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Abstract

Frequency Modulation (FM) based re-synthesis - to find the parameter values
which best make a FM-synthesizer produce an output sound as similar as pos-
sible to a given target sound - is a challenging problem. The search space of a
commercial synthesizer is often non-linear and high dimensional. Moreover,
some crucial decisions need to be done such as choosing the number of mod-
ulating oscillators or the algorithm by which they modulate each other. In this
work we propose to use Machine Learning (ML) to learn a mapping from tar-
get sound to the parameter space of an FM-synthesizer. In order to investigate
the capabilities of ML to implicitly learn to make the mentioned key desicions
in FM, we design and compare two approaches: first a concurrent approach
where all parameter values are compared at once by one model, and second a
sequential approach where the prediction is done by a mix of classifiers and
regressors. We evaluate the performance of the approaches with respect to
ability to reproduce instrumental sound samples from a dataset of 2255 sam-
ples from over 700 instrument in three different pitches with respect to four
different distance metrics, . The results indicate that both approaches have
similar performance at predicting parameters which reconstruct the frequency
magnitude spectrum and envelope of a target sound. However the results also
point at the sequential model being better at predicting the parameters which
reconstruct the temporal evolution of the frequency magnitude spectrums. It
is concluded that despite the sequential model outperforming the concurrent,
it is likely possible for a model to make key decisions implicitly, without ex-
plicitly designed subproblems.

Keywords: machine learning; regression; classification; frequency mod-
ulation synthesis; re-synthesis;
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Chapter 1

Introduction

This thesis explores the task of Machine Learning-guided sound resynthe-
sis using a Frequency Modulation-synthesizer with a large parameter search
space. The project is carried out in a partnership with Teenage Engineering in
Stockholm. This section introduces the background, problem and methodol-
ogy of this thesis.

Teenage Engineering (TE) is a company producing synthesizers, speakers
and related hard- and software for sound design and music production. TE
have previously been in research partnership with scientists at the Metacre-
ation Lab at the School of Interactive Arts and Technology of Simon Fraser
University’s Faculty of Communication regarding sound re-synthesis through
Artificial Intelligence.[22]. For the sake of this thesis, TE has contributed
through developing a synthesizer software to be used in the experiments. The
synthesizer, referred to as the TE Synthesizer, is explained in detail in section
2.2.

1.1 Background

With the increased performance of general purpose computer hardware, comes
an increase in the complexity of software synthesizers. For example, the Na-
tive Instruments’ FM8 is configured through over 1000 parameters [28], and
Teenage Engineering’s OP-1 synthesizer can be set to 1076 distinct combina-
tions of parameter values [22]. The many parameters often have a non-linear
impact on the output sound of the synthesizer, yielding a vast and high dimen-
sional search space.

The vast parameter space is an obstacle to a user attempting to design
specific sounds through the synthesiser’s parameters. The user’s interaction

1



2 CHAPTER 1. INTRODUCTION

with the synthesiser’s parameter space may roughly be divided into:

• Search: the process of searching for the set of parameter values which
make the synthesizer produce a desired output sound, e.g. "I want the
synthesizer to sound like a grand piano."

• Exploration: the process of exploring the parameter space to find sets
of parameter values which make the synthesizer produce sounds which
are not preciously known, e.g. "I want to hear what the synthesizer can
sound like."

Due to the size and non-linearities of the parameter space the search pro-
cess can be demanding even for expert sound designers - this process is also
referred to as re-synthesis. For the same reasons, to determine how much
of the variety of the possible output sounds has been explored may be hard
or impossible even for the creators of the synthesizers. To facilitate users in
search and exploration of the parameter space, it is common to introduce a
number of pre-configured combinations of parameter values (presets). A pre-
set may act both as a shortcut in the search for popular output sounds, as well
a starting point for exploration.

However, a finite set of presets is not certain to help the user find any
desired sounds which can be produced by the synthesiser, and might not in-
troduce the user to all possibilities of the parameter space. Also, producing
large set of presets is a non-trivial and time consuming task for the creators of
the synthesiser, and even if the preset designer was involved in programming
the synthesizer it is hard to discover all the possibilities of the high dimen-
sional parameter space. An automated tool could also be useful for migrating
presets between products and between operative system specific software im-
plementations of the synthesizer.

For these reasons, a function which takes a target sound as input and re-
turns a preset which makes the synthesizer produce a similar target sound has
been suggested. [28] [22]
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Figure 1.1: A closer conceptual view of the re-synthesis system g(f(x)) in
fig.1.1 using a synthesizer as the generative function g(x). Some function f
approximates a mapping from audio space to the high dimensional parameter
space P. The approximated point f(x) - a set of parameter values in P serves as
a preset which instructs the synthesizer how to generate the approximation of
x. Copyright of the OP-Z synthesizer sketch belongs to Teenage Engineering.

Researchers have previously attempted to use Artificial Intelligence (AI)
to perform re-synthesis and commonly using Genetic Algorithms (GA), a type
of search algorithms which encodes each instance as an individual of a pop-
ulation. Using evolutionary concepts such as fitness, crossover and mutation
to improve the fitness of the population over a number of generations. GA
has previously showed to be an effective approach for searching through vast
spaces of non-linear parameter settings, i.e. hyper parameters for training
deep learning models.[29]. GA have previously been used to automate preset
generation with promising results, however at large computational cost per
prediction. [28] [22]

In the recent decade, however, Machine Learning (ML) has emerged as
a leading technique within Artificial Intelligence, proving its capabilities in
modelling numerous complex real world tasks without inferred prior human
knowledge - ranging from facial recognition to playing boardgames.[26] [19]
Rather than searching through an unknown search space, ML aims at approx-
imating a model of the unknown search space by learning a mapping from an
input value x to an output value y. This property make ML require significant
amounts of computing power data to train, however leveraging from relatively
fast "one shot" predictions compared to the trial-and-error nature of GA.

This thesis explores Machine Learning as a tool for automated re-synthesis
using a Frequency Modulation synthesizer. While this subsection explains the
motivation for doing so, the next subsection expands on the problem of choos-
ing between the different approaches.
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1.2 Problem

Horner et al. [10] early suggested a GA based approach to synth parameter es-
timation by decomposing the estimation process into subproblems. Yee-King
and Roth [28] suggest that their GA based Synthbot system could serve as an
effective assistant to humans attempting re-synthesis tasks, using the euclid-
ian distance of the Mel Frequency Cepstrum Components as fitness function.
Lai et al. [12] find that a combination of the spectral centroid and the spec-
tral norm provides relatively fast convergence and good accuracy. Tatar et
al. [22] propose a multi-objective GA (FFT, STFT and Envelope distances)
in combination with clustering of the pareto front to produce multiple candi-
date sounds, and show that this approach can be used to achieve human ex-
pert competitive level when automating the generation of a preset for a given
sound.

However, the use of GA comes at a significant computational cost per
prediction. Apart from the large search space, the process is slowed down
further by having to produce and extract features of all candidate sounds for
every individual of every generation of the algorithm. For instance, the Pre-
setGen require an average of 34 minutes to predict an optimal preset for a
re-synthesizing a single target sound using a cluster of 50 machines working
in parallel. Arguably, such compute power will not be available in consumer
electronics, such as synthesizers, in a foreseeable future.

Instead, it is possible to train a ML model to learn the mapping from sound
to parameter space, potentially leveraging from fast predictions and high ac-
curacy. For instance, Barkan and Tsisris [2] evaluate a number of deep models
and approaches to the problem with success. By training on sounds generated
by the synthesizer from a large set of random presets, the model could learn
what combinations of parameter values to use to make the synthesizer produce
almost any given sound which the synthesizer is practically able to produce.

Different approaches can be taken when designing an ML system for this
task. One approach would be to could train a single model to predict all
parameters concurrently given some input representation of an input sound.
We refer to this approach as the concurrent approach.

However, such an approach demands some caution. Tatar et al. [22] show
that the parameter wise similarity of two presets is not necessarily correlated
to the similarity of the sounds produced using those presets. Since the synth-
parameters may have a highly non-linear impact on the output sound two
highly similar sets of synth-parameters may produce perceptually non-similar
output sounds. It may also be possible to produce identical sounds using non-
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similar presets. An example of such non-linearities which may be difficult
to learn is when using multiple modulating oscillators in an FM-synthesizer.
The impact of the parameters of one oscillator could be either amplified or
completely silenced depending on the current state of a number of other pa-
rameters. Another difficulty could be to let the model implicitly decide the
number of oscillators to use and how many to silence. Horner et al [10] argue
that finding the correct frequencies and modulation indices of the modulating
oscillators is the most crucial step in the process. The authors go as far as stat-
ing that contrary to a concurrent approach "the decomposition of the matching
process into subproblems is central to success" [10].

So, a second approach would be to divide the process into subproblems,
training several models which make predictions sequentially depending on the
predictions of other models. By explicitly designing a system of models with
some models trained to make some key decisions a better system could be
obtained. The models would make predictions sequentially, with each model
aware of a previous model’s predicitions either by taking the previous predic-
tions as input features or by including or excluding the use of some models
instead of others based on the predictions of other models. For instance, the
number of oscillators used in a synthesizer could be decided by a classifier, or
parameters which influence each other to a large extent could be predicted by
separate regressors. We refer to this approach as the sequential approach.

In conclusion, the motivation for automated re-synthesis is the synthe-
sizer’s vast and complex search space which is hard for even experts to navi-
gate. The motivation for using machine learning is the low computational ex-
pense per prediction as opposed to previously successful but computationally
expensive genetic algorithms. The motivation for comparing a concurrent and
sequential approach is the knowledge gap that consists in whether the problem
of estimating parameters for a FM synthesizer benefits from decomposing the
process into smaller sub problems, or if the problem can be solved as well or
better without explicitly designed sub problems.

1.3 Purpose

The purpose of this thesis is to compare two different approaches to predicting
a large number of parameter values in a high dimensional parameter space, in
an attempt to fill the knowledge gap described in the previous subsection. We
compare an approach of predicting all parameters concurrently with another
approach of decomposing the process into subproblems, through a sequence
of models which make predictions based on previous predictions. The aim of
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the thesis is to answer the research question:
In machine learning based re-synthesis, does decomposing the problem

into subproblems improve the performance compared to estimating all pa-
rameter values at once?

1.4 Objectives

A number of things need to be achieved in order to answer the research ques-
tion. First, it clearly needs to be defined how to quantify distance between a
candidate and target sound. Second, the learning problem needs to be clearly
defined. Third, we need to develop the two approaches for re-synthesis.
Fourth, we need to evaluate these models in a way which reflects their ability
to generalize on non-synthetic data. Finally, we need to analyze this data.

1.5 Sustainability, Social Benefits and Ethics

As so often within the field of technology in general and AI in particular, the
automation of tasks which are a part of somebody’s job can and should be
discussed. So should this: if our synthesizers can tune themselves perhaps
we will not need sound designers anymore. Instead, we would simply be able
to mimic a sound designed by someone else without any knowledge of sound
design. Although this technology is far from at that level, this ethical aspect is
important to highlight. On the positive note, learning a mapping is often more
compute and energy efficient than searching for it. Since solutions are often
searched for through expensive GAs, this could have some positive impact.

Finally, to cite a TE employee, the contribution towards positive social and
environmental of manufacturing amusing software and hardware products for
music, is making people spend time on creating and playing music rather than
impacting the world negatively, ultimately bringing joy and happiness to the
world.

1.6 Methodology

The research question will be answered in two steps: implementation and
experiments. First, the implementation of a concurrent and a sequential ap-
proach to re-synthesis. The implementations are trained using a large set of
samples which are generated with the software synthesizer. Second, using the
two implementations to re-synthesize a number of instrumental samples and
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quantifying the performance as a number of sound similarity metrics. This
approach allows us to develop the implementations in a step wise manner,
gaining domain knowledge and understanding of the two different approaches
which are useful in reasoning about and understanding of the experimental re-
sults. The performance of the two implementations is measured quantitatively
rather than qualitatively in order to benefit from the possibility to evaluate over
a larger set of samples rather than a smaller, potentially biased set of sound
samples.

1.7 Delimitations

Due to time constraints, only a limited amount of work on evaluating and
reflecting around different available metrics for modelling human perceptual
sound similarity - a thorough evaluation of similarity metrics for domain spe-
cific audio would arguably be a wide enough scope for a thesis itself. Instead,
I rely on metrics proposed in relevant related work showing promising results.

Furthermore, the number of parameters included in the learning problem
is reduced in order to reduce the complexity. More parameters would likely
make the learning problem significantly harder to learn (see curse of dimen-
sionality in subsection 2.5.3) which could result in both approaches perform-
ing poorly reducing generalizability of the results of the thesis.

Finally, the purpose of this thesis is not necessarily to obtain the best re-
sults possible but to obtain knowledge in which out of the two approaches
perform better. For this reason, models of significantly different depth (such
as Convolutional Neural Networks) will not be explored and compared, al-
though these models would probably yield better results. Possibly, the two
approaches would behave differently and the conclusion would be another
using deeper models.

1.8 Outline

chapter 2 presents, a deeper study of fundamental theory including the basic
concepts in sound synthesis, the TE synthesizer and its parameters and Ma-
chine Learning theory. In chapter 3 the research paradigm and metods are
explained, the learning problem is defined and the two approaches are de-
signed. In chapter 4 the implementation of the two approaches is explained
in further detail. In chapter 5, fist the training and validation results of the
two approaches are presented. Second, the results from the evaluation are
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presented. Finally, the results are analyzed and discussed. In chapter 6, the
results are concluded and future work suggested.



Chapter 2

Background

In this subsection, the background introduced in section 1 is extended upon.
Relevant theory on Synthesisers and Sound Synthesis is explained, followed
by a specific explanation of how the TE software synthesiser used in this thesis
works. In 2.4, different approaches to the quantification of sound similarity
are explained. In ?? the concept of Evolutionary Computing is explained,
with extra focus on Genetic Algorithms. In ??, the theory of Artificial Neural
Networks is explained.

2.1 Synthesisers and sound synthesis

Sound synthesis is the technique of generating sound, using electronic hard-
ware or software. This section, explains a number of fundamental components
and techniques in synthesisers and sound synthesis.

2.1.1 Oscillators

An audio oscillator produces a periodic output signal with frequencies in the
audio range (about 16 Hz - 20 kHz), usually in the form of either Sine, Saw-
tooth or Square Wave as shown in fig. 2.2. A Low Frequency Oscillator
(LFO) is an oscillator which outputs signals with low frequencies, usually be-
low 20Hz. A LFO is barely hearable to the human ear, but is used to modulate
other signals, as explained in subsection ??. A synthesiser normally have a
set of multiple oscillators and LFOs.

9
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Figure 2.1: An oscillator is filtered through an ADSR envelope.

We may regard the output of an oscillator O, a function of time x(t) for
some waveform function w, peak amplitude A and frequency f . Below, the
output equation is listet for each of the four waveform functions:

Sine Wave

x(t) = Asin(t f )

Sawtooth Wave

x(t) =
2A
T

t f ,�T/2  t < T/2

Square Wave

x(t) =

(
A, 0  t < t/2
�A, t/2  t f < T � t/2 ,A, T � t/2  t f < T

where t denotes the puls width and is set to t = T/2 for a symmetric square
wave.

Figure 2.2: Sine, Square and Sawtooth wave forms.
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2.1.2 Envelope

An envelope controls how the amplitude of a signal changes over time. The
ADSR envelope consists of four parameters, see fig. 2.3, controlling the am-
plitude of the signal over time. The four parameters a,d,s,r control the At-
tack, Delay, Sustain and Release respectively. [24]

• Attack. The time taken for the signal to go from zero to peak amplitude
(A), starting at t = 0

• Decay. The time taken for the subsequent run down from the attack
level to the sustain level.

• Sustain. The level during the main sequence of the sound’s duration.

• Release. The time taken for the level to decay from the sustain level to
zero.

[24]

Figure 2.3: The impact of the ADSR envelope parameters on the amplitude
of a signal

2.1.3 Filtering

A high-pass or low-pass filter reduces the power of low or high frequencies re-
spectively. The parameter controlling the filter is called the cutoff frequency,
ch or cl , effectively a threshold such that frequencies below or above the cut-
off is reduced while the frequencies above or below the cutoff passes without
modification.
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2.1.4 Frequency Modulation Synthesis

Risset et al. [17] showed that the temporal evolution of the spectral compo-
nents is of critical importance in the determination of the timbre of a sound.
In 1973, John Chowning suggested that the already well known technique of
Frequency Modulation (FM), previously used for transmitting audio signals
over long distances in FM Radio, could be used to gain control of said spec-
tral components. Chowning could show that the technique was able to yield
nature like sounds in a less complex manner than before.[3] The technique
of FM modulation became instrumental in the development of synthesizers in
the 1980’s such as the Yamaha DX7.

In FM, a modulating signal alters the frequency of a carrier signal by a
rate which is the frequency of the modulating signal. The resulting signal of
an oscillator Om, modulating an oscillator Oc is given by

x0c(t) = xc(Ac fct +AmI fmxm(t))

In FM synthesis, it is common to use more than two oscillators. The set
up of the oscillators and how they modulate each other is referred to as an
algorithm. In fig 2.4, four examples of algorithms for a synthesiser with six
oscillators are shown.

Figure 2.4: Four of the available FM-algorithms in the Yamaha DX7 synthe-
siser, a synthesiser with six oscillators.

2.1.5 Pitch in the MIDI Protocol

The Musical Instrument Digital Interface (MIDI) is a standard describing a
communications protocol for electronic music. When used in a melodic con-
text, the MIDI protocol can be used to describe a note being turned on and off,
as well as a number of the note’s characteristics such as pitch and velocity. [1]
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Figure 2.5: Table displaying conversion between MIDI Number, Note Name
and Frequency of a pitch. Copyright belongs to Professor Joe Wolfe at the
University of New South Wales and is used with permission.

The pitch of a note in MIDI is given by the note’s MIDI number, an in-
teger in the range [0, 127]. The scale ranges from the first note in the lowest
octave (A0, with MIDI number 0) to the 128 half tones higher G note in the
11th octave (G11 with MIDI number 127). By convention, the frequency of
note A4 (with MIDI number 69) is commonly set to 440 Hz. In fig. 2.5 a
conversion table which follows this convention is shown. More formally, the
MIDI number m of a frequency f is given by

m = 69+12⇤ log2( f/440)

[27]
And conversely, the frequency of m can be obtained through

f = 2(m�69)/12⇤440)

Given that there are 12 notes in an octave, a note with MIDI number m in
octave Oi is transposed to octave O j through

mt = m+12⇤ (O j �Oi)
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2.2 TE Synthesizer

The synthesizer to be used is a synthesizer software developed by TE. The
software synthesizer creates sounds by digitally modelling a number of steps
of an analogue synthesizer, including frequency modulation, filtering and de-
lay. The synthesizer is similar to the software synthesizer in TE’s OP-Z ⇤,
but is developed specifically to be used in this thesis project: the software is
simplified in order to protect intellectual property of TE and in order to reduce
the complexity of the Machine Learning problem.

The synthesiser is configured through a number of parameters which de-
termines how a sound is created. A set of parameter values for each of the
synthesiser’s parameters is called a patch. By feeding a patch to the synthe-
siser, the user controls the characteristics of the output sound.

2.2.1 Overview

• Oscillators Four oscillators, each creating a waveform signal xi(t).

• Main mix A combination of the signals of the four oscillators, filtered
through a low/high pass filter and an envelope filter (see upper chain in
fig 2.6).

• Delay mix A combination of the signals of the four oscillators is delayed
and filtered through a low/high pass filter and an envelope filter. (see
bottom chain in fig 2.6).

• Output The main mix is merged with the delay mix to form the output
signal.

⇤ https://www.teenageengineering.com/products/op-z



CHAPTER 2. BACKGROUND 15

Figure 2.6: A model of the synthesizer. Playing a MIDI note triggers a set of
parameters which control the four oscillators. Each oscillator can modulate
the other oscillators and itself depending on the chosen modulation algorithm.
The outputs of the oscillators are weighted and added once into a main mix
(right) and once into a delay mix. The signal of each mix is filtered through a
low-pass/high pass filter and an envelope filter. The weighted sum of the two
mixes forms the output signal.

2.2.2 Meta Parameters

The following meta parameters are available:

• Pitch: [0, 128] The produced sounds’ pitch, given as the MIDI number
as described in 2.1.5

• Duration: [0, •) The duration of the created sound in milliseconds,
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• Algorithm: [1, 8] One out of eight distinct fm-algorithms as described
in 2.1.4.

2.2.3 Oscillator Parameters

For each of the four oscillators in the synthesizer, a number of parameters are
available.

• Frequency: [-16, 16] The frequency shift of the oscillator with respect
to the pitch. The frequency of the oscillator is given by the pitch fre-
quency plus the frequency number multiplied by the frequency of the
pitch. By other means, this is a linear manipulation of the frequency, as
opposed to real octaves which is logarithmic.

• Detune: [-100, 100]

• Attack: [0, 1] The Attack of the envelope as described in section 2.1.2

• Release: [0, 1] The Release of the envelope as described in section 2.1.2

• Modulation: [0, 1] The amount the oscillator modulates another os-
cillator, where 0 is no modulation and 1 is "full" modulation. Which
oscillator that modulates which is decided by the meta parameter algo-
rithm.

• Feedback: [0, 1] The amount the oscillator modulates iself.

• Mix 1 Amplitude: [0, 1] How much is the output of the oscillator added
to the mix 1 output?

• Mix 2 Amplitude: [0, 1] How much is the output of the oscillator added
to the mix 2 (delay) output?

2.2.4 Mix parameters

For each of the two mixes, main and delay, the following parameters are avail-
able.

• Cutoff : [0, 1] Cutoff point of a filter as described in 2.1.3. 0.5 yields no
filter, smaller than 0.5 yields a high pass filter and larger than 0.5 yields
a low pass filter.
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• Resonance: [1, 8] One of eight distinct resonance settings as described
in 2.1.3

• Envelope: [1, 4] The envelope to apply to the mix. Setting the param-
eter to 1, 2, 3 or 4 corresponds to the Attach and Release parameter of
oscillator 1, 2, 3 or 4.

• Envelope Weight: [-1, 1] -1 yields an inverse envelope filter, 0 yields no
envelope and 1 yields full envelope filter.

2.2.5 Modulation

The oscillators in the synthesizer modulate each other according to a pre-
defined modulation algorithm. In this thesis we limit the modulation to one
modulation algorithm, where O4 is the carrier, O3 modulates O4, O2modulatesO3
and O1 modulates O2 as described in fig. ??. Each modulator has an octave
parameter indicating the frequeny of the oscillator, envelope parameters at-
tack and release as well as a Mix1 parameter indicating the relative amplitude
of the modulator.

2.3 Audio Feature Extraction

here exist within signal processing a variety of models for extracting the many
perceptually important components of audio. Even in applying deep learning,
where explicitly hand engineered features are usually disregarded in favor
of implicitly learning the feature extraction as a part of the model, classic
signal processing methods still play a significant role in the deep learning for
audio domain.[16] While using the raw audio signal has shown promise [23]
[11], older techniques such as the Cooley-Tukey Algorithm for extracting a
signal’s frequency components through the Fast Fourier Transform [4] is still
an essential part to look into when addressing signal processing problems with
ML. In this section, I explain some of the most commonly used transforms in
signal processing. In section 2.4, I define a number of distance metrics using
these transforms.

2.3.1 Raw Audio Signal

The raw audio signal is typically expressed as a one-dimensional array of
amplitude values. The values are typically normalized to range from -1 to +1.
In fig 2.7 a synthetic vocal sound represented as a raw audio signal.



18 CHAPTER 2. BACKGROUND

Figure 2.7: A raw audio signal representation of an instrumental sound.

2.3.2 Envelope

By applying the Hillberg transform to the signal, the analytic signal A(t) =
Are(t)+Aim(t) of the signal is obtained. The estimation of the envelope, e⇤(t),
is defined as the magnitude of A(t), run through a low pass filter.

e⇤(t) = l p(|A(t)|; fc)

where fc is some low frequency, i.e. 30 Hz.

Figure 2.8: The envelope of a synthetic vocal sound as extracted through the
Hillberg transform run through a low pass filter.

2.3.3 Fast Fourier Transform

The Cooley-Tukey FFT algorithm is used to obtain the array of Fourier coef-
ficients As( f ), representing the amplitude of each frequency component for a
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given signal s [4].

Figure 2.9: A representation of a synthetic vocal sound in the frequency do-
main, obtained through the Cooley-Tukey FFT algorithm.

2.3.4 Short Time Fourier Transform

The STFT spectogram is a sequence of FFTs over time, forming a spectrum
of frequency component amplitudes which evolve over time.

Figure 2.10: The STFT spectrogram of a synthetic vocal sound computed
with a sampling rate of 16000 Hz, window size Ns of 1024 samples, and an
overlap of 512 samples.

2.3.5 Mel Scale Representation

The Mel Scale was introduced by Stevens, Volkmann and Newman in 1937
[20]. As opposed to the linear Hertz scale, the Mel-scale aims accounts for
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the perceptual phenomena that above 500 Hz increasingly large intervals are
perceived to produce equal pitch increments, i.e. two notes with some inter-
val i in the high frequency regions appear closer than two notes in the lower
frequency regions with the same interval i.

A frequency of f Hertz can be converted to m Mel through equation 2.1,
which is also displayed in fig. 2.11.

m = 2595log10(1�
f

700
) (2.1)

Figure 2.11: The mapping between the Mel and Hertz scales.

2.3.6 Log-Mel Spectrogram

to be added The log-mel spectrogram does similarly to the STFT model the
temporal evolution of the frequency components of a sound. The log-mel
spectrogram, however, has two key differences to adopt it to better model
human perception: first, it maps the powers of the frequencies onto the mel-
scale as described in 2.3.5 and second it expresses the powers of the mel
frequencies on a logarithmic scale rather than linear. [16]
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Figure 2.12: The log-mel spectrogram of a synthetic vocal sound computed
with a sampling rate of 16000 Hz, window size Ns of 1024 samples, and an
overlap of 512 samples

2.3.7 Spectral Entropy

The spectral entropy of a signal, measured in bits, describes the complexity
of a spectrum. It is calculated by calculating the entropy of the Probability
density function of the Power spectral density of the spectrum S(x)

The power spectral density of the signal computed by squaring the the
amplitude by the number of bins:

P(x) =
1
N
|S(x)|2

The density is normalized to a probability density function

pi =
P(x)

ÂN
i P(x)

And the entropy calculated using the standard formula for entropy

SE =�
N

Â
i

piln(pi)

2.3.8 Spectral Flatness

The spectral flatness or Wiener Entropy is a measure of the the noisiness/sinusoidality
of a spectrum and is computed as the ratio of the geometric mean to the arith-
metic mean of the energy spectrum [6]. In this thesis the log-flatness is used
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in order to increase the dynamic range, making the measure range from mi-
nus infinity (a single sinusoid) to zero (complete white noise). In fig 2.13 the
spectral flatness is displayed for two samples from the nsynth dataset [7].

Figure 2.13: The frequency magnitude spectras of two sounds: to the left a
synthetic bass with low spectral flatness (a large negative value), and to the
right an electric guitar with high spectral flatness (close to zero)

2.4 Audio Similarity Metrics

Quantifying the similarity of a candidate and a target sound such that it mod-
els human perception is complex, application specific and somewhat subjec-
tive. Tatar et. al suggests a multi objective objective approach, measuring
the similarity of two sounds by comparing 1. the euclidian distance of the
magnitude frequency spectrums obtained through FFT over the entire sound
without segmentation, 2. the euclidian distance of the spectral envelope ob-
tained through STFT and 3. the euclidian distance of the envelopes, arguing
that these metrics capture the similarity in spectral components, spectral enve-
lope and envelope respectively. [22]. Arguably, measuring Euclidean distance
for time series data may yield unintuitive results - for example the similarity
between two identical series which are shifted slightly in the time domain,
may be very large.

Yee-King and Roth [28] use the sum squared error of the Mel-Frequency
Cepstrum Coefficient (MFCC) vectors to quantify similarity, arguing that
since MFCC is largely pitch-indifferent and based on the perceptual mel scale
model, it is a good model of perceptual similarity. [20].
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Also in speech recognition, a domain where a word spoken at different
speed or pitch still bears the same meaning, MFCC is well established [5],
with the distance between the MFCC vectors commonly quantified with the
Dynamic Time Warping (DTW) algorithm. [15].

2.4.1 Fast Fourier Transform

The FFT distance of a candidate sound c and a target sound t is defined as
the euclidian distance of the magnitude of the two arrays A(c) and A(t) as
obtained through the Cooley-Tukey algorithm as explained in 2.3.3 and then
normalized such that max(A) = 1 and min (A) = 0:

dFFT (t,c) =
N

Â
n

q
(|A(t)i|� |A(c)i|)2

2.4.2 Short Time Fourier Transform

The STFT spectrogram S(k) is computed with a sampling rate of 44100 Hz,
window size Ns of 1024 samples (23ms), and an overlap of 512 samples
(11.5ms). ⇤ An example of the frequency magnitude spectrum over time
extracted through STFT can be seen in the fourth plot in fig. ??. The STFT
distance of a candidate sound c and a target sound t is defined as the Euclidian
distance of the two spectrums S(t) and S(c):

dST FT (t,c) =
Nw

Â
i=1

vuut
Ns

Â
j=1

(S(t)i j �S(c)i j)2

2.4.3 Log-Mel Spectrogram

The log-mel spectrogram LMS(k) is essentially computed in identical manner
as the STFT spectrogram. However with two differences designed to model
the human perception of sound: the frequencies are mapped onto the mel-
scale and the amplitude is projected on a logarithmical scale.

The log-mel spectrogram distance dLMS is computed identically to dST FT ,
but using the log-mel frequency spectrograms rather than the STFT spectro-
⇤ These parameters are selected in order to replicate Tatar et Al.
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gram.

dLMS(t,c) =
Nw

Â
i=1

vuut
Ns

Â
j=1

(LMS(t)i j �LMS(c)i j)2

2.4.4 Euclidian Distance of Envelope

The envelope distance is defined as the mean of the sample wise euclidian
distance of the target and candidate envelopes e⇤t and e⇤c , estimated through
the Hillberg transform and a low pass filter in 2.1.2.

denvelope(t,c) =
1
N

N

Â
n

q
(e⇤t n � e⇤cn)2

2.5 Machine Learning

Tom M. Mitchell [14] describe the field of Machine Learning as concerned
with the question of how to construct computer programs that automatically
improve with experience. Rather than performing a task based on some ex-
plicitly stated rules and conditions, ML allows a machine to learn how im-
prove its ability to perform a task by experience. Formally, Mitchell defines
the learning as:

Definition. "A computer program is said to learn from experience E with re-
spect to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E". [14]

In order to pose a good learning problem, we need to define three men-
tioned features: Task T, Performance measure P and the source of experience
E. For example, consider the problem of recognizing hand written digits:

• Task T: Classify a handwritten digit in an image

• Performance measure P: the percent of digits correctly classified

• Training experience E: a database of handwritten digits with known
classification.

The main categorization of learning problems is into either supervised or un-
supervised learning. In supervised learning, the goal is to predict the output
given a number of input features and can be seen as "learning with a teacher",
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where the "teacher" provides either the correct answer and/or an error associ-
ated with the predicted answer. In unsupervised learning, or "learning without
a teacher", there is no output value, but the goal is rather to describe the pat-
terns among the input features. [9] In this thesis, the focus is at supervised
learning.

2.5.1 Supervised Learning

For each task in supervised learning there is a set of variables, inputs, with
some influence on one or more outputs or response variables. The goal of
supervised learning is to use the inputs to predict the outputs. [9]

The output type is commonly divided into either a quantitative or qual-
itative measurement. The above mentioned problem of handwritten digits,
where the output is one of 10 classes {0, 1, ..., 9} is an example of a prob-
lem with a qualitative (or categorical) output. By convention the prediction
of quantitative variables is called regression whereas the prediction of quali-
tative variables is called classification. [9]

Take as example the linear model. Given an input X = [X1,X2, ....,Xp] the
output Y is predicted as

Ŷ = b̂0 +
p

Â
j=1

Xjb̂ j (2.2)

where b̂0 is the bias of the model. Including a constant 1 in X and b̂0 in
the vector of coefficients b̂ , the model can be written in vector form.

Ŷ = XT b̂ (2.3)

Given a set D of inputs x0, ...,xi with known output values y0, ...yi we can
fit the model to D. The most popular way to fit the model is by minimizing
the residual sum of squares with respect to b . [9]

RSS(b ) =
N

Â
i=1

(yi � xT
i b )2 (2.4)

2.5.2 Regression

In regression, one or more continuous or discrete target variables are pre-
dicted. The error is defined as some loss function between the target. In this
thesis we use the mean squared error to define the loss for N prediction ŷi with
true label yi, as defined in 2.5.
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Mean Squared Error

L =
1
N

N

Â
x
(yi � ŷi)

2 (2.5)

2.5.3 Generalization

One of the main goals of ML is to obtain a model which generalizes - i.e.
makes correct predictions also on data which was not shown to the model
during training.

A common problem in ML occurs when the dimensionality of the learning
problem increases beyond just a few dimensions. When the dimensionality
increases, the volume of the hypothesis space grows in such a pace that the
training data become sparse. This phenomena is often referred to as the curse
of dimensionality.

When a model is trained, a general model will become increasingly good
at predicting the target variable correctly given not only training data but also
previously unseen data. When the models ability to predict the target variable
from unseen data starts decreasing, the model is said to be overfitting. For
example, overfitting can occur due to the model being trained on too few
data, being trained to many times on the training data or being trained in a
too fast manner. In order to detect overfitting it is good practice to divide the
available data into three subsets: a train dataset, an evaluation dataset and a
test dataset.

• Train: The train data are used in training and their target variables are
used as the ground truth for the model to learn the mapping from input
x to target y. Usually about 70-80% of the data are in the train dataset.

• Evaluation The evaluation data are used in order to evaluate which hy-
perparameters make the model generalize well. The data are shown to
the model which makes a prediction, and the target variables of the eval-
uation data are used to measure the general performance of the model.
Usually 15-20% of the data are in the evaluation dataset.

• Test The test set is used to finally compare different models against each
other, in a similar manner as the evaluation dataset, however testing on
data which was not used in evaluation makes sure we have not chosen
hyperparameters which makes the model loose generalizability.
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In addition, techniques such as k-fold validation can be used in order to
maximize the amount of data used in training, still evaluating the model with
respect to its performance on unseen data.

2.5.4 Perceptron Algorithm

The perceptron algorithm, introduced by Rosenblatt in 1958 [18] is a lin-
ear classification algorithm, and the foundation of Artificial Neural Network
(ANN) models. The perceptron is commonly modelled as a neuron which
takes a n-dimensional vector of inputs ~x for a n-dimensional space, an n-
dimensional array of weights ~W = [w0,w1, ...,wn] and a bias w0, and as output
has some value Y which is a function of ~W given by the function:

Y = ~XT ~W +w0 (2.6)

Figure 2.14: A model of a single perceptron with a three dimensional input
space.

The perceptron is trained to find a decision boundary which separates the
two classes as well as possible. The decision boundary can then be expressed
as the linear n-dimensional hyperplane~x which satisfies the equation

~xT ~W +w0 = 0 (2.7)

A separating hyperplane is found by minimizing the distance of the mis-
classified points (points on the "wrong" side of the decision boundary in
2.15).[9]

D(~W ,w0) =� Â
i2M

yi(xT
i W +w0) (2.8)
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Figure 2.15: The straight line is the decision boundary between two classes
in a two-dimensional space. A number of instances from both classes are one
the "wrong" side of the decision boundary, and are hence misclassified.

2.5.5 Artificial Neural Network

Artificial Neural Networks is effectively a set of connected layers of percep-
trons. They have proven a robust approach to approximating high dimensional
functions of various types: real-valued, discrete-valued and vector-valued and
can hence be used for regression and classification. [14] ANNs consists of
three types of layers, see fig. 2.16:

1. Input layer Each of the neurons in the input layer can be seen as repre-
senting an input feature.

2. Hidden layers The hidden layer(s) is not visible to the outside, and can
be set to an arbitrary size.

3. Output layer In the case of regression, the output layer has as many
neurons as values predicted. The layer is then often combined with a
sigmoid activation function which squashes the output to a prediction
in the range [0, 1]. In the case of classification, the output layer has
as many neurons as classes, with the softmax function applied to the
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output vector making the output represent the predicted probability of
each class.

Fig. 2.16 shows a neural network with three layers: an input layer,

Figure 2.16: The multi-layer perceptron add caption

2.6 Related Work

2.6.1 Re-synthesis with Genetic Algorithms

Yee-King and Roth [28] propose the Synthbot, a tool which re-synthesis a
given sound using any software synthesiser which complies with the Virtual
Studio Technology (VST) protocol. The authors suggest a Genetic Algorithm
to able to search the space of possible parameter settings of the given syn-
thesiser. The authors argue that while similarity of the power spectrum as
obtained through FFT or STFT does reward similar sounds, it regards sounds
of similar timbre but different pitch to be completely different - for instance
in the case of comparing two different notes played by the same instrument.
Instead, the authors propose the use of the pitch independent Mel Frequency
Cepstrum Coefficients (MFCC) to quantify the sound characteristic. The Syn-
thbot is evaluated on two synthesisers: one FM synth with a single modulator
and another subtractive synthesizer with 2 tuned oscillators and one noise os-
cillator.

Tatar et al. [22] also address re-synthesis through the use of a Genetic Al-
gorithm, however they optimize and evaluate their solution for a single, more
complex synthesiser: the OP-1 developed by TE. The authors propose and
evaluate a Multi-Objective Genetic Algorithm to approximate a given target
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sound by finding optimal synthesizer parameters. The fitness function con-
siders three objectives to minimize: FFT, STFT and Envelope, modelling the
frequency spectrum, the frequency envelope and amplitude envelope respec-
tively. The use of three distinct objectives is motivated with the difficulty
of choosing weights to aggregate the three into a single fitness function. In-
stead, the authors apply a K-means clustering algorithms to the solutions in
the cumulative Pareto front, and for each cluster chose the centroid as the
representative solution for the given cluster. The k solutions are presented
to the user for evaluation. Finally, the authors evaluate the solutions qualita-
tively, by letting a number of expert sound designers attempt to re-synthesise a
range of sounds using the same synthesiser. With a few exceptions the Preset-
Gen outperform the human sound designers when compared using the three
optimization goals of the GA.

2.6.2 Deep Re-synthesis

Barkan and Tsiris [2] compare several deep learning based approaches to au-
tomatic synthesizer parameter configuration. The best performing models are
found to be Convolutional Neural Networks (CNN) - a special type of neural
networks which use weight sharing in the early layers, effectively serving as
filters which implicitly learns an optimal feature extraction. The work exam-
ines and compares two types of end to end-learning CNNs learning to predict
the syntheiszer parameters given some representation of an input sound. The
learning objective is defined as.... First, a CNN which takes the STFT spec-
trogram of a sound as input, second a CNN which takes the raw waveform
as input. The authors find that while the STFT-CNN performs better, the
waveform-CNN works surprisingly well. The study also concludes that large
depth (number of layers) has significant positive impact on the predictive ca-
pabilities, and that larger models seem to generalize better.

2.6.3 Deep Generative Re-synthesis

Engel, Resnick et al. [7] propose a deeper approach to the problem of re-
synthesizing short instrumental sounds. Rather than learning how to interact
with an engineered synthesizer - an explicitly programmed and to some ex-
tent unknown generative function - they utilize a trainable generative model
which learns to produce the output sounds. Building on previous work by
van den Oord et al [25] who created WaveNet, a deep neural network model
for generating raw audio, they suggest an autoencoder with WaveNet as the
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second, generative half of the autoencoder. First, this approach is benefi-
cial because rather than projecting the target sound onto some possibly sub-
optimal parameter space according to the instructions of the synthesizer, the
model can learn a more efficient encoding. Second, the model is not limited
by the pre-engineered functionality of the synthesizer, but may instead learn
a potentially more optimized manner of generating sounds. Notably how-
ever, training WaveNet is very computationally expensive process which take
weeks even in a highly parallel setting.

2.7 Summary

To summarize, we are targeting a problem of approximating a mapping from
sound space to synthesizer parameter space for a FM-synthesizer. An FM
synthesizer creates rich frequency spectras by modulating a (sinusoidal) car-
rier frequency with other modulating frequency. By altering parameters such
as frequency, amplitude and modulation index, a rich variety of sounds can be
obtained. This and similar problems have previously been approached with
Genetic Algorithms and Deep Learning. In order to measure the performance
of a Machine Learning model performing this task, we quantify the distance
between target sound t and candidate sound c with respect to four different
metrics: euclidian distance of the frequency magnitude spectrums (dFFT ),
euclidian distance of the temporal frequency magnitude spetrograms (dST FT ),
euclidian distance of the log-mel scaled temporal frequency magnitude spet-
rograms (dLMS) and finally euclidian distance of the envelopes (denvelope).
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Methodology

This chapter gives an overview of the research method used in this thesis. Sec-
tion 3.1 describes the research paradigm and the research methods used with
the help Anne Håkanssons work Portal of research methods and methodolo-
gies for research projects and degree projects [8] which summarizes and con-
cludes some research methods and their importance. Section 3.2 describes the
method outline in further detail. Section 3.3 describes the learning problem
given theory and delimitations mentioned in previous chapters. Section 3.4
describes the design of the two compared approaches. Section 3.5 describes
the datasets used for training, validation and evaluation including generation
of the self-generated dataset. Section 3.6 describes the use of techniques for
measuring sound similarity, relating back to the sound similarites mentioned
in the theory section 2.4. Section 3.7 describes the experiments conducted
to compare the two approaches. Finally, section 3.8 describes the means by
which the data gathered is analyzed.

3.1 Research Paradigm

Multiple approaches could be chosen in order to answer the research ques-
tion stated in 1.2. For instance, a theoretical approach could have been cho-
sen, consisting of a literature study aimed at answering the research question.
Such a theoretical approach allows for significantly larger diversity in the ap-
proaches and datasets, possibly enlargening the scope of the research and min-
imizing the risk of biased data or human errors. However, this is approach was
not chosen as this thesis aims to cover a knowledge gap in existing litterature.
Moreover, the research partnership with Teenage Engineering offers a unique
experience to conduct empirical research with an advanced software synthe-

32
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sizer which is normally not available to the public or research community. For
these reasons, the research question is instead attempted to answered empiri-
cally through an experimental research strategy, and the question is answered
by designing and training two different approaches and quantitatively assess-
ing their respective ability to automatically generate synthesiser presets.

3.1.1 Research Methods

According to Håkansson [8], research methods are the methods applied to the
degree project in order to facilitate the research process, and provide proce-
dures for how to do research, including initiating, carrying out and completing
the tasks in research. Håkansson lists a number of the most common research
methods, including experimental research which is described as a quantita-
tive approach which "establishes relationsships between variables and finds
causalities between the relationships". [8] Given the mathematical nature of
ML, a quantitative research method is suitable, and given the previously men-
tioned step wise manner in which the research will be conducted experimental
research is chosen as the research method of this thesis. Given the perceptual
nature of sound, it would arguably be interesting to also collect qualitative
data as well. This could be done by allowing a test group to listen to sounds
from the two approaches and comparing which perform better at re-synthesis.
Allowing real humans to evaluate the approaches would indeed be superior
to using sound similarity metrics since the metrics do not perfectly model
human perception. However, it would be difficult to carry out such an evalu-
ation with enough samples to yield a trustworthy test. Arranging such a test
setup would likely require significant time, with the risk of obtaining results
which would not be significant. Instead, a quantitative approach is chosen
such that many samples can be evaluated, with awareness of the risk of the
chosen sound similarity metrics not perfectly modelling human perception.

3.1.2 Research Approach

The research approach is used to decide how to draw conclusions from the
collected data. Håkansson [8] lists two main approaches and one hybrid ap-
proach:

• Inductive After gathering enough data, the data are analyzed in order
to gain knowledge and establishing different views of the researched
phenomenon. Commonly used in qualitative research.
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• Deductive Large data sets are used to verify or falsify theories or hy-
potheses. Commonly used in quantitative research.

• Abductive Uses both inductive and deductive approaches to establish
conclusions through reasoning. The outcome is an explanation or rea-
soning, rather than test of an hypothesis.

Given the experimental yet quantitative nature of this thesis, the abductive
research approach is chosen. More specifically, I choose to develop an an ar-
tifact per approach. This allows for obtaining domain knowledge in general
and knowledge of the two implemented approaches in particular, which aids
the reasoning around and understanding of the results obtained in the experi-
ments conducted with the artifacts.

3.2 Method Outline

The research is conducted in a step wise manner, starting by applying theory
in practice on toy problems, where after the problem difficulty of the number
of predicted parameters are increased step by step until the learning problem
is complex and large enough to satisfyingly being able to answer the research
question. This method is adopted to in an agile pace establishing domain
knowledge, without the risk of spending vast amounts of time implementing
or training models which eventually potentially do not work for the given
problem. Eventually, the domain knowledge is used to train two models for
the given learning problem:

• Concurrent approach A model which is trained to predict all parameter
values of the learning problem at once. A single regression model.

• Sequential approach A set of models which are trained to predict the
parameter values of the learning problem in a step wise manner. A mix
of classifiers and regression models.

The two models are trained on a dataset generated by the TE syntheziser.
Finally, the performance of the models are evaluated by measuring their ca-
pability to re-synthesize a number of instrumental sounds from different in-
strumental sources in three different pitches. The capability is quantified with
respect to four different targets: FFT-distance, STFT-distance, log-mel spec-
trogram distance and envelope distance.
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3.3 The learning problem

As mentioned in the delimitations section 2.2 are fixed or disabled to reduce
some complexity of the learning problem. The delay chain is completely
muted, the modulation is set to 1, the FM algorithm is set to always be the
same 0, the global envelope is always the same as the carrier oscillator’s en-
velope and the weight of the envelope is always set to 1. The parameters to
learn are listed in table ?? and their effect is visualized in figure 3.1.

Figure 3.1: The impact of the trained parameters on the output sound. The
modulation algorithm used is a straight line where osc 1 modulates osc 2
which modulates osc 3 which modulates osc 4. Each modulator has an fre-
quency parameter O indicating the frequency of the oscillator, an amplitude
parameter A indicating the relative amplitude of the output signal, a feedback
modulation index F, envelope parameters attack a and release r. At the end
of the algorithm there is a global envelope and a low/high pass filter which is
controlled through a cutoff parameter.

3.4 Designing the competing approaches

The purpose of this thesis is to compare two approaches, the concurrent and
the sequential. In order to compare the two approaches well, some caution
needs to be taken when designing the models in order to facilitate for a fair
comparison.

Choosing the size of a model, the number of parameters, is usually a trade
off. A small model may be fast and computationally inexpensive to train and
may generalize well, however it may be incapable of modelling the given
learning problem. A large model is better capable to model high dimensional
learning problems, but may also be too strong such that it learns to model
the noise included in the data, making the model overfit as described in 2.5.3.
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Very large models are also expensive to train and may require dedicated hard-
ware such as virtual machines. The learning problem defined in 3.3 is high
dimensional and models will likely benefit from size. Furthermore some ar-
chitectures may be better at modelling certain problems, making it important
to choose similar learning algorithms to facilitate for a just comparison.

In order to allow for a good comparison, both approaches will be ANNs,
consisting of a roughly equal amount of parameters and trained for roughly
the same number of epochs on the same data. As input, both models will take
pitch extracted from a pitch prediction model and the STFT spectrogram of
the input sound, as defined in subsection 2.3.4.

3.4.1 Concurrent Approach

The concurrent approach is an ANN with three hidden layers, taking the
STFT-spectrogram downsampled by a factor of 16 and the predicted pitch
as input.

Figure 3.2: An overview of the concurrent approach of predicting the param-
eter values for resynthesis. The input sound x is passed through a feature
extraction function f. The extracted features f(x) is used as input to a pitch
predictor P to predict pitch p(x). f(x) and p(x) are used as input to a regres-
sion model which predicts all parameter values.

3.4.2 Sequential Approach

The sequential approach is designed as a sequence of models. First, the pitch
and STFT-spectrogram is extracted. Then, a classifier classifies whether to use
0, 1, 2 or 3 modulating oscillators. If 1, 2 or 3 is predicted, the model trained to
predict the parameters frequency, amplitude, attack, release and feedback of 1,
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2 or 3 oscillators is used. If 0 is predicted, this step is skipped. Finally, a model
predicts the cutoff filter and the global envelope given the pitch and previous
predictions as input. All of the models are ANNs, however of various size
and depth. This can be summarized by figure 3.3 in the following pipeline:

1. The carrier oscillator frequency is set according to the predicted pitch.

2. A classifier predicts the number of modulating oscillators (0, 1, 2 or 3).

3. Depending on the number of modulating oscillators, the frequency, am-
plitude, attack, release and feedback parameters of each modulator is
predicted.

4. The global attack and release and cutoff parameters are predicted.

Figure 3.3: A sketch of the sequential approach of predicting the parameter
values for resynthesis of input sound x. The pitch p(x) and features f(x) are
extracted. p(x)

3.5 Datasets

Two datasets are used within this thesis. First, a dataset of sounds generated
with the software synthesiser and second, the Nsynth dataset from Google’s
Magenta project. [7]

3.5.1 Self-Generated Dataset

The self-generated dataset is designed to cover the as much of the variety of
the synthesizer’s parameter space as possible. As discussed in ??, we limit
the dataset to only use only Mix1 in order to reduce complexity.
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There are four modulators which can be configured through 8 different al-
gorithms. We choose to use all four of the modulators, but always configured
in the same modulation algorithm. The modulation algorithms can be seen
in fig. ??. We always use a carrier oscillator with Octave parameter set to
0. With equal probablility, we choose to use either 0, 1, 2 or 3 modulating
oscillators. For each of the oscillators we choose values for the Octave, Feed-
back, Amplitude and envelope parameters. A set of global parameters are also
chosen at random: Filter cutoff and pitch while Mix1 envelope weight, Mix1
envelope index and Mix1 resonance are fixed to a constant value.

The dataset is created by generating a set of random presets and feeding
them to the TE software synthesizer. The dataset was produced according to
the following procedure:

1. Generate a random patch

2. Mute all four oscillators O1...O4 by setting their Mix1, Mix2 and detune
parameters to zero.

3. Set the modulation algorithm to algorithm no 1

4. Set the pitch to a random integer in [21, 108]

5. Set the Octave of O4 to 0.

6. Set the Mix1 of O4 to 1.

7. Set the Attack and Release of O4 to random integers in the intervals [0,
0.5] and [0.1, 0.7] respectively.

8. Choose a random number of modulators in the interval [0, 3]

9. For each used modulating oscillator Oi:

(a) set mix1 to a random number in [0, 1]

(b) set octave to a random integer in [-8, 8]

(c) set modulation to 1

(d) Set the Attack and Release to random integers in the intervals [0,
0.5] and [0.1, 0.7] respectively.

10. Set the cutoff parameter to a random number in [0, 1]
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# of modulators # of samples Proportion

0 66521 24.99%
1 66180 24.86%
2 66520 24.99%
3 66929 25.14%
Total 267000 100%

Table 3.1: Each sample in the dataset belongs to exactly one out of four
classes based on the number of modulating oscillators used to produce the
sound. It can be seen in the table that the dataset is balanced between the
classes.
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Parameter mean min 25% 50% 75% max

Osc1Mix1 0.14 0.0 0.0 0.0 0.11 1.0
Osc1Frequency 0.01 -8.0 0.0 0.0 0.0 8.0
Osc1Feedback 0.63 0.38 0.5 0.63 0.75 0.87
Osc1Env1 0.3 0.0 0.15 0.25 0.44 0.50
Osc1Env4 0.42 0.09 0.26 0.42 0.58 0.70
Osc2Mix1 0.28 0.0 0.0 0.1 0.55 1.0
Osc2Frequency 0.0 -8.0 0.0 0.0 0.0 8.0
Osc2Feedback 0.63 0.38 0.5 0.63 0.75 0.87
Osc2Env1 0.28 0.0 0.14 0.28 0.42 0.50
Osc2Env4 0.41 0.09 0.25 0.41 0.57 0.70
Osc3Mix1 0.41 0.0 0.1 0.4 0.7 1.0
Osc3Frequency 0.0 -8.0 -3.0 -0.0 3.0 8.0
Osc3Feedback 0.62 0.38 0.5 0.62 0.75 0.87
Osc3Env1 0.27 0.0 0.13 0.26 0.39 0.50
Osc3Env4 0.41 0.09 0.25 0.41 0.56 0.70
Osc4Mix1 1.0 1.0 1.0 1.0 1.0 1.0
Osc4Frequency 0.0 0.0 0.0 0.0 0.0 0.0
Osc4Feedback 0.62 0.38 0.5 0.62 0.75 0.87
Osc4Env1 0.25 0.0 0.13 0.25 0.38 0.5
Osc4Env4 0.4 0.1 0.25 0.4 0.55 0.7
Mix1Cutoff 0.5 0.0 0.25 0.5 0.75 1.0
Mix1Resonance 0.0 0.0 0.0 0.0 0.0 0.0
Mix1EnvIndex 3.0 3.0 3.0 3.0 3.0 3.0
Mix1EnvWeight 1.0 1.0 1.0 1.0 1.0 1.0
Pitch 63.12 20.0 41.0 63.0 85.0 106.0

Table 3.2: Mean, minimum, maximum values of the dataset. When an os-
cillator is turned off the parameters are set to 0, causing gradually skewed
distributions ranging from oscillator 4 (always used) to oscillator 1 (used in
25% of the patches.))

3.5.2 Nsynth Dataset

In a second phase, in order to increase complexity and evaluate how well the
combination of deep learning model and software synthesizer can generalize,
the Nsynth dataset is used. The dataset, consisting of sounds which are un-
known to the TE software synthesiser, consists of 305,979 tones from 1006
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instruments in 11 families, each with a unique pitch, timbre, and envelope.
The method of sound production for each note’s instrument - the instrument
source - is categorized as either acoustic, electronic or synthetic, which facil-
itates for evaluating the model on different types of instruments. [7]. In table
3.3 the number of samples per instrument family and source.

Family Acoustic Electronic Synthetic Total

Bass 200 8,387 60,368 68,955
Brass 13,760 70 0 13,830
Flute 6,572 35 2,816 9,423
Guitar 13,343 16,805 5,275 35,423
Keyboard 8,508 42,645 3,838 54,991
Mallet 27,722 5,581 1,763 35,066
Organ 176 36,401 0 36,577
Reed 14,262 76 528 14,866
String 20,510 84 0 20,594
Synth Lead 0 0 5,501 5,501
Vocal 3,925 140 6,688 10,753
Total 108,978 110,224 86,777 305,979

Table 3.3: Number of samples by instrument family and source in the NSynth
dataset.

For evaluation, a subset of the Nsynth dataset is used. For each of the
instruments, the samples of the instrument in pitch 36, 60 and 84 is chosen.
This yields a dataset of 2255 samples.
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Family Acoustic Electronic Synthetic Total

Bass 74 2 393 469
Brass 0 117 0 117
Flute 0 46 15 61
Guitar 129 87 36 252
Keyboard 308 56 30 394
Mallet 38 199 14 251
Organ 309 0 0 309
Reed 0 118 3 121
String 0 178 0 178
Synth Lead 0 0 37 37
Vocal 0 24 42 66
Total 827 858 570.0 2255

Table 3.4: Number of samples by instrument family and source in the NSynth
dataset.

3.6 Sound Similarity

In order to train the machine learning models, it is fundamental to define how
to quantify the similarity between a target sound t and a candidate sound c.
As explained in 2.4, the mix of metrics which model human perception can
be subjective and vary depending on the application. The following distance
measures are used:

• FFT-distance We use FFT-distance as one of the targets in order to eval-
uate how well the two different approaches are able to reproduce the
frequency magnitude spectrums of target sounds through re-synthesis.

• STFT-distance We use STFT-distance as one of the targets in order to
evaluate how well the two different approaches are able to reproduce
the changes of the frequency magnitude spectrum and envelope over
time.

• Log-mel-spectrogram-distance We use LMS-distance as one of the tar-
gets for similar reasons as the STFT distance, however through a metric
which better models human perception.
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• Envelope-distance We use envelope-distance as one of the targets in
order to evaluate how well the two different approaches are able to re-
produce the envelope.

3.7 Experiments

The two approaches are, as previously mentioned, trained on a train dataset
and validated on a validation dataset. Both train and validation datasets are
generated with the TE synthesizer, and are suitable for training since we know
the ground truth of the parameters used to create each sample. However, one
of the main goals is generalization - being able to reproduce or approximate
sounds which were not originally produced by the TE synthesizer. By just val-
idating on generated data, there remains a risk of overfitting both approaches.

Instead, we want to evaluate their ability to re-synthesize sounds which are
not produced by the TE-synthesizer, and even sounds which are not originally
synthetic but electronic or even acoustic. For this purpose, we evaluate upon
a subset of the Google Nsynth dataset described in 3.4.

For each sound sample t in the evaluation dataset:

1. Get the Constant Q-transform spectrogram of t, Qt

2. Extract the pitch from t, pt given Qt

3. Extract the STFT spectrogram of t, St

4. Predict the parameter values P̂c using the concurrent approach given pt
and Qt

5. Predict the parameter values P̂s using the sequential approach given pt
and Qt

6. Synthesize a candidate sound cc from P̂c

7. Synthesize a candidate sound cs from P̂s

8. Quantify the distance between cc and cs for each of the four distance
metrics: FFT-distance, STFT-distance, LMS-distance and envelope-distance.

3.7.1 Hardware Environment

All models are trained on a virtual machine with 16 GB virtual RAM and an
Nvidia Tesla CPU.
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3.7.2 Software Environment

The machine learning parts of this project is carried out using the following
python software packages:

• Tensorflow 1.13 A machine learning library. [13]

• Librosa 0.6.3 A signal processing library.

• Python 3.7.3 wave file module Modules used to read/write .wav files.

• Scipy 1.2.0 For numeric operations and statistical testing.

• TE Software Synthesizer A software synthesizer developed by TE. Copy-
righted and closed source.

3.8 Data Analysis

With the data obtained from the evaluation as described in subsection ??, we
compare the two approaches. Mainly, we seek to understand if one of the
models perform significantly better than the other. Furthermore, we aim to
gain knowledge of for what categories of sounds either approach is favorable
over the other.

First, we compare the performance of the approaches through a z-test with
99.9% confidence. For each metric we test the null hypothesis that there is no
difference between the performance of the concurrent and sequential for the
given metric. Through doing these z-tests. We also display some examples of
target and candidate sounds from both models.

We group the target sounds by spectral entropy and spectral flatness as
defined in ?? and ?? respectively, and compare the model’s performances in
terms of STFT-distance in order to draw conclusions regarding the perfor-
mance given sound spectrograms with various complexity. Finally, we group
the target sounds by instrument family and instrument source in order to eval-
uate whether there is any difference in the approaches’ performances in this
regard.
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The Re-synthesizer

This section describes the implementation of the re-synthesizer, namely the
prediction pipeline, each of the models in the prediction pipeline, the test
pipeline and finally the implementation environment.

4.1 Re-synthesis Pipeline

The re-synthesizer is implemented to take a target sound as input, produce a
candidate sound and measure the distance between the target and candidate
sound. Step wise, the procedure is as follows:

1. Extract features from the target sound

2. Predict pitch parameter

3. Predict parameter values through concurrent or sequential approach

4. Synthesize a candidate sound with the synthesizer given the parameter
values

5. Measure the FFT, STFT, LMS and Envelope distances

4.2 Pitch prediction

Both the concurrent and sequential approach use the pitch as an input feature.
For this reason, we train a model to extract the pitch of the given sound,
defined as the MIDI pitch of the carrier oscillator. The model is trained on the
train part of the Nsynth dataset of MIDI instruments.

45
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The model is an Artificial Neural Network (ANN) predicting one out-
put variable given the Constant Q transform spectrogram of the target sound
downsampled by a factor of 16 as input. Our efforts show that large mod-
els seem to generalize significantly better. The final model has three fully
connected layers of 1200 nodes each, with a total of 3,691,201 trainable pa-
rameters.

4.3 Concurrent approach

The concurrent approach is implemented as an ANN predicting 18 output
variables given the predicted pitch and the STFT spectrogram as input. The
model has three hidden layers with 700 neurons each. In total, the model has
3,855,600 trainable parameters. The model uses the Relu activation function
and is trained for 1300 epochs.

fconcurrent(S(X), pitch) =

2
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â4
r̂4
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Size Trainable parameters

Input 4105 -
Layer 1 700 2874200
Layer 2 700 490700
Layer 3 700 490700
Output 18 12618
Total 3855600

Table 4.1: The number of parameters of the concurrent approach.

4.4 Sequential Approach

The sequential approach is as described in the method section a number of
sequentially ordered ANNs for classification and regression. The approach
takes the STFT spectrogram downsampled by a factor of 16 and the predicted
pitch as defined in 4.2. In this section, the implementation of each model is
described in further detail. In table 4.2 the implemented size of each model is
listed, the number of parameters is in the same order as the concurrent model.

4.4.1 Number of modulators classifier

The Number of Oscillators-classifier was designed to be a classifier rather
than a regression under the assumption that although the choice is between 0,
1, 2 or 3 modulating oscillators, the distance between the classes might not be
linear. The model is an artificial neural network with two hidden layers. The
output layer has four output nodes with a softmax activation function, and is
optimized with respect to the categorical cross-entropy loss as defined in eq
??. Given the STFT-spectrogram of the input sound X, the model predicts the
probability of each class:

f (x) =
⇥
P(0|x),P(1|x),P(2|x),P(3|x)

⇤
(4.2)

4.4.2 Predicting Modulator Parameters

Based on the prediction of the classifier in 4.4.1, it is time to chose the param-
eters controlling the either 0, 1, 2 or 3 modulators.

Three different models are trained for the purpose. Given the log-mel
spectrogram and predicted pitch of an input sound X , the model predicts the
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frequency O and the relative amplitude A, the feedback modulation F and
envelope parameters a and r of 1, 2 or 3 modulators. The predicted parameters
for a model given N modulators is:

fN(S(X), p) =

2
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Ô1
F̂1
â1
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3N

(4.3)

The models are trained through optimizing with respect to the loss func-
tion, the mean square error as defined in eq.2.5. All of the models are ANNs,
however hyper parameters have been tuned manually through grid search for
each model.

4.4.3 Filters: Envelope and Cutoff frequency

For a given sound x, the model is trained to learn the attack and release pa-
rameters of the global envelope filter and the cutoff parameter of the high/low
pass filter. The model is an ANN with three nodes in the output layer. Given
STFT spectrogram of x downsampled by a factor of 16, and the previously
predicted oscillator variables, the model predicts:

y(x) =

2

4
â
r̂
ĉ

3

5

The model is trained on 80% of the self-generated dataset and validated
on the remaining 20% of the dataset. For a batch D of training samples, each
labelled with a 3 x 1 target tuple t the loss function is defined as the mean
squared error, as defined in equation 2.5.
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n mod Size Trainable parameters

Input 4105 -
Layer 1 150 615900
Layer 2 150 22650
Layer 3 150 22650
Output 5 755
Total 661955

1 mod Size Trainable parameters

Input 4105
Layer 1 200 821200
Layer 2 200 40200
Output 5 1005
Total - 861400

2 mod Size Trainable parameters

Input 4105
Layer 1 200 821200
Layer 2 200 40200
Output 10 2010
Total - 861400

3 mod Size Trainable parameters

Input 4105 -
Layer 1 200 821200
Layer 2 200 40200
Output 15 3015
Total 864415

filters Size Trainable parameters

Input 4105 -
Layer 1 100 410600
Layer 2 100 10100
Output 3 303
Total 421003

Total 3670173

Table 4.2: The number of trainable parameters of the models in the sequential
approach.



Chapter 5

Experimental Results

In this chapter, we first present the training and validation results of the two re-
spective models. We then present the results of the evaluation and show some
examples of re-synthesized sound spectras. Finally, we discuss the results.

5.1 Training and validation

This subsection displays the training and validation results of the different
models in the concurrent and sequential approaches as well as the pitch pre-
diction model.

5.1.1 Pitch prediction

In fig. 5.1 the confusion table of the model illustrates the capabilities of the
model. It can be seen that the model performs better in the mid frequency
range, between MIDI numbers 40 and 80, and is less accurate given sounds
of high frequency.

50
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Figure 5.1: To the left, training and validation loss of the pitch regression
model. To the right, confusion matrix of the pitch regression model on the
validation dataset. The model is less accurate on sounds with pitch in the
high and low frequency ranges, and as most accurate for sounds with MIDI
number 40-70.

5.1.2 Concurrent approach

The concurrent approach is trained for 1000 epochs. The validation and train-
ing error does not show signs of overfitting.

Figure 5.2: The training and validation loss of the full model.
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5.1.3 Sequential approach

In this subsection the results of each part of the sequential approach is dis-
played.

Number of modulators

In fig 5.3 we can see that the model does not seem to overfit. It can be seen
the model is accurate at detecting the use a single sinusoid without 0 modu-
lating oscillators. However more instances with 1, 2 or 3 modulators are more
often misclassified, and the model is slightly biased towards predicting more
modulators.

Figure 5.3: To the left, training and validation accuracy of the classifier. To
the right, validation confusion matrix of the classifier.

1 modulator

In figure 5.4 the training loss and confusion matrix of the 1-modulator model
is shown. The model does not seem to overfit, the validation error is 0.13.
It can be seen that the model is more accurate at detecting modulators with
lower frequencies and less accurate at detecting high frequencies.
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Figure 5.4: To the left the training and validation loss of the 1 modulator
model. To the right the confusion matrix of frequency prediction by the 1
modulator model on the validation set. It can be seen that the model is better
at detecting the pitch of a modulator in the lower frequencies, whereas less
accurate in the higher frequencies.

2 modulators

In figure 5.5 the training loss and confusion matrix of the 2-modulator
model is shown. The model does not seem to overfit. From the validation
error at 0.185 and the more blurry confusion matrices it can be seen that the
model is significantly less accurate than the 1-modulator model. The model
is more accurate at detecting modulators with low frequencies.
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Figure 5.5: Confusion matrix of frequency prediction by the 2 modulators
model on the validation set. It can be seen that the model is better at detecting
the pitch of a modulator in the lower frequencies, whereas less accurate in the
higher frequencies.

3 modulators

In figure 5.6 the training loss and confusion matrix of the 3-modulator
model is shown. The model does not seem to overfit. From the validation
error at 0.206 and the even more blurry confusion matrices it can be seen that
the model is significantly less accurate than the 1-modulator and 2-modulators
model. The model is not accurate at detecting modulators with either low or
high frequencies, and the lion share of the predictions are between frequencie
value -4 and 4.
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Figure 5.6: Above, training and validation loss of the 3 modulator model. Be-
low, the confusion matrix of frequency prediction by the 3 modulators model
on the validation set. It can be seen that the model is better at detecting the
pitch of a modulator in the lower frequencies, whereas less accurate in the
higher frequencies.

Envelope and cutoff

In figure 5.7 we can see the loss and confusion matrices of the envelope and
cutoff model. The predicted values have been rounded to the closes decimal,
however they are not rounded when fed to the synthesizer. It can bee seen that
the model has captured the relationship between sound features and parame-
ters to some extent, however it is far from perfect.
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Figure 5.7: On top the training and validation error of the envelope and cutoff
model. Below, the confusion matrices of the attack, release and cutoff.

5.2 Evaluation

In this subsection we describe the evaluation and performance of the two ap-
proaches. First the overall performance of the approaches are listed. Second,
their ability to reconstruct frequency spectras are quantified. Third, their abil-
ity to reconstruct the temporal frequency spectras are quantified. Fourth, their
ability to reconstruct the amplitude envelope are quantified. Finally, the ob-
servations are discussed.

5.2.1 Overall Performance

We compute the distance of each target and candidate sound for both of the
approaches with respect to the four distance metrics.
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approach d_FFT d_STFT d_LMS d_envelope
min concurrent 1.00 45.23 807.84 0.04

sequential 1.25 27.03 422.40 0.05
mean sequential 16.27 354.18 4602.14 0.42

concurrent 16.99 497.66 4896.58 0.48
std concurrent 23.51 318.57 1866.34 0.23

sequential 23.82 281.00 2560.69 0.21
max concurrent 515.33 6507.30 10834.02 0.91

sequential 518.93 6450.60 11381.52 0.76

Table 5.1: Performance of the concurrent and sequential approaches over the
whole evaluation dataset.

We conduct a two-sample z-test to assert whether the distributions for both
approaches are in fact different. We conduct the z-test with 99.9% confidence,
and for each metric test the null hypothesis that there is no difference between
the performance of the concurrent and sequential for the given metric. In
table 5.2 the results of the z-tests are displayed, indicating the it is possible
to reject the null hypothesis in the case of STFT, LMS and envelope distance,
but not in terms of FFT distance.

d_FFT d_STFT d_LMS d_envelope
p-value 3.05e-01 6.71e-58 1.02e-05 1.36e-18
Null hypothesis not rejected rejected rejected rejected

Table 5.2: Results from a z-test for each of the distance metrics of the null
hypothesis that the distribution from both of the approaches for the given dis-
tance metric are the same. The test is conducted over all 2255 re-synthesized
samples with 99.9% confidence. The null-hypothesis can be rejected for the
STFT, LMS and envelope distances, but not for the FFT-distance.

5.2.2 Reconstructing the frequency spectrum

In fig. 5.8 the target sounds are grouped by Spectral Entropy and Spectral
Flatness. The plots appear to show that the models yield near exactly the
same results with respect to FFT-distance. This goes in line with the z-test,
which could not reject the null hypothesis for the FFT-distance metric.
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Figure 5.8: FFT-distance of target sounds grouped by Spectral Entropy and
Spectral Flatness respectively. In the left plot, entropy ranges from low en-
tropy (low amount of information) to high (high amount of information). To
the right, the spectral flatness range from minus infinity to 0, with clean sinu-
soids being low on the scale and and flat frequencies spectrums (e.g. white
noise) being close to zero. The mean and standard deviations of the FFT-
distance of the concurrent and sequential models are plotted We can see that
both models perform almost exactly similarly well in both cases.

5.2.3 Reconstructing the temporal frequency spectrums

As shown in table 5.1 we know that the sequential model outperforms the
concurrent at reconstructing the temporal envolution of the frequency com-
ponents. In fig. 5.9 the target sounds are grouped by Spectral Entropy and
Spectral Flatness, and the STFT-distance and LMS-distances are plotted as
functions of these attributes. We can see that the sequential model appear
to perform better for most spectral entropy and flatness values. The relative
difference is significantly smaller with respect to LMS-distance.
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Figure 5.9: STFT-distance and LMS-distance between target and candidate
sounds by the target sounds’ Spectral Entropy and Spectral Flatness of each
model.

5.2.4 Reconstructing the amplitude envelope

As shown in table 5.1 we know that the sequential model outperforms the
concurrent at reconstructing the envelope. In fig. 5.10 the target sounds are
grouped by Spectral Entropy and Spectral Flatness, and the envelope-distance
is plotted as functions of these attributes. We can see that the sequential model
appear to perform consistently better for all entropy and flatness values. The
performance increases on sounds of high entropy but decreses on sounds of
high spectral flatness.
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Figure 5.10: Envelope-distance between target and candidate sounds by the
target sounds’ Spectral Entropy and Spectral Flatness od each model. We can
see that...

5.2.5 Performance by instrument family

In figure 5.11 the performance of both approaches are grouped by each sound’s
instrument family as labelled in the Nsynth dataset. We can see that the con-
current model performs consistenly better for all instruments with regards to
the STFT-distance: all means are lower and all variances are generally lower.

However, with respect to LMS-distance the results are more mixed. The
sequential model performs better for instruments like bass, brass, flute, organ
and vocal while but generally has a high variance.



CHAPTER 5. EXPERIMENTAL RESULTS 61

Figure 5.11: STFT and LMS-distance between target and candidate sounds,
with target sounds grouped by pitch. The boxes represent quartile Q1-Q3 and
the whiskers represent the 5%-quantiles. Outliers are ignored for readability.

5.2.6 Re-synthesized sound spectrograms

In fig. 5.12 the spectrograms of two re-synthesized are shown as example.
More examples are shown in Appendix A.
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Figure 5.12: The log scaled STFT spectrograms of a number of re-synthesized
sounds
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5.3 Discussion

The results from the z-test in table 5.2 as well as the performance shown in
table 5.1 suggest that the performance of both approaches with respect to the
frequency magnitude spectrum are very similar, since the min, mean, max
and standard deviation of the FFT-distance are very similar. Similarly, both
graphs in figure 5.8 in subsection 5.2.2, show that the two models yield almost
exactly the same results with respect to the FFT-distance. We can make the
assumption that the two models have similar capabilities to choose the correct
parameters to reproduce both simple and complex (flat) frequency spectrums.
Likely, this is related to the ability to choose the frequency-related parame-
ters: number of modulators, modulating frequency and amplitude, and also
the cutoff filter. This is highly interesting since it indicates that the explicit
design of a classifier which decided how many modulators to use likely did
not improve the performance directly. This indicates that the large, concur-
rent model was indeed implicitly capable of choosing FM-related parameter
values with the same precision as the explicitly design sequential model.

Furthermore, the figure with data grouped by Spectral Flatness shows that
both models show a tendency at performing worse at reconstructing flat fre-
quency spectras. This is expected, since noisy frequency spectras are hard or
impossible to produce with just sinusoidal frequency modulation.

Table 5.1 as well as figure 5.9 in subsection 5.2.3 suggests that the se-
quential approach performs slightly better than the concurrent approach at re-
synthesizing sounds with respect to the temporal evolution of the frequency
components. The only exception is with respect to the LMS-distance for
sounds with 3-5 bits spectral entropy, and it is hard to reason why this would
be the case, and this could be due to noise. Since the different approaches had
similar succes at creating the frequency spectras of sound, but the sequen-
tial approach was better at mimicing the frequency spectra over time we can
conclude that the sequential approach is better at predicting the envelope pa-
rameters of the oscillators. Possibly, the smaller sub-models of the sequential
model benefited from small size when predicting the rather linear envelope
parameters, whereas the large model may have overfitted to noise due to the
many parameters.

Table 5.1 as well as figure 5.10 in subsection 5.2.4 indicate that the se-
quential model is slightly better at predicting the envelope. This result goes
along the same lines as the above mentioned - the sequential model is better
at predicting the envelope parameters.

Furthermore, the mean envelope distance is smaller for sounds with high
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entropy for both models. Since sounds with high entropy generally have en-
velopes with high mean amplitudes, this could mean that the models are bi-
ased towards creating envelopes with high mean amplitudes. Furthermore,
both models performance decreases as the spectral flatness increases. This
could be due to noisy sounds having noisy envelopes, which could be difficult
to model.



Chapter 6

Conclusions and Future work

In this thesis two approaches to machine learning based sound re-synthesis
has been implemented, examined and evaluated. In this section, the results of
the thesis are concluded and some suggestions for future work are outlined.

6.1 Conclusions

We can conclude that both approaches appear to perform similarly at the task
of re-synthesis with respect to FFT-distance. That is, both models have the
same capabilities at reproducing frequency spectrums. This points at the mod-
els performing similarly well at choosing the parameters parameters which
control the frequency magnitude spectrum, such as the amplitude and fre-
quency of the modulating oscillators. We can conclude that the concurrent
approach when trained on a balanced data set is still general enough to im-
plicitly decide how many modulating oscillators to use - this indicates there
may be no need to explicitly design a system of classifiers and regressions to
make key decisions with regards the frequency modulation.

However, the results in section 5 also indicate that the sequential approach
seems to be better at reconstructing the temporal evolution of the frequency
spectrum. This indicates the sequential approach might be able to choose the
envelope parameters attack and release of each oscillator more accurately,
which affects the modulation and subsequently the frequency spectrum over
time.

This result indicates that the statement by Horner et al. [10] - that "the de-
composition of the matching process into subproblems is central to success"
- may no longer be valid. The new capabilities of machine learning and deep
learning may be strong enough to implicitly learn to decompose these pro-
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cesses into subproblems, potentially eliminating the need of human expertice
or risk of human bias.

To conclude and clearly answer the research question stated in 1.3, the
sequential approach in this thesis perform overall better than the concurrent.
However, the results also suggests that the concurrent did manage to make
FM-related key decisions as well as the sequential, however did not manage
to do so with the envelope parameters.

6.2 Limitations

As stated in the delimitations section 1.7, some parameters were excluded to
reduce complexity. However, the addition of more parameters could benefit
one or the other approaches differently. For example more categorical pa-
rameters such as the choice of FM-algorithm could benefit the sequential ap-
proach with its explicitly designed classifiers. Furthermore, the results could
be specific for an FM-synthesizer and this implementation in particular. We
can not rule out that the results would have been different in another setting.
Furthermore, it is hard to control whether some bias has been introduced in
the time and effort spent optimizing the two different approaches. Training
a Machine Learning model is in part a manual search for optimal hyperpa-
rameters. This search is greedy and may result in finding more optimized
hyperparameters for one of the approaches, hence inducing a bias in the re-
sult.

Also, choosing appropriate metrics of sound similarity is of significance in
order to train the system of models which yield perceptually similar sounds.
However, the mix of which similarity metrics model human perception can
be domain specific and potentially subjective. In this thesis, this was not fully
accounted for and different metrics, such as comparing the Mel-Frequency
Cepstrum Coefficients, could have yielded other results.

Finally, it is worth noting that with more time and better data infrastructure
the approaches tested could have been deeper, more specifically using Convo-
lutional Neural Networks (CNN) doing the feature extraction implicitly. It is
hard to speculate in whether the results of this thesis would generalize to even
deeper structures and algorithms - it would be of interest to attempt the same
experiment but with deeper models.
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6.3 Future Work

As described in the above subsection, first future work to perform would be
to redo the same experiment but with deeper models like CNNs. CNNs are
well known for performing well in high dimensional decision problems, and
would likely improve performance significantly.

Futhermore, it would be intersting to redo the experiments with more pa-
rameters. In particular, the introduction of more class variables like the choice
of modulation algorithm would put high demands on the implicit capabilities
of the concurrent approach.

For re-synthesis in general there is a lot of interesting work to be done.
Especially, optimizing a model with respect to the sound similarity between
target and candidate rather than the similarity of the parameter values, as dis-
cussed in section 1.2. This cold be done by training a model with i.e. GA, an
intersting approach since GA has already shown good performance for this
domain. Stanley’s work with deep neuroevolution [21] would be interesting
to apply to the re-synthesis domain. Another approach, relating to the gen-
erative neureal re-synthesis work by Engel et al. [7] would be to explicitly
implement a synthesizer in a machine learning optmimized and transparent
manner (i.e. tensorflow). The synthesizer would then not be a black box, and
it would be possible to optimize with respect to the sound similarity rather
than the similarity of the parameter values, as discussed in section 1.2.
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