
POLITECNICO DI MILANO

SCUOLA DI INGEGNERIA INDUSTRIALE

Corso di Laurea Magistrale in Ingegneria Aeronautica

Scaling Performance of a DNS
solver written in CPL

Candidato:

Mirco Meazzo
873477

Relatore:

Prof. Maurizio Quadrio

Anno Accademico 2018-2019

i

Dedicata alla mia famiglia,
a chi mi ha sempre sostenuto,

a chi è presente oggi
e a chi non c’è più

“This is Ground Control to Major Tom
You’ve really made the grade...”

David Bowie

ii

Abstract

A numerical method for the direct numerical simulation of the incompressible
Navier–Stokes equations in rectangular geometries is presented. The method
implement the MPI Standard [14] to the engine developed by M. Quadrio and
P. Luchini described in [42].

The method is based on Fourier expansions in the homogeneous directions and
fourth-order accurate, compact finite-difference schemes over a variable-spacing
mesh in the wall-normal direction.

Two different versions of the solver have been developed, based on the domain
decomposition. In the first the domain is decomposed through 1D (Slab), while
in the second version 2D (Pencil) decomposition is used. The performances of
these versions, in terms of speedups and efficiencies, have been compared against
each other at number of cores variation, processors architecture variation and
mesh dimensions variation, highlighting the scalability benefits which derives
from the latter decomposition method as soon as the mesh dimensions becomes
important. The principal drawback of the code has been highlighted, together
with the possible solution to improve the global efficiency of the code.

To manage the decomposition we rely on the APIs present in fftMPI, devel-
oped by Steve Plimpton at Sandia National Laboratories [55].

Key words: Navier–Stokes equations, direct numerical simulation, parallel
computing, turbulence, 2D decomposition, pencil decomposition

iv

Sommario

Nel presente lavoro viene presentato un metodo numerico per la simulazione
numerica diretta delle equazioni di Navier-Stokes in geometria rettangolare. Tale
solutore è il frutto dell’applicazione dello Standard MPI [14] ad un precedente
lavoro dei professori M. Quadrio e P. Luchini, descritto in [42].

Il metodo impiega espansioni di Fourier nelle direzioni omogenee, mentre
nella direzione normale alla parete la discretizzazione è affidata alle differenze
finite compatte, le quali garantiscono un’accuratezza al quarto ordine.

Sono state realizzate due versioni distinte del solutore. Nella prima viene
adottata una decomposizione del dominio 1D (Slab), mentre nella seconda si fa
affidamento alla moderna soluzione della decomposizione 2D (Pencil). E’ stato
effettuato un confronto tra questi due solutori, in termini di speedups ed efficienze,
al variare del numero di cores impiegati nella soluzione, dell’architettura del
processore e della dimensione della mesh. Nel documento sono stati sottolineati
i benefici derivanti dal secondo metodo di decomposizione al crescere della
dimensione della mesh e le problematiche associate ad una parallelizzazione che
fa affidamento al solo paradigma MPI, assieme ad una possibile soluzione.

La decomposizione degli array è affidata alla libreria esterna fftMPI, svilup-
pata da Steve Plimpton presso i Sandia National Laboratories [55].

Key words: equazioni di Navier–Stokes, simulazione numerica diretta,
calcolo parallelo, turbolenza, decomposizione 2D, decomposizione pencil

vi

Ringraziamenti

Ringrazio il Politecnico di Milano ed in particolare la figura del Professor
Maurizio Quadrio, il quale mi ha dato questa grande opportunità di crescita. Le
sarò sempre grato.

Dedico questo tesi alla persone che mi sono state accanto e mi hanno accom-
pagnato durante questo percorso.

Ringrazio Giulia, Ludovica, Peppe, Eugenio, Michel, Francesco, Santiago ed
Hermes per aver reso il “viaggio” divertente, e non solo istruttivo. A loro vanno i
miei più sinceri auguri per il loro futuro, e spero vivamente di incontrarli ancora
durante il mio percorso.

Ringrazio Darli, Renato, Orse ed Elisa per il loro sostegno in tutti questi
anni, fatti di momenti bellissimi e difficoltà, nei quali loro non si sono mai tirati
indietro, facendomi sempre sentire il loro supporto.

Ringrazio mia sorella Valeria per avermi sopportato e supportato, avere un
fratello ingegnere deve essere complicato. . .

Ringrazio i miei genitori che con il loro lavoro ed impegno non mi hanno mai
fatto mancare niente ed hanno reso possibile tutto questo, li ringrazio per non
aver mai dubitato di me ed aver sempre assecondato le mie richieste, specie nei
momenti più complicati.

Ringrazio la mia ragazza, Susanna, per essermi sempre stata accanto durante
la stesura di questo elaborato ed avermi aiutato a superare i momenti più bui.

Infine ringrazio i miei nonni, i quali fin da piccolo, mi sono sempre stati
accanto, dandomi tutto il loro amore e la loro fiducia. Ringrazio in particolare
le mie nonne, Maddalena e Franca, per avermi insegnato più di chiunque altro a
credere in me.

viii

Estratto della tesi in lingua italiana

La turbolenza ha una grande importanza in molti processi fisici che coinvolgono
i fluidi. Partendo dai fluidi interstellari, passando per i fenomeni atmosferici, la
corrente attorno ad un aereo, il moto di un liquido in un tubo, lo strato limite e la
scia attorno a corpi, fino a giungere alla corrente sanguigna all’interno del corpo
umano, sono tutti esempi di moti caratterizzati dalla presenza di turbolenza.

Tuttavia, benché questo fenomeno sia cos̀ı esteso, la sua comprensione è an-
cora ad oggi un mistero della fisica classica. L’assenza di una rigorosa definizione
per tale fenomeno fornisce un chiaro campanello d’allarme sul livello del nostro
sapere.

Lo studio della turbolenza è un ramo della fluidodinamica che ebbe inizio
all’incirca centotrenta anni or sono, con l’esperimento di Osborne Reynolds.
Tuttavia, l’impossibilità di trovare una soluzione analitica al problema, unita alle
scarse competenze tecnologiche delle epoche precedenti, limitarono sensibilmente
i margini di progresso.

L’odierno avvento dei calcolatori ha portato in dote la possibilità di risolvere
numericamente, e in tempi ragionevoli, le equazioni. E’ cos̀ı nata la simulazione
numerica diretta delle equazioni, abbreviata in DNS.

Questa tecnica risulta essere molto dispendiosa in termini computazionali,
pertanto è necessario provvedere alla cos̀ı detta parallelizzazione del codice. La
stesura di un codice parallelizzato consente ad un programma di essere eseguito
sotto forma di diverse istanze su differenti CPU, collegate tra loro attraverso una
network, le quali, lavorando su una sezione del problema ciascuna, restituiscono
la soluzione del problema completo.

Questa tesi mostra i processi che sono stati attuati al fine di modificare un
precedente solutore DNS per renderlo parallelo. Tale realizzazione impiega il
paradigma MPI, Message Passing Interface, uno standard mondiale per quanto
concerne la realizzazione di algoritmi studiati per le odierne architetture a memo-
ria distribuita, presenti nei supercomputer odierni. Benché i risultati, che verrano
mostrati in seguito, siano di buon auspicio, sono necessarie ulteriori iterazioni
sulla struttura del codice per poter ottenere un solutore all’apice tecnologico. La
mancanza di una parallelizzazione intranodale lascia infatti lacune e margini di
miglioramento. Questo lavoro pertanto deve essere visto come una solida base di
partenza per un futuro solutore ad alta scalabilità, piuttosto che come un punto
di arrivo.

La tesi si apre con una parte introduttiva sui flussi turbolenti volta a fornire
i concetti generali di tale fenomeno. Tale capitolo inoltre fornisce al lettore le
motivazioni dietro alla necessità di eseguire le simulazioni DNS e cenni di storia
della stessa.

Nel secondo capitolo si fornisce una definizione analitica del dominio di
interesse e delle equazioni che lo governano. In particolare viene mostrato come
è possibile ridurre il problema da un sistema di tre equazioni differenziali alle
derivate parziali ad un sistema di sole due equazioni analoghe attraverso l’uso
delle equazioni della componente normale alla parete della vorticità e della
velocità. In seguito viene dato ampio spazio alla formulazione discreta nel
dominio di Fourier delle stesse, con particolare attenzione alla descrizione della

x

struttura delle “compact finite difference scheme”. Tale capitolo si conclude
mostrando la struttura del codice implementato.

Il successivo capitolo descrive brevemente le librerie al quale ci siamo affidati
per effettuare l’I/O e la trasposizione degli array. In questo capitolo è presente la
descrizione dei cluster su cui abbiamo lavorato e testato il codice. Viene introdotta
la struttura del codice di benchmark, mentre i risultati di tali benchmarks sono
riportati nel capitolo successivo.

Tale capitolo indaga in modo approfondito il comportamento del nostro
solutore, in termini di speedup ed efficienza, al variare di diversi parametri quali
il numero di cores, l’architettura del processore e la strategia di decomposizione
degli array, sfruttando una mesh di dimensioni costanti. Lo studio è ripetuto al
variare della mesh per quattro diverse dimensioni del problema.

Nel quinto capitolo vengono mostrati i risultati di due simulazioni al variare
del Reτ . Le statistiche ottenute vengono commentate e confrontate con quelle
di database del passato, sottolineando le caratteristiche del moto del fluido.

La tesi si conclude descrivendo possibili sviluppi futuri, volti a rendere più
efficiente il solutore.

Contents

1 Introduction 1
1.1 Turbulent flows . 1
1.2 General concepts . 1
1.3 The history of the direct numerical simulation 3

2 Parallel DNS of a Turbulent Channel Flow 7
2.1 Problem definition . 7
2.2 Governing equations . 8

2.2.1 Wall normal vorticity equation 8
2.2.2 Wall normal velocity equation 9
2.2.3 Velocity components in the homogeneous directions and

mean flow . 9
2.3 Spatial discretization along homogeneous directions 10
2.4 Finite difference scheme . 11

2.4.1 Compute of the finite difference coefficients 12
2.5 Time discretization . 13
2.6 Domain decompositions . 15

2.6.1 1D decomposition . 17
2.6.2 2D decomposition . 17

2.7 Parallel I/O . 18

3 Code Structure 21
3.1 Code parallelization . 21
3.2 fftMPI . 22
3.3 Parallel HDF5 Library . 24
3.4 Testing environment . 25
3.5 Performances measurement description 26

4 Code Benchmarks 29
4.1 Single core comparison . 29
4.2 Scaling performance of 1283 problem 30
4.3 Scaling performance of 256× 256× 512 problem 34

xi

xii

4.4 Scaling performance of 512× 512× 1024 problem 41
4.5 Scaling performance of 4096× 512× 512 problem 46
4.6 Further tests . 51

4.6.1 Intel compiled code performances 51
4.6.2 Performances on GALILeO 51

4.7 Benchmarks conclusions . 54

5 Simulations Results 59
5.1 Reτ = 180 simulation . 59
5.2 Reτ = 1000 simulation . 66
5.3 Reynolds effects . 71

6 Conclusions & Further Works 81

Bibliography 83

1
Introduction

In this chapter we present the main features of a turbulent flow, providing an
historical background of the direct numerical simulation field applied to the
channel flow problem.

1.1 Turbulent flows

Every smoker can observe the nature of turbulence one inch away from their
nose. However a proper definition of turbulence is not yet given, due to the
complexity of turbulence behaviour.
To use Prandtl words, who began an important lecture as follows:

“What I am about to say on the phenomena of turbulent flows is still far from
conclusive. It concerns, rather, the first steps in a new path which I hope will be
followed by many others. The researches on the problem of turbulence which
have been carried on at Göttingen for about five years have unfortunately left the
hope of thorough understanding of turbulent flow very small. The photographs
and kinetographic pictures have shown us only how hopelessly complicated this
flow is.”

Nowadays we can entrust to computational units that allows us to be no longer
“hopeless” as Prandtl was, although we are still far from having a solution, or at
least a unique definition, of what the turbulence is. At the present time we
define the turbulence as a flow regime, characterized by high Reynolds numbers
and the presence of high level of diffusivity and irregularity, dissipation and
three dimensional chaotic fluctuations in space and time[32].

1.2 General concepts

An elderly definition of turbulence was provided by Hinze [47], in 1959, and say:

“Turbulent fluid motion is an irregular condition of flow in which the various
quantities show a random variation with time and space coordinates, so that
statistically distinct average values can be discerned”.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Sketch of the Reynolds experiment (left) and flow patterns (right)

The concept of average is the keyword that humanity has used to start digging
into the turbulence mysteries. This kind of process, with its high sensitivity to
the boundaries and initial conditions, can be defined as chaotic, so it can not be
treated with a deterministic approach, therefore such randomness can be
handled only by using a statistical approach. In fact turbulence recovers its
deterministic side inside statistical analysis: the detailed properties of the signal
show a non predictable behaviour, but its statistical properties are
consistent [20]. At statistical level, turbulent phenomena become reproducible
and subject to systematic study, providing a basis for theoretical description.
Therefore, the three-dimensional time-dependent Navier-Stokes equations can
be solved and then the solution is averaged in order to obtain the statistics [13].
Note, however, that irregular motion and chaotic advection do not guarantee
turbulence. Small point vortices can advect themselves in a chaotic manner or
particles can follow complex trajectories, yet this is not turbulence. The
definition, in fact, requires diffusivity. If the flow pattern looks random but does
not exhibit high mix of momentum, mass and heat, it is surely not turbulent.
Diffusivity is the single most important feature of turbulence, as highlighted by
the experiment of Osborne Reynolds [60], in 1883.
In its famous work Reynolds has defined a ratio among inertia forces and
viscous forces:

Re =
ul

ν
(1.1)

with u that is the characteristic velocity of the fluid, l is the reference length of
the scale and ν is the kinematic viscosity; able to predict the presence, or not,
of the turbulence. He saw that when the inertia forces are huge the flow become
unstable and the ink of its experiment started mixing with the surrounding
water, as shown in the sketch of figure 1.1.
This first work has correlated the presence of different states of the flow,
laminar, transitional and turbulent, and their relationship with the couple
viscous term-nonlinear inertia term. Further observations revealed the presence

1.3. THE HISTORY OF THE DIRECT NUMERICAL SIMULATION 3

of three-dimensional eddies. Although we are still unable to determine their
shapes, we have understood that they play a key role in the turbulence
sustenance. Under the assumptions of incompressible flow, not subjected to
external forces of volume or surface, the vorticity equation states

Dω

Dt
= (ω ·∇)u + ν∇2u. (1.2)

The central term of the equation, (ω ·∇)u, is known as vortex-stretching term.
The vortex stretching is at the core of the description of the turbulent energy
cascade, from the large scales to the smallest scale, determined, as we will see,
by the turbulence itself. For incompressible flow, due to volume conservation of
fluid elements, the lengthening implies thinning of the fluid elements in the
directions perpendicular to the stretching direction. This reduces the length
scale of the associated vorticity. Finally, at the smallest scales the turbulence
kinetic energy is dissipated into heat through the action of molecular
viscosity [10].

1.3 The history of the direct numerical
simulation

The direct numerical simulation (DNS) of the Navier-Stokes equations is a
mathematical tool used to analyze turbulent flows since it allows to have an
inner viewpoint in the transition and turbulence phenomena processes. It is part
of the so called Computation Fluid Dynamics, or CFD, research field. Given the
high computational cost of these simulations, DNS is not used to reproduce
real-life flows, but as a research tool for flows with simple boundaries[48].

Despite of such kind of simulations, due to their limits, could seem useless, they
assume relevant importance in the study of the turbulence, who, dominating the
small scales, affect the behavior of the large scales, determining the raise of
phenomenas such as flow separations, drag increases or losses of lift. These
simulations rely on high accuracy computational methods and they do not
employ turbulence models, hence they require an ever-increasing computational
power, as we move towards engineering relevant Reynolds numbers. However we
can identify an ultimate threshold for direct numerical simulation of the wall
bounded flows, which, thanks to its scale separation, give the possibility to
model the turbulence phenomena once for all. In [31] professor Jiménez set such
threshold around Reτ = 10000.

The DNS history is recent, with the first milestone work carried out by Kim,
Moin and Moser [36] in the 1987, using a 192× 129× 160 grid of points
distributed in a channel flow domain, in which they studied the homogenous
isotropic turbulence using spectral modes. Follow this seminal work other
authors proposed their simulations. Accurate DNS calculations of the turbulent
channel flow, using spectral methods, have been carried out by Lyons et al. [43],
Antonia et al. [4], Kasagi et al. [33], Rutledge and Sleicher [61] in the first
nineties. In the 1999 Moser et al. [49] proposed their Reτ = 590 simulation,
while to see the first channel flow simulation using finite differences we have to
wait Abe et al. [1] in 2001.

4 CHAPTER 1. INTRODUCTION

Figure 1.2: Supercomputers grown trend, courtesy of TOP500.org

Other works, from the first years of the twenty-first century, are for example
Iwamoto et al. [28] ones, Del Alamo and Jiménez [2] and, the first simulation
with Reτ over a thousand, Del Alamo et al. [12] work, in 2004.
Between 2004 and 2007 were presented different works, alternating the finite
differences techniques with the more established spectral methods approach.
Tanahashi et al. [62], Iwamoto et al. [27], Hoyas and Jiménez [23], Hu et
al. [24]are some examples.
More recent simulation have been carried out by Lozano-Duràn et al. [40],
Lozano-Duràn and Jiménez [41], Vreman and Kuerten [68], Bernardini et al. [5]
and the actually biggest simulation ever, with Reτ = 5200, by Lee and
Moser [37].
The grows in Reτ number is correlated with the grown in supercomputing
performances on those years, as could be understood by looking at figures 1.2
and 1.3. However the Reτ growth is not proportional with the computational
power, as we can clearly see.
We are not far from the possibility to solve the biggest useful simulation, in [31]
is reported that a theoretical 500 Pflops supercomputer could carry out the
Reτ = 10000 simulation in a reasonable time. The cited document has been
published in 2003, but, unfortunately, starting from 2013, the rate of growth of
the supercomputers speed has halved with respect to the past decade, and this
made the forecast embedded in such document wrong. However, with the
current rate of growth, it is likely that we could carry out such simulation
within the next three years.

In this thesis our goal was to provide an highly parallelized DNS solver, based
on pseudo-spectral approach, able to carry out simulation on a wide number of
processors in an efficient way.

1.3. THE HISTORY OF THE DIRECT NUMERICAL SIMULATION 5

1985 1990 1995 2000 2005 2010 2015

Year

102

103

104

R
e

Figure 1.3: Reτ growth trend

We were particularly interested in the possibility to generate flow statistics at
high Reτ values, in reasonable time, maintaining code efficiency above the 40%.

6 CHAPTER 1. INTRODUCTION

2
Parallel DNS of a Turbulent Channel Flow

This chapter introduce the governing equations of the turbulent channel flow. It
will be shown how it is possible to reduce the computational cost, passing from
three PDEs to 2 PDEs plus one linear system. Will be introduced our
discretization, in terms of time advancement and spatial resolution.
At the end of the chapter we will provide some useful principles about the code
parallelization.

2.1 Problem definition

Before moving to what has been done in this thesis I wish to briefly discuss the
setup of our channel flow and the equations used to solve the problem.

Figure 2.1: Domain of interest

We have the domain sketched in figure 2.1 where the x and z coordinates denote
the streamwise and spanwise directions of the flow, while the y coordinate is the
wall normal ones. Along these three dimensions we have u, v and w components
of velocity.
The flow is assumed to be periodic in the streamwise and spanwise directions.
The lower wall is at position yl and the upper wall at position yu. The reference

7

8 CHAPTER 2. PARALLEL DNS OF A TURBULENT CHANNEL FLOW

length δ is taken to be one half of the channel height. Once an appropriate
reference velocity is chosen, we can define the Reynolds number as:

Re =
Uδ

ν

where ν is the kinematic viscosity of the fluid.
According to our geometry and the assumption of incompressible flow, we can
express the behavior of the flow through the mass conservation law:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.1)

and the Navier-Stokes equations, which in a dimensionless form states:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+

1

Re
∇2u (2.2a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+

1

Re
∇2v (2.2b)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+

1

Re
∇2w (2.2c)

The differential problem is closed when initial conditions for all the fluid
variables are specified, and suitable boundary conditions are chosen. At the
walls the no-slip condition are imposed.

2.2 Governing equations

The numerical method does not rely on the equations (2.2), instead it solves the
wall-normal velocity and the wall-normal vorticity equations, recovering, at the
end of the the solution, the three velocity components.

2.2.1 Wall normal vorticity equation

Defining the wall-normal component of the vorticity vector as:

η =
∂u

∂z
− ∂w

∂x

which, in Fourier space, holds:

η̂ = iβû− iαŵ

with the hat indicating Fourier-transformed quantities, i the imaginary part, α
and β the streamwise and spanwise wave numbers; allows to write a
one-dimensional second-order evolutive equation for η̂ which does not involve
pressure, as proposed in [36].
Taking the y-component of the curl of the momentum equation we obtain:

∂η̂

∂t
=

1

Re

(
D2(η̂)− k2η̂

)
+ iβĤU − iαĤW (2.3)

where D2 is the second derivative in the wall-normal direction, k2 is the sum of
α and β, and the nonlinear terms are defined as:

2.2. GOVERNING EQUATIONS 9

ĤU = iαûu+D1ûv + iβûw (2.4a)

ĤV = iαûv +D1v̂v + iβv̂w (2.4b)

ĤW = iαûw +D1v̂w + iβŵw. (2.4c)

To solve the equation (2.3) we must set suitable initial conditions for η̂. Such
initial conditions are computed using the initial velocity field and the definition
of η itself. Turning such conditions into frequency domain is straightforward
and satisfy the periodic boundary conditions. Finally, the no-slip condition for
velocity vector enforce the condition at the walls, which, simply, translate in
η̂ = 0 at y = yl and y = yu.

2.2.2 Wall normal velocity equation

An equation for the wall-normal velocity component v̂, which does not involve
pressure, is derived in [36], by summing the equation (2.2a) derived two times
w.r.t. x and y, and (2.2c) derived two times w.r.t. y and z, then subtracting
(2.2b) derived w.r.t. x and x and substracting once again after derivation w.r.t.
z and z. Further simplifications are invoked through the equation (2.1), which
lead to the following fourth-order evolutive equation for v̂, which is the so called
wall-normal velocity equation:

∂

∂t

(
D2(v̂)− k2v̂

)
=

1

Re

(
D4(v̂)− 2k2D2(v̂) + k4v̂

)
− k2ĤV −D1

(
iαĤU + iβĤW

)
. (2.5)

To solve such equation we have to enforce initial conditions on v̂.
According to Fourier expansions, the periodic boundary conditions in the
homogeneous directions are automatically satisfied, whereas the no-slip
condition for the velocity vector immediately translates in v̂ = 0 to be imposed
at the two walls.
The two remaining conditions for the fourth-order equation (2.5) comes from
the continuity equation (2.1), written at the vertical edges of the domain, y = yl
and y = yu.

2.2.3 Velocity components in the homogeneous
directions and mean flow

As reported before, once the two preceding equations are solved, we can use
them to recover the velocity components in the homogeneous directions.
Assuming the non-linear terms (2.4) known, as is the case when such terms are
treated explicitly in the time discretization, the equations (2.3) and (2.5)
become uncoupled and, after proper time discretization, can be solved for
advancing the solution by one time step, provided the nonlinear terms (2.4) and
their spatial derivatives can be calculated. To this aim, one needs to know how
to compute û and ŵ at a given time starting with the knowledge of v̂ and η̂.
By using the definition (2.3) of η̂ and the continuity equation (2.1) written in
Fourier space, a 2 × 2 algebraic system can be written for the unknowns û and
ŵ; its analytical solution read:

10 CHAPTER 2. PARALLEL DNS OF A TURBULENT CHANNEL FLOW

û =

1

k2
(iαD1(v̂)− iβη̂)

ŵ =
1

k2
(iαη̂ + iβD1(v̂))

(2.6)

For k2 = 0 the system of equation (2.6) is singular.
The present method therefore enjoys its highest computational efficiency only
when Fourier discretization is used in the homogeneous directions.
Since the previous system of equations (2.6) has been obtained starting from
equations (2.3) and (2.5) the solutions are sensible to homogeneous spatial
derivatives through the wave numbers.
Let us introduce a plane-average operator defined as:

f̃ =
1

Lx

1

Lz

∫ Lx

0

∫ Lz

0

f dx dz. (2.7)

If we apply such operator to our velocity components vector V, it turns out
that V(x, y, z, t) = Ṽ(y, t). According to this, our velocity components are
function of time and wall-normal coordinate only. In Fourier domain this
behavior is denoted by the absence of the wave numbers, so for k2 = 0.
In agreement with our reference system, where the x axis is aligned with the
mean flow, the temporal average of ũ will denote the mean velocity profile,
whereas the temporal average of w̃ = 0 throughout the channel.
Anyway w̃ can be different from zero at different time and distance from the
wall.
Finally, applying the plane-average operator to the components of the
momentum equation let us compute the ũ and w̃:

∂ũ

∂t
=

1

Re
D2(ũ)−D1(ũv) + fx (2.8a)

∂w̃

∂t
=

1

Re
D2(w̃)−D1(ṽw) + fz (2.8b)

In these expressions, fx and fz are the forcing terms needed to force the flow
through the channel against the viscous resistence of the fluid. For the
streamwise direction, fx can be an imposed mean pressure gradient, and in the
simulation the flow rate through the channel will oscillate in time around its
mean value. fx can also be a time-dependent spatially uniform pressure
gradient, that has to be chosen in such a way that the flow rate remains
constant in time. The same distinction applies to the spanwise forcing term fz:
in this case however the imposed mean pressure gradient or the imposed mean
flow rate is zero, while the other quantity will be zero only after time average.
What has been shown in this chapter is intended just to be a brief discussion.
Further informations are available in [42, pp. 1–3].

2.3 Spatial discretization along homogeneous
directions

Our solver is based on a Fourier approach. Among the advantages of such
approach we face the possibility to expansion of the unknown functions in terms

2.4. FINITE DIFFERENCE SCHEME 11

of truncated Fourier series in the homogeneous directions. For example the
wall-normal component v of the velocity vector is represented as:

v(x, y, z, t) =

+nx/2∑
h=−nx/2

+nz/2∑
l=−nz/2

v̂hl(y, t)e
iαxeiβz (2.9)

where:

α =
2πh

Lx
= α0h; β =

2πl

Lz
= β0l (2.10)

h and l are integer indexes corresponding to the streamwise and spanwise
direction respectively, and α0 and β0 are the fundamental wavenumbers in these
directions, defined in terms of the streamwise and spanwise lengths Lx = 2π/α0

and Lz = 2π/β0 of the computational domain. The computational parameters
given by the streamwise and spanwise lenght of the computational domain, Lx
and Lz , and the truncation of the series, nx and nz, must be chosen so as to
miminize computational errors. For further details regarding the proper choice
of a value of Lx see [59].
The convolutions required to solve the equations 2.3 and 2.5 are
computationally expensive if carried out in the frequency domain. The same
evaluation can be performed efficiently by first transforming the three Fourier
components of velocity back in physical space, multiplying them in all six
possible pair combinations and eventually retransforming the results into the
Fourier space. Fast Fourier Transform algorithms are used to move from Fourier
to physical space and viceversa. The aliasing error is removed by expanding the
number of modes by a factor of at least 3/2 before the inverse Fourier
transforms, to avoid the introduction of spurious energy from the
high-frequency into the low-frequency modes during the calculation [42].

2.4 Finite difference scheme

The discretization of the wall-normal derivatives D1, D2 and D4, required for
the numerical solution of the present problem, is performed through finite
difference (FD) compact schemes [38] with fourth-order accuracy over a
computational molecule composed by five arbitrarily spaced grid points. We
indicate here with dj1(i), i = −2, . . . , 2 the five coefficients discretizing the exact
operator D1 over five adjacent grid points centered at yj :

D1

(
f(y)

)
|y=yj =

2∑
i=−2

dj1(i)f(yj+i) (2.11)

The basic idea of compact schemes can be most easily understood by thinking
of a standard FD formula in Fourier space as a polynomial interpolation of a
trascendent function, with the degree of the polynomial corresponding to the
formal order of accuracy of the FD formula. Compact schemes improve the
interpolation by replacing the polynomial with a ratio of two polynomials, i.e.
with a rational function. This obviously increases the number of available
coefficients, and moreover gives control over the behavior at infinity (in
frequency space) of the interpolant, whereas a polynomial necessarily diverges.
This allows a compact FD formula to approximate a differential operator in a

12 CHAPTER 2. PARALLEL DNS OF A TURBULENT CHANNEL FLOW

wider frequency range, thus achieving resolution properties similar to those of
spectral schemes [38]. Compact schemes are also known as implicit
finite-differences schemes, because they typically require the inversion of a linear
system for the actual calculation of a derivative [44][38]. Here we are able to use
compact, fourth-order accurate schemes at the cost of explicit schemes, owing to
the absence of the third-derivative operator from the equations of motion.
Thanks to this property, it is possible to find rational function approximations
for the required three FD operators, where the denominator of the function is
always the same, as highlighted first in the original Gauss-Jackson-Noumerov
compact formulation exploited in his seminal work by Thomas [66], concerning
the numerical solution of the Orr-Sommerfeld equations.
To illustrate Thomas’ method, let us consider an 4th-order one-dimensional
ordinary differential equation, linear for simplicity, in the form:

D4(a4f) +D2(a2f) +D1(a1f) + a0f = g, (2.12)

Where the coefficients ai = ai(y) are arbitrary functions of the independent
variable y, and g = g(y) is a known RHS. Let us moreover suppose that a
differential operator, for example D4, is approximated in frequency space as the
ratio of two polynomials, say D4 and D0. Polynomials like D4 and D0 have
their counterpart in physical space, and d4 and d0 are the corresponding FD
operators. The key point is to impose that all the differential operators
appearing in the example equation 2.12 admit a representation such as the
preceding one, in which the polynomial D0 at the denominator remains the
same.
Equation 2.12 can thus be recast in the new, discretized form:

d4(a4f) + d2(a3f) + d1(a1f) + d0(a0f) = d0g, (2.13)

and this allows us to use explicit FD formulas, provided the operator d0 is
applied to the right-hand-side of our equations. The overhead related to the use
of implicit finite difference schemes disappears, while the advantage of using
high-accuracy compact schemes is retained [42].

2.4.1 Compute of the finite difference coefficients

The actual computation of the coefficients d0, d1, d2 and d4 to obtain a formal
accuracy of the 4th order descends from the requirement that the error of the
discrete operator d4/d0 decreases with the step size according to a power law
with the desired exponent -4. In practice, following a standard procedure in the
theory of Padé approximants [57], this can be enforced by choosing a set tm of
polynomials of y of increasing degree:

tm(y) = 1, y, y2, . . . , ym, (2.14)

by analytically calculating their derivatives D4(tm), and by imposing that the
discrete equation:

d4(tm)− d0(D4(tm)) = 0 (2.15)

is verified for the nine polynomials from m = 0 up to m = 8. Our
computational stencil contains 5 grid points, so that the unknown coefficients d0

2.5. TIME DISCRETIZATION 13

and d4 are 10. There is however a normalization condition, and we can write
the equations in a form where for example:

2∑
i=−2

d0(i) = 1. (2.16)

The other 9 conditions are given by equation 2.15 evaluated for m = 0, 1, . . . 8.
We thus can set up, for each distance from the wall, a 10× 10 linear system
which can be easily solved for the unknown coefficients. The coefficients of the
derivatives of lesser degree are derived from analogous relations, leading to two
5× 5 linear systems once the d0’s are known. An additional further
simplification is possible. Since the polynomials 2.14 have vanishing D4 for
m<4, thanks to the normalization condition 2.16 the 10× 10 system can be
split into two 5× 5 subsystems, separately yielding the coefficients d0 and d4.
Due to the turbulence anisotropy, the use of a mesh with variable size in the
wall-normal direction is advantageous. The procedure outlined above must then
be performed numerically at each yj station, but only at the very beginning of
the computations. The computer-based solution of the systems requires a
negligible computing time.
We end up with FD operators which are altogether fourth-order accurate; the
sole operator D4 is discretized at sixth-order accuracy. As suggested in [36]
and [44], the use of all the degrees of freedom for achieving the highest formal
accuracy might not always be the optimal choice. In [42] Quadrio and Luchini
attempted to discretize D4 at fourth-order accuracy only, spending the
remaining degree of freedom to improve the spectral characteristics of all the
FD operators at the same time. Their search has shown however that no
significant advantage can be achieved: the maximum of the errors can be
reduced only very slightly, and, more important, this reduction does not carry
over to the entire frequency range.
The boundaries obviously require non-standard schemes to be designed to
properly compute derivatives at the wall. For the boundary points we use
non-centered schemes, whose coefficients are computed following the same
approach as the interior points, thus preserving by construction the formal
accuracy of the method. Nevertheless the numerical error contributed by the
boundary presumably carries a higher weight than interior points, albeit
mitigated by the non-uniform discretization [42].

2.5 Time discretization

Time integration of the equations is performed by a partially-implicit method.
The use of a partially-implicit scheme is a common approach in DNS [36]: the
explicit part of the equations can benefit from a higher-accuracy scheme, while
the stability-limiting viscous part is subjected to an implicit time advancement,
thus relieving the stability constraint on the time-step size ∆t.
Our preferred choice, following [42][36] is to use an explicit third-order,
low-storage Runge-Kutta method for the integration of the explicit part of the
equations, and an implicit second-order Crank-Nicolson scheme is used for the
implicit part. This scheme has been anyway embedded in a modular coding
implementation that allows us to change the time-advancement scheme very

14 CHAPTER 2. PARALLEL DNS OF A TURBULENT CHANNEL FLOW

easily without otherwise affecting the structure of the code. In fact, we have a
few other time-advancement schemes built into the code for testing purposes.

Here we present the time-discretized version of equations 2.3 and 2.5 for a
generic wavenumber pair and a generic two-levels scheme for the
explicitly-integrated part coupled with the implicit Crank-Nicolson scheme:

λ

∆t
η̂n+1
hl −

1

Re

[
D2(η̂n+1

hl)− k2η̂n+1
hl

]
=

λ

∆t
η̂nhl +

1

Re

[
D2(η̂nhl)− k2η̂nhl

]
+

θ

(
iβ0lĤUhl − iα0hĤWhl

)n
+ ξ

(
iβ0lĤUhl − iα0hĤWhl

)n−1
(2.17)

λ

∆t

(
D2(v̂n+1

hl)− k2v̂n+1
hl

)
− 1

Re

[
D4(v̂n+1

hl)− 2k2D2(v̂n+1
hl) + k4v̂n+1

hl

]
=

λ

∆t

(
D2(v̂nhl)− k2v̂nhl

)
+

1

Re

[
D4(v̂nhl)− 2k2D2(v̂nhl) + k4v̂nhl

]
+

θ

(
− k2ĤV hl −D1

(
iα0hĤUhl + iβ0lĤWhl

))n
+

ξ

(
− k2ĤV hl −D1

(
iα0hĤUhl + iβ0lĤWhl

))n−1
(2.18)

The three coefficients λ, θ and ξ define a particular time-advancement scheme.
For the simplest case of a 2nd-order Adams-Bashfort, for example, we have
λ = 2, θ = 3 and ξ = −1.

The procedure to solve these discrete equations is made by two distinct steps.
In the first step, the RHSs corresponding to the explicitly-integrated part have
to be assembled. In the representation 2.9, at a given time the Fourier
coefficients of the variables are represented at different y positions; hence the
velocity products can be computed through inverse/direct FFT in wall-parallel
planes. Their spatial derivatives are then computed: spectral accuracy can be
achieved for wall-parallel derivatives, whereas the finite-differences compact
schemes described in 2.4 are used in the wall-normal direction. These spatial
derivatives are eventually combined with values of the RHS at previous time
levels. The whole y range from one wall to the other must be considered.

The second step involves, for each α, β pair, the solution of a set of two ODEs,
derived from the implicitly integrated viscous terms, for which the RHS is now
known. A finite-differences discretization of the wall-normal differential
operators produces two real banded matrices, in particular pentadiagonal
matrices when a 5-point stencil is used. The solution of the resulting two linear
systems gives η̂n+1

hl and v̂n+1
hl , and then the planar velocity components ûn+1

hl

and ŵn+1
hl can be computed by solving system 2.6 for each wavenumber pair.

For each α, β pair, the solution of the two ODEs requires the simultaneous
knowledge of their RHS in all y positions. The whole α, β space must be
considered. In the α− β − y space the first step of this procedure proceeds per
wall-parallel planes, while the second one proceeds per wall-normal lines [42].

2.6. DOMAIN DECOMPOSITIONS 15

Figure 2.2: Original domain decomposition in case of 4 processors

2.6 Domain decompositions

The engine of Quadrio and Luchini described into [42] works per y-slabs, as
shown in figure 2.2, allowing to perform convolutions and Fourier
transformations locally on each processor, avoiding the cost of non-local
transposition for the velocity array and the non-linear terms ones. Such
implementation, denominated pipelined-linear-system (PLS), lead to a
minimum in communications, in fact this approach require to send and receive
only the values stored in the two upper and lower boundary cells of the slice, in
order to provide and gather the data required by the fourth-order finite
difference scheme, used along the y-direction.
Using the PLS approach the bytes exchanged in a three step Range-Kutta
method are:

Dt = 3× 8× (p− 1)
3

2
× nx

p

nz

p
× ny × 18 (2.19)

where:

3 takes into account the number of time steps;

8 for counting the bytes;

(p− 1) is the number of nodes across which the exchange take place;

3
2 corresponds to the expansion in horizontal modes required by the

dealiasing process;

nx
p ×

nz
p is the grid portion, for each plane, to exchange with the others nodes;

18 due to the 3 velocities plus the 6 products to be exchanged twice, before and
after the FFT;

ny takes into account the number of planes to be exchanged.

Further details about the PLS communications are available in [42, chapter 4.2].
Although efficient for small processors grid, the performances of this approach
falls quickly whether the processors number becomes comparable with ny.
Furthermore the communications cost limit the number of parallel process to be
just a fraction of the ny extension.

16 CHAPTER 2. PARALLEL DNS OF A TURBULENT CHANNEL FLOW

Figure 2.3: Kinds of decomposition

To avoid such limitations and increase the number of parallel processes we
decided to move from PLS approach to something different. We have identified
two possible solutions:

employ slab decomposition along x or z axis;

employ pencil decomposition.

Both implementations require extensive use of the MPI paradigm and, possibly,
a library to handle such decompositions.

We opted to employ OpenMPI [64] for what concern the MPI paradigm, in
particular we entrusted to the well established MPI standard 3.1 [17], using
OpenMPI release 3.1.3. The ideas behind the choice of such library rely on the
fact that OpenMPI is released behind BSD license, it is designed to group
different MPI implementation, avoiding fragmentation and forking problem [65]
and, although less optimized on proprietary fabric such as Intel Omni-Path
fabric [50][26], it is likely the most widespread message passing interface
package.

For what concern the decomposition we entrusted in a new library, released by
Steven Plimpton from the Sandia National Laboratories, called fftMPI [55].
Such library leans on the MPI implementation, providing the proper cartesian
communicator needed to perform the transposition of the arrays. Next to the
communicator, this brand new library provide some useful tweak like
permutations or the possibility to select the desired communication mode,
which, compared with the FFTW-MPI Transpose [18][19] features, provide a
wider personalization and reduce the work needed for the subsequent operations,
such as the FFTs.

Finally is important to highlight that fftMPI can handle both 1D and 2D
decomposition, unlike FFTW-MPI. Others similar libraries are P3DFFT [53]
from professor Dmitry Pekurovsky (UCSD), PFFT from professor Michael
Pippig [54] (Technische Universitat Chemnitz) and 2DECOMP&FFT [39] by
Ning Li.

2.6. DOMAIN DECOMPOSITIONS 17

Figure 2.4: Example of 1D decomposition: a) PLS, b) x-slabs

2.6.1 1D decomposition

Objective of the decomposition is spread the computational cost across as much
as tasks possible. This criteria goes against our needs to have all the dimensions
local on chip, in order to carry out the 2D FFT, along xz plane, and to resolve
the finite difference scheme, along y direction. A reasonable tradeoff to these
requirements is to employ a slab decomposition.
Let us focus firstly on the possible approaches to solve the 2D FFTs on xz plane.
Given an Nx ×Ny ×Nz grid of points to be distributed over p processors two
mainly strategies arise in order to carry out the task and arrange the data as
needed.
The first approach is to implement a sequence of 2 one-dimensional FFTs,
interleaved with data exchange among processors. The other approach, which
requires less overall communications, is to make the data local for the
dimensions to be transformed (PLS approach [42]).
Since the code already employed a PLS approach, we moved to the fore ones. In
detail we exploit the Ny planes independence, to loop among them. Every plane
is originally decomposed in Nx

p ×Nz. The code perform the z-dimensionals
Fourier transformations and an MPI-transposition take place, leading to the
new domain decomposition Nx × Nz

p . In this arrangement the x-dimensionals
FFTs and subsequent convolutions are performed. Once completed the opposite
process takes place.
At the end of the process we have the velocity convolutions, in Fourier domain,
stowed in yz planes. Every plane belong to an independent processor, which,
since owns all the y values, can build the RHS term and solve the system.
For a tiny cluster or problems with limited dimensions, this kind of approach
could be a good choice, since the decomposition limit varies with the lowest
decomposed dimension, in this case, Nx or Nz. However the speedup is limited.
Such limitations about domain decomposition and, consequently, speedups,
raise their importance in modern HPC architectures, that counts many
thousands cores. This limits can be avoided implementing a 2D decomposition.

2.6.2 2D decomposition

In 2D approach the domain is decomposed through a grid of processors, in order
to form pencils instead of slabs. The initial pencil dimensions are Nx

p1
× Ny

p2
×Nz

where the total amount of task is p = p1 × p2.

18 CHAPTER 2. PARALLEL DNS OF A TURBULENT CHANNEL FLOW

Figure 2.5: 2D decomposition of a 3D array

Starting from such decomposition, we carry out the one-dimensional FFTs
along z, then we transpose the array in order to have x-pencils, so the local
dimensions will be Nx × Ny

p1
× Nz

p2
. Once here FFTs and convolutions are

performed, then we come back to the original decomposition. The final step,
needed to guarantee the availability of the values along the y dimension, is to
execute a final remap sequence, from the z-pencils to y-pencils, which will end
up with Nx

p2
×Ny × Nz

p1
pencils.

The sequence of operations required to remap a 3D array along the three
dimensions is illustrated in figure 2.5.

The 2D approach raise the limit of decomposition to be N ×N , allowing to
scale to an higher number of processes with respect to the 1D method, thus
achieve an higher speedup and efficiency when the dimension of the problem
become significant.

2.7 Parallel I/O

Input-output could be a serious bottleneck if we do not pay the right attention.
In particular, when dealing with supercomputers, two major problems arise:

As first thing let us introduce I/O.

In computer architecture, the combination of the CPU and main memory, to
which the CPU can read or write directly using individual instructions, is
considered the brain of a computer. Any transfer of information to or from the
CPU/memory combo, for example by reading data from a disk drive, is
considered I/O [51]. When dealing with cluster the transit of data from disk to
CPU is not so straightforward. The presence of multiple CPU require the
adoption of one of the following strategies.

The most basic strategy is the master-slaves setup, depicted in figure 2.6.

2.7. PARALLEL I/O 19

Figure 2.6: Master-Slaves I/O setup

• needing of parallel I/O,

• avoid endianness
problem related.

In this kind of strategy a single node
of the grid have access to the storage,
therefore no scalability is provided.
The slave nodes must send/receive
data from the master, therefore we
face strong slowdown related to the
huge workload required to perform
I/O by the single node and the

following communications among nodes.

Figure 2.7: Distributed I/O on local files

A second approach is shown
here beside and consist in performing
distributed I/O on local files. Such
kind of implementation is scalable,
ensure data consistency and avoid
communication during I/O phase.
However, since every processor writes
data on its own hard storage, it
require a great deal of post processing
work to glue data among each others,
which increase linearly with the
number of processes. For this reason
we can not consider it affordable.
The last kind of I/O setup, which
is the most updated and optimized,
is the so called coordinated controlled
accesses. Illustrated in figure 2.7,
scalability reaches its peak with this
kind of implementation, which takes care of possible communications needing by
its own. In this approach every CPU can access to the single storage memory in
which the dataset is hosted and, in concomitancy with the other processes,
writes the data. As can be understood, the reading/writing operation is
intrinsically fragile, since guarantee data consistency can be hard. To avoid
consistency lacks, the MPI-IO has been introduced with the deployment of
MPI-2 standard [15].
On top of MPI-IO several high level I/O libraries arose, two well established
examples are parallel netCDF and parallel HDF5.
At exception of the master-slave approach, every presented strategy require the
adoption of a parallel file system. In computing, a file system or filesystem
controls how data is stored and retrieved. Without a file system, information
placed in a storage medium would be one large body of data with no way to tell
where one piece of information stops and the next begins. By separating the
data into pieces and giving each piece a name, the information is easily isolated
and identified. We can briefly define the file system as the structure and logic
rules used to manage the groups of information and their names. In the same

20 CHAPTER 2. PARALLEL DNS OF A TURBULENT CHANNEL FLOW

fashion a parallel file system maintains logical space and provides efficient access
to data for distributed memory configurations.

Figure 2.8: Coordinated controlled ac-
cesses

Let us
establish the concept of endianness.
Intel introduces their white
paper with the following sentence:
“Endianness describes
how multi-byte data is represented
by a computer system and
is dictated by the CPU architecture
of the system. Unfortunately not all
computer systems are designed with
the same endian-architecture. The
difference in endian-architecture is an
issue when software or data is shared
between computer systems”[6].
Since our binary database has been
built on Marconi, at Cineca, but the
post-processing analysis take place on
our personal computers, we need to
guarantee results portability with a reliable method to store the data.
Unfortunately MPI-IO can not set a bit ordering different from the machine’s
natives ones, and we can not assure portability in this way. To do so we have to
move from MPI-IO to a library capable to satisfy our requirements.
Employ the well established parallel HDF5 library is the natural choice.

3
Code Structure

The present chapter opens with a description of the code implemented, with a
focus on the libraries employed for the realization.
The testing environment is present alongside with the performance
measurement description employed.

3.1 Code parallelization

The code inherited the data structures from the original solver described in [42].
The code structure is shared with its parent, although the pencil parallelization
process required extensive reworking, in particular on the loops and the
variables dimensions, which no longer have two entire dimensions of the problem
locally, but rather just one, handling a fraction of the domain in the other two
directions.

LOOP FOR ix=ilo TO ihi

LOOP FOR iz=klo TO khi

LOOP FOR ALL iy

...

RETURN

RETURN

RETURN

Listing 3.1: The new FOR loop design. ilo and klo indicates the smallest local
mode, while ihi and khi indicates the biggest local mode on the processor

Since the code exploit the finite differences along the y direction we have
designed our solver on top of a y-pencil domain decomposition, but this clashes
with the need to locally possess the x and z directions in order to carry out the
Fourier transformation, so that it is possible to compute the convolutions in the
time domain. This required an array transposition library and for this purpose
we have entrusted ourself on the fftMPI package.
The convolutions routine is de facto the only one whom dynamically switch
among the three different decompositions. It starts owing z-pencils, perform the
associated Fourier transformation and then switch to x-pencils, where a
successive transformation take place. Once the 2D backward Fourier

21

22 CHAPTER 3. CODE STRUCTURE

transformation is completed the convolutions are computed and collected. The
process take place in the opposite direction, computing the 2D forward Fourier
transformation of the six convolutions. At the end of the process nine values,
constituted by the three velocity plus the six convolution values for each grid
node, are reordered to y-pencil. During the aforementioned process the
anti-aliasing and de-aliasing routine are called locally along each direction. At
the end of each timestep a routine moves the data from a y-pencil to a z-pencil
order and the process restart.

POINTER TO ARRAY(0..localdim_x-1) OF REAL u

var = u[(jhi-jlo+1)*(khi-klo+1)*ix+(jhi-jlo+1)*iz+iy]

Listing 3.2: Example of variable declaration and access to a particular value of
the array. The 3D pencil is flattened to a 1D vector with y as fast-varying index,
z as mid-varying index and x as slow-varying index. This is mandatory to work
with MPI

To minimize the memory requirements and maximize the performance all
computations are carried out in-place, overwriting the no longer useful data. To
the same purpose the data are initialized using dynamic memory allocations
and accessed through pointers. This allowed to minimize the memory
requirements, furthermore an allocation in the stack memory revealed to be
unreliable in case of wide simulations on a small number of processors.

The I/O has been written from scratch, implementing the MPI I/O standard
relying on the high level constructs of the pHDF5 package. This allows very fast
operations since all the processors are involved into the process of reading and
writing.

Also the optional feature of the live post-processing has been developed from
scratch. This feature is particularly useful in case of wide simulations, because
avoiding the write on disk process reduce the amount of time of the simulation.
It is completely equivalent to its offloaded counterpart, but it is designed in a
slightly different manner. At runtime it produce the statistics associated to each
time, that will be merged in a second moment, at the end of the simulation.
The drawback of this approach is the impossibility to recover the images of the
velocity field at each time.

3.2 fftMPI

fftMPI is the package we choose to implement to take care of the decomposition.
It is installed through the classic set of commands

./configure

make

make install

and produce a couple of different libraries, once for 1D and once for 2D
decomposition.

These libraries are accessed through four headers, based on the user needing. In
our case we were interested at the remap APIs for 3D arrays, so we called

remap3d.h .

3.2. FFTMPI 23

Once the header was included we compiled the source code with

-lfft3dmpi

flag to produce the executable. To link the code is mandatory to use

mpicxx

or equivalent, since fftMPI is written in C++, and not in C.
Currently the remap works with floating point data only. Anyway, each datum
in a distributed 3D grid can be one or more floating point values. In our case,
we employed the method with the parameter

nqty = 2

so that the method select two adjacent floating point values per grid point, and
treat them as a single complex number.
A pseudo-code to perform array remapping using such package expect the
following structure:

#include "remap3d_wrap.h"

remap3d_create(MPI_COMM_WORLD,&remap);

remap3d_set(remap,"collective",cflag);

remap3d_set(remap,"pack",pflag);

remap3d_set(remap,"memory",mflag);

remap3d_setup(local_input_tiles_coords, local_output_tiles_coords,

nqty,permute,memoryflag,&sendsize,&recvsize);

FFT_SCALAR *ARR = (FFT_SCALAR *) malloc(remapsize*sizeof(FFT_SCALAR));

FFT_SCALAR *sendbuf = (FFT_SCALAR *) malloc(sendsize*sizeof(FFT_SCALAR));

FFT_SCALAR *recvbuf = (FFT_SCALAR *) malloc(recvsize*sizeof(FFT_SCALAR));

/* Fill the array ARR with data */

ARR= ...

remap3d_remap(remap,ARR,ARR,sendbuf,recvbuf);

remap3d_destroy(remap);

As we can see the process is made up of:

• create the remap container;

• set options for the remap;

• define the tiles dimensions and commit the container;

• execute the remap;

• destroy the remap container.

The options allow users to set the method, used by MPI, to pass the messages.
For example, it is possible to decide whether to use collective calls instead of

24 CHAPTER 3. CODE STRUCTURE

point-to-point communications, or it is possible to select how to pack the
messages before sending them.
For further informations, and the source code, refer to [55].

3.3 Parallel HDF5 Library

Hierarchical Data Format 5, or HDF5, is widespread scientific data format used
by many application to deal with large sets of data [22]. Parallel Hierarchical
Data Format 5, or pHDF5, is the parallelized version for clusters.
Designed to store and organize large amounts of data, HDF5 has been originally
developed at the National Center for Supercomputing Applications. The crucial
feature is its ability to store binary dataset in a processor independent fashion,
guaranteeing the portability of the data. This allows extremely compact file
dimensions, since we are dealing with binary data, and in the same time we can
exploit the advantages of ASCII encoding.
We could think at the parallel I/O as a bridge between the application and the
data, which are stored on memory. In this parallelism our high-level library can
be thought as the deck of the bridge. Such deck is built on top of pylons, which
is the middleware, the MPI-IO. Our library provide an high level of
abstractions, allowing to instruct and tune the middleware to perform the
requested operations. On its own MPI-IO deals with organizing access to disk
by many processes. Everything is anchored to the ground through foundations,
which is our parallel file system.
The hierarchical file ordering allows to define a Linux like environment made up
of root folder, subfolders, tables, figure, attributes, links and others useful
things to maintain the database as readable as possible.
The price for the high flexibility of such data format is the impossibility to have
a plug and play VTK reader. In fact we have to rely on third party software to
instruct the VTK tool, in our case Paraview, to inspect the database.
We decide to use XDMF3 [29], acronym of eXtensible Data Model and
Format 3, to generate an XML file to put beside of our HDF5 file, so that
Paraview, or any other VTK software, use it to read the database. Such XML
file is automatically generated when the post processor is run. It contains the
environmental conditions, such as domain geometry, cell placement, timestep
and some instruction to join the velocities data of a cell into a vector. It is used
to tell to the VTK reader where and what read from the HDF5 file.

Figure 3.1: Ideal structure of a parallel I/O implementation

3.4. TESTING ENVIRONMENT 25

3.4 Testing environment

The following chapter will show the performances obtained after the MPI
integration in our code. We have benchmarked four different problem sizes:

• small dimension problem 128× 128× 128;

• medium dimension problem 256× 256× 512;

• large dimension problem 512× 512× 1024;

• very large dimension problem 4096× 512× 512.

All problems have been tested using 1D and 2D decomposition, so that it is
possible to have a comparison among this two methods.
In addition to these tests we have performed a single core benchmark against
the original code, at mesh size varying, and a couple of comparisons, selecting a
mid-sized grid of points, switching the compiler and the processor architecture.
We want to highlight that all these problems exploit the Hermitian symmetry
along the streetwise axis.

Our test were conducted at CINECA[9], an Italian academic research center,
which host the 19th most powerful supercomputers of the TOP500 [67] of
November 2018 list, Marconi, and GALILeO.
We worked on Marconi[45] supercomputer, in particular on Marconi-A2
partition. Marconi structure fuse different partition to reach the peak
performance of 20 PFlop/s; in particular our partition is characterized by 3600
nodes, connected through Intel OmniPath[26] high performance network. Each
node host a 68-cores Intel Xeon Phi 7250, code name Knight Landings, and
about 100GB of ram.
The machine runs on CentOS 7.2, a Linux distribution, and our benchmark
code has been compiled using GNU GCC 7.3 [58] with OpenMPI 3.0.0 [64][16].
We have chosen to compile our benchmark code using the GNU Compiler
Collection, instead of using proprietary and optimized Intel compilers, to ensure
the possibility to carry out code run time comparisons across CPU from
different vendors, with different architectures.
We have tested different flags during the compilation phase, trying to enable
different levels of optimization and code vectorization, the most important
feature of the Xeon Phi. The best results, using the GCC compiler, have been
achieved using:

-O2 -fpic -march=native -std=c99

This behavior was expected since our code does not include the OpenMP[52]
features at present time, so the MIC[30] (Many Integrated Cores) architecture
can not exploit such fundamental feature. Furthermore the compiler flags used
are general purpose, and does not providing the desired tuning for the Intel
Knights Landing processors, thus resulting in lack of performances and
efficiency.

Further tests have been carried out, selecting the mid-sized mesh, changing the
compiler and the processor’s architecture.

26 CHAPTER 3. CODE STRUCTURE

The first comparison have taken place on Xeon Phi processors, switching from
GCC compiler to Intel C Compiler 18.0. Such tests have revealed that the latter
provide more than 2x faster code.
The second tests have taken place at Cineca, using GALILeO [21] instead of
Marconi. Such benchmarks let us move from the MIC architecture of the
aforementioned processor, towards a more traditional ones. GALILeO is a
supercomputer based on IBM NeXtScale cluster, offers 400 general purpose
compute nodes, each ones equipped with two 18-core Intel Xeon E5-2697 v4,
running at 2.30GHz. Every node count 128 GB of RAM, which means 8 GB per
core, and the network communications rely on Infiniband technology.

3.5 Performances measurement description

In this section we illustrate the procedures used to compute the performance
indexes.
The measures were carried out using the same code, compiled once for all the
simulations, tested at tasks variations.
Attention should be posed on the concepts of tasks, cores and processors or
nodes. The first identify the number of parallel processes of the simulation and
is obtained as the product between the other two values:

tasks = n cores× processors

As we will see shortly the code exhibit sensible performances variation
depending on the number of nodes involved in the simulation and the cores per
nodes configuration.

We start providing the definition of speedup:

S =
T0
Tp

In this simple equation T0 identify the single core runtime, while Tp is the
runtime associated with the execution of the code on p tasks.
The efficiency is calculated starting from the speedup as

E =
S

p
.

Every simulation of our benchmarks started with the single core run, in order to
establish the baseline.
The tool designed to catch the runtime is simple and lightweight. It wraps the
simulation, save the runtime for every processor and retrive the highest value
only. The following pseudo-code should give an idea of the working principle.

begin = clock();

LOOP forward WHILE time < t_max-deltat/2

...

Perform simulation\

...

REPEAT forward

3.5. PERFORMANCES MEASUREMENT DESCRIPTION 27

end = clock();

sim_time = (end - begin) / CLOCKS_PER_SEC;

max_sim_time=0.0;

MPI_Allreduce(&sim_time,

&max_sim_time,1,MPI_DOUBLE,MPI_MAX,MPI_COMM_WORLD);

FILE *ft = fopen("time_out","w"); fprintf(ft, "Simulation performed

in %f s", max_sim_time); fclose(ft);

28 CHAPTER 3. CODE STRUCTURE

4
Code Benchmarks

Our fourth chapter shows the results of our benchmarks. We will present a
single core comparison facing the original code against the new pencil
decomposition approach. Following we will present the performances obtained
on four different meshes sizes, varying the number of cores employed during the
computation and comparing the 1D decomposition against the 2D solution.
Towards the end of the chapter we will present two subsections containing the
performances obtained using a different compiler and the performances obtained
employing a different cluster, which face a different processor architecture. The
chapter closes comparing our parameters with the ones obtained in another
simulation, showing our speedup trend and the effects of the Intel proprietary
technology called Hyper threading on our curves.

4.1 Single core comparison

Before seeing the multi-cores performance of our code we have performed a
benchmark against the original implementation of Quadrio and Luchini [42],
which can be considered as a state of the art solver, and our pencil decomposed
solver. We are particularly interested in comparing the timings for a pencil
approach against a slab ones, as the PLS is. For this reason we do not carry out
comparison against PLS and our slab decomposed algorithm, since they use
exactly the same approach to solve the problem, and it is likely to perform in
the same time. The simulations have taken place in Debian, a Linux
environment, employing an Intel i5 running at 3.1 GHz.
Keeping in mind the two algorithm structures, we expect that CPL perform
faster. Despite we already know which code is faster, this test is important to
understand how far our code is moving away from the single core optimum.
Our benchmark suggested that on a 643 simulation, the CPL perform a single
time step in 0.29 s, while our code employ 0.36s. On wider mesh of 1283 points,
the CPL is still faster, with a time step completed in 2.94s, while the other code
employ 3.11s.
Our results confirm the predictions and highlighted that, although on little
mesh we performed about 24% slower than the optimum, on a larger grid our
gap reduced to be just the 5%.

29

30 CHAPTER 4. CODE BENCHMARKS

0 1 2 3 4 5 6 7 8 9

seconds per timestep

64

128

200

P
ro

b
le

m
 s

iz
e

CPL

Pencil

64 128 200

Problem size

0

5

10

15

20

25

%
 d

if
fe

re
n
c
e
 p

e
r

ti
m

e
s
te

p

Figure 4.1: Single core timing comparison

Increasing again the mesh size to 2003 points lead to further reduction in time
difference, with the CPL that still perform faster, with 8.02s per time step,
against the 8.11s per step of our code. This means just 1% of difference between
the two codes per time step. On figure 4.1 are reported the percentage
differences and costs per time step of the three tests.

4.2 Scaling performance of 1283 problem

We proceed now showing the performances achieved by our code for the small
problem. This is likely the most critical benchmark for our code, since
implement a distributed parallel approach to a problem with tiny dimensions
could lead to lack of efficiency quickly.

In this kind of problem the arrays size fits the cache dimension of the Intel Xeon
Phi processor; in fact, we achieve greater speedup by using less nodes as
possible at cores equality. For this reason in this test we used 64 cores per node.

The results of figure 4.2 shows that, although on single core the structure of the
slab decomposed algorithm is faster, suddenly the benefits of pencil
decomposition overcome the cost due to the poorer array storage. To
understand the latter sentence we should recall the figure of page 16. Keeping
in mind figure 2.3, is possibile to understand why the slab decomposition is
faster on single core, and typically also for a tiny cores number. Since the slab
algorithm work per plan we can, wisely, allocate and work just on a small
dataset. This affect the communication phase, which will be faster if compared
with the ones of the pencil decomposition that, instead, require to allocate all
the data at once.

4.2. SCALING PERFORMANCE OF 1283 PROBLEM 31

10
0

10
1

10
2

10
3

10
4

Number of MPI tasks

10
-1

10
0

10
1

10
2

10
3

T
im

e

1D Decomp

Theory

2D Decomp

Figure 4.2: Scaling performance of 1283 simulation

In figure 4.2 is possible to look at the time needed to perform the DNS, at
varying of the cores number and algorithm. The green dashed line represent the
theoretical limit and has been obtained as the ratio between the single core time
and the number of cores of the simulation.
Despite of the results could seems poor, the qualitative comparison of figure 4.3
against a 3-dimensional FFT, using P3DFFT, reported in [8, p. 43], suggest
that our results are on the average, or better, until the communications cost
overcome the benefits of such parallel distributed approach.
The table 4.1 summarizes all data related to the 1283 simulation.
According to this table the figure 4.4 shows the speedup at the varying of the
cores number.
At the speedup peak the code runs 57 times faster than serial ones. Such peak
is obtained using 512 cores. However, as expectable, the efficiency of this
implementation is quite poor. In fact, if we use more than 16 cores we drop
immediately to performances around 50% or lower. For completeness the
efficiency behavior is reported in figure 4.5.

32 CHAPTER 4. CODE BENCHMARKS

10
0

10
1

10
2

10
3

10
4

Number of MPI tasks

10
0

10
1

10
2

S
p
e
e
d
u
p

fftMPI

P3DFFT

Figure 4.3: Comparison of a 3D FFT against DNS with fftMPI

10
0

10
1

10
2

10
3

10
4

Number of MPI tasks

10
0

10
1

10
2

S
p
e
e
d
u
p

1D

2D

Figure 4.4: Speedup performance factor of 1283 simulation

4.2. SCALING PERFORMANCE OF 1283 PROBLEM 33

Table 4.1: Data from 1283 simulation

#Processes Time [s] Speedup Efficiency [%] Decomp

1
980 1.05 100 1D

1022.1 1 100 2D

8
155.9 6.56 79 1D
144 7.1 89 2D

16
124.2 8.24 49 1D
79.7 12.82 80 2D

32
130.4 7.86 24 1D
61.7 16.6 52 2D

64
176.1 5.81 9 1D

40 25.6 40 2D
128 26.9 38 30 2D
256 20 51.11 20 2D
512 17.9 57.07 11 2D
1024 24.3 42.1 4 2D
2048 107.3 9.52 0 2D

10
0

10
1

10
2

10
3

10
4

Number of MPI tasks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ff
ic

ie
n
c
y

1D Decomp

2D Decomp

Figure 4.5: Efficiency factor of 1283 simulation

34 CHAPTER 4. CODE BENCHMARKS

4.3 Scaling performance of 256× 256× 512
problem

Many authors in past have highlighted how bigger problems provide better
scaling capabilities and our 256× 256× 512 simulation fulfill such trend. The
medium sized problem shows better scaling performances compared to the small
ones.

A slab decomposed algorithm provide gains of O(10) in terms of execution
times, less than a pencil decomposed algorithm, but with better results for
small processors grid. In fact, as depicted in figure 4.6 the 1D decomposition
curve achieve lower execution times than the 2D ones, until 32 cores.
Passed 32 cores the pencil decomposition prevails, reaching speedup factors
above 120, with time savings in the order of magnitude of O(100) with respect
to the single core runtime. In the figure 4.7 is possible to see the efficiencies
achieved by the two methods, running on 64 threads per processor. It is
important to denote the behavior of the pencil decomposed algorithm, which,
until 8 cores are used, exhibits a very high scaling efficiency.

Comparing image 4.6 with its counterpart for the 1283 problem, figure 4.2, we
can see that the curves are quite similar. Both exhibits a very good fitting with
the theoretical ones until 16 parallel processes take place. Once passed this
threshold, the bigger problem maintains a better scaling efficiency, as we could
see by comparing figure 4.7 and 4.3, for both decomposition methods.

The better efficiency allows to reach higher speedup factors at number of
processes equality, and the larger dimensions move the performances peak
towards higher number of threads, as is possible to see by looking at figure 4.8.
The combination of this two factors doubles the last speedup factor, passing
from 57, for the 1283 problem, to 122 for the 256× 256× 512 .

A comparison of the performances of 1D decomposition against the 2D for the
present problem dimension is presented in table 4.2.

Passed 8 cores, to recover high efficiency we must decrease the number of
threads per processor. We have executed a detailed analysis varying the threads
per processor number, seeking the optimization for both the decomposition
methods.

For what concern the slab decomposition the results, reported in table 4.3,
shows that, although slightly improvements have been achieved, the 1D
decomposed algorithm is quite insensitive to cores per processor variations,
showing constant speedups, efficiencies and timing.

Through figure 4.9, by looking at the single core curves, it is interesting to
denote the presence of a knee, when 32 simultaneous processes take place, which
origin a performances decrease. Such loss of linearity is present also using
different cores per processor combinations, although on single core it appears to
be more evident. Thus lead us to think that the intrinsic scaling limit, which
depends on geometry and is caused by the raise in interprocessor
communications time, has been reached. This limit clearly tear down the
efficiency curve, as depicted in figure 4.10.
Far more interesting is the pencil decomposed algorithm behavior. The data of
such simulation, reported in table 4.4, shows relevant improvements by varying
the number of cores per processor. Another not yet cited, but always present
tuning using 2D decomposition, is related to processor grid balancing. Our code

4.3. SCALING PERFORMANCE OF 256× 256× 512 PROBLEM 35

10
0

10
1

10
2

10
3

10
4

Number of MPI tasks

10
-1

10
0

10
1

10
2

10
3

T
im

e

1D Decomp

Theory

2D Decomp
64 cores

Figure 4.6: Scaling performance of 256× 256× 512 simulation

10
0

10
1

10
2

10
3

10
4

Number of MPI tasks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ff
ic

ie
n
c
y

1D Decomp

2D Decomp

Figure 4.7: Efficiency factor of 256× 256× 512 simulation

36 CHAPTER 4. CODE BENCHMARKS

10
0

10
1

10
2

10
3

10
4

Number of MPI tasks

10
0

10
1

10
2

S
p
e
e
d
u
p

1D

2D
64 cores

Figure 4.8: Speedup performance factor of 256× 256× 512 simulation

Table 4.2: Data from 256× 256× 512 simulation

#Processes Time [s] Speedup Efficiency [%] Decomp

1
1198.8 1 100 1D
1309.7 14.28 89 2D

4
333.7 3.59 90 1D
352.1 3.72 93 2D

8
176.8 6.78 85 1D
176.3 7.43 93 2D

16
95.5 12.56 78 1D
98.3 13.33 83 2D

32
66.5 18.04 56.3 1D
68.6 19.1 60 2D

64
58.4 20.54 32 1D
43 38.48 48 2D

128
77.1 15.55 12 1D
27.2 48.1 36 2D

256 16.8 78.19 31 2D
512 12.4 106.1 21 2D
1024 10.7 122.7 12 2D
2048 14.5 90.33 4 2D

4.3. SCALING PERFORMANCE OF 256× 256× 512 PROBLEM 37

10
0

10
1

10
2

Number of MPI tasks

10
1

10
2

10
3

T
im

e

1D
64 cores

1D
4 cores

1D
1 cores

Theory

Figure 4.9: Time scaling comparison using 1D decomposition for 256× 256× 512
simulation

10
0

10
1

10
2

Number of MPI tasks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

E
ff
ic

ie
n
c
y

1D Decomp
64 cores

1D Decomp
4 cores

1D Decomp
1 core

Figure 4.10: Efficiency comparison using 1D decomposition for 256× 256× 512
simulation

38 CHAPTER 4. CODE BENCHMARKS

Table 4.3: Data from 256× 256× 512 simulation, 1D decomposition

#Processes Time [s] Speedup Efficiency [%] cores

1 1198.75 1 100 64
4 333.7 3.59 90 64
8 176.8 6.78 85 64

16
92.7 12.94 81 1
96.3 12.45 78 4
95.5 12.56 79 64

32
57.6 20.82 65 1
70.7 16.95 53 4
66.5 18.04 56 64

16
53.62 22.36 35 1
55.7 21.51 34 4
58.4 20.54 32 64

Table 4.4: Data from 256× 256× 512 simulation, 2D decomposition

#Processes Time [s] Speedup Efficiency [%] cores

1 1309.7 1 100 64
4 352.1 3.72 93 64
8 176.3 7.43 93 64
16 98.3 13.33 83 64

32
49.9 26.26 82 4
68.6 19.1 60 64

64
29.3 44.73 70 4
43 30.48 48 64

128

21.4 61.17 48 4
21.5 61.03 48 8
23.2 56.58 44 32
27.2 48.1 38 64

256

11.5 113.9 44 4
11.8 110.9 43 8
13.5 97.23 38 32
16.75 78.19 31 64

512

9.4 140.1 27 4
9.6 136.7 27 8
11.8 110.7 22 32
12.4 106.1 21 64

1024
7.3 178.9 17 8
9.9 132.7 13 32
10.7 122.7 12 64

2048 14.5 90.33 4 64

4.3. SCALING PERFORMANCE OF 256× 256× 512 PROBLEM 39

10
0

10
1

10
2

10
3

10
4

Number of MPI tasks

10
-1

10
0

10
1

10
2

10
3

T
im

e

2D
64 cores

2D
32 cores

2D
8 cores

2D
4 cores

Theory

Figure 4.11: Time scaling comparison using 2D decomposition for 256×256×512
simulation

provide optimal results when the processors grid have the same amount of MPI
tasks among the two dimensions. Such behavior has been already described in
deep in [8, p. 39]. However it is not always possible to have the same number of
threads in the two dimensions. In this case, after proper benchmark, we found
that better results where achieved whether the number of tasks which
decomposed the streamwise direction was lower than the other.

As already said, the gains that we can obtain by reducing the number of threads
per processor are high. Thus is due to the MPI standard that, although able to
handle SMP processors [63], lacks in efficiency as the number of cores becomes
higher. This is well highlighted by figure 4.11, in which we can see that a 4
cores approach can provide similar, or better, results than running the same
code on 64 cores using twice the number of processes. The same reasoning holds
also for an 8 versus 64 cores code execution.

This provide a boost in terms of execution time and, consequently, in terms of
speedup factor, as can be recovered by looking at the results in table 4.4 where,
at the peak, our speedup pass from 122.7 to 178.9.

The figure 4.11 allow to see how, reducing the number of cores per processor,
influence also the efficiency. Indeed we can see that running the code on 32
parallel processes using just 4 threads per nodes tends to realign the curve to
the theoretical ones.

The efficiency curves can be seen in figure 4.13. Although they exhibit a
macroscopically linear behavior and a tendency to moves rightward as the
number of cores per processor decreases, it is possibile to identify the arise of
steps. The steps tends to become more prominent as the number of tasks per
processor decrease, suggesting that better efficiencies are achieved when a

40 CHAPTER 4. CODE BENCHMARKS

10
0

10
1

10
2

10
3

10
4

Number of MPI tasks

10
0

10
1

10
2

S
p
e
e
d
u
p

2D
64 cores

2D
32 cores

2D
8 cores

2D
4 cores

Figure 4.12: Speedup comparison using 2D decomposition for 256× 256× 512
simulation

balanced task decomposition is used, as pointed in [8] . For completeness the
speedup factor curves has been reported, in figure 4.12.

4.4. SCALING PERFORMANCE OF 512× 512× 1024 PROBLEM 41

10
0

10
1

10
2

10
3

10
4

Number of MPI tasks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
E

ff
ic

ie
n
c
y

2D Decomp
64 cores

2D Decomp
32 cores

2D Decomp
8 core

2D Decomp
4 core

Figure 4.13: Efficiency comparison using 2D decomposition for 256× 256× 512
simulation

4.4 Scaling performance of 512× 512× 1024
problem

Let us proceed now showing the performances achieved by our code in a large
sized problem. The present simulation shown a better scaling effectiveness and
efficiency for both methods with respect to the previous problem.
The best results are reached using 8 cores per processor, indicating that the
efficiency lack cost overcome the message passing price. In theory we would
rather to use a pure MPI approach instead of a heavily threaded ones, because
the speedup achieved by the first method are significantly faster than the latter
ones in our implementation. However, for costing reasons, a tradeoff between
the two solutions is preferred.
The speedup peak is remarkable, with a factor above 430 on 2048 cores using
pencil decomposition, while stops around 50 using 128 cores and slab
decomposition.
As we can see from figure 4.14, where is compared the slab decomposition
against the pencil ones running on 64 cores per processor, the speedup factor of
the latter algorithm increase approximately linearly until 512 cores. The raise in
performance continue at lower factor until 2048 cores are reached, where
performances start decreasing. For what concern the first algorithm we face a
sub-optimal linear increase in performances until 64 cores are reached.
We refer to figure 4.15 to have an idea of the efficiency of the 1D decomposed
algorithm. The figure shows that the efficiency remains near the 80% until 32
cores are used. However, once passed such limit, the behavior is still linear and
less sloping with respect to the ones shown in figure 4.7.

42 CHAPTER 4. CODE BENCHMARKS

10
1

10
2

10
3

10
4

Number of MPI tasks

10
1

10
2

10
3

S
p
e
e
d
u
p

1D

2D
64 cores

Figure 4.14: Speedup factor of 512× 512× 1024 simulation

10
1

10
2

Number of MPI tasks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ff
ic

ie
n
c
y

1D Decomp

Figure 4.15: Efficiency factor of 512× 512× 1024 simulation using 1D decompo-
sition

4.4. SCALING PERFORMANCE OF 512× 512× 1024 PROBLEM 43

Table 4.5: Data from 512× 512× 1024 simulation, 1D decomposition

#Processes Time [s] Speedup Efficiency [%]

8 3615.3 8 100
16 2044 14.15 89
32 1196.4 24.18 76
64 686.2 42.15 66
128 593.7 48.71 38
256 787.3 36.73 15

It is interesting to denote how advantageous the 2D decomposed algorithm is; it
is clear by comparing the tables 4.5 and 4.6. The time saving could be in the
order of magnitude of O(10) if compared with the 1D decomposed ones.
It is evident that the pencil decomposition outclass the slab ones. However we
could improve our results by selecting the proper number of threads per
processor.
Since the preceding simulation highlighted that the slab decomposition is less
sensitive to the cores per nodes optimization, we decided to skip it and directly
pass to analyze the pencil ones.
The problem dimensions are relevant, in fact a single processor analysis can not
be carried out because we face an out of memory error. To decide what is the
best solution in terms of 2D decomposition we must evaluate the performances
in an homogeneous way. By looking at the values in table 4.6 and the depicted
counter part, in figures 4.16, it is evident that the single core performance fits
the theoretical limit, or overcome it. The difference between such
implementation and an heavily threaded ones rely on the library used. In fact,
has already been reported in the previous section, although can handle
multicores processes, OpenMPI cannot hold the intra-node communications
such efficiently as the extra-node ones. This behavior is highlighted in
figure 4.17 where the efficiencies comparison for the pencil decomposed
algorithm are reported.
Since a single core run is not possible to be carried out due to memory
limitations, we decided to take the runtime of the 16 parallel processes on single
core as reference, computing the speedups and efficiency basing on the
performances achieved by such run. Since the behavior of this run shows an
efficiency equals or above the 100% until 64 parallel processes are used, we are
confident that our speedups would be correct, or under-estimated.
As the results of the previous problems have highlighted, the reduction of tasks
per processor lead to consistent gains in terms of timing execution, which turns
out to provide remarkable gains in speedups, as can be seen in figure 4.16 that
shows the speedup factor variation depending on the thread number. In
particular passing from 64 threads per processor to 8 threads per processor
allows the code to improve the execution time of the 20%, and there is still
room for further improvements, as could be understood by looking at the
difference, in terms of speedup, between the single and the 8 cores run at 64
parallel processes. The single core provide 1.5× faster performances compared
to the 8 cores run.

44 CHAPTER 4. CODE BENCHMARKS

Table 4.6: Data from 512× 512× 1024 simulation, 2D decomposition

#Processes Time [s] Speedup Efficiency [%] cores

16
2008 16 100 1

2249.8 14.28 89 8

32
941.3 34.14 107 1
1137.1 28.26 88 8
1264.9 25.41 79 16

64
494.8 64.95 102 1
693.9 46.31 72 16
750.5 42.82 67 32

128

294.1 109.3 85 1
387.4 82.95 65 16
408.4 78.8 61 32
505.4 63.59 50 64

256

209.1 153.7 60 8
215.2 149.3 58 16
225.2 142.7 56 32
270.6 118.8 46 64

512
122.5 262.3 51 8
147.6 217.7 43 64

1024

82.37 390.1 38 8
87 369.4 36 16

89.9 357.5 35 32
100.2 320.9 31 64

2048
74.45 431.6 21 16
78.3 410.4 20 32
83.8 383.5 19 64

4096
91.1 352.7 9 32
107.3 299.3 7 64

4.4. SCALING PERFORMANCE OF 512× 512× 1024 PROBLEM 45

10
1

10
2

10
3

10
4

Number of MPI tasks

10
1

10
2

10
3

S
p
e
e
d
u
p

2D
64 cores

2D
32 cores

2D
16 cores

2D
8 cores

2D
1 core

Figure 4.16: Speedup factor comparison for 512× 512× 1024 simulation

To sum up, by looking at figure 4.16 and figure 4.17, it is possible to generalize
that decreasing the number of threads per processor moves the speedup curves
upwards, leading to better performances, and yielding to flatter efficiency curves.
Such efficiency curves tend to slide rightward, achieving better results,
respecting the requirement of at least two processors minimum.

46 CHAPTER 4. CODE BENCHMARKS

10
1

10
2

10
3

10
4

Number of MPI tasks

0

0.2

0.4

0.6

0.8

1

1.2

E
ff
ic

ie
n
c
y

2D Decomp
64 cores

2D Decomp
32 cores

2D Decomp
16 cores

2D Decomp
8 cores

2D Decomp
1 core

Figure 4.17: Efficiency comparison for 512× 512× 1024 simulation

4.5 Scaling performance of 4096× 512× 512
problem

The last benchmark deal with very large problems. Like for the previous large
problem, the dimensions are so huge to require the adoption of multiple
processors to run, otherwise we will face an out of memory error. On a Intel
Xeon Phi [25] the minimum requirements are to employ at least 2 processors
and use 32 cores, or less, per processor.

As the previous problem have highlighted, the less cores are used and the better
results are scored, so our impossibility to go further than 32 cores per processor,
as pointed some rows before, would not be a big deal. We may suppose that the
poorest results will be achieved by 32 cores runs, instead of the 64 ones.
Let us start showing figure 4.18 in which is reported the time scaling of our code.

As could be seen, the 2D decomposition using single core achieved the lowest
timing execution. It is interesting to denote how this combination fits the
theoretical behavior perfectly.

All other 2D decomposed combinations exploit a worse behavior with respect to
the single core run, with a marked trend, where the increase in cores per
processor number leads to poorer performances.

Such behavior is aligned with our predictions.
For what concern about the 1D decomposed algorithm, which, since the code
structure is slightly different, can run also on 64 cores per processor, it achieve
the worst performances among all possible solutions, highlighting once again the
benefits of using a pencil decomposed approach.

The speedups achieved by this kind of domain decomposition can be seen in

4.5. SCALING PERFORMANCE OF 4096× 512× 512 PROBLEM 47

10
1

10
2

10
3

10
4

Number of MPI tasks

10
1

10
2

10
3

T
im

e

2D Decomp
32 cores

2D Decomp
16 cores

2D Decomp
4 cores

2D Decomp
1 core

1D Decomp

Theory

Figure 4.18: Time scaling comparison for 4096× 512× 512 simulation

10
1

10
2

10
3

Number of MPI tasks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ff
ic

ie
n
c
y

1D Decomp

Figure 4.19: Efficiency factor of 4096× 512× 512 simulation using 1D decompo-
sition

48 CHAPTER 4. CODE BENCHMARKS

Table 4.7: Data from 4096× 512× 512 simulation, 1D decomposition

#Processes Time [s] Speedup Efficiency [%]

16 1052.9 16 100
32 693 24.31 76
64 372.5 45.23 71
128 247 68.2 53
256 188.5 89.37 35
512 239.5 70.34 14

table 4.7 while the efficiency graph, which shows a poor behavior, can be seen in
figure 4.19.
Far more interesting, are the data in table 4.8, which report the speedups,
efficiency and timing achieved by the algorithm with 2D decomposition. The
data, and the graphical counterpart which can be seen in figure 4.21 and 4.20,
report a very high efficiency using single core, while, although smaller, a still
high efficiency is preserved by using 4 cores per processor.
Increasing the counter of threads per processor leads to constant losses, as
expectable. However, such losses between adjacent stations are lower than the
ones of the previous simulations, furthermore we can see wider gaps among the
efficiency curves, symptom that there is wider room for improvements.
Moreover, at very high number of cores, the efficiency curves slope is minor
than before, preserving efficiency and allowing us to perform faster
computations with greater speedups.
To talk about speedups is useful to introduce figure 4.21, in which these are
reported.
The graph, on page 49, shows the results achieved by the 1D and 2D domain
decomposed algorithm, with emphasis on the effects of the variation of cores per
processor quantity, for the 2D algorithm only.
As has been done in the previous section, the high efficiency shown by the single
core run, combined with the physical impossibility to use less cores due to
memory limitations, has lead us to made the assumption of speedup equal to 16
for a 16 parallel processes run in a single core environment. All other efficiencies
and speedups have been derived using such data as reference.
As can be seen in table 4.8 the best result is achieved using 16 cores per
processor and 2048 parallel processes. Unfortunately, due to some policy
limitations, we can not push forward our resources request, although the graph
clearly shows margins of improvements for such configuration.
Differently from all the previous simulations, the processor grid for the pencil
decomposition results balanced when the streamwise stencil has half the modes
with respect to the other direction. Such configuration has been suggested by
benchmarks.
In conclusion we may say that, although the modes distribution results
unbalanced in this simulation, the speedup trend still remain aligned with the
ones exhibited in the other simulations.

4.5. SCALING PERFORMANCE OF 4096× 512× 512 PROBLEM 49

10
1

10
2

10
3

10
4

Number of MPI tasks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ff
ic

ie
n
c
y

2D Decomp
32 cores

2D Decomp
16 cores

2D Decomp
4 cores

2D Decomp
1 cores

Figure 4.20: Efficiency factor of 4096× 512× 512 simulation using 2D decompo-
sition

10
1

10
2

10
3

10
4

Number of MPI tasks

10
1

10
2

10
3

S
p
e
e
d
u
p

2D
32 cores

2D
16 cores

2D
4 cores

2D
1 core

1D

Figure 4.21: Speedup factor of 4096× 512× 512 simulation

50 CHAPTER 4. CODE BENCHMARKS

Table 4.8: Data from 4096× 512× 512 simulation, 2D decomposition

#Processes Time [s] Speedup Efficiency [%] cores

16 1121.5 16 100 1

32
571.4 31.4 98 1
644.8 27.83 87 4

64
287.2 62.47 98 1
323.9 55.39 87 4
350.7 51.17 80 16

128

143.8 124.8 98 1
187.2 95.85 75 4
203.4 88.23 69 16
207.5 86.47 68 32

256
104.3 172 67 4
113.4 158.2 62 16
124.6 144 56 32

512
58.6 306.4 60 4
62.5 287.1 56 16
70 256.5 50 32

1024
41 437.5 43 16

44.7 401.4 39 32

2048
26.6 675.5 33 16
28.7 626.3 31 32

4096 26.8 668.8 16 32

4.6. FURTHER TESTS 51

4.6 Further tests

4.6.1 Intel compiled code performances

Not happy of the previous results, we decided to move from GCC to Intel
proprietary compiler, as advised also by the Cineca authorities. The Intel C++
Compiler 18 is designed to take care of the MIC architecture, using dedicated
flags during the compilation process.

Using

-AVX512 -parallel

flags is possible to instruct the compiler to generate vectorized code
autonomously. Although there are no guarantees that all loops will be
vectorized, leading this solution to be less efficient than an OpenMP
implementation, the usage of these flags speeded up our code roughly of a factor
two, providing also doubled efficiency with respect to the previous GCC solution,
as can be seen comparing figure 4.22 with 4.12 and figure 4.23 with 4.13.

As before, the performance peak remains at 1024 simultaneous tasks, however
the maximum speedup moved from 178.9, of the 8 cores run using GCC, to
347.1, using the same number of cores with Intel compiler compiled code, with
an efficiency not far from the 40% threshold. The efficiency gap between the 64
cores runs and the 4 cores ones remains around the 10%, but the double
efficiency with respect to the GCC solution enables the possibility to use 64
cores during production.

Next to the already cited flags we used others to refine the auto-vectorization
process, in particular the distribution of the MPI tasks among the tiles of the
processors, that in this configuration tends to fill adjacent cores with adjacent
arrays values, the prefetching level and the mapping of the High Bandwidth
Memory, that in this configuration is available as L3 cache memory. We also
moved to a deeper level of optimization and we disabled fractions in favor to
reciprocal multiplications.

We experienced the impossibility to run on less then 4 cores using Intel
compiled program. For such issue, we decided to set the reference time using 4
processor, running in single core mode.

4.6.2 Performances on GALILeO

Since the Xeon Phi architecture is markedly different from the traditional ones,
we have decided to carry out a benchmark also using Intel Xeon E family
processors. The code used on these 18 cores processors has been compiled using
Intel Compiler 18, as in the previous chapter, but without trying to optimize
the performance. Indeed just the flags

-O2 -xCORE-AVX2

have been used.

52 CHAPTER 4. CODE BENCHMARKS

10
0

10
1

10
2

10
3

Number of MPI tasks

10
1

10
2

10
3

S
p
e
e
d
u
p

2D Decomp
4 cores

2D Decomp
8 cores

2D Decomp
32 cores

2D Decomp
64 cores

Figure 4.22: Speedup using 2D decomposition for 256× 256× 512 simulation
with Intel Compiler 18

10
0

10
1

10
2

10
3

Number of MPI tasks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

E
ff
ic

ie
n
c
y

2D Decomp
4 cores

2D Decomp
8 cores

2D Decomp
32 cores

2D Decomp
64 cores

Figure 4.23: Efficiency using 2D decomposition for 256× 256× 512 simulation
with Intel Compiler 18

4.6. FURTHER TESTS 53

10
0

10
1

10
2

10
3

Number of MPI tasks

10
1

10
2

S
p
e
e
d
u
p

2D Decomp
2 cores

2D Decomp
8 cores

2D Decomp
16 cores

2D Decomp
32 cores

Figure 4.24: Speedup using 2D decomposition for 256× 256× 512 simulation on
GALILeO

The results, shown on figure 4.24 and 4.25, are not far from the baseline,
suggesting that the code perform similarly. Although this more traditional
architecture provide slightly better performances at cores equality, with a 5%
gain in terms of efficiency, the highest clock frequency reduce the scaling range,
moving the peak from 1024 cores towards 256. However, since we imposed the
restriction of efficiency above the 40%, we can affirm that a less heavily threaded
architecture provide better results. Furthermore, the absence of optimization
leave rooms for further improvements in both terms of efficiency and speedup.

As in the previous chapter the Intel compiled program is unable to run on less
than 4 cores, indeed we set reference time running the program using 4, single
core, processors.

54 CHAPTER 4. CODE BENCHMARKS

10
0

10
1

10
2

10
3

Number of MPI tasks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
ff
ic

ie
n
c
y

2D Decomp
2 cores

2D Decomp
8 cores

2D Decomp
16 cores

2D Decomp
32 cores

Figure 4.25: Efficiency using 2D decomposition for 256× 256× 512 simulation
on GALILeO

4.7 Benchmarks conclusions

The benchmark series has highlighted common trends present in our simulations.

By looking at the curves, we can see that the performances envelope is bordered
by the 64 cores run and the single core ones. We can catch from the graphs that
the code tends to perform faster using as less threads per processor as possible.
This behavior is reasonable, since our code and the library in which we rely on
to perform the MPI transposition, does not implement the OpenMP technology
at the moment, so, although we could carry on the simulation basing our
communications on MPI, we will experience efficiency lacks when dealing with
intra-node messagings. In particular, when dealing with many cores per
processor, we face a speedup tendency to pass from 2 to 22/3, as the number of
MPI tasks gets doubled, as highlighted in [35].

Unfortunately, the Intel KNL’s architecture [25] is designed to exploit code
vectorization as much as possible and OpenMP plays a key role in this kind of
implementations.

We suggest to refine the flags during the compilation phase in order to exploit
the automatic code vectorization process, as highlighted in chapter 4.6.1,
alternatively move to traditional processors architectures, instead of using MIC,
to experience lower losses, as shown in chapter 4.6.2.
Our simulations in fact has highlighted that, although MPI can not guarantee
high efficiency in heavily threaded applications, the lacks using 16 cores, or less,
per processor can be acceptable.

4.7. BENCHMARKS CONCLUSIONS 55

10
6

10
7

10
8

10
9

Total modes

10
2

10
3

S
p
e
e
d
u
p

Samples

N log(N)

Figure 4.26: Speedup factors growth

As the problem size grows, the optimal number of MPI tasks, to achieve the
best speedup, grows. In fact, we passed from 512 parallel processes for a 1283

simulation to 2048 for a 512× 512× 1024 simulation.
On the other hand, the speedup factor increase its peak in a fashion which lies
on N log(N) curve, like testify by figure 4.26 in which our samples are plotted
against such behavior.

Let us introduce now the speedup comparison with hyper threading turned on.
Hyper threading is a technology developed by Intel [46] that virtually doubles
the cores on the CPU, making the CPU run faster and more efficient by
scheduling the workload between the cores. On modern Xeon Phi we can
quadruplicate the number of cores, obtaining until 272 threads per processor.
However, as our benchmark shows, this technology does not provide a boost in
terms of speedup, on the contrary it penalizes our results in evident fashion.
In figure 4.27 are compared the original results of a 512× 512× 1024 simulation,
running on different cores per processor, against two curves which exploit the
hyper threading technology.

In conclusion we would like to show the cost for a single degree of freedom
(DOF) in terms of CPU time. Such cost has been obtained considering the
simulation time, the number of time steps required by the simulation and the
total number of degrees of freedom, so it has to be intended as a mean value.
The cost is defined as:

Time/DOF =
SimTime

timestep
× 1

nx× ny × nz
× tasks× ncores (4.1)

56 CHAPTER 4. CODE BENCHMARKS

10
3

Number of MPI tasks

10
2

S
p
e
e
d
u
p

64 cores

32 cores

16 cores

8 cores

2x64 cores

4x64 cores

Figure 4.27: Hyper threading benchmark

10
7

10
8

10
9

10
10

10
11

Total modes

0.6

0.8

1

1.2

1.4

1.6

1.8

T
im

e
/D

O
F

10
-5

Samples

Borrell et al. (2013)

Figure 4.28: Qualitative comparison of Time-DOF ratio

4.7. BENCHMARKS CONCLUSIONS 57

Our results have been compared with the ones achieved in [7], where a
boundary layer simulation is carried out on a flat plate, through direct
numerical simulation, on JUGENE, a Blue Gene P architecture [34][3] installed
at Juelich Forschungszentrum, with its 32,768 cores.
Since the problems compared are just similar we can only obtain qualitative
informations from that. However, the results of figure 4.28 shows good fittings
among the data.

58 CHAPTER 4. CODE BENCHMARKS

5
Simulations Results

The present section present the statistics gathered from our simulations. In the
first section we will compare our results with the ones of the famous KMM87,
the founder research in this field. To follow we will show the results of a wider
simulation, comparing the results against an analogue simulation of Moiser and
Lee. The chapter concludes with an investigation of the Reynolds number
effects on the statistics.

5.1 Reτ = 180 simulation

The Reτ = 180 simulation has been used to validate our results against the [36]
ones.

The channel length is 4πδ, while the width is 2πδ, with δ indicating the half
channel height.

Since our code employ spectral decomposition along the xy plane, we define the
streamwise and spanwise periods as Lx = 2π/α0 and Lz = 2π/β0, with α0 and
β0 fundamental wavenumbers.

The simulation take place using constant pressure gradient, imposed along x
direction, therefore meanpx = 1.

The mesh along y direction is non-uniform, discretized as

y(i) = ymin +
1

2
(ymax − ymin)

tanh(a(2i/ny − 1))

tanh(a) + 0.5(ymax − ymin)

with a = 1.6.

The timestep is constant, with dt = 0.0001 and the simulation time is T = 50
non dimensional units. The grid employ 96 modes along x dimension, which,
thanks to the Hermitian symmetry, behave as 192 points. The y is discretized
using 128 points, while, along the z direction, we have 160 points. The total
mesh size reach approximately 2 millions of grid points, decomposed across 512
cores, employed during the simulation.

The domain and the details about the simulation are summarized in table 5.1.

59

60 CHAPTER 5. SIMULATIONS RESULTS

Table 5.1: Simulation data for Reτ=180

Lx Lz δ nx nz ny α0 β0 ∆x+ ∆z+ px dt T
4π 2π 1 192 160 128 0.5 1 11.8 7 1 0.0001 50

10
0

10
1

10
2

y+

0

2

4

6

8

10

12

14

16

18

20

Simulation

KMM

Figure 5.1: ū+ in the near wall region for a Reτ = 180 simulation

The bulk mean velocity, defined as

Um =

∫ 1

0

ūd
(y
δ

)
(5.1)

normalized by the wall-shear velocity, is 15.66, which gives the Reynolds number
based on the bulk mean velocity and the full channel width, Reb ≈ 5600.

The graphs 5.1 and 5.2 show the behavior of the mean velocity and the roots
means squares in the near wall region, with ū indicating the mean velocity
profile.
In both figures we reported the Kim et al. results, using dotted line, for
comparison.

Our statistics have been registered using a simulation time of 50 non
dimensional units, sampling data every 0.1 steps. In total 500 fields have been
used to perform the ensemble average.
The data fitting is good, despite being perfect. The divergences among our
database and the [36] ones are possibly due to the fluctuations, rounding errors
and differences in averaging times.

5.1. REτ = 180 SIMULATION 61

0 20 40 60 80 100 120 140 160 180 200

y+

-1

0

1

2

3

4

5

6

7

8

uu
rms

vv
rms

ww
rms

uv
rms

uu
KMM

vv
KMM

ww
KMM

uv
KMM

Figure 5.2: rms terms for a Reτ = 180 simulation

Nevertheless the results are in agreement with the typical curves behavior, in
particular, by looking at the root mean square curves, we can clearly see that
〈uu〉 and 〈ww〉 depart from 0 as y2, while 〈uv〉 and 〈vv〉 increase more slowly,
as y3 and y4, in agreement with [56, p. 284]. All these information testify that,
close to the walls, there is a two component flow, with v = 0 whereas u and w
are non-zero. The resulting motion corresponds to flow in planes parallel to the
wall.

The figure 5.1 report the ū behavior near the wall. From 0 up to 5 y+ units we
can see the typical ū = y+ behavior, which characterize the viscous sublayer.
Once y+ > 30 we see the arise of the logarithmic law of the wall, characterized
by the equation

ū+ =
1

κ
ln y+ + C+,

where the constants κ = 0.41 and C+ ≈ 5.2, like smooth wall experiments,
made by Von Karman, evidenced.
This velocity profile is typically denoted as the law of the wall, and has been
postulated by Prandtl in 1925.
Far away from the wall, the implications of the previous law originate the so
called velocity defect. Our experimental data fits the theory, as figure 5.3
suggest.

The turbulence intensity trend reported on figure 5.4 shows the comparison
between the rms, normalized by uτ , obtained by Kim et al. and our results,

62 CHAPTER 5. SIMULATIONS RESULTS

10
-1

10
0

y/

0

1

2

3

4

5

6

7

8

9

Re
=180

Theory

Figure 5.3: Velocity defect for a Reτ = 180 simulation

plotted against the wall-normal distance y+. The fitting is good, particularly by
approaching the centerline.
The maxima are located between the outer region of the buffer layer and the
beginning of the log-law region: the streamwise u′/uτ peak is positioned at
y+ ≈ 14 with a value of u′/uτ ≈ 2.65. The other two components show a
smoother and less prominent behavior, with a w′/uτ ≈ 1.08 around y+ ≈ 38
and v′/uτ ≈ 0.84 for y+ ≈ 50.

A deeper knowledge of what happen close to the wall can be obtained by
looking at figure 5.5. Such picture shows the behavior of the three rms
components, normalized by the wall coordinate, for the first 9 wall units. In
dashed line it is possible to see the data from Kim et al.
Once again the fitting between data is good, with both curves that follow the
same trends. It is interesting to show that for the first wall units, in the viscous
sublayer, the ratio u′/y+ remains constant, indicating constant turbulence
generation. It is quite flat also the w′/y+ behavior, while the v′/y2+ exhibit a
more slope trend.
The last curve is not in scale, the graph, indeed, shows a 10x magnified value,
just for plotting purpose.

On page 64 is possible to look at the plot of the turbulent kinetic energy with
the rms terms, while figure 5.7 shows the production term, defined as
P = −〈u′v′〉∂ū/∂y.
The two images highlight that the energy associated with the turbulence tends
to develop close to the walls, and lose effectiveness once departing from there.
The production term is part of the so called turbulent kinetic energy budgets

5.1. REτ = 180 SIMULATION 63

10
0

10
1

10
2

y+

0

0.5

1

1.5

2

2.5

3

u
rms
+

v
rms
+

w
rms
+

u
KMM
+

v
KMM
+

w
KMM
+

Figure 5.4: rms behavior on a Reτ = 180 simulation

0 1 2 3 4 5 6 7 8 9

y+

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

u
rms

/y+

10v
rms

/y+2

w
rms

/y+

Figure 5.5: Normalized rms close to the wall for a Reτ = 180 simulation

64 CHAPTER 5. SIMULATIONS RESULTS

0 20 40 60 80 100 120 140 160 180 200

y+

-1

0

1

2

3

4

5

6

7

8

uu
rms

vv
rms

ww
rms

uv
rms

k

Figure 5.6: TKE and rms terms for a Reτ = 180 simulation

and plays a key role in the interaction of the mean energy equation and TKE.
The action of the mean velocity gradients working against the Reynolds stresses
removes kinetic energy from the mean flow and transfers it to the fluctuating
velocity field.
By looking at figure 5.7 we can clearly see that its contribution concentrated
near the walls, with the peak around y+ ≈ 12, and tends to become zero
approaching the half channel height.

The production peak occurs where the Reynolds stresses becomes equal to the
viscous ones. On figure 5.8 we reported the plot of the normalized total shear
stress, with its contributions, in which we can see evidence of curves overlapping
for y ≈ 12.

5.1. REτ = 180 SIMULATION 65

0 5 10 15 20 25 30 35 40 45 50

y+

0

0.05

0.1

0.15

0.2

0.25

T
K

E
 P

ro
d
u
c
ti
o
n

Figure 5.7: Production term of the TKE eq. normalized by Reτ = 180

0 20 40 60 80 100 120 140 160 180 200

y+

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
liz

e
d
 t
o
ta

l
s
h
e
a
r

s
tr

e
s
s

Re =180
Viscous

Re =180
Reynolds

Figure 5.8: Normalized total shear stress for a Reτ = 180 simulation

66 CHAPTER 5. SIMULATIONS RESULTS

5.2 Reτ = 1000 simulation

The second simulation performed is carried out at Reτ = 1000, which in terms
of channel width and bulk velocity is equivalent to Reb ≈ 40000.
The bulk velocity, obtained as shown in 5.1, is 19.99, while α0 and β0 are
respectively 0.5 and 1, in order to reproduce the correct dimensions of the
channel, as shown in chapter 5.1.
Since the high computational cost needed to obtain these results we were unable
to carry out a complete simulation. Thus the results reported show the
statistics associated with a flow in a transitory state.

The simulation employed a variable timestep, determined through the
Courant-Friedrichs-Lewy condition. Since its high computational cost, due to
the needed transpositions and Fourier transformations, we decided to set the
CFL limit below the stability threshold and calculate it once every n steps. In
this way the gain in terms of performance is significant, combining the flexibility
of the Courant-Friedrichs-Lewy condition with a reduced cost to compute it.

The grid employed in this simulation face 500 points in the wall-normal
direction, 2048 in the spanwise direction and 2048 points along the streamwise
dimension, direction in which we exploit the Hermitian symmetry. According to
this configuration, the grid size reach the billion of points.
Table 5.2 report a summary of the simulation configuration for the Reτ = 1000
case.

Since are required approximately 50GB of disk space per each field we decided
to avoid to save them on disk, instead we calculated the statistics runtime,
merging the files at the end of the simulation, reducing the required space to
few KB.

The results that we will present shortly are obtained through the ensemble
average of 100 fields, and cover 0.1 non dimensional time units. In this lapse of
time the mean Reτ is approximately 991 units and it is slowly moving towards
the nominal value of the simulation.
Let us focus now on the statistics gained from the simulation.

Figure 5.9 report the law of the wall. As we can see from the plot, made in
semi-logarithmic scale using the wall units, our data fits the theoretical curve
throughout the logarithmic region, while, towards the centerline, a residual
sensitivity to the initial conditions is still present and lead to few differences
with the results obtained by Moser & Lee in [37].
Far from the wall, the velocity defect law shows acceptable agreement with our

Table 5.2: Simulation data for Reτ=1000

Lx Lz δ nx nz ny α0 β0 ∆x+ ∆z+ px CFL
4π 2π 1 2048 2048 500 0.5 1 6.1 3 1 1.6

5.2. REτ = 1000 SIMULATION 67

10
0

10
1

10
2

10
3

y+

0

5

10

15

20

25

Simulation

Moser & Lee

Theory

Figure 5.9: ū+ in the near wall region for a Reτ = 1000 simulation

results, as figure 5.10 exhibit.

In figure 5.11 we reported the rms fluctuations, normalized by the u2τ , jointed
with the TKE distribution. The first differences that we can immediately face
by comparing our curves with the ones in figure 5.6 are the peak values. These
values tends to increase with respect to the counterpart of the Reτ = 180
simulation, highlighting how this simulation contains more energy than the
previous ones.
Although there is an higher content of energy, the curves shape remains aligned
with the ones seen in the previous chapter.
The near-wall behavior present a two-components turbulent flow. In fact, as
evidenced by the magnification, the wall-normal fluctuations are absent for the
first few units.

The finer mesh and the higher Reynolds evidenced the appearance of a new
turbulence peak, detached from the wall-cycle, identified through knees in the
curves of figure 5.12.
In such figure our results are compared with the ones of Moser & Lee, which are
the expected values for a complete Reτ = 1000 simulation.
The results shows accordance among the expected values and the ones obtained
through the simulation. The u′/uτ curve fits well the expect value, despite the
little Reτ difference among the two datasets. The v′/uτ and w′/uτ curves are
in good accordance with the values of Moser & Lee in the inner region, while
towards the centerline of the channel flow we face the raise of differences,
possibly due to the transitory nature of the simulation and the dependency on
the initial conditions.

68 CHAPTER 5. SIMULATIONS RESULTS

10
-2

10
-1

10
0

y/

0

5

10

15

Re
=1000

Theory

Figure 5.10: Velocity defect for a Reτ = 1000 simulation

0 100 200 300 400 500 600 700 800 900 1000

y+

-1

0

1

2

3

4

5

6

7

8

9

uu
rms

vv
rms

ww
rms

uv
rms

k

0 20 40

0

1

2

Figure 5.11: rms terms for a Reτ = 1000 simulation

5.2. REτ = 1000 SIMULATION 69

10
0

10
1

10
2

10
3

y+

0

0.5

1

1.5

2

2.5

3

u
rms
+

v
rms
+

w
rms
+

u
ML
+

v
ML
+

w
ML
+

Figure 5.12: rms behavior on a Reτ = 1000 simulation

Comparing the results of this simulation with the ones of the Reτ = 180 we can
clearly see a generalized upward shift of the rms fluctuations. Such trend is
present also near the wall. Indeed the curves does not exhibit marked changes in
shape with respect to their counterpart in the previous simulation, as figure 5.13
testify, just an upward shift, with the streamwise and spanwise components that
depart from zero as y+, while the wall-normal components leave the wall as y2+.

Similar reasoning applies also for the graphs of the production, reported in
figure 5.14, that reach a slightly higher peak of P/Reτ = 0.24, without showing
significant changes of the curve shape. The peak is still located nearby y ≈ 12.

As theory affirms, the wall coordinate of the peak of production corresponds to
that in which the stress components become equivalent. This aspect will be
investigated further, comparing the results of the two simulations together. At
the present time we limit to illustrate the behavior of the stress components,
which are reported in figure 5.15. As we can see, the normalized total shear
stress is quasi-straight, suggesting that we are still in a transitory phase. The
driving-train of this unsteadiness has to be searched in the excess of Reynolds
stresses, which are forcing our flow towards higher Reynolds values.

70 CHAPTER 5. SIMULATIONS RESULTS

0 1 2 3 4 5 6 7 8 9

y+

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

u
rms

/y+

10v
rms

/y+2

w
rms

/y+

Figure 5.13: Normalized rms close to the wall for a Reτ = 1000 simulation

0 5 10 15 20 25 30 35 40 45 50

y+

0

0.05

0.1

0.15

0.2

0.25

T
K

E
 P

ro
d
u
c
ti
o
n

Figure 5.14: Production term of the TKE eq. for a Reτ = 1000 simulation

5.3. REYNOLDS EFFECTS 71

0 100 200 300 400 500 600 700 800 900 1000

y+

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N

o
rm

a
liz

e
d
 t
o
ta

l
s
h
e
a
r

s
tr

e
s
s

Re =1000
Viscous

Re =1000
Reynolds

Figure 5.15: Normalized total shear stress for a Reτ = 1000 simulation

5.3 Reynolds effects

We are now interested to catch the effects of the Reynolds on our statistics
through the comparison of our two simulations.

The first macroscopical effect that we face is a shift, towards higher values, of
the mean velocity profile. The shadowed area of the graph 5.16 depict such
situation. According to this figure, we can see a narrowing of the region
subjected to high viscous stress, as the Reynolds number becomes larger.
Under the mean velocity profile graph we reported the same quantity, but
presented in semi-logaritmic scale, using both inner and outer scaling. The first
plot of figure 5.17 correlates the results of the simulations and the theoretical
behavior expectations. In particular we can see that, despite the Reynolds
number, all the simulations present the linear ū = y+ behavior expected in the
viscous sublayer, and the logarithmic profile in the homonym region, with
k = 0.41 and B = 5.2.

Figure 5.18 shows how the shear stress components modify as the Reynolds
number increase.
Focusing on the normalized Reynolds stress curve we can clearly see that, as the
Reτ increase, the region subjected to this kind of stress becomes larger, with
the peak moving towards the wall. Such kind of stress is associated with the
fluid turbulent motions, therefore it was expectable a raise of this components
as we move towards a more turbulent flow.
On the other hand the contribute of the viscous stress, associate to ∂ū/∂t, is
maximum at the wall and tends to become negligible as we move towards the

72 CHAPTER 5. SIMULATIONS RESULTS

Figure 5.16: Mean velocity profile at Reτ variation

10
0

10
1

10
2

10
3

y+

0

5

10

15

20

25

10
-3

10
-2

10
-1

10
0

y/

0

5

10

15

20

25

Re =180

Re =1000

Figure 5.17: The law of the wall, in inner and outer scaling, at Reτ variation

5.3. REYNOLDS EFFECTS 73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y/

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 R

e
y
n
o
ld

s
 s

tr
e
s
s
e
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y/

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 v

is
c
o
u
s
 s

tr
e
s
s
e
s

Re =180

Re =1000

Figure 5.18: Normalized shear profiles at Reτ variation

8 9 10 11 12 13 14 15 16

y+

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
o
rm

a
liz

e
d
 t
o
ta

l
s
h
e
a
r

s
tr

e
s
s
e
s

Figure 5.19: Particular of the shear stress, at Reτ variation

74 CHAPTER 5. SIMULATIONS RESULTS

10
3

10
4

10
5

Re
b

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

c
f

Re =180

Re =1000

Figure 5.20: Dependance of the cf from Reb

centerline.

As testified by figure 5.17, the higher is the Reynolds and the wider is the area
subjected to logarithmic profile, hence smaller is the area subjected to strong
variation of the mean velocity profile with the wall-normal coordinate. This fact
reflects on our viscous shear component reducing its range of effectiveness to few
units, close to the wall, as the Re grows.

Although, in terms of outer scaling, the stress components are subjected to
strong variations, in inner scaling we can see, in figure 5.19, that the point at
which the two components cross themself remains quite constant, with y+ ≈ 12
wall-units.

One of the most important flow property for wall bounded flows is the friction
coefficient. The cf has been studied in detail by many famous authors of the
past: Nikuradse, Prandtl, Blasius just to cite some of them.

In our simulations we computed the skin friction coefficient through the
definition provided by [56, p. 279], which is based on centerline velocity (U0)
and the Reb of the channel. The quantities have been defined as

cf = 2(
uτ
U0

)2 Reb =
2Ubδ

ν
,

and the results have been reported on figure 5.20.

Our cf shows good fitting with the results of the experimental campaign of
Dean reported in [11].

Let introduce now the comparison among the rms terms.

5.3. REYNOLDS EFFECTS 75

10
0

10
1

10
2

10
3

y+

0

2

4

6

8

10

 a

10
-3

10
-2

10
-1

10
0

y/

0

2

4

6

8

10

 b

uu
ML
+ Re =1000

uu
rms
+ Re =1000

uu
rms
+ Re =180

Figure 5.21: Streamwise fluctuations as function of the distance from the wall,
plotted at Reτ variation

10
0

10
1

10
2

10
3

y+

0

0.5

1

1.5

2

2.5

 a

10
-3

10
-2

10
-1

10
0

y/

0

0.5

1

1.5

2

2.5

 b

ww
ML
+ Re =1000

ww
rms
+ Re =1000

ww
rms
+ Re =180

Figure 5.22: Spanwise fluctuations as function of the distance from the wall,
plotted at Reτ variation

76 CHAPTER 5. SIMULATIONS RESULTS

10
-3

10
-2

10
-1

10
0

-1.5

-1

-0.5

0

0.5

1

1.5

 a

10
0

10
2

-1.5

-1

-0.5

0

0.5

1

1.5

 b

10
-3

10
-2

10
-1

10
0

y/

-1.5

-1

-0.5

0

0.5

1

 c

10
0

10
2

y+

-1.5

-1

-0.5

0

0.5

1

 d

Figure 5.23: Spanwise and streamwise logarithmic region predictor. For legend
refer to 5.21

Figure 5.22 shows the fluctuations of the spanwise term. As we can catch from
the first plot, the raise of the Reynolds number, aside of the shift towards higher
values, have a crucial effect on the trailing profile of the curve. Indeed we can
appreciate the born of a logarithmic region for w′2 term. In order to identify
such region, we have used an estimator function defined as y∂y〈w′2〉, suggested
in [37]. This function has the peculiarity to exhibit a flat profile whereas a
logarithmic behavior is present.

In figure 5.23d we can see that the blue profile, which indicates the Reτ = 1000
simulation exhibit a flat path around y+ ≈ 100, in agreement to what is shown
in figure 5.22 and predicted in [37]. The analysis for Reτ = 180 simulation does
not highlight similar behaviors.

For what concern the streamwise fluctuations, reported in figure 5.23a and b,
the indicator function is never flat, therefore we do not expect logarithmic
regions. However, passed the 100 wall-units, the u′2 profile seems to approach
such behavior. It is likely that an higher Reynolds simulation could find
evidence of logarithmic region.

The same indicator function can be applied also to the mean profile for the
same purpose, in this case it is a common practice to indicate the function with
β. In figure 5.24 we reported the comparison against our two simulation and the
simulation at Reτ = 1000 made by Moser and Lee, in inner and outer scaling.
Aside the outer region in which our Reτ = 1000 simulation exhibit strong
fluctuations, the fitting of the two results is good.

Comparing the behavior of the rms in the homogeneous directions,

5.3. REYNOLDS EFFECTS 77

10
-3

10
-2

10
-1

10
0

y/

0

1

2

3

4

5

6

10
0

10
1

10
2

y+

0

1

2

3

4

5

6

Re =180

Re =1000
ML

Re =1000

Figure 5.24: Logarithmic indicator function applied to mean profile 〈u〉

observing 5.21b and 5.22b, we can affirm that, while u′2 exhibit a little upward
shift in its values and a rigid shift towards the wall, w′2 grows in all its aspects,
with the peak that becomes more prominent and moves closer to the wall.
The trailing part of the curve however is still higher than the peak of the
Reτ = 180 simulation, enclosing it. To sum up we can affirm that the raise in
Reynolds number seems to be more effective on the spanwise fluctuating term,
instead of the streamwise ones.

The graph 5.25 shows the wall-normal fluctuations, expressed as always in
function of y/δ and y+.
As we can catch from the plot the blue curve exhibit higher values of
fluctuations, distributed across a wider range of length scales than the orange
ones. This expected behavior is associated to the higher turbulence content at
which the flow is subjected.
A remarkable difference against figure 5.22a, 5.21a and figure 5.25a is the shift
of the Reτ = 1000 peak towards higher values of y+.

A similar peak trend can be recovered also in figure 5.26. Such figure report the
product of the fluctuations among the streamwise and spanwise directions,
which is directly involved in the processes of production and stress generation.
The curves tend to raise their peak as the Reynold number becomes larger, thus
increasing the already cited processes. The net movement of the peak towards
the wall, shown in graph 5.26b, is responsible for the leftward movement of the
normalized Reynolds stress of figure 5.18. Once again there are no evidence of
logarithmic regions.

78 CHAPTER 5. SIMULATIONS RESULTS

10
0

10
1

10
2

10
3

y+

0

0.5

1

1.5

 a

10
-3

10
-2

10
-1

10
0

y/

0

0.5

1

1.5

 b

vv
ML
+ Re =1000

vv
rms
+ Re =1000

vv
rms
+ Re =180

Figure 5.25: Wall-normal fluctuations as function of the distance from the wall,
plotted at Reτ variation

We summarized few quantities at Reτ variation in table 5.3.

Table 5.3: Significant quantities at Reτ variation

Reτ Reb Ub Uc u′2peak w′2peak v′2peak −u′v′peak

180 5600 15.66 18.25 7.02 1.19 0.71 0.72
1000 40000 19.99 22.75 8.06 2.21 1.22 0.91

5.3. REYNOLDS EFFECTS 79

10
0

10
1

10
2

10
3

y+

0

0.2

0.4

0.6

0.8

1

 a

10
-3

10
-2

10
-1

10
0

y/

0

0.2

0.4

0.6

0.8

1

 b

-uv
ML
+ Re =1000

-uv
rms
+ Re =1000

-uv
rms
+ Re =180

Figure 5.26: −u′v′ as function of the distance from the wall, plotted at Reτ
variation

80 CHAPTER 5. SIMULATIONS RESULTS

6
Conclusions & Further Works

I am glad to say that we have reached our original goal to provide a scalable
DNS solver through the usage of the MPI technology.
At present time the code lacks in an intra-nodal effectively parallelization,
therefore its performances are limited by the MPI local communication
performance. Despite of this the code revealed to be robust, being capable of
working both with small datasets then extra large ones, exhibiting a linear gain
in terms of productivity. The possibility to perform live post-processing of the
data, instead of writing them, allows to save terabytes of memory, allowing the
code to run also on networks of commodity hardware.

The fundamental restriction imposed by the original code about the number of
parallel tasks has been removed, bringing the theoretical number of parallel
processes to be limited by the product of nx× nz modes.

The engine developed is flexible and since is not affected by the geometry of the
problem could be adapted quickly to carry out boundary layers simulations, just
by imposing different boundary conditions, or can be used to solve pipe flows
simulations.

The intent of this work was just to provide a study of feasibility for a solver
based on pencil decomposition approach relying on inter-nodal parallelization,
therefore we are satisfied by the results obtained. It should be denoted that, at
present time, we cannot consider this as a “completed” solver. The lack of a
dedicated shared memory parallelization reduce the efficiency significantly.
However, we would like to highlight that a dedicated shared memory
parallelization could be carried out just by changing few rows, without the
needing of a significant reworking of the code. With today tendency of the HPC
processors to increase the number of threads, instead of the number of physical
CPU, this evolution, towards the so called hybrid-programming, seems
mandatory.

81

82 CHAPTER 6. CONCLUSIONS & FURTHER WORKS

Bibliography

[1] H. Abe, H. Kawamura, and Y. Matsuo. “Direct Numerical Simulation of a
Fully Developed Turbulent Channel Flow With Respect to the Reynolds
Number Dependence”. In: Journal of Fluid Engineering 123 (June 2001).

[2] J. C. del Álamo and J. Jiménez. “Spectra of the very large anisotropic
scales in turbulent channels”. In: Physics of Fluids 15.6 (2003),
pp. L41–L44. url: https://aip.scitation.org/doi/abs/10.1063/.

[3] Gheorghe Almasi et al. “Overview of the IBM Blue Gene/P project”. In:
IBM JOURNAL OF RESEARCH AND DEVELOPMENT 52.1-2
(JAN-MAR 2008), 199–220. issn: 0018-8646.

[4] R. A. Antonia et al. “Low-Reynolds-number effects in a fully developed
turbulent channel flow”. In: Journal of Fluid Mechanics 236 (1992),
pp. 579–605.

[5] M. Bernardini, S. Pirozzoli, and P. Orlandi. “Velocity statistics in
turbulent channel flow up to Reτ = 4000”. In: Journal of Fluid Mechanics
742 (2014), pp. 171–191.

[6] B. Blanc and B. Maaraoui. Endianness or Where is Byte 0? Tech. rep. 3B
Consultancy, Dec. 2005. url:
http://3bc.bertrand-blanc.com/endianness05.pdf.

[7] G. Borrell, J. A. Sillero, and J. Jiménez. “A code for direct numerical
simulation of turbulent boundary layers at high Reynolds numbers in
BG/P supercomputers”. In: Computers & Fluids 80 (2013). Selected
contributions of the 23rd International Conference on Parallel Fluid
Dynamics ParCFD2011, pp. 37–43. issn: 0045-7930. url: http://www.
sciencedirect.com/science/article/pii/S004579301200254X.

[8] E. Brachos. “Parallel FFT Libraries”. University of Edinburgh, 2011.

[9] CINECA. url: https://www.cineca.it/it/content/cineca.

[10] G. Comte-Bellot. “An introduction to turbulent flow”. eng. In: Journal of
Turbulence 2.1 (2001), pp. 83–84.

83

https://aip.scitation.org/doi/abs/10.1063/
http://3bc.bertrand-blanc.com/endianness05.pdf
http://www.sciencedirect.com/science/article/pii/S004579301200254X
http://www.sciencedirect.com/science/article/pii/S004579301200254X
https://www.cineca.it/it/content/cineca

84 BIBLIOGRAPHY

[11] R. B. Dean. “Reynolds Number Dependence of Skin Friction and Other
Bulk Flow Variables in Two-Dimensional Rectangular Duct Flow”. In:
Journal of Fluids Engineering 100.2 (June 1978), pp. 215–223. url:
http://dx.doi.org/10.1115/1.3448633.

[12] J. C. Del Álamo et al. “Scaling of the energy spectra of turbulent
channels”. In: Journal of Fluid Mechanics 500 (2004), pp. 135–144.

[13] P. A. Durbin and B. A. Petterson-Reif. Statistical Theory and Modeling
for Turbulent Flows. eng. Cambridge: Wiley, 2001.

[14] Message P Forum. MPI: A Message-Passing Interface Standard. Tech. rep.
University of Tennessee Knoxville, TN, USA, 1994.

[15] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard Version 2.2. Sept. 209. url:
https://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf.

[16] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard Version 3. Sept. 2012. url:
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf.

[17] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard Version 3.1. June 2015. url:
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.

[18] M. Frigo and S. G. Johnson. “The Design and Implementation of
FFTW3”. In: Proceedings of the IEEE 93.2 (2005). Special issue on
“Program Generation, Optimization, and Platform Adaptation”,
pp. 216–231.

[19] Matteo Frigo and Steven G. Johnson. FFTW User Manual. MIT. url:
http://fftw.org/doc/Advanced-distributed_002dtranspose-

interface.html#Advanced-distributed_002dtranspose-interface.

[20] U. Frisch. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge
University Press, 1995.

[21] Galielo: Cineca’s Tier-1 system. url:
http://www.hpc.cineca.it/hardware/galileo-0.

[22] The HDF Group. Hierarchical Data Format, version 5.
http://www.hdfgroup.org/HDF5/. 1997-2019.

[23] S. Hoyas and J. Jiménez. “Scaling of the velocity fluctuations in turbulent
channels up to Reτ = 2003”. In: Physics of Fluids 18.1 (2006), p. 011702.
url: https://doi.org/10.1063/1.2162185.

[24] Z. Hu, C. L. Morfey, and N. D. Sandham. “Wall Pressure and Shear Stress
Spectra from Direct Simulations of Channel Flow”. In: AIAA Journal
44.7 (2006), pp. 1541–1549. url: https://doi.org/10.2514/1.17638.

[25] Intel. Intel Xeon Phi Product Spec. Apr. 2016. url: https:
//ark.intel.com/content/www/us/en/ark/products/94035/intel-

xeon-phi-processor-7250-16gb-1-40-ghz-68-core.html.

[26] Intel. Intel R© Omni-Path Architecture Performance Tested for HPC. July
2018. url: https://www.intel.com/content/www/us/en/high-
performance-computing-fabrics/omni-path-architecture-

performance-overview.html.

http://dx.doi.org/10.1115/1.3448633
https://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://fftw.org/doc/Advanced-distributed_002dtranspose-interface.html#Advanced-distributed_002dtranspose-interface
http://fftw.org/doc/Advanced-distributed_002dtranspose-interface.html#Advanced-distributed_002dtranspose-interface
http://www.hpc.cineca.it/hardware/galileo-0
https://doi.org/10.1063/1.2162185
https://doi.org/10.2514/1.17638
https://ark.intel.com/content/www/us/en/ark/products/94035/intel-xeon-phi-processor-7250-16gb-1-40-ghz-68-core.html
https://ark.intel.com/content/www/us/en/ark/products/94035/intel-xeon-phi-processor-7250-16gb-1-40-ghz-68-core.html
https://ark.intel.com/content/www/us/en/ark/products/94035/intel-xeon-phi-processor-7250-16gb-1-40-ghz-68-core.html
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-performance-overview.html
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-performance-overview.html
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-performance-overview.html

BIBLIOGRAPHY 85

[27] K. Iwamoto, N. Kasagi, and Y. Suzuki. “Direct Numerical Simulation of
Turbulent Channel Flow at Reτ = 2320”. In: Proc. 6th Symp. Smart
Control of Turbulence. Tokyo, Japan, Mar. 2005.

[28] K. Iwamoto, Y. Suzuki, and N. Kasagi”. “Reynolds number effect on wall
turbulence: toward effective feedback control”. In: International Journal
of Heat and Fluid Flow 23.5 (2002), pp. 678–689. issn: 0142-727X.

[29] l. J. Clarke and E. Mark. “Enhancements to the eXtensible Data Model
and Format (XDMF)”. In: 2007 DoD High Performance Computing
Modernization Program Users Group Conference. June 2007, pp. 322–327.

[30] J. Jeffers. Intel R© Many Integrated Core Architecture: An Overview and
Programming Models. Mar. 2012. url:
https://www.olcf.ornl.gov/wp-content/training/electronic-

structure-2012/ORNL_Elec_Struct_WS_02062012.pdf.

[31] J. Jiménez. “Computing high-Reynolds-number turbulence: will
simulations ever replace experiments?” In: Journal of Turbulence 4 (2003),
N22. url: https://www.tandfonline.com/doi/abs/10.1088/1468-
5248/4/1/022.

[32] A. Johansson and A D. Burden. “An Introduction to Turbulence
Modelling”. In: vol. 6. Jan. 1999, pp. 159–242.

[33] N. Kasagi, Y. Tomita, and A. Kuroda. “Direct Numerical Simulation of
Passive Scalar Field in a Turbulent Channel Flow”. In: Journal of Heat
Transfer 114.3 (Aug. 1992), pp. 598–606.

[34] D. J. Kerbyson and A. Hoisie. “Performance Modeling of the Blue Gene
Architecture”. In: IEEE John Vincent Atanasoff 2006 International
Symposium on Modern Computing (JVA’06). Oct. 2006, pp. 252–259.

[35] Ali Khajeh-Saeed and J. Blair Perot. “Direct numerical simulation of
turbulence using GPU accelerated supercomputers”. In: Journal of
Computational Physics 235 (2013), pp. 241–257. issn: 0021-9991. url:
http://www.sciencedirect.com/science/article/pii/

S0021999112006547.

[36] J. Kim, P. Moin, and R. Moser. “Turbulence statistics in fully developed
channel flow at low Reynolds number”. In: Journal of Fluid Mechanics
177 (1987), pp. 133–166.

[37] M. Lee and R. D. Moser. “Direct numerical simulation of turbulent
channel flow up to Reτ ≈ 5200”. In: Journal of Fluid Mechanics 774
(2015), pp. 395–415.

[38] S. K. Lele. “Compact finite difference schemes with spectral-like
resolution”. In: Journal of Computational Physics 103.1 (1992), pp. 16–42.
issn: 0021-9991. url: http:
//www.sciencedirect.com/science/article/pii/002199919290324R.

[39] N. Li and S. Laizet. “2DECOMP&FFT – A highly scalable 2D
decomposition library and FFT interface”. In: Cray User Group 2010
conference. Edinburgh, 2010.

[40] A. Lozano-Durán, O. Flores, and J. Jiménez. “The three-dimensional
structure of momentum transfer in turbulent channels”. In: Journal of
Fluid Mechanics 694 (2012), pp. 100–130.

https://www.olcf.ornl.gov/wp-content/training/electronic-structure-2012/ORNL_Elec_Struct_WS_02062012.pdf
https://www.olcf.ornl.gov/wp-content/training/electronic-structure-2012/ORNL_Elec_Struct_WS_02062012.pdf
https://www.tandfonline.com/doi/abs/10.1088/1468-5248/4/1/022
https://www.tandfonline.com/doi/abs/10.1088/1468-5248/4/1/022
http://www.sciencedirect.com/science/article/pii/S0021999112006547
http://www.sciencedirect.com/science/article/pii/S0021999112006547
http://www.sciencedirect.com/science/article/pii/002199919290324R
http://www.sciencedirect.com/science/article/pii/002199919290324R

86 BIBLIOGRAPHY

[41] A. Lozano-Durán and J. Jiménez. “Effect of the computational domain on
direct simulations of turbulent channels up to Reτ = 4200”. In: Physics of
Fluids 26.1 (2014), p. 011702. url:
https://doi.org/10.1063/1.4862918.

[42] P. Luchini and M. Quadrio. “A low-cost parallel implementation of direct
numerical simulation of wall turbulence”. In: Journal of Computational
Physics (2005).

[43] S. L. Lyons, T. J. Hanratty, and J. B. McLaughlin. “Large-scale computer
simulation of fully developed turbulent channel flow with heat transfer”.
In: International Journal for Numerical Methods in Fluids 13.8 (1991),
pp. 999–1028. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650130805.

[44] K. Mahesh. “A Family of High Order Finite Difference Schemes with
Good Spectral Resolution”. In: Journal of Computational Physics 145.1
(1998), pp. 332–358. issn: 0021-9991. url: http://www.sciencedirect.
com/science/article/pii/S0021999198960223.

[45] Marconi: Cineca’s Tier-0 system. url:
http://www.hpc.cineca.it/hardware/marconi.

[46] D. T. et al Marr. “Hyper-Threading Technology Architecture and
Microarchitecture”. In: Intel Technology Journal (Feb. 2002). url:
http://www.cs.virginia.edu/~mc2zk/cs451/vol6iss1_art01.pdf.

[47] J. J. McKetta. “Turbulence: An introduction to it’s mechanism and
theory (Hinze, J. O.)” In: Journal of Chemical Education 37.9 (1960),
A556. url: https://doi.org/10.1021/ed037pA556.

[48] P. Moin. “Direct numerical simulation: A tool in turbulence research”.
eng. In: Annual Review of Fluid Mechanics 30 (1998). issn: 00664189.
url: http://search.proquest.com/docview/220777817/.

[49] R. D. Moser, J. Kim, and N. N. Mansour. “Direct numerical simulation of
turbulent channel flow up to Reτ = 590”. In: Physics of Fluids 11.4
(1999), pp. 943–945.

[50] L. Q. Nguyen. How to Install the Intel R© Omni-Path Architecture
Software. Tech. rep. https://software.intel.com/en-us/articles/using-intel-
omni-path-architecture: Intel, Mar.
2017.

[51] L. Null and J. Lobur. The Essentials of Computer Organization and
Architecture. Jones and Bartlett Publishers, 2006. isbn: 9780763737696.
url: https://books.google.com.au/books?id=QGPHAl9GE-IC.

[52] OpenMP Application Programming Interface, version 5.0. OpenMP
Architecture Review Board. Nov. 2018. url:
https://www.openmp.org/wp-content/uploads/OpenMP-API-

Specification-5.0.pdf.

[53] D. Pekurovsky. “P3DFFT: a framework for parallel computations of
Fourier transforms in three dimensions”. In: SIAM Journal on Scientific
Computing 34.4 (2012), pp. C192–C209.

[54] M. Pippig. PFFT User Manual. Dec. 2018. url: https://www-user.tu-
chemnitz.de/~potts/workgroup/pippig/paper/PFFT_manual.pdf.

https://doi.org/10.1063/1.4862918
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650130805
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650130805
http://www.sciencedirect.com/science/article/pii/S0021999198960223
http://www.sciencedirect.com/science/article/pii/S0021999198960223
http://www.hpc.cineca.it/hardware/marconi
http://www.cs.virginia.edu/~mc2zk/cs451/vol6iss1_art01.pdf
https://doi.org/10.1021/ed037pA556
http://search.proquest.com/docview/220777817/
https://books.google.com.au/books?id=QGPHAl9GE-IC
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www-user.tu-chemnitz.de/~potts/workgroup/pippig/paper/PFFT_manual.pdf
https://www-user.tu-chemnitz.de/~potts/workgroup/pippig/paper/PFFT_manual.pdf

BIBLIOGRAPHY 87

[55] S. Plimpton. fftMPI. Oct. 2018. url: https://fftmpi.sandia.gov.

[56] S. B. Pope. Turbulent flows. Cambridge: Cambridge Univ. Press, 2011.

[57] A. Pozzi. Application of Padé’s Approximation Theory in Fluid Dynamics.
Advances in Mathematics for Applied Sciences. World Scientific, 1994.

[58] GCC Project. GNU GCC. Jan. 2018. url: https://gcc.gnu.org.

[59] M. Quadrio and P. Luchini. “Integral space–time scales in turbulent wall
flows”. In: Physics of Fluids 15.8 (2003), pp. 2219–2227. issn: 1070-6631.

[60] O. Reynolds. “An Experimental Investigation of the Circumstances Which
Determine Whether the Motion of Water Shall Be Direct or Sinuous, and
of the Law of Resistance in Parallel Channels. [Abstract]”. In: Proceedings
of the Royal Society of London 35 (1883), pp. 84–99. issn: 03701662. url:
http://www.jstor.org/stable/114354.

[61] J. Rutledge and C. A. Sleicher. “Direct simulation of turbulent flow and
heat transfer in a channel. Part I: Smooth walls”. In: International
Journal for Numerical Methods in Fluids 16.12 (1993), pp. 1051–1078.
url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650161203.

[62] M. Tanahashi et al. “Scaling law of fine scale eddies in turbulent channel
flows up to Reτ=800”. In: International Journal of Heat and Fluid Flow
25.3 (2004), pp. 331–340. url: http://www.sciencedirect.com/
science/article/pii/S0142727X04000074.

[63] M. Tanveer, I. M. Aqeel, and F. Azam. “Using Symmetric Multiprocessor
Architectures for High Performance Computing Environments”. In:
International Journal of Computer Applications 27.9 (Aug. 2011). issn:
0975 – 8887. url: https://pdfs.semanticscholar.org/3ba2/
556d7f9f35edee8759f068fc96e05689460b.pdf.

[64] OpenMPI Team. OpenMPI. Oct. 2018. url:
https://www.open-mpi.org/doc/.

[65] OpenMPI Team. OpenMPI FAQ. Oct. 2018. url:
https://www.open-mpi.org/faq/?category=general.

[66] L. H. Thomas. “The Stability of Plane Poiseuille Flow”. In: Phys. Rev. 91
(4 Aug. 1953), pp. 780–783. url:
https://link.aps.org/doi/10.1103/PhysRev.91.780.

[67] TOP500 List. url: https://www.top500.org/list/2018/.

[68] A. W. Vreman and J. G. M. Kuerten. “Statistics of spatial derivatives of
velocity and pressure in turbulent channel flow”. In: Physics of Fluids
26.8 (2014), p. 085103. url: https://doi.org/10.1063/1.4891624.

https://fftmpi.sandia.gov
https://gcc.gnu.org
http://www.jstor.org/stable/114354
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650161203
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650161203
http://www.sciencedirect.com/science/article/pii/S0142727X04000074
http://www.sciencedirect.com/science/article/pii/S0142727X04000074
https://pdfs.semanticscholar.org/3ba2/556d7f9f35edee8759f068fc96e05689460b.pdf
https://pdfs.semanticscholar.org/3ba2/556d7f9f35edee8759f068fc96e05689460b.pdf
https://www.open-mpi.org/doc/
https://www.open-mpi.org/faq/?category=general
https://link.aps.org/doi/10.1103/PhysRev.91.780
https://www.top500.org/list/2018/
https://doi.org/10.1063/1.4891624

	Introduction
	Turbulent flows
	General concepts
	The history of the direct numerical simulation

	Parallel DNS of a Turbulent Channel Flow
	Problem definition
	Governing equations
	Wall normal vorticity equation
	Wall normal velocity equation
	Velocity components in the homogeneous directions and mean flow

	Spatial discretization along homogeneous directions
	Finite difference scheme
	Compute of the finite difference coefficients

	Time discretization
	Domain decompositions
	1D decomposition
	2D decomposition

	Parallel I/O

	Code Structure
	Code parallelization
	fftMPI
	Parallel HDF5 Library
	Testing environment
	Performances measurement description

	Code Benchmarks
	Single core comparison
	Scaling performance of 1283 problem
	Scaling performance of 256256512 problem
	Scaling performance of 5125121024 problem
	Scaling performance of 4096512512 problem
	Further tests
	Intel compiled code performances
	Performances on GALILeO

	Benchmarks conclusions

	Simulations Results
	Re=180 simulation
	Re=1000 simulation
	Reynolds effects

	Conclusions & Further Works
	Bibliography

