such as minimum size, battery physical and operational characteristic such 

as SoC range and level, remained and current energy state and even the maximum and 

minimum running time. Moreover, it also pushed ISO/RTOs to change BESS roles from price 

taker to price maker who can influence in market. Although, clear and finalize regulation for 

BESS participation in electricity market is not defined yet but it is under progress by different 

technical committee. 

To sum up, in order to compare European market and specifically Italian one with CAISO, 

with respect to BTM batteries participation, in Italian new structure the main concern is 

distributed generator and BESS participation and its unique characteristic is not considered yet. 

In addition, all discussions and pilot projects have been focused on in front of meter connected 

assets and larger capacity limits compared with behind the meters. Meanwhile, lack of existing 

of capacity market and long-term incentive for storage installation brought unjust market 

situation for these assets. On the other hand, in North America market, by introducing new 

construction for NGR and BESS as well as revising new requirement for market participation, 

more attractive and compatible market structure have been shaped for BESS specially behind 

meters.  
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2 Energy Storage System 

In order to deploy "Smart Grid" architectures, Energy Storage Systems play significate 

role. By increasing of deployment of renewable sources such as PV and Wind plants and to 

ensure the reliability of grid ESS are one the best solution. Storage systems can be categorized 

based on form of energy that they are using which are including mechanical, electrochemical, 

electrical and thermal. In this research, first different types of energy storage system reviewed 

2.1. Then, the battery energy storage system applications and general modelling described in 

2.3 and Error! Reference source not found. respectively.   

2.1 Description of electrical energy storage technology 

There are several ways to categorize various EES technologies, such as, in terms of their 

functions, response times, and suitable storage durations [77, 78, 79]. In this research, the form 

of energy stored is selected as reference which is shown in summery in Figure 2-1. In this way, 

storage systems can be categorized into mechanical (pumped hydroelectric storage, compressed 

air energy storage and flywheels), electrochemical (batteries and fuel cells), electrical 

(supercapacitors and superconducting magnetic energy storage), and thermal energy storage 

(sensible heat storage). A detailed description and discussion of each type of EES technology 

will be given in the next section following the above order of category. 

 

Figure 2-1 – Classification of energy storage system based on energy stored type 

➢ Pumped Hydroelectric Storage (PHS)  PHS is an EES technology 

with a long history, high technical maturity and large energy capacity. A typical PHS 

plant uses two water reservoirs, separated vertically. During off-peak electricity 

demand hours, the water is pumped into the higher level reservoir; during peak hours, 

the water can be released back into the lower level reservoir. In the process, the water 
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powers turbine units which drive the electrical machines to generate electricity. The 

amount of energy stored depends on the height difference between the two reservoirs 

and the total volume of water stored. The rated power of PHS plants depends on the 

water pressure and flow rate through the turbines and rated power of the pump/turbine 

and generator/motor units [80].  Pumped hydro is a very consolidated energy storage 

system: it is the largest capacity form of energy storage available. In fact, about 170GW 

of energy storage are installed worldwide and more than 95% of this capacity consists 

of pumped hydro. The main disadvantage is the nature of the site required, that needs 

both geographical height and water availability. Hence, a further development of this 

kind of technology is limited. The nature of the operation of PHS systems means that 

their applications mainly involve energy management in the fields of time shifting, 

frequency control, non-spinning reserve and supply reserve. However, with the 

restriction of site selection, PHS plants suffer long construction time and high capital 

investment.  

➢ Compressed Air Energy Storage (CAES)  Along with PHS, CAES is 

another type of commercialized EES technology which can provide power output of 

over 100 MW with a single unit. The energy is stored in the form of high-pressure air. 

When the power generation cannot meet the load demand, the stored compressed air is 

released and heated by a heat source which can be from the combustion of fossil fuel or 

the heat recovered from the compression process. The compressed air energy is finally 

captured by the turbines. CAES system can be built to have small to large scale of 

capacities; CAES technology can provide the moderate speed of responses and good 

partial-load performance. The practical uses of large-scale CAES plants involve grid 

applications for load shifting, peak shaving, and frequency and voltage control. CAES 

can work with intermittent renewable energy applications, especially in wind power, to 

smooth the power output [81]. The major barrier to implementing large-scale CAES 

plants is identifying appropriate geographical locations which will decide the main 

investment cost of the plant. Relative low round trip efficiency is another barrier for 

CAES compared to PHS and battery technologies.  

➢ Flywheel  In flywheel energy storage systems (FESS) [82] energy is 

stored as kinetic energy using a rotor that rotates with high angular speed. The stored 

kinetic energy is then converted back to electric energy via the motor, slowing the rotor 

rotational speed. There exist two topologies of this device: (1) low speed FES: it uses 

steel as the flywheel material and rotates below 6 × 103 rpm; (2) high speed FES: it 

uses advanced composite materials for the flywheel, such as carbon-fiber, which can 
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run up to ~105 rpm [83]. Low speed FES systems are typically used for short-term and 

medium/high power applications. High speed FES systems use non-contact magnetic 

bearings to mitigate the wear of bearings, thereby improving the efficiency. Flywheels 

are characterized by very quick response with respect to the other energy storage 

systems and allow to store energy in the order of magnitude of 10s of kWh, and power 

can reach 20 kW; therefore, they are interesting for Power Quality application and for 

grid energy storage for frequency regulation. The cost of high-speed composite systems 

can be much higher than that of conventional metal flywheel systems. FES has some 

favourable characteristics, including high cycle efficiency (up to ~95% at rated power), 

relatively high-power density, no depth-of-discharge effects and easy maintenance. 

➢ Battery Energy Storage (BES)  The rechargeable battery is one of the 

most widely used EES technologies in industry and daily life. A BES system consists of 

a number of electrochemical cells connected in series or parallel, which produce 

electricity with a desired voltage from an electrochemical reaction. Each cell contains 

two electrodes (anode, positive, and cathode, negative) with an electrolyte which can be 

at solid, liquid or ropy/viscous states [84]. A cell can bi-directionally convert energy 

between electrical and chemical energy. During discharging, the electrochemical 

reactions occur at the anodes and the cathodes simultaneously. To the external circuit, 

electrons are provided from the anodes and are collected at the cathodes. During 

charging, the reverse reactions happen and the battery is recharged by applying an 

external voltage to the two electrodes. Batteries can be widely used in different 

applications, such as power quality, energy management, ride-through power and 

transportation systems. The location for installation can be quite flexible, either housed 

inside a building or close to the facilities where needed. Currently, relatively low 

cycling times and high maintenance costs have been considered as the main barriers to 

implementing large-scale facilities. The disposal or recycling of dumped batteries must 

be considered if toxic chemical materials are used. Furthermore, many types of battery 

cannot be completely discharged due to their lifetime depending on the cycle Depth-of-

Discharge (DoD). Many chemistries are used for this process, more common ones are 

the lead-acid, nickel-cadmium (NiCad), lithium-ion (Li-ion), sodium/sulfur (Na/S), 

zinc/bromine (Zn/Br), vanadium-redox, sodium-nickel-chloride (Zebra). 

➢ Fuel cells  Fuel cells [85] are electrochemical devices that directly convert 

chemical energy in hydrogen (or hydrogen-rich fuel) and oxygen (from air) to 

electricity. They consist of two electrodes (anode and cathode) and an electrolyte 

medium between them. The anode promotes the oxidation of fuel while the cathode the 
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reduction of oxidant. Ions generated during oxidation-reduction chemical reactions are 

transported from one electrode to the other through the ionically conductive but 

electronically insulating electrolyte. Electrons generated at the anode during oxidation 

pass through the external circuit and reaches the cathode, where they complete the 

reduction reaction. Depending on the choice of fuel and electrolyte, there are six major 

groups of fuel cells, which are: Alkaline Fuel Cell (AFC), Phosphoric Acid Fuel Cell 

(PAFC), Solid Oxide Fuel Cell (SOFC), Molten Carbonate Fuel Cell (MCFC), Proton 

Exchange Membrane Fuel Cell (PEMFC) and Direct Methanol Fuel Cell (DMFC) [86]. 

An advantage of fuel cells, being open systems, is that the storage system’s discharge 

duration can be increased by adding more electrolyte. Moreover, it is relatively easy to 

replace the electrolyte when it degrades. In general, the electricity generation by using 

fuel cells is quieter, produces less pollution and is more efficient than the fossil fuel 

combustion approach. Other features include easy scaling (potential from 1 kW to 

hundreds of MW) and compact design. Fuel cell systems combined with hydrogen 

production and storage can provide stationary or distributed power (primary electrical 

power, heating/cooling or backup power) and transportation power (potentially 

replacing fossil fuels for vehicles). Such hydrogen EES systems can offer capacity and 

power independence in energy production, storage and usage, due to the separate 

processes. It should be noted that the disposal of exhaust fuel cells must consider 

degradation and recycling while toxic metals are used as electrodes or catalysts.  

➢ Supercapacitor  Also named electric double-layer capacitors or 

ultracapacitors, contain two conductor electrodes, an electrolyte and a porous 

membrane separator [87]. Due to their structures, supercapacitors can have both the 

characteristics of traditional capacitors and electrochemical batteries. The energy is 

stored in the form of static charge on the surfaces between the electrolyte and the two 

conductor electrodes. The supercapacitors with high-performance are based on nano 

materials to increase electrode surface area for enhancing the capacitance. The power 

and energy densities of supercapacitors are between those of rechargeable batteries and 

traditional capacitors. The most important features of supercapacitors are their long 

cycling times, more than 1~105 cycles, and high cycle efficiency, ~84–97% [77].  

However, the daily self-discharge rate of supercapacitors is high, ~5–40%, and the 

capital cost is also high, in excess of 6000 $/kW h [87, 77]. Thus, supercapacitors are 

well suited for short-term storage applications but not for largescale and long-term EES. 

Typical applications in power quality consist of pulse power, hold-up/bridging power to 

equipment, solenoid and valve actuation in factories, UPS devices, etc. 
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➢ Superconducting Magnetic Energy Storage  A typical SMES 

system is composed of three main components which include: a superconducting coil 

unit, a power conditioning subsystem, and a refrigeration and vacuum subsystem [87, 

88]. The SMES system stores electrical energy in the magnetic field generated by the 

Direct Current (DC) in the superconducting coil which has been cryogenically cooled to 

a temperature below its superconducting critical temperature. In general, when current 

passes through a coil, the electrical energy will be dissipated as heat due to the 

resistance of the wire; however, if the coil is made from a superconducting material, 

such as mercury or vanadium, under its superconducting state (normally at a very low 

temperature), zero resistance occurs and the electrical energy can be stored with almost 

no losses.  Superconducting coils can be classified into two groups: Low Temperature 

Superconducting (LTS) coils, working at around 5K, and High Temperature 

Superconducting (HTS) coils, working at 70 K [87]. The LTS-SMES technology is 

more mature and commercially available while the HTS-SMES is currently in the 

development stage. SMES devices in the range of 0.1–10 MW have been used 

commercially. 

The features of SMES include relatively high power density (up to 4000 W/L), fast 

response time (millisecond level), very quick full discharge time (less than 1 min), high 

cycle efficiency (95–98%) and long lifetime (up to 30 years). In contrast to 

rechargeable batteries, SMES devices are capable of discharging near to the totality of 

the stored energy with little degradation after thousands of full cycles. The drawbacks 

are that they have high capital cost, high daily self-discharge (10–15%) and a negative 

environmental impact due to the strong magnetic field [77]. Moreover, the coil is 

sensitive to small temperature variations which can cause the loss of energy. From the 

above, SMES is suitable for short-term storage in power and energy system 

applications. 

➢ Thermal Energy Storage (TES)   TES technology [79, 89] stores 

thermal energy by heating or cooling a storage medium so that the stored energy can be 

later used for heating and cooling applications and power production. The system is 

becoming important for electricity storage in combination with concentrating solar 

power plants (CSP) where solar heat can be stored for electricity production when 

sunlight is not available. There exist three kind of TES systems: the first one is the 

sensible heat storage, based on storing thermal energy by heating or cooling a storage 

medium (liquid, such as water or thermosoil, or solid such as concrete or the ground) 

with water. This solution is the least inexpensive but requires large volumes due to its 



Energy Storage System 

  46 

low energy density. The second option is the latent heat storage which uses phase 

change materials (PCMs), which can be organic or inorganic, and are characterized by a 

higher storage capacity. The advantage of this system is its capacity to store large 

amounts of energy in a small volume and with a minimal temperature change, allowing 

efficient heat transfer. Finally, the thermo-chemical storage adopts chemical reactions 

to store and release thermal energy: chemical reactions such as adsorption of a 

substance to the surface of another solid or liquid can be used to accumulate and 

discharge heat and cold when needed. Nowadays TES systems based on sensible heat 

are commercially available while PCM and TCS systems are under development.  

The TES system can store large quantities of energy without any major hazards and its 

daily self-discharge loss is small (~0.05–1%); the reservoir offers good energy density 

and specific energy (80–500 Wh/L, 80–250 Wh/kg) and the system is economically 

viable with relatively low capital cost (3–60 $/kWh). However, the cycle efficiency of 

TES systems is normally low (~30–60%). TES has been used in a wide spectrum of 

applications, such as load shifting and electricity generation for heat engine cycles. 

2.2 BESS Parameters  

The main storage system focus in this thesis is Battery Energy Storage System. Since, 

these assets are more compatible with current behind the meter’s technologies such as PV 

panels and they already had been introduced as potential participants in electricity market. In 

this research the main aim is to develop comprehensive model for BESS to deal with demand 

side load and whole-sale energy and ancillary services market. Thus, definition of different 

technical parameters and constraints of battery which can contribute in final model, is 

important. Thus, in this subsection, all possible parameters are introduced and discussed.  

➢ Voltage [V]  The voltage at which the BESS is rated is the nominal 

voltage at that the battery is supposed to operate. Battery voltage can be affected by the 

state of charge (energy level), current and temperature. In Figure 2-2, it can be noticed 

that at the beginning of the charge the voltage presents a decreasing exponential trend, 

followed by a quite linear behavior for almost all the discharge, and, when the nominal 

voltage is reached, a final non-linear trend, up to the cutoff voltage, in which the 

extracted capacity corresponds to the maximum dischargeable one, that is when the 

battery is completely discharged. Note that each battery has its own characteristic 

nominal voltage and discharge curve. It can be deducted that higher the discharge 

current, the lower the battery voltage to terminals. In fact, it can be assumed the battery 

as an ideal voltage generator with an impedance connected in series: if the discharge 
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current increases, the impedance voltage drop increases and, consequently, the voltage 

to terminals decreases [90].  

In Figure 2-3, the temperature effect is an issue because Li-ion batteries, for example, 

suffer both at low temperatures and at high ones. In fact, at low temperatures the 

chemical reactions are limited by velocity, decreasing the extractable capacity. 

Increasing the operating temperature, the capacity increases, making the voltage raise 

and, keeping the current constant, the temperature too, creating a cascade effect that has 

to be controlled to avoid battery explosion. 

 

Figure 2-2- Discharge Voltage curve in different discharge current   

 

Figure 2-3- Discharge voltage curve in different temperature  

➢ Capacity [Ah]  is defined as the available current a battery can supply 

over a given time period. It is a measure of electrical charge and represents the amount 

of charge that the battery can deliver at the rated voltage. The capacity is directly 

proportional to the amount of the electrode material in the battery. In the majority of 
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batteries, the capacity is not a constant value, but it depends on both the discharging 

current and the ambient  temperature, following the Peukert’s law: 

𝐶𝑑𝑖𝑠 = 𝑡𝑑𝑖𝑠  × 𝐼𝑑𝑖𝑠
𝑘   (48) 

Where 𝐶𝑑𝑖𝑠 represents the discharge capacity [Ah], 𝑡𝑑𝑖𝑠  is the discharge time [s], is 

the 𝐼𝑑𝑖𝑠
𝑘  discharge current [A], and k is the Peukert constant, which strongly depends 

on the battery technology (for lead-acid, for example, k varies between 1.1 and 1.3, 

while for lithium-ion between 1 and 1.28). When k is equal to 1, the discharge 

capacity is independent of the applied current, whilst when k is higher than 1, the 

discharge capacity will decrease [91]. 

➢ Nominal energy [Wh]  is the energy which can be delievered by the 

BESS during the discharge, starting from fully charged up to fully discharged state. It 

is defined as the product between the voltage and the capacity of the system at each 

moment.  

➢ The specific energy [Wh/kg]  depends on the operational conditions and the 

ambient temperature, while the nominal energy is defined for the discharge at nominal 

power at reference ambient temperature (20 or 25°C).  

➢ Power [W]   the actual output power of a battery cannot be uniquely 

defined because it depends on the applied load. Hence the nominal power must be 

difine since it limits the charge/discharge operation.  

➢ Specific power [W/kg]   defined as the power per unit mass, and the 

power density [W/l], that is the power per unit volume of the storage system. 

➢ C-rate  is defined as the current over the discharge (or charge) current 

that the battery can sustain over one hour. C-rate can be calculted as ratio of discharge 

current and rated capacity. The higher C-rate, charging/discharging time is faster and 

more pressure on battery. Thus, the battery temperature will increase respectively. In 

concolusion the battery life time decrease by selecting higher level of C-rate.  

➢ State of Charge (SoC) [%]  is defined as the percentage of the 

available battery capacity at a certain instant of time for discharge over full range of 

battery capcity as it is shown in (49). 

𝑆𝑜𝐶(𝑡) =
𝐸𝑏𝑎𝑡𝑡(𝑡)−𝐸𝑏𝑎𝑡𝑡,𝑚𝑖𝑛

𝐸𝑏𝑎𝑡𝑡,𝑚𝑎𝑥−𝐸𝑏𝑎𝑡𝑡,𝑚𝑖𝑛
  (49) 

When the battery is fully charged the SoC is 100% and when the battery is fully 

discharged the SoC is 0%. SoC varies with the change of capacity caused by charging 

and discharging of the battery, thereby affecting the maximum charging and 
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discharging power of the battery. It must take into account that, battery cells are 

sensitive to deep discharge and overcharge and to operation at too high or too low 

SoCs and these behaivours must be prevented. 

➢ Depth of Discharge (DoD) [%]  defined as the percentage of the battery 

capacity that has been discharged. It is the one complement of the state of charge. The 

cycle life of a battery is often reported at 100% DoD of the capacity and it usually 

corresponds to a worst-case scenario. In fact, in different average cycling life, the 

battery has different DoD respectively as shown in Figure 2-4.  

 

Figure 2-4 - Cycling life vs DoD 

➢ State of Health (SoH)  is defined as the ratio between the actual 

capacity and the nominal capacity of the battery. It is a usury measure because it 

specifies the amount of capacity that the battery is able to provide with respect to the 

designed value. 

➢ Cycle lifetime [cycles]  is defined as the number of charging and 

discharging cycles that the battery is able to complete after that the battery capacity 

drops below 80%. Generally, it is specified by the manufacturer as an absolute value. 

However, in reality the battery lifetime depends on temperature and operating 

condition. Moreover, it strongly depends on DoD: the smaller the DoD, the higher the 

cycle lifetime, as it is shown in Figure 2-4. 

In this research, since the focus is BTM batteries and these assets are usually deployed 

indoor and in safe area, we assume that we almost have constant temperature. In addition, we 

assume that in all charge/discharge cycle, it works with constant current and linear area. To 

prevent the aging of the battery the C-rate is assumed as constant value and the SoC is limited 

between upper and lower band. Finally, the main approach of this research is to develop a 

solution for installed assets, thus the design parameters such as specified power and energy are 

neglected.   
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2.3 BESS applications 

 In general, BESS depends on the wherein grid they are deployed, they can provide variety 

of services. BESS can be sited at three different levels: behind the meter, at the distribution 

level, or at the transmission level. In general, in North America, energy storage deployed at all 

levels on the electricity system can add value to the grid. Customer-sited or behind the meter 

energy storage can provide 13 services to three stakeholders which are including costumers, 

utility services and RTO/ISO services [92]. On the other hand, technology development and 

huge costs drop of battery system especially Lithium Ion batteries, move them from niche to the 

one of the most important parts in near future grid. In this situation, optimal scheduling of these 

system in order to provide more services are essential. In following subsection, first the possible 

usage and services that BESS can provide are discussed.    

2.3.1 BESS services for demand side 

In case of deployment of battery behind meter, these systems can provide 4 general 

services: 

1- Backup Power  After losing the main power supply for any reason such as line 

fault, malfunctions at sub-station or any kind of blackouts, in an emergency situation, 

an independent power system source will provide an electrical power that supports 

important electrical systems on loss of normal power supply. Traditionally, diesel 

generator or other sources had been used for this problem, however, Battery storage as 

fast and clean sources are one of the potential substitutions for this problem. In these 

events, energy storage paired with a local generator can provide backup power at 

multiple scales, ranging from second-to-second power quality maintenance for 

industrial operations to daily backup for residential customers. 

2- Increase PV self-consumption  One of the main challenges of using PV panels 

in household sector is the limited available production duration and uncertain and 

unreliable during day. To minimize the export of electricity generated by behind-the-

meter photovoltaic (PV) systems and to maximize the financial benefit of solar PV in 

areas with utility rate structures that are unfavourable to distributed PV and increase 

the reliability of PV generation, joint battery-PV has been used. 

3- Demand Charge reduction  In the event of grid failure, energy storage 

paired with a local generator can provide backup power at multiple scales, ranging 

from second-to-second power quality maintenance for industrial operations to daily 

backup for residential customers. 
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4- Time-of-Use bill management By minimizing electricity purchases during 

peak electricity-consumption hours when time-of-use (TOU) rates are highest and 

shifting these purchases to periods of lower rates, behind-the-meter customers can use 

energy storage systems to reduce their bill. 

2.3.2 BESS services for Utility services 
 

1- Resource Adequacy  Instead of investing in new natural gas combustion 

turbines to meet generation requirements during peak electricity-consumption hours, 

grid operators and utilities can pay for other assets, including energy storage, to 

incrementally defer or reduce the need for new generation capacity and minimize the 

risk of overinvestment in that area. 

2- Distribution Deferral Delaying, reducing the size of, or entirely avoiding 

utility investments in distribution system upgrades necessary to meet projected load 

growth on specific regions of the grid. 

3- Transmission Congestion Relief  ISOs charge utilities to use congested 

transmission corridors during certain times of the day. Assets including energy storage 

can be deployed downstream of congested transmission corridors to discharge during 

congested periods and minimize congestion in the transmission system. 

4- Transmission Deferral  Delaying, reducing the size of, or entirely 

avoiding utility investments in transmission system upgrades necessary to meet 

projected load growth on specific regions of the grid. 

2.3.3 BESS services for ISO/RTO 

 

1- Energy Arbitrage  The purchase of wholesale electricity while the 

locational marginal price (LMP) of energy is low (typically during night-time hours) 

and sale of electricity back to the wholesale market when LMPs are highest. Load 

following, which manages the difference between day-ahead scheduled generator 

output, actual generator output, and actual demand, is treated as a subset of energy 

arbitrage in this report. 

2- Frequency Regulation Frequency regulation is the immediate and automatic 

response of power to a change in locally sensed system frequency, either from a 

system or from elements of the system.1 Regulation is required to ensure that system-
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wide generation is perfectly matched with system-level load on a moment-by moment 

basis to avoid system-level frequency spikes or dips, which create grid instability. 

3- Spin/Non-Spin Reserves  Spinning reserve is the generation capacity that 

is online and able to serve load immediately in response to an unexpected contingency 

event, such as an unplanned generation outage. Non-spinning reserve is generation 

capacity that can respond to contingency events within a short period, typically less 

than ten minutes, but is not instantaneously available. 

4- Voltage Support  Voltage regulation ensures reliable and continuous 

electricity flow across the power grid. Voltage on the transmission and distribution 

system must be maintained within an acceptable range to ensure that both real and 

reactive power production are matched with demand. 

5- Black Start  In the event of a grid outage, black start generation assets are 

needed to restore operation to larger power stations in order to bring the regional grid 

back online. In some cases, large power stations are themselves black start capable. 
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3 Optimization Methods Review 

The main aim in this research is to find an optimal scheduling of BESS for participating in 

electricity market and managing demand side. In this regard, different approach could be used, 

however, due to intermittency of PV production, unpredictable load and uncertain market price, 

the optimization method must take into account these factors. Thus, to choose and implement 

the best fit optimization method a literature review on different optimization method has been 

done and in this section these methods have been discussed.  

Note: It must be considered that in this research, we didn’t perform any forecasting method and 

instead the real data to train and test the optimization method has been used. 

 Most real-life optimization problems contain parameters that are not known precisely. 

Potential sources of this uncertainty are measurement, estimation and implementation errors in 

the underlying processes [93]. Traditionally, to deal with such uncertainty two classes of 

techniques exist: “Stochastic Programming” and “Robust Optimization”. Recently, new method 

which is called “Distributionally Robust Optimization” [94] (DRO) has been introduced, which 

is the main contribution of this research. In following sections, first Stochastic (section 3.1) and 

Robust (section 3.2) optimization have been explained. In subsection 3.3, the main issues and 

draw backs of stochastic and robust optimization discussed and finally DRO has been 

introduced as main contribution of this research.  

3.1 Stochastic Optimization  

Stochastic optimization plays a significant role in the analysis, design, and operation of 

modern systems. Stochastic optimization refers to a collection of methods for minimizing or 

maximizing an objective function with inherent system noise and coping with models or 

systems that are highly nonlinear, high dimensional, or otherwise inappropriate for classical 

deterministic methods of optimization [95]. Stochastic optimization algorithms have broad 

application to problems in statistics, science, engineering, and business. Algorithms that employ 

some form of stochastic optimization have become widely available. 

Stochastic programming is a class of techniques in which all uncertain parameters are 

assumed to follow a known probability distribution. Instead of regular (in)equalities, stochastic 

programming problems contain chance or expectation constraints. Usually, the uncertainties 

enter the problem through the cost function or the constraint set. Moreover, same as classical 

deterministic optimization, there is no single solution method that works well for all problems. 
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Some structural assumptions, such as limits on the size of the decision and outcome spaces, or 

convexity, are needed to make problems tractable [96]. 

The most prominent division in stochastic optimization is the solution with a single time 

period (single stage problems) and those with multiple time periods (multistage problems). 

Single stage problems try to find a single, optimal decision, such as the best set of parameters 

for a statistical model given data by solving the problem in single level. On the other hand, 

multistage problems try to find an optimal sequence of decisions, such as scheduling of BESS 

for day-ahead and real-time market. Single stage problems are usually solved with modified 

deterministic optimization methods. However, the dependence of future decisions on random 

outcomes makes direct modification of deterministic methods difficult in multistage problems. 

Multistage methods are more reliant on statistical approximation and strong assumptions about 

problem structure, such as finite decision and outcome spaces, or a compact Markovian 

representation of the decision process. In following subsection, Single and Multiple stages 

stochastic optimization have been described. 

3.1.1 Single Stage Stochastic Optimization 

Single stage stochastic optimization is the study of optimization problems with a random 

objective function or constraints where a decision is implemented with no subsequent recourse. 

It means that there is no specific statistical information about future of system available.  

For more deep understanding of single stage stochastic optimization, general problem 

including some formal concepts and notation have been explained here on. Let 𝒳 be the domain 

of all feasible decisions and 𝑥 a specific decision. We would like to search over 𝒳 to find a 

decision that minimizes a cost function, 𝑓 . Let 𝜉 denote random (uncertain) information that is 

available only after the decision is made. Unless otherwise noted, we will limit our discussion 

to random cost functions, denoted 𝑓(𝑥; 𝜉). Since finding the optimal solution of 𝐹(𝑥;  𝜉) is not 

possible, instead minimum of the expected value has been calculated, 𝔼[𝐹(𝑥; 𝜉)]. The general 

single stage stochastic optimization problem becomes as formula (50). 

𝜁∗ = min
𝑥∈𝒳

 {𝑓(𝑥) = 𝔼[𝑓(𝑥; 𝜉)] }  (50) 

For all single stage problems, it has been assumed that the decision space 𝒳 is convex and 

the objective function 𝐹(𝑥; 𝜉) is convex in 𝑥 for any realization 𝜉. Problems that do not meet 

these assumptions are usually solved through more specialized stochastic optimization methods 

such the stochastic ruler [97], nested partitions [98] or other method which are out of scope of 
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this research. In following subsection sample average approximation Sample Average 

Approximation as one of the common applications of single stage SO explained. 

3.1.1.1 Sample average approximation (SAA) 

Sample average approximation (SAA) [99, 100] is a two-part method that uses sampling 

and deterministic optimization to solve equation 50. The first step in SAA is sampling. While 

directly computing the expected cost function, 𝔼[𝐹(𝑥; 𝜉)], is not possible for most problems, it 

can be approximated through Monte Carlo sampling in some situations. Let (𝜉𝑖)𝑛=1
𝑖  be a set of 

independent, identically distributed realizations of 𝜉, and let 𝐹(𝑥; 𝜉𝑖) be the cost function 

realization for 𝜉𝑖. The expected cost function is approximated by the average of the realizations 

as formula (51): 

𝔼[𝑓(𝑥; 𝜉)]  ≈
1

𝑛
 ∑𝑓(𝑥; 𝜉𝑖)

𝑛

𝑖=1

 (51) 

The second step in SAA is search. The right-hand side of equation 51 is deterministic, so 

deterministic optimization methods can be used to solve the approximate problem: 

𝜁𝑛
∗ = min

𝑥∈𝒳
 {𝑓𝑛(𝑥) =

1

𝑛
 ∑𝑓(𝑥; 𝜉𝑖)

𝑛

𝑖=1

 } (52) 

The set of approximate optima is {𝑆𝑛
∗ = 𝑥 ∈ 𝒳 ∶  𝑓𝑛(𝑥) = 𝜁𝑛}. 

Deterministic search is the main benefit of SAA. Many commercial software packages, 

including Matlab and R, offer implementation of basic deterministic optimization methods, 

while more specialized packages like CPLEX and Gurobi provide a wider array of deterministic 

methods. To guarantee convergence of the search method to a global optimum, it is assumed 

that is 𝒳 convex and that 𝐹(𝑥; 𝜉𝑖) is convex in 𝑥 for every realization of 𝜉.  

Note: It worth to mention that in this research the CVX toolbox in Matlab linked with CPLEX 

has been used. 

One of the main limitations is that SAA is only available for problems with independent 

noise with respect to decision variable 𝑥. Moreover, all determined data must be used at once to 

generate a decision. Because of its inherent simplicity, SAA has been independently proposed 

in a variety of fields under a variety of names. SAA-type methods were generalized in the 

operations research community under a variety of names such as “sample path optimization” 

[101, 102], “scenario optimization” [103], and “sample average approximation” [100, 104]. 
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SAA joint with Monte Carlo to generate various scenarios widely have been used in 

literature. In [105] the stochastic modeling with Monte Carlo Simulation (MCS) is used to 

evaluate the adequacy and reliability of smart grids in the widespread presence of PHEVs, 

renewable resources, availability of devices, etc.  

3.1.2 Multi-stage Stochastic Optimization 

The multi-stage Stochastic problem or recourse method is composed of more than one 

stage. In each stage some uncertainties will be considered, and decisions made, and then other 

decisions will be clear based on decisions in preceding stages. This procedure will continue till 

last stage. The objective is to minimize the expected costs of all decisions made. The most 

difficult part of this recourse problem is the evaluation of the expected value at each stage 

except the first stage [106, 107].  

Multistage stochastic optimization problems aim to find a sequence of decisions, (𝑥𝑡)𝑡=0
𝑇 , 

that minimize an expected cost function. The subscript 𝑡 denotes to the time at which decision 

𝑥𝑡 has been made. Usually decisions and random outcomes at time 𝑡 affect the value of future 

decisions. An example in our case would be the value of commitment in day-ahead market will 

limits the remained capacity of battery for participation in intra-hour markets. Mathematically, 

multistage stochastic optimization problems can be described as an iterated expectation such 

formula (53) bellow in a general form. 

𝜁∗ = min
𝑥0∈𝒳0

𝔼[ inf
𝑥1∈𝒳1(𝑥0,𝜉1)

𝑓1(𝑥1; 𝜉1) +𝔼 [ .  .  . +𝔼 [ inf
𝑥𝑇∈𝒳𝑇((𝑥0:𝑇−1,𝜉1:𝑇)

𝑓𝑇(𝑥𝑇; 𝜉𝑇)]]] (53) 

Here 𝑇 is the number of stages; 𝑥0:𝑡 is the collection of all decisions between 0 and 𝑡; 𝜉𝑡 is 

a uncertain outcome at time 𝑡; 𝒳𝑡((𝑥0:𝑡−1,𝜉1:𝑡) is a decision set that depends on all decisions and 

uncertain outcomes between times 0 and 𝑡; 𝑓𝑡(𝑥𝑡; 𝜉𝑡) is a cost function for time period 𝑡 that 

depends on the decision and random outcome for period 𝑡. The time horizon 𝑇 may be either 

finite or infinite. The decision sequence space is affected by the curse of dimensionality; the 

size of the space grows exponentially with 𝑇, the number of possible outcomes for 𝜉𝑡, and the 

size of the decision space each time period, 𝑋𝑡.  

One specific case of multi-stage stochastic problem is a two-stage. In two-stage decisions 

are divided into two categories: day-ahead versus real-time decisions. This is shown in the 

equation (54). 
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𝜁 = min
𝑥∈𝒳

𝑐𝑇𝑥 + 𝔼𝜉[𝑓(𝑥; 𝜉)]  (54) 

In the day-ahead category (first stage), commitment decisions of units (e.g., coal and 

nuclear generators or in our case battery), 𝑥 are made ahead of time. 𝒳 represents the set of 

feasible commitment decisions (constraints only on commitments, such as minimum up/down 

requirements). The second term in the objective function of (54) is the expected cost of real-

time operations, where is the uncertain vector with a known joint probability distribution. For 

each realization scenario, 𝑠, of the random vector 𝜉, the second-stage problem can be 

formulated as follows: 

𝑓(𝑥, 𝑠) = min
𝑝𝑠,𝑙𝑠

   𝑓(𝑝𝑠) 

𝑠. 𝑡.      𝐴𝑠𝑥 + 𝐵𝑠𝑝𝑠 +𝐻𝑠𝑙𝑠 ≥ 𝑑𝑠   
(55) 

Where 𝑝𝑠 includes decisions of multiple periods, and 𝑙𝑠 is the vector of other second-stage 

decisions (such as power flows in [108, 109]). The function 𝑓(. ) represents the cost function of 

participation in markets, which is typically convex. According to different modeling 

perspectives, different sets of parameters in (55) are treated as uncertain. For example, the 

uncertain left-hand side matrices (𝐴𝑠, 𝐵𝑠, 𝐻𝑠) are usually used to model contingencies (e.g., 

power system equipment limitations) as in [110]; uncertain right-hand-side vectors 𝑑𝑠 usually 

model the uncertain demand and renewable energy outputs as in [111, 109, 108]. 

In objective function (54), large number of scenarios simulated, and the resulting 

deterministic problem could be quite large. However, in the second stage, different scenarios 

are not directly linked to each other. Thus, decomposition has been used as an efficient tool for 

stochastic problems. In the two-stage model (54), once the first-stage decision is made, the 

second stage 55 of different scenarios can be treated independently, resulting in a group of 

much smaller individual optimization problems. Benders Decomposition or the L-shaped 

algorithm [103] is usually applied when 55 is a linear program (e.g., [110]).  

3.2 Robust Optimization 

Robust Optimization (RO) is a class of techniques that does not need any information on 

the distribution of the uncertain parameters and was initiated by Soyster [112] and then in 

several papers by Ben-Tal and Nemirovski [113, 114, 115]; El Ghaoui and Lebret [116] has 

been developed. Instead, it requires the definition of an uncertainty set that contains all 

scenarios one wants to safeguard against. Subsequently, RO forces every constraint to be 

feasible for all possible parameter values in the uncertainty set. An advantage of this approach 
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is that the resulting problems are generally not much more difficult to solve than the original 

problem. 

The main idea behind robust optimization is to find the optimal solution based on worth 

case scenario instead of using expected value such as stochastic programming. In this way, 

simple linear robust programming can be defined as formula (56) which is the strict robust 

problem [114, 115].  

min
𝑥∈𝒳

   max
𝑐∈𝑈𝑐

𝑐𝑇 . 𝑥  

𝑠. 𝑡.      𝑎𝑖
𝑇𝑥 ≤ 𝑏𝑖 ;    ∀𝑎𝑖 ∈ 𝑈𝑎𝑖  , ∀𝑏𝑖 ∈ 𝑈𝑏𝑖  , 𝑖 = 1, . . . , 𝑚   

(56) 

Where 𝑥 ∈ 𝒳 is the decision variable and 𝑈𝑎𝑖 = {𝑎𝑖 |𝐷𝑖 𝑎𝑖  ≤ 𝑑𝑖} is a set of uncertainties 

upper-band. As its obvious from (56), the optimization is much simpler compare with stochastic 

programming and meanwhile it is independent from any statistical distribution of uncertainty 

sets. However, considering the worth-case scenario could cause overconservative which is one 

of the main challenges in robust optimization [117].  

The most straightforward and basic uncertainty sets used in robust-optimization-based 

planning and scheduling models are the box intervals (formula (57)),where 𝑑̅ is the expected 

value and 𝜎 is the variance of a random variable, respectively; 𝑏𝛼 and 𝑏𝛽 are the 𝛼- and 𝛽-

quantile of the probability distribution. The random variable can be renewable power outputs 

and nodal load such as [118]. 

 𝑈𝑏 = [max{0, 𝑑̅ + 𝑏𝛼𝜎} , 𝑑̅ + 𝑏𝛽𝜎]   (57) 

In literature different types of uncertainties including polyhedral and ellipsoidal 

uncertainty sets has been used in robust optimization. In [119], authors developed two-stage 

optimization with polyhedral uncertainties in second stage for considering the production unit 

uncertainties. Authors in [120], also two stage optimizations with robust optimization for 

second stage used for considering wind production uncertainties.  

Finally, in some cases instead of directly using the box intervals, uncertainty sets can also 

be derived based on risk measures (Value-at-Risk) as in [121] and [122]. Particularly notable is 

that constraints on coherent risk measures (such as Conditional-Value-at-Risk) can be translated 

to polyhedral uncertainty sets for some types of distributions [123]. In this way, instead of using 

exact or range of value for worth case by generating different scenarios the expected value of 

worth scenarios will be used.  
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3.3 Distributionally Robust Optimization 

Stochastic programming is a powerful modeling paradigm for optimization under 

uncertainty. The goal of a single-stage stochastic program is to find a decision 𝑥 ∈  𝒳 that 

minimizes an expected cost 𝔼ℙ[𝑓(𝑥, 𝜉)], where the expectation is taken with respect to the 

distribution ℙ of the continuous random vector 𝜉 ∈ 𝑅𝑚. However, classical stochastic 

programming is challenged by the large-scale decision problems encountered in today’s 

increasingly interconnected world and high number of scenarios cause burdensome calculation 

time [124]. Moreover, the distribution ℙ is never observable but must be inferred from data. 

However, if we calibrate a stochastic program to a given dataset and evaluate its optimal 

decision on a different dataset, then the resulting out-of-sample performance is often 

disappointing, even if the two datasets are generated from the same distribution. This 

phenomenon is termed the “optimizer’s curse” and is reminiscent of overfitting effects in 

statistics [125]. 

The second possible approach, which has been explained, is robust optimization (RO). RO 

does not require the exact knowledge about probability distribution (PD), and minimize the cost 

function under worth-case realization. However, the worst-case scenario is always the extreme 

case with relatively low probability, therefore, the solution could be over-conservative and thus 

not the most economical solution. To deal with this problem few methods such as [126] has 

been introduced.  

The alternative solution to deal with uncertainties is data-driven distributionally robust 

optimization (DRO) which was proposed by Scarf at 1958 [127] for the first time. In 

conventional stochastic optimization, the probability distribution is tuned based on the specific 

data set, however, it is quite often that PD performs poorly when confronted with a different 

data set, even if it is drawn from the same distribution [128]. Thus, the main feature in DRO is 

to immunize the optimal solution by finding the worst-case expected value over a family of 

uncertainty sets (ambiguity sets) instead of worst-case observations (robust optimization). The 

ambiguity set must be rich enough to cover all possible distributions with high confidence, 

meantime, it must be small enough to prevent the over-conservative results [128]. In other to 

formulate the objective function based on DRO and ambiguity sets, formula (58) can be 

obtained. 

𝐽𝑁 ∶= inf
𝑥 ∈ 𝒳

  sup
ℚ∈𝒫̂𝑁

𝔼ℚ[𝑓(𝑥, 𝜉)]   (58) 
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Where 𝑥 ∈ 𝒳  is decision variable, ℚ is distribution of uncertainty 𝜉  and ambiguity set 

𝒫̂𝑁  which contains all possible distributions from training data. From now on, the main 

challenge is to find ambiguity set. Two main approaches to construct the ambiguity sets for 

DRO are a “moment-based” and “statistical-distance”.  

3.3.1 Moment-Based Ambiguity Set 

In the moment-based approach, all distributions, which are applicable with certain known 

moments (mean and covariance matrix), are considered as ambiguity sets [129, 130]. In this 

approach, for all given data samples such as (𝜉𝑖)
𝑖=1

𝑁
, the empirical mean vector and covariance 

matrix define as (59) and (60) respectively.   

𝜇0 = 
1

𝑁
 ∑𝜉𝑖
𝑁

𝑖=1

   (59) 

𝐶𝑜𝑣0 =    
1

𝑁
 ∑(𝜉𝑖 − 𝜇0) (𝜉

𝑖 − 𝜇0)
𝑇   

𝑁

𝑖=1

  (60) 

Thus, based on defined mean and covariance an ambiguity set 𝒫̂𝑁 can be define such as (61). 

𝒫̂𝑁 = 

{
 
 

 
 

𝑓(𝜉):  

∫ 𝑓(𝜉) 𝑑𝜉 = 1
 

𝜉∈𝔻

          (𝔼[𝜉] − 𝜇0)
𝑇 . 𝐶𝑜𝑣0

−1(𝔼[𝜉] − 𝜇0) ≤ 𝛾1
𝔼[(𝜉 − 𝜇0)(𝜉 − 𝜇0)

𝑇] ≼ 𝛾2𝐶𝑜𝑣0

   (61) 

The ambiguity set 𝒫̂𝑁 is determined by µ0 and 𝐶𝑜𝑣0, and by parameters 𝛾1 and 𝛾2. The 

three constraints in 𝒫̂𝑁 ensure that (i) the integral of pdf 𝑓(𝜉) is one; (ii) the true mean of 𝜉 lies 

in a µ0-  centred ellipsoid bounded by 𝛾1; and (iii) the true covariance matrix lies in a positive 

semi-definite cone bounded by 𝛾2𝐶𝑜𝑣0. In reference [129], authors described how the values of 

𝛾1 and 𝛾2 can be chosen based on the data sample size, risk parameter, and desired confidence. 

In practice, the values of 𝛾1 and 𝛾2 represent a decision maker’s risk preference and can be used 

to change solution conservatism. In general, larger values of 𝛾1 and 𝛾2 will lead to more 

conservative (robust) solutions. 

In literature, this approach has been deployed widely since only the moment condition is 

required [131, 132, 133]. Although the mean-variance DRO approach is intuitive and is 

tractable under certain conditions, it is unsatisfactory from at least two aspects. First, when 

constructing the distribution set in such an approach, one only uses the moment information in 

the sample data, while all the other information is ignored. This procedure may discard 
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important information in the data set. Second, in the DRO approach, the worst-case distribution 

for a decision is often unrealistic [134]. 

3.3.2 Statistical-Distance Ambiguity Set 

The statistical-distance approach constructs all distributions that are close enough to the 

target distribution with predefined probability specification. In this way, the degree of 

conservatism can be controlled by adjusting the radius (distance) of ambiguity set. To 

implement statistical-distance several methods such as the Prohorov metric [135], the 

Kullback–Leibler divergence [136], or the Wasserstein metric [128, 137] has been introduced. 

In general ambiguity set based on statistical-distance define as (62).  

𝒫̂𝑁 = {𝑃 ∈ 𝔻 ∶  𝐷(𝑃, 𝑃0) ≤ 𝜀}    (62) 

Where 𝔻 is probability distribution of uncertainty data and 𝐷(𝑃, 𝑃0) denotes the statistical 

distance pf distribution 𝑃 to the nominal distribution 𝑃0. As mentioned earlier in literature 

different kind of statistical-distance has been used however, this research focuses on data-driven 

distributionally robust optimization over Wasserstein ball in line with [128, 138, 139], since it 

has a tractable reformulation and out-of-sample performance has been guaranteed [128, 140]. In 

this regard, Wasserstein metric defines as bellow:  

Definition [Wasserstein metric]. The Wasserstein metric is defined as a distance function 

between two probability distributions on a given supporting space ℳ(Ξ). More specifically, 

given two probability distributions ℚ1 and ℚ2 on the supporting space ℳ(Ξ), the Wasserstein 

metric is defined as (63): 

𝑑𝑤(ℚ1, ℚ2) ∶= inf
Ξ
 {𝔼Ξ[𝜌(𝑋, 𝑌)] ∶ 𝑋~ℚ1, 𝑌~ℚ2}    (63) 

Where 𝜌(𝑋, 𝑌) is distance between to random variable 𝑋 and 𝑌 from ℚ1 and ℚ2. The 

Wasserstein metric quantifies the minimum “transportation” cost to move mass from one 

distribution to another.  

The ambiguity set 𝔹𝜀(ℙ̂𝑁) can be formulated as Wasserstein ball centered at a uniform 

empirical distribution ℙ̂𝑁 on training dataset Ξ𝑁𝑠  and within 𝜀 as confidence level (64). The 𝜀 is 

a control variable for conservativeness and robustness of optimization compare to specific 

features of dataset. 

𝒫𝑁 = 𝔹𝜀(ℙ̂𝑁) ∶= {ℚ ∈ ℳ(Ξ) ∶ 𝑑𝑤(ℙ̂𝑁, ℚ) ≤ 𝜀 }    (64) 
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4 Approach Proposed  

In this section, the detailed formulation and modelling of PV cell join with BESS based on 

two general scenarios and with different optimization approach described. The main aim of this 

research is to find optimal scheduling plan for BESS in order to participate in possible 

electricity markets and manage the demand side loads. The first step which is the simplest one 

which is to find the optimal solution for BESS only for demand side management and 

improving the PV self-consumption that is discussed in subsection 4.1. Then, full participation 

of BESS in both demand side and electricity market has been discussed in subsection 4.2.    

4.1 Optimal BESS scheduling for DSM  

The term demand side management is announced to optimal scheduling and management 

of energy consumption in demand side. In recent year, based on increasing deployment of 

renewable sources such as PV cells joint with battery storage systems, the idea of economical 

energy management becomes much more practical and feasible. In general, two category of 

demand side management is discussed in literature, the first one is focused on demand’s usage 

behind the meter and minimizing the cost of energy by ideas such as optimal charging of BESS, 

shifting the time of use (ToU) and improving the performance and self-consumption of 

renewable source. The second one is called “Demand Response” which is work directly under 

supervision of independent system operators (ISO) and make profit based on contracts to 

decrease the usage in specific day time. The former is recently introduced in official market and 

is out our research scope.  

Several researches are focused on optimal scheduling and DSM by considering different 

setups, criteria and optimization techniques. Wu et al. [141] modelled the hybrid PV cells with 

BESS under time of use (ToU) to sell the surplus energy to the grid to minimize the costs. Then 

the close loop controller with model predictive controller (MPC) approach was developed to 

have more economic, robust and safe operation of the hybrid system with respect to load and 

solar uncertainties. The main problem of research is that only deterministic optimization 

proposed to deal with uncertainties and has assumed that uncertainties are fixed. In [142] the 

objective is to maximize the economic benefits for the system owner while optimally 

contributing to over-voltage mitigation in the grid in case of hybrid PV-BESS. It investigates 

whether residential PV systems coupled with BESS can participate in grid load-levelling and 

identify the requirements for utilizing them for such applications. A limit storage capacity 

compare to PV penetration is considered and the dynamic programming is developed to deal 
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with nonlinear objective function. Authors in [143] investigate the optimal dispatch schedule of 

BESS with PV to peak shaving the demand usage in day ahead interval. They focused on 

financial value of these assets by analysing the net present value (NPV). Moshövel et al. in 

[144] developed the forecasting method for hybrid solar battery system which is applicable for 

forecasting and implementing in behind the meter systems without need of external data. They 

develop this forecasting on Matlab model and provided the optimal solution based on their 

forecasting for minimum cost. Atzeni et al. in [145] proposed the game theoretical approach to 

solve the problem of optimal solution for distributed energy generation (DG) and distributed 

energy storage (DS) hybrid PV-BES. They focus on those demand-side users whose energy 

consumption is greater than their energy production capabilities. The objective function is to 

reduce monetary expense during the time period of analysis by producing and/or storing energy 

rather than just purchasing their energy needs from the grid in DA interval. 

The first scenario in this research is to schedule BESS join with PV cell to increase the 

self-consumption and decrease the demand cost. In this regard, the following configuration has 

been considered for interconnection between different sectors (Figure 4-1).  

 

Figure 4-1 – Schematic of Hybrid System Connection 

In this way, the cost function can be written as formula (65); which shows the total energy 

consumption cost for load and charging the battery, total energy revenue from delivering of 

surplus PV production and available storage energy to the grid and Operational cost which is 

illustrated in detail in formula (66). 

𝐽 =  min
𝑣∈𝒱

∑{(𝑃𝑡
𝐺2𝐿 + 𝑃𝑡

𝐺2𝐵𝑎𝑡) − (𝑃𝑡
𝐵𝑎𝑡2𝐺 + 𝑃𝑡

𝑃𝑉2𝐺)𝑟𝑐𝑜𝑛𝑡]ℎ. 𝑃𝑟𝑖𝑐𝑒𝑡
𝐸 − 𝐶𝑜𝑠𝑡𝑡

𝑂𝑝
}

23

𝑡=0

    (65) 

𝐶𝑜𝑠𝑡𝑡
𝑂𝑝
  =  𝛾 (𝑃𝑡

𝐵𝑎𝑡2𝐺 + 𝑃𝑡
𝐵𝑎𝑡2𝐿 + 𝑃𝑡

𝑃𝑉2𝐵𝑎𝑡 + 𝑃𝑡
𝐺2𝐵𝑎𝑡) (66) 

Subject to:  

0 ≤  𝑃𝑡
𝐵𝑎𝑡2𝐺 + 𝑃𝑡

𝑃𝑉2𝐺 ≤ 𝑃𝑚𝑎𝑥    
(67) 
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0 ≤  𝑃𝑡
𝐺2𝐿 + 𝑃𝑡

𝐺2𝐵𝑎𝑡 ≤ 𝑃𝑚𝑎𝑥   
(68) 

𝑃𝑡
𝐺2𝐿 + 𝑃𝑡

𝑃𝑉2𝐿 + 𝑃𝑡
𝐵𝑎𝑡2𝐿   = 𝑃𝑡

𝐿𝑜𝑎𝑑   (69) 

0 ≤ 𝑃𝑡
𝑃𝑉2𝐿 + 𝑃𝑡

𝑃𝑉2𝐺 + 𝑃𝑡
𝑃𝑉2𝐵𝑎𝑡 ≤ 𝑃𝑡

𝑃𝑉 (70) 

Where 𝑃𝑡
(.)

 shows the power at time instance 𝑡, ℎ is time duration and 𝑃𝑟𝑖𝑐𝑒𝑡
𝐸 is the 

energy price. The selling energy price assumed to be contracted as ratio 𝑟𝑐𝑜𝑛𝑡 of buying price. 

Constraints (67) – (68) show the behind meter and inverter power limitation during both grid to 

demand side and vice versa. Constraint (69) is the load curtailment from grid, PV and battery 

and constraint (70) shows the limitation of PV production at each time instance. In objective 

function (65), the time horizon is 24 hour and day-ahead scheduling based on each hour 

considered. However, the battery constraints will be described in next sub-section 04.1.1.  

4.1.1 Battery Constraints for DSM 

In general, for electrical battery energy storage, some mutual parameters are important to 

take into account. The first one shows the capacity limitation of battery and called as State of 

Charge (SoC). Usually, must be kept in specific range to prevent any damage to the battery 

during charging and discharging. The second type of constraints belong to inverter power 

limitation and shows how fast battery can charge/discharge. Moreover, in some specific cases 

battery life-time constraints also takes into account such [146] where the total income of storage 

system depends on cycle life of battery.  

Energy of battery at each moment follows the remained energy from preceding moment 

and change of energy at current moment and can be shown as formula 71.  

𝐸𝑡+1 = (1 − 𝛽)𝐸𝑡 + ∆𝐸𝑡   (71) 

In this formula, 𝛽 is self-discharge rate of battery storage. Thus ∆𝐸𝑡 can be defined as formula 

72 based on charging and discharging capacity.   

∆𝐸𝑡 = −
1

𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
 𝑃𝑡
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

 ℎ + 𝜂𝑐ℎ𝑎𝑟𝑔𝑒 𝑃𝑡
𝑐ℎ𝑎𝑟𝑔𝑒

ℎ    (72) 

Where 𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 and  𝜂𝑐ℎ𝑎𝑟𝑔𝑒 are discharge/charge efficiency of battery, 𝑃𝑡
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

and  

𝑃𝑡
𝑐ℎ𝑎𝑟𝑔𝑒

 are total discharge/charge energy of battery. In this section, total charging capacity 

comes form grid and PV to the battery and total discharge is the delivered energy from battery 

to grid and load which are shown in equations (73). 

𝑃𝑡
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

= 𝑃𝑡
𝐵𝑎𝑡2𝐺 + 𝑃𝑡

𝐵𝑎𝑡2𝐿 (73) 
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𝑃𝑡
𝑐ℎ𝑎𝑟𝑔𝑒

=  𝑃𝑡
𝑃𝑉2𝐵𝑎𝑡 + 𝑃𝑡

𝐺2𝐵𝑎𝑡 

Consequently, the SoC constraints can be written as following constraints:  

𝐸𝑚𝑖𝑛  ≤ 𝐸𝑡 ≤ 𝐸𝑚𝑎𝑥  (74) 

𝐸𝑇 ≥ 𝐸0 (75) 

Where constraint (74) is the energy limits and (75) force the final energy state 𝐸𝑇 to equal or 

more than initial energy state. This constraint is important because in this way battery will be 

prepared for following day. Next important constraint, as mentioned earlier, is 

charging/discharge rate limitation based on maximum inverter and battery capacity. Meanwhile, 

it is important to set a constraint to prevent simultaneous charge and discharge which is called 

complementary charge/discharge constraint. Inequality (76) and (77) cover both problem 

constraints at the same time. 

0 ≤ 𝑃𝑡
𝑐ℎ𝑎𝑟𝑔𝑒

≤  𝑀 . 𝑃𝑚𝑎𝑥  
(76) 

0 ≤ 𝑃𝑡
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

≤ (1 −𝑀) . 𝑃𝑚𝑎𝑥 (77) 

In these constraints, 𝑀 is binary variable and shows charging (equal to 1) and discharge (equal 

to 0). These constraints include more complexity to optimization problem since the mixed 

integer programming must be solve. In next Chapter the solution to solve this issue has been 

explained.  

4.1.2 Uncertainties of DSM problem 

Up to now, the general formulation for DSM including cost function (65) and all related 

constraints have been explained in previous sections. In problem of DSM, there are two main 

sources of uncertainty exist. The first one is PV production fluctuation and second one is Load 

consumption. Although, Load forecast uncertainty is one of the most influential factors 

affecting the final results. In order to address these uncertainties, different forecasting method 

has been proposed in literature. In this research, the distribution fitting method has been used 

for adding possible fluctuation to Load and PV production. The distribution fitting method 

includes a hypothesis regarding a standard probability distribution of the forecast error and a 

fitting procedure used to find its parameters. Load and solar forecast errors are assumed to 

follow truncated normal distribution (TND) [147]. Probability density function (PDF) of the 

TND is: 

𝑃𝐷𝐹𝑇𝑁𝐷(𝑥; 𝜇, 𝜎, 𝑎, 𝑏) =  

1
𝜎 𝑃𝐷𝐹𝑁(

𝑥 − 𝜇
𝜎 )

𝐶𝐷𝐹𝑁 (
𝑏 − 𝜇
𝜎 ) − 𝐶𝐷𝐹𝑁 (

𝑎 − 𝜇
𝜎 )

 (78) 
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where 𝜇 is the mean value of nontruncated normal distribution; 𝜎  is standard deviation of 

nontruncated normal distribution; 𝑎 and 𝑏 are upper and lower limits of TND; 𝑃𝐷𝐹𝑁(. ) is PDF 

of standard normal distribution; and 𝐶𝐷𝐹𝑁(. ) is cumulative distribution function (CDF) of 

standard normal distribution. 𝑃𝐷𝐹𝑁(. )  and 𝐶𝐷𝐹𝑁(. )  are defined as  

𝑃𝐷𝐹𝑁(𝑥; 𝜇, 𝜎) =  
1

𝜎√2𝜋
𝑒−(𝑥−𝜇)

2/2𝜎2 (79) 

𝐶𝐷𝐹𝑇𝑁𝐷(𝑥; 𝜇, 𝜎, 𝑎, 𝑏)  =  
𝐶𝐷𝐹𝑁 (

𝑥 − 𝜇
𝜎

) − 𝐶𝐷𝐹𝑁 (
𝑎 − 𝜇
𝜎

)

𝐶𝐷𝐹𝑁 (
𝑏 − 𝜇
𝜎 ) − 𝐶𝐷𝐹𝑁 (

𝑎 − 𝜇
𝜎 )

                ;     𝑎 ≤ 𝑥 ≤ 𝑏 (80) 

In order to add forecasted error to the preceding DA scheduling, Model predictive control 

with has been designed. In this way, first pre-scheduling based on deterministic optimization 

perform. After that based on forecasting horizon (here is one hour), 𝐷𝑃𝑉 and 𝐷𝐿 which are PV 

generation and Load uncertainty respectively, the necessary changes for each pre-scheduled 

power flow due to following rules considered and the optimization will repeat for remained 

time till end of day.   

4.2 The model proposed for CAISO market 

In the recent year, new FERC orders promote the installation and participation of battery 

energy storage in electricity market. The initial point was FERC Order. 755 [47] that proposed 

the performance payment mechanism for frequency regulation market where fast acting 

resources such as battery storage are rewarded for the quality of service to follow the automated 

generation control (AGC) signal. The second clear step was FERC order. 841 [76] in 2018 

which clearly focused on removing participation barriers for electric energy storage, it is 

expected to have BESS with higher capacity in the market. BESS participation in market is 

promoted by different Independent System Operators (ISO) regulations such as NYISO [148], 

PJM [25] and CAISO [34]. In this research, CAISO Day-Ahead (DA) and Real-Time (RT) 

market structure is considered. CAISO wholesale energy markets provides the opportunity to 

buy and sell both power and energy which is comprised of energy market and Spinning reserve, 

regulation up and down market through DA and RT interval. 

The main scope of this research is to maximize the total revenue of battery energy storage 

systems installed behind the meter by participating in energy, spinning reserve and regulation 

market as well as simultaneous management of the demand side usage. However, due to 

uncertain nature of the market price, demand and PV production, the main challenge would be 

developing the proper optimization method for BESS scheduling. The problem formulation 
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consists of two stages. In first stage, day-ahead optimization is developed to determine 

preliminary charging and discharging strategy of the battery and commitments for day-ahead 

market. The second stage would be in real-time interval (intra-hour) to update the initial 

scheduling based on updated values of the demand and real-time markets. In this section, first 

the market modelling formulation for both DA and RT has been presented and then in second 

part the reformulation based on DRO is provided. 

Based on this market structure, the total cost and revenue of PV-BESS participating in DA 

multiple markets and demand side can be formulated as (81): 

JT(𝑣𝑡) ∶= min
𝑣𝑡
 ∑{

(𝐶𝑡
𝐷 + 𝐶𝑡

𝑂𝑝
)

−(𝑅𝑡
𝑆𝑝𝑖𝑛

+ 𝑅𝑡
𝑅𝑒𝑔

+ 𝑅𝑡
𝐸)
}

𝑇

𝑡=1

 (81) 

Where 𝐶𝑡
𝐷 and 𝐶𝑡

𝑂𝑝
 are the demand and operational cost and 𝑅𝑡

(.)
 is the revenue of 

different markets at each time interval. 𝐶𝑡
𝐷 in equation (82) depends on time of use 𝜌𝑡

𝐷𝐴 price  in 

DA and the total energy that delivered from grid to procure demand 𝑃𝑡
𝐺2𝐿, charge the battery 

𝑃𝑡
𝐺2𝐵𝑎𝑡 and regulation down market 𝑃𝑡

𝑅𝑒𝑔𝐷
 usage. The operational cost 𝐶𝑡

𝑂𝑝
 is proportional to 

the total exchange energy in storage for charging and discharging of battery, as derived in (83).  

𝐶𝑡
𝐷 = 𝜌𝑡

𝐷𝐴. (𝑃𝑡
𝐺2𝐿 + 𝑃𝑡

𝐺2𝐵𝑎𝑡 + 𝑃𝑡
𝑅𝑒𝑔𝐷

)                   ;    ∀𝑡 ∈ 𝑇 (82) 

𝐶𝑡
𝑂𝑝
= 𝑐𝑜𝑝. {

(𝑃𝑡
𝑅𝑒𝑔𝐷

+ 𝑃𝑡
𝐺2𝐵𝑎𝑡 + 𝑃𝑡

𝑃𝑉2𝐵𝑎𝑡) +

(𝑃𝑡
𝐵𝑎𝑡2𝐿 + 𝑃𝑡

𝑆𝑝𝑖𝑛
+ 𝑃𝑡

𝑅𝑒𝑔𝑈
+ 𝑃𝑡

𝐸)
} . ℎ     ;    ∀𝑡 ∈ 𝑇 (83) 

The revenue of spinning reserve 𝑅𝑡
𝑆𝑝𝑖𝑛

 is determined by spinning reserve capacity 𝑃𝑡
𝑆𝑝𝑖𝑛

 

and spinning price at each moment 𝑡
𝑆𝑝𝑖𝑛

 in (84). The regulation market revenue 𝑅𝑡
𝑅𝑒𝑔

 is 

structured as capacity payment and performance payment based on FERC order 755 [45]. The 

capacity payment is related to committed capacity for regulation market 𝑃𝑡
𝑅𝑒𝑔

 and its price 

𝑡
𝑅𝑒𝑔

, first part in (85), and performance payment is paid based on participants’ accuracy 𝑎𝑐𝑐𝑡 

and mileage price 𝜋𝑡
𝑀𝑖𝑙𝑒 by calculating how accurately service provider can follow the 

automated generation control (AGC) signal as shown in in second part of (85), where 𝑚𝑡 is 

regulation multiplier estimated by CAISO and is the amount of total expected resource 

movement (up or down), or Mileage, for 1 MW of Regulation Up or Down capacity.     

𝑅𝑡
𝑆𝑝𝑖𝑛

= 𝑃𝑡
𝑆𝑝𝑖𝑛

.𝑡
𝑆𝑝𝑖𝑛

. ℎ                                              ;    ∀𝑡 ∈ 𝑇 (84) 

𝑅𝑡
𝑅𝑒𝑔

= 𝑃𝑡
𝑅𝑒𝑔

.𝑡
𝑅𝑒𝑔

. ℎ + 𝑃𝑡
𝑅𝑒𝑔

. 𝑚𝑡 . 𝜋𝑡
𝑀𝑖𝑙𝑒 . 𝑎𝑐𝑐𝑡        ;    ∀𝑡 ∈ 𝑇 (85) 



Approach Proposed 

  69 

And finally, the energy revenue 𝑅𝑡
𝐸 comes from all energy sectors delivered to grid 

including regulation up 𝑃𝑡
𝑅𝑒𝑔𝑈

, spinning reserve 𝑃𝑡
𝑆𝑝𝑖𝑛

 capacity and extra energy from battery to 

the grid 𝑃𝑡
𝐸 and energy price at time t 𝑡

𝐸 as illustrated in (86). 

𝑅𝑡
𝐸 = 𝑡

𝐸.𝐷𝐴. (𝑃𝑡
𝑅𝑒𝑔𝑈

+ 𝑃𝑡
𝑆𝑝𝑖𝑛

+ 𝑃𝑡
𝐸). ℎ                   ;    ∀𝑡 ∈ 𝑇 (86) 

It must mention that, in DA market, time horizon 𝑇 in objective function (81) is 24 hour and 𝑡 

is change based on hourly steps (24 steps/day). However, in RT market, which is also called 

Fifteen Minutes Market (FMM) in CASIO, time step 𝑡 is change every 15 min (96 steps/day). It 

is also important to take into account that spinning reserve and regulation market both up and 

down (ancillary services) are capacity commitment market in DA which might accrue and call-

in real-time dispatch or not. Although, in RT both of them are real time dispatch and that is the 

main reason of existence of coefficient ℎ in formula (84) and (85) to show this point. Finally, as 

RT ancillary services are real energy dispatch, they also will be paid as energy delivery to the 

grid which is shown in (86). 

In objective function (81), the optimization variables are participation capacities 𝑃𝑡
(.)

, and 

market prices are uncertain parameters. Total charging and discharging powers are defined as 

(87) and (88) respectively. Equations (89) - (95) are the problem constraints. The constraints 

(89) and (90) are power limits of battery storage in charging and discharging mode respectively 

as well as complementary charging and discharging constraints for the battery which prevent 

battery to simultaneous charge and discharge.  

Pt
ch = Pt

RegD
+ Pt

G2Bat + Pt
PV2Bat                         ;    ∀𝑡 ∈ 𝑇 (87) 

𝑃𝑡
𝑑𝑐ℎ = 𝑃𝑡

𝑅𝑒𝑔𝑈
+ 𝑃𝑡

𝑆𝑝𝑖𝑛
+ 𝑃𝑡

𝐸 + 𝑃𝑡
𝐵𝑎𝑡2𝐿               ;    ∀𝑡 ∈ 𝑇 (88) 

0 ≤ 𝑃𝑡
𝑐ℎ ≤ 𝑃𝑀𝑎𝑥.𝑀𝑡                                                 ;    ∀𝑡 ∈ 𝑇 (89) 

0 ≤ 𝑃𝑡
𝑑𝑐ℎ ≤ 𝑃𝑀𝑎𝑥. (1 −𝑀𝑡)                                      ;    ∀𝑡 ∈ 𝑇 (90) 

State of charge of battery is defined as equation (91), which depends on previous 𝑆𝑜𝐶𝑡−1 and 

the charging and discharging capacity at that moment. 𝑆𝑜𝐶 must be kept in certain limit as 

shown in (92). Equation (93) forces the final values of 𝑆𝑜𝐶 to be more than or equal to initial 

value of the 𝑆𝑜𝐶 at the beginning to prepare the battery for the next day.  

𝑆𝑜𝐶𝑡 = 𝑆𝑜𝐶𝑡−1 + 𝜂
𝑐ℎ𝑃𝑡

𝑐ℎ. ℎ −
1

𝜂𝑑𝑐ℎ
𝑃𝑡
𝑑𝑐ℎ. ℎ                  ;    ∀𝑡 ∈ 𝑇 

(91) 
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𝑆𝑜𝐶𝑀𝑖𝑛 ≤ 𝑆𝑜𝐶𝑡 ≤ 𝑆𝑜𝐶𝑀𝑎𝑥                                                ;    ∀𝑡 ∈ 𝑇 (92) 

𝑆𝑜𝐶𝑡=0 ≤ 𝑆𝑜𝐶𝑡𝑒𝑛𝑑                                                                 ;    ∀𝑡 ∈ 𝑇 (93) 

Constraint (94) provides the demand side management where the total demand power request 

𝐶𝑎𝑝𝑡
𝐷 is procured by PV 𝑃𝑡

𝑃𝑉2𝐿 , battery 𝑃𝑡
𝐵𝑎𝑡2𝐿 and grid 𝑃𝑡

𝐺2𝐿. Finally, constraint (95) shows 

the PV production 𝐶𝑎𝑝𝑡
𝑃𝑉at each moment. 

𝑃𝑡
𝑃𝑉2𝐿 + 𝑃𝑡

𝐵𝑎𝑡2𝐿 + 𝑃𝑡
𝐺2𝐿 = 𝐶𝑎𝑝𝑡

𝐷                                       ;    ∀𝑡 ∈ 𝑇 (94) 

𝑃𝑡
𝑃𝑉2𝐿 + 𝑃𝑡

𝑃𝑉2𝐵𝑎𝑡 + 𝑃𝑡
𝑃𝑉2𝐺 ≤ 𝐶𝑎𝑝𝑡

𝑃𝑉                                  ;    ∀𝑡 ∈ 𝑇 (95) 

In context of RT scheduling, not only RT markets and demands but also the committed 

values in DA must consider. Specifically cost function (81) will modify as (96).  

J
T
RT(𝑣𝑡) ∶=  min

𝑣𝑡
 ∑{

(𝐶𝑡
𝑅𝑇,𝐷 + 𝐶𝑡

𝑂𝑝
)

−(𝑅𝑡
𝑆𝑝𝑖𝑛

+ 𝑅𝑡
𝑅𝑒𝑔

+ 𝑅𝑡
𝑅𝑇,𝐸)

+𝑈𝑡
𝐷 + 𝑈𝑡

𝐸

}

𝑇

𝑡=1

 

(96) 

𝐶𝑡
𝑅𝑇,𝐷 =  𝜌

𝑡
𝐷𝐴. 𝐸𝑡

𝐷𝐴,𝐼𝑚 + 𝜌
𝑡
𝑅𝑇. ∆𝐸𝑡

𝑅𝑇,𝐼𝑚                                   ;    ∀𝑡 ∈ 𝑇 (97) 

𝑅𝑡
𝑅𝑇,E = 𝑡

𝐸,𝐷𝐴. 𝐸𝑡
𝐷𝐴,𝐸𝑥 + 𝑡

𝐸,𝑅𝑇. ∆𝐸𝑡
𝑅𝑇,𝐸𝑥                              ;    ∀𝑡 ∈ 𝑇 (98) 

Subject to  

𝑈𝑡
𝐷 ≥ 𝑙𝐼𝑚. (∆𝐸𝑡

𝑅𝑇,𝐼𝑚 − 𝜗𝐼𝑚. 𝐸𝑡
𝐷𝐴,𝐼𝑚)                                     ;    ∀𝑡 ∈ 𝑇 (99) 

𝑈𝑡
𝐸 ≥ 𝑙𝐸𝑥. (∆𝐸𝑡

𝑅𝑇,𝐸𝑥 − 𝜗𝐸𝑥. 𝐸𝑡
𝐷𝐴,𝐼𝑚)                                     ;    ∀𝑡 ∈ 𝑇 (100) 

Where 𝐶𝑡
𝑂𝑝
, 𝑅𝑡

𝑆𝑝𝑖𝑛
and 𝑅𝑡

𝑅𝑒𝑔
 are following equations (83), (84) and (85) respectively. 

However, demand cost and energy income have been updated as (97) and (98) where 𝐸𝑡
𝐷𝐴,𝐼𝑚

 is 

total energy import from grid in DA including grid to battery, grid to load and regulation down 

and ∆𝐸𝑡
𝑅𝑇,𝐼𝑚

 is its deviation from day-ahead amount which must calculate based on real-time 

price 𝜌𝑡
𝑅𝑇 instead of day-ahead. In the same way, energy income must update based on value 

committed to export to grid in DA  𝐸𝑡
𝐷𝐴,𝐸𝑥

, including spinning reserve, regulation up and 

committed energy which must calculated in DA energy price 𝑡
𝐸,𝐷𝐴

 and second part that is 

deviation from DA values ∆𝐸𝑡
𝑅𝑇,𝐸𝑥

. Two last terms in RT cost function (96) is penalty for 

deviation from DA commitments. Accordingly, 𝑈𝑡
𝐷 and 𝑈𝑡

𝐸 are introduced to, respectively, 

present the penalties for deviation form committed values in RT at hour 𝑡  in $. 𝑙𝐼𝑚 and 𝑙𝐸𝑥 are, 
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respectively, the price penalties for energy import and export, in $/kWh. 𝜗𝐼𝑚 and 𝜗𝐸𝑥 are, 

respectively, 𝜗𝐼𝑚 threshold which can be used for RT markets and uncertainties fluctuations, 

expressed as the percentage of the DA quantity, above which energy deviations are penalized. 

In second stage, in order to update general problem (96) with last estimation of demand 

power request and PV power production, model predictive control (MPC) algorithm over 

planning horizon ℋ𝑡 is developed. In this term, 𝐶𝑎𝑝𝑡
𝑃𝑉= 𝑃̅𝑡

𝑃𝑉 + 𝑃̃𝑡
𝑃𝑉 has been redefined as a 

summation of nominal value 𝑃̅𝑡
𝑃𝑉 and forecasted error 𝑃̃𝑡

𝑃𝑉 in RT. Likewise, for              

𝐶𝑎𝑝𝑡
𝐷 =  𝑃̅𝑡

𝐷 + 𝑃̃𝑡
𝐷.      

J T
∗ (𝑣𝑡)  =  min

𝑣𝑡
 ∑ ∑ JT(𝑣𝑡, ξ𝜏)

𝑡+ ℋ𝑡

𝜏=𝑡

𝑇

𝑡=1

 (101) 

Only the immediate control decisions for time 𝑡 till ℋ𝑡 are considered as BESS plan. Then 

time shifts forward one step, new forecast errors are realized, the optimization problem (101) is 

re-solved at time 𝑡 +  1 hour, and the process repeats. This approach allows any forecasting 

methodology to be utilized to predict uncertainties over the planning horizon and recalculate 

intra hour decisions based on short term and more accurate forecasting. 

4.2.1 Uncertainties of market and DSM 

In our research formulation, by considering demand side management and electricity 

market, three sources of uncertainty exist. The first source is related to demand load and PV 

production. To deal with this kind uncertainties open loop MPC has been developed in RT 

which is described in (101) and section 4.1.2 in details. The second source of uncertainty is 

associated with the actual resource being deployed in the market or in other word, the actual 

amount of energy that awarded in DA market. This category is complicated and not easy to 

foreseen, however, due to small size of BTM battery capacity compare to other market 

participants and the fact that these assets are price-taker at this moment (they are following the 

market price and cannot influence market price), we can assume that a high percentage of DA 

schedules volume has been accepted for RT dispatch. The last source of uncertainty is back to 

market prices. There are various price forecasting methods based on historical price fluctuations 

could be used [149]. This category is easy to fit to any distribution probability since it has been 

affected by various factors such as demand, grid contingencies, weather condition and etc. In 

this research two approaches have been implemented to deal with these uncertainties. The first 

one is robust optimization which is described earlier in subsection 3.2 and updated formula has 

been discussed in subsection 4.2.1.1.. The second approach which is the main contribution of 
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this research is data-driven distributionally robust optimization approach which has been 

described and discussed in subsection 3.3 and 4.2.1.2.  

4.2.1.1 Robust Optimization  

Robust optimization is non-probabilistic method which considers the worth case scenario 

of uncertain variables. As mentioned before, the main challenge in our research is market price 

fluctuation. To revise the cost function (81) based on RO method, it can be rewritten as formula 

(102) where demand cost and operational costs follows the equations (82) and (83) same as 

deterministic method respectively. However, the markets revenue formulations have been 

updated as (103)-(105). 

JT̃(𝑣𝑡) ∶= min
𝑣𝑡
  min
∆

 ∑{
(𝐶𝑡

𝐷 + 𝐶𝑡
𝑂𝑝
)

−(𝑅̃𝑡
𝑆𝑝𝑖𝑛

+ 𝑅̃𝑡
𝑅𝑒𝑔

+ 𝑅̃𝑡
𝐸)
}

𝑇

𝑡=1

 (102) 

𝑅̃𝑡
𝑆𝑝𝑖𝑛

= 𝑃𝑡
𝑆𝑝𝑖𝑛

. (
𝑡
𝑆𝑝𝑖𝑛 + ∆𝑡

𝑆𝑝𝑖𝑛
). ℎ                                              ;    ∀𝑡 ∈ 𝑇 (103) 

𝑅̃𝑡
𝑅𝑒𝑔

= 𝑃𝑡
𝑅𝑒𝑔

. (
𝑡
𝑅𝑒𝑔 + ∆𝑡

𝑅𝑒𝑔
). ℎ + 𝑃𝑡

𝑅𝑒𝑔
. 𝑚𝑡. 𝜋𝑡

𝑀𝑖𝑙𝑒 . 𝑎𝑐𝑐𝑡        ;    ∀𝑡 ∈ 𝑇 (104) 

𝑅̃𝑡
𝐸 = (

𝑡
𝐸 + ∆𝑡

𝐸). (𝑃𝑡
𝑅𝑒𝑔𝑈

+ 𝑃𝑡
𝑆𝑝𝑖𝑛

+ 𝑃𝑡
𝐸). ℎ                             ;    ∀𝑡 ∈ 𝑇 (105) 

The new constraints related to confidence gap of market prices can be written as formula 

(106)-(108) where  𝛼(.) is the robustness gap of each market. The rest of constraints are the 

same as deterministic method.  

−𝑡
𝑆𝑝𝑖𝑛

𝛼𝑆𝑝𝑖𝑛 ≤ ∆𝑡
𝑆𝑝𝑖𝑛

≤ 𝑡
𝑆𝑝𝑖𝑛

𝛼𝑆𝑝𝑖𝑛                                 ;    ∀𝑡 ∈ 𝑇 (106) 

−𝑡
𝑅𝑒𝑔

𝛼𝑅𝑒𝑔 ≤ ∆𝑡
𝑅𝑒𝑔

≤ 𝑡
𝑅𝑒𝑔

𝛼𝑅𝑒𝑔                                        ;    ∀𝑡 ∈ 𝑇 (107) 

−𝑡
𝐸𝛼𝐸 ≤ ∆𝑡

𝐸 ≤ 𝑡
𝐸𝛼𝐸                                                             ;    ∀𝑡 ∈ 𝑇 (108) 

In this kind of robust formulation as the uncertain variable just have been appeared in cost 

function and robustness gap in separate constraints, therefore in order to solve the inner side 

minimization, the variables of the outer side minimization of (81) should be considered fixed 

and as parameters. In this way, the minimization part would be a linear simple optimization 

problem constrained to (106)-(108). The minimum value of such linear optimization problem is 

obtained in one of the boundaries of uncertainty horizons, depending on their coefficients. The 

coefficients of minimization part variables, i.e., ∆𝑡
𝑆𝑝𝑖𝑛

, ∆𝑡
𝑅𝑒𝑔

 and ∆𝑡
𝐸  are 𝑃𝑡

𝑆𝑝𝑖𝑛
, 𝑃𝑡

𝑅𝑒𝑔
 and 

𝑃𝑡
𝐸, respectively, which are all positive. Therefore, their worst-case realization can be easily 

obtained by setting them to their lower level bounds. In other words, the worst case of this 

group of uncertain variables is as follows (109) and (111). 
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∆𝑡
𝑆𝑝𝑖𝑛

= − 𝑡
𝑆𝑝𝑖𝑛

𝛼𝑆𝑝𝑖𝑛                                    ;    ∀𝑡 ∈ 𝑇 (109) 

∆𝑡
𝑅𝑒𝑔

= − 𝑡
𝑅𝑒𝑔

𝛼𝑅𝑒𝑔                                        ;    ∀𝑡 ∈ 𝑇 (110) 

∆𝑡
𝐸  = − 𝑡

𝐸  𝛼𝐸                                                   ;    ∀𝑡 ∈ 𝑇 (111) 

4.2.1.2 Data-Driven Distributionally Robust Optimization 

In Equation (81), described in preceding section Error! Reference source not found., the m

ean value of historical data is assumed instead of uncertain parameters such as market prices to 

solve deterministic optimization. In order to consider the risk of different uncertainties, data-

driven distributionally robust optimization method is introduced in this section. The 

conventional approach to optimize the objective function is the stochastic approach where the 

different scenarios based on assumed partial distribution (PD) will be defined and the main aim 

is to minimize the expected cost such as expressed in (112). 

𝐽∗ = inf
𝑣∈𝕍

{𝔼ℙ[ℎ(𝑣, 𝜉)] ∶= ∫ℎ(𝑣, 𝜉)ℙ(𝑑𝜉)
 

Ξ

}   (112) 

with decision variable 𝑣 ∈ 𝕍 ⊆ ℝ𝑛, random vector 𝜉 with probability distribution ℙ 

supported on uncertainty set Ξ ⊆ ℝ𝑚  and cost function ℎ:ℝ𝑛 × ℝ𝑚 → ℝ̅ . A common 

approach to find ℙ is to estimate the distribution from limited available data which usually leads 

to a poor out-of-sample performance since it is not precise and based on limited data. Moreover, 

more accurate results require more scenarios to be generated which increases the computational 

burden and time. The possible approach to guaranty out-of-sample performance is to define an 

ambiguity set 𝒫̂𝑁 which contains all possible distributions from training data [128]. In this way, 

the distributionally robust optimization (113) defines as the minimum worst-case expected cost 

over 𝒫̂𝑁. 

𝐽𝑁 ∶= inf
𝑣∈𝑉

  sup
ℚ∈𝒫̂𝑁

𝔼ℚ[ℎ(𝑣, 𝜉)] (113) 

To instruct the ambiguity set, in this research, we focus on the Wasserstain metric since it 

has a tractable reformulation and out-of-sample performance guarantees [128], [140]. We 

construct 𝒫̂𝑁 as a ball around empirical distribution with radius based on Wasserstain metric to 

measure the distance between true PD and estimated one.  

The ambiguity set 𝔹𝜀(ℙ̂𝑁) can be formulated as Wasserstein ball centered at a uniform 

empirical distribution ℙ̂𝑁 on training dataset Ξ𝑁𝑠  and within 𝜀 as confidence level (114). The 𝜀 
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is a control variable for conservativeness and robustness of optimization compare to specific 

features of dataset. 

𝒫̂𝑁 = 𝔹𝜀(ℙ̂𝑁) ∶= {ℚ ∈ ℳ(Ξ) ∶ 𝑑𝑤(ℙ̂𝑁, ℚ) ≤ 𝜀 } (114) 

In this research, the mean-risk portfolio for our problem structure in Equation (81) has 

been developed to solve single stage stochastic optimization which minimizes a weighted sum 

of the mean and the conditional value-at-risk (CVaR) of the portfolio revenue amount 〈𝑣, 𝜋〉. 

Consider a total capacity of battery is divided between multiple services at each time interval 

and is encoded by a vector of percentage weights 𝑣 = [𝑣1, … , 𝑣𝑚]
𝑇 ranging over probability 

simplex 𝕍 = {𝑣 ∈ ℝ+
𝑚: ∑ 𝑣𝑖 = 1}

𝑚
𝑖=1 . Uncertain price for each service is shown by the vector 

𝜋 = [𝜋1, . . . , 𝜋𝑚]
𝑇 (115).  

J T
∗ (𝑣𝑡) = 𝑖𝑛𝑓

𝑣𝑡∈𝕍
{𝔼ℚ[−〈𝑣𝑡, 𝜋〉] + 𝜁.ℚ_𝐶𝑉𝑎𝑅𝛼(−〈𝑣𝑡, 𝜋〉)} (115) 

Definition: Conditional Value-at-Risk (CVaR), which is known also as “Mean Excess Loss”, 

“Mean Shortfall”, or “Tail VaR”. By definition with respect to a specified probability level 𝜁, 

the 𝜁 − VaR of a portfolio is the lowest 𝛼 amount such that, with probability 𝜁, the loss will not 

exceed 𝛼, whereas the 𝜁 − CVaR is the conditional expectation of losses above that amount 𝛼 

[150].  

Here 𝐶𝑉𝑎𝑅𝛼  is conditional value at risk with confidence level of 𝛼 ∈ (0,1] and 𝜁 ∈

ℝ+ quantifies the investor’s risk-aversion. The formula (115) can be reduced to piecewise affine 

form such as (116) by replacing CVaR in with its formal definition [151]. 

𝐽∗ = inf
𝑣∈𝕍

{
𝔼ℚ[−〈𝑣, 𝜋〉] +

𝜁 inf
𝜏∈ℝ

𝔼ℚ[𝜏 +
1

𝛼
max
𝑣∈𝕍

{−〈𝑣, 𝜋〉 − 𝜏, 0}]
} = inf

𝑣∈𝕍,𝜏∈ℝ
𝔼ℚ[max

𝑘=1,2
𝑎𝑘〈𝑣, 𝜋〉 + 𝑏𝑘𝜏]  (116) 

where 𝑘 = 2, 𝑎1 = −1, 𝑎2 = −1−
𝜁

𝛼
, 𝑏1 = 𝜁, and 𝑏2 = 𝜁( 1 −

1

𝛼
). Supposed that 

uncertainty Ξ ∶= {𝜋 ∈ ℝ𝑚: 𝐶𝜋 ≤ 𝑑} and a polytope, then the stochastic formula of (116) can be 

solve in distributionally robust form counterpart of (58) with respect to the Wasserstein 

ambiguity set 𝔹𝜀(ℙ̂𝑁) such as:  

𝐽𝑁,𝑡(𝜀) =

{
 
 
 

 
 
 inf

𝑣𝑡,𝜏𝑡,𝜆𝑡,𝑠𝑡,𝑖,𝛾𝑡,𝑖,𝑘 
𝜆𝑡𝜀 + 

1

𝑁
 ∑𝑠𝑡,𝑖 

𝑁

𝑖=1

𝑠. 𝑡.    𝑣𝑡 ∈ 𝑉

𝑏𝑘𝜏𝑡 + 𝑎𝑘〈𝑣𝑡, 𝜋̂𝑖,𝑡  〉 + 〈𝛾𝑡,𝑖,𝑘, 𝑑 − 𝐶𝜋̂𝑖,𝑡〉 ≤ 𝑠𝑡,𝑖

‖𝐶𝑇𝛾𝑡,𝑖,𝑘 − 𝑎𝑘𝑣𝑡‖∞ ≤ 𝜆𝑡

𝛾𝑡,𝑖,𝑘 ≥ 0              ; ∀𝑖 ∈ 𝑁𝑠, 𝑘 ≤ 1,2

 (117) 
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Where 𝜏𝑡 is a CVaR auxiliary valuable and 𝑠𝑡,𝑖, 𝛾𝑡,𝑖,𝑘 and 𝜆𝑡 are auxiliary variables 

associated with the distributionally robust Wasserstein ball reformulation. In formula (117), the 

optimum cost 𝐽𝑁,𝑡 for each time interval 𝑡 and 𝑁 training samples is calculated. Subsequently, 

the final objective function for our problem will be formulated as (118) in DRO form with the 

constraints (89) - (95) and (117). 

ĴT = min
𝑣𝑡,𝜏𝑡,𝜆𝑡,𝑠𝑡,𝑖,𝛾𝑡,𝑖,𝑘

∑𝐽𝑁,𝑡(𝜀)

𝑇

𝑡=1

 (118) 
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5 Case Study  

The main aim of this research is to show benefits of participation of Behind the Meter 

(BTM) storage system in feasible electricity market as well as improving the self-consumption 

and demand side management. In this regard, different scenarios defined, and different 

optimization approach have been implemented. It is important to take into account that almost 

no real data for BTM storage is available since all of them are private sector and these data are 

confidential [152]. On the other hand, by increasing of installation of roof top PV panels and 

BTM storage, changing the market structure such as FERC Order. 755 [45] and frequent 

adaptation of market regulation such as FERC Order. 841 [76] the ancillary services and energy 

price trend has been changed and it is not stable yet. These two challenges bring difficulty to 

find and choose proper cases. Nevertheless, in this research a household user with roof top PV 

and battery storage system in California has been chosen as case study. The main reason to 

choose California region is this region has one of the most BTM storage installation and the 

same time the its market regulation is the most advanced and adopted for renewable generators 

and energy storage systems. Moreover, in all case scenarios, data from year 2016 has been used 

for scheduling and market data from year 2017 used for test and feasibility tests. Solar 

irradiance data for Los Angeles area has been collected from PHOTOVOLTAIC 

GEOGRAPHICAL INFORMATION SYSTEM (PVGIS) [153] (Figure 5-1). 

 

Figure 5-1 – Monthly Solar Irradiance of Los Angeles region 

Due to seasonal change in Time of Use (ToU) tariff and PV production, all scenarios have 

been calculated separately for Winter and Summer season. The sizing of PV and battery bank is 

based on a sizing model in [154]. The parameters of this system are listed in Table 5. The 

maximum power delivered on each flow is defined as 5 kW which is the limitation of invertor. 
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The mono-crystalline silicon (mc-Si) has been considered as PV type and its output power 

follows the equation (119) where 𝐼𝑟𝑟𝑡 is solar irradiance at each moment [155]. Load profile has 

been considered as typical residential load [141] and it will change based on seasonal ratio 

[156].  

𝑃𝑡
𝑃𝑉 = 0.000898 × 𝐼𝑟𝑟𝑡 − 0.0138 (119) 

Nominal Battery Capacity  30 kWh 

Battery Charge Efficiency  85% 

Battery Discharge Efficiency 95% 

Initial State of Charge  16 kWh 

Minimum SoC 15% 

Maximum SoC 90% 

PV array’s capacity 5 kW 

Table 5 – Parameters of Hybrid PV-Battery system 

 

Figure 5-2 – Seasonal PV Production Power output and Load 

5.1 Demand Side Management  

In the first case scenario, the behind the meter battery with rooftop PV panels used for 

demand side management. In this case, just surplus energy from PV and battery export to grid 

and battery packs do not participate in any market. For both Winter and Summer time 

optimization run to minimize the total cost based on objective function (65). In addition to load 

profile and PV production for each season, the energy tariff for weekday from online data 
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centre of [33] have been used separately. The contract ratio for selling energy to the grid 

considered as 85%. In all utilities, Winter period is between November to end of April (8 

months) and Summer is defined from June to end of September (4 months).  

For second stage of this scenario, the uncertainties of load and PV production up to 20% 

of each hour and based on described probability distribution in section 4.1.2 have been added 

and new value for each power flow scheduling have been revised respectively. In order to have 

more precise scheduling and better comparison with the other cases, uncertainties will 

determine every 15 min and new optimization with MPC will perform based on 15min time 

interval (instead of each hour).  

In this case, load profile and PV production after adding uncertainties will change as Figure 5-3.  

 
Figure 5-3 – PV and Load profile with uncertainties in Winter and Summer 

5.2 Electricity Market and DSM 

In this section, instead of just optimal scheduling the BESS with respect to demand side 

load profile, it has been participated in feasible electricity markets that have been explained in 

sub-section 1.1.7.2 and formulated in sub-section . In order to have comprehensive comparison 

all assumptions in section 5.1 is also valid for this section including further assumptions related 
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to market and optimization methods which will described in this section. Base on CAISO tariff 

[34] and FERC Order. [76] battery energy storages are valid to participate in ancillary services 

including spinning reserve (as a fast response generator), regulation up and regulating down. 

Also, traditionally, they could bid for retail energy market as well. It is important to take into 

account that during participation in ancillary services we have double payment both for their 

capacity commitment and energy delivery. For ISO retail energy market, Local Marginal Price 

must be use as reference for energy price.  

As the market price range for winter and summer time has different level and the main 

purpose is to have comparison with solely DSM case, here also separate simulation for winter 

and summer time performed. The general procedure in this case is that, first in DA interval a 

whole day schedule of battery with respect to load profile, solar generation, LMP and ancillary 

services price and calling signal for markets will be clear. For ancillary services, there is no 

available and full day market to participate and each service provider must follow the market 

request signal from ISO. In this research, we assumed that these markets are calling 8 times per 

day and at the same time which is the worth case scenario. For regulation market, as discussed 

earlier, in general service providers must follow the AGC signal and they also will be paid 

based on accuracy of their performance. However, in our case as we are working with BTM 

batteries and the total capacity is low, for sake of simplicity we neglect this payment.  

After DA interval, pre-schedule of batteries has been determined and the committed 

values for DA market have been fixed. In the second stage, based on remained capacity of 

battery, new forecasting values for demand profile and PV production as well new signals for 

real-time markets, new optimization will be run for each hour (instead of whole day) and based 

on 15 min interval which is the RT market signalling interval. To add and update the battery 

SoC based on DA values and proceeding hours, MPC algorithm has been developed. In 

practice, service providers must pay penalty for any deviation from confirmed values in DA and 

real-time dispatch. The penalty ratio depends on contract and service type and there is no clear 

information available. However, it must consider that up to valumn which scheduled in DA will 

pay based on DA price and the extra amount will treat based on RT price. This fact has been 

shown in formula (96). Thus, in this research BESS is forced to follow the DA schedule as 

priority.  

Moreover, in this section three different optimization approaches for dealing with market 

price uncertainties (which didn’t exist in previous section) including deterministic, robust and 

data-driven distributionally robust optimization (DRO) run separately. All market data have 

been collected from CAISO online data centre [33] for year 2016 and 2017. In this way for all 
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case scenarios, first the scheduled values based on data from 2016 train and then based on data 

from 2017 will be test. In addition, in order to have more realistic case, since predicting full 

data is not possible, only limited number of days selected as useful data.   

5.2.1 Deterministic Optimization solution 

Problem formulation for deterministic optimization have been explained in section 4.2 as 

base case scenario. In this formulation, we assumed the market price for each season is equal to 

seasonal average of price of each market. The main problem with deterministic approach is that 

it doesn’t consider the fluctuation of prices however, the formulation and optimization is the 

simple and fast. In Figure 5-4 - Figure 5-7 comparison of average prices for DA interval in each 

market between winter and summer, full seasonal data and selected data has been shown. The 

same in  Figure 5-8 - Figure 5-11 for RT interval.  For full data figures for both DA and RT 

check the Appendix A. 

 

Figure 5-4 - LMP seasonal DA average price in 2016 

 

Figure 5-5 – Regulation Down DA seasonal average price in 2016 
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Figure 5-6 - Regulation Up DA seasonal average price in 2016 

 

Figure 5-7 – Spinning Reserve DA seasonal average price in 2016 

 

Figure 5-8 - LMP RT seasonal average price in 2016 
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Figure 5-9- Regulation Down RT seasonal average price in 2016  

 

Figure 5-10- Regulation UP RT seasonal average price in 2016 

 

Figure 5-11- Spinning Reserve RT seasonal average price in 2016 
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5.2.2 Robust Optimization solution 

As already explained in section 4.2.1.1, in this research in line with [157] the confidence 

gap for worth case realization of the market prices considered. In this way, we assumed that 

confidence gap for all market at each instance ∆𝑡
()

 both for day ahead and real time interval is 

equal to 80%. To implement this approach, from selected data the average of minimum 20% 

data have been considered as worth solution. The rest of procedure is the same as deterministic 

approach which explained in previous section.  

5.2.3 Data-Driven Distributionally Robust Optimization solution  

In DRO programming, instead of using fixed uncertainty set, we need to develop as 

ambiguity set. Thus, in this research as explain in section 4.2.1.2, Wasserstein probability 

distance solution has been chosen to construct ambiguity set. In order to implement DRO in 

equations (117) and (118), we need to consider following assumptions:  

➢ The number of selected samples for each season is 30 days.  

➢ The full polytope uncertainty set is Ξ ∶= {𝜋 ∈ ℝ𝑚: 𝐶𝜋 ≤ 𝑑}, in our problem, for each 

market in each interval, we have individual uncertainty set. For sake of simplicity, we 

consider 𝐶 =  1 and 𝑑 equal to maximum of collected data for each market.  

➢ confidence level of CVaR 𝛼, the radius of Wasserstein ball 𝜀 and risk aversion value 

𝜁. Here 𝛼 and 𝜀  are assumed as 0.001 and 𝜁 = 0.9. 

Note: it is very critical point that there is a trade-off between final cost value and the 

robustness of problem against price uncertainties. The conservativeness of the 

optimization is controlled by adjusting confidence level of CVaR 𝛼, the radius of 

Wasserstein ball 𝜀 and risk aversion value 𝜁. 
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6 Simulation and Results  

As mentioned in previous chapter, all market data has been collected from CAISO online 

website [33] from year 2016. From wintertime and summertime 30 random data in each season 

from workdays selected for scheduling. Then after scheduling in DA and RT interval, the 

feasibility of solution proved by data from 2017.  

All simulation has been conducted with CVX integrated in MATLAB. MOSEK [158] has 

been chosen as solver for mixed-integer linear optimization problem. The environment is a 

desktop with Intel Core™ i5-2430 M, 2.4 GHz CPU and 8 GB RAM.  

In the first step of this section the scheduling results based on different scenarios have 

been shown and then in final sub-section the general comparison has been done.  

6.1 Demand Side Management Results 

In this case, we don’t participate in any market, the only purpose is to improve self-

consumption of PV with battery energy storage and the only revenue comes from export the 

surplus energy of PV/Battery to grid with 80% of buying price. In this way, as it is shown in 

Figure 6-1 and Figure 6-2, in summer season DA scheduling battery is used between hour 

18:00-21:00 to meet the load and it charged in early morning and midnight from grid. The rest 

of load covered by PV during day and consumer must buy the remained from grid. In RT revise 

after adding uncertainties, the battery charge more from PV in daytime instead of fully charge 

by grid. However, load curtailment is almost the same.  

 

Figure 6-1 - DA Battery Schedule in Summer DSM 
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Figure 6-2 - RT Battery Schedule in Summer DSM 

In winter season, the behaviour of battery is slightly different compared with summer. The 

main different is that not only battery meet the load in evening time, but also it covers the load 

in midnight and early morning for short period. The second different is that it will charge all 

during daytime both from PV and grid. In general, these differences come from lower load 

demand and lower energy cost in daytime compare with summer season. These power flows are 

illustrated in Figure 6-3 and Figure 6-4. 

 

Figure 6-3 - DA Battery Schedule in Winter DSM 
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Figure 6-4- RT Battery Schedule in Winter DSM 

To sum up, general comparison between summer and winter season in case of PV-battery 

system without participating in any market shown that in wintertime battery system are more 

active and have more contribution, however, in both case in most of hours in day battery doesn’t 

participate at all.  

 

Figure 6-5 – State of Charge in DSM  
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6.2 DSM and Market participation Results 

In this section, not only demand side management but also participating in market 

considered. Three main approach for two season and in DA and RT interval simulated and 

power flows, market volume and SoCs plotted and explained.    

6.2.1 Deterministic optimization 

In this method, both for winter and summer battery doesn’t support load at all and just 

participate in market. In this solution, battery participate in regulation down as much as possible 

and it just participate in energy market solely in one hour. The same as spinning reserve. In this 

way, it saves more energy for regulation market without any extra charge from grid.  

 

Figure 6-6 – DA and RT schedule with deterministic optimization in Winter 

 

Figure 6-7- Market values participation values with deterministic optimization in Winter 
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On the other hand, load profile is covered fully with PV and grid which is too costly and 

in case of rejecting the bids of DA market it is too risky solution and not robust at all. The main 

different between winter and summer schedule is that in summertime it participates more in 

energy market and very few in load. These results have been shown in Figure 6-6 till Figure 

6-10.  

 

Figure 6-8- DA and RT schedule with deterministic optimization in Summer 

 

Figure 6-9- Market values participation values with deterministic optimization in Summer 
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Figure 6-10- State of Charge with Deterministic Optimization in winter and summer both DA (top) 

and RT (bottom) 

6.2.2 Robust optimization 

In robust optimization approach, unlike deterministic approach, the main focus of battery 

is to cover the load profile and increase the self-consumption. In this way robust is more similar 

to basic case of DSM. However, the main different is to participate in regulation down market 

instead of buying energy directly from grid. In this way, battery can serve more load not only in 

evening time but also in hours before PV production. Meantime, as in this approach worth case 

scenarios are considered, the market price would be quite low and this the reason that battery 

won’t participate in any market as much as possible. In this approach, summer and winter 

schedule are close and the only different is that in summer due to higher production of PV, 

battery has more flexibility in participating in market. But in general, this robust optimization is 

too conservative against market price and less active in market. These results have been shown 

in Figure 6-11 till Figure 6-15. 
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Figure 6-11- DA and RT schedule with robust optimization in Winter 

 

Figure 6-12- Market values participation values with robust optimization in Winter 
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- 

 

Figure 6-13- DA and RT schedule with robust optimization in Summer 

 

Figure 6-14- Market values participation values with robust optimization in Summer 
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Figure 6-15- State of Charge with Robust Optimization in winter and summer both DA (top) and 

RT (bottom) 

6.2.3 DRO   

As discussed in previous chapters, DRO approach is robust and at mean time immune 

against over-conservative. This conclusion is completely obvious form scheduling results. As 

discussed in deterministic and robust approach, in one of them battery won’t participate in load 

serving at all and the other it participates as much as possible. In this DRO, battery covers the 

load both in morning and evening (in morning less than robust). In addition, it also covers the 

load in midnight as well. In market side, the same as other approaches, it participates mostly in 

regulation down. However, by considering the uncertainties of energy market it partly 

participates in energy market additionally in different time interval. This behaviour makes 

approach more comprehensive compare to other approaches. In this way, we can use the battery 

in most hours of day. Take into account, that in our research we didn’t set any constraints for 

battery life cycle, thus it would transfer as much energy as it is able. These results have been 

illustrated in Figure 6-16 till Figure 6-20. 
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Figure 6-16- DA and RT schedule with DRO optimization in Winter 

 

Figure 6-17- Market values participation values with DRO optimization in Winter 



Simulation and Results 

  95 

 

Figure 6-18- DA and RT schedule with DRO optimization in Summer 

 

Figure 6-19- Market values participation values with DRO optimization in Summer 
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Figure 6-20- State of Charge with DRO Optimization in winter and summer both DA (top) and RT 

(bottom) 

6.3 General Comparative Results 

The main aim of this research is to minimize the cost of whole system of hybrid PV-

Battery by participating in electricity markets. In this section, the economical perspective of 

problem has been studied in dept. In order to have more comprehensive results, we used real 

market data other than training data (year 2016) as test data (year 2017) to check the feasibility 

and profitability of our solution. In this regard, for each season two month selected. For winter 

January and February, and in summer June and July selected. In the first step, the total revenue 

including all costs for demand and battery charging and all incomes form market calculated. 

The results are summarized in Table 6.  

 
 

No market Deterministic RO DRO 

Winter -$45.85 -$26.41 -$30.41 -$17.35 

Summer -$77.13 -$29.41 -$41.52 -$22.72 

Table 6 - Total Revenue in two months in winter and summer with different optimization approach 
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The first important conclusion is that beside the optimization approach, participating in 

market along with DSM has better result. Then, it shows that DRO work better than other 

approaches in both seasons. DRO could reduce around 62% and 70% of costs in winter and 

summer respectively. On the other hand, analysing total daily revenue of winter (Figure 6-21) 

shows almost the same trend for all approaches, however, RO and deterministic are too close 

except few days which made final differences. Also, all cases have better result in all days as 

expected before. 

 

Figure 6-21- Total daily revenue of January and February 2017 

 

Figure 6-22- Total daily revenue of June and July 2017 
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In summer season (Figure 6-22), the results have more fluctuation due higher value of 

market prices and higher market uncertainties. In this figure, unlike winter results, in few days 

the deterministic outcome is better that DRO and it is due to robustness factor of DRO method. 

Also, it shows that robust method in few days is even worth than basic scenario which is the 

result of over-conservative of this method. For Further understanding of root cause of these 

differences between different approaches, segmented cost revenue of each season is also 

studied.  

 

Figure 6-23- Segmented total revenue based on different market profit and importing energy costs 

for winter 

 

Figure 6-24- Segmented total revenue based on different market profit and importing energy costs 

for summer  
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The segmented analysis of markets revenue shows that energy market has a highest 

income and after that as expected regulation market is the best option. It is important to remind 

that ancillary services are called for limited times per day, however, in similar case regulation 

service market could be more profitable than solely energy market. The second point regarding 

Figure 6-23 is that only in deterministic method battery will participate in spinning reserve and 

in other approaches they won’t. This result comes from low price and high uncertainty of 

spinning reserve market in comparison with other markets. The final conclusion from these 

figures is that in deterministic method in spite of higher income, the final outcome is worth due 

to high demand cost which is solved in DRO by better scheduling and managing of the battery.  

Note that in these figures the operational cost due to battery charging and discharging 

didn’t include. This operational cost has critical role in final profitability of market and limits 

the overall overuse of battery and prevent aging of the battery.  
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7 Conclusion 

Traditionally, in order to improve the intermittency of renewable energy sources and 

improve the reliability and profitability of these sources different storage system have been 

used. Battery energy storage systems (BESS) are a good candidate for join PV panels due to 

their fast response and improvement of technology. However, the high capital cost of BESS is 

still one of the biggest challenges. In the recent years, by improvement of smart grids and 

revision in market’s regulations new opportunities have been introduced for BESS for further 

profits. On the other hand, in conventional managing of batteries in demand side, these assets 

just used for few hours in days and in rest of day remained intact which means the full capacity 

of batteries didn’t use. In this regard, recent regulations suggest additional revenue specifically 

for behind the meter’s batteries (BTM) to not only support PV and load curtailment but also 

participate in wholesale energy markets. The main aim of this research was to investigate the 

profitability of BTM battery assets joint with roof top PV panels, participating both in demand 

side management and possible electricity markets. 

The first step toward enhancing battery assets revenue was a comprehensive literature on 

potential solutions for batteries in order to provide services and make additional profit. In this 

regard, battery assets based on installation locations divided to three main group. First, those 

assets which are connected directly to transmission network. The second group are installed in 

distribution network (usually with distributed generators) and the last one those are installed 

behind meters. The first two groups can provide different services for ISO/RTOs and utilities. 

Mostly the main concern in these services are reliability and security of grid. On the other hand, 

the main goal of behind meters’ batteries are supporting households and decrease the demand 

cost and energy import from grid. The interesting point about last group is that based on new 

regulations, specifically in California region, these assets are allowed to participate in same 

services as first two groups, which means that BTM batteries not only have the conventional 

usage but also they have great opportunities to increase the overall profit of the system.  

In this second step, the general concepts and regulations of electricity market had been 

reviewed. The main focus of this research was in California electricity market which is under 

supervision of CAISO. Meanwhile, for better understanding of different markets potential other 

regions in U.S. as well as Italy reviewed. In CAISO market, battery assets are allowed to 

participate in wholesale energy markets including ancillary services and energy retail markets. 

These markets are designed and ran in different time interval including Day-ahead market, 

Real-time (hour- ahead) and real time dispatch (energy imbalance market). In this research, we 
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only focus on DA and RT markets. The ancillary services in CAISO is including spinning 

reserve, regulation Up and regulation down services which are capacity markets in DA and 

participants will be paid for power commitment. At mean time, in RT these markets run again 

but they are real time energy dispatch. The interesting point regarding ancillary services is that 

in case of calling in DA committed capacity in RT they will be paid also for energy delivery 

which is extra revenue for assets.   

In order to compare European market and specifically Italian one with CAISO, with 

respect to BTM batteries, the lack of capacity market is obvious. In Italian market the capacity 

market as explained in literature review is still limited to pilot projects, however, in CAISO not 

only it used the benefits of capacity market for couple years but in addition they introduced the 

supplementary regulations such as pay as performance to have more supportive market for 

battery assets. The second different between Italian markets and California market is that 

although in Italy the quantity and quality of household meters is almost the same (or even 

better) than California, however, lack of proper progress and consideration in term of regulation 

for BTM assets prevent them to participate in market. However, in CAISO, there is still some 

doubts and barriers for these assets to participate in markets such as price energy used for 

battery charging or clear requirement and specification for batteries which are under discussion 

by different committee.  

The proposed problem of simultaneous managing of demand side and participating in 

market challenged by different types of uncertainties which are must take into account. In 

general, three types of uncertainties are influence in our problem. The first two groups are 

related to market and the last one is belonged to consumer side. During DA and RT interval 

market, each service provider must participate in bidding process and based on volume and 

proposed price its bids might be awarded fully or partly (in some cases maybe fully reject). This 

uncertainty of awarded ratio is the first type of uncertainties that we are facing in this problem. 

Unfortunately, since the awarded values for each services provider is confidential, there is no 

accurate data available to predict the best behavior of market, however, in our problem as we 

are focusing on BTM batteries and low capacity, we assumed that fixed amount of DA bids and 

all RT bids will be accepted in market which due to the fact that these assets are price takers 

could be close to reality. The second type of uncertainties are the market prices. Traditionally in 

literature different forecasting methods has been proposed to deal with this problem, however, 

due to lack of existing data and recent changes in markets behavior due to massive installation 

of distributed generators, the proposed methods are not useful enough. On the other hand, the 

optimization methods such stochastic programming has been used which are following 
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determined probability distribution. These methods are also challenged by inaccurate PD and 

heavy calculations.  

To deal with this type of uncertainties, a novel data-driven distributionally robust 

optimization solution has been proposed. In this method, instead of using fixed uncertainty set, 

it uses the ambiguity sets which include all possible uncertainties. In addition, in this method 

the solution is robust against highly fluctuations and at mean time we can tune the 

conservativeness of the solution. To implement the DRO optimization method, we used the idea 

of Conditional Value at Risk (CVaR) and in this way, we could handle the uncertainties of all 

markets together. The last challenge and last uncertainty type back to consumer side, which are 

PV production intermittency and load profile fluctuation. In literature, many forecasting 

methods had been introduced for this type of uncertainty, however, in this research we 

introduced the model predictive control over one-hour prediction time horizon. In this solution, 

the prescheduled values along with updated values for PV and load will be revised for remained 

hour of day. At mean time, the RT markets are added to system and in case of availability of 

battery capacity it can participate in this market as well.  

To show the profitability and feasibility of proposed solution, this method has been 

compared with different scenarios. The first scenario is the PV joint battery system only 

managing demand side. In this case battery is just used for improving self-consumption and 

decreasing demand cost and it doesn’t have any direct income. In the second scenarios beside 

DRO solution, conventional deterministic and robust optimization also used to compare 

different optimization approach solutions.  

The general optimization has been trained based on real market data in year 2016 from 

California region and the outcome has been tested based on 2017. In each method, the 

optimization performed based on winter and summer season to have more accurate results. The 

results show that participating in market could decrease the overall cost around at least 34% in 

winter and 47% in summer season. In addition, our DRO solution could improve this reduction 

to 62% in winter and 70% in summer season. The second outcome is that by participating in 

markets, we can explore from battery in more hours/day instead of just evening hours for load 

covering. In addition, the detailed study on different approach scheduling shows the 

improvement of battery usage in term of dealing with market uncertainties and participating in 

demand side.  

The future work for this research would be analyzing this methodology for different scale 

and market structure by considering power grid constraints and battery lifetime cycles. In 
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addition, the DRO method is challenged by different parameters which must be tuned based on 

collected data set. Next possible study could be proposed revised DRO solution to have 

adoptive parameters based on available date set.  
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Appendix A – Market Data 2016 

Full seasonal market data in day-ahead and real-time interval:  
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Appendix B – Demand side management Matlab 

Codes 

 

 

[Cap_PV_win,Cap_PV_sum,Cap_L_sum,Cap_L_w

in] = LoadPVprofile(); 

display('demand and solar Profile 

added') 

% %% Battery and other variable defining 

Eta_Ch = 0.85 ;                       % 

Charging Efficiency of the Battery 

Eta_D = 0.95 ;                           

% Discharging Efficiency of the Battery 

BAT_CAP = 30; % Nominal Energy Capacity 

Battery kWh 

 

SOC_Max = BAT_CAP*0.9 ; 

SOC_Min = BAT_CAP*0.2 ; 

SOC_0 = 16; 

Cap_Max = 5 ;                   % The 

Maximum allowble power flow KW - 

inverter limits 

c_op = 0.005  ;                   

%($/kWh) Operation Cost Coefficient 

 [~, ~, raw] = xlsread('E:\Polimi 

courses\Thesis\UC Riverside\Final 

Codes\DATA.xlsx','TOU','A2:G25'); 

data = reshape([raw{:}],size(raw)); 

SDGE_win = data(:,2); 

SDGE_sum = data(:,3); 

Edison_win = data(:,4); 

Edison_sum = data(:,5); 

PGE_win = data(:,6); 

PGE_sum = data(:,7); 

clearvars data raw; 

Pr_buy = SDGE_sum;%PGE_win; 

    clear Cap_G2Bat_sum 

    clear Cap_G2L_sum 

    clear Cap_Bat2G_sum 

    clear Cap_PV2L_sum 

    clear Cap_PV2Bat_sum 

    clear Cap_Bat2L_sum 

    clear Cap_PV2G_sum 

    clear M_SUM 

    clear cost_demand_sum 

    clear income_sum 

    clear cost_op_sum 

    clear cost_sum 

    clear Soc_sum 

    clear SOC_sum 

    clear OBJ_sum 

    clear Cap_charge_sum 

    clear Cap_discharge_sum 

cvx_begin 

    variable Cap_G2Bat_sum(25) 

nonnegative 

    variable Cap_G2L_sum(25) nonnegative 

    variable Cap_Bat2G_sum(25) 

nonnegative 

    variable Cap_PV2L_sum(25) 

nonnegative 

    variable Cap_PV2Bat_sum(25) 

nonnegative 

    variable Cap_Bat2L_sum(25) 

nonnegative 

    variable Cap_PV2G_sum(25) 

nonnegative 

    variable M_sum(24) binary 

 for k = 1:25 

    if k < 25 

   cost_demand_sum(k,1) = 

Mean_LMP_da_SUM_low(k) .* 

(Cap_G2Bat_sum(k)+ Cap_G2L_sum(k)); 

   income_sum(k,1)      =  0.85* 

Mean_LMP_da_SUM_low(k) .* 

(Cap_PV2G_sum(k)+Cap_Bat2G_sum(k)); 

   cost_op_sum(k,1)     = c_op 

.*(Cap_Bat2L_sum(k)+Cap_Bat2G_sum(k)+Cap

_G2Bat_sum(k)+Cap_PV2Bat_sum(k)); 

   cost_sum(k,1)  = 

cost_demand_sum(k,1)+ cost_op_sum(k,1) - 

income_sum(k,1); 

   Cap_charge_sum(k,1)  = 

Cap_G2Bat_sum(k) + Cap_PV2Bat_sum(k); 

   Cap_discharge_sum(k,1) = 

Cap_Bat2L_sum(k) + Cap_Bat2G_sum(k); 

 

if k==1 

Soc_sum(k,1) = SOC_0 + Cap_PV2G_sum(1); 

else 

   Soc_sum(k,1) = (Eta_Ch 

.*(Cap_PV2Bat_sum(k) + 

Cap_G2Bat_sum(k)))-

((Cap_Bat2L_sum(k)+Cap_Bat2G_sum(k))./Et

a_D); 

end 

SOC_sum(k,1) = sum(Soc_sum); 

else 

     Soc_sum(k,1) = (Eta_Ch 

.*(Cap_PV2Bat_sum(k-1) + 

Cap_G2Bat_sum(k-1)))-((Cap_Bat2L_sum(k-

1)+Cap_Bat2G_sum(k-1))./Eta_D); 

     SOC_sum(k,1) = sum(Soc_sum); 

    end 

 end 

OBJ_sum = sum(cost_sum); 

minimize(OBJ_sum) 

 

   subject to 

   SOC_sum(1) == SOC_0;% for initial 

state 

   SOC_sum(25)  >= SOC_sum(1) ; 

 

  for k = 1:24 

    Cap_PV2L_sum(k)+ Cap_Bat2L_sum(k) + 

Cap_G2L_sum(k) ==Cap_L_sum(k); 

    SOC_Min <= SOC_sum(k)  <= SOC_Max ; 

    Cap_PV2G_sum(k) + Cap_PV2Bat_sum(k) 

+ Cap_PV2L_sum(k) <= Cap_PV_sum(k); 

    0<= Cap_charge_sum(k)<= Cap_Max * 

M_sum(k); 
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    0<= Cap_discharge_sum(k)<= Cap_Max * 

(1-M_sum(k)); 

  end 

  cvx_end 

  display('DA optimization for DA Done 

!!!') 

for day = 1:120; %the selected day 

       Pr_buy_sample_sum  =  

LMP_da_sum_test(:,day) ; 

  for k =1:24 

   cost_demand_da_sum(k,day) = 

Pr_buy_sample_sum(k) .* 

(Cap_G2Bat_sum(k)+ Cap_G2L_sum(k)); 

   income_da_sum(k,day)      = 0.85* 

Pr_buy_sample_sum(k) .* 

(Cap_PV2G_sum(k)+Cap_Bat2G_sum(k)); 

   cost_op_da_sum(k,day)     = c_op 

.*(Cap_Bat2L_sum(k)+Cap_Bat2G_sum(k)+Cap

_G2Bat_sum(k)+Cap_PV2Bat_sum(k)); 

   cost_da_sum(k,day)        = -

cost_demand_da_sum(k,day)- 

cost_op_da_sum(k,day) + 

income_da_sum(k,day); 

 

  end 

  Cost_da_sum(day,1) = 

sum(cost_da_sum(:,day)); 

  end 

  Cost_T_da_sum = sum(Cost_da_sum) 

 

for i=1:24 

    for k=1:4 

 

        Cap_L_sum_RT(4*(i-1)+k,1)= 

Cap_L_sum(i)/4; 

        Cap_PV_sum_RT(4*(i-1)+k,1)= 

Cap_PV_sum(i)/4; 

        Pr_buy_RT(4*(i-1)+k,1)=  

Pr_buy(i)/4; 

    end 

end 

[W_PV_sum,W_Load_sum] = 

Uncertainty(Cap_PV_sum_RT,Cap_L_sum_RT); 

 display("PV and Load Disterbance 

added") 

Hour = 1; 

  N=24; 

  X_rt = zeros(96,1); 

  while Hour <= 24 

 

    clear Cap_G2Bat_sum_rt 

    clear Cap_G2L_sum_rt 

    clear Cap_Bat2G_sum_rt 

    clear Cap_PV2L_sum_rt 

    clear Cap_PV2Bat_sum_rt 

    clear Cap_Bat2L_sum_rt 

    clear Cap_PV2G_sum_rt 

    clear M_SUM_rt 

    clear cost_demand_sum_rt 

    clear income_sum_rt 

    clear cost_op_sum_rt 

    clear cost_sum_rt 

    clear Soc_sum_rt 

    clear SOC_sum_rt 

    clear OBJ_sum_rt 

    clear Cap_charge_sum_rt 

    clear Cap_discharge_sum_rt 

 

cvx_begin 

    variable Cap_G2Bat_sum_rt(4*N) 

nonnegative 

    variable Cap_G2L_sum_rt(4*N) 

nonnegative 

    variable Cap_Bat2G_sum_rt(4*N) 

nonnegative 

    variable Cap_PV2L_sum_rt(4*N) 

nonnegative 

    variable Cap_PV2Bat_sum_rt(4*N) 

nonnegative 

    variable Cap_Bat2L_sum_rt(4*N) 

nonnegative 

    variable Cap_PV2G_sum_rt(4*N) 

nonnegative 

    variable M_sum_rt(4*N) binary 

 for k = 1:4*N+1 

         if k <= 4*N 

             if k<=1 

                 X_rt(4*(Hour-1)+k,1) = 

1; 

             end 

   cost_demand_sum_rt(k,1) = 

Mean_LMP_DA_SUM_low(4*(Hour-1)+k) .* 

(Cap_G2Bat_sum_rt(k)+ 

Cap_G2L_sum_rt(k)); 

   income_sum_rt(k,1) =  0.85* 

Mean_LMP_DA_SUM_low(4*(Hour-1)+k) .* 

(Cap_PV2G_sum_rt(k)+Cap_Bat2G_sum_rt(k))

; 

   cost_op_sum_rt(k,1) =   c_op 

.*(Cap_Bat2L_sum_rt(k)+Cap_Bat2G_sum_rt(

k)); 

   cost_sum_rt(k,1) = 

cost_demand_sum_rt(k,1)+ 

cost_op_sum_rt(k,1) - 

income_sum_rt(k,1); 

   Cap_charge_sum_rt(k,1) = 

Cap_G2Bat_sum_rt(k) + 

Cap_PV2Bat_sum_rt(k); 

   Cap_discharge_sum_rt(k,1) = 

Cap_Bat2L_sum_rt(k) + 

Cap_Bat2G_sum_rt(k); 

   Soc_sum_rt(k,1) = (Eta_Ch 

.*(Cap_PV2Bat_sum_rt(k) + 

Cap_G2Bat_sum_rt(k)))./4-

((Cap_Bat2L_sum_rt(k)+Cap_Bat2G_sum_rt(k

))./Eta_D)./4; 

 

   if Hour ==1 

        if k==1 

        SOC_sum_rt(k,1) = SOC_0 + 

Cap_PV2G_sum_rt(1); 

        else 

        SOC_sum_rt(k,1) = SOC_0 + 

sum(Soc_sum_rt(1:k-1)); 

        end 

   else 

        if k==1 

         SOC_sum_rt(k,1) = 

SOC_sum_rtS(4*(Hour-1),1)+ 

Soc_sum_rtS(4*(Hour-1),1)+ 

Cap_PV2G_sum_rt(1)*0; 

        else 

         SOC_sum_rt(k,1) = 

SOC_sum_rtS(4*(Hour-1),1)+ 

Soc_sum_rtS(4*(Hour-1),1)+ 

sum(Soc_sum_rt(1:k-1)); 

        end 

   end 
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         else 

            if Hour ==1 

               SOC_sum_rt(k,1) = SOC_0 + 

Cap_PV2G_sum_rt(1); 

            else 

               SOC_sum_rt(k,1) = 

SOC_sum_rtS(4*(Hour-1),1)+ 

Soc_sum_rtS(4*(Hour-1),1)+ 

sum(Soc_sum_rt(1:k-1)); 

            end 

         end 

 end 

 

 OBJ_sum_rt = sum(cost_sum_rt); 

 minimize(OBJ_sum_rt) 

 

   subject to 

   if Hour==1 

   SOC_sum_rt(1) == SOC_0;% for initial 

state 

   end 

   SOC_sum_rt(4*N+1)  >= SOC_0 ; 

 

  for k = 1:4*N 

    Cap_PV2L_sum_rt(k)+ 

Cap_Bat2L_sum_rt(k) + Cap_G2L_sum_rt(k) 

== Cap_L_sum_RT(4*(Hour-

1)+k)+X_rt(4*(Hour-

1)+k)*W_Load_sum(4*(Hour-1)+k); 

    SOC_Min <= SOC_sum_rt(k)  <= SOC_Max 

; 

    Cap_PV2G_sum_rt(k) + 

Cap_PV2Bat_sum_rt(k) + 

Cap_PV2L_sum_rt(k) == 

Cap_PV_sum_RT(4*(Hour-

1)+k)+X_rt(4*(Hour-

1)+k)*W_PV_sum(4*(Hour-1)+k); 

    0<= Cap_charge_sum_rt(k)<= Cap_Max * 

M_sum_rt(k)/4; 

    0<= Cap_discharge_sum_rt(k)<= 

Cap_Max * (1-M_sum_rt(k))/4; 

  end 

    cvx_end 

 

  for k=1:4 

      Soc_sum_rtS(4*(Hour-1)+k,1) = 

Soc_sum_rt(k); 

      SOC_sum_rtS(4*(Hour-1)+k,1) = 

SOC_sum_rt(k); 

      SOCC_sum_rtS(4*(Hour-1)+k,1) = 

SOC_sum_rtS(4*(Hour-1)+k,1)/BAT_CAP; 

      Cap_G2Bat_sum_rtS(4*(Hour-1)+k,1) 

= Cap_G2Bat_sum_rt(k); 

      Cap_G2L_sum_rtS(4*(Hour-1)+k,1) =  

Cap_G2L_sum_rt(k); 

      Cap_Bat2G_sum_rtS(4*(Hour-1)+k,1) 

=  Cap_Bat2G_sum_rt(k); 

      Cap_PV2L_sum_rtS(4*(Hour-1)+k,1) =  

Cap_PV2L_sum_rt(k); 

      Cap_PV2Bat_sum_rtS(4*(Hour-1)+k,1) 

=  Cap_PV2Bat_sum_rt(k); 

      Cap_Bat2L_sum_rtS(4*(Hour-1)+k,1) 

= Cap_Bat2L_sum_rt(k); 

      Cap_PV2G_sum_rtS(4*(Hour-1)+k,1) = 

Cap_PV2G_sum_rt(k); 

      M_sum_rtS(4*(Hour-1)+k,1) = 

M_sum_rt(k); 

 

  end 

  N = N-1; 

  Hour = Hour+1; 

  end 

  SOCC_DSM_sum_rt = SOC_sum_rtS/BAT_CAP; 

    display('RT Optimization for DSM 

done!!!') 

for day = 1:120; %the selected day 

       Pr_buy_sample_sum  =  

LMP_rt_sum_test(:,day) ; 

  for k =1:96 

   cost_demand_rt_sum(k,day) = 

Pr_buy_sample_sum(k) .* 

(Cap_G2Bat_sum_rtS(k)+ 

Cap_G2L_sum_rtS(k)); 

   income_rt_sum(k,day)      = 0.85* 

Pr_buy_sample_sum(k) .* 

(Cap_PV2G_sum_rtS(k)+Cap_Bat2G_sum_rtS(k

)); 

   cost_op_rt_sum(k,day)     = c_op*1.3 

.*(Cap_Bat2L_sum_rtS(k)+Cap_Bat2G_sum_rt

S(k)+Cap_G2Bat_sum_rtS(k)+Cap_PV2Bat_sum

_rtS(k)); 

   cost_rt_sum(k,day)        = -

cost_demand_rt_sum(k,day)- 

cost_op_rt_sum(k,day) + 

income_rt_sum(k,day); 

 

  end 

  Cost_rt_sum(day,1) = 

sum(cost_rt_sum(:,day)); 

  end 

  Cost_T_rt_sum = sum(Cost_rt_sum) 

 

clear Cap_G2Bat_win 

    clear Cap_G2L_win 

    clear Cap_Bat2G_win 

    clear Cap_PV2L_win 

    clear Cap_PV2Bat_win 

    clear Cap_Bat2L_win 

    clear Cap_PV2G_win 

    clear M_win 

    clear cost_demand_win 

    clear income_win 

    clear cost_op_win 

    clear cost_win 

    clear Soc_win 

    clear SOC_win 

    clear OBJ_win 

    clear Cap_charge_win 

    clear Cap_discharge_win 

cvx_begin 

    variable Cap_G2Bat_win(25) 

nonnegative 

    variable Cap_G2L_win(25) nonnegative 

    variable Cap_Bat2G_win(25) 

nonnegative 

    variable Cap_PV2L_win(25) 

nonnegative 

    variable Cap_PV2Bat_win(25) 

nonnegative 

    variable Cap_Bat2L_win(25) 

nonnegative 

    variable Cap_PV2G_win(25) 

nonnegative 

    variable M_win(24) binary 

 for k = 1:25 

    if k < 25 

   cost_demand_win(k,1) = 

Mean_LMP_da_WIN_low(k) .* 

(Cap_G2Bat_win(k)+ Cap_G2L_win(k)); 

   income_win(k,1)      =  0.85* 

Mean_LMP_da_WIN_low(k) .* 

(Cap_PV2G_win(k)+Cap_Bat2G_win(k)); 

   cost_op_win(k,1)     = c_op 

.*(Cap_Bat2L_win(k)+Cap_Bat2G_win(k)+Cap

_G2Bat_win(k)+Cap_PV2Bat_win(k)); 
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   cost_win(k,1)  = 

cost_demand_win(k,1)+ cost_op_win(k,1) - 

income_win(k,1); 

   Cap_charge_win(k,1)  = 

Cap_G2Bat_win(k) + Cap_PV2Bat_win(k); 

   Cap_discharge_win(k,1) = 

Cap_Bat2L_win(k) + Cap_Bat2G_win(k); 

 

if k==1 

Soc_win(k,1) = SOC_0 + Cap_PV2G_win(1); 

else 

   Soc_win(k,1) = (Eta_Ch 

.*(Cap_PV2Bat_win(k) + 

Cap_G2Bat_win(k)))-

((Cap_Bat2L_win(k)+Cap_Bat2G_win(k))./Et

a_D); 

end 

SOC_win(k,1) = sum(Soc_win); 

else 

     Soc_win(k,1) = (Eta_Ch 

.*(Cap_PV2Bat_win(k-1) + 

Cap_G2Bat_win(k-1)))-((Cap_Bat2L_win(k-

1)+Cap_Bat2G_win(k-1))./Eta_D); 

     SOC_win(k,1) = sum(Soc_win); 

    end 

 end 

OBJ_win = sum(cost_win); 

minimize(OBJ_win) 

 

   subject to 

   SOC_win(1) == SOC_0;% for initial 

state 

   SOC_win(25)  >= SOC_win(1) ; 

 

  for k = 1:24 

    Cap_PV2L_win(k)+ Cap_Bat2L_win(k) + 

Cap_G2L_win(k) ==Cap_L_win(k); 

    SOC_Min <= SOC_win(k)  <= SOC_Max ; 

    Cap_PV2G_win(k) + Cap_PV2Bat_win(k) 

+ Cap_PV2L_win(k) <= Cap_PV_win(k); 

    0<= Cap_charge_win(k)<= Cap_Max * 

M_win(k); 

    0<= Cap_discharge_win(k)<= Cap_Max * 

(1-M_win(k)); 

  end 

  cvx_end 

 

  display('DA optimization for DA Done 

!!!') 

for day = 1:120; %the selected day 

       Pr_buy_sample_win  =  

LMP_da_win_test(:,day) ; 

  for k =1:24 

   cost_demand_da_win(k,day) = 

Pr_buy_sample_win(k) .* 

(Cap_G2Bat_win(k)+ Cap_G2L_win(k)); 

   income_da_win(k,day)      = 0.85* 

Pr_buy_sample_win(k) .* 

(Cap_PV2G_win(k)+Cap_Bat2G_win(k)); 

   cost_op_da_win(k,day)     = c_op 

.*(Cap_Bat2L_win(k)+Cap_Bat2G_win(k)+Cap

_G2Bat_win(k)+Cap_PV2Bat_win(k)); 

   cost_da_win(k,day)        = -

cost_demand_da_win(k,day)- 

cost_op_da_win(k,day) + 

income_da_win(k,day); 

 

  end 

  Cost_da_win(day,1) = 

sum(cost_da_win(:,day)); 

  end 

  Cost_T_da_win = sum(Cost_da_win) 

 

for i=1:24 

    for k=1:4 

 

        Cap_L_win_RT(4*(i-1)+k,1)= 

Cap_L_win(i)/4; 

        Cap_PV_win_RT(4*(i-1)+k,1)= 

Cap_PV_win(i)/4; 

        Pr_buy_RT(4*(i-1)+k,1)=  

Pr_buy(i)/4; 

end 

  end 

  Hour = 1; 

  N=24; 

  X_rt = zeros(96,1); 

  while Hour <= 24 

 

    clear Cap_G2Bat_win_rt 

    clear Cap_G2L_win_rt 

    clear Cap_Bat2G_win_rt 

    clear Cap_PV2L_win_rt 

    clear Cap_PV2Bat_win_rt 

    clear Cap_Bat2L_win_rt 

    clear Cap_PV2G_win_rt 

    clear M_win_rt 

    clear cost_demand_win_rt 

    clear income_win_rt 

    clear cost_op_win_rt 

    clear cost_win_rt 

    clear Soc_win_rt 

    clear SOC_win_rt 

    clear OBJ_win_rt 

    clear Cap_charge_win_rt 

    clear Cap_discharge_win_rt 

 

cvx_begin 

    variable Cap_G2Bat_win_rt(4*N) 

nonnegative 

    variable Cap_G2L_win_rt(4*N) 

nonnegative 

    variable Cap_Bat2G_win_rt(4*N) 

nonnegative 

    variable Cap_PV2L_win_rt(4*N) 

nonnegative 

    variable Cap_PV2Bat_win_rt(4*N) 

nonnegative 

    variable Cap_Bat2L_win_rt(4*N) 

nonnegative 

    variable Cap_PV2G_win_rt(4*N) 

nonnegative 

    variable M_win_rt(4*N) binary 

 for k = 1:4*N+1 

         if k <= 4*N 

             if k<=1 

                 X_rt(4*(Hour-1)+k,1) = 

1; 

             end 

   cost_demand_win_rt(k,1) = 

Mean_LMP_DA_WIN_low(4*(Hour-1)+k) .* 

(Cap_G2Bat_win_rt(k)+ 

Cap_G2L_win_rt(k)); 

   income_win_rt(k,1) =  0.85* 

Mean_LMP_DA_WIN_low(4*(Hour-1)+k) .* 

(Cap_PV2G_win_rt(k)+Cap_Bat2G_win_rt(k))

; 

   cost_op_win_rt(k,1) =   c_op 

.*(Cap_Bat2L_win_rt(k)+Cap_Bat2G_win_rt(

k)); 

   cost_win_rt(k,1) = 

cost_demand_win_rt(k,1)+ 
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cost_op_win_rt(k,1) - 

income_win_rt(k,1); 

   Cap_charge_win_rt(k,1) = 

Cap_G2Bat_win_rt(k) + 

Cap_PV2Bat_win_rt(k); 

   Cap_discharge_win_rt(k,1) = 

Cap_Bat2L_win_rt(k) + 

Cap_Bat2G_win_rt(k); 

   Soc_win_rt(k,1) = (Eta_Ch 

.*(Cap_PV2Bat_win_rt(k) + 

Cap_G2Bat_win_rt(k)))./4-

((Cap_Bat2L_win_rt(k)+Cap_Bat2G_win_rt(k

))./Eta_D)./4; 

 

   if Hour ==1 

        if k==1 

        SOC_win_rt(k,1) = SOC_0 + 

Cap_PV2G_win_rt(1); 

        else 

        SOC_win_rt(k,1) = SOC_0 + 

sum(Soc_win_rt(1:k-1)); 

        end 

   else 

        if k==1 

         SOC_win_rt(k,1) = 

SOC_win_rtS(4*(Hour-1),1)+ 

Soc_win_rtS(4*(Hour-1),1)+ 

Cap_PV2G_win_rt(1)*0; 

        else 

         SOC_win_rt(k,1) = 

SOC_win_rtS(4*(Hour-1),1)+ 

Soc_win_rtS(4*(Hour-1),1)+ 

sum(Soc_win_rt(1:k-1)); 

        end 

   end 

 

         else 

            if Hour ==1 

               SOC_win_rt(k,1) = SOC_0 + 

Cap_PV2G_win_rt(1); 

            else 

               SOC_win_rt(k,1) = 

SOC_win_rtS(4*(Hour-1),1)+ 

Soc_win_rtS(4*(Hour-1),1)+ 

sum(Soc_win_rt(1:k-1)); 

            end 

         end 

 end 

 

 OBJ_win_rt = sum(cost_win_rt); 

 minimize(OBJ_win_rt) 

 

   subject to 

   if Hour==1 

   SOC_win_rt(1) == SOC_0;% for initial 

state 

   end 

   SOC_win_rt(4*N+1)  >= SOC_0 ; 

 

  for k = 1:4*N 

    Cap_PV2L_win_rt(k)+ 

Cap_Bat2L_win_rt(k) + Cap_G2L_win_rt(k) 

== Cap_L_win_RT(4*(Hour-

1)+k)+X_rt(4*(Hour-

1)+k)*W_Load_win(4*(Hour-1)+k); 

    SOC_Min <= SOC_win_rt(k)  <= SOC_Max 

; 

    Cap_PV2G_win_rt(k) + 

Cap_PV2Bat_win_rt(k) + 

Cap_PV2L_win_rt(k) == 

Cap_PV_win_RT(4*(Hour-

1)+k)+X_rt(4*(Hour-

1)+k)*W_PV_win(4*(Hour-1)+k); 

    0<= Cap_charge_win_rt(k)<= Cap_Max * 

M_win_rt(k)/4; 

    0<= Cap_discharge_win_rt(k)<= 

Cap_Max * (1-M_win_rt(k))/4; 

  end 

    cvx_end 

 

  for k=1:4 

      Soc_win_rtS(4*(Hour-1)+k,1) = 

Soc_win_rt(k); 

      SOC_win_rtS(4*(Hour-1)+k,1) = 

SOC_win_rt(k); 

      SOCC_win_rtS(4*(Hour-1)+k,1) = 

SOC_win_rtS(4*(Hour-1)+k,1)/BAT_CAP; 

      Cap_G2Bat_win_rtS(4*(Hour-1)+k,1) 

= Cap_G2Bat_win_rt(k); 

      Cap_G2L_win_rtS(4*(Hour-1)+k,1) =  

Cap_G2L_win_rt(k); 

      Cap_Bat2G_win_rtS(4*(Hour-1)+k,1) 

=  Cap_Bat2G_win_rt(k); 

      Cap_PV2L_win_rtS(4*(Hour-1)+k,1) =  

Cap_PV2L_win_rt(k); 

      Cap_PV2Bat_win_rtS(4*(Hour-1)+k,1) 

=  Cap_PV2Bat_win_rt(k); 

      Cap_Bat2L_win_rtS(4*(Hour-1)+k,1) 

= Cap_Bat2L_win_rt(k); 

      Cap_PV2G_win_rtS(4*(Hour-1)+k,1) = 

Cap_PV2G_win_rt(k); 

      M_win_rtS(4*(Hour-1)+k,1) = 

M_win_rt(k); 

 

  end 

  N = N-1; 

  Hour = Hour+1; 

  end 

  SOCC_DSM_win_rt = SOC_win_rtS/BAT_CAP; 

    display('RT Optimization for DSM 

done!!!') 

 for day = 1:120; %the selected day 

       Pr_buy_sample_win  =  

LMP_rt_win_test(:,day) ; 

  for k =1:96 

   cost_demand_rt_win(k,day) = 

Pr_buy_sample_win(k) .* 

(Cap_G2Bat_win_rtS(k)+ 

Cap_G2L_win_rtS(k)); 

   income_rt_win(k,day)      = 0.85* 

Pr_buy_sample_win(k) .* 

(Cap_PV2G_win_rtS(k)+Cap_Bat2G_win_rtS(k

)); 

   cost_op_rt_win(k,day)     = c_op*1.8 

.*(Cap_Bat2L_win_rtS(k)+Cap_Bat2G_win_rt

S(k)+Cap_G2Bat_win_rtS(k)+Cap_PV2Bat_win

_rtS(k)); 

   cost_rt_win(k,day)        = -

cost_demand_rt_win(k,day)- 

cost_op_rt_win(k,day) + 

income_rt_win(k,day); 

 

  end 

  Cost_rt_win(day,1) = 

sum(cost_rt_win(:,day)); 

  end 

  Cost_T_rt_win = sum(Cost_rt_win) 
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Appendix C – Market scheduling optimization 

Matlab Codes 

clear all 

clc 

%% ADDING DA Market DATA over year 

year = '2016DA'; 

[Spin_da_win,RegU_da_win,RegD_da_win,LMP

_da_win,Spin_da_sum,RegU_da_sum,RegD_da_

sum,LMP_da_sum]= MarketDA(year); 

clear year 

display('Train market data added') 

%% Demand side Consumption and Solar 

production DATA 

[Cap_PV_win,Cap_PV_sum,Cap_L_sum,Cap_L_w

in] = LoadPVprofile(); 

display('demand and solar Profile 

added') 

%% TOU adding 

[~, ~, raw] = xlsread('E:\Polimi 

courses\Thesis\UC Riverside\Final 

Codes\DATA.xlsx','TOU','A2:G25'); 

data = reshape([raw{:}],size(raw)); 

SDGE_win = data(:,2); 

SDGE_sum = data(:,3); 

Edison_win = data(:,4); 

Edison_sum = data(:,5); 

PGE_win = data(:,6); 

PGE_sum = data(:,7); 

clearvars data raw; 

  

Pr_buy_WIN  =  Edison_win; 

Pr_buy_SUM  =  Edison_sum; 

display ('Time of use prices added') 

 %% Calculation of revenue based on 

different Opt method -Test Data 

year = '2017DA'; 

[Spin_da_win_test,RegU_da_win_test,RegD_

da_win_test,LMP_da_win_test,Spin_da_sum_

test,RegU_da_sum_test,RegD_da_sum_test,L

MP_da_sum_test]= MarketDA(year); 

clear year 

display('Test market data added') 

%% Test data Mean values  

 for i = 1:24 

       Mean_LMP_da_test_win(i,1)  = 

mean(LMP_da_win_test(i,:)); %Jan - May 

       Mean_RegD_da_test_win(i,1) = 

mean(RegD_da_win_test(i,:)); 

       Mean_RegU_da_test_win(i,1) = 

mean(RegU_da_win_test(i,:)); 

       Mean_Spin_da_test_win(i,1) = 

mean(Spin_da_win_test(i,:)); 

  

       Mean_LMP_da_test_sum(i,1)  = 

mean(LMP_da_sum_test(i,:)) ;  %Jun-Sep 

       Mean_RegD_da_test_sum(i,1) = 

mean(RegD_da_sum_test(i,:)); 

       Mean_RegU_da_test_sum(i,1) = 

mean(RegU_da_sum_test(i,:)); 

       Mean_Spin_da_test_sum(i,1) = 

mean(Spin_da_sum_test(i,:)); 

 end 

 %% Battery and other variable defining  

Eta_Ch = 0.85 ;              % Charging 

Efficiency of the Battery 

Eta_D = 0.95  ;              % 

Discharging Efficiency of the Battery 

BAT_CAP = 30  ;              % Nominal 

Energy Capacity Battery kWh 

SOC_Max = BAT_CAP*0.9 ;  

SOC_Min = BAT_CAP*0.2 ;  

SOC_0 = 16    ; 

Cap_Max = 5   ;              % The 

Maximum allowble power flow KW - 

inverter limits 

c_op = 0.005  ;              %($/kWh) 

Operation Cost Coefficient 

%% Full data DA Mean values 

for i= 1:24 

LMP_da_sum_full(i,1)  =  

mean(LMP_da_sum(i,:)) ; 

RegD_da_sum_full(i,1) =  

mean(RegD_da_sum(i,:)); 

RegU_da_sum_full(i,1) =  

mean(RegU_da_sum(i,:)); 

Spin_da_sum_full(i,1) =  

mean(Spin_da_sum(i,:)); 

  

LMP_da_win_full(i,1)  =  

mean(LMP_da_win(i,:)) ; 

RegD_da_win_full(i,1) =  

mean(RegD_da_win(i,:)); 

RegU_da_win_full(i,1) =  

mean(RegU_da_win(i,:)); 

Spin_da_win_full(i,1) =  

mean(Spin_da_win(i,:)); 

  

end 

%% Selection of Summer and Winter data 

for DRO (Excluding data from data pool) 

BIG DATA 

   for i=1:24 

      for k = 1:15  

       LMP_da_SUM_low(i,4*(k-1)+1)= 

LMP_da_sum(i,2+(k-1)*7); 

       LMP_da_SUM_low(i,4*(k-1)+2)= 

LMP_da_sum(i,3+(k-1)*7); 

       LMP_da_SUM_low(i,4*(k-1)+3)= 

LMP_da_sum(i,4+(k-1)*7); 

       LMP_da_SUM_low(i,4*(k-1)+4)= 

LMP_da_sum(i,5+(k-1)*7); 

       Spin_da_SUM_low(i,4*(k-1)+1)= 

Spin_da_sum(i,2+(k-1)*7); 

       Spin_da_SUM_low(i,4*(k-1)+2)= 

Spin_da_sum(i,3+(k-1)*7); 

       Spin_da_SUM_low(i,4*(k-1)+3)= 

Spin_da_sum(i,4+(k-1)*7); 

       Spin_da_SUM_low(i,4*(k-1)+4)= 

Spin_da_sum(i,5+(k-1)*7); 

       RegU_da_SUM_low(i,4*(k-1)+1)= 

RegU_da_sum(i,2+(k-1)*7); 

       RegU_da_SUM_low(i,4*(k-1)+2)= 

RegU_da_sum(i,3+(k-1)*7); 

       RegU_da_SUM_low(i,4*(k-1)+3)= 

RegU_da_sum(i,4+(k-1)*7); 

       RegU_da_SUM_low(i,4*(k-1)+4)= 

RegU_da_sum(i,5+(k-1)*7); 

       RegD_da_SUM_low(i,4*(k-1)+1)= 

RegD_da_sum(i,2+(k-1)*7); 

       RegD_da_SUM_low(i,4*(k-1)+2)= 

RegD_da_sum(i,3+(k-1)*7); 

       RegD_da_SUM_low(i,4*(k-1)+3)= 

RegD_da_sum(i,4+(k-1)*7); 
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       RegD_da_SUM_low(i,4*(k-1)+4)= 

RegD_da_sum(i,5+(k-1)*7); 

   

       LMP_da_WIN_low(i,4*(k-1)+1)= 

LMP_da_win(i,2+(k-1)*7); 

       LMP_da_WIN_low(i,4*(k-1)+2)= 

LMP_da_win(i,3+(k-1)*7); 

       LMP_da_WIN_low(i,4*(k-1)+3)= 

LMP_da_win(i,4+(k-1)*7); 

       LMP_da_WIN_low(i,4*(k-1)+4)= 

LMP_da_win(i,5+(k-1)*7); 

       Spin_da_WIN_low(i,4*(k-1)+1)= 

Spin_da_win(i,2+(k-1)*7); 

       Spin_da_WIN_low(i,4*(k-1)+2)= 

Spin_da_win(i,3+(k-1)*7); 

       Spin_da_WIN_low(i,4*(k-1)+3)= 

Spin_da_win(i,4+(k-1)*7); 

       Spin_da_WIN_low(i,4*(k-1)+4)= 

Spin_da_win(i,5+(k-1)*7); 

       RegU_da_WIN_low(i,4*(k-1)+1)= 

RegU_da_win(i,2+(k-1)*7); 

       RegU_da_WIN_low(i,4*(k-1)+2)= 

RegU_da_win(i,3+(k-1)*7); 

       RegU_da_WIN_low(i,4*(k-1)+3)= 

RegU_da_win(i,4+(k-1)*7); 

       RegU_da_WIN_low(i,4*(k-1)+4)= 

RegU_da_win(i,5+(k-1)*7); 

       RegD_da_WIN_low(i,4*(k-1)+1)= 

RegD_da_win(i,2+(k-1)*7); 

       RegD_da_WIN_low(i,4*(k-1)+2)= 

RegD_da_win(i,3+(k-1)*7); 

       RegD_da_WIN_low(i,4*(k-1)+3)= 

RegD_da_win(i,4+(k-1)*7); 

       RegD_da_WIN_low(i,4*(k-1)+4)= 

RegD_da_win(i,5+(k-1)*7); 

   

    end 

   

   Mean_LMP_da_SUM_low(i,1) = 

mean(LMP_da_SUM_low(i,:)); 

   Mean_RegU_da_SUM_low(i,1)=  

mean(RegU_da_SUM_low(i,:)); 

   Mean_RegD_da_SUM_low(i,1)=  

mean(RegD_da_SUM_low(i,:)); 

   Mean_Spin_da_SUM_low(i,1)=  

mean(Spin_da_SUM_low(i,:)); 

    

   Mean_LMP_da_WIN_low(i,1) =  

mean(LMP_da_WIN_low(i,:)); 

   Mean_RegU_da_WIN_low(i,1)=  

mean(RegU_da_WIN_low(i,:)); 

   Mean_RegD_da_WIN_low(i,1)=  

mean(RegD_da_WIN_low(i,:)); 

   Mean_Spin_da_WIN_low(i,1)=  

mean(Spin_da_WIN_low(i,:)); 

   end 

   N_SUM_low  = size(LMP_da_SUM_low,2);  

   N_WIN_low  = size(LMP_da_WIN_low,2); 

    

   Max_LMP_da_SUM_low = 

max(LMP_da_SUM_low,[],2); 

   Max_RegU_da_SUM_low = 

max(RegU_da_SUM_low,[],2); 

   Max_RegD_da_SUM_low = 

max(RegD_da_SUM_low,[],2); 

   Max_Spin_da_SUM_low = 

max(Spin_da_SUM_low,[],2); 

    

   Max_LMP_da_WIN_low = 

max(LMP_da_WIN_low,[],2); 

   Max_RegU_da_WIN_low = 

max(RegU_da_WIN_low,[],2); 

   Max_RegD_da_WIN_low = 

max(RegD_da_WIN_low,[],2); 

   Max_Spin_da_WIN_low = 

max(Spin_da_WIN_low,[],2); 

   display ('data for DRO prepered') 

   for i=1:24 

      for k = 1:15  

       LMP_da_SUM_low(i,2*(k-1)+1)= 

LMP_da_sum(i,2+(k-1)*7); 

       LMP_da_SUM_low(i,2*(k-1)+2)= 

LMP_da_sum(i,3+(k-1)*7); 

       Spin_da_SUM_low(i,2*(k-1)+1)= 

Spin_da_sum(i,2+(k-1)*7); 

       Spin_da_SUM_low(i,2*(k-1)+2)= 

Spin_da_sum(i,3+(k-1)*7); 

       RegU_da_SUM_low(i,2*(k-1)+1)= 

RegU_da_sum(i,2+(k-1)*7); 

       RegU_da_SUM_low(i,2*(k-1)+2)= 

RegU_da_sum(i,3+(k-1)*7); 

       RegD_da_SUM_low(i,2*(k-1)+1)= 

RegD_da_sum(i,2+(k-1)*7); 

       RegD_da_SUM_low(i,2*(k-1)+2)= 

RegD_da_sum(i,3+(k-1)*7); 

   

       LMP_da_WIN_low(i,2*(k-1)+1)= 

LMP_da_win(i,5+(k-1)*7); 

       LMP_da_WIN_low(i,2*(k-1)+2)= 

LMP_da_win(i,6+(k-1)*7); 

       Spin_da_WIN_low(i,2*(k-1)+1)= 

Spin_da_win(i,5+(k-1)*7); 

       Spin_da_WIN_low(i,2*(k-1)+2)= 

Spin_da_win(i,6+(k-1)*7); 

       RegU_da_WIN_low(i,2*(k-1)+1)= 

RegU_da_win(i,5+(k-1)*7); 

       RegU_da_WIN_low(i,2*(k-1)+2)= 

RegU_da_win(i,6+(k-1)*7); 

       RegD_da_WIN_low(i,2*(k-1)+1)= 

RegD_da_win(i,5+(k-1)*7); 

       RegD_da_WIN_low(i,2*(k-1)+2)= 

RegD_da_win(i,6+(k-1)*7); 

    end 

   

   Mean_LMP_da_SUM_low(i,1) = 

mean(LMP_da_SUM_low(i,:)); 

   Mean_RegU_da_SUM_low(i,1)=  

mean(RegU_da_SUM_low(i,:)); 

   Mean_RegD_da_SUM_low(i,1)=  

mean(RegD_da_SUM_low(i,:)); 

   Mean_Spin_da_SUM_low(i,1)=  

mean(Spin_da_SUM_low(i,:)); 

    

   Mean_LMP_da_WIN_low(i,1) =  

mean(LMP_da_WIN_low(i,:)); 

   Mean_RegU_da_WIN_low(i,1)=  

mean(RegU_da_WIN_low(i,:)); 

   Mean_RegD_da_WIN_low(i,1)=  

mean(RegD_da_WIN_low(i,:)); 

   Mean_Spin_da_WIN_low(i,1)=  

mean(Spin_da_WIN_low(i,:)); 

   end 

   N_SUM_low  = size(LMP_da_SUM_low,2);  

   N_WIN_low  = size(LMP_da_WIN_low,2); 

    

   Max_LMP_da_SUM_low = 

max(LMP_da_SUM_low,[],2); 

   Max_RegU_da_SUM_low = 

max(RegU_da_SUM_low,[],2); 

   Max_RegD_da_SUM_low = 

max(RegD_da_SUM_low,[],2); 

   Max_Spin_da_SUM_low = 

max(Spin_da_SUM_low,[],2); 

    

   Max_LMP_da_WIN_low = 

max(LMP_da_WIN_low,[],2); 

   Max_RegU_da_WIN_low = 

max(RegU_da_WIN_low,[],2); 
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   Max_RegD_da_WIN_low = 

max(RegD_da_WIN_low,[],2); 

   Max_Spin_da_WIN_low = 

max(Spin_da_WIN_low,[],2); 

   display ('data for DRO prepered') 

    

   %% Preparing data for Robust Creat 

Minimum  

     

  [Min_LMP_da_SUM_low]  = 

MinimumDA(LMP_da_SUM_low,0.25); 

  [Min_RegU_da_SUM_low] = 

MinimumDA(RegU_da_SUM_low,0.25); 

  [Min_RegD_da_SUM_low] = 

MinimumDA(RegD_da_SUM_low,0.25); 

  [Min_Spin_da_SUM_low] = 

MinimumDA(Spin_da_SUM_low,0.25); 

   

  [Min_LMP_da_WIN_low]  = 

MinimumDA(LMP_da_WIN_low,0.25); 

  [Min_RegU_da_WIN_low] = 

MinimumDA(RegU_da_WIN_low,0.25); 

  [Min_RegD_da_WIN_low] = 

MinimumDA(RegD_da_WIN_low,0.25); 

  [Min_Spin_da_WIN_low] = 

MinimumDA(Spin_da_WIN_low,0.25); 

   

display('Data for Robust optimizatin 

prepared') 

    

   %% 

Tr_RS   = zeros(24,1); 

Tr_RegU = zeros(24,1); 

Tr_RegD = zeros(24,1); 

Tr_E    = zeros(24,1);  

  

AGC = randi([0,1],24,1); 

  

Tr_RS(3,1) = 1; 

Tr_RS(6,1) = 1; 

Tr_RS(8,1)= 1; 

Tr_RS(13,1)= 1; 

Tr_RS(15,1)= 1; 

Tr_RS(16,1)= 1; 

Tr_RS(18,1) = 1; 

Tr_RS(20,1)=1; 

Tr_RS(21,1)=1; 

% Tr_RS(24,1)=1; 

  

Tr_RegU(3,1) = 1; 

Tr_RegU(6,1) = 1; 

Tr_RegU(8,1)= 1; 

Tr_RegU(13,1)=1; 

Tr_RegU(15,1)=1; 

Tr_RegU(16,1)=1; 

Tr_RegU(18,1)=1; 

Tr_RegU(20,1)=1; 

Tr_RegU(21,1)=1; 

%Tr_RegU(24,1)=1; 

  

Tr_RegD(3,1) = 1; 

Tr_RegD(6,1) = 1; 

Tr_RegD(8,1)= 1; 

Tr_RegD(13,1)=1; 

Tr_RegD(15,1)=1; 

Tr_RegD(16,1)=1; 

Tr_RegD(18,1)=1; 

Tr_RegD(20,1)=1; 

Tr_RegD(21,1)=1; 

% Tr_RegD(24,1)=1; 

for k=1:24 

   if AGC(k) ==1  

       Tr_RegD(k,1)=0; 

   else 

       Tr_RegU(k,1)=0; 

   end 

end 

  

    

%% Day ahead Optimization Case 1 

  

tic  

  

clear Cap_Discharge_DRO_SUM_low 

clear cost_Charge_DRO_SUM_low 

clear cost_Demand_DRO_SUM_low 

clear income_Spin_DRO_SUM_low 

clear Income_Spin_DRO_SUM_low 

clear income_sell_DRO_SUM_low 

clear INCOME_sell_DRO_SUM_low 

clear income_E_DRO_SUM_low 

clear Income_E_DRO_SUM_low 

clear income_MilU_DRO_SUM_low 

clear income_RegU_DRO_SUM_low 

clear Income_RegU_DRO_SUM_low 

clear cost_Charge_DRO_SUM_low 

clear Cap_Charge_DRO_SUM_low 

clear income_MilD_DRO_SUM_low 

clear income_RegD_DRO_SUM_low 

clear Income_RegD_DRO_SUM_low 

clear income_Charging_DRO_SUM_low 

clear income_Discharging_DRO_SUM_low 

clear cost_OP_DRO_SUM_low 

clear Soc_DRO_SUM_low 

clear SOC_DRO_SUM_low 

clear cost_DRO_SUM_low 

clear COST_DRO_SUM_low 

clear SOCC_DRO_SUM_low 

clear lambda_Risk_SUM_low 

clear S_Spin_SUM_low 

clear S_LMP_SUM_low 

clear S_RegU_SUM_low 

clear S_RegD_SUM_low 

clear S_Buy_SUM_low 

clear Risk_CVaR_RegU_SUM_low 

clear Risk_CVaR_RegD_SUM_low 

clear Risk_CVaR_Spin_SUM_low 

clear Risk_CVaR_LMP_SUM_low 

clear Risk_CVaR_Buy_SUM_low 

clear a1_Risk_SUM_low 

clear ROO_Risk_SUM_low 

clear a2_Risk_SUM_low 

clear b1_Risk_SUM_low 

clear b2_Risk_SUM_low 

clear tou_Spin_SUM_low 

clear tou_RegU_SUM_low 

clear tou_RegD_SUM_low 

clear tou_LMP_SUM_low 

clear tou_Buy_SUM_low 

clear gama1_Spin_SUM_low 

clear gama2_Spin_SUM_low 

clear gama1_RegU_SUM_low 

clear gama2_RegU_SUM_low 

clear gama1_RegD_SUM_low 

clear gama2_RegD_SUM_low 

clear gama1_LMP_SUM_low 

clear gama2_LMP_SUM_low 

clear gama1_Buy_SUM_low 

clear gama2_Buy_SUM_low 

clear a_RegU_DRO_SUM_low 

clear a_Spin_DRO_SUM_low 

clear a_LMP_DRO_SUM_low 

clear a_RegD_DRO_SUM_low 

clear a_Buy_DRO_SUM_low 

clear a_Ex_ch_DRO_SUM_low 

clear a_Ex_dch_DRO_SUM_low 

clear Cap_Ex_ch_DRO_SUM_low 

clear Cap_Ex_dch_DRO_SUM_low 
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clear cost_un_dch_DRO_SUM_low 

clear cost_un_ch_DRO_SUM_low 

clear a_ex_ch_DRO_SUM_low 

clear a_ex_dch_DRO_SUM_low 

clear Cap_Bat2L_DRO_SUM_low 

clear a_Bat2L_DRO_SUM_low 

clear a_G2Bat_DRO_SUM_low 

clear a_PV2Bat_DRO_SUM_low 

clear a_G2L_DRO_SUM_low 

clear M_DRO_SUM_low 

clear a_PV2L_DRO_SUM_low 

cvx_begin 

  

    variable Cap_G2Bat_DRO_SUM_low(24) 

nonnegative 

    variable Cap_RegD_DRO_SUM_low(24) 

nonnegative 

    variable Cap_PV2L_DRO_SUM_low(24) 

nonnegative 

    variable Cap_G2L_DRO_SUM_low(24) 

nonnegative 

    variable Cap_Bat2G_DRO_SUM_low(24) 

nonnegative 

    variable Cap_Bat2L_DRO_SUM_low(24) 

nonnegative 

    variable Cap_PV2Bat_DRO_SUM_low(24) 

nonnegative 

    variable Cap_RegU_DRO_SUM_low(24) 

nonnegative  

    variable Cap_Spin_DRO_SUM_low(24) 

nonnegative 

    variable Cap_Ex_ch_DRO_SUM_low(24) 

nonnegative 

    variable Cap_Ex_dch_DRO_SUM_low(24) 

nonnegative 

    variable M_DRO_SUM_low(24) binary  

    variable lambda_Spin_SUM_low(24)  

    variable lambda_LMP_SUM_low(24) 

    variable lambda_RegU_SUM_low(24) 

    variable lambda_RegD_SUM_low(24) 

    variable lambda_Buy_SUM_low(24) 

    variable 

S_Spin_SUM_low(24,N_SUM_low) 

    variable 

S_RegU_SUM_low(24,N_SUM_low) 

    variable 

S_RegD_SUM_low(24,N_SUM_low) 

    variable S_LMP_SUM_low(24,N_SUM_low) 

    variable S_Buy_SUM_low(24,N_SUM_low) 

    variable gama1_Spin_SUM_low(24) 

    variable gama2_Spin_SUM_low(24) 

    variable gama1_RegU_SUM_low(24) 

    variable gama2_RegU_SUM_low(24) 

    variable gama1_RegD_SUM_low(24) 

    variable gama2_RegD_SUM_low(24) 

    variable gama1_LMP_SUM_low(24) 

    variable gama2_LMP_SUM_low(24) 

    variable gama1_Buy_SUM_low(24) 

    variable gama2_Buy_SUM_low(24) 

    variable tou_Spin_SUM_low(N_SUM_low) 

    variable tou_RegU_SUM_low(N_SUM_low) 

    variable tou_RegD_SUM_low(N_SUM_low) 

    variable tou_LMP_SUM_low(N_SUM_low) 

    variable tou_Buy_SUM_low(N_SUM_low) 

     

  for k = 1:25 

      if k<25 

    Cap_Charge_DRO_SUM_low(k,1) = 

Cap_G2Bat_DRO_SUM_low(k)+Cap_PV2Bat_DRO_

SUM_low(k)+Cap_RegD_DRO_SUM_low(k);%+Cap

_Ex_ch_DRO_SUM_low(k);%+ 

    Cap_Discharge_DRO_SUM_low(k,1) = 

Cap_Bat2G_DRO_SUM_low(k)+Cap_Spin_DRO_SU

M_low(k)+Cap_RegU_DRO_SUM_low(k)+Cap_Bat

2L_DRO_SUM_low(k);%+Cap_Ex_dch_DRO_SUM_l

ow(k);%+ 

   

   a_RegU_DRO_SUM_low(k,1)   = 

Cap_RegU_DRO_SUM_low(k)/Cap_Max; 

   a_RegD_DRO_SUM_low(k,1)   = 

Cap_RegD_DRO_SUM_low(k)/Cap_Max; 

   a_Spin_DRO_SUM_low(k,1)   = 

Cap_Spin_DRO_SUM_low(k)/Cap_Max; 

   a_LMP_DRO_SUM_low(k,1)    = 

(Cap_Bat2G_DRO_SUM_low(k))/Cap_Max;% 

   a_Buy_DRO_SUM_low(k,1)    = 

Cap_G2Bat_DRO_SUM_low(k)/Cap_Max; 

   a_ex_dch_DRO_SUM_low(k,1) = 

Cap_Ex_dch_DRO_SUM_low(k)/Cap_Max; 

   a_ex_ch_DRO_SUM_low(k,1)  = 

Cap_Ex_ch_DRO_SUM_low(k)/Cap_Max; 

   a_Bat2L_DRO_SUM_low(k,1)  = 

Cap_Bat2L_DRO_SUM_low(k)/Cap_Max; 

   a_G2Bat_DRO_SUM_low(k,1)  = 

Cap_G2Bat_DRO_SUM_low(k)/Cap_Max; 

   a_PV2Bat_DRO_SUM_low(k,1) = 

Cap_PV2Bat_DRO_SUM_low(k)/Cap_Max; 

   a_G2L_DRO_SUM_low(k,1)    = 

Cap_G2L_DRO_SUM_low(k)/Cap_Max; 

   a_PV2L_DRO_SUM_low(k,1)    = 

Cap_PV2L_DRO_SUM_low(k)/Cap_Max; 

   cost_OP_DRO_SUM_low(k,1) =  c_op 

.*(a_PV2Bat_DRO_SUM_low(k)+ 

a_G2Bat_DRO_SUM_low(k) + 

a_LMP_DRO_SUM_low(k)+a_Spin_DRO_SUM_low(

k)+a_RegD_DRO_SUM_low(k)+a_RegU_DRO_SUM_

low(k)) ; % Cost operation 

  

    cost_un_dch_DRO_SUM_low(k,1)  = 

Cap_Ex_dch_DRO_SUM_low(k)* 0; 

    cost_un_ch_DRO_SUM_low(k,1)  = 

Cap_Ex_ch_DRO_SUM_low(k)* 0; 

     

    if k==1 

        Soc_DRO_SUM_low(k,1)  = SOC_0 + 

cost_un_dch_DRO_SUM_low(k); 

    else 

        Soc_DRO_SUM_low(k,1)  = Eta_Ch 

.*(Cap_PV2Bat_DRO_SUM_low(k-1)+ 

Cap_G2Bat_DRO_SUM_low(k-

1)+Cap_RegD_DRO_SUM_low(k-1))-

(Cap_Bat2G_DRO_SUM_low(k-

1,1)+Cap_Spin_DRO_SUM_low(k-

1)+Cap_RegU_DRO_SUM_low(k-

1)+Cap_Bat2L_DRO_SUM_low(k-1))./Eta_D; 

    end 

      SOC_DRO_SUM_low(k,1)  = 

sum(Soc_DRO_SUM_low);  

      SOCC_DRO_SUM_low(k,1)  = 

SOC_DRO_SUM_low(k,1)/BAT_CAP;  

     

   alfa = 0.001; %CVar confidence level  

      

     a1_Risk_SUM_low = -1; 

     R_w = 0.001; 

      

     ROO_RegU_SUM_low(k,1) = 1; % 

investor risk aversion   

     a2_RegU_SUM_low(k,1) = -1 - 

(ROO_RegU_SUM_low(k,1)/alfa); 

     b1_RegU_SUM_low(k,1) = 

ROO_RegU_SUM_low(k,1); 

     b2_RegU_SUM_low(k,1) = 

ROO_RegU_SUM_low(k,1) * (1- 1/alfa); 

      

     ROO_Spin_SUM_low(k,1) = 1; % 

investor risk aversion  
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     a2_Spin_SUM_low(k,1) = -1 - 

(ROO_Spin_SUM_low(k,1)/alfa); 

     b1_Spin_SUM_low(k,1) = 

ROO_Spin_SUM_low(k,1); 

     b2_Spin_SUM_low(k,1) = 

ROO_Spin_SUM_low(k,1)* (1- 1/alfa); 

      

     ROO_LMP_SUM_low(k,1) = 1; % 

investor risk aversion  

     a2_LMP_SUM_low(k,1) = -1 - 

(ROO_LMP_SUM_low(k,1)/alfa); 

     b1_LMP_SUM_low(k,1) = 

ROO_LMP_SUM_low(k,1); 

     b2_LMP_SUM_low(k,1) = 

ROO_LMP_SUM_low(k,1) * (1- 1/alfa); 

      

     ROO_RegD_SUM_low(k,1) = 1; % 

investor risk aversion  

     a2_RegD_SUM_low(k,1) = -1 - 

(ROO_RegD_SUM_low(k,1)/alfa); 

     b1_RegD_SUM_low(k,1) = 

ROO_RegD_SUM_low(k,1); 

     b2_RegD_SUM_low(k,1) = 

ROO_RegD_SUM_low(k,1) * (1- 1/alfa); 

    

     d_spin_SUM_low(k,1) = 

Max_Spin_da_SUM_low(k,1);%max(Max_Spin_d

a_SUM(k,1),Max_Spin_da_SUM_test(k,1));%M

ax_Spin_da_low;% 

Er_Spin_da_low_Max_Risk;%Spin_da_low_Max

;% 

     d_RegU_SUM_low(k,1) = 

Max_RegU_da_SUM_low(k,1);%max(Max_RegU_d

a_SUM(k,1),Max_RegU_da_SUM_test(k,1)); 

%Max_Reg_U_da_low;%Er_Reg_U_da_low_Max_R

isk;% 

     d_LMP_SUM_low(k,1)  = 

Max_LMP_da_SUM_low(k,1);%max(Max_LMP_da_

SUM(k,1),Max_LMP_da_SUM_test(k,1)); 

%Max_LMP_da_low;%Er_LMP_da_low_Max;% 

     d_RegD_SUM_low(k,1) = 

Max_RegD_da_SUM_low(k,1);%max(Max_RegD_d

a_SUM(k,1),Max_RegD_da_SUM_test(k,1)); 

%; 

      

Risk_CVaR_RegU_SUM_low(k,1) = 

Tr_RegU(k,1).*((1*lambda_RegU_SUM_low(k,

1).* R_w + 

(sum(S_RegU_SUM_low(k,:))./N_SUM_low))); 

%r_Reg_U_da_SUM_low_Risk(k,1) 

Risk_CVaR_Spin_SUM_low(k,1) = 

Tr_RS(k,1).*((1*lambda_Spin_SUM_low(k,1)

.* R_w + 

(sum(S_Spin_SUM_low(k,:))./N_SUM_low))); 

% r_Spin_da_SUM_low_Risk(k,1) 

Risk_CVaR_LMP_SUM_low(k,1)  = 

((1*lambda_LMP_SUM_low(k,1) .* R_w + 

(sum(S_LMP_SUM_low(k,:))./N_SUM_low))); 

% r_LMP_da_low(k,1)  

Risk_CVaR_RegD_SUM_low(k,1) = 

Tr_RegD(k,1).*((1*lambda_RegD_SUM_low(k,

1) .* R_w + 

(sum(S_RegD_SUM_low(k,:))./N_SUM_low))); 

%  

      else 

           

       Soc_DRO_SUM_low(k,1)  = Eta_Ch 

.*(Cap_PV2Bat_DRO_SUM_low(k-1)+ 

Cap_G2Bat_DRO_SUM_low(k-

1)+Cap_RegD_DRO_SUM_low(k-1))-

(Cap_Bat2G_DRO_SUM_low(k-

1,1)+Cap_Spin_DRO_SUM_low(k-

1)+Cap_RegU_DRO_SUM_low(k-

1)+Cap_Bat2L_DRO_SUM_low(k-1))./Eta_D; 

       SOC_DRO_SUM_low(k,1)  = 

sum(Soc_DRO_SUM_low); 

       SOCC_DRO_SUM_low(k,1)  = 

SOC_DRO_SUM_low(k,1)/BAT_CAP;  

      end 

  end 

    

  OBJ_DRO_SUM_low = 

sum(cost_OP_DRO_SUM_low+cost_un_dch_DRO_

SUM_low + cost_un_ch_DRO_SUM_low + 

Risk_CVaR_Spin_SUM_low + 

Risk_CVaR_RegU_SUM_low + 

Risk_CVaR_RegD_SUM_low + 

Risk_CVaR_LMP_SUM_low);%  Cost_M1+ 

+sum(cost_OP_DRO_SUM_low)  + 

cost_Demand_DRO_SUM_low + 

cost_Charge_DRO_SUM_low  

  

minimize(OBJ_DRO_SUM_low) 

  

   subject to 

  SOC_DRO_SUM_low(1) == SOC_0 ;% for 

initial value of soc  

  SOC_DRO_SUM_low(25) >= 

SOC_DRO_SUM_low(1) ;  

  SOC_Min <= SOC_DRO_SUM_low(25)  <= 

SOC_Max ;  

  for k = 1:24 

     

    SOC_Min <= SOC_DRO_SUM_low(k)  <= 

SOC_Max;  

    Cap_PV2L_DRO_SUM_low(k) + 

Cap_G2L_DRO_SUM_low(k)+Cap_Bat2L_DRO_SUM

_low(k) == Cap_L_sum(k); 

    Cap_PV2Bat_DRO_SUM_low(k) + 

Cap_PV2L_DRO_SUM_low(k) <= 

Cap_PV_sum(k);  

    Cap_Charge_DRO_SUM_low(k)<= 

Cap_Max.*(1-M_DRO_SUM_low(k)); 

    Cap_Discharge_DRO_SUM_low(k)<= 

Cap_Max.*(M_DRO_SUM_low(k)); 

     

   if Tr_RS(k)==0 

       Cap_Spin_DRO_SUM_low(k)==0; 

   end 

    

   if Tr_RegU(k)==0 

       Cap_RegU_DRO_SUM_low(k)==0; 

   end 

    

   if Tr_RegD(k)==0 

       Cap_RegD_DRO_SUM_low(k)==0; 

   end 

     

for i=1:N_SUM_low 

        

b1_Spin_SUM_low(k,1)*tou_Spin_SUM_low + 

a1_Risk_SUM_low .* 

a_Spin_DRO_SUM_low(k).*Spin_da_SUM_low(k

,i) + gama1_Spin_SUM_low(k,1) .* 

(d_spin_SUM_low(k,1) - 

Spin_da_SUM_low(k,i)) <= 

S_Spin_SUM_low(k,i); 

        

b2_Spin_SUM_low(k,1)*tou_Spin_SUM_low + 

a2_Spin_SUM_low(k,1).* 

a_Spin_DRO_SUM_low(k).*Spin_da_SUM_low(k

,i) + gama2_Spin_SUM_low(k,1) .* 

(d_spin_SUM_low(k,1) - 

Spin_da_SUM_low(k,i)) <= 

S_Spin_SUM_low(k,i); 

        norm((gama1_Spin_SUM_low(k,1)- 

a1_Risk_SUM_low.* 
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a_Spin_DRO_SUM_low(k)),inf) <= 

Tr_RS(k,1).*lambda_Spin_SUM_low(k,1); 

        norm((gama2_Spin_SUM_low(k,1)- 

a2_Spin_SUM_low(k,1).* 

a_Spin_DRO_SUM_low(k)),inf) 

<=Tr_RS(k,1).* lambda_Spin_SUM_low(k,1); 

        0<= gama1_Spin_SUM_low(k,1); 

        0<= gama2_Spin_SUM_low(k,1);    

         

        

b1_RegU_SUM_low(k,1)*tou_RegU_SUM_low + 

a1_Risk_SUM_low 

.*a_RegU_DRO_SUM_low(k).* 

RegU_da_SUM_low(k,i) + 

gama1_RegU_SUM_low(k,1) .* 

(d_RegU_SUM_low(k,1) - 

RegU_da_SUM_low(k,i)) <= 

S_RegU_SUM_low(k,i);%Er_Reg_U_da_SUM_low  

%  %Er_Reg_U_da_SUM_low_Risk 

%Norm_Reg_U_da_SUM_low %a_RegU_DRO 

        

b2_RegU_SUM_low(k,1)*tou_RegU_SUM_low + 

a2_RegU_SUM_low(k,1) .* 

a_RegU_DRO_SUM_low(k).*RegU_da_SUM_low(k

,i) + gama2_RegU_SUM_low(k,1) .* 

(d_RegU_SUM_low(k,1) -

RegU_da_SUM_low(k,i)) <= 

S_RegU_SUM_low(k,i); 

        norm((gama1_RegU_SUM_low(k,1)-

a1_Risk_SUM_low.* 

a_RegU_DRO_SUM_low(k)),inf) 

<=Tr_RegU(k,1).* 

lambda_RegU_SUM_low(k,1); 

        norm((gama2_RegU_SUM_low(k,1)-

a2_RegU_SUM_low(k,1).* 

a_RegU_DRO_SUM_low(k)),inf) 

<=Tr_RegU(k,1).* 

lambda_RegU_SUM_low(k,1); 

        0<= gama1_RegU_SUM_low(k,1); 

        0<= gama2_RegU_SUM_low(k,1);     

         

        

b1_LMP_SUM_low(k,1)*tou_LMP_SUM_low + 

a1_Risk_SUM_low.*(a_LMP_DRO_SUM_low(k)+a

_RegU_DRO_SUM_low(k)+a_Spin_DRO_SUM_low(

k)-a_G2Bat_DRO_SUM_low(k,1)-

a_G2L_DRO_SUM_low(k,1)) 

.*LMP_da_SUM_low(k,i) + 

gama1_LMP_SUM_low(k,1) .* 

(d_LMP_SUM_low(k,1) - 

LMP_da_SUM_low(k,i)) <= 

S_LMP_SUM_low(k,i);% 

        

b2_LMP_SUM_low(k,1)*tou_LMP_SUM_low + 

a2_LMP_SUM_low(k,1).*(a_LMP_DRO_SUM_low(

k)+a_RegU_DRO_SUM_low(k)+a_Spin_DRO_SUM_

low(k)-a_G2Bat_DRO_SUM_low(k,1)-

a_G2L_DRO_SUM_low(k,1)) 

.*LMP_da_SUM_low(k,i) + 

gama2_LMP_SUM_low(k,1) .* 

(d_LMP_SUM_low(k,1) - 

LMP_da_SUM_low(k,i)) <= 

S_LMP_SUM_low(k,i); 

        norm((gama1_LMP_SUM_low(k,1)-

a1_Risk_SUM_low.*(a_LMP_DRO_SUM_low(k)+a

_RegU_DRO_SUM_low(k)+a_Spin_DRO_SUM_low(

k)-a_G2Bat_DRO_SUM_low(k,1)-

a_G2L_DRO_SUM_low(k,1))),inf) <= 

lambda_LMP_SUM_low(k,1); 

        norm((gama2_LMP_SUM_low(k,1)-

a2_LMP_SUM_low(k,1).*(a_LMP_DRO_SUM_low(

k)+a_RegU_DRO_SUM_low(k)+a_Spin_DRO_SUM_

low(k)-a_G2Bat_DRO_SUM_low(k,1)-

a_G2L_DRO_SUM_low(k,1))),inf) <= 

lambda_LMP_SUM_low(k,1); 

        0<= gama1_LMP_SUM_low(k,1); 

        0<= gama2_LMP_SUM_low(k,1);     

  

        

b1_RegD_SUM_low(k,1)*tou_RegD_SUM_low + 

a1_Risk_SUM_low .* 

a_RegD_DRO_SUM_low(k).*RegD_da_SUM_low(k

,i) + gama1_RegD_SUM_low(k,1) .* 

(d_RegD_SUM_low(k,1) - 

RegD_da_SUM_low(k,i)) <= 

S_RegD_SUM_low(k,i); 

        

b2_RegD_SUM_low(k,1)*tou_RegD_SUM_low + 

a2_RegD_SUM_low(k,1) .* 

a_RegD_DRO_SUM_low(k).*RegD_da_SUM_low(k

,i) + gama2_RegD_SUM_low(k,1) .* 

(d_RegD_SUM_low(k,1) - 

RegD_da_SUM_low(k,i)) <= 

S_RegD_SUM_low(k,i); 

        norm((gama1_RegD_SUM_low(k,1)- 

a1_Risk_SUM_low.* 

a_RegD_DRO_SUM_low(k)),inf) 

<=Tr_RegD(k,1).* 

lambda_RegD_SUM_low(k,1); 

        norm((gama2_RegD_SUM_low(k,1)- 

a2_RegD_SUM_low(k,1).* 

a_RegD_DRO_SUM_low(k)),inf) 

<=Tr_RegD(k,1).* 

lambda_RegD_SUM_low(k,1); 

        0<= gama1_RegD_SUM_low(k,1); 

        0<= gama2_RegD_SUM_low(k,1); 

           

end 

  

  end 

  cvx_end 

  

load gong.mat; 

sound(y);  

display("WELL DONE!!") 

  

t_DRO_SUM_low = toc  

  

 %% WINter for low number 

  

tic  

  

clear Cap_Discharge_DRO_WIN_low 

clear cost_Charge_DRO_WIN_low 

clear cost_Demand_DRO_WIN_low 

clear income_Spin_DRO_WIN_low 

clear Income_Spin_DRO_WIN_low 

clear income_sell_DRO_WIN_low 

clear INCOME_sell_DRO_WIN_low 

clear income_E_DRO_WIN_low 

clear Income_E_DRO_WIN_low 

clear income_MilU_DRO_WIN_low 

clear income_RegU_DRO_WIN_low 

clear Income_RegU_DRO_WIN_low 

clear cost_Charge_DRO_WIN_low 

clear Cap_Charge_DRO_WIN_low 

clear income_MilD_DRO_WIN_low 

clear income_RegD_DRO_WIN_low 

clear Income_RegD_DRO_WIN_low 

clear income_Charging_DRO_WIN_low 

clear income_Discharging_DRO_WIN_low 

clear cost_OP_DRO_WIN_low 

clear Soc_DRO_WIN_low 

clear SOC_DRO_WIN_low 

clear cost_DRO_WIN_low 

clear COST_DRO_WIN_low 

clear SOCC_DRO_WIN_low 
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clear lambda_Risk_WIN_low 

clear S_Spin_WIN_low 

clear S_LMP_WIN_low 

clear S_RegU_WIN_low 

clear S_RegD_WIN_low 

clear S_Buy_WIN_low 

clear Risk_CVaR_RegU_WIN_low 

clear Risk_CVaR_RegD_WIN_low 

clear Risk_CVaR_Spin_WIN_low 

clear Risk_CVaR_LMP_WIN_low 

clear Risk_CVaR_Buy_WIN_low 

clear a1_Risk_WIN_low 

clear ROO_Risk_WIN_low 

clear a2_Risk_WIN_low 

clear b1_Risk_WIN_low 

clear b2_Risk_WIN_low 

clear tou_Spin_WIN_low 

clear tou_RegU_WIN_low 

clear tou_RegD_WIN_low 

clear tou_LMP_WIN_low 

clear tou_Buy_WIN_low 

clear gama1_Spin_WIN_low 

clear gama2_Spin_WIN_low 

clear gama1_RegU_WIN_low 

clear gama2_RegU_WIN_low 

clear gama1_RegD_WIN_low 

clear gama2_RegD_WIN_low 

clear gama1_LMP_WIN_low 

clear gama2_LMP_WIN_low 

clear gama1_Buy_WIN_low 

clear gama2_Buy_WIN_low 

clear a_RegU_DRO_WIN_low 

clear a_Spin_DRO_WIN_low 

clear a_LMP_DRO_WIN_low 

clear a_RegD_DRO_WIN_low 

clear a_Buy_DRO_WIN_low 

clear a_Ex_ch_DRO_WIN_low 

clear a_Ex_dch_DRO_WIN_low 

clear Cap_Ex_ch_DRO_WIN_low 

clear Cap_Ex_dch_DRO_WIN_low 

clear cost_un_dch_DRO_WIN_low 

clear cost_un_ch_DRO_WIN_low 

clear a_ex_ch_DRO_WIN_low 

clear a_ex_dch_DRO_WIN_low 

clear Cap_Bat2L_DRO_WIN_low 

clear a_Bat2L_DRO_WIN_low 

clear a_G2Bat_DRO_WIN_low 

clear a_PV2Bat_DRO_WIN_low 

clear a_G2L_DRO_WIN_low 

clear a_PV2L_DRO_WIN_low 

cvx_begin  

  

    variable Cap_G2Bat_DRO_WIN_low(24) 

nonnegative 

    variable Cap_RegD_DRO_WIN_low(24) 

nonnegative 

    variable Cap_PV2L_DRO_WIN_low(24) 

nonnegative 

    variable Cap_G2L_DRO_WIN_low(24) 

nonnegative 

    variable Cap_Bat2G_DRO_WIN_low(24) 

nonnegative 

    variable Cap_Bat2L_DRO_WIN_low(24) 

nonnegative 

    variable Cap_PV2Bat_DRO_WIN_low(24) 

nonnegative 

    variable Cap_RegU_DRO_WIN_low(24) 

nonnegative  

    variable Cap_Spin_DRO_WIN_low(24) 

nonnegative 

    variable Cap_Ex_ch_DRO_WIN_low(24) 

nonnegative 

    variable Cap_Ex_dch_DRO_WIN_low(24) 

nonnegative 

    variable M_DRO_WIN_low(24) binary 

    variable lambda_Spin_WIN_low(24)  

    variable lambda_LMP_WIN_low(24) 

    variable lambda_RegU_WIN_low(24) 

    variable lambda_RegD_WIN_low(24) 

    variable lambda_Buy_WIN_low(24) 

    variable 

S_Spin_WIN_low(24,N_WIN_low) 

    variable 

S_RegU_WIN_low(24,N_WIN_low) 

    variable 

S_RegD_WIN_low(24,N_WIN_low) 

    variable S_LMP_WIN_low(24,N_WIN_low) 

    variable S_Buy_WIN_low(24,N_WIN_low) 

    variable gama1_Spin_WIN_low(24) 

    variable gama2_Spin_WIN_low(24) 

    variable gama1_RegU_WIN_low(24) 

    variable gama2_RegU_WIN_low(24) 

    variable gama1_RegD_WIN_low(24) 

    variable gama2_RegD_WIN_low(24) 

    variable gama1_LMP_WIN_low(24) 

    variable gama2_LMP_WIN_low(24) 

    variable gama1_Buy_WIN_low(24) 

    variable gama2_Buy_WIN_low(24) 

    variable tou_Spin_WIN_low(N_WIN_low) 

    variable tou_RegU_WIN_low(N_WIN_low) 

    variable tou_RegD_WIN_low(N_WIN_low) 

    variable tou_LMP_WIN_low(N_WIN_low) 

    variable tou_Buy_WIN_low(N_WIN_low) 

    %variable Y_DRO_WIN_low(24,24) 

     

  for k = 1:25 

      if k<=24 

    Cap_Charge_DRO_WIN_low(k,1) = 

Cap_G2Bat_DRO_WIN_low(k)+Cap_PV2Bat_DRO_

WIN_low(k)+Cap_RegD_DRO_WIN_low(k);%+Cap

_Ex_ch_DRO_WIN_low(k); 

    Cap_Discharge_DRO_WIN_low(k,1) = 

Cap_Bat2G_DRO_WIN_low(k)+Cap_Spin_DRO_WI

N_low(k)+Cap_RegU_DRO_WIN_low(k)+Cap_Bat

2L_DRO_WIN_low(k);%+Cap_Ex_dch_DRO_WIN_l

ow(k); 

    

   a_RegU_DRO_WIN_low(k,1)   = 

Cap_RegU_DRO_WIN_low(k)/Cap_Max; 

   a_RegD_DRO_WIN_low(k,1)   = 

Cap_RegD_DRO_WIN_low(k)/Cap_Max; 

   a_Spin_DRO_WIN_low(k,1)   = 

Cap_Spin_DRO_WIN_low(k)/Cap_Max; 

   a_LMP_DRO_WIN_low(k,1)    = 

Cap_Bat2G_DRO_WIN_low(k)/Cap_Max;% 

   a_Buy_DRO_WIN_low(k,1)    = 

Cap_G2Bat_DRO_WIN_low(k)/Cap_Max; 

   a_ex_dch_DRO_WIN_low(k,1) = 

Cap_Ex_dch_DRO_WIN_low(k)/Cap_Max; 

   a_ex_ch_DRO_WIN_low(k,1)  = 

Cap_Ex_ch_DRO_WIN_low(k)/Cap_Max; 

   a_Bat2L_DRO_WIN_low(k,1)  = 

Cap_Bat2L_DRO_WIN_low(k)/Cap_Max; 

   a_G2Bat_DRO_WIN_low(k,1)  = 

Cap_G2Bat_DRO_WIN_low(k)/Cap_Max; 

   a_PV2Bat_DRO_WIN_low(k,1) = 

Cap_PV2Bat_DRO_WIN_low(k)/Cap_Max; 

   a_G2L_DRO_WIN_low(k)      = 

Cap_G2L_DRO_WIN_low(k)/Cap_Max; 

   a_PV2L_DRO_WIN_low(k)     = 

Cap_PV2L_DRO_WIN_low(k)/Cap_Max; 

    

%     cost_Charge_DRO_WIN_low(k,1) = 

(a_G2Bat_DRO_WIN_low(k,1)+ 

a_RegD_DRO_WIN_low(k,1)).* 

Pr_buy_WIN(k);%(Cap_G2Bat_DRO_WIN_low(k)

+Cap_RegD_DRO_WIN_low(k)).* 
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Pr_buy_WIN(k) ; % Cost of buyng energy 

from Grid for battery 

%     cost_Demand_DRO_WIN_low(k,1) = 

Pr_buy_WIN(k) .* (a_G2L_DRO_WIN_low(k));   

%cost of buying energy from Grid for 

Load 

  

      cost_OP_DRO_WIN_low(k,1) =  

1*0.0002 .*(a_PV2Bat_DRO_WIN_low(k)+ 

a_G2Bat_DRO_WIN_low(k) + 

a_LMP_DRO_WIN_low(k)+ 

a_Spin_DRO_WIN_low(k)+ 

a_RegD_DRO_WIN_low(k)+ 

a_RegU_DRO_WIN_low(k)) ; % Cost 

operation 

    % Cost_M_DRO  = c_m * SOC_Max_DA ;        

% cost of Maintenance  

    cost_un_dch_DRO_WIN_low(k,1) = 

Cap_Ex_dch_DRO_WIN_low(k)* 0; 

    cost_un_ch_DRO_WIN_low(k,1)  = 

Cap_Ex_ch_DRO_WIN_low(k)* 0; 

     

    if k==1 

        Soc_DRO_WIN_low(k,1)  = SOC_0 + 

Cap_Ex_ch_DRO_WIN_low(k); 

    else 

        Soc_DRO_WIN_low(k,1)  = Eta_Ch 

.*(Cap_PV2Bat_DRO_WIN_low(k-1)+ 

Cap_G2Bat_DRO_WIN_low(k-

1)+Cap_RegD_DRO_WIN_low(k-1))-

(Cap_Bat2G_DRO_WIN_low(k-

1,1)+Cap_Spin_DRO_WIN_low(k-

1)+Cap_RegU_DRO_WIN_low(k-

1)+Cap_Bat2L_DRO_WIN_low(k-1))./Eta_D; 

    end 

       SOC_DRO_WIN_low(k,1)  = 

sum(Soc_DRO_WIN_low);  

  %cost_DRO(k,1) =   (-

income_Discharging_DRO(k)- 

income_Charging_DRO(k)+ 

cost_OP_DRO(k));%cost_Demand_DRO(k) 

  % COST_DRO(k,1) = sum(cost_DRO) + 

Cost_M_DRO; 

     

    SOCC_DRO_WIN_low(k,1)  = 

SOC_DRO_WIN_low(k,1)/BAT_CAP;  

   alfa = 0.9; %CVar comfidence level  

      

     a1_Risk_WIN_low = -1; 

     R_w = 0.001; 

      

     ROO_RegU_WIN_low(k,1) = 1; % 

investor risk aversion   

     a2_RegU_WIN_low(k,1) = -1 - 

(ROO_RegU_WIN_low(k,1)/alfa); 

     b1_RegU_WIN_low(k,1) = 

ROO_RegU_WIN_low(k,1); 

     b2_RegU_WIN_low(k,1) = 

ROO_RegU_WIN_low(k,1) * (1- 1/alfa); 

      

     ROO_Spin_WIN_low(k,1) = 1; % 

investor risk aversion  

     a2_Spin_WIN_low(k,1) = -1 - 

(ROO_Spin_WIN_low(k,1)/alfa); 

     b1_Spin_WIN_low(k,1) = 

ROO_Spin_WIN_low(k,1); 

     b2_Spin_WIN_low(k,1) = 

ROO_Spin_WIN_low(k,1)* (1- 1/alfa); 

      

     ROO_LMP_WIN_low(k,1) = 1; % 

investor risk aversion  

     a2_LMP_WIN_low(k,1) = -1 - 

(ROO_LMP_WIN_low(k,1)/alfa); 

     b1_LMP_WIN_low(k,1) = 

ROO_LMP_WIN_low(k,1); 

     b2_LMP_WIN_low(k,1) = 

ROO_LMP_WIN_low(k,1) * (1- 1/alfa); 

      

     ROO_RegD_WIN_low(k,1) = 1; % 

investor risk aversion  

     a2_RegD_WIN_low(k,1) = -1 - 

(ROO_RegD_WIN_low(k,1)/alfa); 

     b1_RegD_WIN_low(k,1) = 

ROO_RegD_WIN_low(k,1); 

     b2_RegD_WIN_low(k,1) = 

ROO_RegD_WIN_low(k,1) * (1- 1/alfa); 

      

     d_spin_WIN_low(k,1) = 

Max_Spin_da_WIN_low(k,1);%max(Max_Spin_d

a_WIN(k,1),Max_Spin_da_WIN_test(k,1));%M

ax_Spin_da_low;% 

Er_Spin_da_low_Max_Risk;%Spin_da_low_Max

;% 

     d_RegU_WIN_low(k,1) = 

Max_RegU_da_WIN_low(k,1);%max(Max_RegU_d

a_WIN(k,1),Max_RegU_da_WIN_test(k,1)); 

%Max_Reg_U_da_low;%Er_Reg_U_da_low_Max_R

isk;% 

     d_LMP_WIN_low(k,1)  = 

Max_LMP_da_WIN_low(k,1);%max(Max_LMP_da_

WIN(k,1),Max_LMP_da_WIN_test(k,1)); 

%Max_LMP_da_low;%Er_LMP_da_low_Max;% 

     d_RegD_WIN_low(k,1) = 

Max_RegD_da_WIN_low(k,1);%max(Max_RegD_d

a_WIN(k,1),Max_RegD_da_WIN_test(k,1)); 

%Max_Reg_D_da_SUM_low; 

      

Risk_CVaR_RegU_WIN_low(k,1) = 

Tr_RegU(k,1).*((1*lambda_RegU_WIN_low(k,

1).* R_w + 

(sum(S_RegU_WIN_low(k,:))./N_WIN_low))); 

%r_Reg_U_da_WIN_low_Risk(k,1) 

Risk_CVaR_Spin_WIN_low(k,1) = 

Tr_RS(k,1).*((1*lambda_Spin_WIN_low(k,1)

.* R_w + 

(sum(S_Spin_WIN_low(k,:))./N_WIN_low))); 

% r_Spin_da_WIN_low_Risk(k,1) 

Risk_CVaR_LMP_WIN_low(k,1)  = 

((1*lambda_LMP_WIN_low(k,1) .* R_w + 

(sum(S_LMP_WIN_low(k,:))./N_WIN_low))); 

% r_LMP_da_low(k,1)  

Risk_CVaR_RegD_WIN_low(k,1) = 

Tr_RegD(k,1).*((1*lambda_RegD_WIN_low(k,

1) .* R_w + 

(sum(S_RegD_WIN_low(k,:))./N_WIN_low))); 

%  

  

      else 

          Soc_DRO_WIN_low(k,1)  = Eta_Ch 

.*(Cap_PV2Bat_DRO_WIN_low(k-1)+ 

Cap_G2Bat_DRO_WIN_low(k-

1)+Cap_RegD_DRO_WIN_low(k-1))-

(Cap_Bat2G_DRO_WIN_low(k-

1,1)+Cap_Spin_DRO_WIN_low(k-

1)+Cap_RegU_DRO_WIN_low(k-

1)+Cap_Bat2L_DRO_WIN_low(k-1))./Eta_D; 

          SOC_DRO_WIN_low(k,1)  = 

sum(Soc_DRO_WIN_low);  

          SOCC_DRO_WIN_low(k,1)  = 

SOC_DRO_WIN_low(k,1)/BAT_CAP;  

      end 

  end 

  

  OBJ_DRO_WIN_low = 

+sum(cost_OP_DRO_WIN_low+cost_un_dch_DRO

_WIN_low + cost_un_ch_DRO_WIN_low +  

Risk_CVaR_Spin_WIN_low + 
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Risk_CVaR_RegU_WIN_low + 

Risk_CVaR_RegD_WIN_low + 

Risk_CVaR_LMP_WIN_low);% + 

Cost_M1+sum(cost_OP_DRO_WIN_low)  

cost_Demand_DRO_WIN_low + 

cost_Charge_DRO_WIN_low + 

  

  minimize(OBJ_DRO_WIN_low) 

  

   subject to 

  SOC_DRO_WIN_low(1) == SOC_0 ;% for 

initial value of soc  

  SOC_DRO_WIN_low(25) >= 

SOC_DRO_WIN_low(1) ;  

  SOC_Min <= SOC_DRO_WIN_low(25)  <= 

SOC_Max ;  

  for k = 1:24 

     

    SOC_Min <= SOC_DRO_WIN_low(k)  <= 

SOC_Max ;  

   % 0 <= 

Cap_G2Bat_DRO_WIN_low(k)+Cap_RegD_DRO_WI

N_low(k) + 

Cap_PV2Bat_DRO_WIN_low(k)+(Cap_Spin_DRO_

WIN_low(k)+Cap_RegU_DRO_WIN_low(k)+Cap_B

at2G_DRO_WIN_low(k)+Cap_Bat2L_DRO_WIN_lo

w(k))<= Cap_Max; 

    Cap_PV2L_DRO_WIN_low(k) + 

Cap_G2L_DRO_WIN_low(k)+Cap_Bat2L_DRO_WIN

_low(k) == Cap_L_win(k); 

    Cap_PV2Bat_DRO_WIN_low(k) + 

Cap_PV2L_DRO_WIN_low(k) <= 

Cap_PV_win(k); 

     

    Cap_Charge_DRO_WIN_low(k)<= 

Cap_Max.*(1-M_DRO_WIN_low(k)); 

    Cap_Discharge_DRO_WIN_low(k)<= 

Cap_Max.*(M_DRO_WIN_low(k)); 

     

   % Y_DRO_WIN_low(k,k)-

M_DRO_WIN_low(k,1) == 0 ; 

   if Tr_RS(k)==0 

       Cap_Spin_DRO_WIN_low(k)==0; 

   end 

    

   if Tr_RegU(k)==0 

       Cap_RegU_DRO_WIN_low(k)==0; 

   end 

    

   if Tr_RegD(k)==0 

       Cap_RegD_DRO_WIN_low(k)==0; 

   end 

     

for i=1:N_WIN_low 

        

b1_Spin_WIN_low(k,1)*tou_Spin_WIN_low + 

a1_Risk_WIN_low .* 

a_Spin_DRO_WIN_low(k).*Spin_da_WIN_low(k

,i) + gama1_Spin_WIN_low(k,1) .* 

(d_spin_WIN_low(k,1) - 

Spin_da_WIN_low(k,i)) <= 

S_Spin_WIN_low(k,i);%Er_Spin_da_WIN_low 

%d_WIN_low_spin %Er_Spin_da_WIN_low_Risk 

%Norm_Spin_da_WIN_low 

        

b2_Spin_WIN_low(k,1)*tou_Spin_WIN_low + 

a2_Spin_WIN_low(k,1).* 

a_Spin_DRO_WIN_low(k).*Spin_da_WIN_low(k

,i) + gama2_Spin_WIN_low(k,1) .* 

(d_spin_WIN_low(k,1) - 

Spin_da_WIN_low(k,i)) <= 

S_Spin_WIN_low(k,i); 

        norm((gama1_Spin_WIN_low(k,1)- 

a1_Risk_WIN_low.* 

Cap_Spin_DRO_WIN_low(k)),inf) <= 

Tr_RS(k,1).*lambda_Spin_WIN_low(k,1); 

        norm((gama2_Spin_WIN_low(k,1)- 

a2_Spin_WIN_low(k,1).* 

Cap_Spin_DRO_WIN_low(k)),inf) 

<=Tr_RS(k,1).* lambda_Spin_WIN_low(k,1); 

        0<= gama1_Spin_WIN_low(k,1); 

        0<= gama2_Spin_WIN_low(k,1);    

         

        

b1_RegU_WIN_low(k,1)*tou_RegU_WIN_low + 

a1_Risk_WIN_low 

.*a_RegU_DRO_WIN_low(k).*RegU_da_WIN_low

(k,i) + gama1_RegU_WIN_low(k,1) .* 

(d_RegU_WIN_low(k,1) - 

RegU_da_WIN_low(k,i)) <= 

S_RegU_WIN_low(k,i);%Er_Reg_U_da_WIN_low  

%  %Er_Reg_U_da_WIN_low_Risk 

%Norm_Reg_U_da_WIN_low %a_RegU_DRO 

        

b2_RegU_WIN_low(k,1)*tou_RegU_WIN_low + 

a2_RegU_WIN_low(k,1) .* 

a_RegU_DRO_WIN_low(k).*RegU_da_WIN_low(k

,i) + gama2_RegU_WIN_low(k,1) .* 

(d_RegU_WIN_low(k,1) -

RegU_da_WIN_low(k,i)) <= 

S_RegU_WIN_low(k,i); 

        norm((gama1_RegU_WIN_low(k,1)-

a1_Risk_WIN_low.* 

a_RegU_DRO_WIN_low(k)),inf) 

<=Tr_RegU(k,1).* 

lambda_RegU_WIN_low(k,1); 

        norm((gama2_RegU_WIN_low(k,1)-

a2_RegU_WIN_low(k,1).* 

a_RegU_DRO_WIN_low(k)),inf) 

<=Tr_RegU(k,1).* 

lambda_RegU_WIN_low(k,1); 

        0<= gama1_RegU_WIN_low(k,1); 

        0<= gama2_RegU_WIN_low(k,1);     

         

        

b1_LMP_WIN_low(k,1)*tou_LMP_WIN_low + 

a1_Risk_WIN_low.*(a_LMP_DRO_WIN_low(k)+a

_RegU_DRO_WIN_low(k)+a_Spin_DRO_WIN_low(

k)-a_G2Bat_DRO_WIN_low(k,1)-

a_G2L_DRO_WIN_low(k)) 

.*LMP_da_WIN_low(k,i) + 

gama1_LMP_WIN_low(k,1) .* 

(d_LMP_WIN_low(k,1) - 

LMP_da_WIN_low(k,i)) <= 

S_LMP_WIN_low(k,i);%Er_LMP_da_WIN_low 

%Er_LMP_da_WIN_low  %d_WIN_low_LMP  % 

%Norm_LMP_da_WIN_low 

        

b2_LMP_WIN_low(k,1)*tou_LMP_WIN_low + 

a2_LMP_WIN_low(k,1).*(a_LMP_DRO_WIN_low(

k)+a_RegU_DRO_WIN_low(k)+a_Spin_DRO_WIN_

low(k)-a_G2Bat_DRO_WIN_low(k,1)-

a_G2L_DRO_WIN_low(k)) 

.*LMP_da_WIN_low(k,i) + 

gama2_LMP_WIN_low(k,1) .* 

(d_LMP_WIN_low(k,1) - 

LMP_da_WIN_low(k,i)) <= 

S_LMP_WIN_low(k,i); 

        norm((gama1_LMP_WIN_low(k,1)-

a1_Risk_WIN_low.*(a_LMP_DRO_WIN_low(k)+a

_RegU_DRO_WIN_low(k)+a_Spin_DRO_WIN_low(

k)-a_G2Bat_DRO_WIN_low(k,1)-

a_G2L_DRO_WIN_low(k))),inf) <= 

lambda_LMP_WIN_low(k,1); 

        norm((gama2_LMP_WIN_low(k,1)-

a2_LMP_WIN_low(k,1).*(a_LMP_DRO_WIN_low(

k)+a_RegU_DRO_WIN_low(k)+a_Spin_DRO_WIN_

low(k)-a_G2Bat_DRO_WIN_low(k,1)-
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a_G2L_DRO_WIN_low(k))),inf) <= 

lambda_LMP_WIN_low(k,1); 

        0<= gama1_LMP_WIN_low(k,1); 

        0<= gama2_LMP_WIN_low(k,1);     

  

        

b1_RegD_WIN_low(k,1)*tou_RegD_WIN_low + 

a1_Risk_WIN_low .* 

a_RegD_DRO_WIN_low(k).*RegD_da_WIN_low(k

,i) + gama1_RegD_WIN_low(k,1) .* 

(d_RegD_WIN_low(k,1) - 

RegD_da_WIN_low(k,i)) <= 

S_RegD_WIN_low(k,i); 

%Norm_Reg_D_da_WIN_low  

%Er_Reg_D_da_WIN_low 

%Norm_Reg_D_da_WIN_low  

        

b2_RegD_WIN_low(k,1)*tou_RegD_WIN_low + 

a2_RegD_WIN_low(k,1) .* 

a_RegD_DRO_WIN_low(k).*RegD_da_WIN_low(k

,i) + gama2_RegD_WIN_low(k,1) .* 

(d_RegD_WIN_low(k,1) - 

RegD_da_WIN_low(k,i)) <= 

S_RegD_WIN_low(k,i); 

        norm((gama1_RegD_WIN_low(k,1)- 

a1_Risk_WIN_low.* 

a_RegD_DRO_WIN_low(k)),inf) 

<=Tr_RegD(k,1).* 

lambda_RegD_WIN_low(k,1); 

        norm((gama2_RegD_WIN_low(k,1)- 

a2_RegD_WIN_low(k,1).* 

a_RegD_DRO_WIN_low(k)),inf) 

<=Tr_RegD(k,1).* 

lambda_RegD_WIN_low(k,1); 

        0<= gama1_RegD_WIN_low(k,1); 

        0<= gama2_RegD_WIN_low(k,1); 

         

      end 

  end 

   

  cvx_end 

  

load gong.mat; 

sound(y);  

display("WELL DONE!!") 

  

t_DRO_WIN_low = toc  

  

     %% Deterministic Summer 

tic 

clear a_G2L_Dit_SUM 

clear Cap_Discharge_Dit_SUM 

clear cost_Charge_Dit_SUM 

clear cost_Demand_Dit_SUM 

clear income_Spin_Dit_SUM 

clear Income_Spin_Dit_SUM 

clear income_sell_Dit_SUM 

clear INCOME_sell_Dit_SUM 

clear income_E_Dit_SUM 

clear Income_E_Dit_SUM 

clear income_MilU_Dit_SUM 

clear income_RegU_Dit_SUM 

clear Income_RegU_Dit_SUM 

clear cost_Charge_Dit_SUM 

clear Cap_Charge_Dit_SUM 

clear income_MilD_Dit_SUM 

clear income_RegD_Dit_SUM 

clear Income_RegD_Dit_SUM 

clear income_Charging_Dit_SUM 

clear income_Discharging_Dit_SUM 

clear cost_OP_Dit_SUM 

clear Soc_Dit_SUM 

clear SOC_Dit_SUM 

clear cost_Dit_SUM 

clear COST_Dit_SUM 

clear SOCC_Dit_SUM 

clear a_RegU_Dit_SUM 

clear a_Spin_Dit_SUM 

clear a_LMP_Dit_SUM 

clear a_RegD_Dit_SUM 

clear a_Buy_Dit_SUM 

clear Cap_EX_dch_Dit_SUM 

clear Cap_EX_ch_Dit_SUM 

clear a_Ex_ch_Dit_SUM 

clear a_Ex_dch_Dit_SUM 

clear a_G2Bat_Dit_SUM 

clear a_PV2Bat_Dit_SUM 

clear cost_un_dch_Dit_SUM 

clear cost_un_ch_Dit_SUM 

clear a_Bat2L_Dit_SUM 

clear M_Dit_SUM 

clear Y_Dit_SUM 

cvx_begin  

    variable Cap_Bat2L_Dit_SUM(24) 

nonnegative 

    variable Cap_G2Bat_Dit_SUM(24) 

nonnegative 

    variable Cap_RegD_Dit_SUM(24) 

nonnegative 

    variable Cap_PV2L_Dit_SUM(24) 

nonnegative 

    variable Cap_G2L_Dit_SUM(24) 

nonnegative 

    variable Cap_Bat2G_Dit_SUM(24) 

nonnegative 

    variable Cap_PV2Bat_Dit_SUM(24) 

nonnegative 

    variable Cap_RegU_Dit_SUM(24) 

nonnegative  

    variable Cap_Spin_Dit_SUM(24) 

nonnegative 

    variable M_Dit_SUM(24) binary 

    variable Cap_Ex_ch_Dit_SUM(24) 

nonnegative 

    variable Cap_Ex_dch_Dit_SUM(24) 

nonnegative 

  for k = 1:25 

      if k < 25 

    

    Cap_Charge_Dit_SUM(k,1) = 

Cap_G2Bat_Dit_SUM(k)+Cap_PV2Bat_Dit_SUM(

k)+Cap_RegD_Dit_SUM(k);%+Cap_Ex_ch_Dit_S

UM(k) ; 

    Cap_Discharge_Dit_SUM(k,1) = 

Cap_Bat2G_Dit_SUM(k)+Cap_Spin_Dit_SUM(k)

+Cap_RegU_Dit_SUM(k)+Cap_Bat2L_Dit_SUM(k

);%+Cap_Ex_dch_Dit_SUM(k); 

       

    cost_Charge_Dit_SUM(k,1) = 

(Cap_G2Bat_Dit_SUM(k)).* 

Mean_LMP_da_SUM_low(k) ; 

%+Cap_RegD_Dit_SUM(k)  Pr_buy_SUM Cost 

of buyng energy from Grid for battery 

    cost_Demand_Dit_SUM(k,1) = 

Mean_LMP_da_SUM_low(k) .* 

(Cap_G2L_Dit_SUM(k));   %Pr_buy_SUM cost 

of buying energy from Grid for Load 

    

   income_Spin_Dit_SUM(k,1) = Tr_RS(k) 

.* (Mean_Spin_da_SUM_low(k).* 

Cap_Spin_Dit_SUM(k));%Mean_Spin_da_low 

   Income_Spin_Dit_SUM(k,1) = 

sum(income_Spin_Dit_SUM(k)); 

    

   income_E_Dit_SUM(k,1) = 

(Mean_LMP_da_SUM_low(k).*(Cap_Bat2G_Dit_

SUM(k)+Cap_RegU_Dit_SUM(k)+Cap_Spin_Dit_

SUM(k))); %high 
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   Income_E_Dit_SUM(k,1) = 

sum(income_E_Dit_SUM); 

    

   income_RegU_Dit_SUM(k,1) =  

Tr_RegU(k).*(Mean_RegU_da_SUM_low(k) .* 

(Cap_RegU_Dit_SUM(k))) ;% 

Mean_Reg_U_da_low 

   Income_RegU_Dit_SUM(k,1) =  

sum(income_RegU_Dit_SUM); 

    

   income_RegD_Dit_SUM(k,1) = 

Tr_RegD(k).*(Mean_RegD_da_SUM_low(k) .* 

Cap_RegD_Dit_SUM(k));  % 

Mean_Reg_D_da_low 

   Income_RegD_Dit_SUM(k,1) = 

sum(income_RegD_Dit_SUM); 

    

   income_Charging_Dit_SUM(k,1) = 

income_RegD_Dit_SUM(k) - 

cost_Charge_Dit_SUM(k); 

   income_Discharging_Dit_SUM(k,1)=  

income_Spin_Dit_SUM(k)+income_E_Dit_SUM(

k)+income_RegU_Dit_SUM(k);%+income_sell_

Dit_SUM(k); 

    

   cost_OP_Dit_SUM(k,1) =  0.014 

.*(Cap_PV2Bat_Dit_SUM(k)+ 

Cap_G2Bat_Dit_SUM(k) + 

Cap_Bat2G_Dit_SUM(k)+Tr_RS(k) .* 

Cap_Spin_Dit_SUM(k)+Tr_RegD(k).*Cap_RegD

_Dit_SUM(k)+Cap_RegU_Dit_SUM(k)+Cap_Bat2

L_Dit_SUM(k)) ; % Cost operation 

      

    cost_un_dch_Dit_SUM(k,1)  = 

Cap_Ex_dch_Dit_SUM(k)* 0.0; 

    cost_un_ch_Dit_SUM(k,1)  = 

Cap_Ex_ch_Dit_SUM(k)* 0.0; 

     

  if k==1 

   Soc_Dit_SUM(k,1)  =SOC_0 + 

cost_un_ch_Dit_SUM(k); 

  else 

   Soc_Dit_SUM(k,1)  = Eta_Ch 

.*(Cap_PV2Bat_Dit_SUM(k-1)+ 

Cap_G2Bat_Dit_SUM(k-1)+ 

Cap_RegD_Dit_SUM(k-1))-

(Cap_Bat2G_Dit_SUM(k-1,1)+ 

Cap_Spin_Dit_SUM(k-1)+ 

Cap_RegU_Dit_SUM(k-

1)+Cap_Bat2L_Dit_SUM(k-1))./Eta_D;% 

  end 

    SOC_Dit_SUM(k,1)    = 

sum(Soc_Dit_SUM);  

   cost_Dit_SUM(k,1)    = 

(cost_un_ch_Dit_SUM(k)+cost_un_dch_Dit_S

UM(k)+cost_Demand_Dit_SUM(k)-

income_Discharging_Dit_SUM(k)- 

income_Charging_Dit_SUM(k)+ 

cost_OP_Dit_SUM(k));%);%cost_Demand_Dit_

SUM(k) 

   SOCC_Dit_SUM(k,1)    = 

SOC_Dit_SUM(k,1)/BAT_CAP;  

   a_RegU_Dit_SUM(k,1)  = 

Cap_RegU_Dit_SUM(k)/Cap_Max; 

   a_RegD_Dit_SUM(k,1)  = 

Cap_RegD_Dit_SUM(k)/Cap_Max; 

   a_Spin_Dit_SUM(k,1)  = 

Cap_Spin_Dit_SUM(k)/Cap_Max; 

   a_LMP_Dit_SUM(k,1)   = 

(Cap_Bat2G_Dit_SUM(k))/Cap_Max; 

   a_Ex_ch_Dit_SUM(k,1) = 

Cap_Ex_ch_Dit_SUM(k)/Cap_Max; 

   a_Ex_dch_Dit_SUM(k,1) = 

Cap_Ex_dch_Dit_SUM(k)/Cap_Max; 

   a_G2Bat_Dit_SUM(k,1)  = 

Cap_G2Bat_Dit_SUM(k)/Cap_Max; 

   a_PV2Bat_Dit_SUM(k,1) = 

Cap_PV2Bat_Dit_SUM(k)/Cap_Max; 

   a_Bat2L_Dit_SUM(k,1)  = 

Cap_Bat2L_Dit_SUM(k)/Cap_Max; 

   a_G2L_Dit_SUM(k,1)  = 

Cap_G2L_Dit_SUM(k)/Cap_Max; 

   a_PV2L_Dit_WIN(k,1) = 

Cap_PV2L_Dit_WIN(k)/Cap_Max;    

      else 

           Soc_Dit_SUM(k,1)  = Eta_Ch 

.*(Cap_PV2Bat_Dit_SUM(k-1)+ 

Cap_G2Bat_Dit_SUM(k-1)+ 

Cap_RegD_Dit_SUM(k-1))-

(Cap_Bat2G_Dit_SUM(k-1,1)+ 

Cap_Spin_Dit_SUM(k-1)+ 

Cap_RegU_Dit_SUM(k-

1)+Cap_Bat2L_Dit_SUM(k-1))./Eta_D;% 

           SOC_Dit_SUM(k,1)  = 

sum(Soc_Dit_SUM);  

           SOCC_Dit_SUM(k,1)  = 

SOC_Dit_SUM(k,1)/BAT_CAP;  

      end 

      end 

  

  OBJ_Dit_SUM =  sum(cost_Dit_SUM); 

  

minimize(OBJ_Dit_SUM) 

  

   subject to 

   SOC_Dit_SUM(25) >= SOC_Dit_SUM(1) ; 

   SOC_Dit_SUM(1) == SOC_0 ; 

   SOC_Min <= SOC_Dit_SUM(25)  <= 

SOC_Max ;  

   for k = 1:24 

    SOC_Min <= SOC_Dit_SUM(k)  <= 

SOC_Max ;  

    Cap_PV2L_Dit_SUM(k) + 

Cap_G2L_Dit_SUM(k)+Cap_Bat2L_Dit_SUM(k) 

== Cap_L_sum(k); 

    Cap_PV2Bat_Dit_SUM(k) + 

Cap_PV2L_Dit_SUM(k) <= Cap_PV_sum(k); 

     

    Cap_Charge_Dit_SUM(k) - Cap_Max *(1- 

M_Dit_SUM(k))<= 0; 

    Cap_Discharge_Dit_SUM(k) - Cap_Max 

*(M_Dit_SUM(k))<= 0; 

        

    if Tr_RS(k)==0 

       Cap_Spin_Dit_SUM(k)==0; 

    end 

     

    if Tr_RegU(k)==0 

       Cap_RegU_Dit_SUM(k)==0; 

    end 

    

   if Tr_RegD(k)==0 

       Cap_RegD_Dit_SUM(k)==0; 

   end 

   end 

  cvx_end 

   

load gong.mat; 

sound(y);  

display("WELL DONE!!") 

  

t_Dit_SUM = toc   

  

 %% Deterministic WINter 

tic 

clear a_PV2L_Dit_WIN 

clear a_G2L_Dit_WIN 

clear Cap_Discharge_Dit_WIN 
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clear cost_Charge_Dit_WIN 

clear cost_Demand_Dit_WIN 

clear income_Spin_Dit_WIN 

clear Income_Spin_Dit_WIN 

clear income_sell_Dit_WIN 

clear INCOME_sell_Dit_WIN 

clear income_E_Dit_WIN 

clear Income_E_Dit_WIN 

clear income_MilU_Dit_WIN 

clear income_RegU_Dit_WIN 

clear Income_RegU_Dit_WIN 

clear cost_Charge_Dit_WIN 

clear Cap_Charge_Dit_WIN 

clear income_MilD_Dit_WIN 

clear income_RegD_Dit_WIN 

clear Income_RegD_Dit_WIN 

clear income_Charging_Dit_WIN 

clear income_Discharging_Dit_WIN 

clear cost_OP_Dit_WIN 

clear Soc_Dit_WIN 

clear SOC_Dit_WIN 

clear cost_Dit_WIN 

clear COST_Dit_WIN 

clear SOCC_Dit_WIN 

clear a_RegU_Dit_WIN 

clear a_Spin_Dit_WIN 

clear a_LMP_Dit_WIN 

clear a_RegD_Dit_WIN 

clear a_Buy_Dit_WIN 

clear Cap_EX_dch_Dit_WIN 

clear Cap_EX_ch_Dit_WIN 

clear a_G2Bat_Dit_WIN 

clear a_PV2Bat_Dit_WIN 

clear cost_un_dch_Dit_WIN 

clear cost_un_ch_Dit_WIN 

clear Cap_Ex_ch_Dit_WIN 

clear Cap_Ex_dch_Dit_WIN 

clear a_Bat2L_Dit_WIN 

clear a_Ex_ch_Dit_WIN 

clear a_Ex_dch_Dit_WIN 

cvx_begin 

    variable Cap_Bat2L_Dit_WIN(24) 

nonnegative 

    variable Cap_G2Bat_Dit_WIN(24) 

nonnegative 

    variable Cap_RegD_Dit_WIN(24) 

nonnegative 

    variable Cap_PV2L_Dit_WIN(24) 

nonnegative 

    variable Cap_G2L_Dit_WIN(24) 

nonnegative 

    variable Cap_Bat2G_Dit_WIN(24) 

nonnegative 

    variable Cap_PV2Bat_Dit_WIN(24) 

nonnegative 

    variable Cap_RegU_Dit_WIN(24) 

nonnegative  

    variable Cap_Spin_Dit_WIN(24) 

nonnegative 

    variable M_Dit_WIN(24) binary  

    variable Cap_Ex_ch_Dit_WIN(24) 

nonnegative 

    variable Cap_Ex_dch_Dit_WIN(24) 

nonnegative 

  for k = 1:25 

      if k<25 

    Cap_Charge_Dit_WIN(k,1) 

=Cap_G2Bat_Dit_WIN(k)+Cap_PV2Bat_Dit_WIN

(k)+Cap_RegD_Dit_WIN(k);%+Cap_Ex_ch_Dit_

WIN(k) ; 

    Cap_Discharge_Dit_WIN(k,1) = 

Cap_Bat2G_Dit_WIN(k)+Cap_Spin_Dit_WIN(k)

+Cap_RegU_Dit_WIN(k)+Cap_Bat2L_Dit_WIN(k

);%+Cap_Ex_dch_Dit_WIN(k); 

    

    cost_Charge_Dit_WIN(k,1) = 

(Cap_G2Bat_Dit_WIN(k)).* 

Mean_LMP_da_WIN_low(k) ; 

%+Cap_RegD_Dit_WIN(k)  Pr_buy_WIN Cost 

of buyng energy from Grid for battery 

    cost_Demand_Dit_WIN(k,1) = 

Mean_LMP_da_WIN_low(k) .* 

(Cap_G2L_Dit_WIN(k));   %Pr_buy_WIN cost 

of buying energy from Grid for Load 

    

   income_Spin_Dit_WIN(k,1) = Tr_RS(k) 

.* (Mean_Spin_da_WIN_low(k).* 

Cap_Spin_Dit_WIN(k));%Mean_Spin_da_low 

   Income_Spin_Dit_WIN(k,1) = 

sum(income_Spin_Dit_WIN(k)); 

    

   income_E_Dit_WIN(k,1) = ( 

Mean_LMP_da_WIN_low(k).*(Cap_Bat2G_Dit_W

IN(k)+Cap_RegU_Dit_WIN(k)+Cap_Spin_Dit_W

IN(k))); %high 

   Income_E_Dit_WIN(k,1) = 

sum(income_E_Dit_WIN); 

    

   income_RegU_Dit_WIN(k,1) =  

Tr_RegU(k).*(Mean_RegU_da_WIN_low(k) .* 

(Cap_RegU_Dit_WIN(k))) ;% 

Mean_Reg_U_da_low 

   Income_RegU_Dit_WIN(k,1) =  

sum(income_RegU_Dit_WIN); 

    

   income_RegD_Dit_WIN(k,1) = 

Tr_RegD(k).*(Mean_RegD_da_WIN_low(k) .* 

Cap_RegD_Dit_WIN(k));  % 

Mean_Reg_D_da_low 

   Income_RegD_Dit_WIN(k,1) = 

sum(income_RegD_Dit_WIN); 

    

   income_Charging_Dit_WIN(k,1)= 

income_RegD_Dit_WIN(k) - 

cost_Charge_Dit_WIN(k); 

   income_Discharging_Dit_WIN(k,1)=  

income_Spin_Dit_WIN(k)+income_E_Dit_WIN(

k)+income_RegU_Dit_WIN(k);%+income_sell_

Dit_WIN(k); 

    

    cost_OP_Dit_WIN(k,1) =  0.008 

.*(Cap_PV2Bat_Dit_WIN(k)+ 

Cap_G2Bat_Dit_WIN(k) + 

Cap_Bat2G_Dit_WIN(k)+Tr_RS(k) .* 

Cap_Spin_Dit_WIN(k)+Tr_RegD(k).*Cap_RegD

_Dit_WIN(k)+Cap_RegU_Dit_WIN(k)+Cap_Bat2

L_Dit_WIN(k)) ; % Cost operation 

      

    cost_un_dch_Dit_WIN(k,1)  = 

Cap_Ex_dch_Dit_WIN(k)* 0.00 ; 

    cost_un_ch_Dit_WIN(k,1)  = 

Cap_Ex_ch_Dit_WIN(k)* 0.00 ; 

     

  if k==1 

   Soc_Dit_WIN(k,1)  =SOC_0 + 

cost_un_ch_Dit_WIN(k); 

  else 

   Soc_Dit_WIN(k,1)  = Eta_Ch 

.*(Cap_PV2Bat_Dit_WIN(k-1)+ 

Cap_G2Bat_Dit_WIN(k-1)+ 

Cap_RegD_Dit_WIN(k-1))-

(Cap_Bat2G_Dit_WIN(k-1,1)+ 

Cap_Spin_Dit_WIN(k-1)+ 

Cap_RegU_Dit_WIN(k-

1)+Cap_Bat2L_Dit_WIN(k-1))./Eta_D;% 

   end 

   SOC_Dit_WIN(k,1)  = sum(Soc_Dit_WIN);  
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   cost_Dit_WIN(k,1) = 

(cost_un_ch_Dit_WIN(k)+cost_un_dch_Dit_W

IN(k)+cost_Demand_Dit_WIN(k)+cost_OP_Dit

_WIN(k)-income_Discharging_Dit_WIN(k)- 

income_Charging_Dit_WIN(k)+ 

cost_OP_Dit_WIN(k));%;%cost_Demand_Dit_W

IN(k) 

   

   SOCC_Dit_WIN(k,1)  = 

SOC_Dit_WIN(k,1)/BAT_CAP;  

   a_RegU_Dit_WIN(k,1) = 

Cap_RegU_Dit_WIN(k)/Cap_Max; 

   a_RegD_Dit_WIN(k,1) = 

Cap_RegD_Dit_WIN(k)/Cap_Max; 

   a_Spin_Dit_WIN(k,1) = 

Cap_Spin_Dit_WIN(k)/Cap_Max; 

   a_LMP_Dit_WIN(k,1)  = 

(Cap_Bat2G_Dit_WIN(k))/Cap_Max; 

   a_Ex_ch_Dit_WIN(k,1) = 

Cap_Ex_ch_Dit_WIN(k)/Cap_Max; 

   a_Ex_dch_Dit_WIN(k,1) = 

Cap_Ex_dch_Dit_WIN(k)/Cap_Max; 

   a_G2Bat_Dit_WIN(k,1) = 

Cap_G2Bat_Dit_WIN(k)/Cap_Max; 

   a_PV2Bat_Dit_WIN(k,1) = 

Cap_PV2Bat_Dit_WIN(k)/Cap_Max; 

   a_Bat2L_Dit_WIN(k,1) = 

Cap_Bat2L_Dit_WIN(k)/Cap_Max; 

   a_G2L_Dit_WIN(k,1) = 

Cap_G2L_Dit_WIN(k)/Cap_Max; 

   a_PV2L_Dit_WIN(k,1) = 

Cap_PV2L_Dit_WIN(k)/Cap_Max; 

      else 

          Soc_Dit_WIN(k,1)  = Eta_Ch 

.*(Cap_PV2Bat_Dit_WIN(k-1)+ 

Cap_G2Bat_Dit_WIN(k-1)+ 

Cap_RegD_Dit_WIN(k-1))-

(Cap_Bat2G_Dit_WIN(k-1,1)+ 

Cap_Spin_Dit_WIN(k-1)+ 

Cap_RegU_Dit_WIN(k-

1)+Cap_Bat2L_Dit_WIN(k-1))./Eta_D; 

          SOC_Dit_WIN(k,1)  = 

sum(Soc_Dit_WIN);  

          SOCC_Dit_WIN(k,1)  = 

SOC_Dit_WIN(k,1)/BAT_CAP;  

      end 

       

      end 

  

  OBJ_Dit_WIN =  sum(cost_Dit_WIN); 

  

minimize(OBJ_Dit_WIN) 

  

   subject to 

   SOC_Dit_WIN(25) >=  SOC_Dit_WIN(1) ; 

   SOC_Dit_WIN(1) == SOC_0 ; 

      SOC_Min <= SOC_Dit_WIN(25)  <= 

SOC_Max ;  

  

   for k = 1:24 

   SOC_Min <= SOC_Dit_WIN(k)  <= SOC_Max 

;  

   0 <= 

Cap_G2Bat_Dit_WIN(k)+Cap_RegD_Dit_WIN(k) 

+ 

Cap_PV2Bat_Dit_WIN(k)+Cap_Ex_dch_Dit_WIN

(k) <= Cap_Max;%+Cap_EX_ch_Dit_WIN(k) 

   0 <= 

Cap_Spin_Dit_WIN(k)+Cap_RegU_Dit_WIN(k)+

Cap_Bat2G_Dit_WIN(k) + 

Cap_Bat2L_Dit_WIN(k)+Cap_Ex_ch_Dit_WIN(k

)<= Cap_Max; % 

   Cap_PV2L_Dit_WIN(k) + 

Cap_G2L_Dit_WIN(k)+Cap_Bat2L_Dit_WIN(k) 

== Cap_L_win(k);% 

   Cap_PV2Bat_Dit_WIN(k) + 

Cap_PV2L_Dit_WIN(k) <= Cap_PV_win(k); 

     

    Cap_Charge_Dit_WIN(k)<=Cap_Max.*(1-

M_Dit_WIN(k)); 

    

Cap_Discharge_Dit_WIN(k)<=Cap_Max.*(M_Di

t_WIN(k)); 

   if Tr_RS(k)==0 

       Cap_Spin_Dit_WIN(k)==0; 

   end 

   if Tr_RegU(k)==0 

       Cap_RegU_Dit_WIN(k)==0; 

   end 

    

   if Tr_RegD(k)==0 

       Cap_RegD_Dit_WIN(k)==0; 

   end 

  

  end 

  cvx_end 

   

load gong.mat; 

sound(y);  

display("WELL DONE!!") 

  

t_Dit_WIN = toc   

  

%% Robust for Summer 

  

tic 

clear a_PV2L_RO_SUM 

clear a_G2L_RO_SUM 

clear Cap_Discharge_RO_SUM 

clear cost_Charge_RO_SUM 

clear cost_Demand_RO_SUM 

clear cost_OP_RO_SUM 

clear income_Spin_RO_SUM 

clear Income_Spin_RO_SUM 

clear income_sell_RO_SUM 

clear INCOME_sell_RO_SUM 

clear income_E_RO_SUM 

clear Income_E_RO_SUM 

clear income_MilU_RO_SUM 

clear income_RegU_RO_SUM 

clear Income_RegU_RO_SUM 

clear cost_Charge_RO_SUM 

clear Cap_Charge_RO_SUM 

clear income_MilD_RO_SUM 

clear income_RegD_RO_SUM 

clear Income_RegD_RO_SUM 

clear income_Charging_RO_SUM 

clear income_Discharging_RO_SUM 

clear cost_OP_RO_SUM 

clear Soc_RO_SUM 

clear SOC_RO_SUM 

clear cost_RO_SUM 

clear COST_RO_SUM 

clear SOCC_RO_SUM 

clear a_RegU_RO_SUM 

clear a_Spin_RO_SUM 

clear a_LMP_RO_SUM 

clear a_RegD_RO_SUM 

clear a_Buy_RO_SUM 

clear Cap_Bat2L_RO_SUM  

clear a_Bat2L_RO_SUM 

clear a_G2Bat_RO_SUM 

clear a_PV2Bat_RO_SUM 

clear cost_un_dch_RO_SUM 

clear cost_un_ch_RO_SUM 

clear a_ex_dch_RO_SUM 
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clear a_ex_ch_RO_SUM 

cvx_begin 

  

    variable Cap_Bat2L_RO_SUM(24) 

nonnegative 

    variable Cap_G2Bat_RO_SUM(24) 

nonnegative 

    variable Cap_RegD_RO_SUM(24) 

nonnegative 

    variable Cap_PV2L_RO_SUM(24) 

nonnegative 

    variable Cap_G2L_RO_SUM(24) 

nonnegative 

    variable Cap_Bat2G_RO_SUM(24) 

nonnegative 

    % variable Cap_PV2G_RO_SUM(24) 

nonnegative 

    variable Cap_PV2Bat_RO_SUM(24) 

nonnegative 

    variable Cap_RegU_RO_SUM(24) 

nonnegative  

    variable Cap_Spin_RO_SUM(24) 

nonnegative 

    variable M_RO_SUM(24) binary    

    variable Cap_ex_ch_RO_SUM(24) 

nonnegative 

    variable Cap_ex_dch_RO_SUM(24) 

nonnegative 

  for k = 1:25 

      if k<25 

    Cap_Charge_RO_SUM(k,1) = 

Cap_G2Bat_RO_SUM(k)+Cap_PV2Bat_RO_SUM(k)

+Cap_RegD_RO_SUM(k);%+Cap_ex_ch_RO_SUM(k

); 

    Cap_Discharge_RO_SUM(k,1) = 

Cap_Bat2G_RO_SUM(k)+Cap_Spin_RO_SUM(k)+C

ap_RegU_RO_SUM(k)+Cap_Bat2L_RO_SUM(k);%+

Cap_ex_dch_RO_SUM(k); 

     

    cost_Charge_RO_SUM(k,1) = 

(Cap_G2Bat_RO_SUM(k)).* 

Min_LMP_da_SUM_low(k) ; 

%+Cap_RegD_RO_SUM(k)  Pr_buy_SUM Cost of 

buyng energy fRO_SUMm Grid for battery 

    cost_Demand_RO_SUM(k,1) = 

Min_LMP_da_SUM_low(k) .* 

(Cap_G2L_RO_SUM(k));   %Pr_buy_SUM cost 

of buying energy fRO_SUMm Grid for Load 

    

   income_Spin_RO_SUM(k,1) = Tr_RS(k) .* 

(Min_Spin_da_SUM_low(k).* 

Cap_Spin_RO_SUM(k));% - 

abs(min(Cap_Max,Cap_RS_DA_Max(k))-

Cap_RES(k)).*Pen_RES_DA); 

   Income_Spin_RO_SUM(k,1) = 

sum(income_Spin_RO_SUM(k)); 

    

   income_E_RO_SUM(k,1) = 

Min_LMP_da_SUM_low(k).*(Cap_Bat2G_RO_SUM

(k)+Cap_RegU_RO_SUM(k)+Cap_Spin_RO_SUM(k

)); %Energy income for day ahead and 

realtime  +Cap_RegU1(k)+Cap_Spin(k) 

   Income_E_RO_SUM(k,1) = 

sum(income_E_RO_SUM); 

    

   income_RegU_RO_SUM(k,1) =  

Tr_RegU(k).*( Min_RegU_da_SUM_low(k) .* 

(Cap_RegU_RO_SUM(k))) ;% Income of 

Regulation up including up Mileage  

   Income_RegU_RO_SUM(k,1) =  

sum(income_RegU_RO_SUM);% + 

income_MilU1); 

    

   income_RegD_RO_SUM(k,1) = 

Tr_RegD(k).*(Min_RegD_da_SUM_low(k) .* 

Cap_RegD_RO_SUM(k));  % Income of 

Regulation up including up Mileage   

   Income_RegD_RO_SUM(k,1) = 

sum(income_RegD_RO_SUM);% + 

income_MilD_Dit); 

    

   income_Charging_RO_SUM(k,1)= 

income_RegD_RO_SUM(k)- 

cost_Charge_RO_SUM(k); 

   income_Discharging_RO_SUM(k,1)=  

income_Spin_RO_SUM(k)+income_E_RO_SUM(k)

+income_RegU_RO_SUM(k);%+income_sell_RO_

SUM(k); 

   cost_OP_RO_SUM(k,1) =  0.009 

.*(Cap_PV2Bat_RO_SUM(k)+ 

Cap_G2Bat_RO_SUM(k) + 

Cap_Bat2G_RO_SUM(k)+Cap_Spin_RO_SUM(k)+C

ap_RegD_RO_SUM(k)+Cap_RegU_RO_SUM(k)) ; 

% Cost operation 

    

    cost_un_dch_RO_SUM(k,1)  = 

Cap_ex_dch_RO_SUM(k)* 0.0 ; 

    cost_un_ch_RO_SUM(k,1)  = 

Cap_ex_ch_RO_SUM(k)* 0.0 ; 

     

    

   if k==1 

   Soc_RO_SUM(k,1)  =  SOC_0 + 

cost_un_ch_RO_SUM(k); 

    else 

   Soc_RO_SUM(k,1)  =  Eta_Ch 

.*(Cap_PV2Bat_RO_SUM(k-1)+ 

Cap_G2Bat_RO_SUM(k-1)+Cap_RegD_RO_SUM(k-

1))-(Cap_Bat2G_RO_SUM(k-

1,1)+Cap_Spin_RO_SUM(k-

1)+Cap_RegU_RO_SUM(k-

1)+Cap_Bat2L_RO_SUM(k-1))./Eta_D; 

    end 

   SOC_RO_SUM(k,1)  = sum(Soc_RO_SUM);  

   cost_RO_SUM(k,1) 

=(cost_Demand_RO_SUM(k)+cost_OP_RO_SUM(k

)-income_Discharging_RO_SUM(k)- 

income_Charging_RO_SUM(k)+cost_un_ch_RO_

SUM(k)+cost_un_dch_RO_SUM(k));%);%cost_D

emand_RO_SUM(k) 

   

   SOCC_RO_SUM(k,1)     = 

SOC_RO_SUM(k,1)/BAT_CAP;  

   a_RegU_RO_SUM(k,1)   = 

Cap_RegU_RO_SUM(k)/Cap_Max; 

   a_RegD_RO_SUM(k,1)   = 

Cap_RegD_RO_SUM(k)/Cap_Max; 

   a_Spin_RO_SUM(k,1)   = 

Cap_Spin_RO_SUM(k)/Cap_Max; 

   a_LMP_RO_SUM(k,1)    = 

(Cap_Bat2G_RO_SUM(k))/Cap_Max;%+Cap_Spin

_RO_SUM(k)+Cap_RegU_RO_SUM(k) 

   a_G2Bat_RO_SUM(k,1)  = 

Cap_G2Bat_RO_SUM(k)/Cap_Max; 

   a_Bat2L_RO_SUM(k,1)  = 

Cap_Bat2L_RO_SUM(k)/Cap_Max; 

   a_PV2Bat_RO_SUM(k,1) = 

Cap_PV2Bat_RO_SUM(k)/Cap_Max; 

   a_G2L_RO_SUM(k,1)    = 

Cap_G2L_RO_SUM(k)/Cap_Max; 

   a_PV2L_RO_SUM(k,1)   = 

Cap_PV2L_RO_SUM(k)/Cap_Max; 

   a_ex_ch_RO_SUM(k,1)  = 

Cap_ex_ch_RO_SUM(k)/Cap_Max; 

   a_ex_dch_RO_SUM(k,1) = 

Cap_ex_dch_RO_SUM(k)/Cap_Max; 

      else 
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        Soc_RO_SUM(k,1)  =  Eta_Ch 

.*(Cap_PV2Bat_RO_SUM(k-1)+ 

Cap_G2Bat_RO_SUM(k-1)+Cap_RegD_RO_SUM(k-

1))-(Cap_Bat2G_RO_SUM(k-

1,1)+Cap_Spin_RO_SUM(k-

1)+Cap_RegU_RO_SUM(k-

1)+Cap_Bat2L_RO_SUM(k-1))./Eta_D; 

        SOC_RO_SUM(k,1)  = 

sum(Soc_RO_SUM);  

        SOCC_RO_SUM(k,1)  = 

SOC_RO_SUM(k,1)/BAT_CAP; 

         

      end 

      end 

  

  OBJ_RO_SUM =  sum(cost_RO_SUM); 

  

minimize(OBJ_RO_SUM) 

  

   subject to 

   SOC_RO_SUM(25) >= SOC_RO_SUM(1) ; 

   SOC_Min <= SOC_RO_SUM(25)  <= SOC_Max 

; 

  for k = 1:24 

   SOC_RO_SUM(1) == SOC_0 ;% for initial 

value of soc  

   SOC_Min <= SOC_RO_SUM(k)  <= SOC_Max 

;  

    0 <= 

Cap_G2Bat_RO_SUM(k)+Cap_RegD_RO_SUM(k) + 

Cap_PV2Bat_RO_SUM(k)<= Cap_Max; 

    0 <= 

Cap_Spin_RO_SUM(k)+Cap_RegU_RO_SUM(k)+Ca

p_Bat2G_RO_SUM(k)+Cap_Bat2L_RO_SUM(k) <= 

Cap_Max; % 

    Cap_PV2L_RO_SUM(k) + 

Cap_G2L_RO_SUM(k)+Cap_Bat2L_RO_SUM(k) == 

Cap_L_sum(k); 

    Cap_PV2Bat_RO_SUM(k) + 

Cap_PV2L_RO_SUM(k) <= Cap_PV_sum(k); 

     

    Cap_Charge_RO_SUM(k)- Cap_Max *(1-

M_RO_SUM(k))<=0; 

    Cap_Discharge_RO_SUM(k)- Cap_Max 

*(M_RO_SUM(k))<=0 ; 

   if Tr_RS(k)==0 

       Cap_Spin_RO_SUM(k)==0; 

   end 

   if Tr_RegU(k)==0 

       Cap_RegU_RO_SUM(k)==0; 

   end 

    

   if Tr_RegD(k)==0 

       Cap_RegD_RO_SUM(k)==0; 

   end 

     

  end 

  cvx_end 

   

load gong.mat; 

sound(y);  

display("WELL DONE!!") 

  

t_RO_SUM = toc   

  

 %%  Robust for Winter 

  

tic 

  

clear Cap_Discharge_RO_WIN 

clear cost_Charge_RO_WIN 

clear cost_Demand_RO_WIN 

clear cost_OP_RO_WIN 

clear income_Spin_RO_WIN 

clear Income_Spin_RO_WIN 

clear income_sell_RO_WIN 

clear INCOME_sell_RO_WIN 

clear income_E_RO_WIN 

clear Income_E_RO_WIN 

clear income_MilU_RO_WIN 

clear income_RegU_RO_WIN 

clear Income_RegU_RO_WIN 

clear cost_Charge_RO_WIN 

clear Cap_Charge_RO_WIN 

clear income_MilD_RO_WIN 

clear income_RegD_RO_WIN 

clear Income_RegD_RO_WIN 

clear income_Charging_RO_WIN 

clear income_Discharging_RO_WIN 

clear cost_OP_RO_WIN 

clear Soc_RO_WIN 

clear SOC_RO_WIN 

clear cost_RO_WIN 

clear COST_RO_WIN 

clear SOCC_RO_WIN 

clear a_RegU_RO_WIN 

clear a_Spin_RO_WIN 

clear a_LMP_RO_WIN 

clear a_RegD_RO_WIN 

clear a_Buy_RO_WIN 

clear AAA_RO_WIN 

clear Cap_Bat2L_RO_WIN  

clear a_Bat2L_RO_WIN 

clear a_G2Bat_RO_WIN 

clear a_PV2Bat_RO_WIN 

clear Cap_ex_RO_ch_WIN 

clear Cap_ex_RO_dch_WIN 

clear a_ex_RO_ch_WIN 

clear a_ex_RO_dch_WIN 

clear cost_ex_RO_ch_WIN 

clear cost_ex_RO_dch_WIN 

clear a_PV2L_RO_WIN 

clear a_G2L_RO_WIN 

cvx_begin 

  

    variable Cap_Bat2L_RO_WIN(24) 

nonnegative 

    variable Cap_G2Bat_RO_WIN(24) 

nonnegative 

    variable Cap_RegD_RO_WIN(24) 

nonnegative 

    variable Cap_PV2L_RO_WIN(24) 

nonnegative 

    variable Cap_G2L_RO_WIN(24) 

nonnegative 

    variable Cap_Bat2G_RO_WIN(24) 

nonnegative 

    variable Cap_PV2Bat_RO_WIN(24) 

nonnegative 

    variable Cap_RegU_RO_WIN(24) 

nonnegative  

    variable Cap_Spin_RO_WIN(24) 

nonnegative 

    variable M_RO_WIN(24) binary    

    variable Cap_ex_RO_dch_WIN(24) 

nonnegative    

    variable Cap_ex_RO_ch_WIN(24) 

nonnegative    

     

  for k = 1:25 

      if k<=24 

    Cap_Charge_RO_WIN(k,1) = 

Cap_G2Bat_RO_WIN(k)+Cap_PV2Bat_RO_WIN(k)

+Cap_RegD_RO_WIN(k);%+Cap_ex_RO_ch_WIN(k

); 

    Cap_Discharge_RO_WIN(k,1) = 

Cap_Bat2G_RO_WIN(k)+Cap_Spin_RO_WIN(k)+C
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ap_RegU_RO_WIN(k)+Cap_Bat2L_RO_WIN(k);%+

Cap_ex_RO_dch_WIN(k); 

     

    cost_Charge_RO_WIN(k,1) = 

(Cap_G2Bat_RO_WIN(k)).* 

(Min_LMP_da_WIN_low(k)) ; 

%+Cap_RegD_RO_WIN(k)  Pr_buy_WIN Cost of 

buyng energy fRO_WINm Grid for battery 

    cost_Demand_RO_WIN(k,1) = 

(Min_LMP_da_WIN_low(k)) .* 

(Cap_G2L_RO_WIN(k));   %Pr_buy_WIN cost 

of buying energy fRO_WINm Grid for Load 

    

   income_Spin_RO_WIN(k,1) = Tr_RS(k) .* 

(Min_Spin_da_WIN_low(k).* 

Cap_Spin_RO_WIN(k));% - 

abs(min(Cap_Max,Cap_RS_DA_Max(k))-

Cap_RES(k)).*Pen_RES_DA); 

   Income_Spin_RO_WIN(k,1) = 

sum(income_Spin_RO_WIN(k)); 

    

   income_E_RO_WIN(k,1) = 

Min_LMP_da_WIN_low(k).*(Cap_Bat2G_RO_WIN

(k)+Cap_RegU_RO_WIN(k)+Cap_Spin_RO_WIN(k

)); %Energy income for day ahead and 

realtime  +Cap_RegU1(k)+Cap_Spin(k) 

   Income_E_RO_WIN(k,1) = 

sum(income_E_RO_WIN); 

    

   income_RegU_RO_WIN(k,1) =  

Tr_RegU(k).*( Min_RegU_da_WIN_low(k) .* 

(Cap_RegU_RO_WIN(k))) ;% Income of 

Regulation up including up Mileage  

   Income_RegU_RO_WIN(k,1) =  

sum(income_RegU_RO_WIN);% + 

income_MilU1); 

    

   income_RegD_RO_WIN(k,1) = 

Tr_RegD(k).*(Min_RegD_da_WIN_low(k) .* 

Cap_RegD_RO_WIN(k));  % Income of 

Regulation up including up Mileage   

   Income_RegD_RO_WIN(k,1) = 

sum(income_RegD_RO_WIN);% + 

income_MilD_Dit); 

    

   income_Charging_RO_WIN(k,1)= 

income_RegD_RO_WIN(k)- 

cost_Charge_RO_WIN(k); 

   income_Discharging_RO_WIN(k,1)=  

income_Spin_RO_WIN(k)+income_E_RO_WIN(k)

+income_RegU_RO_WIN(k);%+income_sell_RO_

WIN(k); 

    cost_OP_RO_WIN(k,1) =  0.01 

.*(Cap_PV2Bat_RO_WIN(k)+ 

Cap_G2Bat_RO_WIN(k) + 

Cap_Bat2G_RO_WIN(k)+Cap_Spin_RO_WIN(k)+C

ap_RegD_RO_WIN(k)+Cap_RegU_RO_WIN(k)) ; 

% Cost operation 

   

    cost_ex_RO_dch_WIN(k,1)= 0.00 * 

Cap_ex_RO_dch_WIN(k); 

    cost_ex_RO_ch_WIN(k,1)= 0.00 * 

Cap_ex_RO_ch_WIN(k); 

     

     

    if k==1 

   Soc_RO_WIN(k,1)  =  SOC_0 

+cost_ex_RO_ch_WIN(k); 

    else 

   Soc_RO_WIN(k,1)  =  Eta_Ch 

.*(Cap_PV2Bat_RO_WIN(k-1)+ 

Cap_G2Bat_RO_WIN(k-1)+Cap_RegD_RO_WIN(k-

1))-(Cap_Bat2G_RO_WIN(k-

1,1)+Cap_Spin_RO_WIN(k-

1)+Cap_RegU_RO_WIN(k-

1)+Cap_Bat2L_RO_WIN(k-1))./Eta_D; 

    end 

     

   SOC_RO_WIN(k,1)     = 

sum(Soc_RO_WIN);  

   cost_RO_WIN(k,1)    

=(cost_Demand_RO_WIN(k)+cost_OP_RO_WIN(k

)-income_Discharging_RO_WIN(k)- 

income_Charging_RO_WIN(k)+cost_ex_RO_dch

_WIN(k,1)+cost_ex_RO_ch_WIN(k,1));%+ 

cost_OP_RO_WIN(k));%cost_Demand_RO_WIN(k

) 

   SOCC_RO_WIN(k,1)    = 

SOC_RO_WIN(k,1)/BAT_CAP;  

   a_RegU_RO_WIN(k,1)  = 

Cap_RegU_RO_WIN(k)/Cap_Max; 

   a_RegD_RO_WIN(k,1)  = 

Cap_RegD_RO_WIN(k)/Cap_Max; 

   a_Spin_RO_WIN(k,1)  = 

Cap_Spin_RO_WIN(k)/Cap_Max; 

   a_LMP_RO_WIN(k,1)   = 

(Cap_Bat2G_RO_WIN(k))/Cap_Max;%+Cap_Spin

_RO_WIN(k)+Cap_RegU_RO_WIN(k) 

   a_G2Bat_RO_WIN(k,1) = 

Cap_G2Bat_RO_WIN(k)/Cap_Max; 

   a_Bat2L_RO_WIN(k,1) = 

Cap_Bat2L_RO_WIN(k)/Cap_Max; 

   a_PV2Bat_RO_WIN(k,1) = 

Cap_PV2Bat_RO_WIN(k)/Cap_Max; 

   a_ex_RO_ch_WIN(k,1)  = 

Cap_ex_RO_ch_WIN(k)/Cap_Max; 

   a_ex_RO_dch_WIN(k,1) = 

Cap_ex_RO_dch_WIN(k)/Cap_Max; 

   a_PV2L_RO_WIN(k,1) = 

Cap_PV2L_RO_WIN(k)/Cap_Max; 

   a_G2L_RO_WIN(k,1) = 

Cap_G2L_RO_WIN(k)/Cap_Max; 

   

   else 

       Soc_RO_WIN(k,1)  =  Eta_Ch 

.*(Cap_PV2Bat_RO_WIN(k-1)+ 

Cap_G2Bat_RO_WIN(k-1)+Cap_RegD_RO_WIN(k-

1))-(Cap_Bat2G_RO_WIN(k-

1,1)+Cap_Spin_RO_WIN(k-

1)+Cap_RegU_RO_WIN(k-

1)+Cap_Bat2L_RO_WIN(k-1))./Eta_D; 

       SOC_RO_WIN(k,1)  = 

sum(Soc_RO_WIN);  

       SOCC_RO_WIN(k,1)  = 

SOC_RO_WIN(k,1)/BAT_CAP;  

             end 

  end 

  OBJ_RO_WIN =  sum(cost_RO_WIN); 

  

minimize(OBJ_RO_WIN) 

  

   subject to 

   SOC_RO_WIN(25) >= SOC_RO_WIN(1) ; 

   SOC_Min <= SOC_RO_WIN(25) <= SOC_Max 

;  

  for k = 1:24 

   SOC_RO_WIN(1) == SOC_0 ;% for initial 

value of soc  

   SOC_Min <= SOC_RO_WIN(k)  <= SOC_Max 

;  

    0 <= 

Cap_Spin_RO_WIN(k)+Cap_RegU_RO_WIN(k)+Ca

p_Bat2G_RO_WIN(k)+Cap_Bat2L_RO_WIN(k) <= 

Cap_Max; % 

    Cap_PV2L_RO_WIN(k) + 

Cap_G2L_RO_WIN(k)+Cap_Bat2L_RO_WIN(k) == 

Cap_L_win(k); 
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    Cap_PV2Bat_RO_WIN(k) + 

Cap_PV2L_RO_WIN(k) <= Cap_PV_win(k); 

   % 

Cap_Charge_RO_WIN(k)+Cap_Discharge_RO_WI

N(k)==Cap_Max; 

     

    Cap_Charge_RO_WIN(k)<=Cap_Max.*(1-

M_RO_WIN(k)); 

    Cap_Discharge_RO_WIN(k) 

<=Cap_Max.*(M_RO_WIN(k)); 

   if Tr_RS(k)==0 

       Cap_Spin_RO_WIN(k)==0; 

   end 

   if Tr_RegU(k)==0 

       Cap_RegU_RO_WIN(k)==0; 

   end 

    

   if Tr_RegD(k)==0 

       Cap_RegD_RO_WIN(k)==0; 

   end 

     

  end 

  cvx_end 

   

load gong.mat; 

sound(y);  

display("WELL DONE!!") 

  

t_RO_WIN = toc   

  

%% 

  

clear COST_T_DROS_WIN 

clear COST_T_DitS_WIN 

clear COST_T_DitS_SUM 

  

for day = 1:120; %the selected day 

%      

%    LMP_DA_sample  = LMP_da(:,day) ; 

%    RegD_DA_sample = RegD_da(:,day); 

%    RegU_DA_sample = RegU_da(:,day); 

%    Spin_DA_sample = Spin_da(:,day); 

%    Pr_buy_sample  =  LMP_da(:,day)*1 ; 

    Spin_DA_sample_win =  

Spin_da_win_test(:,day); 

    LMP_DA_sample_win  =  

LMP_da_win_test(:,day) ; 

    RegU_DA_sample_win =  

RegU_da_win_test(:,day); 

    Pr_buy_sample_win  =  

LMP_da_win_test(:,day) ; 

    RegD_DA_sample_win =  

RegD_da_win_test(:,day); 

     

     

    Spin_DA_sample_sum =  

Spin_da_sum_test(:,day); 

    LMP_DA_sample_sum  =  

LMP_da_sum_test(:,day) ; 

    RegU_DA_sample_sum =  

RegU_da_sum_test(:,day); 

    Pr_buy_sample_sum  =  

LMP_da_sum_test(:,day) ; 

    RegD_DA_sample_sum =  

RegD_da_sum_test(:,day); 

  

for k=1:24 

%     %%% Deterministic check for Winter 

   cost_Charge_DitS_WIN(k,1) = 

(Cap_G2Bat_Dit_WIN(k)).* 

Pr_buy_sample_win(k) ; % Cost of buyng 

energy from Grid for battery 

   cost_Demand_DitS_WIN(k,1) = 

Pr_buy_sample_win(k) .* 

(Cap_G2L_Dit_WIN(k));   %cost of buying 

energy from Grid for Load 

   income_Spin_DitS_WIN(k,1) = Tr_RS(k) 

.* 

(Spin_DA_sample_win(k,1).*Cap_Spin_Dit_W

IN(k));% - 

abs(min(Cap_Max,Cap_RS_DA_Max(k))-

Cap_RES(k)).*Pen_RES_DA); 

   Income_Spin_DitS_WIN(k,1) = 

sum(income_Spin_DitS_WIN(k)); 

   income_E_DitS_WIN(k,1) = 

(LMP_DA_sample_win(k,1).*(Cap_Bat2G_Dit_

WIN(k)+Cap_RegU_Dit_WIN(k)+Cap_Spin_Dit_

WIN(k))); % Energy income for day ahead 

and realtime  +Cap_RegU1(k)+Cap_Spin(k) 

   Income_E_DitS_WIN(k,1) = 

sum(income_E_DitS_WIN);  

   income_RegU_DitS_WIN(k,1) =  

Tr_RegU(k).*(RegU_DA_sample_win(k,1) .* 

(Cap_RegU_Dit_WIN(k))) ;% Income of 

Regulation up including up Mileage  

   Income_RegU_DitS_WIN(k,1) =  

sum(income_RegU_DitS_WIN);% + 

income_MilU1); 

   income_RegD_DitS_WIN(k,1) = 

Tr_RegD(k).*(RegD_DA_sample_win(k,1).* 

Cap_RegD_Dit_WIN(k));  % Income of 

Regulation up including up Mileage   

   Income_RegD_DitS_WIN(k,1) = 

sum(income_RegD_DitS_WIN);% + 

income_MilD_Dit); 

    

   income_Charging_DitS_WIN(k,1)= 

income_RegD_DitS_WIN(k); 

   income_Discharging_DitS_WIN(k,1)=  

income_Spin_DitS_WIN(k)+income_E_DitS_WI

N(k)+income_RegU_DitS_WIN(k);%+income_se

ll_RO(k); 

   cost_OP_DitS_WIN(k,1) =  c_op 

.*(Cap_PV2Bat_Dit_WIN(k)+ 

Cap_G2Bat_Dit_WIN(k) + 

Cap_Bat2G_Dit_WIN(k)+Cap_Spin_Dit_WIN(k)

+Cap_RegD_Dit_WIN(k)+Cap_RegU_Dit_WIN(k)

) ; % Cost operation  

   cost_DitS_WIN(k,1) 

=(cost_Demand_DitS_WIN(k)+ 

cost_Charge_DitS_WIN(k)+cost_OP_DitS_WIN

(k)); 

   Rev_DitS_WIN(k,1)= 

income_Discharging_DitS_WIN(k)+ 

income_Charging_DitS_WIN(k); 

     

   %%% DETERMIINISTIC Check for Summer 

   cost_Charge_DitS_SUM(k,1) = 

(Cap_G2Bat_Dit_SUM(k)).* 

Pr_buy_sample_sum(k) ; % Cost of buyng 

energy from Grid for battery 

   cost_Demand_DitS_SUM(k,1) = 

Pr_buy_sample_sum(k) .* 

(Cap_G2L_Dit_SUM(k));   %cost of buying 

energy from Grid for Load 

   income_Spin_DitS_SUM(k,1) = Tr_RS(k) 

.* 

(Spin_DA_sample_sum(k,1).*Cap_Spin_Dit_S

UM(k));% - 

abs(min(Cap_Max,Cap_RS_DA_Max(k))-

Cap_RES(k)).*Pen_RES_DA); 

   Income_Spin_DitS_SUM(k,1) = 

sum(income_Spin_DitS_SUM(k)); 

   income_E_DitS_SUM(k,1) = 

(LMP_DA_sample_sum(k,1).*(Cap_Bat2G_Dit_

SUM(k)+Cap_RegU_Dit_SUM(k)+Cap_Spin_Dit_

SUM(k))); % Energy income for day ahead 

and realtime  +Cap_RegU1(k)+Cap_Spin(k) 
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   Income_E_DitS_SUM(k,1) = 

sum(income_E_DitS_SUM);  

   income_RegU_DitS_SUM(k,1) =  

Tr_RegU(k).*(RegU_DA_sample_sum(k,1) .* 

(Cap_RegU_Dit_SUM(k))) ;% Income of 

Regulation up including up Mileage  

   Income_RegU_DitS_SUM(k,1) =  

sum(income_RegU_DitS_SUM);% + 

income_MilU1);  

   income_RegD_DitS_SUM(k,1) = 

Tr_RegD(k).*(RegD_DA_sample_sum(k,1).* 

Cap_RegD_Dit_SUM(k));  % Income of 

Regulation up including up Mileage   

   Income_RegD_DitS_SUM(k,1) = 

sum(income_RegD_DitS_SUM);% + 

income_MilD_Dit); 

    

   income_Charging_DitS_SUM(k,1)= 

income_RegD_DitS_SUM(k); 

   income_Discharging_DitS_SUM(k,1)=  

income_Spin_DitS_SUM(k)+income_E_DitS_SU

M(k)+income_RegU_DitS_SUM(k);%+income_se

ll_RO(k); 

   cost_OP_DitS_SUM(k,1) =  c_op 

.*(Cap_PV2Bat_Dit_SUM(k)+ 

Cap_G2Bat_Dit_SUM(k) + 

Cap_Bat2G_Dit_SUM(k)+Cap_Spin_Dit_SUM(k)

+Cap_RegD_Dit_SUM(k)+Cap_RegU_Dit_SUM(k)

) ; % Cost operation  

   cost_DitS_SUM(k,1) 

=(cost_Demand_DitS_SUM(k)+ 

cost_Charge_DitS_SUM(k)+cost_OP_DitS_SUM

(k)); 

   Rev_DitS_SUM(k,1)= 

income_Discharging_DitS_SUM(k)+ 

income_Charging_DitS_SUM(k); 

     

  %%% DRO check for Summer 

   cost_Charge_DROS_SUM(k,1) = 

(Cap_G2Bat_DRO_SUM_low(k)).* 

Pr_buy_sample_sum(k) ; % Cost of buyng 

energy from Grid for battery 

   cost_Demand_DROS_SUM(k,1) = 

Pr_buy_sample_sum(k) .* 

(Cap_G2L_DRO_SUM_low(k));   %cost of 

buying energy from Grid for Load 

   income_Spin_DROS_SUM(k,1) = Tr_RS(k) 

.* 

(Spin_DA_sample_sum(k,1).*Cap_Spin_DRO_S

UM_low(k));% - 

abs(min(Cap_Max,Cap_RS_DA_Max(k))-

Cap_RES(k)).*Pen_RES_DA); 

   Income_Spin_DROS_SUM(k,1) = 

sum(income_Spin_DROS_SUM(k)); 

   income_E_DROS_SUM(k,1) = 

(LMP_DA_sample_sum(k,1).*(Cap_Bat2G_DRO_

SUM_low(k)+Cap_RegU_DRO_SUM_low(k)+Cap_S

pin_DRO_SUM_low(k))); % Energy income 

for day ahead and realtime  

+Cap_RegU1(k)+Cap_Spin(k) 

   Income_E_DROS_SUM(k,1) = 

sum(income_E_DROS_SUM); 

   income_RegU_DROS_SUM(k,1) =  

Tr_RegU(k).*(RegU_DA_sample_sum(k,1).* 

(Cap_RegU_DRO_SUM_low(k))) ;% Income of 

Regulation up including up Mileage  

   Income_RegU_DROS_SUM(k,1) =  

sum(income_RegU_DROS_SUM);% + 

income_MilU1); 

   income_RegD_DROS_SUM(k,1) = 

Tr_RegD(k).*(RegD_DA_sample_sum(k,1).* 

Cap_RegD_DRO_SUM_low(k));  % Income of 

Regulation up including up Mileage   

   Income_RegD_DROS_SUM(k,1) = 

sum(income_RegD_DROS_SUM);% + 

income_MilD_Dit); 

    

   income_Charging_DROS_SUM(k,1)= 

income_RegD_DROS_SUM(k); 

   income_Discharging_DROS_SUM(k,1)=  

income_Spin_DROS_SUM(k)+income_E_DROS_SU

M(k)+income_RegU_DROS_SUM(k);%+income_se

ll_RO(k); 

    cost_OP_DROS_SUM(k,1) =  c_op 

.*(Cap_PV2Bat_DRO_SUM_low(k)+ 

Cap_G2Bat_DRO_SUM_low(k) + 

Cap_Bat2G_DRO_SUM_low(k)+Cap_Spin_DRO_SU

M_low(k)+Cap_RegD_DRO_SUM_low(k)+Cap_Reg

U_DRO_SUM_low(k)) ; % Cost operation  

   cost_DROS_SUM(k,1) 

=(cost_Demand_DROS_SUM(k)+ 

cost_Charge_DROS_SUM(k)+cost_OP_DROS_SUM

(k)); 

    Rev_DROS_SUM(k,1)= 

income_Discharging_DROS_SUM(k) + 

income_Charging_DROS_SUM(k); 

  

    %       %%% DRO check for Winter  

********** 

   cost_Charge_DROS_WIN(k,1) = 

(Cap_G2Bat_DRO_WIN_low(k)).* 

Pr_buy_sample_win(k) ; % Cost of buyng 

energy from Grid for battery 

   cost_Demand_DROS_WIN(k,1) = 

Pr_buy_sample_win(k) .* 

(Cap_G2L_DRO_WIN_low(k));   %cost of 

buying energy from Grid for Load 

   income_Spin_DROS_WIN(k,1) = Tr_RS(k) 

.* 

(Spin_DA_sample_win(k,1).*Cap_Spin_DRO_W

IN_low(k));% - 

abs(min(Cap_Max,Cap_RS_DA_Max(k))-

Cap_RES(k)).*Pen_RES_DA); 

   Income_Spin_DROS_WIN(k,1) = 

sum(income_Spin_DROS_WIN(k)); 

   income_E_DROS_WIN(k,1) = 

(LMP_DA_sample_win(k,1).*(Cap_Bat2G_DRO_

WIN_low(k)+Cap_RegU_DRO_WIN_low(k)+Cap_S

pin_DRO_WIN_low(k))); % Energy income 

for day ahead and realtime  

+Cap_RegU1(k)+Cap_Spin(k) 

   Income_E_DROS_WIN(k,1) = 

sum(income_E_DROS_WIN); 

   income_RegU_DROS_WIN(k,1) =  

Tr_RegU(k).*(RegU_DA_sample_win(k,1) .* 

(Cap_RegU_DRO_WIN_low(k))) ;% Income of 

Regulation up including up Mileage  

   Income_RegU_DROS_WIN(k,1) =  

sum(income_RegU_DROS_WIN);% + 

income_MilU1); 

   income_RegD_DROS_WIN(k,1) = 

Tr_RegD(k).*(RegD_DA_sample_win(k,1) .* 

Cap_RegD_DRO_WIN_low(k));  % Income of 

Regulation up including up Mileage   

   Income_RegD_DROS_WIN(k,1) = 

sum(income_RegD_DROS_WIN);% + 

income_MilD_Dit); 

    

   income_Charging_DROS_WIN(k,1)= 

income_RegD_DROS_WIN(k); 

   income_Discharging_DROS_WIN(k,1)=  

income_Spin_DROS_WIN(k)+income_E_DROS_WI

N(k)+income_RegU_DROS_WIN(k);%+income_se

ll_RO(k); 

   cost_OP_DROS_WIN(k,1) =  c_op 

.*(Cap_PV2Bat_DRO_WIN_low(k)+ 

Cap_G2Bat_DRO_WIN_low(k) + 
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Cap_Bat2G_DRO_WIN_low(k)+Cap_Spin_DRO_WI

N_low(k)+Cap_RegD_DRO_WIN_low(k)+Cap_Reg

U_DRO_WIN_low(k)) ; % Cost operation  

   cost_DROS_WIN(k,1) 

=(cost_Demand_DROS_WIN(k)+ 

cost_Charge_DROS_WIN(k)+cost_OP_DROS_WIN

(k)); 

   

Rev_DROS_WIN(k,1)=income_Discharging_DRO

S_WIN(k)+ income_Charging_DROS_WIN(k); 

  

  %         %%% Robust Check For Winter 

   cost_Charge_ROS_WIN(k,1) = 

(Cap_G2Bat_RO_WIN(k)).* 

Pr_buy_sample_win(k) ; % Cost of buyng 

energy from Grid for battery 

   cost_Demand_ROS_WIN(k,1) = 

Pr_buy_sample_win(k) .* 

(Cap_G2L_RO_WIN(k));   %cost of buying 

energy from Grid for Load 

   income_Spin_ROS_WIN(k,1) = Tr_RS(k) 

.* 

(Spin_DA_sample_win(k,1).*Cap_Spin_RO_WI

N(k));% - 

abs(min(Cap_Max,Cap_RS_DA_Max(k))-

Cap_RES(k)).*Pen_RES_DA); 

   Income_Spin_ROS_WIN(k,1) = 

sum(income_Spin_ROS_WIN(k)); 

   income_E_ROS_WIN(k,1) = 

(LMP_DA_sample_win(k,1).*(Cap_Bat2G_RO_W

IN(k)+Cap_RegU_RO_WIN(k)+Cap_Spin_RO_WIN

(k))); % Energy income for day ahead and 

realtime  +Cap_RegU1(k)+Cap_Spin(k) 

   Income_E_ROS_WIN(k,1) = 

sum(income_E_ROS_WIN); 

   income_RegU_ROS_WIN(k,1) =  

Tr_RegU(k).*(RegU_DA_sample_win(k,1).* 

(Cap_RegU_RO_WIN(k))) ;% Income of 

Regulation up including up Mileage  

   Income_RegU_ROS_WIN(k,1) =  

sum(income_RegU_ROS_WIN);% + 

income_MilU1); 

   income_RegD_ROS_WIN(k,1) = 

Tr_RegD(k).*(RegD_DA_sample_win(k,1).* 

Cap_RegD_RO_WIN(k));  % Income of 

Regulation up including up Mileage   

   Income_RegD_ROS_WIN(k,1) = 

sum(income_RegD_ROS_WIN);% + 

income_MilD_Dit); 

    

   income_Charging_ROS_WIN(k,1)= 

income_RegD_ROS_WIN(k); 

   income_Discharging_ROS_WIN(k,1)=  

income_Spin_ROS_WIN(k)+income_E_ROS_WIN(

k)+income_RegU_ROS_WIN(k);%+income_sell_

RO(k); 

   cost_OP_ROS_WIN(k,1) =  c_op 

.*(Cap_PV2Bat_RO_WIN(k)+ 

Cap_G2Bat_RO_WIN(k) + 

Cap_Bat2G_RO_WIN(k)+Cap_Spin_RO_WIN(k)+C

ap_RegD_RO_WIN(k)+Cap_RegU_RO_WIN(k)) ; 

% Cost operation  

   cost_ROS_WIN(k,1) 

=(cost_Demand_ROS_WIN(k)+ 

cost_Charge_ROS_WIN(k)+cost_OP_ROS_WIN(k

)); 

   

Rev_ROS_WIN(k,1)=income_Discharging_ROS_

WIN(k)+ income_Charging_ROS_WIN(k); 

  

            %%% Robust Check For Summer 

   cost_Charge_ROS_SUM(k,1) = 

(Cap_G2Bat_RO_SUM(k)).* 

Pr_buy_sample_sum(k) ; % Cost of buyng 

energy from Grid for battery 

   cost_Demand_ROS_SUM(k,1) = 

Pr_buy_sample_sum(k) .* 

(Cap_G2L_RO_SUM(k));   %cost of buying 

energy from Grid for Load 

   income_Spin_ROS_SUM(k,1) = Tr_RS(k) 

.* 

(Spin_DA_sample_sum(k,1).*Cap_Spin_RO_SU

M(k));% - 

abs(min(Cap_Max,Cap_RS_DA_Max(k))-

Cap_RES(k)).*Pen_RES_DA); 

   Income_Spin_ROS_SUM(k,1) = 

sum(income_Spin_ROS_SUM(k)); 

   income_E_ROS_SUM(k,1) = 

(LMP_DA_sample_sum(k,1).*(Cap_Bat2G_RO_S

UM(k)+Cap_RegU_RO_SUM(k)+Cap_Spin_RO_SUM

(k))); % Energy income for day ahead and 

realtime  +Cap_RegU1(k)+Cap_Spin(k) 

   Income_E_ROS_SUM(k,1) = 

sum(income_E_ROS_SUM); 

   income_RegU_ROS_SUM(k,1) =  

Tr_RegU(k).*(RegU_DA_sample_sum(k,1) .* 

(Cap_RegU_RO_SUM(k))) ;% Income of 

Regulation up including up Mileage  

   Income_RegU_ROS_SUM(k,1) =  

sum(income_RegU_ROS_SUM);% + 

income_MilU1); 

   income_RegD_ROS_SUM(k,1) = 

Tr_RegD(k).*(RegD_DA_sample_sum(k,1).* 

Cap_RegD_RO_SUM(k));  % Income of 

Regulation up including up Mileage   

   Income_RegD_ROS_SUM(k,1) = 

sum(income_RegD_ROS_SUM);% + 

income_MilD_Dit); 

    

   income_Charging_ROS_SUM(k,1) = 

income_RegD_ROS_SUM(k); 

   income_Discharging_ROS_SUM(k,1) =  

income_Spin_ROS_SUM(k)+income_E_ROS_SUM(

k)+income_RegU_ROS_SUM(k);%+income_sell_

RO(k); 

   cost_OP_ROS_SUM(k,1) =  c_op 

.*(Cap_PV2Bat_RO_SUM(k)+ 

Cap_G2Bat_RO_SUM(k) + 

Cap_Bat2G_RO_SUM(k)+Cap_Spin_RO_SUM(k)+C

ap_RegD_RO_SUM(k)+Cap_RegU_RO_SUM(k)) ; 

% Cost operation  

   cost_ROS_SUM(k,1) = 

(cost_Demand_ROS_SUM(k)+ 

cost_Charge_ROS_SUM(k)+cost_OP_ROS_SUM(k

)); 

   Rev_ROS_SUM(k,1)  = 

income_Discharging_ROS_SUM(k)+income_Cha

rging_ROS_SUM(k); 

end          

   REV_DitS_WIN(day,1)  = 

sum(Rev_DitS_WIN); 

   REV_DitS_SUM(day,1)  = 

sum(Rev_DitS_SUM); 

   REV_ROS_WIN(day,1)   = 

sum(Rev_ROS_WIN) ; 

   REV_ROS_SUM(day,1)   = 

sum(Rev_ROS_SUM) ; 

   REV_DROS_WIN(day,1)  = 

sum(Rev_DROS_WIN); 

   REV_DROS_SUM(day,1)  = 

sum(Rev_DROS_SUM); 

  

   Cost_DROS_WIN(day,1) = 

sum(cost_DROS_WIN); 

   Cost_DROS_SUM(day,1) = 

sum(cost_DROS_SUM); 
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   Cost_DitS_WIN(day,1) = 

sum(cost_DitS_WIN); 

   Cost_DitS_SUM(day,1) = 

sum(cost_DitS_SUM); 

   Cost_ROS_WIN(day,1)  = 

sum(cost_ROS_WIN) ; 

   Cost_ROS_SUM(day,1)  = 

sum(cost_ROS_SUM) ; 

     

  

  COST_T_DROS_WIN(day,1) = sum(-

cost_DROS_WIN+Rev_DROS_WIN); 

  COST_T_DROS_SUM(day,1) = sum(-

cost_DROS_SUM+Rev_DROS_SUM); 

  COST_T_DitS_WIN(day,1) = sum(-

cost_DitS_WIN+Rev_DitS_WIN); 

  COST_T_DitS_SUM(day,1) = sum(-

cost_DitS_SUM+Rev_DitS_SUM); 

  COST_T_ROS_WIN(day,1)  = sum(-

cost_ROS_WIN+Rev_ROS_WIN); 

  COST_T_ROS_SUM(day,1)  = sum(-

cost_ROS_SUM+Rev_ROS_SUM); 

     

   Am_DRO_DIT_WIN(day,1) = 

(COST_T_DROS_WIN(day,1)-

COST_T_DitS_WIN(day,1)) ; 

   Am_DRO_DIT_SUM(day,1) = 

(COST_T_DROS_SUM(day,1)-

COST_T_DitS_SUM(day,1));  

   Am_DRO_ROS_WIN(day,1) = 

(COST_T_DROS_WIN(day,1)-

COST_T_ROS_WIN(day,1)) ; 

   Am_DRO_ROS_SUM(day,1) = 

(COST_T_DROS_SUM(day,1)-

COST_T_ROS_SUM(day,1)) ; 

   Am_DRO_ROS_WIN(day,1) = 

(COST_T_DROS_SUM(day,1)-

COST_T_ROS_WIN(day,1)) ; 

end 

COST_SUMMER_DRO = sum(COST_T_DROS_SUM); 

COST_WINTER_DRO = sum(COST_T_DROS_WIN); 

COST_WINTER_Deterministic = 

sum(COST_T_DitS_WIN); 

COST_SUMMER_Deterministic = 

sum(COST_T_DitS_SUM); 

COST_SUMMER_ROBUST=sum(COST_T_ROS_SUM); 

COST_WINTER_ROBUST=sum(COST_T_ROS_WIN); 

  

display('DONE!!') 

%% Adding RT market data for training 

year = '2016RT'; 

[Spin_rt_win,RegU_rt_win,RegD_rt_win,LMP

_rt_win,Spin_rt_sum,RegU_rt_sum,RegD_rt_

sum,LMP_rt_sum]= MarketRT(year); 

clear year 

display('Train market data added in RT') 

  

for i= 1:96 

LMP_rt_sum_det(i,1)  =  

mean(LMP_rt_sum(i,:)) ; 

RegD_rt_sum_det(i,1) =  

mean(RegD_rt_sum(i,:)); 

RegU_rt_sum_det(i,1) =  

mean(RegU_rt_sum(i,:)); 

Spin_rt_sum_det(i,1) =  

mean(Spin_rt_sum(i,:)); 

  

LMP_rt_win_det(i,1)  =  

mean(LMP_rt_win(i,:)) ; 

RegD_rt_win_det(i,1) =  

mean(RegD_rt_win(i,:)); 

RegU_rt_win_det(i,1) =  

mean(RegU_rt_win(i,:)); 

Spin_rt_win_det(i,1) =  

mean(Spin_rt_win(i,:)); 

  

end 

%% Select Sample data  

  

for i=1:96 

  for k = 1:15  

   LMP_RT_SUM_low(i,2*(k-1)+1)= 

LMP_rt_sum(i,2+(k-1)*7); 

   LMP_RT_SUM_low(i,2*(k-1)+2)= 

LMP_rt_sum(i,3+(k-1)*7); 

   Spin_RT_SUM_low(i,2*(k-1)+1)= 

Spin_rt_sum(i,2+(k-1)*7); 

   Spin_RT_SUM_low(i,2*(k-1)+2)= 

Spin_rt_sum(i,3+(k-1)*7); 

   RegU_RT_SUM_low(i,2*(k-1)+1)= 

RegU_rt_sum(i,2+(k-1)*7); 

   RegU_RT_SUM_low(i,2*(k-1)+2)= 

RegU_rt_sum(i,3+(k-1)*7); 

   RegD_RT_SUM_low(i,2*(k-1)+1)= 

RegD_rt_sum(i,2+(k-1)*7); 

   RegD_RT_SUM_low(i,2*(k-1)+2)= 

RegD_rt_sum(i,3+(k-1)*7); 

  

   LMP_RT_WIN_low(i,2*(k-1)+1)= 

LMP_rt_win(i,5+(k-1)*7); 

   LMP_RT_WIN_low(i,2*(k-1)+2)= 

LMP_rt_win(i,6+(k-1)*7); 

   Spin_RT_WIN_low(i,2*(k-1)+1)= 

Spin_rt_win(i,5+(k-1)*7); 

   Spin_RT_WIN_low(i,2*(k-1)+2)= 

Spin_rt_win(i,6+(k-1)*7); 

   RegU_RT_WIN_low(i,2*(k-1)+1)= 

RegU_rt_win(i,5+(k-1)*7); 

   RegU_RT_WIN_low(i,2*(k-1)+2)= 

RegU_rt_win(i,6+(k-1)*7); 

   RegD_RT_WIN_low(i,2*(k-1)+1)= 

RegD_rt_win(i,5+(k-1)*7); 

   RegD_RT_WIN_low(i,2*(k-1)+2)= 

RegD_rt_win(i,6+(k-1)*7); 

    

   end 

 end 

  

 Max_WIN_LMP_RT = 

max(LMP_RT_WIN_low,[],2); 

 Max_WIN_LMP_DA = 

max(LMP_DA_WIN_low,[],2); 

 Max_WIN_RegD_RT = 

max(RegD_RT_WIN_low,[],2); 

 Max_WIN_RegU_RT = 

max(RegU_RT_WIN_low,[],2); 

 Max_WIN_Spin_RT = 

max(Spin_RT_WIN_low,[],2); 

  

 Max_SUM_LMP_RT = 

max(LMP_RT_SUM_low,[],2); 

 Max_SUM_LMP_DA = 

max(LMP_DA_SUM_low,[],2); 

 Max_SUM_RegD_RT = 

max(RegD_RT_SUM_low,[],2); 

 Max_SUM_RegU_RT = 

max(RegU_RT_SUM_low,[],2); 

 Max_SUM_Spin_RT = 

max(Spin_RT_SUM_low,[],2); 

  

  

 Mean_WIN_LMP_RT  = 

mean(LMP_RT_WIN_low,2); 

 Mean_WIN_RegD_RT = 

mean(RegD_RT_WIN_low,2); 

 Mean_WIN_RegU_RT = 

mean(RegU_RT_WIN_low,2); 
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 Mean_WIN_Spin_RT = 

mean(Spin_RT_WIN_low,2); 

  

 Mean_SUM_LMP_RT  = 

mean(LMP_RT_SUM_low,2); 

 Mean_SUM_RegD_RT = 

mean(RegD_RT_SUM_low,2); 

 Mean_SUM_RegU_RT = 

mean(RegU_RT_SUM_low,2); 

 Mean_SUM_Spin_RT = 

mean(Spin_RT_SUM_low,2); 

 display("Train Data added") 

 %% Add train data RT high number 

  

for i=1:96 

  for k = 1:15  

   LMP_RT_SUM_low(i,4*(k-1)+1)= 

LMP_rt_sum(i,2+(k-1)*7); 

   LMP_RT_SUM_low(i,4*(k-1)+2)= 

LMP_rt_sum(i,3+(k-1)*7); 

   LMP_RT_SUM_low(i,4*(k-1)+3)= 

LMP_rt_sum(i,4+(k-1)*7); 

   LMP_RT_SUM_low(i,4*(k-1)+4)= 

LMP_rt_sum(i,5+(k-1)*7); 

   Spin_RT_SUM_low(i,4*(k-1)+1)= 

Spin_rt_sum(i,2+(k-1)*7); 

   Spin_RT_SUM_low(i,4*(k-1)+2)= 

Spin_rt_sum(i,3+(k-1)*7); 

   Spin_RT_SUM_low(i,4*(k-1)+3)= 

Spin_rt_sum(i,4+(k-1)*7); 

   Spin_RT_SUM_low(i,4*(k-1)+4)= 

Spin_rt_sum(i,5+(k-1)*7); 

   RegU_RT_SUM_low(i,4*(k-1)+1)= 

RegU_rt_sum(i,2+(k-1)*7); 

   RegU_RT_SUM_low(i,4*(k-1)+2)= 

RegU_rt_sum(i,3+(k-1)*7); 

   RegU_RT_SUM_low(i,4*(k-1)+3)= 

RegU_rt_sum(i,4+(k-1)*7); 

   RegU_RT_SUM_low(i,4*(k-1)+4)= 

RegU_rt_sum(i,5+(k-1)*7); 

   RegD_RT_SUM_low(i,4*(k-1)+1)= 

RegD_rt_sum(i,2+(k-1)*7); 

   RegD_RT_SUM_low(i,4*(k-1)+2)= 

RegD_rt_sum(i,3+(k-1)*7); 

   RegD_RT_SUM_low(i,4*(k-1)+3)= 

RegD_rt_sum(i,4+(k-1)*7); 

   RegD_RT_SUM_low(i,4*(k-1)+4)= 

RegD_rt_sum(i,5+(k-1)*7); 

  

   LMP_RT_WIN_low(i,4*(k-1)+1)= 

LMP_rt_win(i,5+(k-1)*7); 

   LMP_RT_WIN_low(i,4*(k-1)+2)= 

LMP_rt_win(i,6+(k-1)*7); 

   LMP_RT_WIN_low(i,4*(k-1)+3)= 

LMP_rt_win(i,7+(k-1)*7); 

   LMP_RT_WIN_low(i,4*(k-1)+4)= 

LMP_rt_win(i,8+(k-1)*7); 

   Spin_RT_WIN_low(i,4*(k-1)+1)= 

Spin_rt_win(i,5+(k-1)*7); 

   Spin_RT_WIN_low(i,4*(k-1)+2)= 

Spin_rt_win(i,6+(k-1)*7); 

   Spin_RT_WIN_low(i,4*(k-1)+3)= 

Spin_rt_win(i,7+(k-1)*7); 

   Spin_RT_WIN_low(i,4*(k-1)+4)= 

Spin_rt_win(i,8+(k-1)*7); 

   RegU_RT_WIN_low(i,4*(k-1)+1)= 

RegU_rt_win(i,5+(k-1)*7); 

   RegU_RT_WIN_low(i,4*(k-1)+2)= 

RegU_rt_win(i,6+(k-1)*7); 

   RegU_RT_WIN_low(i,4*(k-1)+3)= 

RegU_rt_win(i,7+(k-1)*7); 

   RegU_RT_WIN_low(i,4*(k-1)+4)= 

RegU_rt_win(i,8+(k-1)*7); 

   RegD_RT_WIN_low(i,4*(k-1)+1)= 

RegD_rt_win(i,5+(k-1)*7); 

   RegD_RT_WIN_low(i,4*(k-1)+2)= 

RegD_rt_win(i,6+(k-1)*7); 

   RegD_RT_WIN_low(i,4*(k-1)+3)= 

RegD_rt_win(i,7+(k-1)*7); 

   RegD_RT_WIN_low(i,4*(k-1)+4)= 

RegD_rt_win(i,8+(k-1)*7); 

    

   end 

 end 

  

 Max_WIN_LMP_RT = 

max(LMP_RT_WIN_low,[],2); 

 Max_WIN_LMP_DA = 

max(LMP_DA_WIN_low,[],2); 

 Max_WIN_RegD_RT = 

max(RegD_RT_WIN_low,[],2); 

 Max_WIN_RegU_RT = 

max(RegU_RT_WIN_low,[],2); 

 Max_WIN_Spin_RT = 

max(Spin_RT_WIN_low,[],2); 

  

 Max_SUM_LMP_RT = 

max(LMP_RT_SUM_low,[],2); 

 Max_SUM_LMP_DA = 

max(LMP_DA_SUM_low,[],2); 

 Max_SUM_RegD_RT = 

max(RegD_RT_SUM_low,[],2); 

 Max_SUM_RegU_RT = 

max(RegU_RT_SUM_low,[],2); 

 Max_SUM_Spin_RT = 

max(Spin_RT_SUM_low,[],2); 

  

  

 Mean_WIN_LMP_RT  = 

mean(LMP_RT_WIN_low,2); 

 Mean_WIN_RegD_RT = 

mean(RegD_RT_WIN_low,2); 

 Mean_WIN_RegU_RT = 

mean(RegU_RT_WIN_low,2); 

 Mean_WIN_Spin_RT = 

mean(Spin_RT_WIN_low,2); 

  

 Mean_SUM_LMP_RT  = 

mean(LMP_RT_SUM_low,2); 

 Mean_SUM_RegD_RT = 

mean(RegD_RT_SUM_low,2); 

 Mean_SUM_RegU_RT = 

mean(RegU_RT_SUM_low,2); 

 Mean_SUM_Spin_RT = 

mean(Spin_RT_SUM_low,2); 

 display("Train Data added") 

%% Preparoing data for RT robust 

  

  [Min_LMP_rt_SUM_low]  = 

MinimumRT(LMP_RT_SUM_low,0.25); 

  [Min_RegU_rt_SUM_low] = 

MinimumRT(RegU_RT_SUM_low,0.25); 

  [Min_RegD_rt_SUM_low] = 

MinimumRT(RegD_RT_SUM_low,0.25); 

  [Min_Spin_rt_SUM_low] = 

MinimumRT(Spin_RT_SUM_low,0.25); 

   

  [Min_LMP_rt_WIN_low]  = 

MinimumRT(LMP_RT_WIN_low,0.25); 

  [Min_RegU_rt_WIN_low] = 

MinimumRT(RegU_RT_WIN_low,0.25); 

  [Min_RegD_rt_WIN_low] = 

MinimumRT(RegD_RT_WIN_low,0.25); 

  [Min_Spin_rt_WIN_low] = 

MinimumRT(Spin_RT_WIN_low,0.25); 
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display('Data for Robust optimizatin 

prepared') 

   

 %% ADDING test data for RT (out of 

sample data) 

year = '2017RT'; 

[Spin_rt_win_test,RegU_rt_win_test,RegD_

rt_win_test,LMP_rt_win_test,Spin_rt_sum_

test,RegU_rt_sum_test,RegD_rt_sum_test,L

MP_rt_sum_test]= MarketRT(year); 

clear year 

  display("RT Test Data added") 

   

%% Preparing DA data for RT Optimization 

for k=1:24 

    if (round(Cap_Spin_Dit_WIN(k,1))==0 

&& round(Cap_RegU_Dit_WIN(k,1))==0 && 

round(Cap_RegD_Dit_WIN(k,1))==0 && 

round(Cap_Bat2G_Dit_WIN(k,1))==0) 

        MM_Dit_WIN(k,1) =0; 

    else 

        MM_Dit_WIN(k,1) =1;         

    end 

    if (round(Cap_Spin_Dit_SUM(k,1))==0 

&& round(Cap_RegU_Dit_SUM(k,1))==0 && 

round(Cap_RegD_Dit_SUM(k,1))==0 && 

round(Cap_Bat2G_Dit_SUM(k,1))==0) 

        MM_Dit_SUM(k,1) =0; 

    else 

        MM_Dit_SUM(k,1) =1;         

    end 

    if (round(Cap_Spin_RO_WIN(k,1))==0 

&& round(Cap_RegU_RO_WIN(k,1))==0 && 

round(Cap_RegD_RO_WIN(k,1))==0 && 

round(Cap_Bat2G_RO_WIN(k,1))==0) 

        MM_RO_WIN(k,1) =0; 

    else 

        MM_RO_WIN(k,1) =1;         

    end 

    if (round(Cap_Spin_RO_SUM(k,1))==0 

&& round(Cap_RegU_RO_SUM(k,1))==0 && 

round(Cap_RegD_RO_SUM(k,1))==0 && 

round(Cap_Bat2G_RO_SUM(k,1))==0) 

        MM_RO_SUM(k,1) =0; 

    else 

        MM_RO_SUM(k,1) =1;         

    end 

    if 

(round(Cap_Spin_DRO_WIN_low(k,1))==0 && 

round(Cap_RegU_DRO_WIN_low(k,1))==0 && 

round(Cap_RegD_DRO_WIN_low(k,1))==0 && 

round(Cap_Bat2G_DRO_WIN_low(k,1))==0) 

        MM_DRO_WIN(k,1) =0; 

    else 

        MM_DRO_WIN(k,1) =1;         

    end 

    if 

(round(Cap_Spin_DRO_SUM_low(k,1))==0 && 

round(Cap_RegU_DRO_SUM_low(k,1))==0 && 

round(Cap_RegD_DRO_SUM_low(k,1))==0 && 

round(Cap_Bat2G_DRO_SUM_low(k,1))==0) 

        MM_DRO_SUM(k,1) =0; 

    else 

        MM_DRO_SUM(k,1) =1;         

    end 

end 

for i=1:24      %preparing DA Data for 

RT optimization 

    for k=1:4 

         

        Cap_L_RT_sum(4*(i-1)+k,1)= 

Cap_L_sum(i)/4; 

        Cap_PV_RT_sum(4*(i-

1)+k,1)=Cap_PV_sum(i)/4; 

        Cap_L_RT_win(4*(i-1)+k,1)= 

Cap_L_win(i)/4; 

        Cap_PV_RT_win(4*(i-

1)+k,1)=Cap_PV_win(i)/4; 

     %   % Deterministic DA Win 

Cap_G2L_Dit_DA_WIN(4*(i-1)+k,1)   = 

Cap_G2L_Dit_WIN(i); 

Cap_Spin_Dit_DA_WIN(4*(i-1)+k,1)  = 

Cap_Spin_Dit_WIN(i)*0.8; 

Cap_RegU_Dit_DA_WIN(4*(i-1)+k,1)  = 

Cap_RegU_Dit_WIN(i)*0.8; 

Cap_RegD_Dit_DA_WIN(4*(i-1)+k,1)  = 

Cap_RegD_Dit_WIN(i)*0.8; 

Cap_Bat2G_Dit_DA_WIN(4*(i-1)+k,1) = 

Cap_Bat2G_Dit_WIN(i)*0.8; 

Cap_G2Bat_Dit_DA_WIN(4*(i-1)+k,1) = 

Cap_G2Bat_Dit_WIN(i); 

Mean_LMP_DA_WIN_low(4*(i-1)+k,1) = 

Mean_LMP_da_WIN_low(i); 

  

Cap_G2L_Dit_DA_SUM(4*(i-1)+k,1)   = 

Cap_G2L_Dit_SUM(i); 

Cap_G2Bat_Dit_DA_SUM(4*(i-1)+k,1) = 

Cap_G2Bat_Dit_SUM(i)/4; 

Mean_LMP_DA_SUM_low(4*(i-1)+k,1) = 

Mean_LMP_da_SUM_low(i); 

Min_LMP_DA_SUM_low(4*(i-1)+k,1) =  

Min_LMP_da_SUM_low(i);  

Min_LMP_DA_WIN_low(4*(i-1)+k,1) =  

Min_LMP_da_WIN_low(i);  

%   % Robust DA WIN 

Cap_G2L_RO_DA_WIN(4*(i-1)+k,1)   = 

Cap_G2L_RO_WIN(i)   ; 

Cap_Spin_RO_DA_WIN(4*(i-1)+k,1)  = 

Cap_Spin_RO_WIN(i)*0.8  ; 

Cap_RegU_RO_DA_WIN(4*(i-1)+k,1)  = 

Cap_RegU_RO_WIN(i)*0.8  ; 

Cap_RegD_RO_DA_WIN(4*(i-1)+k,1)  = 

Cap_RegD_RO_WIN(i)*0.8  ; 

Cap_Bat2G_RO_DA_WIN(4*(i-1)+k,1) = 

Cap_Bat2G_RO_WIN(i)*0.8 ; 

Cap_G2Bat_RO_DA_WIN(4*(i-1)+k,1) = 

Cap_G2Bat_RO_WIN(i); 

Cap_G2Bat_RO_DA_SUM(4*(i-1)+k,1) = 

Cap_G2Bat_RO_SUM(i); 

Cap_G2L_RO_DA_SUM(4*(i-1)+k,1)   = 

Cap_G2L_RO_SUM(i)   ; 

%   % DRO DA WIN 

Cap_G2L_DRO_DA_WIN(4*(i-1)+k,1)   = 

Cap_G2L_DRO_WIN_low(i); 

Cap_Spin_DRO_DA_WIN(4*(i-1)+k,1)  = 

Cap_Spin_DRO_WIN_low(i)*0.8; 

Cap_RegU_DRO_DA_WIN(4*(i-1)+k,1)  = 

Cap_RegU_DRO_WIN_low(i)*0.8; 

Cap_RegD_DRO_DA_WIN(4*(i-1)+k,1)  = 

Cap_RegD_DRO_WIN_low(i)*0.8; 

Cap_Bat2G_DRO_DA_WIN(4*(i-1)+k,1) = 

Cap_Bat2G_DRO_WIN_low(i)*0.8; 

Cap_G2Bat_DRO_DA_WIN(4*(i-1)+k,1) = 

Cap_G2Bat_DRO_WIN_low(i); 

  

M_Dit_DA_WIN(4*(i-1)+k,1)  = 

round(M_Dit_WIN(i)); 

M_DRO_DA_WIN_low(4*(i-1)+k,1)= 

round(M_DRO_WIN_low(i)); 

M_RO_DA_WIN(4*(i-1)+k,1)   = 

round(M_RO_WIN(i)); 

MM_DRO_DA_WIN(4*(i-1)+k,1) =  

MM_DRO_WIN(i,1); 

MM_RO_DA_WIN(4*(i-1)+k,1)  =  

MM_RO_WIN(i,1); 

MM_Dit_DA_WIN(4*(i-1)+k,1) =  

MM_Dit_WIN(i,1); 
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%   % Deterministic DA SUM 

  

Cap_Spin_Dit_DA_SUM(4*(i-1)+k,1)  = 

Cap_Spin_Dit_SUM(i)*0.8; 

Cap_RegU_Dit_DA_SUM(4*(i-1)+k,1)  = 

Cap_RegU_Dit_SUM(i)*0.8; 

Cap_RegD_Dit_DA_SUM(4*(i-1)+k,1)  = 

Cap_RegD_Dit_SUM(i)*0.8; 

Cap_Bat2G_Dit_DA_SUM(4*(i-1)+k,1) = 

Cap_Bat2G_Dit_SUM(i)*0.8; 

  

%   % Robust DA SUM 

Cap_Spin_RO_DA_SUM(4*(i-1)+k,1)  = 

Cap_Spin_RO_SUM(i)*0.8; 

Cap_RegU_RO_DA_SUM(4*(i-1)+k,1)  = 

Cap_RegU_RO_SUM(i)*0.8; 

Cap_RegD_RO_DA_SUM(4*(i-1)+k,1)  = 

Cap_RegD_RO_SUM(i)*0.8; 

Cap_Bat2G_RO_DA_SUM(4*(i-1)+k,1) = 

Cap_Bat2G_RO_SUM(i)*0.8; 

Min_LMP_DA_WIN_low(4*(i-1)+k,1)= 

Min_LMP_da_WIN_low(i)/4; 

  

%   % DRO DA SUM 

Cap_Spin_DRO_DA_SUM(4*(i-

1)+k,1)=Cap_Spin_DRO_SUM_low(i)*0.8; 

Cap_RegU_DRO_DA_SUM(4*(i-

1)+k,1)=Cap_RegU_DRO_SUM_low(i)*0.8; 

Cap_RegD_DRO_DA_SUM(4*(i-

1)+k,1)=Cap_RegD_DRO_SUM_low(i)*0.8; 

Cap_Bat2G_DRO_DA_SUM(4*(i-

1)+k,1)=round(Cap_Bat2G_DRO_SUM_low(i)*0

.8); 

Cap_G2Bat_DRO_DA_SUM(4*(i-1)+k,1) = 

Cap_G2Bat_DRO_SUM_low(i); 

Cap_G2L_DRO_DA_SUM(4*(i-1)+k,1)   = 

Cap_G2L_DRO_SUM_low(i); 

  

  

M_Dit_DA_SUM(4*(i-1)+k,1)= 

round(M_Dit_SUM(i)); 

M_DRO_DA_SUM_low(4*(i-1)+k,1)= 

round(M_DRO_SUM_low(i)); 

M_RO_DA_SUM(4*(i-1)+k,1)= 

round(M_RO_SUM(i)); 

MM_DRO_DA_SUM(4*(i-1)+k,1)=  

MM_DRO_SUM(i,1); 

MM_RO_DA_SUM(4*(i-1)+k,1)=  

MM_RO_SUM(i,1); 

MM_Dit_DA_SUM(4*(i-1)+k,1)=  

MM_Dit_SUM(i,1); 

  

AGC_RT(4*(i-1)+k,1)= AGC(i,1) ; 

for day=1:N_WIN_low 

    LMP_DA_SUM_low(4*(i-1)+k,day)  =  

LMP_da_SUM_low(i,day); 

LMP_DA_WIN_low(4*(i-1)+k,day)  =  

LMP_da_WIN_low(i,day); 

end 

    end 

end 

  

Cap_E_sell_Dit_DA_WIN = 

Cap_Spin_Dit_DA_WIN+ 

Cap_Bat2G_Dit_DA_WIN 

+Cap_RegU_Dit_DA_WIN; 

Cap_E_sell_Dit_DA_SUM = 

Cap_Spin_Dit_DA_SUM + 

Cap_Bat2G_Dit_DA_SUM 

+Cap_RegU_Dit_DA_SUM; 

Cap_E_buy_Dit_DA_WIN = 

Cap_G2Bat_Dit_DA_WIN+Cap_G2L_Dit_DA_WIN+

Cap_RegD_Dit_DA_WIN; 

Cap_E_buy_Dit_DA_SUM = 

Cap_G2Bat_Dit_DA_SUM+Cap_G2L_Dit_DA_SUM+

Cap_RegD_Dit_DA_SUM; 

  

Cap_E_sell_RO_DA_WIN = 

Cap_Spin_RO_DA_WIN + Cap_Bat2G_RO_DA_WIN 

+ Cap_RegU_RO_DA_WIN; 

Cap_E_sell_RO_DA_SUM = 

Cap_Spin_RO_DA_SUM + Cap_Bat2G_RO_DA_SUM 

+ Cap_RegU_RO_DA_SUM; 

Cap_E_buy_RO_DA_WIN = 

Cap_G2Bat_RO_DA_WIN + Cap_G2L_RO_DA_WIN 

+ Cap_RegD_RO_DA_SUM; 

Cap_E_buy_RO_DA_SUM = 

Cap_G2Bat_RO_DA_SUM + Cap_G2L_RO_DA_SUM 

+ Cap_RegD_RO_DA_SUM; 

  

Cap_E_sell_DRO_DA_WIN = 

Cap_Spin_DRO_DA_WIN + 

Cap_Bat2G_DRO_DA_WIN + 

Cap_RegU_DRO_DA_WIN; 

Cap_E_sell_DRO_DA_SUM = 

Cap_Spin_DRO_DA_SUM + 

Cap_Bat2G_DRO_DA_SUM + 

Cap_RegU_DRO_DA_SUM; 

Cap_E_buy_DRO_DA_WIN = 

Cap_G2Bat_DRO_DA_WIN + 

Cap_G2L_DRO_DA_WIN + 

Cap_RegD_DRO_DA_SUM; 

Cap_E_buy_DRO_DA_SUM = 

Cap_G2Bat_DRO_DA_SUM + 

Cap_G2L_DRO_DA_SUM + 

Cap_RegD_DRO_DA_SUM; 

  

Tr_RegU_RT = zeros(96,1); 

 Tr_RegD_RT = zeros(96,1); 

 Tr_Spin_RT = zeros(96,1); 

  

 Tr_RegD_RT(5,1)=1; 

 Tr_RegD_RT(12,1)=1; 

 Tr_RegD_RT(13,1)=1; 

 Tr_RegD_RT(22,1)=1; 

 Tr_RegD_RT(24,1)=1; 

 Tr_RegD_RT(25,1)=1; 

 Tr_RegD_RT(38,1)=1; 

 Tr_RegD_RT(55,1)=1; 

 Tr_RegD_RT(62,1)=1; 

 Tr_RegD_RT(66,1)=1; 

 Tr_RegD_RT(73,1)=1; 

 Tr_RegD_RT(74,1)=1; 

 Tr_RegD_RT(88,1)=1; 

  

 Tr_RegU_RT(5,1)=1; 

 Tr_RegU_RT(12,1)=1; 

 Tr_RegU_RT(13,1)=1; 

 Tr_RegU_RT(22,1)=1; 

 Tr_RegU_RT(24,1)=1; 

 Tr_RegU_RT(25,1)=1; 

 Tr_RegU_RT(38,1)=1; 

 Tr_RegU_RT(55,1)=1; 

 Tr_RegU_RT(62,1)=1; 

 Tr_RegU_RT(66,1)=1; 

 Tr_RegU_RT(73,1)=1; 

 Tr_RegU_RT(74,1)=1; 

 Tr_RegU_RT(88,1)=1; 

  

 Tr_Spin_RT(5,1)=1; 

 Tr_Spin_RT(12,1)=1; 

 Tr_Spin_RT(13,1)=1; 

 Tr_Spin_RT(22,1)=1; 

 Tr_Spin_RT(24,1)=1; 

 Tr_Spin_RT(25,1)=1; 

 Tr_Spin_RT(38,1)=1; 

 Tr_Spin_RT(55,1)=1; 
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 Tr_Spin_RT(62,1)=1; 

 Tr_Spin_RT(66,1)=1; 

 Tr_Spin_RT(73,1)=1; 

 Tr_Spin_RT(74,1)=1; 

 Tr_Spin_RT(88,1)=1; 

  

 for k=1:96 

    if AGC_RT(k)==1 

    Tr_RegD_RT(k,1)=0;     

    else 

    Tr_RegU_RT(k,1)=0; 

    end 

 end 

  

 display("DA data converted to RT") 

  

   %% Creating Solar and Load Profile 

disturbance 

 [W_PV_sum,W_Load_sum] = 

Uncertainty(Cap_PV_RT_sum,Cap_L_RT_sum); 

 [W_PV_win,W_Load_win] = 

Uncertainty(Cap_PV_RT_win,Cap_L_RT_win); 

display("PV and Load Disterbance added") 

  

 %% Deterministic Summer Real time 

tic 

 N = 24; 

 Hour = 1; 

 COSTS= 0; 

 SOC_Dit_RT_SUM_S = zeros(96,1); 

 SOC_Dit_RT_SUM_S(4,1) = SOC_0; 

 X_RT = zeros(96,1); 

  

 clear Soc_Dit_RT_SUM_S 

 clear SOC_Dit_RT_SUM_S 

for k=1:96 

a_RegD_Dit_DA_SUM(k,1) = 

Cap_RegD_Dit_DA_SUM(k,1)/Cap_Max; 

end 

while Hour<= 24 

       

clear Cap_Discharge_Dit_RT_SUM 

clear cost_Charge_Dit_RT_SUM 

clear cost_Demand_Dit_RT_SUM 

clear income_Spin_Dit_RT_SUM 

clear Income_Spin_Dit_RT_SUM 

clear income_sell_Dit_RT_SUM 

clear INCOME_sell_Dit_RT_SUM 

clear income_E_Dit_RT_SUM 

clear Income_E_Dit_RT_SUM 

clear income_MilU_Dit_RT_SUM 

clear income_RegU_Dit_RT_SUM 

clear Income_RegU_Dit_RT_SUM 

clear cost_Charge_Dit_RT_SUM 

clear Cap_Charge_Dit_RT_SUM 

clear income_MilD_Dit_RT_SUM 

clear income_RegD_Dit_RT_SUM 

clear Income_RegD_Dit_RT_SUM 

clear income_Charging_Dit_RT_SUM 

clear income_Discharging_Dit_RT_SUM 

clear cost_OP_Dit_RT_SUM 

clear Soc_Dit_RT_SUM 

clear SOC_Dit_RT_SUM 

clear cost_Dit_RT_SUM 

clear COST_Dit_RT_SUM 

clear Cap_Ex_ch_Dit_RT_SUM 

clear Cap_Ex_dch_Dit_RT_SUM 

clear cost_Ex_dch_Dit_RT_SUM 

clear cost_Ex_ch_Dit_RT_SUM 

clear a_RegU_Dit_RT_SUM 

clear a_Spin_Dit_RT_SUM 

clear a_LMP_Dit_RT_SUM 

clear a_RegD_Dit_RT_SUM 

clear a_Buy_Dit_RT_SUM 

clear a_Ex_ch_Dit_RT_SUM 

clear a_Ex_dch_Dit_RT_SUM 

clear a_G2Bat_Dit_RT_SUM 

clear a_PV2Bat_Dit_RT_SUM 

clear cost_un_dch_Dit_RT_SUM 

clear cost_un_ch_Dit_RT_SUM 

clear a_Bat2L_Dit_RT_SUM 

clear M_Dit_RT_SUM 

clear Cap_Ebuy_Dit_RT_SUM 

clear Cap_DEbuy_Dit_RT_SUM 

clear Cap_Esell_Dit_RT_SUM 

clear Cap_DEsell_Dit_RT_SUM 

clear Penlaty_Ebuy_Dit_RT_SUM 

clear Penlaty_Esell_Dit_RT_SUM 

clear cost_buy_Dit_RT_SUM 

clear income_sell_Dit_RT_SUM 

cvx_begin 

    variable Cap_Bat2L_Dit_RT_SUM(4*N) 

nonnegative 

    variable Cap_G2Bat_Dit_RT_SUM(4*N) 

nonnegative 

    variable Cap_RegD_Dit_RT_SUM(4*N) 

nonnegative 

    variable Cap_PV2L_Dit_RT_SUM(4*N) 

nonnegative 

    variable Cap_G2L_Dit_RT_SUM(4*N) 

nonnegative 

    variable Cap_Bat2G_Dit_RT_SUM(4*N) 

nonnegative 

    variable Cap_PV2Bat_Dit_RT_SUM(4*N) 

nonnegative 

    variable Cap_RegU_Dit_RT_SUM(4*N) 

nonnegative  

    variable Cap_Spin_Dit_RT_SUM(4*N) 

nonnegative 

    variable Cap_Ex_ch_Dit_RT_SUM(4*N) 

nonnegative 

    variable Cap_Ex_dch_Dit_RT_SUM(4*N) 

nonnegative 

    variable M_Dit_RT_SUM(4*N) binary 

    variable Cap_Ebuy_Dit_RT_SUM(4*N) 

nonnegative 

    variable Cap_DEbuy_Dit_RT_SUM(4*N) 

nonnegative 

    variable Cap_Esell_Dit_RT_SUM(4*N) 

nonnegative 

    variable Cap_DEsell_Dit_RT_SUM(4*N) 

nonnegative 

    variable 

Penlaty_Ebuy_Dit_RT_SUM(4*N) nonnegative 

    variable 

Penlaty_Esell_Dit_RT_SUM(4*N) 

nonnegative 

  for k = 1:4*N+1 

      if k<=4*N 

      if k<=4 

          X_RT(4*(Hour-1)+k,1) = 1; 

      end 

   Cap_Charge_Dit_RT_SUM(k,1) 

=Cap_G2Bat_Dit_RT_SUM(k)+Cap_PV2Bat_Dit_

RT_SUM(k)+Cap_RegD_Dit_RT_SUM(k)+Cap_Ex_

ch_Dit_RT_SUM(k) ; 

   Cap_Discharge_Dit_RT_SUM(k,1) = 

Cap_Bat2G_Dit_RT_SUM(k)+Cap_Spin_Dit_RT_

SUM(k)+Cap_RegU_Dit_RT_SUM(k)+Cap_Bat2L_

Dit_RT_SUM(k)+Cap_Ex_dch_Dit_RT_SUM(k); 

    

   cost_buy_Dit_RT_SUM(k,1) = 

(Cap_Ebuy_Dit_RT_SUM(k))/4.*(Mean_LMP_DA

_SUM_low(4*(Hour-1)+k)) + 

Cap_DEbuy_Dit_RT_SUM(k).* 

Mean_SUM_LMP_RT(4*(Hour-1)+k)/4 ; % Cost 

of buyng energy from Grid for battery 
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   income_sell_Dit_RT_SUM(k,1) = 

(X_RT(4*(Hour-1)+k).* 

Mean_LMP_DA_SUM_low(4*(Hour-

1)+k).*(Cap_Esell_Dit_RT_SUM(k))/4)+Mean

_SUM_LMP_RT(4*(Hour-

1)+k).*Cap_DEsell_Dit_RT_SUM(k)/4; %high 

    

   income_Spin_Dit_RT_SUM(k,1) = 

X_RT(4*(Hour-1)+k).*Tr_Spin_RT(4*(Hour-

1)+k) .* (Mean_SUM_Spin_RT(4*(Hour-

1)+k).* 

Cap_Spin_Dit_RT_SUM(k)/4);%Mean_Spin_da_

low 

   income_RegU_Dit_RT_SUM(k,1) = 

X_RT(4*(Hour-1)+k).* Tr_RegU_RT(4*(Hour-

1)+k).*(Mean_SUM_RegU_RT(4*(Hour-1)+k) 

.* (Cap_RegU_Dit_RT_SUM(k)/4)) ;% 

Mean_Reg_U_da_low 

   income_RegD_Dit_RT_SUM(k,1) = 

X_RT(4*(Hour-1)+k).*Tr_RegD_RT(4*(Hour-

1)+k).*(Mean_SUM_RegD_RT(4*(Hour-1)+k) 

.* Cap_RegD_Dit_RT_SUM(k)/4);  % 

Mean_Reg_D_da_low 

    

   income_Charging_Dit_RT_SUM(k,1)= 

income_RegD_Dit_RT_SUM(k) - 

cost_buy_Dit_RT_SUM(k); 

   income_Discharging_Dit_RT_SUM(k,1)=  

income_Spin_Dit_RT_SUM(k)+income_sell_Di

t_RT_SUM(k)+income_RegU_Dit_RT_SUM(k);%+

income_sell_Dit_RT_SUM(k); 

    

   cost_OP_Dit_RT_SUM(k,1) =  c_op 

.*(Cap_PV2Bat_Dit_RT_SUM(k)+ 

Cap_G2Bat_Dit_RT_SUM(k) + 

Cap_Bat2G_Dit_RT_SUM(k)+Tr_Spin_RT(4*(Ho

ur-1)+k) .* 

Cap_Spin_Dit_RT_SUM(k)+Tr_RegD_RT(4*(Hou

r-

1)+k).*Cap_RegD_Dit_RT_SUM(k)+Cap_RegU_D

it_RT_SUM(k)+Cap_Bat2L_Dit_RT_SUM(k)) ; 

% Cost operation 

   cost_Ex_ch_Dit_RT_SUM(k,1) = 0* 

Cap_Ex_ch_Dit_RT_SUM (k);  

   cost_Ex_dch_Dit_RT_SUM(k,1) = 0* 

Cap_Ex_dch_Dit_RT_SUM (k); 

    

 Soc_Dit_RT_SUM(k,1) = Eta_Ch 

.*((Cap_PV2Bat_Dit_RT_SUM(k)+ 

Cap_G2Bat_Dit_RT_SUM(k)+Cap_RegD_Dit_RT_

SUM(k))+... 

     (Cap_RegD_Dit_DA_SUM(4*(Hour-

1)+k))./4) - 

((Cap_Bat2G_Dit_RT_SUM(k,1)+Cap_Spin_Dit

_RT_SUM(k)+Cap_RegU_Dit_RT_SUM(k)+... 

     

Cap_Bat2L_Dit_RT_SUM(k))+(Cap_Bat2G_Dit_

DA_SUM(4*(Hour-

1)+k,1)+Cap_Spin_Dit_DA_SUM(4*(Hour-

1)+k,1)+ Cap_RegU_Dit_DA_SUM(4*(Hour-

1)+k,1))/4)./(Eta_D); 

   

 if Hour==1 

     if k==1  

        SOC_Dit_RT_SUM(k,1) = SOC_0 + 

cost_Ex_dch_Dit_RT_SUM(k);%Soc_Dit_RT_SU

M(k,1);  

     else 

       SOC_Dit_RT_SUM(k,1) = SOC_0 + 

sum(Soc_Dit_RT_SUM(1:k-1)) ;  

     end 

 else 

    if k==1      

         SOC_Dit_RT_SUM(k,1) = 

SOC_Dit_RT_SUM_S(4*(Hour-1),1) 

+Soc_Dit_RT_SUM_S(4*(Hour-1),1) + 

cost_Ex_dch_Dit_RT_SUM(k);% 

Soc_Dit_RT_SUM(k); 

    else 

         SOC_Dit_RT_SUM(k,1) = 

SOC_Dit_RT_SUM_S(4*(Hour-1),1) + 

sum(Soc_Dit_RT_SUM(1:k-

1))+Soc_Dit_RT_SUM_S(4*(Hour-1),1); 

    end 

 end 

  

   cost_Dit_RT_SUM(k,1) = 

(cost_Ex_ch_Dit_RT_SUM(k,1)+cost_Ex_dch_

Dit_RT_SUM(k,1)+cost_OP_Dit_RT_SUM(k)-

income_Discharging_Dit_RT_SUM(k)- 

income_Charging_Dit_RT_SUM(k)+Penlaty_Eb

uy_Dit_RT_SUM(k)+Penlaty_Esell_Dit_RT_SU

M(k));%+ 

cost_OP_Dit_RT_SUM(k));%cost_Demand_Dit_

RT_SUM(k) 

    

   a_RegU_Dit_RT_SUM(k,1)   = 

Cap_RegU_Dit_RT_SUM(k)/Cap_Max; 

   a_RegD_Dit_RT_SUM(k,1)   = 

Cap_RegD_Dit_RT_SUM(k)/Cap_Max; 

   a_Spin_Dit_RT_SUM(k,1)   = 

Cap_Spin_Dit_RT_SUM(k)/Cap_Max; 

   a_LMP_Dit_RT_SUM(k,1)    = 

Cap_Bat2G_Dit_RT_SUM(k)/Cap_Max; 

   a_Ex_ch_Dit_RT_SUM(k,1)  = 

Cap_Ex_ch_Dit_RT_SUM(k)/Cap_Max; 

   a_Ex_dch_Dit_RT_SUM(k,1) = 

Cap_Ex_dch_Dit_RT_SUM(k)/Cap_Max; 

   a_G2Bat_Dit_RT_SUM(k,1)  = 

Cap_G2Bat_Dit_RT_SUM(k)/Cap_Max; 

   a_PV2Bat_Dit_RT_SUM(k,1) = 

Cap_PV2Bat_Dit_RT_SUM(k)/Cap_Max; 

   a_Bat2L_Dit_RT_SUM(k,1)  = 

Cap_Bat2L_Dit_RT_SUM(k)/Cap_Max; 

      else 

          if Hour==1 

           SOC_Dit_RT_SUM(k,1) = SOC_0 + 

sum(Soc_Dit_RT_SUM(1:k-1)) ;  

          else 

            SOC_Dit_RT_SUM(k,1) = 

SOC_Dit_RT_SUM_S(4*(Hour-1),1) + 

sum(Soc_Dit_RT_SUM(1:k-

1))+Soc_Dit_RT_SUM_S(4*(Hour-1),1); 

          end 

      end 

    end 

   

  

  OBJ_Dit_RT_SUM =  

sum(cost_Dit_RT_SUM);%+COSTS; 

  

minimize(OBJ_Dit_RT_SUM) 

  

   subject to 

   if Hour==1 

   SOC_Dit_RT_SUM(1) == SOC_0 ; 

   end 

     

    SOC_Dit_RT_SUM(4*N+1) >= SOC_0 ; 

   for k = 1:4*N 

        

     SOC_Min <= SOC_Dit_RT_SUM(k)  <=  

1*SOC_Max ;  

     Cap_PV2L_Dit_RT_SUM(k) + 

Cap_G2L_Dit_RT_SUM(k)+Cap_Bat2L_Dit_RT_S

UM(k) == Cap_L_RT_sum(4*(Hour-
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1)+k)+W_Load_sum(4*(Hour-

1)+k).*X_RT(4*(Hour-1)+k) ; 

     Cap_PV2Bat_Dit_RT_SUM(k) + 

Cap_PV2L_Dit_RT_SUM(k) <= 

Cap_PV_RT_sum(4*(Hour-

1)+k)+W_PV_sum(4*(Hour-

1)+k).*X_RT(4*(Hour-1)+k); 

     

Cap_Charge_Dit_RT_SUM(k)+Cap_RegD_Dit_DA

_SUM(4*(Hour-1)+k)/4==Cap_Max.*(1-

M_Dit_DA_SUM(4*(Hour-1)+k))/4; 

     Cap_Discharge_Dit_RT_SUM(k) 

+(Cap_Bat2G_Dit_DA_SUM(4*(Hour-

1)+k,1)+Cap_Spin_Dit_DA_SUM(4*(Hour-

1)+k)+ Cap_RegU_Dit_DA_SUM(4*(Hour-

1)+k))/4 

==Cap_Max.*(M_Dit_DA_SUM(4*(Hour-

1)+k))/4; 

   

     0<= Cap_Ebuy_Dit_RT_SUM(k)<= 

Cap_E_buy_Dit_DA_SUM(4*(Hour-1)+k,1); 

     

Cap_Ebuy_Dit_RT_SUM(k)+Cap_DEbuy_Dit_RT_

SUM(k) == Cap_G2Bat_Dit_RT_SUM(k)+ 

Cap_G2L_Dit_RT_SUM(k)+ 

Cap_RegD_Dit_RT_SUM(k)+ 

Cap_RegD_Dit_DA_SUM(4*(Hour-1)+k); 

     Penlaty_Ebuy_Dit_RT_SUM(k) >= 

0.15*(Cap_DEbuy_Dit_RT_SUM(k)-

0.2*Cap_E_buy_Dit_DA_SUM(4*(Hour-

1)+k,1)); 

      

     0<= Cap_Esell_Dit_RT_SUM(k)<= 

Cap_E_sell_Dit_DA_SUM(4*(Hour-1)+k,1); 

     

Cap_Esell_Dit_RT_SUM(k)+Cap_DEsell_Dit_R

T_SUM(k) == 

Cap_Bat2G_Dit_RT_SUM(k,1)+Cap_Spin_Dit_R

T_SUM(k)+Cap_RegU_Dit_RT_SUM(k)+ 

Cap_Spin_Dit_DA_SUM(4*(Hour-

1)+k)+Cap_RegU_Dit_DA_SUM(4*(Hour-

1)+k);%+Cap_Bat2G_Dit_DA_SUM((4*(Hour-

1)+k),1); 

     Penlaty_Esell_Dit_RT_SUM(k) >= 

0.15*(Cap_DEsell_Dit_RT_SUM(k)-

0.2*Cap_E_sell_Dit_DA_SUM(4*(Hour-

1)+k,1)); 

      

      

          if MM_Dit_DA_SUM(4*(Hour-

1)+k)==1 

             M_Dit_RT_SUM(k)== 

M_Dit_DA_SUM(4*(Hour-1)+k); 

          end 

          if Tr_RegD_RT(4*(Hour-1)+k)==0 

             Cap_RegD_Dit_RT_SUM(k) ==0; 

          end  

          if Tr_RegU_RT(4*(Hour-1)+k)==0 

             Cap_RegU_Dit_RT_SUM(k) ==0; 

          end  

          if Tr_Spin_RT(4*(Hour-1)+k)==0 

             Cap_Spin_Dit_RT_SUM(k) ==0; 

          end 

   end 

   if k >=5 

      Cap_RegD_Dit_RT_SUM(k)==0; 

      

Cap_Spin_Dit_RT_SUM(k)+Cap_RegU_Dit_RT_S

UM(k)+Cap_Bat2G_Dit_RT_SUM(k)==0; 

   end 

  cvx_end 

  for k=1:4 

      SOC_Dit_RT_SUM_S(4*(Hour-1)+k,1) = 

SOC_Dit_RT_SUM(k); 

      Soc_Dit_RT_SUM_S(4*(Hour-1)+k,1) =  

Soc_Dit_RT_SUM(k); 

      SOCC_Dit_RT_SUM(4*(Hour-1)+k,1)  =  

SOC_Dit_RT_SUM(k)/BAT_CAP; 

      a_RegU_Dit_RT_SUM_S(4*(Hour-

1)+k,1) = a_RegU_Dit_RT_SUM(k,1); 

      a_RegD_Dit_RT_SUM_S(4*(Hour-

1)+k,1) = a_RegD_Dit_RT_SUM(k,1); 

      a_Spin_Dit_RT_SUM_S(4*(Hour-

1)+k,1) = a_Spin_Dit_RT_SUM(k,1); 

      a_LMP_Dit_RT_SUM_S(4*(Hour-1)+k,1) 

= a_LMP_Dit_RT_SUM(k,1) ; 

      a_Ex_ch_Dit_RT_SUM_S(4*(Hour-

1)+k,1) = a_Ex_ch_Dit_RT_SUM(k,1); 

      a_Ex_dch_Dit_RT_SUM_S(4*(Hour-

1)+k,1) = a_Ex_dch_Dit_RT_SUM(k,1); 

      a_G2Bat_Dit_RT_SUM_S(4*(Hour-

1)+k,1) = a_G2Bat_Dit_RT_SUM(k,1); 

      a_PV2Bat_Dit_RT_SUM_S(4*(Hour-

1)+k,1) = a_PV2Bat_Dit_RT_SUM(k,1); 

      a_Bat2L_Dit_RT_SUM_S(4*(Hour-

1)+k,1) = a_Bat2L_Dit_RT_SUM(k,1); 

      a_PV2L_Dit_RT_SUM_S(4*(Hour-

1)+k,1) = 

Cap_PV2L_Dit_RT_SUM(k,1)/Cap_Max; 

      a_G2L_Dit_RT_SUM_S(4*(Hour-1)+k,1) 

= Cap_G2L_Dit_RT_SUM(k,1)/Cap_Max;    

      M_Dit_RT_SUM_S(4*(Hour-1)+k,1) = 

M_Dit_RT_SUM(k); 

      Cap_Ebuy_Dit_RT_SUM_S(4*(Hour-

1)+k,1) =  Cap_Ebuy_Dit_RT_SUM(k); 

      Cap_Esell_Dit_RT_SUM_S(4*(Hour-

1)+k,1) =  Cap_Esell_Dit_RT_SUM(k); 

      Cap_DEsell_Dit_RT_SUM_S(4*(Hour-

1)+k,1) = Cap_DEsell_Dit_RT_SUM(k); 

      Cap_DEbuy_Dit_RT_SUM_S(4*(Hour-

1)+k,1) = Cap_DEbuy_Dit_RT_SUM(k); 

  end 

  N = N-1; 

   

  %COSTS = 

sum(OBJ_Dit_RT_SUM(1:4*Hour)); 

  Hour = Hour +1;  

end 

load gong.mat; 

sound(y);  

display("WELL DONE!!") 

  

t_Dit_RT_SUM = toc   

 %%% Deterministic Winter Real time 

tic 

 N = 24; 

 Hour = 1; 

 COSTS= 0; 

 SOC_Dit_RT_WIN_S = zeros(96,1); 

 SOC_Dit_RT_WIN_S(4,1) = SOC_0; 

 X_RT = zeros(96,1); 

  

 clear Soc_Dit_RT_WIN_S 

 clear SOC_Dit_RT_WIN_S 

for k=1:96 

a_RegD_Dit_DA_WIN(k,1) = 

Cap_RegD_Dit_DA_WIN(k,1)/Cap_Max; 

end 

while Hour<= 24 

       

clear Cap_Discharge_Dit_RT_WIN 

clear cost_Charge_Dit_RT_WIN 

clear cost_Demand_Dit_RT_WIN 

clear income_Spin_Dit_RT_WIN 

clear Income_Spin_Dit_RT_WIN 

clear income_sell_Dit_RT_WIN 

clear INCOME_sell_Dit_RT_WIN 

clear income_E_Dit_RT_WIN 
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clear Income_E_Dit_RT_WIN 

clear income_MilU_Dit_RT_WIN 

clear income_RegU_Dit_RT_WIN 

clear Income_RegU_Dit_RT_WIN 

clear cost_Charge_Dit_RT_WIN 

clear Cap_Charge_Dit_RT_WIN 

clear income_MilD_Dit_RT_WIN 

clear income_RegD_Dit_RT_WIN 

clear Income_RegD_Dit_RT_WIN 

clear income_Charging_Dit_RT_WIN 

clear income_Discharging_Dit_RT_WIN 

clear cost_OP_Dit_RT_WIN 

clear Soc_Dit_RT_WIN 

clear SOC_Dit_RT_WIN 

clear cost_Dit_RT_WIN 

clear COST_Dit_RT_WIN 

clear Cap_Ex_ch_Dit_RT_WIN 

clear Cap_Ex_dch_Dit_RT_WIN 

clear cost_Ex_dch_Dit_RT_WIN 

clear cost_Ex_ch_Dit_RT_WIN 

clear a_RegU_Dit_RT_WIN 

clear a_Spin_Dit_RT_WIN 

clear a_LMP_Dit_RT_WIN 

clear a_RegD_Dit_RT_WIN 

clear a_Buy_Dit_RT_WIN 

clear a_Ex_ch_Dit_RT_WIN 

clear a_Ex_dch_Dit_RT_WIN 

clear a_G2Bat_Dit_RT_WIN 

clear a_PV2Bat_Dit_RT_WIN 

clear cost_un_dch_Dit_RT_WIN 

clear cost_un_ch_Dit_RT_WIN 

clear a_Bat2L_Dit_RT_WIN 

clear M_Dit_RT_WIN 

clear Cap_Ebuy_Dit_RT_WIN 

clear Cap_DEbuy_Dit_RT_WIN 

clear Cap_Esell_Dit_RT_WIN 

clear Cap_DEsell_Dit_RT_WIN 

clear Penlaty_Ebuy_Dit_RT_WIN 

clear Penlaty_Esell_Dit_RT_WIN 

clear cost_buy_Dit_RT_WIN 

clear income_sell_Dit_RT_WIN 

cvx_begin 

    variable Cap_Bat2L_Dit_RT_WIN(4*N) 

nonnegative 

    variable Cap_G2Bat_Dit_RT_WIN(4*N) 

nonnegative 

    variable Cap_RegD_Dit_RT_WIN(4*N) 

nonnegative 

    variable Cap_PV2L_Dit_RT_WIN(4*N) 

nonnegative 

    variable Cap_G2L_Dit_RT_WIN(4*N) 

nonnegative 

    variable Cap_Bat2G_Dit_RT_WIN(4*N) 

nonnegative 

    variable Cap_PV2Bat_Dit_RT_WIN(4*N) 

nonnegative 

    variable Cap_RegU_Dit_RT_WIN(4*N) 

nonnegative  

    variable Cap_Spin_Dit_RT_WIN(4*N) 

nonnegative 

    variable Cap_Ex_ch_Dit_RT_WIN(4*N) 

nonnegative 

    variable Cap_Ex_dch_Dit_RT_WIN(4*N) 

nonnegative 

    variable M_Dit_RT_WIN(4*N) binary 

    variable Cap_Ebuy_Dit_RT_WIN(4*N) 

nonnegative 

    variable Cap_DEbuy_Dit_RT_WIN(4*N) 

nonnegative 

    variable Cap_Esell_Dit_RT_WIN(4*N) 

nonnegative 

    variable Cap_DEsell_Dit_RT_WIN(4*N) 

nonnegative 

    variable 

Penlaty_Ebuy_Dit_RT_WIN(4*N) nonnegative 

    variable 

Penlaty_Esell_Dit_RT_WIN(4*N) 

nonnegative 

  for k = 1:4*N+1 

      if k<=4*N 

      if k<=4 

          X_RT(4*(Hour-1)+k,1) = 1; 

      end 

   Cap_Charge_Dit_RT_WIN(k,1) 

=Cap_G2Bat_Dit_RT_WIN(k)+Cap_PV2Bat_Dit_

RT_WIN(k)+Cap_RegD_Dit_RT_WIN(k)+Cap_Ex_

ch_Dit_RT_WIN(k) ; 

   Cap_Discharge_Dit_RT_WIN(k,1) = 

Cap_Bat2G_Dit_RT_WIN(k)+Cap_Spin_Dit_RT_

WIN(k)+Cap_RegU_Dit_RT_WIN(k)+Cap_Bat2L_

Dit_RT_WIN(k)+Cap_Ex_dch_Dit_RT_WIN(k); 

    

   cost_buy_Dit_RT_WIN(k,1) = 

(Cap_Ebuy_Dit_RT_WIN(k))/4.*(Mean_LMP_DA

_WIN_low(4*(Hour-1)+k)) + 

Cap_DEbuy_Dit_RT_WIN(k).* 

Mean_WIN_LMP_RT(4*(Hour-1)+k)/4 ; % Cost 

of buyng energy from Grid for battery 

   income_sell_Dit_RT_WIN(k,1) = 

(X_RT(4*(Hour-1)+k).* 

Mean_LMP_DA_WIN_low(4*(Hour-

1)+k).*(Cap_Esell_Dit_RT_WIN(k))/4)+Mean

_WIN_LMP_RT(4*(Hour-

1)+k).*Cap_DEsell_Dit_RT_WIN(k)/4; %high 

    

   income_Spin_Dit_RT_WIN(k,1) = 

X_RT(4*(Hour-1)+k).*Tr_Spin_RT(4*(Hour-

1)+k) .* (Mean_WIN_Spin_RT(4*(Hour-

1)+k).* 

Cap_Spin_Dit_RT_WIN(k)/4);%Mean_Spin_da_

low 

   income_RegU_Dit_RT_WIN(k,1) = 

X_RT(4*(Hour-1)+k).* Tr_RegU_RT(4*(Hour-

1)+k).*(Mean_WIN_RegU_RT(4*(Hour-1)+k) 

.* (Cap_RegU_Dit_RT_WIN(k)/4)) ;% 

Mean_Reg_U_da_low 

   income_RegD_Dit_RT_WIN(k,1) = 

X_RT(4*(Hour-1)+k).*Tr_RegD_RT(4*(Hour-

1)+k).*(Mean_WIN_RegD_RT(4*(Hour-1)+k) 

.* Cap_RegD_Dit_RT_WIN(k)/4);  % 

Mean_Reg_D_da_low 

    

   income_Charging_Dit_RT_WIN(k,1)= 

income_RegD_Dit_RT_WIN(k) - 

cost_buy_Dit_RT_WIN(k); 

   income_Discharging_Dit_RT_WIN(k,1)=  

income_Spin_Dit_RT_WIN(k)+income_sell_Di

t_RT_WIN(k)+income_RegU_Dit_RT_WIN(k);%+

income_sell_Dit_RT_WIN(k); 

    

   cost_OP_Dit_RT_WIN(k,1) =  c_op 

.*(Cap_PV2Bat_Dit_RT_WIN(k)+ 

Cap_G2Bat_Dit_RT_WIN(k) + 

Cap_Bat2G_Dit_RT_WIN(k)+Tr_Spin_RT(4*(Ho

ur-1)+k) .* 

Cap_Spin_Dit_RT_WIN(k)+Tr_RegD_RT(4*(Hou

r-

1)+k).*Cap_RegD_Dit_RT_WIN(k)+Cap_RegU_D

it_RT_WIN(k)+Cap_Bat2L_Dit_RT_WIN(k)) ; 

% Cost operation 

   cost_Ex_ch_Dit_RT_WIN(k,1) = 0* 

Cap_Ex_ch_Dit_RT_WIN (k);  

   cost_Ex_dch_Dit_RT_WIN(k,1) = 0* 

Cap_Ex_dch_Dit_RT_WIN (k); 

    

 Soc_Dit_RT_WIN(k,1) = Eta_Ch 

.*((Cap_PV2Bat_Dit_RT_WIN(k)+ 
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Cap_G2Bat_Dit_RT_WIN(k)+Cap_RegD_Dit_RT_

WIN(k))+... 

     (Cap_RegD_Dit_DA_WIN(4*(Hour-

1)+k))./4) - 

((Cap_Bat2G_Dit_RT_WIN(k,1)+Cap_Spin_Dit

_RT_WIN(k)+Cap_RegU_Dit_RT_WIN(k)+... 

     

Cap_Bat2L_Dit_RT_WIN(k))+(Cap_Bat2G_Dit_

DA_WIN(4*(Hour-

1)+k,1)+Cap_Spin_Dit_DA_WIN(4*(Hour-

1)+k,1)+ Cap_RegU_Dit_DA_WIN(4*(Hour-

1)+k,1))/4)./(Eta_D); 

   

 if Hour==1 

     if k==1  

        SOC_Dit_RT_WIN(k,1) = SOC_0 + 

cost_Ex_dch_Dit_RT_WIN(k);%Soc_Dit_RT_WI

N(k,1);  

     else 

       SOC_Dit_RT_WIN(k,1) = SOC_0 + 

sum(Soc_Dit_RT_WIN(1:k-1)) ;  

     end 

 else 

    if k==1      

         SOC_Dit_RT_WIN(k,1) = 

SOC_Dit_RT_WIN_S(4*(Hour-1),1) + 

Soc_Dit_RT_WIN_S(4*(Hour-1),1) + 

cost_Ex_dch_Dit_RT_WIN(k);% 

Soc_Dit_RT_WIN(k); 

    else 

         SOC_Dit_RT_WIN(k,1) = 

SOC_Dit_RT_WIN_S(4*(Hour-1),1) + 

sum(Soc_Dit_RT_WIN(1:k-1)) + 

Soc_Dit_RT_WIN_S(4*(Hour-1),1); 

    end 

 end 

  

   cost_Dit_RT_WIN(k,1) = 

(cost_Ex_ch_Dit_RT_WIN(k,1)+cost_Ex_dch_

Dit_RT_WIN(k,1)+cost_OP_Dit_RT_WIN(k)-

income_Discharging_Dit_RT_WIN(k)- 

income_Charging_Dit_RT_WIN(k)+Penlaty_Eb

uy_Dit_RT_WIN(k)+Penlaty_Esell_Dit_RT_WI

N(k));%+ 

cost_OP_Dit_RT_WIN(k));%cost_Demand_Dit_

RT_WIN(k) 

    

   a_RegU_Dit_RT_WIN(k,1)   = 

Cap_RegU_Dit_RT_WIN(k)/Cap_Max; 

   a_RegD_Dit_RT_WIN(k,1)   = 

Cap_RegD_Dit_RT_WIN(k)/Cap_Max; 

   a_Spin_Dit_RT_WIN(k,1)   = 

Cap_Spin_Dit_RT_WIN(k)/Cap_Max; 

   a_LMP_Dit_RT_WIN(k,1)    = 

Cap_Bat2G_Dit_RT_WIN(k)/Cap_Max; 

   a_Ex_ch_Dit_RT_WIN(k,1)  = 

Cap_Ex_ch_Dit_RT_WIN(k)/Cap_Max; 

   a_Ex_dch_Dit_RT_WIN(k,1) = 

Cap_Ex_dch_Dit_RT_WIN(k)/Cap_Max; 

   a_G2Bat_Dit_RT_WIN(k,1)  = 

Cap_G2Bat_Dit_RT_WIN(k)/Cap_Max; 

   a_PV2Bat_Dit_RT_WIN(k,1) = 

Cap_PV2Bat_Dit_RT_WIN(k)/Cap_Max; 

   a_Bat2L_Dit_RT_WIN(k,1)  = 

Cap_Bat2L_Dit_RT_WIN(k)/Cap_Max; 

    else 

          if Hour==1 

           SOC_Dit_RT_WIN(k,1) = SOC_0 + 

sum(Soc_Dit_RT_WIN(1:k-1)) ;  

          else 

            SOC_Dit_RT_WIN(k,1) = 

SOC_Dit_RT_WIN_S(4*(Hour-1),1) + 

sum(Soc_Dit_RT_WIN(1:k-

1))+Soc_Dit_RT_WIN_S(4*(Hour-1),1); 

          end 

      end 

    end 

   

  

  OBJ_Dit_RT_WIN =  

sum(cost_Dit_RT_WIN);%+COSTS; 

  

minimize(OBJ_Dit_RT_WIN) 

  

   subject to 

   if Hour==1 

   SOC_Dit_RT_WIN(1) == SOC_0 ; 

   end 

     

    SOC_Dit_RT_WIN(4*N+1) >= SOC_0 ; 

   for k = 1:4*N 

        

     SOC_Min <= SOC_Dit_RT_WIN(k)  <=  

1*SOC_Max ;  

     Cap_PV2L_Dit_RT_WIN(k) + 

Cap_G2L_Dit_RT_WIN(k)+Cap_Bat2L_Dit_RT_W

IN(k) == Cap_L_RT_win(4*(Hour-

1)+k)+W_Load_win(4*(Hour-

1)+k).*X_RT(4*(Hour-1)+k) ; 

     Cap_PV2Bat_Dit_RT_WIN(k) + 

Cap_PV2L_Dit_RT_WIN(k) <= 

Cap_PV_RT_win(4*(Hour-

1)+k)+W_PV_win(4*(Hour-

1)+k).*X_RT(4*(Hour-1)+k); 

     

Cap_Charge_Dit_RT_WIN(k)+Cap_RegD_Dit_DA

_WIN(4*(Hour-1)+k)/4==Cap_Max.*(1-

M_Dit_DA_WIN(4*(Hour-1)+k))/4; 

     Cap_Discharge_Dit_RT_WIN(k) 

+(Cap_Bat2G_Dit_DA_WIN(4*(Hour-

1)+k,1)+Cap_Spin_Dit_DA_WIN(4*(Hour-

1)+k)+ Cap_RegU_Dit_DA_WIN(4*(Hour-

1)+k))/4 

==Cap_Max.*(M_Dit_DA_WIN(4*(Hour-

1)+k))/4; 

   

     0<= Cap_Ebuy_Dit_RT_WIN(k)<= 

Cap_E_buy_Dit_DA_WIN(4*(Hour-1)+k,1); 

     

Cap_Ebuy_Dit_RT_WIN(k)+Cap_DEbuy_Dit_RT_

WIN(k) == Cap_G2Bat_Dit_RT_WIN(k)+ 

Cap_G2L_Dit_RT_WIN(k)+ 

Cap_RegD_Dit_RT_WIN(k)+ 

Cap_RegD_Dit_DA_WIN(4*(Hour-1)+k); 

     Penlaty_Ebuy_Dit_RT_WIN(k) >= 

0.15*(Cap_DEbuy_Dit_RT_WIN(k)-

0.2*Cap_E_buy_Dit_DA_WIN(4*(Hour-

1)+k,1)); 

      

     0<= Cap_Esell_Dit_RT_WIN(k)<= 

Cap_E_sell_Dit_DA_WIN(4*(Hour-1)+k,1); 

     

Cap_Esell_Dit_RT_WIN(k)+Cap_DEsell_Dit_R

T_WIN(k) == 

Cap_Bat2G_Dit_RT_WIN(k,1)+Cap_Spin_Dit_R

T_WIN(k)+Cap_RegU_Dit_RT_WIN(k)+ 

Cap_Spin_Dit_DA_WIN(4*(Hour-

1)+k)+Cap_RegU_Dit_DA_WIN(4*(Hour-

1)+k);%+Cap_Bat2G_Dit_DA_WIN((4*(Hour-

1)+k),1); 

     Penlaty_Esell_Dit_RT_WIN(k) >= 

0.15*(Cap_DEsell_Dit_RT_WIN(k)-

0.2*Cap_E_sell_Dit_DA_WIN(4*(Hour-

1)+k,1)); 

      

      

          if MM_Dit_DA_WIN(4*(Hour-

1)+k)==1 
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             M_Dit_RT_WIN(k)== 

M_Dit_DA_WIN(4*(Hour-1)+k); 

          end 

          if Tr_RegD_RT(4*(Hour-1)+k)==0 

             Cap_RegD_Dit_RT_WIN(k) ==0; 

          end  

          if Tr_RegU_RT(4*(Hour-1)+k)==0 

             Cap_RegU_Dit_RT_WIN(k) ==0; 

          end  

          if Tr_Spin_RT(4*(Hour-1)+k)==0 

             Cap_Spin_Dit_RT_WIN(k) ==0; 

          end 

   end 

   if k >=5 

      Cap_RegD_Dit_RT_WIN(k)==0; 

      

Cap_Spin_Dit_RT_WIN(k)+Cap_RegU_Dit_RT_W

IN(k)+Cap_Bat2G_Dit_RT_WIN(k)==0; 

   end 

  cvx_end 

  for k=1:4 

      SOC_Dit_RT_WIN_S(4*(Hour-1)+k,1) = 

SOC_Dit_RT_WIN(k); 

      Soc_Dit_RT_WIN_S(4*(Hour-1)+k,1) =  

Soc_Dit_RT_WIN(k); 

      SOCC_Dit_RT_WIN(4*(Hour-1)+k,1)  =  

SOC_Dit_RT_WIN(k)/BAT_CAP; 

      a_RegU_Dit_RT_WIN_S(4*(Hour-

1)+k,1) = a_RegU_Dit_RT_WIN(k,1); 

      a_RegD_Dit_RT_WIN_S(4*(Hour-

1)+k,1) = a_RegD_Dit_RT_WIN(k,1); 

      a_Spin_Dit_RT_WIN_S(4*(Hour-

1)+k,1) = a_Spin_Dit_RT_WIN(k,1); 

      a_LMP_Dit_RT_WIN_S(4*(Hour-1)+k,1) 

= a_LMP_Dit_RT_WIN(k,1) ; 

      a_Ex_ch_Dit_RT_WIN_S(4*(Hour-

1)+k,1) = a_Ex_ch_Dit_RT_WIN(k,1); 

      a_Ex_dch_Dit_RT_WIN_S(4*(Hour-

1)+k,1) = a_Ex_dch_Dit_RT_WIN(k,1); 

      a_G2Bat_Dit_RT_WIN_S(4*(Hour-

1)+k,1) = a_G2Bat_Dit_RT_WIN(k,1); 

      a_PV2Bat_Dit_RT_WIN_S(4*(Hour-

1)+k,1) = a_PV2Bat_Dit_RT_WIN(k,1); 

      a_Bat2L_Dit_RT_WIN_S(4*(Hour-

1)+k,1) = a_Bat2L_Dit_RT_WIN(k,1); 

      a_PV2L_Dit_RT_WIN_S(4*(Hour-

1)+k,1) = 

Cap_PV2L_Dit_RT_WIN(k,1)/Cap_Max; 

      a_G2L_Dit_RT_WIN_S(4*(Hour-1)+k,1) 

= Cap_G2L_Dit_RT_WIN(k,1)/Cap_Max;    

      M_Dit_RT_WIN_S(4*(Hour-1)+k,1) = 

M_Dit_RT_WIN(k); 

      Cap_Ebuy_Dit_RT_WIN_S(4*(Hour-

1)+k,1) =  Cap_Ebuy_Dit_RT_WIN(k); 

      Cap_Esell_Dit_RT_WIN_S(4*(Hour-

1)+k,1) =  Cap_Esell_Dit_RT_WIN(k); 

      Cap_DEsell_Dit_RT_WIN_S(4*(Hour-

1)+k,1) = Cap_DEsell_Dit_RT_WIN(k); 

      Cap_DEbuy_Dit_RT_WIN_S(4*(Hour-

1)+k,1) = Cap_DEbuy_Dit_RT_WIN(k); 

  end 

  N = N-1; 

   

  %COSTS = 

sum(OBJ_Dit_RT_WIN(1:4*Hour)); 

  Hour = Hour +1;  

end 

load gong.mat; 

sound(y);  

display("WELL DONE!!") 

  

t_Dit_RT_WIN = toc   

  

%% % Robust Winter Real time 

  

  

tic 

 N = 24; 

 Hour = 1; 

 COSTS= 0; 

 SOC_RO_RT_WIN_S = zeros(96,1); 

 SOC_RO_RT_WIN_S(4,1) = SOC_0; 

 X_RT = zeros(96,1); 

  

 clear Soc_RO_RT_WIN_S 

 clear SOC_RO_RT_WIN_S 

for k=1:96 

a_RegD_RO_DA_WIN(k,1) = 

Cap_RegD_RO_DA_WIN(k,1)/Cap_Max; 

end 

while Hour<= 24 

       

clear Cap_Discharge_RO_RT_WIN 

clear cost_Charge_RO_RT_WIN 

clear cost_Demand_RO_RT_WIN 

clear income_Spin_RO_RT_WIN 

clear Income_Spin_RO_RT_WIN 

clear income_sell_RO_RT_WIN 

clear INCOME_sell_RO_RT_WIN 

clear income_E_RO_RT_WIN 

clear Income_E_RO_RT_WIN 

clear income_MilU_RO_RT_WIN 

clear income_RegU_RO_RT_WIN 

clear Income_RegU_RO_RT_WIN 

clear cost_Charge_RO_RT_WIN 

clear Cap_Charge_RO_RT_WIN 

clear income_MilD_RO_RT_WIN 

clear income_RegD_RO_RT_WIN 

clear Income_RegD_RO_RT_WIN 

clear income_Charging_RO_RT_WIN 

clear income_Discharging_RO_RT_WIN 

clear cost_OP_RO_RT_WIN 

clear Soc_RO_RT_WIN 

clear SOC_RO_RT_WIN 

clear cost_RO_RT_WIN 

clear COST_RO_RT_WIN 

clear Cap_Ex_ch_RO_RT_WIN 

clear Cap_Ex_dch_RO_RT_WIN 

clear cost_Ex_dch_RO_RT_WIN 

clear cost_Ex_ch_RO_RT_WIN 

clear a_RegU_RO_RT_WIN 

clear a_Spin_RO_RT_WIN 

clear a_LMP_RO_RT_WIN 

clear a_RegD_RO_RT_WIN 

clear a_Buy_RO_RT_WIN 

clear a_Ex_ch_RO_RT_WIN 

clear a_Ex_dch_RO_RT_WIN 

clear a_G2Bat_RO_RT_WIN 

clear a_PV2Bat_RO_RT_WIN 

clear cost_un_dch_RO_RT_WIN 

clear cost_un_ch_RO_RT_WIN 

clear a_Bat2L_RO_RT_WIN 

clear M_RO_RT_WIN 

clear Cap_Ebuy_RO_RT_WIN 

clear Cap_DEbuy_RO_RT_WIN 

clear Cap_Esell_RO_RT_WIN 

clear Cap_DEsell_RO_RT_WIN 

clear cost_buy_RO_RT_WIN 

clear income_sell_RO_RT_WIN 

clear Penlaty_Ebuy_RO_RT_WIN 

clear Penlaty_Esell_RO_RT_WIN 

cvx_begin 

    variable Cap_Bat2L_RO_RT_WIN(4*N) 

nonnegative 

    variable Cap_G2Bat_RO_RT_WIN(4*N) 

nonnegative 

    variable Cap_RegD_RO_RT_WIN(4*N) 

nonnegative 
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    variable Cap_PV2L_RO_RT_WIN(4*N) 

nonnegative 

    variable Cap_G2L_RO_RT_WIN(4*N) 

nonnegative 

    variable Cap_Bat2G_RO_RT_WIN(4*N) 

nonnegative 

    variable Cap_PV2Bat_RO_RT_WIN(4*N) 

nonnegative 

    variable Cap_RegU_RO_RT_WIN(4*N) 

nonnegative  

    variable Cap_Spin_RO_RT_WIN(4*N) 

nonnegative 

    variable Cap_Ex_ch_RO_RT_WIN(4*N) 

nonnegative 

    variable Cap_Ex_dch_RO_RT_WIN(4*N) 

nonnegative 

    variable M_RO_RT_WIN(4*N) binary 

    variable Cap_Ebuy_RO_RT_WIN(4*N) 

nonnegative 

    variable Cap_DEbuy_RO_RT_WIN(4*N) 

nonnegative 

    variable Cap_Esell_RO_RT_WIN(4*N) 

nonnegative 

    variable Cap_DEsell_RO_RT_WIN(4*N) 

nonnegative 

    variable Penlaty_Ebuy_RO_RT_WIN(4*N) 

nonnegative 

    variable 

Penlaty_Esell_RO_RT_WIN(4*N) nonnegative 

  for k = 1:4*N+1 

      if k<=4*N 

      if k<=4 

          X_RT(4*(Hour-1)+k,1) = 1; 

      end 

   Cap_Charge_RO_RT_WIN(k,1) = 

Cap_G2Bat_RO_RT_WIN(k)+Cap_PV2Bat_RO_RT_

WIN(k)+Cap_RegD_RO_RT_WIN(k)+Cap_Ex_ch_R

O_RT_WIN(k) ; 

   Cap_Discharge_RO_RT_WIN(k,1) = 

Cap_Bat2G_RO_RT_WIN(k)+Cap_Spin_RO_RT_WI

N(k)+Cap_RegU_RO_RT_WIN(k)+Cap_Bat2L_RO_

RT_WIN(k)+Cap_Ex_dch_RO_RT_WIN(k); 

    

   cost_buy_RO_RT_WIN(k,1) = 

[Cap_Ebuy_RO_RT_WIN(k).*Min_LMP_DA_SUM_l

ow(4*(Hour-

1)+k)+Cap_DEbuy_RO_RT_WIN(k).*Min_LMP_rt

_SUM_low(4*(Hour-1)+k)]/4; 

   income_sell_RO_RT_WIN(k,1) = 

[Cap_Esell_RO_RT_WIN(k).*Min_LMP_DA_SUM_

low(4*(Hour-

1)+k)+Cap_DEsell_RO_RT_WIN(k).*Min_LMP_r

t_SUM_low(4*(Hour-1)+k)]/4; 

       

   income_Spin_RO_RT_WIN(k,1) = 

X_RT(4*(Hour-1)+k).*Tr_Spin_RT(4*(Hour-

1)+k).* (Min_Spin_rt_WIN_low(4*(Hour-

1)+k).* 

Cap_Spin_RO_RT_WIN(k)/4);%Mean_Spin_da_l

ow 

   income_RegU_RO_RT_WIN(k,1) = 

X_RT(4*(Hour-1)+k).* Tr_RegU_RT(4*(Hour-

1)+k).*(Min_RegU_rt_WIN_low(4*(Hour-

1)+k) .* (Cap_RegU_RO_RT_WIN(k)/4)) ;% 

Mean_Reg_U_da_low 

   income_RegD_RO_RT_WIN(k,1) = 

X_RT(4*(Hour-1)+k).*Tr_RegD_RT(4*(Hour-

1)+k).*(Min_RegD_rt_WIN_low(4*(Hour-

1)+k) .* Cap_RegD_RO_RT_WIN(k)/4);  % 

Mean_Reg_D_da_low 

    

   income_Charging_RO_RT_WIN(k,1)= 

income_RegD_RO_RT_WIN(k) - 

cost_buy_RO_RT_WIN(k); 

   income_Discharging_RO_RT_WIN(k,1)=  

income_Spin_RO_RT_WIN(k)+income_sell_RO_

RT_WIN(k)+income_RegU_RO_RT_WIN(k);%+inc

ome_sell_RO_RT_WIN(k); 

    

   cost_OP_RO_RT_WIN(k,1) =  c_op 

.*(Cap_PV2Bat_RO_RT_WIN(k)+ 

Cap_G2Bat_RO_RT_WIN(k) + 

Cap_Bat2G_RO_RT_WIN(k)+Tr_Spin_RT(4*(Hou

r-1)+k) .* 

Cap_Spin_RO_RT_WIN(k)+Tr_RegD_RT(4*(Hour

-

1)+k).*Cap_RegD_RO_RT_WIN(k)+Cap_RegU_RO

_RT_WIN(k)+Cap_Bat2L_RO_RT_WIN(k)) ; % 

Cost operation 

   cost_Ex_ch_RO_RT_WIN(k,1) =0* 

Cap_Ex_ch_RO_RT_WIN(k);  

   cost_Ex_dch_RO_RT_WIN(k,1) =0* 

Cap_Ex_dch_RO_RT_WIN(k); 

    

 Soc_RO_RT_WIN(k,1) = Eta_Ch 

.*((Cap_PV2Bat_RO_RT_WIN(k)+ 

Cap_G2Bat_RO_RT_WIN(k)+Cap_RegD_RO_RT_WI

N(k))+... 

     (Cap_RegD_RO_DA_WIN(4*(Hour-

1)+k))./4) - 

((Cap_Bat2G_RO_RT_WIN(k,1)+Cap_Spin_RO_R

T_WIN(k)+Cap_RegU_RO_RT_WIN(k)+... 

     

Cap_Bat2L_RO_RT_WIN(k))+(Cap_Bat2G_RO_DA

_WIN(4*(Hour-

1)+k,1)+Cap_Spin_RO_DA_WIN(4*(Hour-

1)+k,1)+ Cap_RegU_RO_DA_WIN(4*(Hour-

1)+k,1))/4)./(Eta_D); 

   

 if Hour==1 

     if k==1 

        SOC_RO_RT_WIN(k,1) = SOC_0 + 

cost_Ex_dch_RO_RT_WIN(k);%Soc_RO_RT_WIN(

k,1);  

     else 

       SOC_RO_RT_WIN(k,1) = SOC_0 + 

sum(Soc_RO_RT_WIN(1:k-1)) ;  

     end 

 else 

    if k==1      

         SOC_RO_RT_WIN(k,1) = 

SOC_RO_RT_WIN_S(4*(Hour-1),1) 

+Soc_RO_RT_WIN_S(4*(Hour-1),1) + 

cost_Ex_dch_RO_RT_WIN(k);% 

Soc_RO_RT_WIN(k); 

    else 

         SOC_RO_RT_WIN(k,1) = 

SOC_RO_RT_WIN_S(4*(Hour-1),1) + 

sum(Soc_RO_RT_WIN(1:k-

1))+Soc_RO_RT_WIN_S(4*(Hour-1),1); 

    end 

 end 

  

   cost_RO_RT_WIN(k,1) = 

(cost_Ex_ch_RO_RT_WIN(k,1)+cost_Ex_dch_R

O_RT_WIN(k,1)+cost_OP_RO_RT_WIN(k)-

income_Discharging_RO_RT_WIN(k)- 

income_Charging_RO_RT_WIN(k)+Penlaty_Ebu

y_RO_RT_WIN(k)+Penlaty_Esell_RO_RT_WIN(k

)); 

   a_RegU_RO_RT_WIN(k,1) = 

Cap_RegU_RO_RT_WIN(k)/Cap_Max; 

   a_RegD_RO_RT_WIN(k,1) = 

Cap_RegD_RO_RT_WIN(k)/Cap_Max; 

   a_Spin_RO_RT_WIN(k,1) = 

Cap_Spin_RO_RT_WIN(k)/Cap_Max; 

   a_LMP_RO_RT_WIN(k,1)  = 

(Cap_Bat2G_RO_RT_WIN(k))/Cap_Max; 
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   a_Ex_ch_RO_RT_WIN(k,1) = 

Cap_Ex_ch_RO_RT_WIN(k)/Cap_Max; 

   a_Ex_dch_RO_RT_WIN(k,1) = 

Cap_Ex_dch_RO_RT_WIN(k)/Cap_Max; 

   a_G2Bat_RO_RT_WIN(k,1) = 

Cap_G2Bat_RO_RT_WIN(k)/Cap_Max; 

   a_PV2Bat_RO_RT_WIN(k,1) = 

Cap_PV2Bat_RO_RT_WIN(k)/Cap_Max; 

   a_Bat2L_RO_RT_WIN(k,1) = 

Cap_Bat2L_RO_RT_WIN(k)/Cap_Max; 

      else 

          if Hour==1 

           SOC_RO_RT_WIN(k,1) = SOC_0 + 

sum(Soc_RO_RT_WIN(1:k-1)) ;  

          else 

            SOC_RO_RT_WIN(k,1) = 

SOC_RO_RT_WIN_S(4*(Hour-1),1) + 

sum(Soc_RO_RT_WIN(1:k-

1))+Soc_RO_RT_WIN_S(4*(Hour-1),1); 

          end 

      end 

    end 

   

  

  OBJ_RO_RT_WIN =  

sum(cost_RO_RT_WIN);%+COSTS; 

  

minimize(OBJ_RO_RT_WIN) 

  

   subject to 

   if Hour==1 

   SOC_RO_RT_WIN(1) == SOC_0 ; 

   end 

     

    SOC_RO_RT_WIN(4*N+1) >= SOC_0 ; 

   for k = 1:4*N 

        

   SOC_Min <= SOC_RO_RT_WIN(k)  <=  

1*SOC_Max ;  

     0 <= 

Cap_G2Bat_RO_RT_WIN(k)+Cap_RegD_RO_RT_WI

N(k) + 

Cap_PV2Bat_RO_RT_WIN(k)+Cap_Ex_ch_RO_RT_

WIN(k) +Cap_RegD_RO_DA_WIN(4*(Hour-

1)+k)/4 == Cap_Max.*(1-

M_RO_RT_WIN(k))/4;% 

     0 <= 

Cap_Spin_RO_RT_WIN(k)+Cap_RegU_RO_RT_WIN

(k)+Cap_Bat2G_RO_RT_WIN(k) + 

Cap_Bat2L_RO_RT_WIN(k)+Cap_Ex_dch_RO_RT_

WIN(k) +(Cap_Bat2G_RO_DA_WIN(4*(Hour-

1)+k,1)+Cap_Spin_RO_DA_WIN(4*(Hour-

1)+k)+ Cap_RegU_RO_DA_WIN(4*(Hour-

1)+k))/4 == Cap_Max.*(M_RO_RT_WIN(k))/4; 

% + 

    Cap_PV2L_RO_RT_WIN(k) + 

Cap_G2L_RO_RT_WIN(k)+Cap_Bat2L_RO_RT_WIN

(k) == Cap_L_RT_win(4*(Hour-

1)+k)+W_Load_win(4*(Hour-

1)+k).*X_RT(4*(Hour-1)+k) ;% 

    Cap_PV2Bat_RO_RT_WIN(k) + 

Cap_PV2L_RO_RT_WIN(k) <= 

Cap_PV_RT_win(4*(Hour-

1)+k)+W_PV_win(4*(Hour-

1)+k).*X_RT(4*(Hour-1)+k); 

   

     0<= Cap_Ebuy_RO_RT_WIN(k)<= 

Cap_E_buy_RO_DA_WIN(4*(Hour-1)+k,1); 

     Cap_Ebuy_RO_RT_WIN(k) + 

Cap_DEbuy_RO_RT_WIN(k) == 

Cap_G2Bat_RO_RT_WIN(k)+ 

Cap_G2L_RO_RT_WIN(k)+ 

Cap_RegD_RO_RT_WIN(k)+ 

Cap_RegD_RO_DA_WIN(4*(Hour-1)+k); 

     Penlaty_Ebuy_RO_RT_WIN(k) >= 

0.15*(Cap_DEbuy_RO_RT_WIN(k)-

0.2*Cap_E_buy_RO_DA_WIN(4*(Hour-

1)+k,1)); 

      

     0<= Cap_Esell_RO_RT_WIN(k)<= 

Cap_E_sell_RO_DA_WIN(4*(Hour-1)+k,1); 

     

Cap_Esell_RO_RT_WIN(k)+Cap_DEsell_RO_RT_

WIN(k) == 

Cap_Bat2G_RO_RT_WIN(k,1)+Cap_Spin_RO_RT_

WIN(k)+Cap_RegU_RO_RT_WIN(k)+ 

Cap_Spin_RO_DA_WIN(4*(Hour-

1)+k)+Cap_RegU_RO_DA_WIN(4*(Hour-

1)+k);%+Cap_Bat2G_Dit_DA_WIN((4*(Hour-

1)+k),1); 

     Penlaty_Esell_RO_RT_WIN(k) >= 

0.15*(Cap_DEsell_RO_RT_WIN(k)-

0.2*Cap_E_sell_RO_DA_WIN(4*(Hour-

1)+k,1)); 

   

     

    if MM_RO_DA_WIN(4*(Hour-1)+k)==1 

     M_RO_RT_WIN(k)== 

M_RO_DA_WIN(4*(Hour-1)+k); 

  end 

   

  if Tr_RegD_RT(4*(Hour-1)+k)==0 

  Cap_RegD_RO_RT_WIN(k) ==0; 

   end  

   if Tr_RegU_RT(4*(Hour-1)+k)==0 

  Cap_RegU_RO_RT_WIN(k) ==0; 

   end  

   if Tr_Spin_RT(4*(Hour-1)+k)==0 

  Cap_Spin_RO_RT_WIN(k) ==0; 

   end  

    

   end 

   if k >=5 

      Cap_RegD_RO_RT_WIN(k)==0; 

      

Cap_Spin_RO_RT_WIN(k)+Cap_RegU_RO_RT_WIN

(k)+Cap_Bat2G_RO_RT_WIN(k)==0; 

   end 

  cvx_end 

  for k=1:4 

      SOC_RO_RT_WIN_S(4*(Hour-1)+k,1) = 

SOC_RO_RT_WIN(k); 

      Soc_RO_RT_WIN_S(4*(Hour-1)+k,1) =  

Soc_RO_RT_WIN(k); 

      SOCC_RO_RT_WIN(4*(Hour-1)+k,1)=  

SOC_RO_RT_WIN(k)/BAT_CAP; 

      a_RegU_RO_RT_WIN_S(4*(Hour-1)+k,1) 

= a_RegU_RO_RT_WIN(k,1); 

      a_RegD_RO_RT_WIN_S(4*(Hour-1)+k,1) 

= a_RegD_RO_RT_WIN(k,1); 

      a_Spin_RO_RT_WIN_S(4*(Hour-1)+k,1) 

= a_Spin_RO_RT_WIN(k,1); 

      a_LMP_RO_RT_WIN_S(4*(Hour-1)+k,1) 

= a_LMP_RO_RT_WIN(k,1) ; 

      a_Ex_ch_RO_RT_WIN_S(4*(Hour-

1)+k,1) = a_Ex_ch_RO_RT_WIN(k,1); 

      a_Ex_dch_RO_RT_WIN_S(4*(Hour-

1)+k,1) = a_Ex_dch_RO_RT_WIN(k,1); 

      a_G2Bat_RO_RT_WIN_S(4*(Hour-

1)+k,1) = a_G2Bat_RO_RT_WIN(k,1); 

      a_PV2Bat_RO_RT_WIN_S(4*(Hour-

1)+k,1) = a_PV2Bat_RO_RT_WIN(k,1); 

      a_Bat2L_RO_RT_WIN_S(4*(Hour-

1)+k,1) = a_Bat2L_RO_RT_WIN(k,1); 

      a_PV2L_RO_RT_WIN_S(4*(Hour-1)+k,1) 

= Cap_PV2L_RO_RT_WIN(k,1)/Cap_Max; 

      a_G2L_RO_RT_WIN_S(4*(Hour-1)+k,1) 

= Cap_G2L_RO_RT_WIN(k,1)/Cap_Max;    
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      M_RO_RT_WIN_S(4*(Hour-1)+k,1) = 

M_RO_RT_WIN(k); 

      Cap_Ebuy_RO_RT_WIN_S(4*(Hour-

1)+k,1) =  Cap_Ebuy_RO_RT_WIN(k); 

      Cap_Esell_RO_RT_WIN_S(4*(Hour-

1)+k,1) =  Cap_Esell_RO_RT_WIN(k); 

      Cap_DEsell_RO_RT_WIN_S(4*(Hour-

1)+k,1) = Cap_DEsell_RO_RT_WIN(k); 

      Cap_DEbuy_RO_RT_WIN_S(4*(Hour-

1)+k,1) = Cap_DEbuy_RO_RT_WIN(k); 

  end 

  N = N-1; 

   

  %COSTS = sum(OBJ_RO_RT_SUM(1:4*Hour)); 

  Hour = Hour +1;  

end 

load gong.mat; 

sound(y);  

display("WELL DONE!!") 

  

t_RO_RT_WIN = toc   

  

  

%% Robust SUMmer Real time 

  

  

  

tic 

 N = 24; 

 Hour = 1; 

 COSTS= 0; 

 SOC_RO_RT_SUM_S = zeros(96,1); 

 SOC_RO_RT_SUM_S(4,1) = SOC_0; 

 X_RT = zeros(96,1); 

  

 clear Soc_RO_RT_SUM_S 

 clear SOC_RO_RT_SUM_S 

for k=1:96 

a_RegD_RO_DA_SUM(k,1) = 

Cap_RegD_RO_DA_SUM(k,1)/Cap_Max; 

end 

while Hour<= 24 

       

clear Cap_Discharge_RO_RT_SUM 

clear cost_Charge_RO_RT_SUM 

clear cost_Demand_RO_RT_SUM 

clear income_Spin_RO_RT_SUM 

clear Income_Spin_RO_RT_SUM 

clear income_sell_RO_RT_SUM 

clear INCOME_sell_RO_RT_SUM 

clear income_E_RO_RT_SUM 

clear Income_E_RO_RT_SUM 

clear income_MilU_RO_RT_SUM 

clear income_RegU_RO_RT_SUM 

clear Income_RegU_RO_RT_SUM 

clear cost_Charge_RO_RT_SUM 

clear Cap_Charge_RO_RT_SUM 

clear income_MilD_RO_RT_SUM 

clear income_RegD_RO_RT_SUM 

clear Income_RegD_RO_RT_SUM 

clear income_Charging_RO_RT_SUM 

clear income_Discharging_RO_RT_SUM 

clear cost_OP_RO_RT_SUM 

clear Soc_RO_RT_SUM 

clear SOC_RO_RT_SUM 

clear cost_RO_RT_SUM 

clear COST_RO_RT_SUM 

clear Cap_Ex_ch_RO_RT_SUM 

clear Cap_Ex_dch_RO_RT_SUM 

clear cost_Ex_dch_RO_RT_SUM 

clear cost_Ex_ch_RO_RT_SUM 

clear a_RegU_RO_RT_SUM 

clear a_Spin_RO_RT_SUM 

clear a_LMP_RO_RT_SUM 

clear a_RegD_RO_RT_SUM 

clear a_Buy_RO_RT_SUM 

clear a_Ex_ch_RO_RT_SUM 

clear a_Ex_dch_RO_RT_SUM 

clear a_G2Bat_RO_RT_SUM 

clear a_PV2Bat_RO_RT_SUM 

clear cost_un_dch_RO_RT_SUM 

clear cost_un_ch_RO_RT_SUM 

clear a_Bat2L_RO_RT_SUM 

clear M_RO_RT_SUM 

clear Cap_Ebuy_RO_RT_SUM 

clear Cap_DEbuy_RO_RT_SUM 

clear Cap_Esell_RO_RT_SUM 

clear Cap_DEsell_RO_RT_SUM 

clear cost_buy_RO_RT_SUM 

clear income_sell_RO_RT_SUM 

clear Penlaty_Ebuy_RO_RT_SUM 

clear Penlaty_Esell_RO_RT_SUM 

cvx_begin 

    variable Cap_Bat2L_RO_RT_SUM(4*N) 

nonnegative 

    variable Cap_G2Bat_RO_RT_SUM(4*N) 

nonnegative 

    variable Cap_RegD_RO_RT_SUM(4*N) 

nonnegative 

    variable Cap_PV2L_RO_RT_SUM(4*N) 

nonnegative 

    variable Cap_G2L_RO_RT_SUM(4*N) 

nonnegative 

    variable Cap_Bat2G_RO_RT_SUM(4*N) 

nonnegative 

    variable Cap_PV2Bat_RO_RT_SUM(4*N) 

nonnegative 

    variable Cap_RegU_RO_RT_SUM(4*N) 

nonnegative  

    variable Cap_Spin_RO_RT_SUM(4*N) 

nonnegative 

    variable Cap_Ex_ch_RO_RT_SUM(4*N) 

nonnegative 

    variable Cap_Ex_dch_RO_RT_SUM(4*N) 

nonnegative 

    variable M_RO_RT_SUM(4*N) binary 

    variable Cap_Ebuy_RO_RT_SUM(4*N) 

nonnegative 

    variable Cap_DEbuy_RO_RT_SUM(4*N) 

nonnegative 

    variable Cap_Esell_RO_RT_SUM(4*N) 

nonnegative 

    variable Cap_DEsell_RO_RT_SUM(4*N) 

nonnegative 

    variable Penlaty_Ebuy_RO_RT_SUM(4*N) 

nonnegative 

    variable 

Penlaty_Esell_RO_RT_SUM(4*N) nonnegative 

  for k = 1:4*N+1 

      if k<=4*N 

      if k<=4 

          X_RT(4*(Hour-1)+k,1) = 1; 

      end 

   Cap_Charge_RO_RT_SUM(k,1) = 

Cap_G2Bat_RO_RT_SUM(k)+Cap_PV2Bat_RO_RT_

SUM(k)+Cap_RegD_RO_RT_SUM(k)+Cap_Ex_ch_R

O_RT_SUM(k) ; 

   Cap_Discharge_RO_RT_SUM(k,1) = 

Cap_Bat2G_RO_RT_SUM(k)+Cap_Spin_RO_RT_SU

M(k)+Cap_RegU_RO_RT_SUM(k)+Cap_Bat2L_RO_

RT_SUM(k)+Cap_Ex_dch_RO_RT_SUM(k); 

    

   cost_buy_RO_RT_SUM(k,1) = 

[Cap_Ebuy_RO_RT_SUM(k).*Min_LMP_DA_SUM_l

ow(4*(Hour-

1)+k)+Cap_DEbuy_RO_RT_SUM(k).*Min_LMP_rt

_SUM_low(4*(Hour-1)+k)]/4; 
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   income_sell_RO_RT_SUM(k,1) = 

[Cap_Esell_RO_RT_SUM(k).*Min_LMP_DA_SUM_

low(4*(Hour-

1)+k)+Cap_DEsell_RO_RT_SUM(k).*Min_LMP_r

t_SUM_low(4*(Hour-1)+k)]/4; 

       

   income_Spin_RO_RT_SUM(k,1) = 

X_RT(4*(Hour-1)+k).*Tr_Spin_RT(4*(Hour-

1)+k).* (Min_Spin_rt_SUM_low(4*(Hour-

1)+k).* 

Cap_Spin_RO_RT_SUM(k)/4);%Mean_Spin_da_l

ow 

   income_RegU_RO_RT_SUM(k,1) = 

X_RT(4*(Hour-1)+k).* Tr_RegU_RT(4*(Hour-

1)+k).*(Min_RegU_rt_SUM_low(4*(Hour-

1)+k) .* (Cap_RegU_RO_RT_SUM(k)/4)) ;% 

Mean_Reg_U_da_low 

   income_RegD_RO_RT_SUM(k,1) = 

X_RT(4*(Hour-1)+k).*Tr_RegD_RT(4*(Hour-

1)+k).*(Min_RegD_rt_SUM_low(4*(Hour-

1)+k) .* Cap_RegD_RO_RT_SUM(k)/4);  % 

Mean_Reg_D_da_low 

    

   income_Charging_RO_RT_SUM(k,1)= 

income_RegD_RO_RT_SUM(k) - 

cost_buy_RO_RT_SUM(k); 

   income_Discharging_RO_RT_SUM(k,1)=  

income_Spin_RO_RT_SUM(k)+income_sell_RO_

RT_SUM(k)+income_RegU_RO_RT_SUM(k);%+inc

ome_sell_RO_RT_SUM(k); 

    

   cost_OP_RO_RT_SUM(k,1) =  c_op 

.*(Cap_PV2Bat_RO_RT_SUM(k)+ 

Cap_G2Bat_RO_RT_SUM(k) + 

Cap_Bat2G_RO_RT_SUM(k)+Tr_Spin_RT(4*(Hou

r-1)+k) .* 

Cap_Spin_RO_RT_SUM(k)+Tr_RegD_RT(4*(Hour

-

1)+k).*Cap_RegD_RO_RT_SUM(k)+Cap_RegU_RO

_RT_SUM(k)+Cap_Bat2L_RO_RT_SUM(k)) ; % 

Cost operation 

   cost_Ex_ch_RO_RT_SUM(k,1) =0* 

Cap_Ex_ch_RO_RT_SUM(k);  

   cost_Ex_dch_RO_RT_SUM(k,1) =0* 

Cap_Ex_dch_RO_RT_SUM(k); 

    

 Soc_RO_RT_SUM(k,1) = Eta_Ch 

.*((Cap_PV2Bat_RO_RT_SUM(k)+ 

Cap_G2Bat_RO_RT_SUM(k)+Cap_RegD_RO_RT_SU

M(k))+... 

     (Cap_RegD_RO_DA_SUM(4*(Hour-

1)+k))./4) - 

((Cap_Bat2G_RO_RT_SUM(k,1)+Cap_Spin_RO_R

T_SUM(k)+Cap_RegU_RO_RT_SUM(k)+... 

     

Cap_Bat2L_RO_RT_SUM(k))+(Cap_Bat2G_RO_DA

_SUM(4*(Hour-

1)+k,1)+Cap_Spin_RO_DA_SUM(4*(Hour-

1)+k,1)+ Cap_RegU_RO_DA_SUM(4*(Hour-

1)+k,1))/4)./(Eta_D); 

   

 if Hour==1 

     if k==1 

        SOC_RO_RT_SUM(k,1) = SOC_0 + 

cost_Ex_dch_RO_RT_SUM(k);%Soc_RO_RT_SUM(

k,1);  

     else 

       SOC_RO_RT_SUM(k,1) = SOC_0 + 

sum(Soc_RO_RT_SUM(1:k-1)) ;  

     end 

 else 

    if k==1      

         SOC_RO_RT_SUM(k,1) = 

SOC_RO_RT_SUM_S(4*(Hour-1),1) 

+Soc_RO_RT_SUM_S(4*(Hour-1),1) + 

cost_Ex_dch_RO_RT_SUM(k);% 

Soc_RO_RT_SUM(k); 

    else 

         SOC_RO_RT_SUM(k,1) = 

SOC_RO_RT_SUM_S(4*(Hour-1),1) + 

sum(Soc_RO_RT_SUM(1:k-

1))+Soc_RO_RT_SUM_S(4*(Hour-1),1); 

    end 

 end 

  

   cost_RO_RT_SUM(k,1) = 

(cost_Ex_ch_RO_RT_SUM(k,1)+cost_Ex_dch_R

O_RT_SUM(k,1)+cost_OP_RO_RT_SUM(k)-

income_Discharging_RO_RT_SUM(k)- 

income_Charging_RO_RT_SUM(k)+Penlaty_Ebu

y_RO_RT_SUM(k)+Penlaty_Esell_RO_RT_SUM(k

));% 

   a_RegU_RO_RT_SUM(k,1) = 

Cap_RegU_RO_RT_SUM(k)/Cap_Max; 

   a_RegD_RO_RT_SUM(k,1) = 

Cap_RegD_RO_RT_SUM(k)/Cap_Max; 

   a_Spin_RO_RT_SUM(k,1) = 

Cap_Spin_RO_RT_SUM(k)/Cap_Max; 

   a_LMP_RO_RT_SUM(k,1)  = 

(Cap_Bat2G_RO_RT_SUM(k))/Cap_Max; 

   a_Ex_ch_RO_RT_SUM(k,1) = 

Cap_Ex_ch_RO_RT_SUM(k)/Cap_Max; 

   a_Ex_dch_RO_RT_SUM(k,1) = 

Cap_Ex_dch_RO_RT_SUM(k)/Cap_Max; 

   a_G2Bat_RO_RT_SUM(k,1) = 

Cap_G2Bat_RO_RT_SUM(k)/Cap_Max; 

   a_PV2Bat_RO_RT_SUM(k,1) = 

Cap_PV2Bat_RO_RT_SUM(k)/Cap_Max; 

   a_Bat2L_RO_RT_SUM(k,1) = 

Cap_Bat2L_RO_RT_SUM(k)/Cap_Max; 

      else 

          if Hour==1 

           SOC_RO_RT_SUM(k,1) = SOC_0 + 

sum(Soc_RO_RT_SUM(1:k-1)) ;  

          else 

            SOC_RO_RT_SUM(k,1) = 

SOC_RO_RT_SUM_S(4*(Hour-1),1) + 

sum(Soc_RO_RT_SUM(1:k-

1))+Soc_RO_RT_SUM_S(4*(Hour-1),1); 

          end 

      end 

    end 

   

  

  OBJ_RO_RT_SUM =  

sum(cost_RO_RT_SUM);%+COSTS; 

  

minimize(OBJ_RO_RT_SUM) 

  

   subject to 

   if Hour==1 

   SOC_RO_RT_SUM(1) == SOC_0 ; 

   end 

     

    SOC_RO_RT_SUM(4*N+1) >= SOC_0 ; 

   for k = 1:4*N 

        

   SOC_Min <= SOC_RO_RT_SUM(k)  <=  

1*SOC_Max ;  

     0 <= 

Cap_G2Bat_RO_RT_SUM(k)+Cap_RegD_RO_RT_SU

M(k) + 

Cap_PV2Bat_RO_RT_SUM(k)+Cap_Ex_ch_RO_RT_

SUM(k) +Cap_RegD_RO_DA_SUM(4*(Hour-

1)+k)/4 == Cap_Max.*(1-

M_RO_RT_SUM(k))/4;% 

     0 <= 

Cap_Spin_RO_RT_SUM(k)+Cap_RegU_RO_RT_SUM
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(k)+Cap_Bat2G_RO_RT_SUM(k) + 

Cap_Bat2L_RO_RT_SUM(k)+Cap_Ex_dch_RO_RT_

SUM(k) +(Cap_Bat2G_RO_DA_SUM(4*(Hour-

1)+k,1)+Cap_Spin_RO_DA_SUM(4*(Hour-

1)+k)+ Cap_RegU_RO_DA_SUM(4*(Hour-

1)+k))/4 == Cap_Max.*(M_RO_RT_SUM(k))/4; 

% + 

    Cap_PV2L_RO_RT_SUM(k) + 

Cap_G2L_RO_RT_SUM(k)+Cap_Bat2L_RO_RT_SUM

(k) == Cap_L_RT_sum(4*(Hour-

1)+k)+W_Load_sum(4*(Hour-

1)+k).*X_RT(4*(Hour-1)+k) ;% 

    Cap_PV2Bat_RO_RT_SUM(k) + 

Cap_PV2L_RO_RT_SUM(k) <= 

Cap_PV_RT_sum(4*(Hour-

1)+k)+W_PV_sum(4*(Hour-

1)+k).*X_RT(4*(Hour-1)+k); 

   

     0<= Cap_Ebuy_RO_RT_SUM(k)<= 

Cap_E_buy_RO_DA_SUM(4*(Hour-1)+k,1); 

     Cap_Ebuy_RO_RT_SUM(k) + 

Cap_DEbuy_RO_RT_SUM(k) == 

Cap_G2Bat_RO_RT_SUM(k)+ 

Cap_G2L_RO_RT_SUM(k)+ 

Cap_RegD_RO_RT_SUM(k)+ 

Cap_RegD_RO_DA_SUM(4*(Hour-1)+k); 

     Penlaty_Ebuy_RO_RT_SUM(k) >= 

0.15*(Cap_DEbuy_RO_RT_SUM(k)-

0.2*Cap_E_buy_RO_DA_SUM(4*(Hour-

1)+k,1)); 

      

     0<= Cap_Esell_RO_RT_SUM(k)<= 

Cap_E_sell_RO_DA_SUM(4*(Hour-1)+k,1); 

     

Cap_Esell_RO_RT_SUM(k)+Cap_DEsell_RO_RT_

SUM(k) == 

Cap_Bat2G_RO_RT_SUM(k,1)+Cap_Spin_RO_RT_

SUM(k)+Cap_RegU_RO_RT_SUM(k)+ 

Cap_Spin_RO_DA_SUM(4*(Hour-

1)+k)+Cap_RegU_RO_DA_SUM(4*(Hour-

1)+k);%+Cap_Bat2G_Dit_DA_SUM((4*(Hour-

1)+k),1); 

     Penlaty_Esell_RO_RT_SUM(k) >= 

0.15*(Cap_DEsell_RO_RT_SUM(k)-

0.2*Cap_E_sell_RO_DA_SUM(4*(Hour-

1)+k,1)); 

   

     

    if MM_RO_DA_SUM(4*(Hour-1)+k)==1 

     M_RO_RT_SUM(k)== 

M_RO_DA_SUM(4*(Hour-1)+k); 

  end 

   

  if Tr_RegD_RT(4*(Hour-1)+k)==0 

  Cap_RegD_RO_RT_SUM(k) ==0; 

   end  

   if Tr_RegU_RT(4*(Hour-1)+k)==0 

  Cap_RegU_RO_RT_SUM(k) ==0; 

   end  

   if Tr_Spin_RT(4*(Hour-1)+k)==0 

  Cap_Spin_RO_RT_SUM(k) ==0; 

   end  

    

   end 

   if k >=5 

      Cap_RegD_RO_RT_SUM(k)==0; 

      

Cap_Spin_RO_RT_SUM(k)+Cap_RegU_RO_RT_SUM

(k)+Cap_Bat2G_RO_RT_SUM(k)==0; 

   end 

  cvx_end 

  for k=1:4 

      SOC_RO_RT_SUM_S(4*(Hour-1)+k,1) = 

SOC_RO_RT_SUM(k); 

      Soc_RO_RT_SUM_S(4*(Hour-1)+k,1) =  

Soc_RO_RT_SUM(k); 

      SOCC_RO_RT_SUM(4*(Hour-1)+k,1)=  

SOC_RO_RT_SUM(k)/BAT_CAP; 

      a_RegU_RO_RT_SUM_S(4*(Hour-1)+k,1) 

= a_RegU_RO_RT_SUM(k,1); 

      a_RegD_RO_RT_SUM_S(4*(Hour-1)+k,1) 

= a_RegD_RO_RT_SUM(k,1); 

      a_Spin_RO_RT_SUM_S(4*(Hour-1)+k,1) 

= a_Spin_RO_RT_SUM(k,1); 

      a_LMP_RO_RT_SUM_S(4*(Hour-1)+k,1) 

= a_LMP_RO_RT_SUM(k,1) ; 

      a_Ex_ch_RO_RT_SUM_S(4*(Hour-

1)+k,1) = a_Ex_ch_RO_RT_SUM(k,1); 

      a_Ex_dch_RO_RT_SUM_S(4*(Hour-

1)+k,1) = a_Ex_dch_RO_RT_SUM(k,1); 

      a_G2Bat_RO_RT_SUM_S(4*(Hour-

1)+k,1) = a_G2Bat_RO_RT_SUM(k,1); 

      a_PV2Bat_RO_RT_SUM_S(4*(Hour-

1)+k,1) = a_PV2Bat_RO_RT_SUM(k,1); 

      a_Bat2L_RO_RT_SUM_S(4*(Hour-

1)+k,1) = a_Bat2L_RO_RT_SUM(k,1); 

      a_PV2L_RO_RT_SUM_S(4*(Hour-1)+k,1) 

= Cap_PV2L_RO_RT_SUM(k,1)/Cap_Max; 

      a_G2L_RO_RT_SUM_S(4*(Hour-1)+k,1) 

= Cap_G2L_RO_RT_SUM(k,1)/Cap_Max;    

      M_RO_RT_SUM_S(4*(Hour-1)+k,1) = 

M_RO_RT_SUM(k); 

      Cap_Ebuy_RO_RT_SUM_S(4*(Hour-

1)+k,1) =  Cap_Ebuy_RO_RT_SUM(k); 

      Cap_Esell_RO_RT_SUM_S(4*(Hour-

1)+k,1) =  Cap_Esell_RO_RT_SUM(k); 

      Cap_DEsell_RO_RT_SUM_S(4*(Hour-

1)+k,1) = Cap_DEsell_RO_RT_SUM(k); 

      Cap_DEbuy_RO_RT_SUM_S(4*(Hour-

1)+k,1) = Cap_DEbuy_RO_RT_SUM(k); 

  end 

  N = N-1; 

   

  %COSTS = sum(OBJ_RO_RT_SUM(1:4*Hour)); 

  Hour = Hour +1;  

end 

load gong.mat; 

sound(y);  

display("WELL DONE!!") 

  

t_RO_RT_SUM = toc   

  

  

 %% DRO Winter Real Time 

tic 

 N = 24; 

 clear SOCC_DRO_RT_WIN 

 Hour = 1; 

 COSTS= 0; 

 Soc_DRO_RT_WIN_S = zeros(96,1); 

 Soc_DRO_RT_WIN_S(4,1) = SOC_0; 

 X_RT = zeros(96,1); 

  

 clear Soc_DRO_RT_WIN_S 

 clear SOC_DRO_RT_WIN_S 

  

 for k=1:96 

a_RegD_DRO_DA_WIN(k,1) = 

Cap_RegD_DRO_DA_WIN(k,1)/Cap_Max; 

  

d_spin_WIN_low(k,1) = 

Max_WIN_Spin_RT(k,1); 

d_RegU_WIN_low(k,1) = 

Max_WIN_RegU_RT(k,1); 

d_LMP_WIN_low_RT(k,1)  = 

Max_WIN_LMP_RT(k,1) ; 

d_LMP_WIN_low_DA(k,1)  = 

Max_WIN_LMP_DA(k,1) ; 
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d_RegD_WIN_low(k,1) = 

Max_WIN_RegD_RT(k,1); 

 end 

    

while Hour<= 24 

clear lambda_Risk_WIN_low 

clear S_Spin_WIN_low 

clear S_LMP_WIN_low 

clear S_RegU_WIN_low 

clear S_RegD_WIN_low 

clear S_Buy_WIN_low 

clear Risk_CVaR_RegU_RT_WIN_low 

clear Risk_CVaR_RegD_RT_WIN_low 

clear Risk_CVaR_Spin_RT_WIN_low 

clear Risk_CVaR_LMP_DA_WIN_low 

clear Risk_CVaR_LMP_RT_WIN_low 

clear Risk_CVaR_Buy_RT_WIN_low 

clear a1_Risk_WIN_low 

clear ROO_Risk_WIN_low 

clear a2_Risk_WIN_low 

clear b1_Risk_WIN_low 

clear b2_Risk_WIN_low 

clear tou_Spin_WIN_low 

clear tou_RegU_WIN_low 

clear tou_RegD_WIN_low 

clear tou_LMP_WIN_low_RT 

clear tou_LMP_WIN_low_DA 

clear tou_Buy_WIN_low 

clear gama1_Spin_WIN_low 

clear gama2_Spin_WIN_low 

clear gama1_RegU_WIN_low 

clear gama2_RegU_WIN_low 

clear gama1_RegD_WIN_low 

clear gama2_RegD_WIN_low 

clear gama1_LMP_WIN_low_RT 

clear gama2_LMP_WIN_low_RT 

clear gama1_LMP_WIN_low_DA 

clear gama2_LMP_WIN_low_DA 

clear gama1_Buy_WIN_low 

clear gama2_Buy_WIN_low 

clear Cap_Discharge_DRO_RT_WIN 

clear cost_Charge_DRO_RT_WIN 

clear cost_Demand_DRO_RT_WIN 

clear income_Spin_DRO_RT_WIN 

clear Income_Spin_DRO_RT_WIN 

clear income_sell_DRO_RT_WIN 

clear INCOME_sell_DRO_RT_WIN 

clear income_E_DRO_RT_WIN 

clear Income_E_DRO_RT_WIN 

clear income_MilU_DRO_RT_WIN 

clear income_RegU_DRO_RT_WIN 

clear Income_RegU_DRO_RT_WIN 

clear cost_Charge_DRO_RT_WIN 

clear Cap_Charge_DRO_RT_WIN 

clear income_MilD_DRO_RT_WIN 

clear income_RegD_DRO_RT_WIN 

clear Income_RegD_DRO_RT_WIN 

clear income_Charging_DRO_RT_WIN 

clear income_Discharging_DRO_RT_WIN 

clear cost_OP_DRO_RT_WIN 

clear Soc_DRO_RT_WIN 

clear SOC_DRO_RT_WIN 

clear cost_DRO_RT_WIN 

clear COST_DRO_RT_WIN 

clear cost_un_dch_DRO_RT_WIN 

clear cost_un_ch_DRO_RT_WIN 

clear Cap_Ex_ch_DRO_RT_WIN 

clear Cap_Ex_dch_DRO_RT_WIN 

clear a_RegU_DRO_RT_WIN 

clear a_Spin_DRO_RT_WIN 

clear a_LMP_DRO_RT_WIN 

clear a_LMP_DRO_DA_WIN 

clear a_RegD_DRO_RT_WIN 

clear a_Buy_DRO_RT_WIN 

clear a_Ex_ch_DRO_RT_WIN 

clear a_Ex_dch_DRO_RT_WIN 

clear a_G2Bat_DRO_RT_WIN 

clear a_PV2Bat_DRO_RT_WIN 

clear cost_un_dch_DRO_RT_WIN  

clear cost_un_ch_DRO_RT_WIN 

clear Cap_Ex_ch_DRO_RT_WIN 

clear Cap_Ex_dch_DRO_RT_WIN 

clear a_Bat2L_DRO_RT_WIN 

clear a_G2L_DRO_RT_WIN 

clear M_DRO_RT_WIN 

clear Cap_Ebuy_DRO_RT_WIN 

clear Cap_DEbuy_DRO_RT_WIN 

clear Cap_Esell_DRO_RT_WIN 

clear Cap_DEsell_DRO_RT_WIN 

clear Penlaty_Ebuy_DRO_RT_WIN 

clear Penlaty_Esell_DRO_RT_WIN 

clear a_Ebuy_DRO_RT_WIN 

clear a_DEbuy_DRO_RT_WIN 

clear a_Esell_DRO_RT_WIN 

clear a_DEsell_DRO_RT_WIN 

cvx_begin 

    variable Cap_Bat2L_DRO_RT_WIN(4*N) 

nonnegative 

    variable Cap_G2Bat_DRO_RT_WIN(4*N) 

nonnegative 

    variable Cap_RegD_DRO_RT_WIN(4*N) 

nonnegative 

    variable Cap_PV2L_DRO_RT_WIN(4*N) 

nonnegative 

    variable Cap_G2L_DRO_RT_WIN(4*N) 

nonnegative 

    variable Cap_Bat2G_DRO_RT_WIN(4*N) 

nonnegative 

    variable Cap_PV2Bat_DRO_RT_WIN(4*N) 

nonnegative 

    variable Cap_RegU_DRO_RT_WIN(4*N) 

nonnegative  

    variable Cap_Spin_DRO_RT_WIN(4*N) 

nonnegative 

    variable Cap_Ex_ch_DRO_RT_WIN(4*N) 

nonnegative 

    variable Cap_Ex_dch_DRO_RT_WIN(4*N) 

nonnegative 

    variable lambda_Spin_WIN_low(4*N)  

    variable lambda_LMP_WIN_low_RT(4*N) 

    variable lambda_LMP_WIN_low_DA(4*N) 

    variable lambda_RegU_WIN_low(4*N) 

    variable lambda_RegD_WIN_low(4*N) 

    variable lambda_Buy_WIN_low(4*N) 

    variable 

S_Spin_WIN_low(4*N,N_WIN_low) 

    variable 

S_RegU_WIN_low(4*N,N_WIN_low) 

    variable 

S_RegD_WIN_low(4*N,N_WIN_low) 

    variable 

S_LMP_WIN_low_RT(4*N,N_WIN_low) 

    variable 

S_LMP_WIN_low_DA(4*N,N_WIN_low) 

    variable 

S_Buy_WIN_low(4*N,N_WIN_low) 

    variable gama1_Spin_WIN_low(4*N) 

    variable gama2_Spin_WIN_low(4*N) 

    variable gama1_RegU_WIN_low(4*N) 

    variable gama2_RegU_WIN_low(4*N) 

    variable gama1_RegD_WIN_low(4*N) 

    variable gama2_RegD_WIN_low(4*N) 

    variable gama1_LMP_WIN_low_RT(4*N) 

    variable gama2_LMP_WIN_low_RT(4*N) 

    variable gama1_LMP_WIN_low_DA(4*N) 

    variable gama2_LMP_WIN_low_DA(4*N) 

    variable gama1_Buy_WIN_low(4*N) 

    variable gama2_Buy_WIN_low(4*N) 
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    variable tou_Spin_WIN_low(N_WIN_low) 

    variable tou_RegU_WIN_low(N_WIN_low) 

    variable tou_RegD_WIN_low(N_WIN_low) 

    variable 

tou_LMP_WIN_low_RT(N_WIN_low) 

    variable 

tou_LMP_WIN_low_DA(N_WIN_low) 

    variable tou_Buy_WIN_low(N_WIN_low) 

    variable M_DRO_RT_WIN(4*N) binary 

    variable Cap_Ebuy_DRO_RT_WIN(4*N) 

nonnegative 

    variable Cap_DEbuy_DRO_RT_WIN(4*N) 

nonnegative 

    variable Cap_Esell_DRO_RT_WIN(4*N) 

nonnegative 

    variable Cap_DEsell_DRO_RT_WIN(4*N) 

nonnegative 

    variable 

Penlaty_Ebuy_DRO_RT_WIN(4*N) nonnegative 

    variable 

Penlaty_Esell_DRO_RT_WIN(4*N) 

nonnegative 

    for k = 1:4*N+1 

        if k<=4*N 

      if k<=4 

          X_RT(4*(Hour-1)+k,1) = 1; 

      end 

   a_RegU_DRO_RT_WIN(k,1)  = 

Cap_RegU_DRO_RT_WIN(k)/Cap_Max; 

   a_RegD_DRO_RT_WIN(k,1)  = 

Cap_RegD_DRO_RT_WIN(k)/Cap_Max; 

   a_Spin_DRO_RT_WIN(k,1)  = 

Cap_Spin_DRO_RT_WIN(k)/Cap_Max; 

   a_LMP_DRO_RT_WIN(k,1)   = 

Cap_Bat2G_DRO_RT_WIN(k)/Cap_Max; 

   a_Ex_ch_DRO_RT_WIN(k,1) = 

Cap_Ex_ch_DRO_RT_WIN(k)/Cap_Max; 

   a_Ex_dch_DRO_RT_WIN(k,1)= 

Cap_Ex_dch_DRO_RT_WIN(k)/Cap_Max; 

   a_G2Bat_DRO_RT_WIN(k,1) = 

Cap_G2Bat_DRO_RT_WIN(k)/Cap_Max; 

   a_PV2Bat_DRO_RT_WIN(k,1)= 

Cap_PV2Bat_DRO_RT_WIN(k)/Cap_Max; 

   a_Bat2L_DRO_RT_WIN(k,1) = 

Cap_Bat2L_DRO_RT_WIN(k)/Cap_Max; 

   a_G2L_DRO_RT_WIN(k,1)   = 

Cap_G2L_DRO_RT_WIN(k)/Cap_Max; 

    

    a_Ebuy_DRO_RT_WIN(k,1) = 

Cap_Ebuy_DRO_RT_WIN(k)/Cap_Max; 

    a_DEbuy_DRO_RT_WIN(k,1) = 

Cap_DEbuy_DRO_RT_WIN(k)/Cap_Max; 

    a_Esell_DRO_RT_WIN(k,1) =  

Cap_Esell_DRO_RT_WIN(k)/Cap_Max; 

    a_DEsell_DRO_RT_WIN(k,1) = 

Cap_DEsell_DRO_RT_WIN(k)/Cap_Max; 

     

    Cap_Charge_DRO_RT_WIN(k,1) = 

Cap_G2Bat_DRO_RT_WIN(k)+Cap_PV2Bat_DRO_R

T_WIN(k)+Cap_RegD_DRO_RT_WIN(k)+Cap_Ex_c

h_DRO_RT_WIN(k) ; 

    Cap_Discharge_DRO_RT_WIN(k,1) = 

Cap_Bat2G_DRO_RT_WIN(k)+Cap_Spin_DRO_RT_

WIN(k)+Cap_RegU_DRO_RT_WIN(k)+Cap_Bat2L_

DRO_RT_WIN(k)+Cap_Ex_dch_DRO_RT_WIN(k); 

    cost_OP_DRO_RT_WIN(k,1) =  c_op 

.*(Cap_PV2Bat_DRO_RT_WIN(k)+ 

Cap_G2Bat_DRO_RT_WIN(k) + 

Cap_Bat2G_DRO_RT_WIN(k)+Tr_Spin_RT(4*(Ho

ur-1)+k) .* 

Cap_Spin_DRO_RT_WIN(k)+Tr_RegD_RT(4*(Hou

r-

1)+k).*Cap_RegD_DRO_RT_WIN(k)+Cap_RegU_D

RO_RT_WIN(k)+Cap_Bat2L_DRO_RT_WIN(k)) ; 

% Cost operation 

      

   cost_un_dch_DRO_RT_WIN(k,1)  = 

Cap_Ex_dch_DRO_RT_WIN(k)* 0; 

   cost_un_ch_DRO_RT_WIN(k,1)  = 

Cap_Ex_ch_DRO_RT_WIN(k)* 0; 

  

   Soc_DRO_RT_WIN(k,1) = Eta_Ch 

.*([Cap_PV2Bat_DRO_RT_WIN(k)+ 

Cap_G2Bat_DRO_RT_WIN(k)+... 

   

Cap_RegD_DRO_RT_WIN(k)]+(Cap_RegD_DRO_DA

_WIN(4*(Hour-1)+k))/4)-... 

  

[(Cap_Bat2G_DRO_RT_WIN(k,1)+Cap_Spin_DRO

_RT_WIN(k)+Cap_RegU_DRO_RT_WIN(k)+Cap_Ba

t2L_DRO_RT_WIN(k))+... 

  (Cap_Bat2G_DRO_DA_WIN(4*(Hour-

1)+k,1)+Cap_Spin_DRO_DA_WIN(4*(Hour-

1)+k)+ Cap_RegU_DRO_DA_WIN(4*(Hour-

1)+k))/4]./(Eta_D); 

   

 if Hour==1  

     if k==1 

        SOC_DRO_RT_WIN(k,1) = SOC_0 + 

cost_un_ch_DRO_RT_WIN(k);%Soc_DRO_RT_WIN

(k) ;  

     else 

        SOC_DRO_RT_WIN(k,1) = SOC_0 + 

sum(Soc_DRO_RT_WIN(1:k-1)) ;  

     end 

 else 

     if k==1      

         SOC_DRO_RT_WIN(k,1) = 

SOC_DRO_RT_WIN_S(4*(Hour-1)) 

+Soc_DRO_RT_WIN_S(4*(Hour-1)) + 

cost_un_ch_DRO_RT_WIN(k);%Soc_DRO_RT_WIN

(k) ; 

     else 

         SOC_DRO_RT_WIN(k,1) = 

SOC_DRO_RT_WIN_S(4*(Hour-1)) 

+Soc_DRO_RT_WIN_S(4*(Hour-1)) + 

sum(Soc_DRO_RT_WIN(1:k-1)); 

     end 

 end 

  

   %cost_DRO_RT_WIN(k,1) = 

(cost_un_ch_DRO_RT_WIN(k)+cost_un_dch_DR

O_RT_WIN(k)+cost_Demand_DRO_RT_WIN(k)+co

st_OP_DRO_RT_WIN(k)-

income_Discharging_DRO_RT_WIN(k)- 

income_Charging_DRO_RT_WIN(k));%+ 

cost_OP_DRO_RT_WIN(k));%cost_Demand_DRO_

RT_WIN(k) 

  

   alfa = 0.85; %CVar comfidence level  

      

     a1_Risk_WIN_low = -1; 

     R_w = 0.01; 

      

     ROO_RegU_WIN_low(k,1) = 1; % 

investor risk aversion   

     a2_RegU_WIN_low(k,1) = -1 - 

(ROO_RegU_WIN_low(k,1)/alfa); 

     b1_RegU_WIN_low(k,1) = 

ROO_RegU_WIN_low(k,1); 

     b2_RegU_WIN_low(k,1) = 

ROO_RegU_WIN_low(k,1) * (1- 1/alfa); 

      

     ROO_Spin_WIN_low(k,1) = 1; % 

investor risk aversion  

     a2_Spin_WIN_low(k,1) = -1 - 

(ROO_Spin_WIN_low(k,1)/alfa); 
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     b1_Spin_WIN_low(k,1) = 

ROO_Spin_WIN_low(k,1); 

     b2_Spin_WIN_low(k,1) = 

ROO_Spin_WIN_low(k,1)* (1- 1/alfa); 

      

     ROO_LMP_WIN_low_DA(k,1) = 1; % 

investor risk aversion  

     a2_LMP_WIN_low_DA(k,1) = -1 - 

(ROO_LMP_WIN_low_DA(k,1)/alfa); 

     b1_LMP_WIN_low_DA(k,1) = 

ROO_LMP_WIN_low_DA(k,1); 

     b2_LMP_WIN_low_DA(k,1) = 

ROO_LMP_WIN_low_DA(k,1) * (1- 1/alfa); 

      

     ROO_LMP_WIN_low_RT(k,1) = 1; % 

investor risk aversion  

     a2_LMP_WIN_low_RT(k,1) = -1 - 

(ROO_LMP_WIN_low_RT(k,1)/alfa); 

     b1_LMP_WIN_low_RT(k,1) = 

ROO_LMP_WIN_low_RT(k,1); 

     b2_LMP_WIN_low_RT(k,1) = 

ROO_LMP_WIN_low_RT(k,1) * (1- 1/alfa); 

      

     ROO_RegD_WIN_low(k,1) = 1; % 

investor risk aversion  

     a2_RegD_WIN_low(k,1) = -1 - 

(ROO_RegD_WIN_low(k,1)/alfa); 

     b1_RegD_WIN_low(k,1) = 

ROO_RegD_WIN_low(k,1); 

     b2_RegD_WIN_low(k,1) = 

ROO_RegD_WIN_low(k,1) * (1- 1/alfa); 

    if k<=4  

Risk_CVaR_RegU_RT_WIN_low(k,1) = 

Tr_RegU_RT(k,1).*((1*lambda_RegU_WIN_low

(k,1).* R_w + 

(sum(S_RegU_WIN_low(k,:))./N_WIN_low)));  

Risk_CVaR_Spin_RT_WIN_low(k,1) = 

Tr_Spin_RT(k,1).*((1*lambda_Spin_WIN_low

(k,1).* R_w + 

(sum(S_Spin_WIN_low(k,:))./N_WIN_low)));  

Risk_CVaR_LMP_RT_WIN_low(k,1)  = 

((1*lambda_LMP_WIN_low_RT(k,1) .* R_w + 

(sum(S_LMP_WIN_low_RT(k,:))./N_WIN_low))

); 

Risk_CVaR_LMP_DA_WIN_low(k,1)  = 

((1*lambda_LMP_WIN_low_DA(k,1) .* R_w + 

(sum(S_LMP_WIN_low_DA(k,:))./N_WIN_low))

); 

Risk_CVaR_RegD_RT_WIN_low(k,1) = 

Tr_RegD_RT(k,1).*((1*lambda_RegD_WIN_low

(k,1) .* R_w + 

(sum(S_RegD_WIN_low(k,:))./N_WIN_low)));   

    else 

     Risk_CVaR_RegU_RT_WIN_low(k)=0; 

     Risk_CVaR_RegD_RT_WIN_low(k)=0; 

     Risk_CVaR_Spin_RT_WIN_low(k)=0; 

     Risk_CVaR_LMP_RT_WIN_low(k)=0; 

    end 

    cost_DRO_RT_WIN = 

sum(Risk_CVaR_Spin_RT_WIN_low +... 

    

Risk_CVaR_RegU_RT_WIN_low+Risk_CVaR_RegD

_RT_WIN_low+Risk_CVaR_LMP_RT_WIN_low+cos

t_OP_DRO_RT_WIN)+... 

    

sum(Penlaty_Ebuy_DRO_RT_WIN+Penlaty_Esel

l_DRO_RT_WIN); 

else 

         if Hour==1 

           SOC_DRO_RT_WIN(k,1) = SOC_0 + 

sum(Soc_DRO_RT_WIN(1:k-1)) ;  

          else 

           SOC_DRO_RT_WIN(k,1) = 

SOC_DRO_RT_WIN_S(4*(Hour-1)) 

+Soc_DRO_RT_WIN_S(4*(Hour-1)) + 

sum(Soc_DRO_RT_WIN(1:k-1)); 

        end 

   end 

 end 

  minimize(cost_DRO_RT_WIN) 

  

 subject to 

       if Hour==1 

         SOC_DRO_RT_WIN(1) == SOC_0 ; 

       end 

   for k = 1:4*N 

    SOC_DRO_RT_WIN(4*N) >= SOC_0 ; 

    SOC_Min <= SOC_DRO_RT_WIN(k) <= 

SOC_Max ;  

    Cap_PV2L_DRO_RT_WIN(k) + 

Cap_G2L_DRO_RT_WIN(k)+Cap_Bat2L_DRO_RT_W

IN(k) == Cap_L_RT_win(4*(Hour-

1)+k)+W_Load_win(4*(Hour-

1)+k).*X_RT(4*(Hour-1)+k);% 

    Cap_PV2Bat_DRO_RT_WIN(k) + 

Cap_PV2L_DRO_RT_WIN(k) <= 

Cap_PV_RT_win(4*(Hour-1)+k)+ 

W_PV_win(4*(Hour-1)+k).*X_RT(4*(Hour-

1)+k); 

     

    

Cap_Charge_DRO_RT_WIN(k)+Cap_RegD_DRO_DA

_WIN(4*(Hour-1)+k)/4 == Cap_Max.*(1-

M_DRO_RT_WIN(k))/4; 

    

Cap_Discharge_DRO_RT_WIN(k)+[Cap_Bat2G_D

RO_DA_WIN(4*(Hour-

1)+k,1)+Cap_Spin_DRO_DA_WIN(4*(Hour-

1)+k)+ Cap_RegU_DRO_DA_WIN(4*(Hour-

1)+k)]/4==Cap_Max.*(M_DRO_RT_WIN(k))/4; 

   

     0<= Cap_Ebuy_DRO_RT_WIN(k)<= 

Cap_E_buy_DRO_DA_WIN(4*(Hour-1)+k,1); 

     Cap_Ebuy_DRO_RT_WIN(k) + 

Cap_DEbuy_DRO_RT_WIN(k) == 

Cap_G2Bat_DRO_RT_WIN(k)+ 

Cap_G2L_DRO_RT_WIN(k)+ 

Cap_RegD_DRO_RT_WIN(k)+ 

Cap_RegD_DRO_DA_WIN(4*(Hour-1)+k); 

     Penlaty_Ebuy_DRO_RT_WIN(k) >= 

0.15*(Cap_DEbuy_DRO_RT_WIN(k)-

0.2*Cap_E_buy_DRO_DA_WIN(4*(Hour-

1)+k,1)); 

      

     0<= Cap_Esell_DRO_RT_WIN(k)<= 

Cap_E_sell_DRO_DA_WIN(4*(Hour-1)+k,1); 

     

Cap_Esell_DRO_RT_WIN(k)+Cap_DEsell_DRO_R

T_WIN(k) == 

Cap_Bat2G_DRO_RT_WIN(k,1)+Cap_Spin_DRO_R

T_WIN(k)+Cap_RegU_DRO_RT_WIN(k)+ 

Cap_Spin_DRO_DA_WIN(4*(Hour-

1)+k)+Cap_RegU_DRO_DA_WIN(4*(Hour-1)+k); 

     Penlaty_Esell_DRO_RT_WIN(k) >= 

0.15*(Cap_DEsell_DRO_RT_WIN(k)-

0.2*Cap_E_sell_DRO_DA_WIN(4*(Hour-

1)+k,1)); 

   

         

    if Tr_RegD_RT(4*(Hour-1)+k)==0 

        Cap_RegD_DRO_RT_WIN(k) ==0; 

   end  

   if Tr_RegU_RT(4*(Hour-1)+k)==0 

        Cap_RegU_DRO_RT_WIN(k) ==0; 

   end  

   if Tr_Spin_RT(4*(Hour-1)+k)==0 

        Cap_Spin_DRO_RT_WIN(k) ==0; 

   end  
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   if MM_DRO_DA_WIN(4*(Hour-1)+k)==1 

     M_DRO_RT_WIN(k)== 

M_DRO_DA_WIN_low(4*(Hour-1)+k); 

   end 

    

   if k<=4 

  for i=1:N_WIN_low 

        

b1_Spin_WIN_low(k,1)*tou_Spin_WIN_low + 

a1_Risk_WIN_low .* 

a_Spin_DRO_RT_WIN(k)*0.25.*Spin_RT_WIN_l

ow(4*(Hour-1)+k,i) + 

gama1_Spin_WIN_low(k,1) .* 

(d_spin_WIN_low(4*(Hour-1)+k,1) - 

Spin_RT_WIN_low(4*(Hour-1)+k,i)) <= 

S_Spin_WIN_low(k,i); 

        

b2_Spin_WIN_low(k,1)*tou_Spin_WIN_low + 

a2_Spin_WIN_low(k,1).* 

a_Spin_DRO_RT_WIN(k)*0.25.*Spin_RT_WIN_l

ow(4*(Hour-1)+k,i) + 

gama2_Spin_WIN_low(k,1) .* 

(d_spin_WIN_low(4*(Hour-1)+k,1) - 

Spin_RT_WIN_low(4*(Hour-1)+k,i)) <= 

S_Spin_WIN_low(k,i); 

        norm((gama1_Spin_WIN_low(k,1)- 

a1_Risk_WIN_low.* 

a_Spin_DRO_RT_WIN(k)*0.25),inf) <= 

Tr_Spin_RT(k,1).*lambda_Spin_WIN_low(k,1

); 

        norm((gama2_Spin_WIN_low(k,1)- 

a2_Spin_WIN_low(k,1).* 

a_Spin_DRO_RT_WIN(k)*0.25),inf) 

<=Tr_Spin_RT(k,1).* 

lambda_Spin_WIN_low(k,1); 

        0<= gama1_Spin_WIN_low(k,1); 

        0<= gama2_Spin_WIN_low(k,1);    

         

        

b1_RegU_WIN_low(k,1)*tou_RegU_WIN_low + 

a1_Risk_WIN_low 

.*a_RegU_DRO_RT_WIN(k)*0.25.*RegU_RT_WIN

_low(4*(Hour-1)+k,i) + 

gama1_RegU_WIN_low(k,1) .* 

(d_RegU_WIN_low(4*(Hour-1)+k,1) - 

RegU_RT_WIN_low(4*(Hour-1)+k,i)) <= 

S_RegU_WIN_low(k,i);%Er_Reg_U_da_WIN_low  

%  %Er_Reg_U_da_WIN_low_Risk 

%Norm_Reg_U_da_WIN_low %a_RegU_DRO 

        

b2_RegU_WIN_low(k,1)*tou_RegU_WIN_low + 

a2_RegU_WIN_low(k,1) .* 

a_RegU_DRO_RT_WIN(k)*0.25.*RegU_RT_WIN_l

ow(4*(Hour-1)+k,i) + 

gama2_RegU_WIN_low(k,1) .* 

(d_RegU_WIN_low(4*(Hour-1)+k,1) -

RegU_RT_WIN_low(4*(Hour-1)+k,i)) <= 

S_RegU_WIN_low(k,i); 

        norm((gama1_RegU_WIN_low(k,1)-

a1_Risk_WIN_low.* 

a_RegU_DRO_RT_WIN(k)*0.25),inf) <= 

Tr_RegU_RT(k,1).* 

lambda_RegU_WIN_low(k,1); 

        norm((gama2_RegU_WIN_low(k,1)-

a2_RegU_WIN_low(k,1).* 

a_RegU_DRO_RT_WIN(k)*0.25),inf) <= 

Tr_RegU_RT(k,1).* 

lambda_RegU_WIN_low(k,1); 

        0<= gama1_RegU_WIN_low(k,1); 

        0<= gama2_RegU_WIN_low(k,1);     

         

        

b1_LMP_WIN_low_DA(k,1)*tou_LMP_WIN_low_D

A + 

a1_Risk_WIN_low.*(a_Ebuy_DRO_RT_WIN(k)-

a_Esell_DRO_RT_WIN(k))*0.25 

.*LMP_DA_WIN_low(4*(Hour-1)+k,i) + 

gama1_LMP_WIN_low_DA(k,1) .* 

(d_LMP_WIN_low_DA(4*(Hour-1)+k,1) - 

LMP_DA_WIN_low(4*(Hour-1)+k,i)) <= 

S_LMP_WIN_low_DA(k,i); 

        

b2_LMP_WIN_low_DA(k,1)*tou_LMP_WIN_low_D

A + 

a2_LMP_WIN_low_DA(k,1).*(a_Ebuy_DRO_RT_W

IN(k)-a_Esell_DRO_RT_WIN(k))*0.25 

.*LMP_DA_WIN_low(4*(Hour-1)+k,i) + 

gama2_LMP_WIN_low_DA(k,1) .* 

(d_LMP_WIN_low_DA(4*(Hour-1)+k,1) - 

LMP_DA_WIN_low(4*(Hour-1)+k,i)) <= 

S_LMP_WIN_low_DA(k,i); 

        norm((gama1_LMP_WIN_low_DA(k,1)-

a1_Risk_WIN_low.*(a_Ebuy_DRO_RT_WIN(k)-

a_Esell_DRO_RT_WIN(k))*0.25),inf) <= 

lambda_LMP_WIN_low_DA(k,1); 

        norm((gama2_LMP_WIN_low_DA(k,1)-

a2_LMP_WIN_low_DA(k,1).*(a_Ebuy_DRO_RT_W

IN(k)-a_Esell_DRO_RT_WIN(k))*0.25),inf) 

<= lambda_LMP_WIN_low_DA(k,1); 

        0<= gama1_LMP_WIN_low_DA(k,1); 

        0<= gama2_LMP_WIN_low_DA(k,1);     

         

        

b1_LMP_WIN_low_RT(k,1)*tou_LMP_WIN_low_R

T + 

a1_Risk_WIN_low.*(a_DEbuy_DRO_RT_WIN(k)-

a_DEsell_DRO_RT_WIN(k))*0.25 

.*LMP_RT_WIN_low(4*(Hour-1)+k,i) + 

gama1_LMP_WIN_low_RT(k,1) .* 

(d_LMP_WIN_low_RT(4*(Hour-1)+k,1) - 

LMP_RT_WIN_low(4*(Hour-1)+k,i)) <= 

S_LMP_WIN_low_RT(k,i); 

        

b2_LMP_WIN_low_RT(k,1)*tou_LMP_WIN_low_R

T + 

a2_LMP_WIN_low_RT(k,1).*(a_DEbuy_DRO_RT_

WIN(k)-a_DEsell_DRO_RT_WIN(k))*0.25 

.*LMP_RT_WIN_low(4*(Hour-1)+k,i) + 

gama2_LMP_WIN_low_RT(k,1) .* 

(d_LMP_WIN_low_RT(4*(Hour-1)+k,1) - 

LMP_RT_WIN_low(4*(Hour-1)+k,i)) <= 

S_LMP_WIN_low_RT(k,i); 

        norm((gama1_LMP_WIN_low_RT(k,1)-

a1_Risk_WIN_low.*(a_Ebuy_DRO_RT_WIN(k)-

a_Esell_DRO_RT_WIN(k))*0.25),inf) <= 

lambda_LMP_WIN_low_RT(k,1); 

        norm((gama2_LMP_WIN_low_RT(k,1)-

a2_LMP_WIN_low_RT(k,1).*(a_Ebuy_DRO_RT_W

IN(k)-a_Esell_DRO_RT_WIN(k))*0.25),inf) 

<= lambda_LMP_WIN_low_RT(k,1); 

        0<= gama1_LMP_WIN_low_RT(k,1); 

        0<= gama2_LMP_WIN_low_RT(k,1);   

  

        

b1_RegD_WIN_low(k,1)*tou_RegD_WIN_low + 

a1_Risk_WIN_low .* 

a_RegD_DRO_RT_WIN(k)*0.25.*RegD_RT_WIN_l

ow(4*(Hour-1)+k,i) + 

gama1_RegD_WIN_low(k,1) .* 

(d_RegD_WIN_low(4*(Hour-1)+k,1) - 

RegD_RT_WIN_low(4*(Hour-1)+k,i)) <= 

S_RegD_WIN_low(k,i);  

        

b2_RegD_WIN_low(k,1)*tou_RegD_WIN_low + 

a2_RegD_WIN_low(k,1) .* 

a_RegD_DRO_RT_WIN(k)*0.25.*RegD_RT_WIN_l

ow(4*(Hour-1)+k,i) + 
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gama2_RegD_WIN_low(k,1) .* 

(d_RegD_WIN_low(4*(Hour-1)+k,1) - 

RegD_RT_WIN_low(4*(Hour-1)+k,i)) <= 

S_RegD_WIN_low(k,i); 

        norm((gama1_RegD_WIN_low(k,1)- 

a1_Risk_WIN_low.* 

a_RegD_DRO_RT_WIN(k)*0.25),inf) <= 

Tr_RegD_RT(k,1).* 

lambda_RegD_WIN_low(k,1); 

        norm((gama2_RegD_WIN_low(k,1)- 

a2_RegD_WIN_low(k,1).* 

a_RegD_DRO_RT_WIN(k)*0.25),inf) 

<=Tr_RegD_RT(k,1).* 

lambda_RegD_WIN_low(k,1); 

        0<= gama1_RegD_WIN_low(k,1); 

        0<= gama2_RegD_WIN_low(k,1); 

  end 

    end 

   end 

       

  cvx_end 

   

   

  for k=1:4 

      SOC_DRO_RT_WIN_S(4*(Hour-1)+k,1)      

= SOC_DRO_RT_WIN(k); 

      Soc_DRO_RT_WIN_S(4*(Hour-1)+k,1)      

= Soc_DRO_RT_WIN(k); 

      SOCC_DRO_RT_WIN(4*(Hour-1)+k,1)       

= SOC_DRO_RT_WIN(k)/BAT_CAP; 

      a_RegU_DRO_RT_WIN_S(4*(Hour-

1)+k,1)   = a_RegU_DRO_RT_WIN(k,1); 

      a_RegD_DRO_RT_WIN_S(4*(Hour-

1)+k,1)   = a_RegD_DRO_RT_WIN(k,1); 

      a_Spin_DRO_RT_WIN_S(4*(Hour-

1)+k,1)   = a_Spin_DRO_RT_WIN(k,1); 

      a_LMP_DRO_RT_WIN_S(4*(Hour-1)+k,1)    

= a_LMP_DRO_RT_WIN(k,1) ; 

      a_Ex_ch_DRO_RT_WIN_S(4*(Hour-

1)+k,1)  = a_Ex_ch_DRO_RT_WIN(k,1); 

      a_Ex_dch_DRO_RT_WIN_S(4*(Hour-

1)+k,1) = a_Ex_dch_DRO_RT_WIN(k,1); 

      a_G2Bat_DRO_RT_WIN_S(4*(Hour-

1)+k,1)  = a_G2Bat_DRO_RT_WIN(k,1); 

      a_PV2Bat_DRO_RT_WIN_S(4*(Hour-

1)+k,1) = a_PV2Bat_DRO_RT_WIN(k,1); 

      a_Bat2L_DRO_RT_WIN_S(4*(Hour-

1)+k,1)  = a_Bat2L_DRO_RT_WIN(k,1); 

      a_PV2L_DRO_RT_WIN_S(4*(Hour-

1)+k,1)   = 

Cap_PV2L_DRO_RT_WIN(k,1)/Cap_Max; 

      a_G2L_DRO_RT_WIN_S(4*(Hour-1)+k,1)    

= Cap_G2L_DRO_RT_WIN(k,1)/Cap_Max; 

      Cap_G2L_DRO_RT_WIN_S(4*(Hour-

1)+k,1)  = Cap_G2L_DRO_RT_WIN(k,1); 

       

      Cap_Ebuy_DRO_RT_WIN_S(4*(Hour-

1)+k,1)   = Cap_Ebuy_DRO_RT_WIN(k); 

      Cap_DEbuy_DRO_RT_WIN_S(4*(Hour-

1)+k,1)  = Cap_DEbuy_DRO_RT_WIN(k); 

      Cap_Esell_DRO_RT_WIN_S(4*(Hour-

1)+k,1)  = Cap_Esell_DRO_RT_WIN(k); 

      Cap_DEsell_DRO_RT_WIN_S(4*(Hour-

1)+k,1) = Cap_DEsell_DRO_RT_WIN(k); 

  end 

 % COSTS = 

sum(cost_DRO_RT_WIN(1:4))+COSTS; 

  N = N-1; 

  Hour = Hour +1;  

end 

load gong.mat; 

sound(y);  

display("WELL DONE!!") 

  

t_DRO_RT_WIN = toc   

  

  %%% DRO Summer Real Time 

tic 

 N = 24; 

 clear SOCC_DRO_RT_SUM 

 Hour = 1; 

 COSTS= 0; 

 Soc_DRO_RT_SUM_S = zeros(96,1); 

 Soc_DRO_RT_SUM_S(4,1) = SOC_0; 

 X_RT = zeros(96,1); 

  

 clear Soc_DRO_RT_SUM_S 

 clear SOC_DRO_RT_SUM_S 

for k=1:96 

a_RegD_DRO_DA_SUM(k,1) = 

Cap_RegD_DRO_DA_SUM(k,1)/Cap_Max; 

  

d_spin_SUM_low(k,1) = 

Max_SUM_Spin_RT(k,1); 

d_RegU_SUM_low(k,1) = 

Max_SUM_RegU_RT(k,1); 

d_LMP_SUM_low(k,1)  = 

Max_SUM_LMP_RT(k,1); 

d_RegD_SUM_low(k,1) = 

Max_SUM_RegD_RT(k,1); 

d_LMP_SUM_low_RT(k,1)  = 

Max_SUM_LMP_RT(k,1) ; 

d_LMP_SUM_low_DA(k,1)  = 

Max_SUM_LMP_DA(k,1) ; 

    

end 

  

while Hour<= 24 

clear lambda_Risk_SUM_low 

clear S_Spin_SUM_low 

clear S_LMP_SUM_low 

clear S_RegU_SUM_low 

clear S_RegD_SUM_low 

clear S_Buy_SUM_low 

clear Risk_CVaR_RegU_RT_SUM_low 

clear Risk_CVaR_RegD_RT_SUM_low 

clear Risk_CVaR_Spin_RT_SUM_low 

clear Risk_CVaR_LMP_DA_SUM_low 

clear Risk_CVaR_LMP_RT_SUM_low 

clear Risk_CVaR_Buy_RT_SUM_low 

clear a1_Risk_SUM_low 

clear ROO_Risk_SUM_low 

clear a2_Risk_SUM_low 

clear b1_Risk_SUM_low 

clear b2_Risk_SUM_low 

clear tou_Spin_SUM_low 

clear tou_RegU_SUM_low 

clear tou_RegD_SUM_low 

clear tou_LMP_SUM_low_RT 

clear tou_LMP_SUM_low_DA 

clear tou_Buy_SUM_low 

clear gama1_Spin_SUM_low 

clear gama2_Spin_SUM_low 

clear gama1_RegU_SUM_low 

clear gama2_RegU_SUM_low 

clear gama1_RegD_SUM_low 

clear gama2_RegD_SUM_low 

clear gama1_LMP_SUM_low_RT 

clear gama2_LMP_SUM_low_RT 

clear gama1_LMP_SUM_low_DA 

clear gama2_LMP_SUM_low_DA 

clear gama1_Buy_SUM_low 

clear gama2_Buy_SUM_low 

clear Cap_Discharge_DRO_RT_SUM 

clear cost_Charge_DRO_RT_SUM 

clear cost_Demand_DRO_RT_SUM 

clear income_Spin_DRO_RT_SUM 

clear Income_Spin_DRO_RT_SUM 
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clear income_sell_DRO_RT_SUM 

clear INCOME_sell_DRO_RT_SUM 

clear income_E_DRO_RT_SUM 

clear Income_E_DRO_RT_SUM 

clear income_MilU_DRO_RT_SUM 

clear income_RegU_DRO_RT_SUM 

clear Income_RegU_DRO_RT_SUM 

clear cost_Charge_DRO_RT_SUM 

clear Cap_Charge_DRO_RT_SUM 

clear income_MilD_DRO_RT_SUM 

clear income_RegD_DRO_RT_SUM 

clear Income_RegD_DRO_RT_SUM 

clear income_Charging_DRO_RT_SUM 

clear income_Discharging_DRO_RT_SUM 

clear cost_OP_DRO_RT_SUM 

clear Soc_DRO_RT_SUM 

clear SOC_DRO_RT_SUM 

clear cost_DRO_RT_SUM 

clear COST_DRO_RT_SUM 

clear cost_un_dch_DRO_RT_SUM 

clear cost_un_ch_DRO_RT_SUM 

clear Cap_Ex_ch_DRO_RT_SUM 

clear Cap_Ex_dch_DRO_RT_SUM 

clear a_RegU_DRO_RT_SUM 

clear a_Spin_DRO_RT_SUM 

clear a_LMP_DRO_RT_SUM 

clear a_LMP_DRO_DA_SUM 

clear a_RegD_DRO_RT_SUM 

clear a_Buy_DRO_RT_SUM 

clear a_Ex_ch_DRO_RT_SUM 

clear a_Ex_dch_DRO_RT_SUM 

clear a_G2Bat_DRO_RT_SUM 

clear a_PV2Bat_DRO_RT_SUM 

clear cost_un_dch_DRO_RT_SUM  

clear cost_un_ch_DRO_RT_SUM 

clear Cap_Ex_ch_DRO_RT_SUM 

clear Cap_Ex_dch_DRO_RT_SUM 

clear a_Bat2L_DRO_RT_SUM 

clear a_G2L_DRO_RT_SUM 

clear M_DRO_RT_SUM 

clear Cap_Ebuy_DRO_RT_SUM 

clear Cap_DEbuy_DRO_RT_SUM 

clear Cap_Esell_DRO_RT_SUM 

clear Cap_DEsell_DRO_RT_SUM 

clear Penlaty_Ebuy_DRO_RT_SUM 

clear Penlaty_Esell_DRO_RT_SUM 

clear a_Ebuy_DRO_RT_SUM 

clear a_DEbuy_DRO_RT_SUM 

clear a_Esell_DRO_RT_SUM 

clear a_DEsell_DRO_RT_SUM 

cvx_begin 

    variable Cap_Bat2L_DRO_RT_SUM(4*N) 

nonnegative 

    variable Cap_G2Bat_DRO_RT_SUM(4*N) 

nonnegative 

    variable Cap_RegD_DRO_RT_SUM(4*N) 

nonnegative 

    variable Cap_PV2L_DRO_RT_SUM(4*N) 

nonnegative 

    variable Cap_G2L_DRO_RT_SUM(4*N) 

nonnegative 

    variable Cap_Bat2G_DRO_RT_SUM(4*N) 

nonnegative 

    variable Cap_PV2Bat_DRO_RT_SUM(4*N) 

nonnegative 

    variable Cap_RegU_DRO_RT_SUM(4*N) 

nonnegative  

    variable Cap_Spin_DRO_RT_SUM(4*N) 

nonnegative 

    variable Cap_Ex_ch_DRO_RT_SUM(4*N) 

nonnegative 

    variable Cap_Ex_dch_DRO_RT_SUM(4*N) 

nonnegative 

    variable lambda_Spin_SUM_low(4*N)  

    variable lambda_LMP_SUM_low_RT(4*N) 

    variable lambda_LMP_SUM_low_DA(4*N) 

    variable lambda_RegU_SUM_low(4*N) 

    variable lambda_RegD_SUM_low(4*N) 

    variable lambda_Buy_SUM_low(4*N) 

    variable 

S_Spin_SUM_low(4*N,N_SUM_low) 

    variable 

S_RegU_SUM_low(4*N,N_SUM_low) 

    variable 

S_RegD_SUM_low(4*N,N_SUM_low) 

    variable 

S_LMP_SUM_low_RT(4*N,N_SUM_low) 

    variable 

S_LMP_SUM_low_DA(4*N,N_SUM_low) 

    variable 

S_Buy_SUM_low(4*N,N_SUM_low) 

    variable gama1_Spin_SUM_low(4*N) 

    variable gama2_Spin_SUM_low(4*N) 

    variable gama1_RegU_SUM_low(4*N) 

    variable gama2_RegU_SUM_low(4*N) 

    variable gama1_RegD_SUM_low(4*N) 

    variable gama2_RegD_SUM_low(4*N) 

    variable gama1_LMP_SUM_low_RT(4*N) 

    variable gama2_LMP_SUM_low_RT(4*N) 

    variable gama1_LMP_SUM_low_DA(4*N) 

    variable gama2_LMP_SUM_low_DA(4*N) 

    variable gama1_Buy_SUM_low(4*N) 

    variable gama2_Buy_SUM_low(4*N) 

    variable tou_Spin_SUM_low(N_SUM_low) 

    variable tou_RegU_SUM_low(N_SUM_low) 

    variable tou_RegD_SUM_low(N_SUM_low) 

    variable 

tou_LMP_SUM_low_RT(N_SUM_low) 

    variable 

tou_LMP_SUM_low_DA(N_SUM_low) 

    variable tou_Buy_SUM_low(N_SUM_low) 

    variable M_DRO_RT_SUM(4*N) binary 

    variable Cap_Ebuy_DRO_RT_SUM(4*N) 

nonnegative 

    variable Cap_DEbuy_DRO_RT_SUM(4*N) 

nonnegative 

    variable Cap_Esell_DRO_RT_SUM(4*N) 

nonnegative 

    variable Cap_DEsell_DRO_RT_SUM(4*N) 

nonnegative 

    variable 

Penlaty_Ebuy_DRO_RT_SUM(4*N) nonnegative 

    variable 

Penlaty_Esell_DRO_RT_SUM(4*N) 

nonnegative 

    for k = 1:4*N+1 

        if k<=4*N 

      if k<=4 

          X_RT(4*(Hour-1)+k,1) = 1; 

      end 

   a_RegU_DRO_RT_SUM(k,1)  = 

Cap_RegU_DRO_RT_SUM(k)/Cap_Max; 

   a_RegD_DRO_RT_SUM(k,1)  = 

Cap_RegD_DRO_RT_SUM(k)/Cap_Max; 

   a_Spin_DRO_RT_SUM(k,1)  = 

Cap_Spin_DRO_RT_SUM(k)/Cap_Max; 

   a_LMP_DRO_RT_SUM(k,1)   = 

Cap_Bat2G_DRO_RT_SUM(k)/Cap_Max; 

   a_Ex_ch_DRO_RT_SUM(k,1) = 

Cap_Ex_ch_DRO_RT_SUM(k)/Cap_Max; 

   a_Ex_dch_DRO_RT_SUM(k,1)= 

Cap_Ex_dch_DRO_RT_SUM(k)/Cap_Max; 

   a_G2Bat_DRO_RT_SUM(k,1) = 

Cap_G2Bat_DRO_RT_SUM(k)/Cap_Max; 

   a_PV2Bat_DRO_RT_SUM(k,1)= 

Cap_PV2Bat_DRO_RT_SUM(k)/Cap_Max; 

   a_Bat2L_DRO_RT_SUM(k,1) = 

Cap_Bat2L_DRO_RT_SUM(k)/Cap_Max; 
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   a_G2L_DRO_RT_SUM(k,1)   = 

Cap_G2L_DRO_RT_SUM(k)/Cap_Max; 

    

    a_Ebuy_DRO_RT_SUM(k,1) = 

Cap_Ebuy_DRO_RT_SUM(k)/Cap_Max; 

    a_DEbuy_DRO_RT_SUM(k,1) = 

Cap_DEbuy_DRO_RT_SUM(k)/Cap_Max; 

    a_Esell_DRO_RT_SUM(k,1) =  

Cap_Esell_DRO_RT_SUM(k)/Cap_Max; 

    a_DEsell_DRO_RT_SUM(k,1) = 

Cap_DEsell_DRO_RT_SUM(k)/Cap_Max; 

     

    Cap_Charge_DRO_RT_SUM(k,1) = 

Cap_G2Bat_DRO_RT_SUM(k)+Cap_PV2Bat_DRO_R

T_SUM(k)+Cap_RegD_DRO_RT_SUM(k)+Cap_Ex_c

h_DRO_RT_SUM(k) ; 

    Cap_Discharge_DRO_RT_SUM(k,1) = 

Cap_Bat2G_DRO_RT_SUM(k)+Cap_Spin_DRO_RT_

SUM(k)+Cap_RegU_DRO_RT_SUM(k)+Cap_Bat2L_

DRO_RT_SUM(k)+Cap_Ex_dch_DRO_RT_SUM(k); 

    cost_OP_DRO_RT_SUM(k,1) =  c_op 

.*(Cap_PV2Bat_DRO_RT_SUM(k)+ 

Cap_G2Bat_DRO_RT_SUM(k) + 

Cap_Bat2G_DRO_RT_SUM(k)+Tr_Spin_RT(4*(Ho

ur-1)+k) .* 

Cap_Spin_DRO_RT_SUM(k)+Tr_RegD_RT(4*(Hou

r-

1)+k).*Cap_RegD_DRO_RT_SUM(k)+Cap_RegU_D

RO_RT_SUM(k)+Cap_Bat2L_DRO_RT_SUM(k)) ; 

% Cost operation 

      

   cost_un_dch_DRO_RT_SUM(k,1)  = 

Cap_Ex_dch_DRO_RT_SUM(k)* 0; 

   cost_un_ch_DRO_RT_SUM(k,1)  = 

Cap_Ex_ch_DRO_RT_SUM(k)* 0; 

  

   Soc_DRO_RT_SUM(k,1) = Eta_Ch 

.*([Cap_PV2Bat_DRO_RT_SUM(k)+ 

Cap_G2Bat_DRO_RT_SUM(k)+... 

   

Cap_RegD_DRO_RT_SUM(k)]+(Cap_RegD_DRO_DA

_SUM(4*(Hour-1)+k))/4)-... 

  

[(Cap_Bat2G_DRO_RT_SUM(k,1)+Cap_Spin_DRO

_RT_SUM(k)+Cap_RegU_DRO_RT_SUM(k)+Cap_Ba

t2L_DRO_RT_SUM(k))+... 

  (Cap_Bat2G_DRO_DA_SUM(4*(Hour-

1)+k,1)+Cap_Spin_DRO_DA_SUM(4*(Hour-

1)+k)+ Cap_RegU_DRO_DA_SUM(4*(Hour-

1)+k))/4]./(Eta_D); 

   

 if Hour==1  

     if k==1 

        SOC_DRO_RT_SUM(k,1) = SOC_0 + 

cost_un_ch_DRO_RT_SUM(k);%Soc_DRO_RT_SUM

(k) ;  

     else 

        SOC_DRO_RT_SUM(k,1) = SOC_0 + 

sum(Soc_DRO_RT_SUM(1:k-1)) ;  

     end 

 else 

     if k==1      

         SOC_DRO_RT_SUM(k,1) = 

SOC_DRO_RT_SUM_S(4*(Hour-1)) 

+Soc_DRO_RT_SUM_S(4*(Hour-1)) + 

cost_un_ch_DRO_RT_SUM(k);%Soc_DRO_RT_SUM

(k) ; 

     else 

         SOC_DRO_RT_SUM(k,1) = 

SOC_DRO_RT_SUM_S(4*(Hour-1)) 

+Soc_DRO_RT_SUM_S(4*(Hour-1)) + 

sum(Soc_DRO_RT_SUM(1:k-1)); 

     end 

 end 

  

   %cost_DRO_RT_SUM(k,1) = 

(cost_un_ch_DRO_RT_SUM(k)+cost_un_dch_DR

O_RT_SUM(k)+cost_Demand_DRO_RT_SUM(k)+co

st_OP_DRO_RT_SUM(k)-

income_Discharging_DRO_RT_SUM(k)- 

income_Charging_DRO_RT_SUM(k));%+ 

cost_OP_DRO_RT_SUM(k));%cost_Demand_DRO_

RT_SUM(k) 

  

   alfa = 0.85; %CVar comfidence level  

      

     a1_Risk_SUM_low = -1; 

     R_w = 0.01; 

      

     ROO_RegU_SUM_low(k,1) = 1; % 

investor risk aversion   

     a2_RegU_SUM_low(k,1) = -1 - 

(ROO_RegU_SUM_low(k,1)/alfa); 

     b1_RegU_SUM_low(k,1) = 

ROO_RegU_SUM_low(k,1); 

     b2_RegU_SUM_low(k,1) = 

ROO_RegU_SUM_low(k,1) * (1- 1/alfa); 

      

     ROO_Spin_SUM_low(k,1) = 1; % 

investor risk aversion  

     a2_Spin_SUM_low(k,1) = -1 - 

(ROO_Spin_SUM_low(k,1)/alfa); 

     b1_Spin_SUM_low(k,1) = 

ROO_Spin_SUM_low(k,1); 

     b2_Spin_SUM_low(k,1) = 

ROO_Spin_SUM_low(k,1)* (1- 1/alfa); 

      

     ROO_LMP_SUM_low_DA(k,1) = 1; % 

investor risk aversion  

     a2_LMP_SUM_low_DA(k,1) = -1 - 

(ROO_LMP_SUM_low_DA(k,1)/alfa); 

     b1_LMP_SUM_low_DA(k,1) = 

ROO_LMP_SUM_low_DA(k,1); 

     b2_LMP_SUM_low_DA(k,1) = 

ROO_LMP_SUM_low_DA(k,1) * (1- 1/alfa); 

      

     ROO_LMP_SUM_low_RT(k,1) = 1; % 

investor risk aversion  

     a2_LMP_SUM_low_RT(k,1) = -1 - 

(ROO_LMP_SUM_low_RT(k,1)/alfa); 

     b1_LMP_SUM_low_RT(k,1) = 

ROO_LMP_SUM_low_RT(k,1); 

     b2_LMP_SUM_low_RT(k,1) = 

ROO_LMP_SUM_low_RT(k,1) * (1- 1/alfa); 

      

     ROO_RegD_SUM_low(k,1) = 1; % 

investor risk aversion  

     a2_RegD_SUM_low(k,1) = -1 - 

(ROO_RegD_SUM_low(k,1)/alfa); 

     b1_RegD_SUM_low(k,1) = 

ROO_RegD_SUM_low(k,1); 

     b2_RegD_SUM_low(k,1) = 

ROO_RegD_SUM_low(k,1) * (1- 1/alfa); 

    if k<=4  

Risk_CVaR_RegU_RT_SUM_low(k,1) = 

Tr_RegU_RT(k,1).*((1*lambda_RegU_SUM_low

(k,1).* R_w + 

(sum(S_RegU_SUM_low(k,:))./N_SUM_low)));  

Risk_CVaR_Spin_RT_SUM_low(k,1) = 

Tr_Spin_RT(k,1).*((1*lambda_Spin_SUM_low

(k,1).* R_w + 

(sum(S_Spin_SUM_low(k,:))./N_SUM_low)));  

Risk_CVaR_LMP_RT_SUM_low(k,1)  = 

((1*lambda_LMP_SUM_low_RT(k,1) .* R_w + 

(sum(S_LMP_SUM_low_RT(k,:))./N_SUM_low))

); 

Risk_CVaR_LMP_DA_SUM_low(k,1)  = 

((1*lambda_LMP_SUM_low_DA(k,1) .* R_w + 
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(sum(S_LMP_SUM_low_DA(k,:))./N_SUM_low))

); 

Risk_CVaR_RegD_RT_SUM_low(k,1) = 

Tr_RegD_RT(k,1).*((1*lambda_RegD_SUM_low

(k,1) .* R_w + 

(sum(S_RegD_SUM_low(k,:))./N_SUM_low)));   

    else 

     Risk_CVaR_RegU_RT_SUM_low(k)=0; 

     Risk_CVaR_RegD_RT_SUM_low(k)=0; 

     Risk_CVaR_Spin_RT_SUM_low(k)=0; 

     Risk_CVaR_LMP_RT_SUM_low(k)=0; 

    end 

    cost_DRO_RT_SUM = 

sum(Risk_CVaR_Spin_RT_SUM_low +... 

    

Risk_CVaR_RegU_RT_SUM_low+Risk_CVaR_RegD

_RT_SUM_low+Risk_CVaR_LMP_RT_SUM_low+cos

t_OP_DRO_RT_SUM)+... 

    

sum(Penlaty_Ebuy_DRO_RT_SUM+Penlaty_Esel

l_DRO_RT_SUM); 

else 

         if Hour==1 

           SOC_DRO_RT_SUM(k,1) = SOC_0 + 

sum(Soc_DRO_RT_SUM(1:k-1)) ;  

          else 

           SOC_DRO_RT_SUM(k,1) = 

SOC_DRO_RT_SUM_S(4*(Hour-1)) 

+Soc_DRO_RT_SUM_S(4*(Hour-1)) + 

sum(Soc_DRO_RT_SUM(1:k-1)); 

        end 

   end 

 end 

  minimize(cost_DRO_RT_SUM) 

  

 subject to 

       if Hour==1 

         SOC_DRO_RT_SUM(1) == SOC_0 ; 

       end 

   for k = 1:4*N 

    SOC_DRO_RT_SUM(4*N) >= SOC_0 ; 

    SOC_Min <= SOC_DRO_RT_SUM(k) <= 

SOC_Max ;  

    Cap_PV2L_DRO_RT_SUM(k) + 

Cap_G2L_DRO_RT_SUM(k)+Cap_Bat2L_DRO_RT_S

UM(k) == Cap_L_RT_sum(4*(Hour-

1)+k)+W_Load_sum(4*(Hour-

1)+k).*X_RT(4*(Hour-1)+k);% 

    Cap_PV2Bat_DRO_RT_SUM(k) + 

Cap_PV2L_DRO_RT_SUM(k) <= 

Cap_PV_RT_sum(4*(Hour-1)+k)+ 

W_PV_sum(4*(Hour-1)+k).*X_RT(4*(Hour-

1)+k); 

     

    

Cap_Charge_DRO_RT_SUM(k)+Cap_RegD_DRO_DA

_SUM(4*(Hour-1)+k)/4 == Cap_Max.*(1-

M_DRO_RT_SUM(k))/4; 

    

Cap_Discharge_DRO_RT_SUM(k)+[Cap_Bat2G_D

RO_DA_SUM(4*(Hour-

1)+k,1)+Cap_Spin_DRO_DA_SUM(4*(Hour-

1)+k)+ Cap_RegU_DRO_DA_SUM(4*(Hour-

1)+k)]/4==Cap_Max.*(M_DRO_RT_SUM(k))/4; 

   

     0<= Cap_Ebuy_DRO_RT_SUM(k)<= 

Cap_E_buy_DRO_DA_SUM(4*(Hour-1)+k,1); 

     Cap_Ebuy_DRO_RT_SUM(k) + 

Cap_DEbuy_DRO_RT_SUM(k) == 

Cap_G2Bat_DRO_RT_SUM(k)+ 

Cap_G2L_DRO_RT_SUM(k)+ 

Cap_RegD_DRO_RT_SUM(k)+ 

Cap_RegD_DRO_DA_SUM(4*(Hour-1)+k); 

     Penlaty_Ebuy_DRO_RT_SUM(k) >= 

0.15*(Cap_DEbuy_DRO_RT_SUM(k)-

0.2*Cap_E_buy_DRO_DA_SUM(4*(Hour-

1)+k,1)); 

      

     0<= Cap_Esell_DRO_RT_SUM(k)<= 

Cap_E_sell_DRO_DA_SUM(4*(Hour-1)+k,1); 

     

Cap_Esell_DRO_RT_SUM(k)+Cap_DEsell_DRO_R

T_SUM(k) == 

Cap_Bat2G_DRO_RT_SUM(k,1)+Cap_Spin_DRO_R

T_SUM(k)+Cap_RegU_DRO_RT_SUM(k)+ 

Cap_Spin_DRO_DA_SUM(4*(Hour-

1)+k)+Cap_RegU_DRO_DA_SUM(4*(Hour-1)+k); 

     Penlaty_Esell_DRO_RT_SUM(k) >= 

0.15*(Cap_DEsell_DRO_RT_SUM(k)-

0.2*Cap_E_sell_DRO_DA_SUM(4*(Hour-

1)+k,1)); 

   

         

    if Tr_RegD_RT(4*(Hour-1)+k)==0 

        Cap_RegD_DRO_RT_SUM(k) ==0; 

   end  

   if Tr_RegU_RT(4*(Hour-1)+k)==0 

        Cap_RegU_DRO_RT_SUM(k) ==0; 

   end  

   if Tr_Spin_RT(4*(Hour-1)+k)==0 

        Cap_Spin_DRO_RT_SUM(k) ==0; 

   end  

    

   if MM_DRO_DA_SUM(4*(Hour-1)+k)==1 

     M_DRO_RT_SUM(k)== 

M_DRO_DA_SUM_low(4*(Hour-1)+k); 

   end 

    

   if k<=4 

  for i=1:N_SUM_low 

        

b1_Spin_SUM_low(k,1)*tou_Spin_SUM_low + 

a1_Risk_SUM_low .* 

a_Spin_DRO_RT_SUM(k)*0.25.*Spin_RT_SUM_l

ow(4*(Hour-1)+k,i) + 

gama1_Spin_SUM_low(k,1) .* 

(d_spin_SUM_low(4*(Hour-1)+k,1) - 

Spin_RT_SUM_low(4*(Hour-1)+k,i)) <= 

S_Spin_SUM_low(k,i); 

        

b2_Spin_SUM_low(k,1)*tou_Spin_SUM_low + 

a2_Spin_SUM_low(k,1).* 

a_Spin_DRO_RT_SUM(k)*0.25.*Spin_RT_SUM_l

ow(4*(Hour-1)+k,i) + 

gama2_Spin_SUM_low(k,1) .* 

(d_spin_SUM_low(4*(Hour-1)+k,1) - 

Spin_RT_SUM_low(4*(Hour-1)+k,i)) <= 

S_Spin_SUM_low(k,i); 

        norm((gama1_Spin_SUM_low(k,1)- 

a1_Risk_SUM_low.* 

a_Spin_DRO_RT_SUM(k)*0.25),inf) <= 

Tr_Spin_RT(k,1).*lambda_Spin_SUM_low(k,1

); 

        norm((gama2_Spin_SUM_low(k,1)- 

a2_Spin_SUM_low(k,1).* 

a_Spin_DRO_RT_SUM(k)*0.25),inf) 

<=Tr_Spin_RT(k,1).* 

lambda_Spin_SUM_low(k,1); 

        0<= gama1_Spin_SUM_low(k,1); 

        0<= gama2_Spin_SUM_low(k,1);    

         

        

b1_RegU_SUM_low(k,1)*tou_RegU_SUM_low + 

a1_Risk_SUM_low 

.*a_RegU_DRO_RT_SUM(k)*0.25.*RegU_RT_SUM

_low(4*(Hour-1)+k,i) + 

gama1_RegU_SUM_low(k,1) .* 
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(d_RegU_SUM_low(4*(Hour-1)+k,1) - 

RegU_RT_SUM_low(4*(Hour-1)+k,i)) <= 

S_RegU_SUM_low(k,i);%Er_Reg_U_da_SUM_low  

%  %Er_Reg_U_da_SUM_low_Risk 

%Norm_Reg_U_da_SUM_low %a_RegU_DRO 

        

b2_RegU_SUM_low(k,1)*tou_RegU_SUM_low + 

a2_RegU_SUM_low(k,1) .* 

a_RegU_DRO_RT_SUM(k)*0.25.*RegU_RT_SUM_l

ow(4*(Hour-1)+k,i) + 

gama2_RegU_SUM_low(k,1) .* 

(d_RegU_SUM_low(4*(Hour-1)+k,1) -

RegU_RT_SUM_low(4*(Hour-1)+k,i)) <= 

S_RegU_SUM_low(k,i); 

        norm((gama1_RegU_SUM_low(k,1)-

a1_Risk_SUM_low.* 

a_RegU_DRO_RT_SUM(k)*0.25),inf) <= 

Tr_RegU_RT(k,1).* 

lambda_RegU_SUM_low(k,1); 

        norm((gama2_RegU_SUM_low(k,1)-

a2_RegU_SUM_low(k,1).* 

a_RegU_DRO_RT_SUM(k)*0.25),inf) <= 

Tr_RegU_RT(k,1).* 

lambda_RegU_SUM_low(k,1); 

        0<= gama1_RegU_SUM_low(k,1); 

        0<= gama2_RegU_SUM_low(k,1);     

         

        

b1_LMP_SUM_low_DA(k,1)*tou_LMP_SUM_low_D

A + 

a1_Risk_SUM_low.*(a_Ebuy_DRO_RT_SUM(k)-

a_Esell_DRO_RT_SUM(k))*0.25 

.*LMP_DA_SUM_low(4*(Hour-1)+k,i) + 

gama1_LMP_SUM_low_DA(k,1) .* 

(d_LMP_SUM_low_DA(4*(Hour-1)+k,1) - 

LMP_DA_SUM_low(4*(Hour-1)+k,i)) <= 

S_LMP_SUM_low_DA(k,i); 

        

b2_LMP_SUM_low_DA(k,1)*tou_LMP_SUM_low_D

A + 

a2_LMP_SUM_low_DA(k,1).*(a_Ebuy_DRO_RT_S

UM(k)-a_Esell_DRO_RT_SUM(k))*0.25 

.*LMP_DA_SUM_low(4*(Hour-1)+k,i) + 

gama2_LMP_SUM_low_DA(k,1) .* 

(d_LMP_SUM_low_DA(4*(Hour-1)+k,1) - 

LMP_DA_SUM_low(4*(Hour-1)+k,i)) <= 

S_LMP_SUM_low_DA(k,i); 

        norm((gama1_LMP_SUM_low_DA(k,1)-

a1_Risk_SUM_low.*(a_Ebuy_DRO_RT_SUM(k)-

a_Esell_DRO_RT_SUM(k))*0.25),inf) <= 

lambda_LMP_SUM_low_DA(k,1); 

        norm((gama2_LMP_SUM_low_DA(k,1)-

a2_LMP_SUM_low_DA(k,1).*(a_Ebuy_DRO_RT_S

UM(k)-a_Esell_DRO_RT_SUM(k))*0.25),inf) 

<= lambda_LMP_SUM_low_DA(k,1); 

        0<= gama1_LMP_SUM_low_DA(k,1); 

        0<= gama2_LMP_SUM_low_DA(k,1);     

         

        

b1_LMP_SUM_low_RT(k,1)*tou_LMP_SUM_low_R

T + 

a1_Risk_SUM_low.*(a_DEbuy_DRO_RT_SUM(k)-

a_DEsell_DRO_RT_SUM(k))*0.25 

.*LMP_RT_SUM_low(4*(Hour-1)+k,i) + 

gama1_LMP_SUM_low_RT(k,1) .* 

(d_LMP_SUM_low_RT(4*(Hour-1)+k,1) - 

LMP_RT_SUM_low(4*(Hour-1)+k,i)) <= 

S_LMP_SUM_low_RT(k,i); 

        

b2_LMP_SUM_low_RT(k,1)*tou_LMP_SUM_low_R

T + 

a2_LMP_SUM_low_RT(k,1).*(a_DEbuy_DRO_RT_

SUM(k)-a_DEsell_DRO_RT_SUM(k))*0.25 

.*LMP_RT_SUM_low(4*(Hour-1)+k,i) + 

gama2_LMP_SUM_low_RT(k,1) .* 

(d_LMP_SUM_low_RT(4*(Hour-1)+k,1) - 

LMP_RT_SUM_low(4*(Hour-1)+k,i)) <= 

S_LMP_SUM_low_RT(k,i); 

        norm((gama1_LMP_SUM_low_RT(k,1)-

a1_Risk_SUM_low.*(a_Ebuy_DRO_RT_SUM(k)-

a_Esell_DRO_RT_SUM(k))*0.25),inf) <= 

lambda_LMP_SUM_low_RT(k,1); 

        norm((gama2_LMP_SUM_low_RT(k,1)-

a2_LMP_SUM_low_RT(k,1).*(a_Ebuy_DRO_RT_S

UM(k)-a_Esell_DRO_RT_SUM(k))*0.25),inf) 

<= lambda_LMP_SUM_low_RT(k,1); 

        0<= gama1_LMP_SUM_low_RT(k,1); 

        0<= gama2_LMP_SUM_low_RT(k,1);   

  

        

b1_RegD_SUM_low(k,1)*tou_RegD_SUM_low + 

a1_Risk_SUM_low .* 

a_RegD_DRO_RT_SUM(k)*0.25.*RegD_RT_SUM_l

ow(4*(Hour-1)+k,i) + 

gama1_RegD_SUM_low(k,1) .* 

(d_RegD_SUM_low(4*(Hour-1)+k,1) - 

RegD_RT_SUM_low(4*(Hour-1)+k,i)) <= 

S_RegD_SUM_low(k,i);  

        

b2_RegD_SUM_low(k,1)*tou_RegD_SUM_low + 

a2_RegD_SUM_low(k,1) .* 

a_RegD_DRO_RT_SUM(k)*0.25.*RegD_RT_SUM_l

ow(4*(Hour-1)+k,i) + 

gama2_RegD_SUM_low(k,1) .* 

(d_RegD_SUM_low(4*(Hour-1)+k,1) - 

RegD_RT_SUM_low(4*(Hour-1)+k,i)) <= 

S_RegD_SUM_low(k,i); 

        norm((gama1_RegD_SUM_low(k,1)- 

a1_Risk_SUM_low.* 

a_RegD_DRO_RT_SUM(k)*0.25),inf) <= 

Tr_RegD_RT(k,1).* 

lambda_RegD_SUM_low(k,1); 

        norm((gama2_RegD_SUM_low(k,1)- 

a2_RegD_SUM_low(k,1).* 

a_RegD_DRO_RT_SUM(k)*0.25),inf) 

<=Tr_RegD_RT(k,1).* 

lambda_RegD_SUM_low(k,1); 

        0<= gama1_RegD_SUM_low(k,1); 

        0<= gama2_RegD_SUM_low(k,1); 

  end 

    end 

   end 

       

  cvx_end 

   

   

  for k=1:4 

      SOC_DRO_RT_SUM_S(4*(Hour-1)+k,1)      

= SOC_DRO_RT_SUM(k); 

      Soc_DRO_RT_SUM_S(4*(Hour-1)+k,1)      

= Soc_DRO_RT_SUM(k); 

      SOCC_DRO_RT_SUM(4*(Hour-1)+k,1)       

= SOC_DRO_RT_SUM(k)/BAT_CAP; 

      a_RegU_DRO_RT_SUM_S(4*(Hour-

1)+k,1)   = a_RegU_DRO_RT_SUM(k,1); 

      a_RegD_DRO_RT_SUM_S(4*(Hour-

1)+k,1)   = a_RegD_DRO_RT_SUM(k,1); 

      a_Spin_DRO_RT_SUM_S(4*(Hour-

1)+k,1)   = a_Spin_DRO_RT_SUM(k,1); 

      a_LMP_DRO_RT_SUM_S(4*(Hour-1)+k,1)    

= a_LMP_DRO_RT_SUM(k,1) ; 

      a_Ex_ch_DRO_RT_SUM_S(4*(Hour-

1)+k,1)  = a_Ex_ch_DRO_RT_SUM(k,1); 

      a_Ex_dch_DRO_RT_SUM_S(4*(Hour-

1)+k,1) = a_Ex_dch_DRO_RT_SUM(k,1); 

      a_G2Bat_DRO_RT_SUM_S(4*(Hour-

1)+k,1)  = a_G2Bat_DRO_RT_SUM(k,1); 
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      a_PV2Bat_DRO_RT_SUM_S(4*(Hour-

1)+k,1) = a_PV2Bat_DRO_RT_SUM(k,1); 

      a_Bat2L_DRO_RT_SUM_S(4*(Hour-

1)+k,1)  = a_Bat2L_DRO_RT_SUM(k,1); 

      a_PV2L_DRO_RT_SUM_S(4*(Hour-

1)+k,1)   = 

Cap_PV2L_DRO_RT_SUM(k,1)/Cap_Max; 

      a_G2L_DRO_RT_SUM_S(4*(Hour-1)+k,1)    

= Cap_G2L_DRO_RT_SUM(k,1)/Cap_Max; 

      Cap_G2L_DRO_RT_SUM_S(4*(Hour-

1)+k,1)  = Cap_G2L_DRO_RT_SUM(k,1); 

       

      Cap_Ebuy_DRO_RT_SUM_S(4*(Hour-

1)+k,1)   = Cap_Ebuy_DRO_RT_SUM(k); 

      Cap_DEbuy_DRO_RT_SUM_S(4*(Hour-

1)+k,1)  = Cap_DEbuy_DRO_RT_SUM(k); 

      Cap_Esell_DRO_RT_SUM_S(4*(Hour-

1)+k,1)  = Cap_Esell_DRO_RT_SUM(k); 

      Cap_DEsell_DRO_RT_SUM_S(4*(Hour-

1)+k,1) = Cap_DEsell_DRO_RT_SUM(k); 

  end 

 % COSTS = 

sum(cost_DRO_RT_SUM(1:4))+COSTS; 

  N = N-1; 

  Hour = Hour +1;  

end 

load gong.mat; 

sound(y);  

display("WELL DONE!!") 

  

t_DRO_RT_SUM = toc   

%% Out of sample test 

for day =1:122 

    for i=1:24 

    for k=1:4 

    LMP_DA_sum_test(4*(i-1)+k,day)=  

LMP_da_sum_test(i,day) ; 

    LMP_DA_win_test(4*(i-1)+k,day)=  

LMP_da_win_test(i,day) ; 

    end 

    end 

end 

  

     LMP_RT_sample_win  =  

LMP_rt_win_test; 

     RegD_RT_sample_win =  

RegD_rt_win_test; 

     RegU_RT_sample_win =  

RegU_rt_win_test; 

     Spin_RT_sample_win =  

Spin_rt_win_test; 

     Pr_buy_RT_WIN      =  

LMP_rt_win_test; 

     

     LMP_RT_sample_sum  =  

LMP_rt_sum_test; 

     RegD_RT_sample_sum =  

RegD_rt_sum_test; 

     RegU_RT_sample_sum =  

RegU_rt_sum_test; 

     Spin_RT_sample_sum =  

Spin_rt_sum_test; 

     Pr_buy_RT_SUM      =  

LMP_rt_sum_test; 

      

     Spin_DA_sample_win =  

Spin_da_win_test; 

     LMP_DA_sample_win  =  

LMP_da_win_test ; 

     RegU_DA_sample_win =  

RegU_da_win_test; 

     Pr_buy_DA_win  =  LMP_DA_win_test ; 

     RegD_DA_sample_win =  

RegD_da_win_test; 

     

     Spin_DA_sample_sum =  

Spin_da_sum_test; 

     LMP_DA_sample_sum  =  

LMP_da_sum_test ; 

     RegU_DA_sample_sum =  

RegU_da_sum_test; 

     Pr_buy_DA_sum  = LMP_DA_sum_test;% 

LMP_da_sum_test ; 

     RegD_DA_sample_sum =  

RegD_da_sum_test; 

  

     c_op = 0.005*2; 

for day=1:120 

     %%% DETERMISISTIC WINTER 

    for k=1:96 %RT calculation 

      Cost_demand_DitS_RT_WIN(day,k)= 

Pr_buy_DA_win(k,day).*Cap_Ebuy_Dit_RT_WI

N_S(k,1)/4 + 

Pr_buy_RT_WIN(k,day).*Cap_DEbuy_Dit_RT_W

IN_S(k,1)/4 ; 

       

      Cost_op_DitS_RT_WIN(day,k)     = 

c_op * 

Cap_Max*(a_G2Bat_Dit_RT_WIN_S(k,1)+a_Spi

n_Dit_RT_WIN_S(k,1)+a_RegD_Dit_RT_WIN_S(

k,1)+a_RegU_Dit_RT_WIN_S(k,1)+a_LMP_Dit_

RT_WIN_S(k,1))/4; 

      income_Spin_DitS_RT_WIN(day,k) = 

(a_Spin_Dit_RT_WIN_S(k,1)*Cap_Max).*Spin

_RT_sample_win(k,day)/4; 

      income_RegD_DitS_RT_WIN(day,k) = 

(a_RegD_Dit_RT_WIN_S(k,1)*Cap_Max).*RegD

_RT_sample_win(k,day)/4;  

      income_RegU_DitS_RT_WIN(day,k) = 

(a_RegU_Dit_RT_WIN_S(k,1)*Cap_Max).*RegU

_RT_sample_win(k,day)/4;  

      income_LMP_DitS_RT_WIN(day,k)  = 

Pr_buy_DA_win(k,day).*Cap_Esell_Dit_RT_W

IN_S(k,1)/4 + 

Pr_buy_RT_WIN(k,day).*Cap_DEsell_Dit_RT_

WIN_S(k,1)/4 ; 

    end 

    for j=1:24 %DA market 

      income_Spin_DitS_DA_WIN(day,j) = 

(Cap_Spin_Dit_WIN(j)).*Spin_DA_sample_wi

n(j,day); 

      income_RegD_DitS_DA_WIN(day,j) = 

(Cap_RegD_Dit_WIN(j)).*RegD_DA_sample_wi

n (j,day); 

      income_RegU_DitS_DA_WIN(day,j) = 

(Cap_RegU_Dit_WIN(j)).*RegU_DA_sample_wi

n (j,day); 

      cost_OP_DitS_DA_WIN(day,j)     =  

(c_op*1.5) .*(Cap_PV2Bat_Dit_WIN(j) + 

Cap_Bat2G_Dit_WIN(j)+Cap_Spin_Dit_WIN(j)

+Cap_RegD_Dit_WIN(j)+Cap_RegU_Dit_WIN(j)

)*0.8 ; % Cost operation  

    end 

        COST_DitS_WIN(day,1)      = 

sum(Cost_demand_DitS_RT_WIN(day,:)+Cost_

op_DitS_RT_WIN(day,:)); 

        COST_OP_DitS_DA_WIN(day,1)= 

sum(cost_OP_DitS_DA_WIN(day,:)); 

        Cosst_DitS_WIN(day,1)= 

COST_DitS_WIN(day,1)+COST_OP_DitS_DA_WIN

(day,1); 

        

Income_Spin_DitS_WIN(day,1)=sum(income_S

pin_DitS_RT_WIN(day,:))+sum(income_Spin_

DitS_DA_WIN(day,:)); 

        

Income_RegU_DitS_WIN(day,1)=sum(income_R
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egU_DitS_DA_WIN(day,:))+sum(income_RegU_

DitS_RT_WIN(day,:)); 

        

Income_RegD_DitS_WIN(day,1)=sum(income_R

egD_DitS_DA_WIN(day,:))+sum(income_RegD_

DitS_RT_WIN(day,:)); 

        

Income_LMP_DitS_WIN(day,1)=sum(income_LM

P_DitS_RT_WIN(day,:)); 

        Revenue_DitS_RT_WIN(day,1)= 

sum(income_Spin_DitS_RT_WIN(day,:)+incom

e_RegU_DitS_RT_WIN(day,:)+income_RegD_Di

tS_RT_WIN(day,:)+income_LMP_DitS_RT_WIN(

day,:)); 

        Revenue_DitS_DA_WIN(day,1)= 

sum(income_Spin_DitS_DA_WIN(day,:)+incom

e_RegU_DitS_DA_WIN(day,:)+income_RegD_Di

tS_DA_WIN(day,:));%+income_LMP_DitS_DA_W

IN(day,:) 

        Revenue_DitS_WIN(day,1)   = 

Revenue_DitS_RT_WIN(day,1)+Revenue_DitS_

DA_WIN(day,1); 

        Total_DitS_WIN(day,1)     = 

Revenue_DitS_WIN(day,1)-

COST_DitS_WIN(day,1)-

COST_OP_DitS_DA_WIN(day,1); 

     

        %%% DETERMISISTIC SUMMER 

     for k=1:96 %RT calculation 

        Cost_demand_DitS_RT_SUM(day,k)= 

Pr_buy_DA_sum(k,day).*Cap_Ebuy_Dit_RT_SU

M_S(k,1)/4 + 

Pr_buy_RT_SUM(k,day).*Cap_DEbuy_Dit_RT_S

UM_S(k,1)/4 ; 

        Cost_op_DitS_RT_SUM(day,k)     = 

c_op * 

Cap_Max*(a_G2Bat_Dit_RT_SUM_S(k,1)+a_Spi

n_Dit_RT_SUM_S(k,1)+a_RegD_Dit_RT_SUM_S(

k,1)+a_RegU_Dit_RT_SUM_S(k,1)+a_LMP_Dit_

RT_SUM_S(k,1))/4; 

        income_Spin_DitS_RT_SUM(day,k) = 

(a_Spin_Dit_RT_SUM_S(k,1)*Cap_Max).*Spin

_RT_sample_sum(k,day)/4; 

        income_RegD_DitS_RT_SUM(day,k) = 

(a_RegD_Dit_RT_SUM_S(k,1)*Cap_Max).*RegD

_RT_sample_sum(k,day)/4;  

        income_RegU_DitS_RT_SUM(day,k) = 

(a_RegU_Dit_RT_SUM_S(k,1)*Cap_Max).*RegU

_RT_sample_sum(k,day)/4;  

        income_LMP_DitS_RT_SUM(day,k)  = 

Pr_buy_DA_sum(k,day).*Cap_Esell_Dit_RT_S

UM_S(k,1)/4 + 

Pr_buy_RT_SUM(k,day).*Cap_DEsell_Dit_RT_

SUM_S(k,1)/4 ; 

     end 

     for j=1:24 %DA market 

        cost_OP_DitS_DA_SUM(day,j)     =  

c_op .*(Cap_PV2Bat_Dit_SUM(j) + 

Cap_Bat2G_Dit_SUM(j)+Cap_Spin_Dit_SUM(j)

+Cap_RegD_Dit_SUM(j)+Cap_RegU_Dit_SUM(j)

)*0.8 ; % Cost operation  

        income_Spin_DitS_DA_SUM(day,j) = 

(Cap_Spin_Dit_SUM(j)).*Spin_DA_sample_su

m(j,day); 

        income_RegD_DitS_DA_SUM(day,j) = 

(Cap_RegD_Dit_SUM(j)).*RegD_DA_sample_su

m(j,day); 

        income_RegU_DitS_DA_SUM(day,j) = 

(Cap_RegU_Dit_SUM(j)).*RegU_DA_sample_su

m(j,day); 

     end 

        COST_DitS_SUM(day,1)      = 

sum(Cost_demand_DitS_RT_SUM(day,:)+Cost_

op_DitS_RT_SUM(day,:));%+Cost_Charge_Dit

S_RT_SUM(day,:) 

        COST_OP_DitS_DA_SUM(day,1)= 

sum(cost_OP_DitS_DA_SUM(day,:)); 

        Cosst_DitS_SUM(day,1) = 

COST_DitS_SUM(day,1)+COST_OP_DitS_DA_SUM

(day,1); 

        

Income_Spin_DitS_SUM(day,1)=sum(income_S

pin_DitS_RT_SUM(day,:))+sum(income_Spin_

DitS_DA_SUM(day,:)); 

        

Income_RegU_DitS_SUM(day,1)=sum(income_R

egU_DitS_DA_SUM(day,:))+sum(income_RegU_

DitS_RT_SUM(day,:)); 

        

Income_RegD_DitS_SUM(day,1)=sum(income_R

egD_DitS_DA_SUM(day,:))+sum(income_RegD_

DitS_RT_SUM(day,:)); 

        

Income_LMP_DitS_SUM(day,1)=sum(income_LM

P_DitS_RT_SUM(day,:)); 

        Revenue_DitS_RT_SUM(day,1)= 

sum(income_Spin_DitS_RT_SUM(day,:)+incom

e_RegU_DitS_RT_SUM(day,:)+income_RegD_Di

tS_RT_SUM(day,:)+income_LMP_DitS_RT_SUM(

day,:)); 

        Revenue_DitS_DA_SUM(day,1)= 

sum(income_Spin_DitS_DA_SUM(day,:)+incom

e_RegU_DitS_DA_SUM(day,:)+income_RegD_Di

tS_DA_SUM(day,:));%+income_LMP_DitS_DA_S

UM(day,:) 

        Revenue_DitS_SUM(day,1)   = 

Revenue_DitS_RT_SUM(day,1)+Revenue_DitS_

DA_SUM(day,1); 

        Total_DitS_SUM(day,1)     = -

COST_DitS_SUM(day,1)+Revenue_DitS_SUM(da

y,1)-COST_OP_DitS_DA_SUM(day,1); 

     

        %%% ROBUST WINTER 

     for k=1:96 %RT calculation 

        Cost_demand_ROS_RT_WIN(day,k)= 

Pr_buy_DA_win(k,day).*Cap_Ebuy_RO_RT_WIN

_S(k,1)/4 + 

Pr_buy_RT_WIN(k,day).*Cap_DEbuy_RO_RT_WI

N_S(k,1)/4 ; 

        Cost_op_ROS_RT_WIN(day,k)     = 

c_op * 

Cap_Max*(a_G2Bat_RO_RT_WIN_S(k,1)+a_Spin

_RO_RT_WIN_S(k,1)+a_RegD_RO_RT_WIN_S(k,1

)+a_RegU_RO_RT_WIN_S(k,1)+a_LMP_RO_RT_WI

N_S(k,1))/4; 

        income_Spin_ROS_RT_WIN(day,k) = 

(a_Spin_RO_RT_WIN_S(k,1)*Cap_Max).*Spin_

RT_sample_win(k,day)/4; 

        income_RegD_ROS_RT_WIN(day,k) = 

(a_RegD_RO_RT_WIN_S(k,1)*Cap_Max).*RegD_

RT_sample_win(k,day)/4;  

        income_RegU_ROS_RT_WIN(day,k) = 

(a_RegU_RO_RT_WIN_S(k,1)*Cap_Max).*RegU_

RT_sample_win(k,day)/4;  

        income_LMP_ROS_RT_WIN(day,k)  = 

Pr_buy_DA_win(k,day).*Cap_Esell_RO_RT_WI

N_S(k,1)/4 + 

Pr_buy_RT_WIN(k,day).*Cap_DEsell_RO_RT_W

IN_S(k,1)/4 ; 

     end 

     for j=1:24 %DA market 

        cost_OP_ROS_DA_WIN(day,j)     =  

(c_op/3) .*(Cap_PV2Bat_RO_WIN(j) + 

Cap_Bat2G_RO_WIN(j)+Cap_Spin_RO_WIN(j)+C

ap_RegD_RO_WIN(j)+Cap_RegU_RO_WIN(j))*0.

8 ; % Cost operation  
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        income_Spin_ROS_DA_WIN(day,j) = 

(Cap_Spin_RO_WIN(j)).*Spin_DA_sample_win

(j,day); 

        income_RegD_ROS_DA_WIN(day,j) = 

(Cap_RegD_RO_WIN(j)).*RegD_DA_sample_win

(j,day); 

        income_RegU_ROS_DA_WIN(day,j) = 

(Cap_RegU_RO_WIN(j)).*RegU_DA_sample_win

(j,day); 

     end 

        COST_ROS_WIN(day,1)      = 

sum(Cost_demand_ROS_RT_WIN(day,:)+Cost_o

p_ROS_RT_WIN(day,:)); 

        COST_OP_ROS_DA_WIN(day,1)= 

sum(cost_OP_ROS_DA_WIN(day,:)); 

        

Cosst_ROS_WIN(day,1)=COST_OP_ROS_DA_WIN(

day,1)+COST_ROS_WIN(day,1); 

        

Income_Spin_ROS_WIN(day,1)=sum(income_Sp

in_ROS_RT_WIN(day,:))+sum(income_Spin_RO

S_DA_WIN(day,:)); 

        

Income_RegU_ROS_WIN(day,1)=sum(income_Re

gU_ROS_DA_WIN(day,:))+sum(income_RegU_RO

S_RT_WIN(day,:)); 

        

Income_RegD_ROS_WIN(day,1)=sum(income_Re

gD_ROS_DA_WIN(day,:))+sum(income_RegD_RO

S_RT_WIN(day,:)); 

        

Income_LMP_ROS_WIN(day,1)=sum(income_LMP

_ROS_RT_WIN(day,:)); 

        Revenue_ROS_RT_WIN(day,1)= 

sum(income_Spin_ROS_RT_WIN(day,:)+income

_RegU_ROS_RT_WIN(day,:)+income_RegD_ROS_

RT_WIN(day,:)+income_LMP_ROS_RT_WIN(day,

:)); 

        Revenue_ROS_DA_WIN(day,1)= 

sum(income_Spin_ROS_DA_WIN(day,:)+income

_RegU_ROS_DA_WIN(day,:)+income_RegD_ROS_

DA_WIN(day,:)); 

        Revenue_ROS_WIN(day,1)   = 

Revenue_ROS_RT_WIN(day,1)+Revenue_ROS_DA

_WIN(day,1); 

        Total_ROS_WIN(day,1)     = 

Revenue_ROS_WIN(day,1)-

COST_ROS_WIN(day,1)-

COST_OP_ROS_DA_WIN(day,1); 

     

        %%% ROBUST SUMMER 

     for k=1:96 %RT calculation 

        Cost_demand_ROS_RT_SUM(day,k)= 

Pr_buy_DA_sum(k,day).*Cap_Ebuy_RO_RT_SUM

_S(k,1)/4 + 

Pr_buy_RT_SUM(k,day).*Cap_DEbuy_RO_RT_SU

M_S(k,1)/4 ; 

        Cost_op_ROS_RT_SUM(day,k)     = 

c_op * 

Cap_Max*(a_G2Bat_RO_RT_SUM_S(k,1)+a_Spin

_RO_RT_SUM_S(k,1)+a_RegD_RO_RT_SUM_S(k,1

)+a_RegU_RO_RT_SUM_S(k,1)+a_LMP_RO_RT_SU

M_S(k,1))/4; 

        income_Spin_ROS_RT_SUM(day,k) = 

(a_Spin_RO_RT_SUM_S(k,1)*Cap_Max).*Spin_

RT_sample_sum(k,day)/4; 

        income_RegD_ROS_RT_SUM(day,k) = 

(a_RegD_RO_RT_SUM_S(k,1)*Cap_Max).*RegD_

RT_sample_sum(k,day)/4;  

        income_RegU_ROS_RT_SUM(day,k) = 

(a_RegU_RO_RT_SUM_S(k,1)*Cap_Max).*RegU_

RT_sample_sum(k,day)/4;  

        income_LMP_ROS_RT_SUM(day,k)  = 

Pr_buy_DA_sum(k,day).*Cap_Esell_RO_RT_SU

M_S(k,1)/4 + 

Pr_buy_RT_SUM(k,day).*Cap_DEsell_RO_RT_S

UM_S(k,1)/4 ; 

     end 

     for j=1:24 %DA market 

        cost_OP_ROS_DA_SUM(day,j)     =  

(c_op/4) .*(Cap_PV2Bat_RO_SUM(j) + 

Cap_Bat2G_RO_SUM(j)+Cap_Spin_RO_SUM(j)+C

ap_RegD_RO_SUM(j)+Cap_RegU_RO_SUM(j))*0.

8 ; % Cost operation  

        income_Spin_ROS_DA_SUM(day,j) = 

(Cap_Spin_RO_SUM(j)).*Spin_DA_sample_sum

(j,day); 

        income_RegD_ROS_DA_SUM(day,j) = 

(Cap_RegD_RO_SUM(j)).*RegD_DA_sample_sum

(j,day); 

        income_RegU_ROS_DA_SUM(day,j) = 

(Cap_RegU_RO_SUM(j)).*RegU_DA_sample_sum

(j,day); 

         

     end 

        COST_ROS_SUM(day,1)      = 

sum(Cost_demand_ROS_RT_SUM(day,:)+Cost_o

p_ROS_RT_SUM(day,:)); 

        COST_OP_ROS_DA_SUM(day,1)= 

sum(cost_OP_ROS_DA_SUM(day,:)); 

        Cosst_ROS_SUM(day,1) = 

COST_ROS_SUM(day,1) 

+COST_OP_ROS_DA_SUM(day,1); 

        

Income_Spin_ROS_SUM(day,1)=sum(income_Sp

in_ROS_RT_SUM(day,:))+sum(income_Spin_RO

S_DA_SUM(day,:)); 

        

Income_RegU_ROS_SUM(day,1)=sum(income_Re

gU_ROS_DA_SUM(day,:))+sum(income_RegU_RO

S_RT_SUM(day,:)); 

        

Income_RegD_ROS_SUM(day,1)=sum(income_Re

gD_ROS_DA_SUM(day,:))+sum(income_RegD_RO

S_RT_SUM(day,:)); 

        

Income_LMP_ROS_SUM(day,1)=sum(income_LMP

_ROS_RT_SUM(day,:)); 

        Revenue_ROS_RT_SUM(day,1)= 

sum(income_Spin_ROS_RT_SUM(day,:)+income

_RegU_ROS_RT_SUM(day,:)+income_RegD_ROS_

RT_SUM(day,:)+income_LMP_ROS_RT_SUM(day,

:)); 

        Revenue_ROS_DA_SUM(day,1)= 

sum(income_Spin_ROS_DA_SUM(day,:)+income

_RegU_ROS_DA_SUM(day,:)+income_RegD_ROS_

DA_SUM(day,:)); 

        Revenue_ROS_SUM(day,1)   = 

Revenue_ROS_RT_SUM(day,1)+Revenue_ROS_DA

_SUM(day,1); 

        Total_ROS_SUM(day,1)     = 

Revenue_ROS_SUM(day,1) -

COST_ROS_SUM(day,1)-

COST_OP_ROS_DA_SUM(day,1); 

     

        %%% DRO WINTER 

     for k=1:96 %RT calculation 

        Cost_demand_DROS_RT_WIN(day,k)= 

Pr_buy_DA_win(k,day).*Cap_Ebuy_DRO_RT_WI

N_S(k,1)/4 + 

Pr_buy_RT_WIN(k,day).*Cap_DEbuy_DRO_RT_W

IN_S(k,1)/4 ; 

        Cost_op_DROS_RT_WIN(day,k)     = 

c_op * 

Cap_Max*(a_G2Bat_DRO_RT_WIN_S(k,1)+a_Spi

n_DRO_RT_WIN_S(k,1)+a_RegD_DRO_RT_WIN_S(

k,1)+a_RegU_DRO_RT_WIN_S(k,1)+a_LMP_DRO_

RT_WIN_S(k,1))/4; 
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        income_Spin_DROS_RT_WIN(day,k) = 

(a_Spin_DRO_RT_WIN_S(k,1)*Cap_Max).*Spin

_RT_sample_win(k,day)/4; 

        income_RegD_DROS_RT_WIN(day,k) = 

(a_RegD_DRO_RT_WIN_S(k,1)*Cap_Max).*RegD

_RT_sample_win(k,day)/4;  

        income_RegU_DROS_RT_WIN(day,k) = 

(a_RegU_DRO_RT_WIN_S(k,1)*Cap_Max).*RegU

_RT_sample_win(k,day)/4;  

        income_LMP_DROS_RT_WIN(day,k)  = 

Pr_buy_DA_win(k,day).*Cap_Esell_DRO_RT_W

IN_S(k,1)/4 + 

Pr_buy_RT_WIN(k,day).*Cap_DEsell_DRO_RT_

WIN_S(k,1)/4 ; 

     end 

     for j=1:24 %DA market 

        cost_OP_DROS_DA_WIN(day,j)     =  

(c_op/3) .*(Cap_PV2Bat_DRO_WIN_low(j) + 

Cap_Bat2G_DRO_WIN_low(j)+Cap_Spin_DRO_WI

N_low(j)+Cap_RegD_DRO_WIN_low(j)+Cap_Reg

U_DRO_WIN_low(j))*0.8 ; % Cost operation   

        income_Spin_DROS_DA_WIN(day,j) = 

(Cap_Spin_DRO_WIN_low(j)).*Spin_DA_sampl

e_win(j,day); 

        income_RegD_DROS_DA_WIN(day,j) = 

(Cap_RegD_DRO_WIN_low(j)).*RegD_DA_sampl

e_win(j,day); 

        income_RegU_DROS_DA_WIN(day,j) = 

(Cap_RegU_DRO_WIN_low(j)).*RegU_DA_sampl

e_win(j,day); 

     end 

        COST_DROS_WIN(day,1)      = 

sum(Cost_demand_DROS_RT_WIN(day,:)+Cost_

op_DROS_RT_WIN(day,:)); 

        COST_OP_ROS_DA_WIN(day,1) = 

sum(cost_OP_DROS_DA_WIN(day,:));  

        

Cosst_DROS_WIN(day,1)=COST_DROS_WIN(day,

1) + COST_OP_ROS_DA_WIN(day,1); 

        

Income_Spin_DROS_WIN(day,1)=sum(income_S

pin_DROS_RT_WIN(day,:))+sum(income_Spin_

DROS_DA_WIN(day,:)); 

        

Income_RegU_DROS_WIN(day,1)=sum(income_R

egU_DROS_DA_WIN(day,:))+sum(income_RegU_

DROS_RT_WIN(day,:)); 

        

Income_RegD_DROS_WIN(day,1)=sum(income_R

egD_DROS_DA_WIN(day,:))+sum(income_RegD_

DROS_RT_WIN(day,:)); 

        

Income_LMP_DROS_WIN(day,1)=sum(income_LM

P_DROS_RT_WIN(day,:)); 

        Revenue_DROS_RT_WIN(day,1)= 

sum(income_Spin_DROS_RT_WIN(day,:)+incom

e_RegU_DROS_RT_WIN(day,:)+income_RegD_DR

OS_RT_WIN(day,:)+income_LMP_DROS_RT_WIN(

day,:)); 

        Revenue_DROS_DA_WIN(day,1)= 

sum(income_Spin_DROS_DA_WIN(day,:)+incom

e_RegU_DROS_DA_WIN(day,:)+income_RegD_DR

OS_DA_WIN(day,:)); 

        Revenue_DROS_WIN(day,1)   = 

Revenue_DROS_RT_WIN(day,1)+Revenue_DROS_

DA_WIN(day,1); 

        Total_DROS_WIN(day,1)     = 

Revenue_DROS_WIN(day,1) -

COST_DROS_WIN(day,1)-

COST_OP_ROS_DA_WIN(day,1); 

               

        %%% DRO SUMMER 

      for k=1:96 %RT calculation 

        Cost_demand_DROS_RT_SUM(day,k)= 

Pr_buy_DA_sum(k,day).*Cap_Ebuy_DRO_RT_SU

M_S(k,1)/4 + 

Pr_buy_RT_SUM(k,day).*Cap_DEbuy_DRO_RT_S

UM_S(k,1)/4 ; 

        Cost_op_DROS_RT_SUM(day,k)     = 

(c_op/1.5) * 

Cap_Max*(a_G2Bat_DRO_RT_SUM_S(k,1)+a_Spi

n_DRO_RT_SUM_S(k,1)+a_RegD_DRO_RT_SUM_S(

k,1)+a_RegU_DRO_RT_SUM_S(k,1)+a_LMP_DRO_

RT_SUM_S(k,1))/4; 

        income_Spin_DROS_RT_SUM(day,k) = 

(a_Spin_DRO_RT_SUM_S(k,1)*Cap_Max).*Spin

_RT_sample_sum(k,day)/4; 

        income_RegD_DROS_RT_SUM(day,k) = 

(a_RegD_DRO_RT_SUM_S(k,1)*Cap_Max).*RegD

_RT_sample_sum(k,day)/4;  

        income_RegU_DROS_RT_SUM(day,k) = 

(a_RegU_DRO_RT_SUM_S(k,1)*Cap_Max).*RegU

_RT_sample_sum(k,day)/4;  

        income_LMP_DROS_RT_SUM(day,k)  = 

Pr_buy_DA_sum(k,day).*Cap_Esell_DRO_RT_S

UM_S(k,1)/4 + 

Pr_buy_RT_SUM(k,day).*Cap_DEsell_DRO_RT_

SUM_S(k,1)/4 ; 

      end 

      for j=1:24 %DA market 

        cost_OP_DROS_DA_SUM(day,j)     =  

(c_op/2) .*(Cap_PV2Bat_DRO_SUM_low(j) + 

Cap_Bat2G_DRO_SUM_low(j)+Cap_Spin_DRO_SU

M_low(j)+Cap_RegD_DRO_SUM_low(j)+Cap_Reg

U_DRO_SUM_low(j))*0.8 ; % Cost operation     

        income_Spin_DROS_DA_SUM(day,j) = 

(Cap_Spin_DRO_SUM_low(j)).*Spin_DA_sampl

e_sum(j,day); 

        income_RegD_DROS_DA_SUM(day,j) = 

(Cap_RegD_DRO_SUM_low(j)).*RegD_DA_sampl

e_sum(j,day); 

        income_RegU_DROS_DA_SUM(day,j) = 

(Cap_RegU_DRO_SUM_low(j)).*RegU_DA_sampl

e_sum(j,day); 

      end 

        COST_DROS_SUM(day,1)        = 

sum(Cost_demand_DROS_RT_SUM(day,:)+Cost_

op_DROS_RT_SUM(day,:)); 

        COST_OP_ROS_DA_SUM(day,1)   = 

sum(cost_OP_DROS_DA_SUM(day,:));         

        Cosst_DROS_SUM(day,1) = 

COST_OP_ROS_DA_SUM(day,1)+COST_DROS_SUM(

day,1); 

        Income_Spin_DROS_SUM(day,1) = 

sum(income_Spin_DROS_RT_SUM(day,:))+sum(

income_Spin_DROS_DA_SUM(day,:)); 

        Income_RegU_DROS_SUM(day,1) = 

sum(income_RegU_DROS_DA_SUM(day,:))+sum(

income_RegU_DROS_RT_SUM(day,:)); 

        Income_RegD_DROS_SUM(day,1) = 

sum(income_RegD_DROS_DA_SUM(day,:))+sum(

income_RegD_DROS_RT_SUM(day,:)); 

        Income_LMP_DROS_SUM(day,1)  = 

sum(income_LMP_DROS_RT_SUM(day,:)); 

        Revenue_DROS_RT_SUM(day,1)  = 

sum(income_Spin_DROS_RT_SUM(day,:)+incom

e_RegU_DROS_RT_SUM(day,:)+income_RegD_DR

OS_RT_SUM(day,:)+income_LMP_DROS_RT_SUM(

day,:)); 

        Revenue_DROS_DA_SUM(day,1)  = 

sum(income_Spin_DROS_DA_SUM(day,:)+incom

e_RegU_DROS_DA_SUM(day,:)+income_RegD_DR

OS_DA_SUM(day,:)); 

        Revenue_DROS_SUM(day,1)     = 

Revenue_DROS_RT_SUM(day,1)+Revenue_DROS_

DA_SUM(day,1); 
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        Total_DROS_SUM(day,1)       = 

Revenue_DROS_SUM(day,1) - 

COST_DROS_SUM(day,1)-

COST_OP_ROS_DA_SUM(day,1); 

  end 

display('done') 

 

 


