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Abstract

The purpose of this paper is to treat, with purely analytic method, the study
of the analogue Hawking e�ect in Bose-Einsten condensates (BEC), assuming
smooth velocity �elds. This work is based on recent analysis which allow a
more complete study about the behavior of the modes in a neighborhood
of the horizon (turning point). Thanks to an analytical treatment, we can
recover an explicit expression for the greybody factor.
The �rst part of the analysis is standard and it can be found in literature;
it consists in a system of one-dimensional second order coupled equations,
which can be decoupled in two fourth order ordinary equations.
We �nd the WKB solutions, far from the horizon. Then, thanks to recent
achivements, it has been possible to recover approximations of the solutions
near the turning point and, by means of matched asymptotic expansion
method, to glue the two approximations.
Finally, by the conservation of current, we will evaluate the termality and
the greybody factor.
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Estratto

L'obiettivo di questo elaborato è quello di trattare, tramite metodi pura-
mente analitici, lo studio analogo dell'e�etto Hawking nei condensati di
Bose-Einstein (BEC), assumendo campi di velocità lisci. Il lavoro è basato su
recenti analisi che permettono uno studio più completo per quanto riguarda
il comportamento dei modi in un intorno dell'orizzonte (turning point). Gra-
zie al fatto di mantenere una trattazione analitica, si è potuto ricavare
l'espressione del fattore di corpo grigio.
La prima parte dell'analisi è standard e può esser trovata in letteratura; essa
consiste in un sistema di equazioni di�erenziali del second'ordine, unidimen-
sionali e accoppiate, che possono esser disaccoppiate ottenendo due equazioni
di�erenziali ordinarie del quarto ordine.
Si ricavano le soluzioni WKB, lontano dall'orizzonte. Quindi, grazie a recenti
risultati, è stato possibile trovare un'approssimazione delle soluzioni vicino
al turning point e, per via di metodi di matched asymptotic expansion, in-
collare le due approssimazioni.
In�ne, usando la conservazione delle correnti, si è ricavato la termalità e il
fattore di corpo grigio.
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Chapter 1

Introduction

In a seminal paper, William Unruh [Unr81], described, through a formal
equivalence, the behavior of sound waves in a �uid cascade and that of light
in a black hole space-time. Essentially, when the �uid velocity crosses the
speed of sound, waves cannot propagate upstream anymore. This leads to
the creation of the so-called sonic horizon, analogous to the event horizon of
a black hole, predicted by general relativity. Stated this analogy, researchers
have found many di�erent ways to create it in laboratory.
Beyond the pure analogy, Unruh presented two important ideas. The �rst is
that analogue systems earning a long-lived 1 horizon have to exhibit Hawk-
ing radiations, since this phenomenon is kinematic and independent from
any gravitational dynamics. On the other hand, Unruh pointed out, almost
immediately after Hawking proposed his evaporation theory, that Hawking's
calculations su�ers from the `trans-Planckian' problem 2.
In this frame, analogue black holes seems to be a fantastic test to understand
how high-energy processes might come into play in Hawking's e�ect.
Analogue systems provide a clari�cation of how a continuous low-energy
relativistic space-time di�uses when approaching the atomic high-energy de-
scription. Even if the importance of Hawking's proposal of black holes evapo-
ration has already been validated by the relevance of the development that it
has inspired, in physics any theoretical prediction has to be confronted with
nature. Here we face an elementary problem: there are no clear prospects to
verify Hawking's e�ect by gravitational black holes, not in the near future.
Are long-lived trapping horizons produced naturally in astrophysical scenar-
ios? If they are, do these horizons radiate?
Assuming the previous statements to be true, the importance of analogues
systems can reduce the lack of the observations of the evaporation which is
almost impossible to study by direct investigations. We need to show that

1Long-lived is used to refer to an horizon which exists from a longer time with respect
to the ones characteristics of the system.

2Hawking modes close to the horizon region, posseses huge frequency components,
beyond the Planck scale.
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2 CHAPTER 1. INTRODUCTION

setting up an horizon leads to a spontaneous particle production, in partic-
ular Hawking particles. The importance in experimental development is to
show that approximations, simpli�cations and additional factors, not appar-
ently present in the initial theoretical description, do not destroy the global
e�ects.
In its �rst work, Unruh used water to reproduce an analogue event hori-
zon, but, unfortunately, water �ume experiments are unable to probe the
quantum spontaneous creation aspects of Hawking radiation, since thermal
e�ects are dominant. One needs a quantum analogue system such as a Bose-
Einstein condensate (BEC) [GACZ00].
In a BEC, it is possible to achieve a background temperature of the order
of the Hawking temperature. The typical dispersion relation for achoustic
phonons in BEC is:

(ω − vk)2 = c2

(
k2 +

k4

k2
0

)
,

where c is the speed of sound.
In 2010, Je� Steinhauer and its group produced a sonic horizon in a BEC
[LIB+10,MdNGKS19]. They created an horizon by making the condensate
�owing down a step-like potential cascade. In this way, the �uid condensate
accelerates to velocity higher than the speed of sound in a BEC.
From this considerations a rich phenomenology arises, connected to the ana-
logue gravity, based on the possibility of investigating Hawking radiations in
analogous systems.
During the years, many analogous black holes descriptions have been pro-
duced and we deal with one of them: analogue black hole in BEC with
smooth velocity �elds and superluminal dispersion relation.
By using purely analytical computations and without assuming step-like ve-
locity �elds, it has been possible to study the characteristic modes of anal-
ogous black holes, to compute the temperature and to evaluate analitically
the greybody factor. In most of the other cases these analytical expressions
cannot be evaluated, since some initial approximations do not allow to derive
the expressions of the necessary modes, involved in the calculations of the
greybody factor.
This work can be divided in four steps: �rstly, we found the asymptotic
solutions, at �rst order, through the WKB method, far from the horizon.
This solutions allowed us to recover the expressions of the wavevectors of
the modes, and their group velocities.
Secondly, we compute the solutions in the near horizon region, fundamen-
tal step which had allowed us to connect the two approximations through
matched asymptotic expansion, which is the third step.
Finally, once recovered the matching coe�cients and evaluated the analytical
expressions of the modes, it has been possible to �nd an analytical expression
for the thermality and the greybody factor, through conserved current.



Chapter 2

Quantum �eld theory

2.1 Classical mechanics

Let us introduce the Lagrangian formalism [CCP82,GP80]. Let x1, ..., xN , be
N points in R3. We introduce the notion of Lagrangian coordinates q1, ..., qf
such that

xj = xj(q1, ..., qf , t), j = 1, ..., N.

Here f is the number of degrees of freedom, such that f = 3N − p, and p
is the number of constraints on our system. These coordinates are general
coordinates that describe our system (can be cartesian, polar, cylindrical,
ecc.).
We introduce also the concept of Material derivative of a point:

ẋj =
dxj
dt

=
∂xj
∂qs

δq̇s +
∂xj
∂t

,

and therefore, the Kinetic energy, can be rewrite as

T =
1

2
mj ẋj =

1

2
mj

(
∂xj
∂qs

δq̇s +
∂xj
∂t

)
.

Let us de�ne now the Lagrangian function:

L(q, q̇, t) = T (q, q̇, t)− U(q, t),

where T is the kinetic energy of the system and U is the potential energy.
The Lagrange equations are de�ned as

d

dt

∂L
∂q̇
− ∂L
∂q

= 0,

which represent a set of f second order ordinary equations.
The conjugate momentum ps relative to the general coordinate qs is de�ned
as

ps =
∂L
∂q̇s

.

3



4 CHAPTER 2. QUANTUM FIELD THEORY

t

x

t1

t2

Figure 2.1: Some of the in�nite number of paths between two
points.

We also introduce the notion of action S as

S =

∫
L dt,

where the integral is taken over an entire path, from t1 to t2:

S =

∫ t2

t1

L(x, ẋ) dt.

As the particle moves from x(t1) to x(t2), there is an in�nite number of pos-
sible paths it may take, some of which are shown in Figure 2.1. The speci�c
path choosed by the particle is determined by the principle of least action,
which states that the actual motion is the one for which S is minimum.
Another essential way to describe our system, widely used in classical me-
chanics but especially in quantum mechanics, is the Hamiltonian one. The
Hamilton function is de�ned as

H(q, p, t) = T (q, q̇, t) + U(q, t)

and represents the total energy Etot of the system. In point-particle mechan-
ics, the relation between the Hamilton and Lagrangian function is

H(q, p, t) =
∑
s

psq̇s − L(q, q̇, t),

where we recall that ps = ∂L/∂q̇s. We have now a set of 2f �rst order
ordinary equations:

ṗ =
∂H

∂q̇
, q̇ = −∂H

∂p
.
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2.2 Lagrangian formulation for scalar �elds

2.2.1 Relativistic notation

Any theory of the fundamental nature of matter must be consistent with
relativity, as well as with quantum theory [Ryd96,Wal84].
Consider two events in space-time (x, y, z, t) and (x+dx, y+dy, z+dz, t+dt).
We want to generalize the notion of distance between two points in space,
to the `interval' ds between two events in space-time. Since ds has to be
the same for all the inertial observers, it must be invariant under Lorentz
transformations and rotations, and so it is given by 1

ds2 = c2dt2 − (dx2 + dy2 + dz2). (2.2.1)

We call the vector which connects the two events timelike if they are sepa-
rated by an interval such that ds2 > 0; spacelike those with ds2 < 0; null or
lightlike the ones with ds2 = 0.
The generalization to 4-dimensional space-time is not straightforward due to
the invariant interval no longer being positive de�nite, as in 3-dimensional
space. We therefore de�ne

xµ = (x0, x1, x2, x3) = (ct, x, y, z),

xµ = (x0, x1, x2, x3) = (ct,−x,−y,−z)
(2.2.2)

and rede�ne the invariant as:

ds2 =
3∑

µ=0

dxµdxµ = c2dt2 − dx2 − dy2 − dz2.

A 4-vector like xµ, with upper index, is called contravariant vector and one
like xµ, with a lower index, is called covariant vector. The inner product of
a covariant and a contravariant vector is an invariant (scalar)2.
The relation between xµ and xµ may be given by introducing a metric tensor

gµν :

xµ = gµνx
ν

= gµ0x
0 + gµ1x

1 + gµ2x
2 + gµ3x

3.

By inspection of (2.2.2), the metric tensor gµν may be written as a diagonal
matrix

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ,

1Of course, we could have de�ned ds2 = −c2dt2 +(dx2 + dy2 + dz2); we choose (2.2.1)
for later convenience.

2To simplify the notation, we adopt the summation convention: an index appearing
once in an upper and once in a lower position is implicitly summed (in this case, from 0
to 3).
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where gµν is the inverse 3 of gµν (that exists, since the metric tensor has
non-zero determinant).
Concerning di�erential operators, we de�ne

∂µ =
∂

∂xµ
= (∂0, ∂1, ∂2, ∂3) =

(
1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
=

(
1

c

∂

∂t
,∇
)

and, as above, we can recover the contravariant form through the covariant
and viceversa thanks to the metric tensor and its inverse as

∂µ = gµν∂ν =

(
1

c

∂

∂t
,−∇

)
.

From this de�nitions, we recover the Lorentz invariant second-order di�er-
ential operator

� = ∂µ∂µ =
1

c2

∂2

∂t2
−
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
=

1

c2

∂2

∂t2
−∇2 (2.2.3)

called D'Alambert operator.
The energy-momentum 4-vector of a particle is

p µ =

(
E

c
,p

)
, pµ =

(
E

c
,−p

)
giving the invariant

p2 = p µpµ =
E2

c2
− p · p = m2c2. (2.2.4)

2.2.2 Klein-Gordon equation

We are now able to write a wave equation for a particle with no spin, a scalar
particle [Ryd96, Sch14]. Since it has no spin, it has only one component,
which we denote by φ. The wave equation is obtained from equation (2.2.4)
by substituting di�erential operators for E and p, in the standard fashion of
quantum theory

E → i~
∂

∂t
, p→ −i~∇. (2.2.5)

Equation (2.2.4) then gives(
1

c2

∂2

∂t2
−∇2

)
φ+

m2c2

~2
φ = 0

which becomes, in units ~ = c = 1 and using (2.2.3)(
� +m2

)
φ = 0. (2.2.6)

This is known as the Klein-Gordon equation.

3The inverse of the metric tensor has the same values as gµν in Minkowski space (in
Cartesian coordinates), but this equality does not hold in general.
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2.3 The real scalar �eld

2.3.1 Variational principle and Noether's theorem

The passage from a point particle at position x(t) to a �eld φ(xµ) = (x, y, z, t)
can be visualized as the `replacement' of x by φ and of t by xµ [Ryd96]. The
scalar �eld obeys the Klein-Gordon equation (2.2.6).
We now show how to derive the Euler-Lagrange equation applying a varia-
tional principle to an action

S =

∫
L(φ, ∂µφ, x

µ) d4x.

The Lagrangian is de�ned as

L =
1

2
(∂µφ)(∂µφ)− m2

2
φ2

=
1

2
[(∂0φ)2 − (∇φ)2 −m2φ2].

(2.3.1)

The �eld φ traces a 4-dimensional region R of space-time. We now subject
both xµ and φ to a variation, which vanishes on the boundary ∂R

xµ → x′µ = xµ + δxµ,

φ(x) → φ′(x) = φ(x) + δφ(x).
(2.3.2)

It is important to note that δφ, as de�ned above, is the functional variation
of φ and that φ′ is compared with φ at the same event xµ in space-time.
We de�ne also the total variation ∆φ of φ as

φ′(x′) = φ(x) + ∆φ(x)

and then it follows, to �rst order in δx = x′ − x, that

∆φ = φ′(x′)− φ(x′) + φ(x′)− φ(x)

= δφ+ (∂µφ)δxµ.

The varation in the action then is

δS =

∫
L(φ′, ∂µφ

′, x′µ) d4x′ −
∫
L(φ, ∂µφ, x

µ) d4x,

where d4x′ = J(x′/x)d4x, and J(x′/x) is the Jacobian of the transformation
from x to x′. From (2.3.2)

∂x′µ

∂xλ
= δµλ + ∂λδx

µ ⇒ J

(
x′

x

)
= det

(
∂x′

∂x

)
= 1 + ∂µ(δxµ).
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So, we can rewrite the variation of the action as

δS =

∫
(δL+ L∂µδxµ) d4x,

where

δL =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ) +

∂L
∂xµ

δxµ.

We can notice from (2.3.2) that we can commute the variation with the
derivative as δ(∂µφ) = ∂µ(δφ) and then, observing that we can rewrite

L∂µδxµ +
∂L
∂xµ

δxµ = ∂µ(Lδxµ)

as the total divergence, the variation of the action becomes

δS =

∫
R

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ) + ∂µ(Lδxµ)

]
d4x.

The second term may be rewritten so as to introduce a total divergence

∂L
∂(∂µφ)

δ(∂µφ) = ∂µ

[
∂L

∂(∂µφ)
δφ

]
− ∂µ

[
∂L

∂(∂µφ)

]
δφ,

and the resulting integral over R can be written as a surface integral over
∂R, using the 4-dimensional generalization of Gauss's theorem, giving us

δS =

∫
R

{
∂L
∂φ
− ∂µ

[
∂L

∂(∂µφ)

]}
δφ d4x+

∫
∂R

[
∂L

∂(∂µφ)
δφ+ Lδxµ

]
dσµ.

Since we took two variations that vanish on the boundary, i.e. δφ = 0
and δxµ = 0 on ∂R, the second integral vanishes and the condition for a
stationary action is

∂L
∂φ
− ∂

∂xµ

[
∂L

∂(∂µφ)

]
= 0.

This is known as Euler-Lagrange equation for φ. It is the equation that
describes the motion of the �eld φ (like Newton's equation for point masses).
From here, we can also recover the Klein-Gordon equation: rewriting (2.3.1)
as

L =
1

2
gkλ(∂kφ)(∂λφ)− m2

2
φ2

gives
∂L
∂φ

= −m2φ,
∂L

∂(∂µφ)
= gµν(∂νφ) = ∂µφ

and then the Euler-Lagrange equation gives

∂µ∂
µφ+m2φ ≡ �φ+m2φ = 0
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which is the Klein-Gordon equation.
We now explore another consequence of the use of a variational principle. If
the action is unchanged under a re-parametrization of xµ or φ, i.e. is invariant
under some group of transformations on xµ or φ, there exist one or more
conserved quantities that are combinations of the �eld and its derivative.
This result is known as Noether's theorem. Let us rewrite the surface term
in the variation in the action as follows:

δS =

∫
R

{
∂L
∂φ
− ∂µ

[
∂L

∂(∂µφ)

]}
δφ d4x

+

∫
∂R

{
∂L

∂(∂µφ)
[δφ+ (∂νφ)δxν ]−

[
∂L

∂(∂µφ)
∂νφ− δµνL

]
δxν
}
dσµ,

having added and subtracted one term.
The term in the �rst square bracket, in the surface integral, is the total
variation

∆φ = [δφ+ (∂νφ)δxν ],

while we de�ned as energy-momentum tensor θµν the term in the second
square bracket:

θµν =
∂L

∂(∂µφ)
∂νφ− δµνL.

We have then

δS =

∫
R

{
∂L
∂φ
− ∂µ

[
∂L

∂(∂µφ)

]}
δφ d4x

+

∫
∂R

[
∂L

∂(∂µφ)
∆φ− θµν δxν

]
dσµ

We now suppose that S is invariant under a group of in�nitesimal transfor-
mations on xµ and φ:

∆xµ = Xµ
ν δω

ν , ∆φ = Φµδω
µ

characterised by an in�nitesimal parameter δων . We highlight that in our
case Xµ

ν is a matrix, Φµ is a set of number and ν is a single index (every-
thing can be generalized to multiple indices). If we assume the previous
transformation, the requirement that δS = 0 gives us∫

∂R

[
∂L

∂(∂µφ)
Φν − θµkX

k
ν

]
δων dσµ = 0

or, since δων is arbitrary ∫
∂R
Jµν dσµ = 0

where

Jµν =
∂L

∂(∂µφ)
Φν − θµkX

k
ν .
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It follows from Gauss's theorem and form the fact that R is arbitrary, that∫
R
∂µJ

µ
ν d

4x = 0 ⇒ ∂µJ
µ
ν = 0. (2.3.3)

We therfore have a conserved (divergenceless) current Jµν , whose existence
follows from the invariance of the action under the previous tranformations.
This give rise to a conserved (time indipendent) charge Qν , de�ned by

Qν =

∫
σ
Jµν dσµ,

where the integral is taken over a spacelike hypersurface σ. If the points in
the surface are at constant time, then

Qν =

∫
V
J0
ν d

3x

where the integral is taken over a 3-dimensional volume V . Then the con-
servation of the charge can be stated integrating over V , as∫

V
∂0J

0
ν d

3x+

∫
V
∂iJ

i
ν d

3x = 0.

The second term can be transformed into a surface integral through the 3-
dimensional Gauss's theorem, and vanishes, as the surface goes to in�nity,
leaving,

d

dt

∫
V
J0
ν d

3x =
dQν
dt

= 0.

This is Noether's theorem.

2.4 Canonical Quantization and Particle Interpre-
tation

2.4.1 The real Klein-Gordon �eld

Now we consider the Klein-Gordon equation, describing a �eld φ(x) [Ryd96,
Sch14]. Since the equation has no classical analogue, φ(x) is a strictly quan-
tum �eld and then, we treat it as an operator, subjected to various com-
mutation relations. This process is also known as `second quantization'. To
begin, let us �nd the energy of the `classical' Klein-Gordon �eld. The Hamil-
ton function, starting from the de�nition of the Lagrangian given in (2.3.1),
is de�ned as

H =
1

2

∫ [
(∂0φ)2 +∇φ · ∇φ+m2φ2

]
d3x. (2.4.1)
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For the complex scalar �eld, we have

H =

∫ [
(∂0φ

∗)(∂0φ) +∇φ∗ · ∇φ+m2φ∗φ
]
d3x

and in each case, the Hamiltonian and thus the energy, is positive de�nite.
The �eld φ(x) is regarded as an Hermitian operator, whose Fourier expansion
may be written

φ(x) =

∫
d3k

(2π)32ωk

[
a(k)e−ik·x + a†(k)eik·x

]
, (2.4.2)

with ωk = (k2 + m2)
1
2 and c = 1. The coe�cients a(k) and a†(k) are also

operators. The measure of the integrand has been so chosen because it is
relativistically invariant. For the Klein-Gordon �eld we have the `mass-shell'
condition k2 = k2

0 − k2 = m2 (~ = c = 1), so an invariant element in phase
space is, with k0 > 0 (positive energy condition)

d4k

(2π)4
2πδ(k2 −m2)θ(k0) =

d4k

(2π)3
δ(k2

0 − ω2
k)θ(k0)

=
d4k

(2π)3
δ[(k0 + ωk)(k0 − ωk)]θ(k0)

=
d4k

(2π)3

1

2k0
[δ(k2

0 + ωk) + δ(k2
0 − ωk)]θ(k0)

=
d4k

(2π)3

dk0

2k0
δ(k2

0 − ωk)θ(k0) =
d3k

(2π)32ωk

where θ(k0) is the heaviside function and d4k = d3k dk0.
The quantity φ(x, t) plays a role in �eld theory analogous to that played by
x, the position vector, in classical mechanics.
The quantization of mechanics follows from the Heisenberg commutation
relations

[xi, pj ] = iδij (i, j = 1, 2, 3),

[xi, xj ] = [pi, pj ] = 0,
(2.4.3)

where the momentum pj is de�ned canonically as ∂L/∂ẋj . x and p refer to
the position and momentum of a particle, measured at the same time!
In a scalar �eld theory φ(x, t) plays a role analogous to x(t), and describes a
system with an in�nite number of degrees of freedom, since, at each time, φ
has an indipendent value at each point in space. To approach this continuum
case, we divide the space into cells, each of volume δVr, and we de�ne φr(t)
as the average value of φ(x) in cell r at time t. The average Lagrangian
density in each cell is then Lr. Then the momentum variable pr, conjugate
to φr is

pr(t) =
∂L

∂φ̇r(t)
= δVr

∂Lr
∂φ̇r(t)

= δVrπr(t) (2.4.4)
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where the �eld π(x, t) is de�ned by

π(x, t) =
∂L

∂φ̇(x, t)
(2.4.5)

and πr(t) is the average value in cell r.
The Heisenberg commutation relation give

[φr(t), ps(t)] = iδrs,

[φr(t), φs(t)] = [pr(t), ps(t)] = 0
(2.4.6)

and then substituting the (2.4.4) into the (2.4.6) gives

[φr(t), πs(t)] =
1

δVs
iδrs.

In the continuum limit δVr → 0, we obtain

[φ(x, t), π(x′, t)] = iδ(x− x′),
[φ(x, t), φ(x′, t)] = [π(x, t), π(x′, t)] = 0

(2.4.7)

These are known as equal-time commutation relations (ETCR), and we now
use them to �nd the commutation relations between a(k) and a†(k), in equa-
tion (2.4.2). First of all, from the de�nition (2.4.5) and the de�nition of the
Lagrangian (2.3.1), we have

π(x) = φ̇(x).

Now we will check that the positive energy (also known as positive frequency)
solution

fk(x) =
1

[(2π)32ωk]
1
2

e−ikx (2.4.8)

form an orthonormal set∫
f∗k (x)i

←→
∂0 fk′(x) d3x = δ3(k− k′), (2.4.9)

where
←→
∂0 is de�ned by

A(t)
←→
∂0B(t) = A(t)

∂B(t)

∂t
− ∂A(t)

∂t
B(t).

This operator permits to de�ne a scalar product which is positive de�nite.
The �eld expansion (2.4.2) may then be written as

φ(x) =

∫
d3k

[(2π)32ωk]
1
2

[fk(x)a(k) + f∗k (x)a†(k)]. (2.4.10)
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Inverting the previous expression, using (2.4.9), we get

a(k) =

∫
d3x[(2π)32ωk]

1
2 f∗k (x)i

←→
∂0φ(x),

a†(k′) =

∫
d3x′[(2π)32ωk′ ]

1
2φ(x′)i

←→
∂0 fk′(x

′).

(2.4.11)

From the de�nition of the commutation relation in the continuum limit, and
the fact that π(x) = φ̇(x), after some calculations, we have

[a(k), a†(k′)] = (2π)32ωkδ
3(k− k′). (2.4.12)

Similarly, we get

[a(k), a(k′)] = 0, [a†(k), a†(k′)] = 0.

The operators a(k) and a†(k) play a crucial role in the particle interpretation
of the quantized �eld theory. First we construct the operator

(2π)32ωkδ
3(0)N(k) = a†(k)a(k). (2.4.13)

It is simple to show that N(k) and N(k′) commute:

[N(k), N(k′)] = 0,

so the eigenstates of these operators may be used as a basis. Let the eigen-
values be denoted by n(k):

N(k) |n(k)〉 = n(k) |n(k)〉 .

Using the relations:
[N(k), a†(k)] = a†(k),

[N(k), a(k)] = −a(k),

which can be rewritten as

N(k)a†(k) = a†(k)N(k) + a†(k),

N(k)a(k) = a(k)N(k)− a(k),

lead us to �nd

N(k)a†(k) |n(k)〉 = [n(k) + 1]a†(k) |n(k)〉 (2.4.14)

and
N(k)a(k) |n(k)〉 = [n(k)− 1]a(k) |n(k)〉 . (2.4.15)

These equations tell us that, if the state |n(k)〉 has eigenvalue n(k), the
states a†(k) |n(k)〉 and a(k) |n(k)〉 are eigenstates of N(k) with respective
eigenvalues n(k) + 1 and n(k) − 1. N(k) is a particle number operator, or
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more precisely, a number density operator. To justify the name, we compute
the �eld energy, through the Hamiltonian, found by substituting the (2.4.2)
into the (2.4.1), obtaining

H =

∫
d3k

(2π)32k0

k0

2
[a†(k)a(k) + a(k)a†(k)]

=

∫
d3k k0

[
N(k) +

1

2

] (2.4.16)

with ωk = k0 and, similarly, the �eld momentum is

P =

∫
d3k k

[
N(k) +

1

2

]
.

These expressions suggest the interpretation that N(k) is the operator for
the number of particles with momentum k and energy k0. This means that
N(k) never becomes negative! To justify that, we can note that the state
a(k) |n(k)〉 must have non negative norm, as in all the Hilbert space:

[a(k) |n(k)〉]†[a(k) |n(k)〉] = 〈n(k)| a†a(k) |n(k)〉 = n(k) 〈n(k)|n(k)〉 > 0.

So that, if |n(k)〉 has non-negative norm, n(k) must be positive or zero. On
the other hand, from the equation (2.4.15), a(k) reduces n(k) by 1 and,
repeated application, will continue to reduce it. The only way to avoid n(k)
becoming negative is to have a ground state |0(k)〉, or |0〉 for short, with

a(k) |0〉 = 0 ⇒ N(k) |0〉 = a†(k)a(k) |0〉 = 0. (2.4.17)

This relation tells us that the ground state in vacuum contains no particle
with momentum k. On the contrary, a†(k) increase N(k) by one at time.
This is why N(k) is called number operator. We can also recover the con-
nection between the above analysis and the quantum mechanical armonic
oscillator. In fact, our Hamiltonian (2.4.16) is equivalent to the harmonic
oscillator form

H =

∫
d3k

[
1

2
P 2(k) +

ω2
k

2
Q2(k)

]
by substituting

P (k) =
(ωk

2

) 1
2

[a(k) + a†(k)], Q(k) =
i

(2ωk)
1
2

[a(k)− a†(k)].

The Klein-Gordon �eld is then equivalent to an in�nite sum of oscillators.
The operators a(k) and a†(k) are called annihilation and creation operators
for the �eld. Moreover, the fact that N(k) is non-negative, implies that the
energy of the quantized �eld is non-negative, according to what we found
for the classical Klein-Gordon �eld. Our Hamiltonian contains an in�nite
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contribution from all the oscillator ground state, but, since the zero of the
energy is arbitrary, this may be subtracted with no physical consequences
and rede�ne the Hamiltonian as

H =

∫
d3kωkN(k),

with the property

〈0|H |0〉 =

∫
d3k k0 〈0| a†(k)a(k) |0〉 = 0,

thanks to the (2.4.17). This means that the mean value of the Hamiltonian,
and then the mean energy of the system, is equal to zero.
Formally, the fact that the annihilation operator is on the right of the creation
operator is called normal ordering, and it is denoted as : :. This has been
introduced for the purpose to rescale the ground state energy to zero. Thus,
decomposing the �eld φ(x) into positive and negative frequency parts, from
equation (2.4.10)

φ(x) = φ(+)(x) + φ(−)(x)

with

φ(+)(x) =

∫
d3k

[(2π)32ωk]
1
2

a(k)fk(x),

φ(−)(x) =

∫
d3k

[(2π)32ωk]
1
2

a†(k)f∗k (x),

we have
: φ(x)φ(y) : = φ(+)(x)φ(+)(y) + φ(−)(x)φ(+)(y)

+ φ(−)(y)φ(+)(x) + φ(−)(x)φ(−)(y).

From the equation (2.4.14) we can see that the state a†(k) |n(k)〉 is propor-
tional to the state |n(k) + 1〉, since both solves the eigenvalue equation, with
eigenvalue n(k) + 1, so we write

a†(k) |n(k)〉 = c+(n(k)) |n(k) + 1〉

or, to be more precise

a†(ki) |n(k1), . . . , n(ki), . . .〉 = c+(n(ki)) |n(k1), . . . , n(ki) + 1, . . .〉 ,

where the creation operator had increased the counting of particle with mo-
mentum ki. The coe�cient c+(n(k)) may be found by imposing the normal-
ization condition, which gives

|c+(n(k))|2 = n(k) + 1.
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So, within a phase factor, c+(n(k)) = [n(k) + 1]
1
2 . Then, by the same

argument, using a(k) and the corresponding coe�cient c−(n(k)), we �nd

c−(n(k)) = [n(k)]
1
2 .

The vacuum state constains no particle of any momentum, i.e.

|0〉 = |0, 0, . . .〉 ,

and an aritrary normalized state containing n(k1) particle with momentum
k1, n(k2) particle with momentum k2, etc., may be written as

|n(k1), n(k2), . . .〉 =
1

(n(k1)!n(k2)! . . . )
1
2

[a†(k2)]n(k2)[a†(k2)]n(k2) . . . |0〉 .

From the last formula, there is evidently no restriction on n(k) since any
number of particle can exist in the same momentum state. The particle
are called bosons and this relations follows directly from the commutation
relations (2.4.7) 4. With |k〉 = a†(k) |0〉 = 〈0| a(k), we are saying that from
zero particle of momentum k, we have created one with that momentum,
since we have 〈

k
∣∣k′〉 = 〈0| a(k)a†(k) |0〉

= 〈0| [a(k), a†(k)] |0〉+ 〈0| a†(k)a(k) |0〉︸ ︷︷ ︸
0

= (2π)32k0δ
3(k− k′),

and this normalization is also covariant.

2.5 Quantum �eld theory (QFT) in curved space

In this section we will show what experiences an observer (paticle detector)
that uniformly accelerates through the Minkowski vacuum state. The results
will be that accelerating observers perceives a bath of thermal radiations. In
other words, this means that an accelerating observer see a di�erent vacuum
state with respect a static Minkowski observer [BD84].

2.5.1 Cylindrical two dimensional space-time

Let de�ne the usual Minkowski metric for two dimensional space-time, a
cylinder R1 × S1, as

ds2 = dt2 − dx2

4If we want to describe fermions, we must modify these commutation relations.
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and apply a coordinates transformation{
u = t− x
v = t+ x

.

We can now rewrite the metric in function of null coordinates as

ds2 = dudv.

The modes restricted to our cylinder are

uk(t, x) =
1√
2Lω

ei(kx−ωt),

where k = 2πn/L, n = 0,±1,±2, . . . , and L is the length of the cylinder's
circumnference.
In our case we can impose two types of boundary conditions, periodic or
antiperiodic. In the �rst case we �x

uk(t, x) = uk(t, x+ nL),

while in the second

uk(t, x) = (−1)nuk(t, x+ nL),

which are also-called twisted modes. In the last case, k is given by

k = 2π

(
n+

1

2

)
1

L
, n = 0,±1,±, 2, . . .

Because of the �eld modes are forced into a discrete set, this implies that
the �eld energy is distributed. We now de�ne the stress-energy tensor as

Tαβ = ∂αφ∂βφ−
1

2
ηαβ

(
ηλδ∂λφ∂δφ

)
+

1

2
m2φ2ηαβ,

where we called ηαβ the Minkowski metric tensor.
In cartesian coordinates the stress-energy tensor can be written as

Ttt = Txx =
1

2
(∂tφ)2 +

1

2
(∂xφ)2,

Txt = Ttx = (∂tφ)(∂xφ).

We shall now evaluate 〈0L|Tµν |0L〉, where clearly |0L〉 is the vacuum state
associated to our space. The Minkowski vacuum state |0〉 can be recovered
if

L→∞ ⇒ |0L〉 → |0〉 .
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De�ning

〈0|Tαβ |0〉 =
∑
k

Tαβ[uk, u
∗
k],

we encounter a problem when we evaluate the following expression

〈0L|Tαβ |0L〉 =
1

2L

+∞∑
n=−∞

|k| = 2π

L2

+∞∑
n=−∞

n→ +∞.

In fact, the series diverges. The compacti�ed spatial section, is able to modify
the long wavelengths modes but the ultraviolet behaviour is unchanged. In
Minkowski space vacuum, the ultraviolet divergence was removed by normal
ordering with respect to the creation and annihilation operator. Taking a
general state |ψ〉

〈ψ| : Tαβ : |ψ〉 = 〈ψ|Tαβ |ψ〉 − 〈0|Tαβ |0〉

we recover that
〈0| : Tαβ : |0〉 = 0.

If we consider the Minkowski space as a covering space for R1 × S1, then
|0L〉 can be considered as the vacuum state in the above space. We can then
remove the divergence behaviour.

2.5.2 Quantum �eld theory in Rindler space

Uniformly accelerating detector perceives the usual Minkowski space vacuum
state to be a thermal bath of radiation [BD84]. Inertial detector responds to
a thermal �ux of radiation streaming away from a mirror that recedes along
a non-uniformly accelerating trajectory.
We now consider a two-dimensional Minkowski space with metric

ds2 = dūdv̄ = dt2 − dx2.

Under the following coordinates transformation

t =
1

a
eaξ sinh aη, x =

1

a
eaξ cosh aη,

or equivalently

ū =
1

a
e−au, v̄ =

1

a
eav

where a is a positive constant, −∞ < η, ξ < +∞ and u = η − ξ, v = η + ξ,
the metric can be written as:

ds2 = e2aξdudv = e2aξ(dη2 − dξ2). (2.5.1)

In the last coordinate system, η and ξ cover only one quadrant of Minkowski
space, the region for which |x| > t, called also region (R).
In Figure 2.2 we have that:
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t

x

η =
cost

ū
=
0

v̄
=
0

ξ
=
cost

R

F

L

P

Figure 2.2: Representation of the Rindler space.

• lines of constant η, where x ∝ t, are straight, passing from the origin;

• lines of constant ξ are hyperbolae. In this case we have that

x2 − t2 =
1

a2
e2aξ = cost

are the worldline of uniformly accelerated observers.
Moreover lines of large positive ξ (far from x = t = 0) represent weakly
accelerated observers.

The principal problem is that Rindler coordinates (η, ξ) are non-analytic
across ū = v̄ = 0.
All hyperbolae are asymptotic to the null rays ū = v̄ = 0 (or u = +∞ and
v = −∞), which means that accelerated observers approach the speed of
light as η → ±∞.
This observers proper time is related to η, ξ by:

τ = eaξη.

A second Rindler wedge can be obtained by re�ecting the coordinates de�ned
in region (R) by changing the sign of the above coordinates tranformation
on the right hand side, obtaining the wedge (L). In (L) the direction of time
is re�ected, i.e. increasing t means decreasing η. The Rindler observer, with
constant spatial ξ, approaches but do not cross the null rays u = +∞ and
v = −∞, which act like an horizon. This means that no events in (L) can be
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i+

i−

R

F

L

P

F+ F+

F− F−

Horizon
ξ = cost

Figure 2.3: Conformal diagram of Rindler space.

looked by (R) and vice-versa. Events in (L) can be connected with events in
(R) only through spacelike line and this means that the two region represents
two causally disjoint universes.
(F) and (P) stays respectively for future and past. Events in both (F) and
(P) can be connected by null-rays to both (L) and (R).
The Rindler observer intersect F±, rather than i±, as do asymptotically
inertial observers. The null ray u = +∞ acts as a future event horizon.
Events in the portion (F) cannot causally in�uence events in (R).
We consider now the quantization of a massless scalar �eld φ in a two-
dimensional Minkowski space-time. The wave equation

�φ =

(
∂2

∂t2
− ∂2

∂x2

)
φ =

∂2φ

∂ū∂v̄
= 0

posses orthonormal modes solutions

ūk =
1√
4πω

ei(kx−ωt),

with ω = |k| > 0 and −∞ < k < +∞. This modes are positive frequency
with respect to the timelike Killing vector ∂t, satifying

L∂t ūk = −iωūk.
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We can distinguish the two cases{
k > 0⇒ right moving waves: 1√

4πω
e−iωū, along ū = cost,

k < 0⇒ left moving waves: 1√
4πω

e−iωv̄, along v̄ = cost.
(2.5.2)

The Minkowski vacuum state |0M 〉 is constructed by expanding φ in terms
of ūk. In Rindler region (R) and (L), we can base our quantization on uk,
instead of ūk. The metric (2.5.1) is conformal to the whole of Minkowski,
under the conformal transformation:

gµν → e−2aξgµν

and the metric reduces to dη2 − dξ2 with −∞ < η, ξ < +∞. Then, since
the wave equation is conformally invariant, we can rewrite it in Rindler
coordinates as

e2aξ = �φ =

(
∂2

∂η2
− ∂2

∂ξ2

)
φ =

∂2φ

∂u∂v
= 0,

for which exist modes solution of the form

uk =
1√
4πω

eikξ−±iωη

where ω = |k| > 0, −∞ < k+∞ and at the exponent, the sign ± are referred
to (L) and (R) region respectively, due to the time reversal in (L) and the
fact that the modes are right moving in (R) and left moving in (L) towards
increasing ξ.
The modes are positive frequency with respect to the timelike Killing vector
∂η in (R) and −∂η in (L) such that

L±∂ηuk = −iωuk.

We then de�ne

uRk =

{
1√
4πω

ei(kξ−ωη), in (R)

0, in (L)
,

uLk =

{
1√
4πω

ei(kξ+ωη), in (L)

0, in (R)
,

(2.5.3)

which are respectively complete in the right and left Rindler region. Both
sets toghether are complete. The modes can be analitically continued into
the future and past regions, which means extend a to be immaginary. Then
this modes are good to quantize φ as the Minkowski space basis. We can
expand φ through the di�erent basis in either

φ =
+∞∑

k=−∞
(akūk + a†kū

∗
k)
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or

φ =
+∞∑

k=−∞

(
b
(1)L
k uk + b

(1)†L
k u∗k + b

(2)R
k uk + b

(2)†R
k u∗k

)
,

yelding two alternative Fock spaces and two alternative vacuum states |0M 〉
, |0R〉, such that,

ak |0M 〉 = 0,

b
(1)
k |0R〉 = b

(2)
k |0R〉 = 0.

This vacuum states will be not equivalent, because of the changing in sign
in the exponent at ū = v̄ = 0 (crossover point between (L) and (R)).
The functions uRk do not go over smoothly to uLk , passing from (R) to (L)).
This means that passing from ū < 0 to ū > 0 ( or v̄ < 0 to v̄ > 0), the right-
(or left-) mooving modes are not analytic at this point. On the other hand,
the positive frequency Minkowski modes in (2.5.2) are analytic not only on
the real ū (or v̄ ) axis, but also analytic and bounded in the entire lower
half of the complex ū ( or v̄) plane. This analiticity property remains true
for any pure positive frequency Minkowski modes. Then, Rindler modes, by
their non-analiticity at ū = v̄ = 0, cannot be combination of pure positive
frequency Minkowski modes, but must also contain negative frequencies and
this implies that the vacuum state cannot be the same. This means that the
vacuum of one set of modes contains particles associated with the other set
of modes.
To determine what Rindler particles are present in the Minkowski vacuum
state, one must determine the Bogoliubov tranformations between the two
set of modes (Fourier transform of Rindler modes) [ABFP13]. To do that,
we can use the Unruh method, noting that the two modes uRk and uLk are not
analytic. The two un-normalized combination are analytic and bounded,
such that {

uRk + e−
πω
aLu∗k

u∗Rk + e
πω
aLuk

,

where the �rst mode is proportional to{
ū
iω
a , k>0

v̄−
iω
a , k<0

while the second is proportional to{
v̄
iω
a , k>0

ū−
iω
a , k<0

.

In this cases ω = |k| and −∞ < ū, v̄ < +∞.
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Expanding φ as

φ =

+∞∑
k=−∞

[
2 sinh

(ωπ
a

)]− 1
2
[
d

(1)
k

(
e
πω
2a uRk + e−

πω
2a u∗Lk

)]
+
[
2 sinh

(ωπ
a

)]− 1
2
[
d

(2)
k

(
e−

πω
2a u∗Rk + e

πω
2a uLk

)]
+ h.c.

where now

d
(1)
k |0M 〉 = d

(2)
k |0M 〉 = 0.

In the above expression, we have also introduced a normalization factor.

We can also relate b
(1,2)
k and d

(1,2)
k thanks to the inner product, such that

b1k = (φ, uRk ) =
[
2 sinh

(ωπ
a

)]− 1
2
[
e
πω
2a d

(2)
k + e−

πω
2a d

(1)†
−k

]
,

b2k = (φ, uLk ) =
[
2 sinh

(ωπ
a

)]− 1
2
[
e
πω
2a d

(1)
k + e−

πω
2a d

(2)†
−k

]
.

(2.5.4)

The Bogoliubov transformations provides the transformations between |0R〉
and |0M 〉.
If we now consider an accelerating Rindler observer at ξ = cost, then he
has a proper time which is proportional to η. Proper observer in (L) detect

particles counted by number operator b
(1)
k and b

(1)†
k , while in (R) through

b
(2)
k and b

(2)†
k .

If the �eld is in the state |0M 〉, using (2.5.4), we obtain

〈0M | b(1,2)†
k b

(1,2)
k |0M 〉 =

e
−πω
a

2 sinh πω
a

=
1

e2πω
a − 1

,

which represent particle in mode k. This represents precisely the Planck

spectrum for radiation at temperature

T0 =
a

2πkB
.

The temperature T seen by the accelerated observer is given by the Tolman

relation

T =
1
√
g00

T0.

Particles detected by Rindler observer are called Rindler particles.
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Chapter 3

Black hole geometry

This chapter aims at introducing the fundamentals of black hole geometry,
focusing in particular on the simplest case of a non-charged and non-rotating
black hole, the so-called Schwarzschild black hole.

3.1 Spherically Symmetric Gravitational Field

We start the analysis of the physical properties of black holes with the sim-
plest case in which both the black hole and its gravitational �eld are spher-
ically symmetric [FN98,CB14].
Let us write the metric1 in a region far from strong gravitational �elds, where
special relativity is valid. In cartesian coordinates we have the Minkowski
metric:

ds2 = −c2dt2 + d`2 = −c2dt2 + dx2 + dy2 + dz2.

where c is the speed of light and d`2 is the distance in three-dimensional
space.
The metric tensor is then

g =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Using spherical spatial coordinates system (r, θ, φ):

ds2 = −c2dt2 + d`2 = −c2dt2 + dr2 + r2(dθ2 + sin2 θ dφ2)

Since ds2 can be negative, the space-time separation between two events
is not the usual distance. If we take two events P = (t, x, y, z) and Q =

1We use (−, +, +, +), signature convention for the space-time metric ds2 = gµνdx
µdxν .

From now on, Greek indices µ, ν take values 0,1,2,3, while small Latin indices i, j = 1, 2, 3
enumerate spatial coordinates.

25
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x

t

A

B

C

P

Chronological future

Figure 3.1: Representation of the Minkowski light cone with only
one spatial variable. The points A, B and C are connected to P by
a timelike, lightlike and spacelike vector respectively.

(t′, x′, y′, z′), the interval between them can be positive, null or neagtive.

The vector
−−→
PQ is said to be:

• timelike if d2(P,Q) < 0;

• lightlike (or null) if d2(P,Q) = 0;

• spacelike if d2(P,Q) > 0.

The set of outgoing lightlike vectors from P forms the so-called Minkowski
light cone, see Figure 3.1.
Given then a D-dimensional di�erential manifoldM and a lorentzian metric
g, we will say that a space-time (M, g) is time-orientable if there exists a
non-spacelike continuous vector �eld, de�ned everywhere (it has to be time-
like or lightlike in each point ofM). This means that a preferred direction
for time can be de�ned.
In a time-orientable space-time, a curve is called timelike (or spacelike/light-
like) if in each point of the curve the tangent vector is timelike (or space-
like/lightlike). A non-spacelike curve is said to be future (past) directed, in a
time-orientable space-time, if, at each point of the curve, the tangent vector
is future (past) directed.
Given now two subsets A, B ⊂M, we will say that

• the chronological future (past) of A relative to B is the set I+(−) (A,
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B) of points p ∈ B that can be reached from A along future (past)
directed timelike curves

• the causal future (past) of A relative to B, is the set J +(−)(A, B) of
points p ∈ B that can be reached from A along future (past) directed
non-spacelike curves

3.2 Schwarzschild metric

The Schwarzschild black hole represents the general solution of the Einstein
equations in vacuum, with spherical symmetry [BCF18]. The metric reads

ds2 = −
(

1− rs
r

)
c2dt2s +

(
1− rs

r

)−1
dr2 + r2dΩ2, (3.2.1)

where ts represents the Schwarzschild time coordinate, rs = 2GM/c2 is
the Schwarzschild radius, G is the Newton gravitational constant, M is
the mass of the �eld source and dΩ2 = dθ2 + sin2 θ dφ2 is the angular
line element. The metric is the standard one on the 2D round sphere
with (ts, r) ∈ (−∞,+∞) × (0,+∞). The coordinates (ts, r, θ, φ) are called
Schwarzschild coordinates.
As rs/r → 0 the Schwarzschild metric approaches the �at Minkowski met-
ric, so the coordinats (ts, r, θ, φ) correspond to the usual spherical coordi-
nates of �at space-time, for an observer situated at in�nity [Rob12]. The
equation (3.2.1) contains two singularities at r = 0 and r = rs. Since the
Schwarzschild metric is valid only in vacuum, these singularities are relevant
only when the entirety of the mass is con�ned to a radius smaller than rs.
In this case, it will inevitably collapse to a single point of in�nite density at
r = 0. Such objects are called black holes. The point r = 0 is a genuine
singularity of Schwarzschild space-time and we shall not be concerned with
it. We are instead interested in the surface for r = rs, the so-called event

horizon.
Let us brie�y examine the e�ect of the event horizon on light trajectories,
or null curves, with ds2 = 0. For simplicity, we shall consider radial trajec-
tories, so we have also dΩ2 = 0. This leaves us with a di�erential equation
for the radial null curves:

dts
dr

= ±1

c

(
1− rs

r

)−1
.

Far from the Schwarzschild radius, where r � rs, we have that |dts/dr| →
1/c, so that light behaves just as it does in �at space-time. However, if we
approach the Schwarzschild radius, |dts/dr| diverges in such a way that light
takes longer and longer to travel any distance, and, if travelling towards the
event horizon, can never reach it in a �nite time t. The singularity at r = rs
is only an artifact generated by the coordinates system that we used and
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Singularity

r = 0

t

r

r = rs

radial outgoing
null geodesic

surface of the star

Light cone

v = const
Collapsing of

the star

Figure 3.2: Representation of a collapsing star and black hole cre-
ation. The light cone bends approaching the horizon and, once it
is crossed, the cone points towards the singularity. Then timelike
and lightlike curves are destined to fall into the singularity in r = 0
and this is the reason why nothing can ever escape from a black
hole.

can be eliminated by a coordinate transformation. Using the time advanced
Eddington-Finkelstein coordinate

v = ts + r∗,

where

r∗ =

∫
dr

1− rs/r
= r + rs ln

∣∣∣∣ rrs − 1

∣∣∣∣,
the Schwarzschild line element can be written as

ds2 = −
(

1− rs
r

)
dv2 + 2dvdr + r2dΩ2.

Then to examine as before the e�ect of the event horizon on the radial null
curves (θ = const, φ = const), we set again ds2 = 0. Therefore

v = const

describes the motion of ingoing spherical light fronts, while

dr

dv
=

1

2

(
1− rs

r

)
(3.2.2)
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is related to the outgoing ones. Inspecting the last expression, we can see that
only outgoing rays at r > rs manage to move outwards, since dr/dv > 0.
For r < rs they move inwards (dr/dv < 0). At r = rs they are blocked
forever. These considerations tell us that neither light not matter (since
nothing can propagate faster than light) can escape from the region r < rs,
which represent the black hole.

3.3 Analogue gravity

According to General Relativity, we can say that black holes are space-time
regions where the gravitational �eld is so strong that not even light can
escape [BFFP05, BLV05, SU08, ABFP14, LRCP12]. Hawking, in 1974, dis-
covered that if we take into account Quantum Mechanics, black holes are
no longer black. He showed that they thermally radiate with a temperature
which is inversely proportional to their mass. If we consider a black hole
with mass M , it emits, like a black body, with a temperature

TH =
~c3

8πGkBM
,

where G is the Newton gravitational constant and kB is the Boltzmann
constant. The maximal power emission is given by the Stefan law

P = AσST
4
H ,

where σS is the Stefan constant given by

σS =
π2k4

B

60c2~3

and A is the area of the horizon.
If we coonsider for example a Schwarzschild black hole with a solar mass
(M = 1.989 · 1030Kg) we have that the temperature is TH ' 6.17 · 10−8K.
This temperature is far below the Cosmic Microwave Background tempera-
ture, which is approximately 2.7K. There is then no hope to detect Hawking
radiations from astrophysical black holes resulting from gravitational col-
lapse, since those have a greater mass than the solar one, and emit at an
even lower temperature. However, it is possible to detect Hawking radiation
emitted by light black holes produced in the early universe. Unfortunately
it is improbable to �nd such black holes since they have been subjected to a
period of in�ation, which has diluted them away.
An alternative to direct observation is to reproduce the principal character-
istics of an event horizon in a simple enough system, in laboratory. The pro-
totype for this con�guration was discovered by Unruh [Unr81], who stated
the analogy between light propagation in a curved space-time and sound
propagation in a non-uniformly moving �uid. Later, the analogy has been
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generalized with the study of wave propagation in non-homogeneous con-
densed matter systems. This analogy has given rise to a new line of research,
the Analogue Gravity.

3.4 Black hole evaporation in laboratory

Let us consider a non relativistic, irrotational, barotropic and non-viscous
�uid (water), described by a velocity �eld ~v = ∇ψ, a density ρ and a pressure
p (since it is barotropic p = p(ρ)) [BLV05,FM11]. The equations describing
the �uid are

ρ [∂t~v + (~v · ∇)~v] = −∇p− ρ∇φ,
∂tρ+∇ · (ρ~v) = 0,

where φ represents the gravitational potential. The irrotationality of ~v allow
us to rewrite the Euler equation as

~0 = ∇
(
∂tψ +

v2

2
+ φ

)
+

1

ρ
∂ρp∇ρ.

If there exists a primitive G(ρ) of the funtion ∂ρp(ρ), we can write

∂tψ +
v2

2
+ φ+G = 0. (3.4.1)

Decomposing ψ and ρ in a background and perturbation part as

ψ = ψ0 + δψ,

ρ = ρ0 + δρ,

we can rewrite the continuity equation and equation (3.4.1), at �rst order in
the perturbations, as

∂tδρ+∇ [δρ~v0 + ρ0∇δψ] = 0,

∂tδψ + ~v0 · ∇δψ +
1

ρ2
0

∂ρp0δρ = 0,
(3.4.2)

where ~v0 = ∇ψ0 and ∂ρp0 = ∂ρp|ρ=ρ0 . From the system of equations (3.4.2)
we can get a unique equation in δψ. After some standard calculations, we
write

1

ρ0

[
∂t

(
ρ0

∂ρp0
∂tδψ

)
+ ∂t

(
ρ0

∂ρp0
~v0 · ∇δψ

)
+∇ ·

(
ρ0

∂ρp0
~v0∂tδψ

)
−∇ · (ρ0∇δψ) +∇ ·

(
~v0

ρ0

∂ρp0
~v0 · ∇δψ

)]
= 0.

The main observation is that the previous equation is exactly the Klein-
Gordon equation for a massless scalar �eld on a non trivial space-time metric

gµν∇µ∇νΦ = 0,
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where gµν are the components of the metric

ds2 =
ρ

c0

[(
c2

0 − v2
0

)
dt2 + 2dt~v0 · d~x− d~x · d~x

]
(3.4.3)

and c0 =
√
∂ρp0 is the local sound velocity.

From the irrotationality of ~v0 we can de�ne a new time coordinate

τ = t+

∫
γ

~v0 · d~x
c2

0 − v2
0

,

since the inegral depends only on the initial and �nal points of γ. Introducing
also the coordinate

dq =
~v0 · d~x
v0

,

we can rewrite (3.4.3) as

ds2 =
ρ0

c0

[(
c2

0 − v2
0

)
dτ2 − v2

0dq
2

c2
0 − v2

0

− d~x · d~x
]
.

3.5 Analogue gravity in Bose-Einstein condensates

The Hamiltonian describing a many-body system composed by N interact-
ing bosons con�ned in an external potential Vext(x), in a second quantized
formalism, can be written as [GACZ00,BLV05,FBC+13,ABFP13]

Ĥ =

∫
d3x

[
Ψ̂†
(
− ~2

2m
∇2 + Vext

)
Ψ̂ +

g

2
Ψ̂†Ψ̂†Ψ̂Ψ̂

]
, (3.5.1)

where Ψ̂(t,x) is the �eld operator which annihilates an atom at position x
and obeys the bosonic equal time commutation relation

[Ψ̂(x), Ψ̂†(x′)] = δ3(x− x′).

In our description g is a coupling constant related to the atom-atom scatter-
ing length by g = 4π~2a/m.
At su�ciently low temperature, a macroscopic fraction of the atoms accu-
mulates in a single particle lowest energy state, described by a macroscopic
wavefunction Ψ0(x), whose time evolution equation is given by the Gross-
Pitaevskii equation

i~
∂Ψ0

∂t
=

(
− ~2

2m
∇2 + V − ext+ g|Ψ0|2

)
Ψ0.

Using the density-phase representation, the condensate wavefunction can be
written as Ψ0 =

√
neiθ, the Gross-Pitaevskii equation can be rewritten as a

pair of real equations{
∂tn+∇(nv) = 0,

~ ∂tθ = − ~2
2m(∇θ)2 − gn− Vext − Vq,
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where the �rst equation is the continuity equation with an irrotational con-
densate velocity v0 = ~∇θ/m while the second is the analogous of the Euler
equation fon an irrotational inviscid �uid, with an additional term of quan-
tum pressure

Vq = − ~2

2m

∇2√n√
n

.

In the density-phase representation, dividing the density and the phase in a
mean value and a perturbative one, the �eld operator can be rewritten as

Ψ̂ =
√
n+ n̂1e

i(θ+θ̂1) ' Ψ0

(
1 +

n̂1

2n
+ iθ̂1

)
and the two equations of motion for the �uctuations are


∂tn̂1 = −∇

(
v0n̂1 +

~n
m
∇θ̂1

)
,

~ ∂tθ̂1 = −~v0∇θ̂1 −
mc2

n
n̂1 +

mc2

4n
ξ2∇

[
n∇

(
n̂1

n

)]
= 0.

(3.5.2a)

(3.5.2b)

We have introduced a foundamental length scale called healing length de�ned
as ξ = ~/(mc) and the local speed of sound c =

√
ng/m.

In the so-called hydrodynamic approximation, for length scale much larger
than ξ, the last term in the evolution equation for θ̂1 (3.5.2b) can be neglected
and n̂1 can be decoupled as

n̂1 = − ~n
mc2

[
v0∇θ̂1 + ∂tθ̂1

]
.

When this form is inserted in the evolution equation of n̂1 (3.5.2a), we obtain

− (∂t +∇v0)
n

mc2
(∂t + v0∇) θ̂1 +∇ n

m
∇θ̂1 = 0 (3.5.3)

which in matrix form reads as

∂µ

(
fµν∂ν θ̂1

)
= 0,

where the matrix element f ij is de�ned as

f00 = − n
c2
, f ij =

n

c2

(
c2δij − vi0v

j
0

)
,

and i, j = 1, 2, 3.
In any Lorentzian manifold, the d'Alambertian operator is

� =
1√
−g

∂µ
(√
−ggµν∂ν

)
,
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where gµν is the metric and gµν its inverse and g = det(gµν). Using this
de�nition, the equation (3.5.3) can be rewritten as

�θ̂1 = 0,

once one identi�es √
−ggµν = fµν .

Inverting this de�nition, we obtain the e�ective metric

gµν =
n

mc

(
−(c2 − v2

0) −vi0
−vj0 δij

)
.

We have then shown that under hydrodynamical approximation, the equa-
tion of motion for the phase �uctuation in a BEC can be written as a Klein-
Gordon equation for a massless scalar �eld, propagating in a space-time with
metric gµν .



34 CHAPTER 3. BLACK HOLE GEOMETRY



Chapter 4

Black hole radiation in

Bose-Einsten condensates

4.1 Introduction

In this chapter we will study a superluminal disperive BEC model. After
some manipulations of the model, to bring us back to a known framework in
literature, we will �nd the asymptotic solutions, through the WKB method,
far from the horizon (turning point).
After that, we will compute the solutions in the near horizon region, funda-
mental step that will allow us to connect the two approximations through
matched asymptotic expansion.
Finally, once recovered the matching coe�cients and evaluated the asymp-
totic expressions of the modes, we will �nd an analytical expression for the
thermality and the greybody factor, thanks to a current balance.

4.2 Settings

4.2.1 Dilute gases

We will give in this paragraph the basic ingredients to describe the conden-
sates and their perturbations [MP09].
In a second quantized fashion, atoms are described by a �eld operator Ψ(t,x),
which annihilates an atom at time t and position x. The �eld obeys the equal
time commutator

[Ψ(t,x),Ψ†(t,x′)] = δ3(x− x′).

The time evolution of Ψ is given by the Heisenberg equation

i~∂tΨ(t,x) = [Ψ(t,x), H], (4.2.1)

35
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where the Hamiltonian is de�ned as

H =

∫
d3x

{
~2

2m
∇xΨ†∇xΨ + VΨ†Ψ +

g

2
Ψ†Ψ†ΨΨ

}
,

where m is the mass of the set of atoms, V is the external potential and g
represents the coupling constant which describes the scattering of atoms.
Approaching the 0K ( typical scales are of 300nK for 104 atoms ), a large
amount of the atoms condenses in a common state. We can then separate this
common state from its perturbations, decomposing the �eld operator into a
constant part Ψ0, which describes the condensed atoms, and a �uctuation
part, as

Ψ = Ψ0 + φ̃. (4.2.2)

In this approximation, Ψ0 satis�es the Gross-Pitaevskii equation

i~∂tΨ0 = [T + V + gρ0]Ψ0, (4.2.3)

where T is the kinetic operator de�ned as T = −~2∇2
x/(2m) and ρ0 = |Ψo|2

is the condensate atom density, which obeys the continuity equation:

∂tρ0 + div(ρ0v) = 0,

where v represents the condensate velocity.

4.2.2 Stationary condensates

We will work with a stationary condensate. This means that, since in the
general case V , g and ρ0 depend both on x and t, there exists a Galilean
frame in which V , g and ρ0 are only funcion of x.
In this frame, the condensate wave function can be written as

Ψ0(t,x) = e
−iµt

~
√
ρ0(x)eiW0(x) (4.2.4)

where µ is the chemical potential. The condensate wave vector is k0 = ∂xW0.
In the case of a one-dimensional stationary condensate, the continuity equa-
tion is reduced to

ρ0(x)v(x) = const, (4.2.5)

where x is the longitudinal coordinate and v = ~k0(x)/m is the condensate
velocity. From now on, we will imagine that the condensate is �owing from
the right to the left (so that v(x) will be negative, with respect an x axis
directed to the right). Substituting (4.2.4) into (4.2.3) we obtain

µ =

[
mv2(x)

2
+ ρ
−1/2
0 Tρ

1/2
0 + V (x) + g(x)ρ0(x)

]
.
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Because of (4.2.5), we can characterize the non-homogeneity of the back-
ground by means of two functions whose product must remain constant.
We will consider the condensate velocity v(x) and the x-dependent speed of
sound

c2(x) = g(x)
ρ0(x)

m
. (4.2.6)

4.2.3 Bogoliubov-de Gennes equation

We aim now at showing that the relative �uctuation, at the linear order,
obeys a fourth-order equation which does not depend on the external poten-
tial [CW18]. Putting (4.2.2) into equation (4.2.1) and linearizing in φ̃, we
obtain

i~ ∂tφ̃ = [T + V + 2gρ0]φ̃+ gΨ2
0φ̃
†. (4.2.7)

For mathematical convenience, we de�ne the relative �uctuation φ = φ̃/Ψ0

and we rewrite the �eld operator as

Ψ = Ψ0(1 + φ). (4.2.8)

Substituting now φ̃ = Ψ0φ in (4.2.7) and using the equations (4.2.4) and
(4.2.6), we get

i~(∂t + v∂x)φ = Tρφ+mc2[φ+ φ†], (4.2.9)

where we have de�ned the `dressed' kinetic operator as

Tρ = − ~2

2mρ0
∂xρ0∂x = −~2 v

2m
∂x

1

v
∂x,

which accounts for the non-homogeneity of the condensate density. This
expression is valid for stationary condensates only and is obtained by using
equation (4.2.5).
We can now express the �eld operator as a superposition of the form

φω(t, x) = aωe
−iωtφω(x) + a†ω[e−iωtϕω(x)]∗, (4.2.10)

where aω and a†ω are respectively phonon annihilation and creation opera-
tors.
Substituting (4.2.10) into equation (4.2.9) and taking the commutator �rst

with aω and then with a†ω we obtain a system of second order coupled equa-
tions: {

[~(ω + iv∂x)− Tρ −mc2]φω = mc2ϕω,

[−~(ω + iv∂x)− Tρ −mc2]ϕω = mc2φω.
(4.2.11)
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4.3 Analysis of fourth order equations

It is possible to decouple the equations (4.2.11) by dividing, for example, the
�rst by c2 and substituting the expression in the second one, and viceversa.
After some manipulations, we obtain{

[~(ω + iv∂x) + Tρ]
1

c2
[−~(ω + iv∂x) + Tρ] + 2mTρ

}
φω = 0,{

[−~(ω + iv∂x) + Tρ]
1

c2
[~(ω + iv∂x) + Tρ] + 2mTρ

}
ϕω = 0,

(4.3.1)

where we recall that both v and c are function of the longitudinal coordinate
x. We have obtained two fourth order decoupled equations in φω and ϕω.
From now on, we will work and develop calculations exclusively for φω, since
the same procedures can be extended to ϕω.
Expanding the expressions (4.3.1), after standard computations 1 and divid-
ing by ~2, we get

c̄4 ∂
4
xφω + c̄3 ∂

3
xφω + c̄2 ∂

2
xφω + c̄1 ∂xφω + c̄0 φω = 0. (4.3.2)

We now need to eliminate the third order derivative term. This decision will
be useful to obtain a more manageable form of the fourth order equation,
which is also more studied in literature. To do that, without loss of generality,
we write φω = h(x)ζ(x) (and the same for ϕω), where h(x) and ζ(x) are two
generic functions depending on x, and we substitute the factorization into
(4.3.2). Performing the derivative of the product for each term and grouping
by ζ(x) we obtain

c̄4h(x)ζ(4)(x)

+

(
c̄3h(x) + 4c̄4h

′(x)

)
ζ(3)(x)

+

(
c̄2h(x) + 3c̄3h

′(x) + 6c̄4h
′′(x)

)
ζ ′′(x)

+

(
c̄1h(x) + 2c̄2h

′(x) + 3c̄3h
′′(x) + 4c̄4h

(3)(x)

)
ζ ′(x)

+

(
c̄0h(x) + c̄1h

′(x) + c̄2h
′′(x) + c̄3h

(3)(x) + c̄4h
(4)(x)

)
ζ(x) = 0.

(4.3.3)

Now we can take the coe�cient of ζ(3)(x) and set it equal to zero. Replacing
the expressions of the coe�cients c̄4 (A.1.1) and c̄3 (A.1.2) and simplifying,
we get the equation

h′(x) +

(
c′(x)

c(x)
+
v′(x)

2v(x)

)
h(x) = 0,

1the extended coe�ecients can be found in the Appendix A.1
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whose solution is

h(x) = c(x)
√
v(x).

Now we can substitute the above expression of h(x) in the equation (4.3.3).
Since h(x) 6= 0, we can divide by it, obtaining a new equation without the
third order term 2

c̃4 ∂
4
xζ(x) + c̃2 ∂

2
xζ(x) + c̃1 ∂xζ(x) + c̃0 ζ(x) = 0. (4.3.4)

At this point, we can start looking for some solutions of the equation (4.3.4).
To �nd them, we want to use the WKB approximation [Hol12]. We will use
as expansion parameter the healing length, which we de�ne as

η =
~√
2mc̄

, (4.3.5)

where

c̄ = inf
x
c(x).

This way the healing length is independent from the longitudinal coordinate
since taking the infx c(x) corresponds to obtain the supx η(x). Therefore,
the healing length we have de�ned represents the minimum length scale at
which dispersion becomes relevant. We are also sure that, if η → 0, since it
is de�ned as the supx, then η(x)→ 0, ∀x.
We have now to substitute, wherever it is possible in (4.3.4), the healing
length, so that we can make a series expansion in η. For example, we can
rewrite c̃4 (A.2.1) as

c̃4 =
~2

4m2c2(x)
=

1

2
η2 c̄2

c2(x)
.

Doing the same for the other coe�cients, we obtain a new equation 3

c4 ∂
4
xζ(x) + c2 ∂

2
xζ(x) + c1 ∂xζ(x) + c0 ζ(x) = 0. (4.3.6)

We are now in the optimal setup to use the WKB method 4. We want to
�nd a solution, at �rst order, of the type

ζ(x) = e
θ(x)
η (y0(x) + ηy1(x)) . (4.3.7)

2the extended coe�ecients can be found in the Appendix A.2
3the extended coe�ecients can be found in the Appendix A.3
4see Appendix B
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Putting then (4.3.7) into (4.3.6), computing the derivatives and performing
a series expansion in η, we get

1

η

(
2c̄2θ′(x)3

c2(x)
+

2v2(x)θ′(x)

c2(x)
− 2θ′(x)

)
y′0(x)

+
1

η

(
c̄2θ′(x)4

2c2(x)
+
v2(x)θ′(x)2

c2(x)
− θ′(x)2

)
y1(x)

+

[
1

η2

(
c̄2θ′(x)4

2c2(x)
+
v2(x)θ′(x)2

c2(x)
− θ′(x)2

)
+

1

η

(
3c̄2θ′(x)2θ′′(x)

c2(x)
− i
√

2c̄v(x)c′(x)θ′(x)2

c3(x)

−2c′(x)θ′(x)

c(x)
+

2v(x)v′(x)θ′(x)

c2(x)
+
i
√

2c̄v′(x)θ′(x)2

c2(x)

+
v2(x)θ′′(x)

c2(x)
− 2iωv(x)θ′(x)

c2(x)
− θ′′(x)

)]
y0(x) = 0.

(4.3.8)

Balancing now the term in 1/η2, we recover the eikonal equation

c̄2

2c2(x)
θ′(x)4 +

(
v2(x)

c2(x)
− 1

)
θ′(x)2 =

= θ′(x)2

[
c̄2

2c2(x)
θ′(x)2 +

(
v2(x)

c2(x)
− 1

)]
= 0.

(4.3.9)

Since it is a fourth order equation, it has four solutions, two of which are
identically equal to zero, so that θ′(x) = 0. These solutions will give rise,
as we will see later on, to an equation with a singularity, called in literature
fuchsian singularity. The other two solutions are instead regular.

4.3.1 WKB large wavevector solutions

We start studying the two solutions generated by

θ′1,2(x) = ± i
c̄

√
2(v2(x)− c2(x)). (4.3.10)

We remark that, since these solutions are purely immaginary and, in this
case, v(x) > c(x), we have that the modes related to θ′1,2 will live inside the
black hole.
Substituting now θ′1(x) = +i

√
2(v2(x)− c2(x))/c̄ in equation (4.3.8) we ob-

tain (
1− v2(x)

c2(x)

)
y′0(x)

+

(
−
√
v2(x)− c2(x)v′(x)

c2(x)
+

3c′(x)

2c(x)

+
v(x)

√
v2(x)− c2(x)c′(x)

c3(x)
− 3v(x)v′(x)

2c2(x)
− iωv(x)

c2(x)

)
y0(x) = 0,
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which is a �rst order ordinary equation, having solution

y0,1(x) =
1

(v2(x)− c2(x))3/4
exp

(
−iω

∫ x

dx′
v(x′)

v2(x′)− c2(x′)

)
(√

v2(x)

c2(x)
− 1 +

v(x)

c(x)

)−1

.

(4.3.11)

Doing the same computations with θ′2(x) = −i
√

2(v2(x)− c2(x))/c̄, we get

y0,2(x) =
1

(v2(x)− c2(x))3/4
exp

(
−iω

∫ x

dx′
v(x′)

v2(x′)− c2(x′)

)
(√

v2(x)

c2(x)
− 1 +

v(x)

c(x)

)
.

(4.3.12)

Then the two complete solutions are

ζ1(x) =exp

(
θ1(x)

η
− iω

∫ x v(x′)

v2(x′)− c2(x′)
dx′
)

1

(v2(x)− c2(x))3/4

(√
v2(x)

c2(x)
− 1 +

v(x)

c(x)

)−1

,

ζ2(x) =exp

(
θ2(x)

η
− iω

∫ x v(x′)

v2(x′)− c2(x′)
dx′
)

1

(v2(x)− c2(x))3/4

(√
v2(x)

c2(x)
− 1 +

v(x)

c(x)

)
,

where, by integrating (4.3.10), we have de�ned in the previous two equations
θ1,2 as

θ1,2(x) = ± i
√

2

c̄

∫ x

dx′
√

(v2(x′)− c2(x′))

We can now study the group velocity of these modes, to understand their
motion. We remark that, since we will derive k as a function of ω, we
will compute dk/dω which corresponds to the inverse of the group velocity.
To do that we extract the wavevectors from the solutions in the previous
equations, for x→ −∞. In this region, the two velocities v(x) and c(x) �eld
are constant:

v(x) = v∗, c(x) = c∗.

The two wavevectors are then

k1,2(ω) = ±1

η

√
2

c̄

√
v2
∗ − c2

∗ − ω
v∗

v2
∗ − c2

∗
. (4.3.13)
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From the above equation, since η is small, the wavevectors will be large.
From (4.3.13) we can evaluate the inverse of the group velocity as(

dω

dk

)−1

=
dk1,2

dω
= −ω v∗

v2
∗ − c2

∗

which is equal for the two modes. Moreover, since v < 0, we have also a
positive group velocity. The two modes are then counter-propagating with
respect to the background v(x), i.e. they move from the left to the right.

4.3.2 WKB small wavevector solutions

We want now to deal with the case θ′(x) = 0, that is θ equal to a constant.
Before any calculation, we are going to introduce an important parameter,
the surface gravity, de�ned as

κ =
d(v(x) + c(x))

dx

∣∣∣∣
H

(4.3.14)

where H represents the position of the sonic horizon, that we localize in
x = 0 for simplicity (we recall that, in our reference frame, v(x) is �owing
from the right to the left, being then negative, and, evaluated on the horizon,
assume the value v(0) = −c0; in our case we have also that c(0) = c0). Using
the de�nition (4.3.14) we have then, near the horizon,

(v(x) + c(x)) ∼ (v(0) + c(0)) + x
d(v(x) + c(x))

dx

∣∣∣∣
x=0

= κx, (4.3.15)

while
(v(x)− c(x))|x=0 = −2c0,

and so

(v2(x)− c2(x))|x=0 = [(v(x) + c(x))(v(x)− c(x))] |x=0 ∼ −2c0κx. (4.3.16)

Now, to compute the other two solutions, we insert again (4.3.7) into (4.3.6).
Once we have performed the calcuations, we substitute θ′(x) = 0. Expanding
in series as before with respect to η, we obtain(

v2(x)

c2(x)
− 1

)
y′′0(x)

+

(
−2c′(x)

c(x)
+

2v(x)v′(x)

c2(x)
− 2iωv(x)

c2(x)

)
y′0(x)

+

(
v2(x)c′′(x)

c3(x)
− c′′(x)

c(x)
+
v(x)c′(x)v′(x)

c3(x)

−2v2(x)c′(x)2

c4(x)
+
v(x)v′′(x)

2c2(x)
− iωv′(x)

c2(x)
+
v′(x)2

4c2(x)

− ω2

c2(x)
− v′′(x)

2v(x)
+

3v′(x)2

4v2(x)

)
y0(x) = 0,

(4.3.17)
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where, for brevity, we will denote the coe�cient of y0 with f(x). Dividing
now by the coe�cient of y′′0 and evaluating the expression on the horizon, in
x = 0, we get

y′′0(x)− c0

2κx

(
2iω

1

c0
− 1

c2
0

(2c′(x)c(x)− 2v′(x)v(x))|x=0

)
− c0

2κx
f(x)y0(x)

= y′′0(x)− c0

2κx

(
2iω

1

c0
− 1

c2
0

(2c0κ)

)
− c0

2κx
(f(x))y0(x)

= y′′0(x) +
1

x

(
− iω
κ

+ 1

)
y′0 +

1

x
(f(x))y0(x) = 0,

where, in the last line, we have multiplied f(x) by −c0/(2κ) without rela-
beling the function. We remark that, since we used a linear approximation
across the horizon in our calculations, the solutions will be valid only in a
neighborhood of x = 0.
To solve this equation, we will use an integration by series, since x = 0 is
a singular point for the coe�cients of y′0 and y0. Nevertheless, we are in
a particular case, in which the singularity is a pole of the �rst order and
we can apply results from the theory of di�erential equations with fuchsian
singularities [CCP82]. To do that, we rewrite the last equation as

y′′0(x) +
a0

x
y′0(x) +

b0
x2
y0(x) = 0 (4.3.18)

and we look for a solution of the type

y0(x) = xα
∞∑
n=0

cnx
n. (4.3.19)

Substituting (4.3.19) into (4.3.18), after some manipulations, we get

α(α− 1) + a0 α+ b0 = 0, (4.3.20)

known as determinant equation.
In our case, if we assume

a0 =

(
− iω
κ

+ 1

)
, b0 = 0,

equation (4.3.20) becomes

α2 − iω

κ
α = 0.

The solutions are

α1 = 0, α2 =
iω

κ
.
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Then, substituting α1 in (4.3.19) we �nd

yN0,3(x) = y0(x) = c0 + · · · = 1 + . . .

where we have chosen c0 = 1 and the apex N stands for `near' the horizon.
In the second case, with α2 we obtain

yN0,4(x) = y0(x) = xiω/κ
( ∞∑
n=0

cnx
n

)
∼ xiω/κ + . . .

This solution is related to the Hawking mode, and, the analogy becomes
more explicit rewriting the last expression as

yN0,4(x) = e
iω
κ
logx,

where the logarithmic behavior was highlighted.
Also in this case, we want to study the group velocity. Then, we have to
�nd an approximation for the two solutions for x → +∞. To recover the
two modes, we compute the reduced equation by putting η = 0 in equation
(4.3.4). In this case, since we are far from the horizon, the two velocity �elds
can be assumed constant and all the derivatives can be considered equal to
zero. The resulting equation becomes(

v2(x)

c2(x)
− 1

)
ζ ′′(x)− 2iωv(x)

c2(x)
ζ ′(x)− ω2

c2(x)
ζ(x) = 0.

With standard computations, the two solutions in the far horizon region are

ζF3 (x) = exp

(
−i ω

c− v
x

)
,

ζF4 (x) = exp

(
i
ω

c+ v
x

)
,

where F stands for `far' from the horizon.
The two wavevectors

k3 = − ω

c− v
, k4 =

ω

c+ v
, (4.3.21)

lead us to the following relation for the (inverse of) the group velocity

dk3

dω
= − ω

c− v
,

dk4

dω
=

ω

c+ v
.

In view of the previous relations, we can say that the solution ζ3(x) is a
co-propagating mode (move from the left to the right, as the background
�ow) while ζ4(x) is a counter-propagating mode outside the black hole.
It is possible, heuristically, to �nd interpolant solutions that recover the
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behavior of the previous solutions for x → 0+ and x → +∞. The two
interpolant solutions can be written as

ζINT3 (x) = exp

(
−iω

∫ x

dx′
1

c(x′)− v(x′)

)
ζINT4 (x) = exp

(
iω

∫ x

dx′
1

c(x′) + v(x′)

)
.

4.3.3 WKB solutions

From now on, we will call the four solutions of equation (4.3.6) φ
(WKB)
i , for

i = 1, . . . , 4. Collecting them, we have that

φ
(WKB)
1 (x) = exp

(
θ1(x)

η
− iω

∫ x

dx′
v(x′)

v2(x′)− c2(x′)

)
1

(v2(x)− c2(x))3/4

(√
v2(x)

c2(x)
− 1 +

v(x)

c(x)

)−1

φ
(WKB)
2 (x) = exp

(
θ2(x)

η
− iω

∫ x

dx′
v(x′)

v2(x′)− c2(x′)

)
1

(v2(x)− c2(x))3/4

(√
v2(x)

c2(x)
− 1 +

v(x)

c(x)

)

φ
(WKB)
3 (x) = exp

(
−i ω

c− v
x

)
φ

(WKB)
4 (x) = exp

(
i
ω

c+ v
x

)
.

(4.3.22)

where the equations for φ
(WKB)
3 , φ

(WKB)
4 hold rigorously only for x→ +∞.

In the asymptotic region, the general solutions of (4.3.1) are the superposi-
tion of plane waves eik(ω)x, with constant amplitude. The asymptotic roots
k(ω) satisfy the dispersion relation [MP09,FBC+13]

(ω − v∞ k)2 = c2
∞

(
k2 +

η2k4

2

)
, (4.3.23)

where the asymptotic velocities v∞, c∞ are equal to v∗, c∗ for x→ −∞ and
to v, c for x → +∞. This relation produces a superluminal propagation of

high frequency modes [Cor98]. For this reason, the two modes φ
(WKB)
1,2 are

situated inside the horizon and propagate inside it.
Then, the global solution can be written as linear combination [Cor98] of the
four modes as

φω(x) =

4∑
i=1

ci φ
(WKB)
i (x). (4.3.24)
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Sonic Horizon

Black Hole

k+

k−

v

u

Figure 4.1: The left half represent the region inside the black hole.

The modes k+ and k− are respectively φ
(WKB)
1 and φ

(WKB)
2 . These

two waves are counter-propagating modes that will not be able to

escape from the black hole. The co-propagating mode v is φ
(WKB)
3

while the Hawking mode u represents φWKB
4 .

We have to compute the value of the coe�cients ci. Since we found the
WKB-solutions in a region which is su�ciently far from the horizon, our
goal is to �nd solutions of the equation near the sonic horizon, with a range
of validity of the approximation that overlaps with that of the WKB. We
have to �nd a Near Horizon Expansion (NHE).

4.3.4 Near horizon approximation

Near the horizon we have to solve the following equation

d4φ

dz4
−
(
z
d2φ

dz2
+ λ

dφ

dz

)
= 0, (4.3.25)

where λ = 1− iω/κ and z is de�ned as

z =
(
p′30(0)

)1/3
η−2/3 x. (4.3.26)

To �nd p′30 we took equation (4.3.6) and, after having divided by c4/η
2, we

set η = 0. Then p30 is the coe�cient in front of the second order term:

p30(x) =
2

c̄2

(
v2(x)− c2(x)

)
→ p′30(0) = −4c0κ

c̄2
.

We can immediatly notice that a constant φ satis�es (4.3.25). Since the
constant is arbitrary, for later convenience, we assume it equal to 1 and we
label the corresponing solution with subscript 3:

φ
(NHE)
3 (z) = 1.
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Im(u)

Re(u)

Figure 4.2: Acceptable regions for the solution (in white).

For the other solutions, after computing the Laplace transform (4.3.25) we
�nd

φi(z) =
1

2πi

∫
Ci

dt

t
tλ−1 exp{zt− t3/3}, (4.3.27)

where Ci are adequate circuits in the complex plane. Since we want to
distinguish between the inner (z < 0) and the outer (z > 0) region with
respect to the horizon, we can write the variable z as a modulus times its
sign, as

z = |z|sgn(z).

At this point we perform a change of variable. In particular, we substitute
t =

√
|z|u in (4.3.27), obtaining

φi(z) =
1

2πi
|z|

λ−1
2

∫
Ci

du

u
uλ−1 exp{|z|3/4h±(u)}, (4.3.28)

where we have de�ned

h±(u) = u sgn(z)− u3

3
,

and ± stands for `out' or `in' with respect to the horizon. We have to study
the function h±(u), as the power u3 generates forbidden zones at in�nity.
Writing u3 as complex number

u3 = ρ3e3iθ = ρ3 (cos(3θ) + i sin(3θ)) ,
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Im(u)

Re(u)

Figure 4.3: Cut-integral with two real pole in ±1

we have that

−u3 → cos(3θ) > 0.

We get three acceptable zones:

(1) − π

2
< 3θ <

π

2
→ −π

6
< θ <

π

6
,

(2)
3π

2
< 3θ <

5π

2
→ π

2
< θ <

5π

6
,

(3)
7π

2
< 3θ <

9π

2
→ 7π

6
< θ <

3π

2
,

which are represented in Figure 4.2.
For future purpose, we need also to compute the values of u that generate
a saddle point for h(u). To do this, we set the �rst derivative equal to zero.
We have that

h′out(u) = 1− u2, for z > 0

h′in(u) = −1− u2, for z < 0,

and, putting them equal to zero we �nd

umax,out = ±1,

umax,in = ±i.
(4.3.29)

To study the integral (4.3.28) we want to use the steepest-descent method
(also known as saddle-point method) [Mil]. Since we have a pole on the
acceptable zone of the real axis, we must procede by making a cut on the
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Im(u)

Re(u)

Figure 4.4: Circuits along the two immaginary pole ±i

real positive semi-axis. Computing the cut integral 5, represented in Figure
4.3, we get

φ
(NHE)
4 (z) = − 1

2πi
Γ

(
− iω
κ

)
|z|iω/κ 2 sinh

(πω
κ

)
= − 1

πi
Γ

(
− iω
κ

)
exp

(
iω

κ
log |z|

)
sinh

(πω
κ

)
.

(4.3.30)

This is the expression of the Hawking mode, in the near horizon region. We
can indeed appreciate the characteristic spacial logarithmic dependence of
the phase.
The two solutions arising from the two immaginary pole, see Figure 4.4, for
z → +∞, are

φ
(NHE)
out (z) =

√
π

2πi
|z|−3/4

[
exp (iθ(umax,out)) exp

(
|z|3/2(±2

3
)

)
exp

(
− iω

2κ
log |z|

)
(±1)(−1−iω/κ)

]
φ

(NHE)
in (z) =

√
π

2πi
|z|−3/4exp

(πω
2κ

)[
exp (iθ(umax,in))

exp

(
|z|3/2(∓2

3
i)

)
exp

(
− iω

2κ
log |z|

)
exp

(
∓π

2
i
)]
,

(4.3.31)

5see Appendix C
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where θ(u) := arg(u′) and θ(umax) is the angle of inclination of the oriented
tangent to the circuit in the points that we obtain in (4.3.29). We can �nd
a numerical value of the angle of incidence [BH86] if we evaluate h′′ in the
saddle point, such that

h′′out(±1) = ∓2

h′′in(±i) = 2(∓i) = 2e∓i
π
2 = 2eiα1,2 ,

where
α1 = −π

2
, α2 =

π

2
.

Then the two angles are

θ1(+i) = −α1

2
+
π

2
=

3π

4
, θ2(−i) = −α2

2
+
π

2
=
π

4
. (4.3.32)

For our purposes, we will concentrate only on φ
(NHE)
in (z), since it will be

the one we are going to match with the two WKB solutions φ
(WKB)
1,2 (x), in

the next section. Regarding φ
(NHE)
out (z) consists in a decaying mode (the

one with the exponential function with real negative argument), essential to
close the circuit in Figure 4.3, while the growing mode (the other solution)
will be irrelevant for our studies.

4.3.5 Matching of the solutions

To be able to sew the WKB and NHE solutions, we have to compute the
limit in the �rst for x → 0 and in the second for z → +∞, for each of the
four solutions. This way, we are able to overlaps the two domains in the
linear region, see Figure 4.5, where the two approximations holds. The aim
is to �nd the coe�cients ci of equation (4.3.24), writing the relation

ci φ
(WKB)
i (x) = φ

(NHE)
i (z),

for each of the four modes, recalling that z is function of x and that the
equality in the previous relation must holds for x.
The simplest of the modes is

c3 φ
(WKB)
3 (x) = φ

(NHE)
3 (z),

for which, since we have chosen φ
(WKB)
3 (x) = φ

(NHE)
3 (z) = 1, then c3 = 1.

The coe�cient c4 is also rather simple to compute:

c4 φ
(WKB)
4 (x) = φ

(NHE)
4 (z) (4.3.33)

where we have 6

c4 exp

(
iω

κ
log |x|

)
= − 1

2πi
Γ

(
− iω
κ

)
exp

(
iω

κ
log |z|

)
2 sinh

(πω
κ

)
.

6Note that, since here x > 0, then x = |x|
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φ

x

NHE

WKB

Linear Region

Figure 4.5: Subdivision of the regions (in this case, outside the
black hole) where the single approximations are valid. The linear
region is the one where we can write v(x) + c(x) ∼ κx.

Recalling the de�nition of z in (4.3.26) and substituting it into (4.3.30), for
similarity we get

c4 = − 1

πi

((
4c0κ

c̄2

)1/3

η−2/3

)iω/κ
Γ

(
− iω
κ

)
sinh

(πω
κ

)
.

Regarding the two solutions φ
(WKB)
1,2 we have to perform an asymptotic ex-

pansion for x → 0, taking special care since the two modes are inside the
black hole and then x < 0. Recalling that

θ′1,2(x) = ±
√

2i

c̄

√
(v2(x)− c2(x)),

as x is approaching the horizon and using (4.3.16), we get

θ1,2(x) = ±
√

2i

c̄

∫ 0

x
dx′
√

(v2(x′)− c2(x′))

= ±
√

2i

c̄

√
2c0κ

∫ 0

x
dx′
√
−x′

= ±2i

c̄

√
c0κ

[
2

3
(−x′)3/2

]0

x

= ±2i

c̄

√
c0κ

(
−2

3
(−x)3/2

)
=

2

c̄

√
c0κ |x|3/2

(
∓2

3
i

)
.

Then, by (4.3.22), the two WKB modes goes as

φ
(WKB)
1,2 (x) = − |x|

−3/4

(2c0κ)3/4
exp

(
1

η

2

c̄

√
c0κ |x|3/2

(
∓2

3
i

)
− iω

2κ
log |x|

)
.
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Taking now the solution NHE from (4.3.31) and stating the equality

c1,2 φ
(WKB)
1,2 (x) = φ

(NHE)
in (z)

we obtain, substituting again (4.3.26) in (4.3.31)

c1,2 = ± 2−
3
4

√
c0κc̄

π
η

1
2

((
4c0κ

c̄2

) 1
3

η−
2
3

)− iω
2κ

exp

(
±π

2

ω

κ
+ i θ(±i)

)
,

(4.3.34)

where θ(±i) is 3π/4 and π/4 respectively for c1 and c2, according to (4.3.32).
At this point, since we have found the four coe�cients for φω, is the moment
to reintroduce the other solution ϕω

7 to proceed for the analytic evaluation
of the temperature TH and the greybody factor Γω.

4.4 Thermality and greybody factor

To proceed in our calculations, we need a mode basis which is orthonormal
and complete [MP09,FBC+13]. The orthonormality is de�ned with respect
to the scalar product in the space of the solutions of equations (4.2.11).
Considering the doublet W = (φω, ϕω), the scalar product is de�ned as

〈
W ′
∣∣W〉 = 〈(φ∗ω′ , ϕω′)|(φω, ϕ∗ω)〉 =

∫
dx

1

ρ0(x)
(φωφ

∗
ω′ − ϕ∗ω′ϕω)

where the presence of ρ0 is due to the fact that we have used the relative
�uctuation in equation (4.2.8).
Since near the horizon a scattering process takes place, the modes we have to
use to evaluate the norm have to be chosen su�ciently far, i.e. for |x| → +∞.
In the far horizon region, after the transient due to mode conversion, the four
modes φj , ϕj behave like a plane wave multiplied by an amplitude factor
[MFR11]:

φj = Dj(ω) e−iωteikj(ω)x, ϕj = Ej(ω) e−iωteikj(ω)x, (4.4.1)

where Dj(ω) and Ej(ω) are de�ned as

Dj(ω) = D(ω; kj)cj,φ, Ej(ω) = E(ω; kj)cj,ϕ.

In this case cj,φ and cj,ϕ are the matching coe�cients of φj and ϕj respec-
tively, whereas D(ω; kj) and E(ω; kj) are the two normalization factors in

7The four solutions WKB, NHE and the matching coe�cients can be found in appendix
A.3.3
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which the coupling between φj and ϕj resides and they are de�ned [FBC
+13]

as

D(ω; kj) =
ω − v0kj +

c0ηk2j√
2

2

√√
2π~ρ0c0ηk2

j

∣∣∣(ω − v0kj)
(
dk
dω

)−1
∣∣∣ ,

E(ω; kj) = −
ω − v0kj −

c0ηk2j√
2

2

√√
2π~ρ0c0ηk2

j

∣∣∣(ω − v0kj)
(
dk
dω

)−1
∣∣∣ ,

where v0, c0 are the asymptotic velocities at ±∞, depending on the modes
we are considering 8, while the kj are the corresponding wavevectors.
Evaluating then the norm squared of the four modes, su�ciently far from
the horizon, we obtain that

〈(φ∗ω, ϕω)|(φω, ϕ∗ω)〉 ∝
[
|Dj(ω)|2 − |Ej(ω)|2

]
,

and, since we are only interested in the sign of the norm, we have that,[
|Dj(ω)|2 − |Ej(ω)|2

]
∝ (ω − v0kj) .

Substituting now the expression of the wavevector kj (4.3.13) and (4.3.21),
we get that the squared norms of the modes 1, 3, 4 are positive while the
mode 2 is negative:

〈(φ∗1, ϕ1)|(φ1, ϕ
∗
1)〉 ∝ −v∗

1

η

√
2

c̄

√
v2
∗ − c2

∗ > 0 → P

〈(φ∗2, ϕ2)|(φ2, ϕ
∗
2)〉 ∝ v∗

1

η

√
2

c̄

√
v2
∗ − c2

∗ < 0 → N∗

〈(φ∗3, ϕ3)|(φ3, ϕ
∗
3)〉 ∝ 1− v

c− v
> 0 → V

〈(φ∗4, ϕ4)|(φ4, ϕ
∗
4)〉 ∝ 1− v

c+ v
> 0 → H

where we have identi�ed the negative norm mode N with a subscript.
If we change the point of view and we look at the four modes as particles,
we can say that the ones with positive norm are particles while the one with
negative norm is an antiparticle. From this perspective, we can say that the
three particles that point against the horizon are scattered in one particle
that escapes from the black hole:

P +N∗ + V → H.

8Recall that we have called v∗ and c∗ the asymptotic velocities for x → −∞ and v, c
the ones for x→ +∞
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The physical process can be seen and treated as a current balance of the
type

|Ju,outx | = |Jv,inx |+ |J+,in
x | − |J−,inx | (4.4.2)

where the generic current Jx is de�ned as

Jx = − ~
2mi

[
φ
←→
∂xφ

∗ + ϕ
←→
∂xϕ

∗
]

= − ~
2mi

[φ∂xφ
∗ − φ∗∂xφ+ ϕ∂xϕ

∗ − ϕ∗∂xϕ] .

(4.4.3)

In equation (4.4.2) the negative sign in the last term is due to the corre-
sponding negative norm of the mode. As for the norms, the currents in the
balance have to be evaluated far from the horizon. In this way, subsitut-
ing (4.4.1) in (4.4.3), after some manipulations, the generic current can be
written as

Jx =
~
m

[
|Dj(ω)|2 + |Ej(ω)|2

]
k(ω).

The thermality can be obtained from the ratio

|J−,inx |
|J+,in
x |

,

recalling that +,− are related to the modes that we labeled with 1, 2 re-
spectively. Then, noticing that |k1| = |k2|, in the ratio |J−,inx |/|J+,in

x |, the
wavevectors of the two modes do not give any contribution. The thermality
depends indeed only on the square of D1,2(ω) and E1,2(ω). Since we have
that c1,φ = c1,ϕ and c2,φ = c2,ϕ, we can rewrite the two currents as

|J−,inx | = ~
m

[
|D(ω; k1)|2 + |E(ω; k1)|2

]
|c1|2|k1|,

|J+,in
x | = ~

m

[
|D(ω; k2)|2 + |E(ω; k2)|2

]
|c2|2|k2|.

If we compute the sum of the squares of the coe�ecients D(ω) and E(ω) in
the two cases, we can see that, both for |J−,inx | and |J+,in

x |, the sum is

|D(ω; k1,2)|2 + |E(ω; k1,2)|2 ∝ 1

η2

2

c̄2
(v2
∗ − c2

∗)

(
v2
∗ +

c2
∗

2c̄2
(v2
∗ − c2

∗)

)
,

where we have considered the leading term, depending on η, in the two
wavevectors.
Since in the ratio we have the same constants at numerator and denominator,
it simpli�es to

|J−,inx |
|J+,in
x |

=
|c2|2

|c1|2
=
e−

πω
κ

e
πω
κ

= e−
2πω
κ = e−βHω
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Figure 4.6: Greybody factor as function of the frequency. The sur-
face gravity is κ = 1 and β = |v|/|c|, where v, c are the asymptotic
constant velocities in the far horizon region.

where

TH =
1

βH
=

κ

2π

is the Hawking temperature 9.
Now we move to evaluate the greybody factor, which is de�ned as

Γω = 1− |J
v,in
x |

|Ju,outx |
.

Also in this case, the two currents can be written as

|Jv,inx | = ~
m

[
|D(ω; k3)|2 + |E(ω; k3)|2

]
|c3|2|k3|,

|Ju,outx | = ~
m

[
|D(ω; k4)|2 + |E(ω; k4)|2

]
|c4|2|k4|,

since c3,φ = c3,ϕ and the same for c4. As before, in the ratio |Jv,inx |/|Ju,outx |,
recalling the de�nitions of k3 and k4 in (4.3.21) and using the dispersion
relation (4.3.23), we have that

|D(ω; k3)|2 + |E(ω; k3)|2

|D(ω; k4)|2 + |E(ω; k4)|2
= 1.

9In this formula ~ = kB = 1



56 CHAPTER 4. BLACK HOLE RADIATION IN BEC

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

ω

<Nω>

β = 0

β = 0.2

β = 0.4

β = 0.6

β = 0.8

β = 1

Figure 4.7: Number of particles created as function of ω.

At this point, evaluating the squared modulus of the coe�cient c4, we get:

|c4|2 =
1

π2

∣∣∣∣Γ(− iωκ
)∣∣∣∣2 ∣∣∣sinh

(πω
κ

)∣∣∣2 .
Using the property of the Gamma function [GR07]

|Γ(iy)|2 =
π

y sinh(π y)

we get that

|c4|2 =
κ

πω

∣∣∣sinh
(πω
κ

)∣∣∣ .
Since c3,φ = c3,ϕ = 1, we are able to obtain the greybody factor as

Γω = 1− |J
v,in
x |

|Ju,outx |
= 1− πω

κ

1

sinh
(
πω
κ

) 1− |v||c|
1 + |v|

|c|

.

A graphycal representation of the greybody factor can be found, for di�erent
values of the ratio |v|/|c|, in Figure 4.6.
This is a foundamental result that allows us to compute the number of cre-
ated particles.
Taking the current balance (4.4.2) and dividing by the left-hand side, we get

1 =
|Jv,inx |
|Ju,outx |

+
|J+,in
x |
|Ju,outx |

− |J
−,in
x |
|Ju,outx |

.
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By de�nition of greybody factor, we can rewrite the previous equation as

Γω =
|J+,in
x |
|Ju,outx |

− |J
−,in
x |
|Ju,outx |

(4.4.4)

and, using the relationship between temperature and currents

|J−,inx | = e
2πω
κ |J+,in

x |,

we can subsitute this expression into (4.4.4), to obtain

Γω =
(
e

2πω
κ − 1

) |J+,in
x |
|Ju,outx |

.

We can �nd out the number of created particles as

< Nω > :=
|J+,in
x |
|Ju,outx |

=
Γω(

e
2πω
κ − 1

) ,
which exactly represents the Planckian distribution with a correction, given
by the greybody factor. A graphycal representation of the number of parti-
cles created can be found in Figure 4.7.
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Chapter 5

Conclusions

After recalling some fundamental notions about quantum �eld theory and
black hole geometry, we have introduced the BEC model. In this framework,
we were able to compute the WKB approximations, far from the turning
point, and the near horizon ones, for the solutions.
Thanks to matched asymptotic expansion method, we have sewn the two
approximations. Exploiting current conservation, we found an analytical
expression for the greybody factor and for the thermality.
To extend this work, expansions beyond the leading order in WKB and near
horizon approximations could be studied, evaluating also the ratio between
the leading and the next-to leading order. I expect a more complete study
to generate a more precise black hole spectroscopy.
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Appendix A

Coe�cients

A.1 Initial equation

A.1.1 φ Coe�cients

c̄4 =
~2

4m2c2(x)
, (A.1.1)

c̄3 = − ~2c′(x)

m2c3(x)
− ~2v′(x)

2m2c2(x)v(x)
, (A.1.2)

c̄2 = − ~2c′′(x)

2m2c3(x)
+

3~2c′(x)v′(x)

2m2c3(x)v(x)
+

3~2c′(x)2

2m2c4(x)
− i~v(x)c′(x)

mc3(x)

− ~2v′′(x)

2m2c2(x)v(x)
+

3~2v′(x)2

4m2c2(x)v2(x)
+
i~v′(x)

mc2(x)
+
v2(x)

c2(x)
− 1

c̄1 =
~2c′′(x)v′(x)

2m2c3(x)v(x)
− i~v(x)c′′(x)

mc3(x)
+

~2c′(x)v′′(x)

m2c3(x)v(x)

− 3~2c′(x)v′(x)2

2m2c3(x)v2(x)
− 3~2c′(x)2v′(x)

2m2c4(x)v(x)
− 2i~c′(x)v′(x)

mc3(x)

+
3i~v(x)c′(x)2

mc4(x)
− 2ω~c′(x)

mc3(x)
− 2v2(x)c′(x)

c3(x)

− ~2v(3)(x)

4m2c2(x)v(x)
− 3~2v′(x)3

4m2c2(x)v3(x)
+

~2v′(x)v′′(x)

m2c2(x)v2(x)

+
i~v′′(x)

mc2(x)
− i~v′(x)2

mc2(x)v(x)
+
v(x)v′(x)

c2(x)

−2iωv(x)

c2(x)
+
v′(x)

v(x)
,
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c̄0 = −ω~c
′′(x)

mc3(x)
+
ω~c′(x)v′(x)

mc3(x)v(x)
+

3ω~c′(x)2

mc4(x)

+
2iωv(x)c′(x)

c3(x)
− ω2

c2(x)
.

A.1.2 ϕ Coe�cients

c̄4 =
~2

4m2c2(x)
,

c̄3 = − ~2c′(x)

m2c3(x)
− ~2v′(x)

2m2c2(x)v(x)
,

c̄2 = − ~2c′′(x)

2m2c3(x)
+

3~2c′(x)v′(x)

2m2c3(x)v(x)
+

3~2c′(x)2

2m2c4(x)
+
i~v(x)c′(x)

mc3(x)

− ~2v′′(x)

2m2c2(x)v(x)
+

3~2v′(x)2

4m2c2(x)v2(x)
− i~v′(x)

mc2(x)
+
v2(x)

c2(x)
− 1,

c̄1 =
~2c′′(x)v′(x)

2m2c3(x)v(x)
+
i~v(x)c′′(x)

mc3(x)
+

~2c′(x)v′′(x)

m2c3(x)v(x)

− 3~2c′(x)v′(x)2

2m2c3(x)v2(x)
− 3~2c′(x)2v′(x)

2m2c4(x)v(x)
+

2i~c′(x)v′(x)

mc3(x)

−3i~v(x)c′(x)2

mc4(x)
+

2ω~c′(x)

mc3(x)
− 2v2(x)c′(x)

c3(x)

− ~2v(3)(x)

4m2c2(x)v(x)
− 3~2v′(x)3

4m2c2(x)v3(x)
+

~2v′(x)v′′(x)

m2c2(x)v2(x)

− i~v
′′(x)

mc2(x)
+

i~v′(x)2

mc2(x)v(x)
+
v(x)v′(x)

c2(x)

−2iωv(x)

c2(x)
+
v′(x)

v(x)
,

c̄0 = −ω~c
′′(x)

mc3(x)
− ω~c′(x)v′(x)

mc3(x)v(x)
− 3ω~c′(x)2

mc4(x)

+
2iωv(x)c′(x)

c3(x)
− ω2

c2(x)
.

A.2 Reduced equation

A.2.1 φ Coe�cients

c̃4 =
~2

4m2c2(x)
, (A.2.1)
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c̃2 =
~2c′′(x)

m2c3(x)
− 3~2c′(x)2

2m2c4(x)
− i~v(x)c′(x)

mc3(x)
+

~2v′′(x)

4m2c2(x)v(x)

− 3~2v′(x)2

8m2c2(x)v2(x)
+
i~v′(x)

mc2(x)
+
v2(x)

c2(x)
− 1,

c̃1 =
~2c(3)(x)

m2c3(x)
− i~v(x)c′′(x)

mc3(x)
+

3~2c′(x)3

m2c(x)5
− i~c′(x)v′(x)

mc3(x)

+
i~v(x)c′(x)2

mc4(x)
− 2ω~c′(x)

mc3(x)
− 2c′(x)

c(x)
− 4~2c′(x)c′′(x)

m2c4(x)

+
~2v(3)(x)

4m2c2(x)v(x)
+

3~2v′(x)3

4m2c2(x)v3(x)
− ~2v′(x)v′′(x)

m2c2(x)v2(x)

+
i~v′′(x)

mc2(x)
+

2v(x)v′(x)

c2(x)
− 2iωv(x)

c2(x)
,

c̃0 =
~2c(4)(x)

4m2c3(x)
− ~2c′′(x)2

2m2c4(x)
+
i~c′′(x)v′(x)

2mc3(x)
− ω~c′′(x)

mc3(x)

+
v2(x)c′′(x)

c3(x)
− c′′(x)

c(x)
− ~2v(3)(x)c′(x)

4m2c3(x)v(x)
+

~2c′(x)2v′′(x)

4m2c4(x)v(x)

− 3~2c′(x)v′(x)3

4m2c3(x)v3(x)
− 3~2c′(x)2v′(x)2

8m2c4(x)v2(x)
+

~2c′(x)v′(x)v′′(x)

m2c3(x)v2(x)

+
i~c′(x)v′′(x)

2mc3(x)
− 3i~c′(x)v′(x)2

4mc3(x)v(x)
− 3i~c′(x)2v′(x)

2mc4(x)

+
3i~v(x)c′(x)3

mc(x)5
+
ω~c′(x)2

mc4(x)
+
v(x)c′(x)v′(x)

c3(x)
− 2v2(x)c′(x)2

c4(x)

−~2c(3)(x)c′(x)

m2c4(x)
+

3~2c′(x)2c′′(x)

2m2c(x)5
− 2i~v(x)c′(x)c′′(x)

mc4(x)

+
~2v(4)(x)

8m2c2(x)v(x)
− 7~2v′′(x)2

16m2c2(x)v2(x)
− 63~2v′(x)4

64m2c2(x)v4(x)

−5~2v(3)(x)v′(x)

8m2c2(x)v2(x)
+

31~2v′(x)2v′′(x)

16m2c2(x)v3(x)
− 3i~v′(x)3

4mc2(x)v2(x)

+
i~v′(x)v′′(x)

mc2(x)v(x)
+
v(x)v′′(x)

2c2(x)
− iωv′(x)

c2(x)
+
v′(x)2

4c2(x)

− ω2

c2(x)
− v′′(x)

2v(x)
+

3v′(x)2

4v2(x)
.

A.2.2 ϕ Coe�cients

c̃4 =
~2

4m2c2(x)
,
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c̃2 =
~2c′′(x)

m2c3(x)
− 3~2c′(x)2

2m2c4(x)
+
i~v(x)c′(x)

mc3(x)
+

~2v′′(x)

4m2c2(x)v(x)

− 3~2v′(x)2

8m2c2(x)v2(x)
− i~v′(x)

mc2(x)
+
v2(x)

c2(x)
− 1,

c̃1 =
~2c(3)(x)

m2c3(x)
+
i~v(x)c′′(x)

mc3(x)
+

3~2c′(x)3

m2c(x)5
+
i~c′(x)v′(x)

mc3(x)

− i~v(x)c′(x)2

mc4(x)
+

2ω~c′(x)

mc3(x)
− 2c′(x)

c(x)
− 4~2c′(x)c′′(x)

m2c4(x)

+
~2v(3)(x)

4m2c2(x)v(x)
+

3~2v′(x)3

4m2c2(x)v3(x)
− ~2v′(x)v′′(x)

m2c2(x)v2(x)

− i~v
′′(x)

mc2(x)
+

2v(x)v′(x)

c2(x)
− 2iωv(x)

c2(x)
,

c̃0 =
~2c(4)(x)

4m2c3(x)
− ~2c′′(x)2

2m2c4(x)
− i~c′′(x)v′(x)

2mc3(x)
+
ω~c′′(x)

mc3(x)

+
v2(x)c′′(x)

c3(x)
− c′′(x)

c(x)
− ~2v(3)(x)c′(x)

4m2c3(x)v(x)
+

~2c′(x)2v′′(x)

4m2c4(x)v(x)

− 3~2c′(x)v′(x)3

4m2c3(x)v3(x)
− 3~2c′(x)2v′(x)2

8m2c4(x)v2(x)
+

~2c′(x)v′(x)v′′(x)

m2c3(x)v2(x)

− i~c
′(x)v′′(x)

2mc3(x)
+

3i~c′(x)v′(x)2

4mc3(x)v(x)
+

3i~c′(x)2v′(x)

2mc4(x)

−3i~v(x)c′(x)3

mc(x)5
− ω~c′(x)2

mc4(x)
+
v(x)c′(x)v′(x)

c3(x)
− 2v2(x)c′(x)2

c4(x)

−~2c(3)(x)c′(x)

m2c4(x)
+

3~2c′(x)2c′′(x)

2m2c(x)5
+

2i~v(x)c′(x)c′′(x)

mc4(x)

+
~2v(4)(x)

8m2c2(x)v(x)
− 7~2v′′(x)2

16m2c2(x)v2(x)
− 63~2v′(x)4

64m2c2(x)v4(x)

−5~2v(3)(x)v′(x)

8m2c2(x)v2(x)
+

31~2v′(x)2v′′(x)

16m2c2(x)v3(x)
+

3i~v′(x)3

4mc2(x)v2(x)

− i~v
′(x)v′′(x)

mc2(x)v(x)
+
v(x)v′′(x)

2c2(x)
− iωv′(x)

c2(x)
+
v′(x)2

4c2(x)

− ω2

c2(x)
− v′′(x)

2v(x)
+

3v′(x)2

4v2(x)
.
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A.3 Healing length equation

A.3.1 φ Coe�cients

c4 =
c̄2η2

2c2(x)
,

c2 =
c̄2η2v′′(x)

2c2(x)v(x)
− 3c̄2η2v′(x)2

4c2(x)v2(x)
+

2c̄2η2c′′(x)

c3(x)
− i
√

2c̄ηv(x)c′(x)

c3(x)

−3c̄2η2c′(x)2

c4(x)
+
i
√

2c̄ηv′(x)

c2(x)
+
v2(x)

c2(x)
− 1,

c1 =
c̄2η2v(3)(x)

2c2(x)v(x)
+

3c̄2η2v′(x)3

2c2(x)v3(x)
− 2c̄2η2v′(x)v′′(x)

c2(x)v2(x)

− i
√

2c̄ηv(x)c′′(x)

c3(x)
− i
√

2c̄ηc′(x)v′(x)

c3(x)
+
i
√

2c̄ηv(x)c′(x)2

c4(x)

−2
√

2c̄ηωc′(x)

c3(x)
− 2c′(x)

c(x)
+

2c̄2η2c(3)(x)

c3(x)
− 8c̄2η2c′(x)c′′(x)

c4(x)

+
6c̄2η2c′(x)3

c(x)5
+
i
√

2c̄ηv′′(x)

c2(x)
+

2v(x)v′(x)

c2(x)
− 2iωv(x)

c2(x)
,
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c0 =
c̄2η2v(4)(x)

4c2(x)v(x)
− 7c̄2η2v′′(x)2

8c2(x)v2(x)
− 63c̄2η2v′(x)4

32c2(x)v4(x)

−5c̄2η2v(3)(x)v′(x)

4c2(x)v2(x)
+

31c̄2η2v′(x)2v′′(x)

8c2(x)v3(x)
− c̄2η2c′′(x)2

c4(x)

+
ic̄ηc′′(x)v′(x)√

2c3(x)
−
√

2c̄ηωc′′(x)

c3(x)
+
v2(x)c′′(x)

c3(x)
− c′′(x)

c(x)

+
ic̄ηc′(x)v′′(x)√

2c3(x)
− 3ic̄ηc′(x)v′(x)2

2
√

2c3(x)v(x)
− 3ic̄ηc′(x)2v′(x)√

2c4(x)

+
3i
√

2c̄ηv(x)c′(x)3

c(x)5
+

√
2c̄ηωc′(x)2

c4(x)
+
v(x)c′(x)v′(x)

c3(x)

−2v2(x)c′(x)2

c4(x)
+
c̄2η2c(4)(x)

2c3(x)
− c̄2η2v(3)(x)c′(x)

2c3(x)v(x)

+
c̄2η2c′(x)2v′′(x)

2c4(x)v(x)
− 3c̄2η2c′(x)v′(x)3

2c3(x)v3(x)
− 3c̄2η2c′(x)2v′(x)2

4c4(x)v2(x)

+
2c̄2η2c′(x)v′(x)v′′(x)

c3(x)v2(x)
+

3c̄2η2c′(x)2c′′(x)

c(x)5
− 2i
√

2c̄ηv(x)c′(x)c′′(x)

c4(x)

−2c̄2η2c(3)(x)c′(x)

c4(x)
− 3ic̄ηv′(x)3

2
√

2c2(x)v2(x)
+
i
√

2c̄ηv′(x)v′′(x)

c2(x)v(x)

+
v(x)v′′(x)

2c2(x)
− iωv′(x)

c2(x)
+
v′(x)2

4c2(x)
− ω2

c2(x)
− v′′(x)

2v(x)
+

3v′(x)2

4v2(x)
.

A.3.2 ϕ Coe�cients

c4 =
c̄2η2

2c2(x)
,

c2 =
c̄2η2v′′(x)

2c2(x)v(x)
− 3c̄2η2v′(x)2

4c2(x)v2(x)
+

2c̄2η2c′′(x)

c3(x)
+
i
√

2c̄ηv(x)c′(x)

c3(x)

−3c̄2η2c′(x)2

c4(x)
− i
√

2c̄ηv′(x)

c2(x)
+
v2(x)

c2(x)
− 1,

c1 =
c̄2η2v(3)(x)

2c2(x)v(x)
+

3c̄2η2v′(x)3

2c2(x)v3(x)
− 2c̄2η2v′(x)v′′(x)

c2(x)v2(x)

+
i
√

2c̄ηv(x)c′′(x)

c3(x)
+
i
√

2c̄ηc′(x)v′(x)

c3(x)
− i
√

2c̄ηv(x)c′(x)2

c4(x)

+
2
√

2c̄ηωc′(x)

c3(x)
− 2c′(x)

c(x)
+

2c̄2η2c̄(3)(x)

c3(x)
− 8c̄2η2c′(x)c′′(x)

c4(x)

+
6c̄2η2c′(x)3

c(x)5
− i
√

2c̄ηv′′(x)

c2(x)
+

2v(x)v′(x)

c2(x)
− 2iωv(x)

c2(x)
,
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c0 =
c̄2η2v(4)(x)

4c2(x)v(x)
− 7c̄2η2v′′(x)2

8c2(x)v2(x)
− 63c̄2η2v′(x)4

32c2(x)v4(x)

−5c̄2η2v(3)(x)v′(x)

4c2(x)v2(x)
+

31c̄2η2v′(x)2v′′(x)

8c2(x)v3(x)
− c̄2η2c′′(x)2

c4(x)

− ic̄ηc
′′(x)v′(x)√
2c3(x)

+

√
2c̄ηωc′′(x)

c3(x)
+
v2(x)c′′(x)

c3(x)
− c′′(x)

c(x)

− ic̄ηc
′(x)v′′(x)√
2c3(x)

+
3ic̄ηc′(x)v′(x)2

2
√

2c3(x)v(x)
+

3ic̄ηc′(x)2v′(x)√
2c4(x)

−3i
√

2c̄ηv(x)c′(x)3

c(x)5
−
√

2c̄ηωc′(x)2

c4(x)
+
v(x)c′(x)v′(x)

c3(x)

−2v2(x)c′(x)2

c4(x)
+
c̄2η2c̄(4)(x)

2c3(x)
− c̄2η2v(3)(x)c′(x)

2c3(x)v(x)

+
c̄2η2c′(x)2v′′(x)

2c4(x)v(x)
− 3c̄2η2c′(x)v′(x)3

2c3(x)v3(x)
− 3c̄2η2c′(x)2v′(x)2

4c4(x)v2(x)

+
2c̄2η2c′(x)v′(x)v′′(x)

c3(x)v2(x)
+

3c̄2η2c′(x)2c′′(x)

c(x)5
+

2i
√

2c̄ηv(x)c′(x)c′′(x)

c4(x)

−2c̄2η2c̄(3)(x)c′(x)

c4(x)
+

3ic̄ηv′(x)3

2
√

2c2(x)v2(x)
− i
√

2c̄ηv′(x)v′′(x)

c2(x)v(x)

+
v(x)v′′(x)

2c2(x)
− iωv′(x)

c2(x)
+
v′(x)2

4c2(x)
− ω2

c2(x)
− v′′(x)

2v(x)
+

3v′(x)2

4v2(x)
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A.3.3 ϕ Solutions and coe�cients

WKB solutions

ϕ
(WKB)
1 (x) =exp

(
1

η

√
2i

c̄

∫ x

dx′
√
v2(x′)− c2(x′)

)
1

(v2(x)− c2(x))3/4

exp

(
−iω

∫ x

dx′
v(x′)

v2(x′)− c2(x′)

)(√
v2(x)

c2(x)
− 1 +

v(x)

c(x)

)

ϕ
(WKB)
2 (x) =exp

(
−1

η

√
2i

c̄

∫ x

dx′
√
v2(x′)− c2(x′)

)
1

(v2(x)− c2(x))3/4

exp

(
−iω

∫ x

dx′
v(x′)

v2(x′)− c2(x′)

)(√
v2(x)

c2(x)
− 1 +

v(x)

c(x)

)−1

ϕ
(WKB)
3 (x) =exp

(
−iω

∫ x

dx
1

c− v
x

)
ϕ

(WKB)
4 (x) =exp

(
iω

∫ x

dx
1

c+ v
x

)
.

(A.3.1)
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NHE solutions

ϕ
(NHE)
out (z) =

√
π

2πi
|z|−3/4

[
exp (iθ(umax,out)) exp

(
|z|3/2(±2

3
)

)
exp

(
− iω

2κ
log |z|

)
(±1)(−1−iω/κ)

]
ϕ

(NHE)
in (z) =

√
π

2πi
|z|−3/4exp

(πω
2κ

)[
exp (iθ(umax,in)) exp

(
|z|3/2(∓2

3
i)

)
exp

(
− iω

2κ
log |z|

)
exp

(
∓π

2
i
)]

ϕNHE3 (z) = 1,

ϕ
(NHE)
4 (z) = − 1

πi
Γ

(
− iω
κ

)
exp

(
iω

κ
log |z|

)
sinh

(πω
κ

)
.

(A.3.2)

Matching coe�cients

c1 = + 2−
3
4

√
c0κc̄

π
η

1
2

((
4c0κ

c̄2

) 1
3

η−
2
3

)− iω
2κ

exp

(
+
π

2

ω

κ
+

3

4
πi

)

c2 = − 2−
3
4

√
c0κc̄

π
η

1
2

((
4c0κ

c̄2

) 1
3

η−
2
3

)− iω
2κ

exp

(
−π

2

ω

κ
+

1

4
πi

)
c3 = 1

c4 = − 1

πi

((
4c0κ

c̄2

)1/3

η−2/3

)iω/κ
Γ

(
− iω
κ

)
sinh

(πω
κ

)
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Appendix B

WKB approximation

The WKB (Wentzel, Kramers, and Brillouin) method is a useful tool to
solve second order linear di�erential equation, capable to capture fast oscil-
lating phenomena. It is based on the assumption that the fast time scale
dependence is exponential and its a reasonable assumption since a lot of the
physical problem have this dependence at the end [Hol12].

B.1 Introductory example

To present the ideas underlying the WKB method, we will use an introduc-
tory example. Let us consider the equation

ε2y′′ − q(x)y = 0. (B.1.1)

For the moment we will only assume that q(x) is su�ciently regular. If we
assume q(x) to be constant, the general solution of the equation (B.1.1) is

y(x) = a0 e
−x√q
ε + b0 e

x
√
q

ε . (B.1.2)

The main hypotesis of WKB method is that a solution to (B.1.1), with non
constant q(x), can be found starting from(B.1.2). The speci�c assumption
made using the WKB method is that the asymptotic expansion of a solution
is

y(x) ∼ e
θ(x)
εα (y0(x) + εαy1(x) + . . . ) . (B.1.3)

From (B.1.3)

y′ ∼
(
ε−αθ′y0 + y′0 + θ′y1 + . . .

)
e
θ(x)
εα

and

y′′ ∼
[
ε−2αθ2

xy0 + ε−α(θxxy0 + 2θxy
′
0 + θ2

xy1) + . . .
]
e
θ(x)
εα . (B.1.4)

For the problem under consideration, it is su�cient to stop the expansion at
second order. Nonetheless, for higer-order problems, higher-order expansions
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are needed.
The next step is to substitute (B.1.3) and (B.1.4) into (B.1.1). Doing this,
one �nds that

ε2
{

1

ε2α
(θx)2y0 +

1

εα
[θ′′y0 + 2θ′y′0 + (θx)2y1 + . . . ]

}
−q(x)(y0 + εαy1 + . . . ) = 0.

(B.1.5)

Doing so, the exponential simpli�es, thanks to the linearity of the equation.
Now, balancing the terms in (B.1.5), one �nds that α = 1, leading to the
following equation:

O(1) (θx)2 = q(x). (B.1.6)

This is called eikonal equation and its solutions are

θ(x) = ±
∫ x

ds
√
q(s). (B.1.7)

To obtain the �rst term of the expansion, we need also to �nd y0(x). It is
then necessary to look also at the O(ε) problem, also known as transport

equation.

O(ε) θ′′y0 + 2θ′y′0 + (θx)2y1 = q(x)y1.



Appendix C

Cut-integral

C.1 Integral

− 1

2πi
|z|−

iω
2κ

∫
R
dt t−

iω
κ
−1 exp

(
|z|3/2

(
t− t3

3

))
= − 1

2πi
|z|−

iω
2κ

1(
− iω

κ

) [t−iω/κ exp

(
|z|3/2

(
t− t3

3

))]+∞

−∞

+
1

2πi
|z|−

iω
2κ

∫
R
dt

(
1

− iω
κ

)
t−

iω
κ |z|3/2

(
1− t2

)
exp

(
|z|3/2

(
t− t3

3

))
=

where, by construction, since the extrema of the circuit around the cut, starts
and ends at t = +∞, the boundary term vanishes thanks to e−t

3/3,

= +
1

2πi

Γ(−iω/κ)

Γ(1− iω/κ)
|z|−

iω
2κ

+ 3
2

∫
R
dt
(
1− t2

)
t−

iω
κ
(
1− t2

)
exp

(
|z|3/2

(
t− t3

3

))
= +

1

2πi

Γ(−iω/κ)

Γ(1− iω/κ)
|z|−

iω
2κ

+ 3
2

(
1− e−2πi(−iω/κ)

) Γ(1− iω/κ)

(|z|3/2)1−iω/κ (−1)−iω/κ(−1)

= − 1

2πi
Γ

(
− iω
κ

)
|z|iω/κ

(
1− e−2πω/κ)

)
eπω/κ

= − 1

2πi
Γ

(
− iω
κ

)
|z|iω/κ 2 sinh

(πω
κ

)
.
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