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Abstract

In bio-inspired robotic control, CPGs (Central Pattern Generators) architectures

have been extensively adopted to generate periodic patterns in the actuation, due

to the interesting properties of nonlinear oscillators which they make use of [1].

Although sensory feedback in CPGs is not necessary for the generation of the

patterns, it plays a central role in guaranteeing adaptivity to the environmental

conditions [2]. Moreover, feedbacks permit to derive information about the state

of the system, but their inclusion do not usually lead to a di�erent formulation of

the control policy. This may remain unvaried with respect to the open-loop case.

Finally, their inclusion greatly modi�es the dynamics of the CPGs architecture

[3], often leading to bifurcations and other interesting dynamical phenomena,

which remain mostly untreated. A study about a novel proprio-ceptive feedback

design is performed, together with the de�nition of a control policy directly based

on it. The additional e�ects in terms of learning and energy-e�ciency are shown,

and the occurring dynamical phenomena are also outlined.
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Introduction

Scope of Interest

The main scope of interest of this work is to embrace the embodied intelligence

theory in the speci�c case of CPGs framework. Speci�cally, this means assuming

that the emergence of any sort of intelligence in embodied and situated agents

can not be tackled without the consideration of the strict coupling between the

agent and its environment, mediated by the constraints of the agent's own body,

perceptual and motor system, and brain [4]. In the CPGs framework, we think

that this consists in �rstly making use of the mediation of the body as a source

of information about the environment, and secondly in designing a control policy

directly based on this information, in a re�ex-like manner. Then our scope of

interest is to study how a smart design based of such assumptions is able to pro-

vide further positives such as adaptivity, learning, energy e�ciency, and how this

is realized de facto, in terms of dynamical phenomena. Following the embodied

intelligence framework, a body is mainly an heuristic device for intelligence emer-

gence. Due to this, the mechanical structures we take into account are extremely

minimalist, their aim being to guarantee a su�ciently complex behavior for our

scopes. We �nally hope that, being other researchers convinced or not of the

positives of our framework, nonetheless this work will help setting a standard

evaluation method in the CPGs architectures framework. This is the very �rst

comprehensive research about the Tegotae approach in both feedback and con-
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trol policy design. With the aim of setting the directions of analysis about this

approach, we believe that touching these topics from multiple aspects will ease

further researches in the future.

Main Contribution

Our main contribution is a novel design of a feedback law and a related control

policy based on the Tegotae approach [5]. We then apply optimal controllers

based on shooting methods and Lyapunov exponents computation in order to

study the results of the feedback inclusion and the speci�c control policy. While

the analysis methods we performed on these are not fresh-new, their application

in this framework is novel as well. Finally, some more theoretical studies are

performed, mainly about other learning theories and the relations between CPGs

and the group theoretic framework. These did not produced direct results, also

due to our simple case studies, yet it have been done to underline how, in a purely

theoretic way, more comprehensive studies are also possible, on the basis of these

introductory intuitions and similarities.

Structure of the Thesis

Our study is constructed as follows.

InChapter 1 we brie�y introduce the main ideas underlying CPGs control, show-

ing one typical and e�ective example. In Chapter 2, we analyze the oscillator

models often used in such architectures, with an emphasis on Kuramoto oscillator

models and how these well represents neural population dynamics. In Chapter

3, we further discuss the formalism able to describe how CPGs networks generate

periodic outputs, that is the group theory of [6]. We try to analyze the possible

e�ects of the inclusion of a feedback through such framework. In Chapter 4,

the main contribution of this work is introduced, that is the construction of a
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speci�c proprio-ceptive feedback law through the so-called Tegotae approach [5],

together with a speci�c control policy to exploit it fruitfully, based on the concept

of embodied intelligence. We extensively analyze the approach and we connect it

with introductory considerations to learning and energy e�ciency [7, 8], to better

justify our research path. Then, in Chapter 5 and Chapter 6 we apply our

feedback to some mechanical systems, i.e. hopping systems, �rstly considered

in the simplest case of one leg, then extended to the case of two legs. In such

circumstances the sensory feedback plays an important role in shaping the rhyth-

mic patterns and keeping CPGs and body movements coordinated. We show the

adaptation processes occurring and we show how di�erent gates are obtained, also

in relation to the group theoretic formalism. In Chapter 7, we compare the an-

alytical solutions for the single-leg case with an optimal controller solution based

on direct methods such as Single and Multiple Shooting methods, con�rming the

intuitions on the energetic e�ciency of our control policy. Finally, in Chapter

8 we analyze the dynamical phenomena occurring via the study of the Lyapunov

exponents of the system, in order to better clarify the process occurring in the

generation of di�erent gaits.
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Chapter 1

CPGs Architectures

1.1 Introduction

The ability to e�ciently move in complex environments is a key property of ani-

mals and their survival. This means that many aspects of morphology and central

nervous systems in animals have been shaped by constraints related to locomotor

skills. By focusing on the control aspects, we tackle in particular the periodic

pattern generation by means of central pattern generators (CPGs). Central pat-

tern generators are neural circuits easily found in invertebrate animals that are

able to produce rhythmic patterns of neural activity without receiving rhythmic

inputs. The term central indicates that the sensory feedback from the periph-

eral nervous system is not needed for generating the rhythms [9]. Biological

CPGs underlie many fundamental rhythmic activities such as chewing, breathing

and digesting, but they are also fundamental building blocks for the locomotor

neural circuits. From the control point of view, they present several interesting

properties such as distributed control, the ability to deal with redundancies, the

presence of fast control loops and the modulation of locomotion by simple con-

trol signals. For these properties, CPGs as transferred mathematical models are

interesting building blocks for locomotion controllers in robots as well as they are
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increasingly used in the robotics community, as illustrated in Figure 1.1.

The interest for CPGs in this work does not rely on the fact that broad archi-

tectures will be implemented. Being the original approach presented unknown in

terms of its e�ects on the dynamics, the CPGs models will be limited to minimal-

ist structures. Nonetheless, once demonstrated the e�ectiveness of the approach,

further extensions will be the natural continuation of the current study. For the

sake of completeness, the founding theory of CPGs was supposed to be explained,

at least in an introductory manner. In this chapter, we brie�y introduce CPGs

theory and show one of the most renowned applications.

Figure 1.1: Frequency of papers containing CPG-related topics

1.2 Neuro-biological Models of CPGs

Depending on the phenomena under study, CPGs models have been designed at

several levels of abstraction, from detailed biophysical models, to connectionist

models, to abstract systems of coupled oscillators.

Detailed biophysical models are constructed on the basis of Hodgkin-Huxley type

of neuron models. They are neuronal models that compute how ion pumps and ion

channels in�uence membrane potentials and the generation of action potentials.

These models tenderly investigate the problem of rhythmogenesis, i.e. generation

of rhythmic activity, in small circuits of neurons.
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Connectionist models uses simpli�ed neuron models such as leaky-integrator neu-

rons or integrate-and-�re neurons. The focus of these models is on how rhythmic

activity is generated by network properties and how di�erent oscillatory neural

circuits get synchronized via interneuron connections.

Finally, oscillator models are based on coupled nonlinear oscillators and each os-

cillator represents the activity of a complete oscillatory center and not of a single

neuron or of a small circuit. The purpose of these models is not to explain rhyth-

mogenesis, since the oscillatory mechanisms is assumed to exist. Thus, the aim

is to study how inter-oscillator couplings and di�erences of intrinsic frequencies

a�ect the synchronization and the phase lags within the population of oscillatory

centers. The motivations for this type of modeling comes from the fact that the

dynamics of populations of oscillatory centers depends mainly on the type and

topology of couplings rather than on the local mechanisms of rhythm generation

[10]. In particular, the importance of the topology means that, from a robotics

point of view, there is not much to gain from using too complicated oscillators

as building blocks of a CPGs model, which is one more positive aspect of such

architectures.

1.3 CPGs for Robot Locomotion

The type of CPGs models implemented in robots include connectionist models

and systems of coupled oscillators. Virtually all implementations involve sets of

coupled di�erential equations to be numerically integrated on a micro-controller

or on a processor. As far as ground locomotion is concerned, quadruped locomo-

tion using CPGs has been extensively tackled. Among other results, it was found

that sensory feedback modulating CPGs activity tends to lead to the most stable

locomotion in complex terrain, as opposed to feedback that is independent of the

CPGs activity [2].

Finally, there are at least �ve properties for which CPGs models are useful in



10 CPGs Architectures

terms of locomotion control [1]:

(i) The purpose of CPGs models is to exhibit limit cycle behavior, i.e. to produce

stable rhythmic patterns. In this case, the system returns to its normal rhyth-

mic behavior after transient perturbations of the state variables. This provides

robustness against perturbations.

(ii) CPGs are well suited for distributed implementation, which might be inter-

esting for modular robots and re-con�gurable robots.

(iii) CPGs models have a few control parameters (e.g. drive signals) that al-

low modulation in the locomotion, for instance the speed or the direction or the

type of gait. It follows that a properly implemented CPGs model reduces the

dimensionality of the control problem so that higher level controllers or learning

algorithms do not need to directly produce multidimensional motor commands

but only higher level control signals. In biological CPGs, typically, low-level stim-

ulation leads to a slow (low frequency) movements, and high-level stimulation to

faster (higher frequency) movements. In the biological framework, stimulations

are pulses of electric current. The level of stimulation can be changed by chang-

ing either the frequency of the pulses or their current. Related to this, CPGs

models typically produce smooth modulations of the produced trajectories even

when the control parameters are abruptly changed, since the di�erential equa-

tions typically act as �rst or second order �lters.

(iv) CPGs are ideally suited to integrate sensory feedback signals, which can be

directly added as coupling terms in the di�erential equations.

(v) CPGs models usually o�er a good substrate for learning and optimization

algorithms. In particular, it is possible to construct a general framework based

on the concept of motion primitives, in which dynamical systems and optimal

control can be e�ciently uni�ed [11].

One of the most performative results has been developed in [12], whose architec-

ture is reported in Figure 1.2. In this study the bursting properties of an oscil-

latory center, the oscillations between bursts of motoneuron activity and periods
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of rest, are modeled by means of a phase oscillator with controlled amplitude:

θ̇i = 2πνi +
∑
j

rjwij sin(θj − θi − ψij)

r̈i = ai

(ai
4

(Ri − ri)− ṙi
)

xi = ri (1 + cos(θi))

Where θi and ri are the state variables representing the phase and the am-

plitude of the ith oscillator, νi and Ri determine its intrinsic frequency and am-

plitude and ai is a positive constant. Couplings between oscillators are de�ned

by weights wij and phase biases ψij. Finally, a positive oscillatory signal repre-

sents the burst produced by the center. The output of the oscillators are used to

determine the set-points φi (desired angles) provided to proportional-derivative

(PD) feedback controllers that control the motor torques (through their voltages

Vi) given the actual angles φ̃i. The CPGs model receives left and right drives d

representing descending signals from the central nervous system. The velocity,

direction, and type of gait exhibited by the robot can be adjusted by modifying

these two signals.

Figure 1.2: CPG scheme for salamander-robot locomotion

Finally, several are the models representing the CPGs architecture. The most
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recent ones are more structured, as presented in [13]. The locomotor CPG con-

sists of two levels: a half-center rhythm generator (RG) and a pattern formation

(PF) network, with reciprocal inhibitory interactions between antagonist neural

populations at each level, as shown in Figure 1.3. The whole structure will then

be able to provide a new time frame, not a�ected by sensory feed-backs, together

with the actual patterns, from which the name of these architectures.

Figure 1.3: CPG scheme with rhythm generator and pattern formation



Chapter 2

Neural Oscillator Models

2.1 Introduction

Some aspects of neural functions are apparently independent from the neurolog-

ical details of the individual neuron and of the interconnections in the neural

population. Models of neural oscillatory behaviors rely on this anticipation. In

particular, many models take into account the spatial information in threshold el-

ements. It is yet possible to recover the phase information, which means the genre

of information encoded in the form of speci�c temporal structures of sequence

of neuronal spiking that a real brain should make full use of. In particular, the

Kuramoto model [10] captures essential features of synchronization phenomena

in large populations of coupled oscillators, but also it is an e�ective framework in

which to study oscillator models, due to its simplicity for mathematical treatment

[14].

In this chapter, the Kuramoto model is brie�y derived and it is explained how

couplings and feedbacks can be included, leading to the �nal form which will be

actually used in the case analysis. Finally, it is shown how Kuramoto model is

equivalent to a more common model, the leaky integrate-and-�re model, underlin-

ing how the mathematical simplicity does not a�ect the descriptive capabilities.
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2.2 Derivation of Kuramoto Oscillator Model

To better understand the nature of Kuramoto oscillator [15] is followed. Suppose

to have N di�erential equations undergoing a Hopf Bifurcation to stable oscilla-

tions and that these all are linearly coupled. It is possible then to write in normal

form coordinates for the kth oscillator:

żk = (λ+ iωk)zk − |zk|2zk +
ε

N

N∑
j=1,j 6=k

zj

with λ > 0. It is possible then to convert to polar coordinates by using the

transformation zk = rke
iφk :

(
ṙk + rkiφ̇k

)
eiφk =

(λ+ iωk)rke
iφk − r3keiφk+

+
ε

N

N∑
j=1,j 6=k

rje
iφj

And by dividing each term by eiφk the following equation:

ṙk + rkiφ̇k = λrk + iωk

rk − r3k+

+
ε

N

N∑
j=1,j 6=k

rje
i(φj−φk)

Next, the Euler formula for complex numbers is applied:

ṙk + rkiφ̇k = λrk + iωkrk − r3k+

+
ε

N

N∑
j=1,j 6=k

rj cos(φj − φk)

+irj sin(φj − φk)
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This leads to the set of equations:

ṙk = λrk − r3k +
ε

N

N∑
j=1,j 6=k

rj cos(φj − φk)

φ̇k = ωk +
ε

N

N∑
j=1,j 6=k

rj
rk

sin(φj − φk)

Now, due to the week-coupling assumption on ε, which requires this quantity

to be negligible with respect to the others, the �rst equation leads to rk =
√
λ,

which means that for any kth oscillator, rk remains almost constant. This means

that the actual dynamics is determined by the phase equation only:

φ̇k = ωk +
ε

N

N∑
j=1,j 6=k

sin(φj − φk) (2.2.1)

And we obtain the actual form of the Kuramoto oscillator.

On the other hand, following [16], it is possible to construct the Kuramoto model

as in order to directly guarantee convergence on limit cycles. In fact, according

to

Theorem 2.2.1 ( Convergence Theorem for Oscillatory Neural Networks). Con-

sider the oscillatory neural network de�ned on the monodimensional sphere S1:

φ̇i = ωi +
N∑

j=1,j 6=k

Hij(φj − φk)

and suppose that ω1 = · · · = ωn = ω and for χ ∈ S1 the connection function

is such that:

Hij(−χ) = −Hji(χ), ∀i, j = 1, . . . , n (2.2.2)

Then the network dynamics converges to a limit cycle attractor. On the limit

cycle, all neurons oscillate with equal frequencies and constant phase deviations.

This corresponds to the synchronization of the neural activity.
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When all connection functions in the neural network are equal, namely,Hij(χ) =

Hij(χ) = H(χ) for some function H(χ), then Eq. (2.2.2) implies that H(χ) is an

odd function. Any odd function on S1 can be represented as a Fourier series:

H(χ) =
∞∑
k=i

ak sin kχ

The �rst term of the serie can be considered dominant in �rst approximation,

leading to the standard representation of Eq. (2.2.1), out of proportionality

terms. Moreover, guaranteeing the conditions required by the Theorem 2.2.1 it

is possible to guarantee the convergence to a limit cycle.

2.3 Kuramoto Oscillator Model

The above case can be easily generalized to systems of slightly nonidentical os-

cillators with phase φi by replacing ω with ω + δω1,2 , ω1,2. In general, ωi can

follow a certain distribution g(ω), unimodal and symmetric about ω = Ω. Thus,

a generic network of N similar oscillators with pairwise coupling with a coupling

coe�cient K reduces to:

φ̇i = ωi +
K

N

N∑
j=1,j 6=i

sin(φi − φj) (2.3.1)

This model and its generalization o�er a canonical model for oscillator net-

works, not limited to neural networks, as for phase synchronization in electrical

power distribution networks [17, 18, 19]. Other typologies of oscillators are usu-

ally Hopf oscillators, as implemented in [3, 20]. They are not explicitly phase

oscillators, even though they can be reconducted to such framework via a proper

di�eomor�sm. A single oscillator, without any coupling or external �elds, is

generally in the form of:
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ẋ = (µ− r2)x− ωy

ẏ = (µ− r2)y + ωx

with r =
√
x2 + y2, µ > 0. By setting x = r cosφ, y = r sinφ the equivalent

oscillator in phase notation is:

ṙ = (µ− r2)r

φ̇ = ω

It follows that the only di�erence between this two notations is how the cou-

plings, the feedbacks and the external �elds are included in the dynamics.

2.4 Couplings and External Fields

Phase coupling functions can be classi�ed into a few basic types and they lead

to qualitatively di�erent dynamics of a coupled pair. Assuming a symmetric

coupling, that is Γ12(x) = Γ21(x) = Γ(x), it is possible to derive a global equation

for the phase di�erence φ , φ1 − φ2 in the form:

φ̇ = ∆ω + Γa(φ)

with ∆ω , ω1 − ω2 and Γa(φ) being the twice anti-symmetric part of Γ(φ),

i.e., Γa(φ) = Γ(φ) − Γ(−φ). It follows that Γa(x) satis�es Γa(0) = Γa(±π) = 0.

The stability of the system is determined by the frequency di�erence ∆ω, which

determines the position of the equilibrium point, and by the slope of Γa in such

point, which de�nes the nature of the equilibrium.

For instance, for identical oscillators (∆ω = 0) there are three typical situations,

as shown in Figure 2.1. On the basis of the type of coupling, the resulting dy-

namics may be completely di�erent. Respectively, for type A coupling (Top),
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Γ
′
a(0) < 0 and Γ

′
a(±π) > 0, so that the phase-synchronized state φ = 0 is stable,

while the anti-phase state φ = ±φ is unstable. This form of coupling is called

in-phase type. For type B coupling (Center), Γ
′
a(0) > 0 and Γ

′
a(±π) < 0, so that

the coupling is called anti-phase type. For type C coupling (Bottom), both the

in-phase and anti-phase states are unstable, while the phase di�erence is locked

to some intermediate value. This type is called out-of-phase type.

More complicated situations are possible where multiple values of φ become sta-

ble. When the oscillators are nonidentical, each curve will be shifted upward or

downward, so that the stable value of φ also changes. Clearly, outside a certain

range of ∆ω no �xed point can exist. Then the oscillators fail to synchronize

and the system as a whole exhibits quasi-periodic motion with two independent

frequencies, their di�erence being given by the long-time average of φ̇.

Figure 2.1: Three types of phase coupling function
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Moreover, interesting dynamics can be obtained by enriching the coupling

term and adding an external �eld, as presented in [14], which introduces the

following equation for a N-dimensional oscillator network:

φ̇i = ωi + a sin(φi)+

1

N

N∑
j=1,j 6=i

aij sin(φi − φj)
(2.4.1)

In Eq. (2.4.1) the mutual coupling strengths aij are not assumed to be positive

as in the case of Kuramoto [15], and neither the same for all the oscillators, yet

they are free to assume both positive and negative values. The oscillators with

positive coupling tend to fall in line with neighboring oscillators in favor of the

in-phase relationship with them, while the ones with negative coupling drive the

oscillators apart to align anti-phase with each other. Since positive and negative

communication coexists in biological systems, as for excitatory and inhibitory

neurons, this generalization seems to be appropriate.

Finally, the external �elds taken into account so far are pinning-forces with an

e�ect of intensity a, which mimics the dynamics of excitable limit-cycle oscillator

[21]. The main di�erence will be that, in case of taking into account coupling

terms:

φ̇i = ωi + ai cos(φi)+

1

N

N∑
j=1,j 6=i

aij sin(φi − φj)
(2.4.2)

This equation is particularly complex due to the pinning-force terms ai cos(φi),

related to each oscillator and not even monotonic on [−π, π], property used to

guarantee the existence of a Lyapunov function in systems like the ones of Eq.

(2.4.1). The �nal case of analysis can be reconducted to this case.
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2.5 Neural Oscillator Models: an Extension

So far, phase oscillators have been taken into account to reproduce the behavior

of the oscillatory centers in a CPGs architecture. Nonetheless, more adequate

models of the oscillatory behavior of the neuronal signal have been developed.

Neural oscillators are often modeled with the so-called leaky integrate-and-�re

(LIF) neurons. It is possible to show a strong connection between such oscillators

and Kuramoto models, as presented in [10].

Let a LIF neuron be described by a variable u ( 0 ≤ u ≤ 2π ), and let identify the

states u = 0 and u = 2π just as it was done for the phase variables. The intrinsic

dynamics of this neuron is such that u is monotone, increasing with t, so that

when u reaches the level u = 2π, it is immediately reset to the zero value. This

instant is interpreted as the time of �ring. Speci�cally, u is supposed to obey to

the equation:

u̇ = −u+ a (2.5.1)

Obviously, the neuron repeats �ring if a > 2π, while it is non-oscillatory

but only excitable when a < 2π. As for coupling with another LIF neuron,

the usual assumption is that u changes by a small amount ε each time tn (n =

1, 2, . . . ) in which the second neuron �res. The coupling is excitatory if ε > 0

and inhibitory otherwise. This dynamical rule is conveniently represented by the

term ε
∑

n δ(t− tn) added to the right-hand side of Eq. (2.5.1).

In the self-oscillatory regime (a > 2π), the natural frequency is given by ω =

2π/| ln(1 − 2π/a)|. It can be shown that the network of self-oscillatory LIF

neurons with weak coupling is equivalent to that of phase oscillators given the

form of Eq. (2.3.1) with a coupling function de�ned over ψ ∈ S1:

Γ(ψ) = εωa−1 exp(ψ/ω)

Note that Γ(ψ) has a discontinuity at ψ = 0. It is easy to check that for
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positive (negative) ε, the in-phase (anti-phase) state gives a unique and strongly

stable state.
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Chapter 3

The Group Formalism for Pattern

Generation

3.1 Introduction

In the CPGs architectures framework, of particular relevance is how the dynam-

ics can be studied merely in terms of the neural topology and interaction [10],

that is the magnitude and structure of the network and the nature of the cou-

plings between each element. Here, a substantial contribution was o�ered by

[22, 6, 23, 24] with the introduction of the group formalism for such networks.

In particular, group theory has been extensively adopted in order to guarantee a

priori the patterns generated by a speci�c architecture, as in [20], where for pat-

terns we mean gaits in the movements. In fact, this theory provides conditions on

the existence of symmetric periodic solutions in networks of coupled dynamical

systems. In this chapter, group theory will be brie�y introduced and applied to

CPGs architectures. Finally, a case leading to the �nal architecture which will be

actually used in the case analysis will be shown. It is important to specify how

this framework is essential to understand the standard control policy in CPGs

control previously described in chapter 1, but it still needs to be applied to the
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extended case of feedback inclusion. On the other end, the results derived consist

in an insight to such theory, mainly being a motivation for further expansions

of the CPGs architecture to check their e�ectiveness, rather then being actually

applied to the current case study.

3.2 Group Theoretic Framework

The interest of the use of group theory is that the design of the network structure

can be made independent of the internal dynamics of the single oscillators. The

design of a network then relies only on algebraic arguments, which make it easier

and salable to more complex networks. Moreover, it is possible to calculate the

possible periodic solutions of the network and make sure that only the desired

ones are stable. The symmetries present in a network of coupled oscillators induce

the existence of periodic solutions possessing the same symmetries, but these

symmetries are not limited to that. The �rst step in understanding the above

phenomena is to formalize the meaning of symmetry of a dynamical system,

and the meaning of symmetry of a solution, following the steps presented in [6]

and using the de�nitions provided in [25, 26]. The symmetries of a systems of

ODE (or indeed PDEs) are speci�ed in terms of a group of transformations of the

variables that in some sense preserves the structure of the equations, in particular,

its solutions. It follows the need to de�ne:

De�nition 3.2.1. A group (G, ?) is a set G together with a binary operation

? : G×G→ G satisfying the following conditions:

1. Associativity: ∀x, y, z ∈ G, (x ? y) ? z = x ? (y ? z)

2. Identity element: ∃e ∈ G : ∀g ∈ G : e ? g = g ? e = g

3. Inverse element: ∀g ∈ G,∃h ∈ G : g ? h = h ? g = e
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Often, the notation (G, ?) is simply written as G, and basically the binary

operation is called multiplication, with the symbol ? being omitted. The power of

the group de�nition is that by removing any non-empty subset of these conditions,

the resulting class of algebraic objects in largely uninteresting.

De�nition 3.2.2. If (G, ?) is a group and H ⊆ G is a subset such that (H, ?)

satis�es the Def. (3.2.1), then H is called a subgroup of G, which is written as

H ≤ G

De�nition 3.2.3. For any subset S of a group G, the subgroup generated by

S is de�ned as the smallest subgroup of G containing S. This subgroup is denoted

as 〈S〉. By smallest, it means that if S ⊆ H ≤ G then 〈S〉 ≤ H.

De�nition 3.2.4. A group is called abelian (or commutative) if g h = h g ∀g, h ∈
G. A group is called cyclic if it is generated by a single element, that is ∃ g ∈
G : G = 〈g〉. In general if S ⊂ G, 〈S〉 = G, G is said to be generated by S.

De�nition 3.2.5. Let G = (G, ·) and G′ = (G′, ?) be groups, and let φ : G→ G′

be a map between them. Then φ is called an homomorphism if for every pair

of elements g, h ∈ G, it is valid:

φ(g · h) = φ(g) ? φ(h) (3.2.1)

If φ is a bijective homomorphism it will be called isomorphism, in which

case we say the groups G and G' are isomorphic, which is written as G ∼= G′.

It is important to notice how from a group-theoretic perspective, isomorphic

groups are considered the same exact group.

De�nition 3.2.6. Given an homomorphism φ : G → G′, its kernel kerφ is

de�ned to be the set of g ∈ G that get mapped to the identity element in G' by φ.

Its image φ(G) ⊂ G′ is just its image as a map on the set G.

If φ is a group homomorphism, then kerφ ≤ G, φ(G) ≤ G′.
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De�nition 3.2.7. Given a subgroup H ≤ G and an element g ∈ G, the corre-

sponding left coset of H in G, written gH, is the set:

gH , {gh : h ∈ H} (3.2.2)

Notice that since e ∈ H, it will always be true that g ∈ gH, and thus:

⋃
g∈G

gH = G (3.2.3)

Proposition 3.2.8. An element x belongs to a coset gH if and only if g−1x ∈ H,

this happens if and only if gH = xH. Thus, distinct cosets are disjoint. It follows

that the distinct cosets of any subgroup for a partition of the whole group. The

number of cosets of H in G is then called the index of H in G, written |G : H|.

De�nition 3.2.9. A subgroup N ≤ G is called normal (written N E G), if

∀ g ∈ G:

gN = Ng (3.2.4)

that is the equality of cosets, which is often expressed equivalently as:

gNg−1 = N (3.2.5)

This property is important because when right and left cosets coincides, it is

actually possible to turn the set of cosets of a subgroup into a group itself.

De�nition 3.2.10. If N is a normal subgroup of G, then we de�ne the quotient

group G/N (read G mod N) to be the set of cosets gN of N in G with the group

law:

(gN)(hN) = (gh)N (3.2.6)

if N ≤ G is not normal, then G/N still denotes the set of cosets of N in G,

although the above operation is no longer well de�ned.
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In order to better understand this notation, let us considerG = Z andN = nZ

being nZ the subgroup consisting of integers divisible by n. It is possible to form

the quotient group G/N = Z/nZ of integers modulo n. In this quotient group,

some information is lost, about the integers by zooming out to a coarser view:

everything divisible by n becomes indistinguishable from the identity element of

Z which is 0, and consequently the only thing known about the other integers is

their reminder upon division by n. This concepts of re-conducting any element

outside the quotient group to the identity element of the group is a constant

factor of this operation.

Finally, of particular interest is to consider group actions, which are a formaliza-

tion of certain external properties often associated to groups. A group action is

a formal way of interpreting the manner in which the elements of a group corre-

spond to transformations of some space in a way that preserves the structure of

that space. For example, the symmetric group Sm as a group of permutations of

the set {1, . . . ,m}, or the dihedral group D2m of plane symmetries of the regular

n-gon:

D2m , (r, s) (3.2.7)

where r is a rotation about the n-gon's center by an angle 2π/n and s is a

mirror-�ip about a diameter. These concepts of permutations or symmetries are

not actually contained in the mathematical structure of a group, but are rather

their actions on a speci�c set.

De�nition 3.2.11. Given a set X, let

Sym(X) , ({f : X → X : f bijective}, ◦) = S|X| (3.2.8)

then an action of a group G on X is a homomorphism

ρ : G→ Sym(X) (3.2.9)
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It is the homomorphism ρ that encodes all the geometric and combinatorial

information we associate with certain groups. For example, once taken D10 and

labeled the �ve vertices of the pentagon 1, 2, 3, 4, 5 consecutively, X = 1, 2, 3, 4, 5.

Since the rotation r just shifts the vertex i to (i+ 1)/mod5, it is possible to write

ρ(r) as the 5-cycle (1 2 3 4 5) ∈ S5. The �ip symmetry s swaps vertices 2 and

5, and 3 and 4 while leaving 1 �xed, thus ρ(s) = (1)(25)(34) ∈ S5. In this case,

the cycle notation for permutations has to be interpreted like this: each number

is mapped to the number on its right, except the last one before the parenthesis,

which is sent to the �rst umber in that same set of parenthesis. So that, for exam-

ple (1)(25)(34) is the permutation which sends 1→ 1, 2→ 5, 5→ 2, 3→ 4, 4→ 3.

The concept of a Lie group arises naturally by merging the algebraic notation

of a group with the geometric notation of a di�erentiable manifold. This leads

to a signi�cant extension of linear algebra and analytic geometry. First,

De�nition 3.2.12. A n-dimensional (di�erentiable) manifold Mn is a Haus-

dor� topological space with countable basis, together with a maximal di�erentiable

atlas. This atlas consists of a family of charts hλ : Uλ → U ′λ ⊂ Rn, where the

domains of the charts {Uλ} form an open cover of Mn, the U ′λ are open in Rn,

the local coordinated hλ are homeomorphisms and every change of coordinated

hλµ = hµ ◦ h−1λ is di�erentiable on its domain of de�nition.

The atlas is maximal in the sense that it cannot be enlarged to another dif-

ferentiable atlas by adding more charts, so any chart which could be added to

the atlas in a consistent way is already in the atlas.

A continuous map f : M → N of di�erentiable manifold is called di�erentiable

if, after locally composing with the charts of M and N, it induces a di�erentiable

map of open subsets of Euclidean spaces. These concepts are visualized in Fig.

(3.1).

De�nition 3.2.13. A Lie group is a di�erentiable manifold G which is also a
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Figure 3.1: Di�erentiable manifold and atlas

group such that the group multiplication:

µ : G×G→ G (3.2.10)

is a di�erentiable map, where here it means directly µ ∈ C∞

Now, a �nite group is a group, of which the underlying set contains a �nite

number of elements, while a continuous group is a group having continuous group

operations. A continuous group is necessarily in�nite.

The main compact �nite Lie groups that shall be considered here are:

• D2m, the dihedral group of order 2m, that is the rotations and re�ections

in the plane that preserve a regular m-gon.

• Zm, the cyclic group of order m, with rotations only.

• Sm, the symmetric group consisting of all permutations on m symbols, with

order m!.

The main compact continuous Lie groups are:

• S1, the circle group.

• SO(2), the special orthogonal group in R2.
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• O(n), the orthogonal group in Rn, consisting of all n × n matrices A such

that AAT = I.

• SO(n), the special orthogonal group, where in addition detA = 1.

De�nition 3.2.14. Let Γ be a Lie group and V a vector space. An action of Γ

on V is a smooth homomorphism ρ : Γ → GL(V ). To simplify the notation, it

is usually written γv = ρ(γ)(v). Then the condition that ρ is an homomorphism

implies the following identities:

1. (γδ)v = γ(δv)

2. 1v = v where 1 is the identity element of Γ

The group ρ(Γ) = Γ̃ ⊆ GL(V ) is a subgroup. GL(V ) is the general linear

group of the vector space V, that is the set of invertible matrices of dimension

equal to the dimension of V together with the operation of ordinary matrix mul-

tiplication.

Without loss of generality we may assume that a compact Lie group acts by

orthogonal transformations, and this is a useful simpli�cation:

Theorem 3.2.15. Every compact Lie group Γ acting on Rn may be identi�ed with

a subgroup of O(n), the group of orthogonal matrices together with the operation

of ordinary matrix multiplication.

Now, suppose to have a parametrized system of ODEs:

ẋ = f(x) (3.2.11)

where f : Rn × Rr → Rn, f ∈ C∞.

De�nition 3.2.16. The group element γ ∈ O(n) is a symmetry of Eq. (3.2.11)

if for every solution x(t) of such equation, γx(t) is also a solution.
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De�nition 3.2.17. Since the arbitrarity to initial conditions and the constant

nature of γ along the trajectory, f is said to be Γ-equivariant if, for Γ acting on

Rn:

∀γ ∈ Γ, x ∈ Rn f(γx) = γf(x) (3.2.12)

Suppose that x is a solution of Eq. (3.2.11). Then it is possible to express the

symmetries of this solution of the ODE system as opposed to the symmetries of

the ODE system itself, as follows:

De�nition 3.2.18. Let v ∈ Rn. The isotropy subgroup of v is:

Σv = {γ ∈ Γ : γv = v} (3.2.13)

Generally, the isotropy subgroup of a solution of an equivariant system of

ODEs provides useful information about the form of that solution. More impor-

tantly,

De�nition 3.2.19. Let Σ ≤ Γ be a subgroup. Then the �xed-point subspace

of Σ is :

Fix(Σ) = {v ∈ Rn : σv = v, ∀ ∈ Σ} (3.2.14)

Theorem 3.2.20. Let f : Rn → Rn be Γ-equivariant and let Σ ≤ Γ be a subgroup.

Then:

f(Fix(Σ)) ⊆ Fix(Σ) (3.2.15)

An important consequence is that:

Proposition 3.2.21. Let x(t) ∈ Rn be a solution trajectory of an equivariant

ODE. Then:

Σx(t) = Σx(0), ∀t ∈ R (3.2.16)

That is, isotropy subgroups remain constant along trajectories.
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3.3 Gaits and Symmetries of Periodic Solutions

These concepts are useful to study steady-state bifurcations, as expressed in [6].

Yet, our main objective is to analyze time periodicity and spatio-temporal sym-

metries, and in particular which spatio-temporal symmetries are possible in a

Γ-equivariant system of ODEs, given a group Γ acting on Rn.

To better understand these concepts, the gaits of quadrupeds provide an excellent

introduction to the world of space-time symmetries. In fact, there is one feature

in common to all gaits: they are repetitive, that is, they are time periodic. In the

pace, trot, and bound gaits the animal's legs can be divided into two pairs, the

legs in each pair moving in synchrony, while legs in di�erent pairs moving with

half-period phase shift. The two pairs in a bound consist of the fore legs and the

hind legs; the two pairs in a pace consist of the left legs and the right legs; and

the two pairs in a trot consist of the two diagonal pairs of legs.

Each of these gaits can be distinguished by symmetry in the following sense.

Spatio-temporal symmetries are permutations of the legs coupled with time shifts.

So interchanging the two fore legs and the two hind legs of a bounding animal

does not change the gait, while interchanging the two left legs and the two right

legs leads to a half-period phase shift. Spatio-temporal symmetries of many gaits

are listed in Table 3.1, where 1 stands for the left hind leg, 2 for the right hind

leg, 3 for the left fore leg, 4 for the right fore leg.

Now, taken into account CPGs, these systems are described by systems of

ODEs. It follows that such a system needs to have some symmetries in order to

guarantee some spatio-temporal symmetric solutions, i.e., some gaits.

Suppose to have a system similar to Eq. (3.2.11) with a symmetry group Γ.

Suppose then that x(t) is a T-periodic solution and that γ ∈ Γ. It follows that

γx(t) is another T-periodic solution of Eq. (3.2.11). Should the two trajectory

intersect, then the common point of intersection would be the same initial point
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Table 3.1: Gait symmetries

Gait Symmetries (leg permutation, phase shift)

pace ((1 3)(2 4), 0) ((1 2)(3 4), 1
2
) ((1 4)(2 3), 1

2
)

trot ((1 3)(2 4), 1
2
) ((1 2)(3 4), 1

2
) ((1 4)(2 3), 0)

bound ((1 3)(2 4), 1
2
) ((1 2)(3 4), 0) ((1 4)(2 3), 1

2
)

walk ((1 3 2 4), 1
4
) ((1 2)(3 4), 1

2
) ((1 4 2 3), 3

4
)

rotary gallop ((1 4)(2 3), 1
2
)

transverse gallop ((1 3)(2 4), 1
2
)

for the two solutions. Uniqueness of solutions then implies that the trajectories

of γx(t) and x(t) must be identical. So either the two trajectories are identical

of they do not intersect at all. Suppose that two trajectories are identical. Then

this implies that there exists θ ∈ S1 = [0, T ] such that:

γx(t+ θ) = x(t) (3.3.1)

(γ, θ) ∈ Γ × S1 is called a spatio-temporal symmetry of the solution x(t). A

spatio-temporal symmetry of x(t) for which θ = 0 is a spatial symmetry, since it

�xes the point x(t) at every moment of time. The group of all spatio-temporal

symmetries of x(t) is denoted as:

Σx(t) ⊆ Γ× S1 (3.3.2)

It follows that the symmetry group Σx(t) can be identi�ed with a pair of

subgroups H and K of Γ and a homomorphism Θ : H → S1 with kernel K.

De�ne:

K = {γ ∈ Γ : γx(t) = x(t) ∀t}

H = {γ ∈ Γ : γ{x(t)} = {x(t)}}
(3.3.3)

The subgroup K ⊆ Σx(t) is the group of spatial symmetries and the subgroup

H consists of the symmetries that preserve the trajectory of x(t), in short, the
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spatio-temporal symmetries. Indeed, the groups H ⊆ Γ and Σx(t) ⊆ Γ × S1 are

isomorphic; the isomorphism is just the restriction to Σx(t) of the projection of

Γ× S1 onto Γ. The group Σx(t) can be written as:

Σx(t) = {(h,Θ(h)) : h ∈ H} (3.3.4)

To consider an example, suppose the model of the CPGs of a quadruped to be

a system of four identical subsystems of ODEs, coupled in some manner. Suppose

in addition that the system has periodic solutions corresponding to walk, referring

to Table 3.1. For example, if ((1 2 3 4), 1
4
) is a spatio-temporal symmetry of the

1-periodic solution x(t), it follows that:

x2(t) = x1

(
t+

1

2

)
x3(t) = x1

(
t+

1

4

)
x4(t) = x1

(
t+

3

4

)

and the solution sends the pattern of a walk to the four legs. As a further

example of application, in a quadruped the trot gait is a gait in which the diagonal

legs move in synchrony and half a period out of phase with the contralateral legs.

Thus, using permutation notation, if the limbs are numbered as in Table 3.1, there

exists one spatial symmetry ((14)(23), 0), where the 0 means no phase shift after

the permutation, and 2 additional spatio-temporal symmetries ((12)(34), 1
2
) and

((13)(24), 1
2
). The symmetry group generated by these symmetries is isomorphic

to Z2 × Z2. It can be easily calculated that the pace and bound gaits have the

same group of symmetries and that generically in a system of 4 coupled oscillators

having the same symmetry all the 3 gaits will co-exist, since the subgroups of the

network are {((12)(34)), I}, {((13)(24)), I}, {((14)(23)), I}.
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3.4 Algebraic Restrictions and Characterization

There are algebraic restrictions on the pair H and K de�ned in Eq. (3.3.3) in

order for them to correspond to symmetries of a periodic solution. In particular:

Lemma 1 (Algebraic Restrictions). Let x(t) be a periodic solution of Eq. (3.2.11)

and let H and K be the subgroups of Γ de�ned in Eq. (3.3.3). Then:

1. K is an isotropy subgroup for the Γ-action

2. K is a normal subgroup of H and H/K is either cyclic or S1

3. dim Fix(K) ≥ 2. If dim Fix(K) = 2, then either H = K or H = N(K)

With Γ be a �nite group acting on Rn and let x(t) be a periodic solution of a

Γ-equivariant system of ODEs. Being K the subgroup of spatial symmetries and

H the subgroup of spatio-temporal symmetries de�ned as in Eq. (3.3.3).

It is possible to claim one additional proposition leading to:

Theorem 3.4.1 (H / K Theorem). Let Γ be a �nite group acting on Rn. There

is a periodic solution to some Γ-equivariant system of ODESs on Rn with spatial

symmetries K and and spatio-temporal symmetries H if and only if

1. K is an isotropy subgroup for the Γ-action

2. H/K is cyclic

3. dim Fix(K) ≥ 2. If dim Fix(K) = 2, then either H = K or H = N(K)

Moreover, when these conditions hold, hyperbolic asymptotically stable limit cycles

with the desired (H,K) symmetry exist, and these are robust in Γ-equivariant

systems of ODEs.

It is important to notice how these theorems provide the methods to char-

acterize possible patterns of oscillation, permitted by the network symmetries.



36 The Group Formalism for Pattern Generation

But there is no theorem so far which actually guarantees the existence of all the

possible patterns, which has to be veri�ed with other methods such as bifurcation

techniques, in this case Hopf bifurcations.

3.5 Applicative Examples: Rings of Neurons

For the purpose of our analysis, a system of N identical coupled neurons or

oscillatory centers is de�ned as a system of di�erential equations of the form:

dxj
dt

= f(xj) +
∑
i→j

αijh(xi, xj) (3.5.1)

It is immediately apparent how Eq. (3.5.1) describes dynamics similar to

Kuramoto model of Eqs. (2.4.1) and �nally (2.4.2), which is the case of our study.

Examples of such rings can be seen is Figure 3.2, where it is shown respectively:

(Left) Unidirectional ring with Z3 symmetry, (Middle) Asymmetric bidirectional

ring with Z3 symmetry, (Right) Bidirectional ring with D6 symmetry. In the case

when the internal dynamics of a coupled neurons system is k ≥ 2, such as in the

Kuramoto model, it is possible to introduce the following corollary:

Corollary 3.5.1. Let Γ be a �nite group acting on V and W = V k for some

k ≥ 2 be the state space of the coupled neurons system. Then there is a hyper-

bolic periodic solution to some Γ-equivariant system of ODEs on Rn with spatial

symmetries K and and spatio-temporal symmetries H if and only if

1. K is an isotropy subgroup for the Γ-action

2. H/K is cyclic

3. If dim Fix(K) = 2, then either H = K or H = N(K)

To clarify some of the de�nitions done so far, lets consider a bidirectional

rings, that is coupled neurons systems with N neurons and D2N symmetry with
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Figure 3.2: Rings of neurons

the same coupling between two cells.

First, a bidirectional ring of two neurons is taken into account. Its dynamics can

be represented by:

ẋ1 = f(x1, x2)

ẋ2 = f(x1, x2)
(3.5.2)

All two neurons systems following Eq. (3.5.2) have a permutation symme-

try σ(x1, x2) = (x2, x1), inherited directly from the symmetry of the network.

The system is σ-equivariant according to Eq. (3.2.12). One consequence of

the Z2 symmetry of this system is then the existence of solutions in which

x1(t) = x2(t), ∀t. This happens because the subspace ∆ = {(x1, x2) : x1 = x2}
is a �ow-invariant subspace for all g. In particular, this corresponds to saying

that the �xed-point subspace Fix(σ) is a �ow-invariant subspace, as de�ned by

Eq. (refeq:�xed). It follows that synchrony is a direct result of the symmetry

of the system. On the other hand, using the notation of Eq. (3.3.4), assume to

have applied the permutation σ twice on a T-periodic solution of Eq. (3.5.2),

then it implies that 2θ = 0 (modT ). Hence either θ = 0 or θ = T
2
. Since σ is the

permutation (1 2) it follows that x2(t) = x1(t) for θ = 0 (synchrony case ), and

x2(t) = x1(t+ T
2
) when θ = T

2
(phase-locked case).

Indeed, it is an important feature of identical two-neurons models that these

systems naturally produce in-phase periodic solutions and half-period out-of-
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phase periodic solutions. Biped gaits provide another excellent illustration: in-

phase periodic states correspond to two-legged hopping and half-period out-of-

phase periodic states correspond to walking.

Next, lets consider bidirectional ring of three neurons, as presented in Figure

3.2. In this case, let the action of Γ = D6 on V = R3. The subgroups of D6 are 1,

D2, Z3, D6. All but Z3 are isotropy subgroups, which then cannot be selected as

K. Then, the pairs (H,K) are (1, 1), (D2, 1), (Z3, 1), (D2, D2), (D6, D6), leading

to the results in Table 3.2:

Table 3.2: Oscillations in three neurons bidirectional ring

H K Patterns

D6 D6 (x(t), x(t), x(t))

D2 D2 (x(t), x(t), y(t))

Z3 1 (x(t), x(t+ 1
3
), x(t+ 2

3
))

D2 1 (x(t), x(t+ 1
2
), y(t) = y(t+ 1

2
))

1 1 (x(t), y(t), z(t))

Just two periodic solutions have non-trivial spatio-temporal symmetries for

which H/K is cyclic and K is an isotropy subgroup: (D2, 1), (Z3, 1). The sym-

metry associated to (D2, 1) is: interchange neurons 1 and 2 and phase shift them

by half a period. Thus, the third neuron is �xed by the symmetry and y(t) is

forced to satisfy y(t) = y(t+ 1
2
), that is, y(t) oscillates with half the period of the

other neurons. The pair (Z3, 1) forces the three neurons to oscillate with the same

wave-form but with a one-third period phase shift between the neurons. Finally,

the implications of Corollary (3.5.1) include some surprises. For example, lets

consider a four-cell network with two distinct bidirectional ring of two neurons

as shown in Figure 3.3. The equations would be:
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φ̇1 = f(φ1, φ2, y3, y4)

φ̇2 = f(φ1, φ2, y3, y4)

ẏ3 = g(φ1, φ2, y3, y4)

ẏ4 = g(φ1, φ2, y3, y4)

(3.5.3)

Figure 3.3: Four-neurons network

In case two dynamics are identical, such a network has been shown in [6] to be

able to guarantee bipedal locomotion with all the possible patterns of symmetry.

In case the dynamics di�er, the symmetry group of this system is Γ = Z2 × Z2.

Now, suppose that a 1-periodic solution:

X(t) = (φ1(t), φ2(t), y3(t), y4(t)) (3.5.4)

to this coupled neuron system exists. Suppose that this solution has two

spatio-temporal symmetries ((1 2), 1
2
) and ((3 4), 1

2
). The product of the two

symmetries is:

γ = ((1 2)(3 4),
1

4
) (3.5.5)

explicitly exhibiting the isomorphism Z2 × Z2
∼= Z4. Thus X(t) actually has

the form:

X(t) = (φ1(t), φ2(t+
1

2
), y3(t), y4(t+

1

2
)) (3.5.6)
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This solution actually exists due to Corollary (3.5.1), at least if all non-

linearities consistent with Z4 symmetry are permitted to be present. This so-

lution corresponds to the anti-phase gait for the biped locomotion. Additionally,

also the solution with the spatio-temporal symmetries ((1 2), 1) and ((3 4), 1) is

permitted, and it leads to the in-phase gait. It will be shown that this network

is equivalent to the CPGs network with the feedback inclusion in the biped case,

being φ1, φ2 the phases of the Kuramoto oscillators and y3, y4 the states of the

mechanical sections, out of other additional symmetries which would actually en-

rich the dynamics. This proves two important facts: not only the our framework

is able to support the gaits but also it seems to be able to decrease the number of

oscillators required by the group formalism, using the mechanical oscillators as

an actual section of the CPGs network. For the biped case, this leads to a limited

improvement, but the same considerations may be extended to quadruped case.



Chapter 4

The Tegotae Approach

4.1 Introduction

The inclusion of a feedback in the CPGs architecture is the natural extension of

these control structures. As previously mentioned, any modi�cation of the canon-

ical form for the Eq. (2.3.1) leads to a modi�cation in the main dynamics. A

particular family of feedback functions as introduced in [5] is taken into account,

and the way this inclusion locally a�ects the dynamics of a neural oscillator is

outlined. In particular, a Kuramoto oscillator is taken as example, and the re-

sulting synchronization phenomena are introducted. The approach used is called

Tegotae approach.

Tegotae is a novel concept describing the extent to which a perceived reaction

matches an expectation, or intention of a controller. Tegotae stems not only

from the reaction received from the environment, but also from the consistency

between the perceived reaction and the intention or expectation of the controller,

i.e., what the controller wants to do. In case of matching, it is said that good

Tegotae is obtained, otherwise, bad Tegotae is obtained. In this way, a cognitive

meaning is added to the control framework, denoting some actions as positive and

others as negative. The objective is then to maximize the Tegotae function. The
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strongest assumption here is that the controller is able to generate some sort of

expectations. In order to do this, some morphism between the controller and the

controlled object, i.e., the body, is necessary, for instance via an internal model.

Yet, how such internal model is generated is not the point of this discussion, so

far. In this section, we introduce such formalism.

4.2 Mathematical Formulation

In the initial steps of the investigation, Tegotae is quanti�ed in the simplest

mathematical form, i.e., a function based on the type of separation of variables

as follows:

T (u, e) = C(u)S(e) (4.2.1)

Hereafter, the function T is referred as the Tegotae function (T-function),

i.e., a function that quantitatively measures Tegotae. In Eq. (4.2.1) u is a

control variable and e is the sensory information obtained from multiple sensors

embedded in the body. Note that the T-function T is expressed as the product

of two functions C(u), S(e). The former is a function expressing the intention of

the controller, the latter denotes the reaction obtained from the environment.

T is designed such that it becomes more positive when enhanced Tegotae is

detected. Therefore, given that the T-function is de�ned a priori, the local sensory

feedback f is designed in such a way that the control system modulates u in order

to increase the amount of Tegotae received. Thus, since a continuous system is

used, f is expressed simply as a mono-dimensional gradient system of the T-

function T with respect to the control variable u, as follows:

f =
∂T (u, e)

∂u
(4.2.2)

Note that with this formulation, it is possible to systematically design decen-
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Figure 4.1: Trend in the local oscillator and Tegotae interpretation

tralized controllers by only designing the T-functions required.

Considering the CPGs framework, the ith controller can be �rstly de�ned as a

generic Kuramoto oscillator of phase φi without coupling terms but with a speci�c

external �eld fi consisting in the local sensory feedback:

φ̇i = ωi + fi(φi, e) (4.2.3)

It follows that in this formualtion:

fi =
∂Ti(φi, e)

∂φi
(4.2.4)

In [5] the T-function was supposed to satisfactorily reproduce the hexapedal

interlimb coordination observed in insect locomotion by using Kuramoto oscilla-

tors. For this reason, it was generally de�ned in the �rst case as:

Ti(φi, N) = (− sinφi)N
V
i (4.2.5)

Where in Eq. (4.2.5) the sensory information e consisted of vertical ground

reaction forces NV
i acting on each leg. In this formulation, Ti quanti�es Tegotae

on the basis of the information that is only locally available at the corresponding

leg. As explained graphically in Figure 4.1, when the local controller intends to
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be in the stance phase ( − sinφi > 0 ) and results in receiving a ground reaction

force ( NV
i > 0), Ti evaluates the situation as good Tegotae, and vice versa.

As said above, the reaction in Eq. (4.2.1) is generic, and other sorts of reactions

may be taken into account. In particular, in our study the force passing through

the body is taken into account, i.e., an elastic force. Such a de�nition is inspired

by the muscle spindle, which is a proprio-ceptive sensory receptor organ that

senses changes in muscle tension due to external factors. The T-function is then

de�ned in our for a generic ith phase oscillator and consequently the feedback

signal as well:

Ti(φ, F ) , (−σ sin(φi))F (4.2.6)

fi(φ, F ) =
∂

∂φi
T (φ, F ) = −σ cos(φ)F (4.2.7)

with σ being a proportionality factor and F being the force passing through

the body. By the nature of Eq. (4.2.6), it follows that this sensory feedback will

be absent if there is no contact with the ground.

4.3 Stability Analysis

As shown in Figure 4.2 and further analyzed in [21], the behavior of the Kuramoto

oscillator of Eq. (4.2.3) can be classi�ed into two states on the basis of the value

a = σF . When a < ω, i.e. ω/σF > 1 an oscillatory behaviour is exhibited,

whereby the oscillator rotates periodically around the unit circle. In this case

there will be an oscillation with frequency:

ω̃ = 2π

[∫ π

−π

dφ

ω − a sinφ

]−1
(4.3.1)

In contrast, when a > ω, i.e. ω/σF < 1 there exists a pair of equilibria at

which the equilibrium condition is satis�ed: one point is stable and the other is
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unstable. For ω/a ∼= 1 the two equilibria are relatively close to each other. As a

result, the system behaves very di�erently in its course back to the resting state

(i.e. stable equilibrium) depending on whether or not the initial disturbance from

the resting state is strong enough to force the system beyond the potential barrier

peaked near the unstable equilibrium. This feature is known to be the most basic

to excitable systems. In such a case, the oscillator exhibits excitatory behavior.

Thus, the value of ω/σF is one index that determines the property of the phase

dynamics in the proposed model, yet the resulting dynamics will be extremely

complex due to the time varying value of F .

Figure 4.2: Phase oscillator stability

4.4 Dimensional Extension

Finally, as presented in [5], it is possible to further extend the Tegotae feedback

in case of several forces, in case we think each force as related to one oscillator.

By writing:



46 The Tegotae Approach

Ti(φ, F ) , −σi sin(φi)Fi+ (4.4.1)

+
K

N

N∑
j=1,j 6=i

σij sin(φi)Fj

fi(φ, F ) =
∂

∂φi
Ti(φi, F ) = −σi cos(φi)Fi+ (4.4.2)

+
K

N

N∑
j=1,j 6=i

σij cos(φi)Fj

It is apparent how this formulation asks to the system to show an anti-phase

gait in the movement in case of couplings σij > 0, an in-phase movement other-

wise. It is still an open question how to formalize the T-function in terms of a

global coupling matrix Σ in order to permit several gaits. This is not the main

objective of the stuy and this issue will not be tackled. In general, it is su�cient

to design the values σij in order to match the particular expectations de�ned in

the Tegotae framework.

4.5 Tegotae and Learning

The Tegotae approach shows interesting similarities with di�erent learning frame-

works which motivates some of the intuitions on its energy e�ciency as well.

In fact, the adaptivity in learning processes is usually de�ned for the parame-

ters/weights of the controller/learning agent. In the Tegotae framework, even

though a further adaptation of the feedback coe�cients σ may be included, the

main adaptation is induced via a modi�cation of the dynamics of the oscillators.

This factor will be the one taken into account in the comparison, since an even-

tual adaptation of the parameters is straightforwardly implementable.

Firstly, it is interesting to notice how the Tegotae approach shares some simi-

larities with the tacit learning, a learning framework introduced in [27, 28], whose
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feedback loop is shown in Figure 4.3.

Figure 4.3: Block Diagram of the controller for tacit learning

In tacit learning, the control law consists in an extension of the PD controller

via a tacit learner block in the time frame (Lt). Considering the scalar case for

simplicity without loss of generality:

u = kxTc + q

q =

∫
f(e)dt (Lt)

(4.5.1)

where u, xc, k, e are respectively the control, the state variable expressed in

the control space, the proportional and derivative gain and any kind of quantity

to be minimized, where the use of the letter e will be later clari�ed. The actual

learning process is obtained in the (Lt) block via the accumulation in the integral

over the time of the quantity to be minimized. Due to this, the proportional and

derivative terms will be neglected now on, obtaining:

u = q

q =

∫
f(e)dt (Lt)

(4.5.2)

The function f(q) is required to be of the form f(e) = p(ξ) a(e)T . In the

mono-dimensional case a(e) can be a simple linear transformation a(e) = ae and

p(ξ) is a periodic function of a virtual variable ξ. Both of these additional terms

have to be selected in order to guarantee:
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p(ξ) xe
‖p(ξ)‖ ‖xe‖

= 1 if α = 0

p(ξ) xe
‖p(ξ)‖ ‖xe‖

= −1 if α = π

(4.5.3)

In Eq. (4.5.5) xe is the state variable expressed in the task space for which

the error e is minimized. On the other hand, α is generically de�ned as the angle

between ė and D(e), the latter being the direction towards which e is minimized.

In the mono-dimensional case α = 0 ∧ π. This formulation guarantees the fact

that min(f(e)) = min(e).

Now lets take into account the Tegotae framework. The objective is to construct

a feedback, and not a feed-forward controller. To do this, lets consider the factor

to be minimized corresponding exactly to e = −Fk, the virtual variable ξ to the

phase variable φ and the error function a(e) = σe. Neglecting constant terms

due to the integration, the feedback over the oscillator results in:

u = q

e = −Fk
p(φ) = − sin(φ)

q =

∫
f(e)dφ =

∫
σ sin(φ)Fkdφ

= −σ cos(φ(t))Fk (Lφ)

(4.5.4)

In the Tegotae framework, it is possible to set xe = ∆̇l, that is the speed of

elongation of the spring length. In fact, this variable is pointing to the direction

of minimization of the value of e = −Fk, it follows that:

− sin(φ) xe
‖sin(φ)‖ ‖xe‖

= 1 if α = 0

− sin(φ) xe
‖sin(φ)‖ ‖xe‖

= −1 if α = π

(4.5.5)
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This shows how the Tegotae approach is de facto realizing a tacit learning

block similar to the (Lt) previously described. Yet, this is done via the accumu-

lation of the quantity to be minimized in the integral of the state space variable

directly (Lφ). The integration over the state space φ is actually coherent with

the CPGs framework. In fact, the role of the oscillators is to provide a di�erent

time frame to the mechanical dynamics, which is reproduced via the linear trans-

formation φ = ωt. Thus, in the CPGs framework the integration/derivation over

the state variable of the oscillator φ is conceptually equivalent to the integration

over the time in standard tacit learning. Interestingly it has been shown in [29]

that such a controller is somehow able to guarantee energy e�ciency in the task

realization in case the quantity to be minimized is the actuation torque.

Finally, another signi�cant learning framework which can lead to interesting

interpretations is Hebbian learning. According to the original formulation by

Hebb [30], such learning principle consists in:

When an axon cell A is near enough to excite cell B or repeatedly or persistently

takes part in �ring it, some growth process or metabolic change takes place in one

or both cells such that A's e�ciency, as one of the cells �ring B, is increased.

The Hebbian framework shows two important aspects, as analyzed in [31]. First,

the learning rule is local: only the information that is available at the location

of the synapse can be used to change the weight of that synapse. Second, the

learning rule must be sensitive to the correlations between the action potentials

of the two neurons. These two aspects can be summarized in the concepts of

locality and cooperativity. Interestingly, the Tegotae approach as it has been de-

�ned in in Eq. (4.2.1) so far shares these two aspects, since each Tegotae feedback

fi depends on the state of the related oscillator φi (locality) and by de�nition it

contains the correlation between the phase oscillator and the mechanical oscilla-

tor corresponding to the relation between action and expectation (cooperativity).

The most coherent framework with the Tegotae can be found considering the dif-
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ferential extrinsic plasticity (DEP) proposed in [7], an extension of the classical

Hebbian learning rule. In Hebbian laws such as in [30], the rate of change of the

synapse weight ċij between the ith and jth neuron is proportional to the input xj

into the synapse of the ith neuron multiplied by its activation yi, i.e., Ċij ∝ yixj.

However, this rule produces typically �xed-point behaviors, leading to a cease of

the evolving dynamics. Then, time can come into play if the so-called di�eren-

tial Hebbian learning (DHL) is used, i.e., replacing neuronal activities by their

rates of change, so that Ċij ∝ ẏiẋj. This rule focuses on the dynamics because

there is only a change in the behavior if the system is active, interacting with

the environment. Yet, this learning rule as well shows limits in the richness of

the behavior. Trivially, once ẏ = 0, learning and any change in behavior stop

altogether. Now, the idea is to lift this structure to the level of the environment,

enriching learning by the reactions of the physical system to the controls. As-

suming that the agent has a basic understanding of the relations between actions

and reactions represented in the sensor values, this is realized by an inverse model

which approximately relates the current sensor values x′ back to its causes, the

motor command y, with a certain time lag w.r.t. x′. The model will reconstruct

y with a certain mismatch δy. By formulating in terms of the rated of change, it

follows:

ẏ + δẏ = F (ẋ′) (4.5.6)

Finally, it is possible to rewrite the Hebbian rule as a DEP:

Ċij ∝ F (ẋ′)ẋj (4.5.7)

This is coherent with the Tegotae framework of using the reaction from the

environment, while on the other hand it might suggest a further generalization

of the Tegotae in terms of the rate of changes of the phases of the oscillators and

of the proprio-ceptive information. It is important to notice that the link shown
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has the aim to further extend the qualitative understanding of what a feedback

designed in a Tegotae manner might be actually doing, and it is far from being

a rigorous evidence of equivalence between the DHL framework and the Tegotae

one. Once again, this �rst research �nds its aim in widing the understandings of

the Tegotae approach, also in view of subsequent analysis.

4.6 Tegotae Control Policy: Preliminary Design

and Extensions

In the majority of CPGs controllers, as previously described in chapter 1, the ac-

tuator is driven by a PID control scheme, which compares the actual state of the

physical system with the reference signal originated by the CPGs network. One

of our main contribution is to try to maintain the model-free control policy while

taking into account some of the most recent considerations above embodied in-

telligence and control by the use of neural-like dynamical systems, as extensively

analyzed in [32]. The main point introduced by their research group is to inter-

pret neural dynamics as a cognitive dynamics, in which particular events in the

�rst, for example bifurcations, have a direct equivalent from the cognitive point

of view, for example decisions. The dynamics introduced by the speci�c neural

system taken into account, let it be Kuramoto oscillators, generic Hopf oscillators,

or neuronal dynamics according to the Amari equations, as in [32], has then to be

somehow interpreted in terms of decisions, categorical representations or other

cognitive objects, based on the application. For example, a pitchfork bifurcation,

leading to a couple of stable and unstable attractors, will correspond to a speci�c

tendency to follow some decision, i.e. the stable attractor. On the other hand,

speci�c dynamics such as the ones obtained vie the Amari equations may be able

to support several attractors, these attractors corresponding to speci�c categories

formed from an interaction with the environment. This last, the environment,
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is a central aspect of embodied intelligence theory, since in this framework any

intelligent behavior can be obtained only once the agent interacts with the envi-

ronment.

Our control policy has been selected as being more coherent with the interpre-

tation of neural dynamics as actual cognitive processes. Moreover, the Tegotae

approach is intrinsically linked to this framework, since the feedback itself has

been designed taking into account the interaction with the environment and sorts

of expectations from the controller to maximize the Tegotae.

Now, it has been showed how the neuro-mechanical coupling given by the feed-

back will force a secondary dynamics in the phase oscillator [33] and the current

objective is to analyze and possibly exploit such e�ect in terms of cognitive ob-

jects. This will be done by using a critical point of the feedback dynamics, such

as a minimum, or a speci�c section of it, in order to control the system. The

evolution of the Tegotae control policy towards its current form will be described.

Policy 1.1 In the �rst control policy law, a constant actuation force of value A is

taken into account, and the force is injected only when the phase of the oscillator

φ is inside a certain interval of width ∆ containing the selected critical point of

the dynamics φ0, with φ ∈ S:

Fa(φ, ·) = A⇐⇒ φ ∈ (φ0 −∆/2, φ0 + ∆/2) (4.6.1)

It is apparent that a critic factor of this preliminary policy is the on-line

adaptation of the values of φ0 and ∆ according to the evolution of the dynamics

from the transient to the steady state, assuming it is reached. This is non-

trivial. In a �rst instance, such values were selected a posteriori once the speci�c

dynamics of the oscillator was studied and they were maintained constant over

the whole simulation. The results with this simple control policy will be analyzed

in the monoped case study in Chapter 5, showing how even this simple policy is

able to guarantee good performances.
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Policy 1.2 Clearly, this policy can be made smoother by substituting the square

wave in the input force with other sorts of smoother functions such as Gaussian

pro�les:

Fa(φ, ·) =
A√
2π∆

e
− 1

2
(φ−φ0)√

∆ (4.6.2)

Even if leading to an easier actuation and solving the numerical issues intro-

duced by a switching controller, this control policy does not simplify how the

speci�c values of φ0 and ∆ should be selected.

Policy 2 Finally, by taking into account the cognitive interpretation of the Tego-

tae, the whole negative section centered around the minimum of the Tegotae

feedback corresponds to a critical phase of the whole dynamics. In fact, in this

section:

fi(φ, F ) =
∂

∂φi
T (φ, F ) ≤ 0 (4.6.3)

This speci�cally means that the Tegotae is decreasing. By de�nition, the aim

of the controller being to maximize it, then it is clear how this area is the designed

area to inject some force. In particular, such force will be required to lead to a

maximization of the Tegotae, depending on the case study. In the current problem

formulation, a positive force leading to a jump �ts the requirements. Due to this,

following the Eq. (4.2.6), the �nal control policy is selected as:

Fa(φ, ·) = −min (0, fi) (4.6.4)

This clearly reintroduces the numerical issues of a switching controller, but on

the other hand it directly links actuation and Tegotae feedback, while assuring

an online adaptation to the variation of the dynamics, since the Tegotae feedback

corresponds to this variation itself.
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Chapter 5

Case Analysis: Monoped

5.1 Introduction

First, a mono-dimensional hopping robot was taken into account, being charac-

terized by a mass connected to a mass-less spring and damper system. A linear

actuator was in parallel to the spring and the damper and determines a verti-

cal thrust. The Kuramoto model for phase oscillators was used as a model for

the CPGs oscillator, simplifying the analysis of the e�ects of the feedback. The

integration of the ODEs was done via a MATLAB routine which automatically

stops the integration when the event of switching was detected. The initial step

of integration was set to 1e−3, equal to the maximum step of integration.

5.2 Mathematical Formulation

The evolution of a single phase of the oscillator φ and of the vertical height of

the mass y was described by the ODE:
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φ̇ = ω + f(φ, F )

ÿ =
1

m
(Fc(ẏ) + Fk(y)−mg + Fa(φ, ·))

Fc(ẏ) = −cẏ

Fk(y) = k(l0 − y)

(5.2.1)

In Eq. (5.2.1) f(φ, F ) was the sensory feedback in the Kuramoto model, while

Fk(y), Fc(ẏ) and Fa(φ, ·) were the elastic, the viscous and the generic actuation

force due to the spring, the damper, and the actuator respectively. These three

components were absent during the �ight phase, assuming no forces acting from

the environment. The actuation force was selected to be as the policy 1 in Eq.

(4.6.1) in �rst instance. As described in [5] and introduced in chapter 4, the

Tegotae sensory feedback f(φ, F ) was de�ned directly by the T-function T (φ, F ),

in our case we selected F = Fk(y):

T (φ, Fk) , (−σ sin(φ))Fk

f(φ, Fk) = − ∂

∂φ
T (φ, Fk) = −σ cos(φ)Fk

(5.2.2)

with σ being a proportionality factor. By the nature of Eq. (5.2.2), it followed

that this sensory feedback was absent during the �ight phase as well.

5.3 Simulations: Adaptation Transient and En-

ergy E�ciency

The goal of the simulations was to analyze the e�ects of di�erent feedbacks in

terms of stability, transient periods and power injection by the actuator. Four

di�erent instances were taken into account as sensory feedbacks, as reported in

Figure 5.1. While f2 corresponded to the height of jump, f4 was the force passing
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through the spring. Then, f1 and f3 were respectively the Tegotae feedback

and the feedback proposed in [33]. Interestingly, both of these shared a neuro-

mechanical coupling. It was evident that all of them were introducing a strong

polarization with critical points, with which we de�ned φ0.
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f1 = −σFk cos(φ)

f2 = −σy

f3 = −σy cos(φ)

f4 = −σFk

Figure 5.1: Feedback dynamics over the phase φ

The mechanical parameters and the natural length of the spring were m = 0.1

kg, k = 5 N/m, c = 0.2 Ns/m, l0 = 1 m respectively. The parameters of the

oscillator were ω = 8 rad/s and σ = 2, whose dimensionality was determined on

the basis of the feedback law. The initial conditions were respectively y1 = 0.7m,

null velocity and the angle of oscillator selected randomly, to guarantee a certain

robustness with respect to the initial conditions. The actuation parameters and

the results of the simulations were worked out on oscillations in the steady state

and they are reported in Table 5.1. The transient period ∆t was de�ned as when

a limit cycle was reached. It followed that the case f4 was not able to provide a

stable orbit. Finally, it was evident that the introduction of the Tegotae feedback

was optimal in terms both of the transient period of synchronization and of the

energy e�ciency Ee, de�ned on a limit cycle of period T ? with an actuation force
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Fact, as:

Ee =
hmax,T ? − hmin,T ?

E
, E =

∫
T ?
Fact(t)ẏ(t)dt (5.3.1)

Interestingly, to obtain similar hopping in terms of maximum height of jump

the cases f2,f3 required higher magnitude of the actuation force.

Table 5.1: Simulation results

Feedback f1 f2 f3 f4

A [N] 4 12 12 4

φ0, ∆ [rad] 1.75π,0.1π 1.96π,0.1π 1.96π,0.1π 1.75π,0.1π

hmax [m] 1.16 1.05 1.08 1.57

∆t [s] 3 4 5 @

Ee [m/Ws] 1.50 1.16 1.15 1.25

J [W] 5.49 17.69 20.15 10.56

5.4 Simulations: Robustness and Adaptivity

Secondly, the case of the Tegotae approach f1 and the case f3 presented in [33]

were further compared, testing them with a change in the environment. In par-

ticular, at t = 5s the ground level was lowered from 0 to −0.6 m. The results are

shown in Figure 5.2. It was evident that the Tegotae approach was able to cope

with these variations by a proper re-polarization of the oscillator, even without

an adaptation of σ, φ0 or ∆. It was also possible to notice how the Tegotae

approach was able to quickly react to such variations, by a modi�cation in the

power injection.



5.4 Simulations: Robustness and Adaptivity 59

0 2 4 6 8 10
time[s]

−2

0

2

y
[m

]

Trajectory with f1 = −σFk cos(φ)

Force Injected

0 2 4 6 8 10
time[s]

−2

0

2

y
[m

]

Trajectory with f3 = −σy cos(φ)

Force Injected

Figure 5.2: Dynamic environment and adaptation process
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Chapter 6

Case Analysis: Biped

6.1 Introduction

The e�ects of the Tegotae approach on a more complex mechanical and oscillatory

system were studied, to prove its e�ectiveness and ability to sustain di�erent pat-

terns, as already tackled in [5]. An energetic e�ciency analysis was not performed

with respect to other feedback laws. Since this case was a mere extension from

the mechanical point of view, results were assumed to hold and further studies

might be performed in the future researches. The integration of the ODEs was

done via the same MATLAB routine and integration parameters as in chapter 5.

6.2 Mathematical Formulation

The mechanical system was a mono-dimensional hopping robot composed by two

legs connected via a spring, as shown in Figure 6.1. The system corresponded to

a slight modi�cation of the previous case:
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φ̇1 = ω1 − σFk1 cosφ1 +

+ε12 sin(φ1 − φ2) (6.2.1)

φ̇2 = ω2 − σFk2 cosφ2 +

+ε21 sin(φ2 − φ1) (6.2.2)

ÿ1 =
1

m1

(Fc1(ẏ1) + Fk1(y1)−m1g +

+Fa1(t, y1, φ1) + Fk12) (6.2.3)

ÿ2 =
1

m2

(Fc2(ẏ2) + Fk2(y2)−m2g +

+Fa2(t, y2, φ2) + Fk21) (6.2.4)

Figure 6.1: Neuro-mechanical structure of the mono-dimensional hopper with

two legs

In Eq. (6.2.1,6.2.2) the Tegotae feedback was already taken into account,

while the last term on the righthen side represented the weak-coupling between

phase oscillators as described in [10]. In Eq. (6.2.3,6.2.4) the components were

the same as the one de�ned in Eq. (5.2.1), out of a simple additional elastic force

introduced by the connecting spring Fkij = kc(yj − yi). On the other hand, the

control policy was selected as the policy 2 of Eq. (). The e�ect of other Tegotae

terms in the actuation were neglected with respect to this main component.
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6.3 Simulations: Gaits

The objective was to obtain two di�erent gaits, that is in-phase and anti-phase

hopping. Considering the cyclic notations and the group formalism, these two

gaits were represented respectively by the spatial symmetry ((1)(2), 0) and the

spatio-temporal symmetry ((1)(2), 1
2
). A system of two oscillators was then suf-

�cient to sustain these gaits, since the subgroup of the network is {((1)(2)), I}.
On the other hand, if the whole system of phase and mechanical oscillators was

taken into account, then according to the structure of Figure 3.3 previously pre-

sented, the system was expected to be able to sustain the two gaits even without

a coupling between the oscillators, coupling which would be required to obtain

only more complex gaits between the phase and mechanical parts.

As already treated in [5], in CPGs architectures the pulsation of oscillation ω

is a useful control variable which can be exploited to introduce a gait transition

in the pattern generation. Such pulsation can be seen as one of the few high-

level control variables required by CPGs architectures, as already tackled in [1].

Interestingly, the Tegotae control policy was able to maintain these properties,

even without the introduction of any oscillator couplings, i.e.ε12 = ε21 = 0. Two

distinct gaits, in-phase hopping and anti-phase hopping, emerged as in Figure 6.2

and in Figure 6.3.
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Figure 6.2: In-phase hopping
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Figure 6.3: Anti-phase hopping

The case of Figure 6.2 was obtained with a pulsation ωin = 6rad/s, while

the second case of Figure 6.3 with ωanti = 7.5rad/s, the values of mechanical

parameters generally equal to the monoped case, with the addition of a spring

constant kc = 1. The feedback strength was set to σ = 2.4 in order to guarantee

higher vertical excursion. The initial conditions were respectively y1 = 0.8m,

y2 = 0.7m, null velocities and the angles of oscillators selected randomly, to

guarantee a certain robustness with respect to the initial conditions again. These

�gures represent both the mechanical section of the system and the phase section,

with actuation force and Tegotae feedback respectively. Finally, it was evident

that by changing the control variable from ωin to ωanti it was possible to reproduce

a gait transition, as shown in Fig.6.4, where the value was changed at t = 8s and

the trend of actuation forces and feedbacks have been hidden for clarity reasons,

due to the presence of several transient sections. The motivations why these

speci�c gaits were shown for di�erent values of ω were still an open point so far,

considering also the fact that due to the random initialization of the phase angles,

other gates are seldom shown.
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Figure 6.4: Gait transition

6.4 Simulations: Robustness and Adaptivity

Finally, equivalently to the monoped case, the way the control policy expressed in

Eq. (equ:actuation2) was able to sustain a change in the environmental conditions

was studied as well. As reported in Figure 6.5, the ground was lowered for both

the legs to −0.6m as in the monoped case, while the pulsation was equal to ωin.

In Figure 6.6 the ground was again lowered for both the legs to −0.6m, while the

pulsation was equal to ωanti. Finally, in Figure 6.7 the ground was raised for both

the legs to 0.3m, while the pulsation was equal to ωanti. All these cases con�rmed

a good robustness of the control policy to environmental conditions, in this case

the ground level.
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Figure 6.5: Adaptation to lower step with in-phase hop-

ping
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Figure 6.6: Adaptation to lower step with anti-phase

hopping
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Figure 6.7: Adaptation to higher step with anti-phase

hopping



Chapter 7

Optimal Control: Theory and

Results

7.1 Introduction

The energy e�ciency of the Tegotae approach is analyzed by the comparison be-

tween the Tegotae controller and optimal controller, designed via direct optimal

control methods. After a brief introduction to what these methods are and how

they can be implemented, following mainly [34, 35] for the contents and [36] for

the explanatory illustrations, the optimization algorithms are shown and the re-

sults derived, following the algorithms mainly shown in [37, 38].

7.2 Optimal Control: Formulation and Methods

The problem will be formulated as an optimal control problem. Then, for ex-

planatory purposes, the following simpli�ed optimal control problem in ordinary

di�erential equations is taken into account:
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minimize
x(·), u(·)

∫ T

0

L(x(t), u(t))dt+ E(x(T ))

subject to x(0)− x0 = 0 (Initial Value Constraints),

ẋ(t)− f(x(t), u(t)) = 0 t ∈ [0, T ] (ODE Constraints),

h(x(t), u(t)) ≥ 0 t ∈ [0, T ] (Nonlinear Path Constraints),

r(x(T )) = 0 (Terminal Constraints)

(7.2.1)

Figure 7.1: Simpli�ed Optimal Control Problem

The problem is visualized in Figure 7.1. The horizon length T may or may

not be free for optimization. As an example we may think of a robot that shall

move in minimal time from its current state to some desired terminal position,

respecting limits on torques.

Generally speaking, there are three basic approaches to address optimal con-

trol problems, cf. the top row of Figure 7.2, in particular for Nonlinear Program-

ming Problems (NLP) of the form:

minimize
w

f(w)

subject to g(w) = 0,

h(w) ≥ 0

(7.2.2)
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• Dynamic Programming uses the principle of optimality of sub-arcs intro-

duced by Bellman [39] to compute recursively a feedback control for all

times t and all x0. In the continuous time case, as here, this leads to the

Hamilton-Jacobi-Bellman (HJB) equations, a partial di�erential equation

(PDE) in state space. Methods to numerically compute solution approx-

imations exist, but the approach severely su�ers from Bellman's �curse of

dimensionality� and it is restricted to small state dimensions.

• Indirect Methods use the necessary conditions of optimality of the problem

to derive a boundary value problem (BVP) in ordinary di�erential equa-

tions (ODE). This BVP has to be solved numerically, and the approach

is often sketched as ��rst optimize, then discretize�. The class of indirect

methods encompasses also the well known calculus of variations and the

Euler-Lagrange di�erential equations, and the Pontryagin Maximum Prin-

ciple. The numerical solution of the BVP is mostly performed by shooting

techniques or by collocation. The two major drawbacks are that the under-

lying di�erential equations are often di�cult to solve and that changes in

the control structure, i.e. the sequence of arcs where di�erent constraints

are active, are di�cult to handle. This usually requires a completely new

problem setup. In some cases, higher index DAEs arise as well, which

necessitate specialized solution techniques.

• Direct Methods transform the original optimal control problem into a �-

nite dimensional NLP. This NLP is then solved by variants of state-of-the-

art numerical optimization methods, and the approach is therefore often

sketched as ��rst discretize, then optimize�. One of the most important

advantages of direct methods compared to indirect methods is that they

can easily treat inequality constraints, like the inequality path constraints

in the formulation above. This is because structural changes in the active

constraints during the optimization procedure are treated by well devel-
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oped NLP methods that can deal with inequality constraints and active set

changes. All direct methods are based on a �nite dimensional parametriza-

tion of the control trajectory, but they di�er in the way the state trajectory

is handled.

Figure 7.2: Numerical methods for optimal control

7.3 Direct Methods: Single Shooting

The single shooting (SS) method starts by discretizing the controls. For instance,

grid points on the unit interval might be chosen, 0 = τ0 < τ1 < · · · < τN = 1, and

then these grid-points might be re-scaled to the possibly variable time horizon

of the optimal control problem [0, T ], by de�ning ti = Tτi for i = 0, . . . , N . The

controls u(t) are discretized on this grid, so that u(t) only depends on the �nitely

many control parameters q = (q0, q1, . . . , qN−1, T ) and can be denoted by u(t, q).

If the problem has a �xed horizon length T , the last component of q disappears

as it is no optimization variable. This scheme is visualized in Figure 7.3 Using a

numerical simulation routine for solving the initial value problem:
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x(0) = x0

ẋ(t) = f(x(t), u(t, q)), t ∈ [0, T ]
(7.3.1)

the states x(t) on [0, T ] can be regarded as dependent variables and denoted

by x(t, q).

Figure 7.3: Illustration of Single Shooting Method

The question which simulation routine should be chosen is crucial to the

success of any shooting method and depends on the type of ODE model. The

nonlinear path constraints are discretized as well to avoid a semi-in�nite problem,

for example by requiring h(x(t), u(t)) ≥ 0 only at the grid points ti, but also a �ner

grid could be chosen without any problem. Thus, the following �nite dimensional

NLP is obtained:

minimize
q

∫ T

0

L(x(t, q), u(t, q))dt+ E(x(T, q))

subject to

x(0)− x0 = 0 (Initial Value Constraints),

ẋ(t, q)− f(x(t, q), u(t, q)) = 0 t ∈ [0, T ] (ODE Constraints),

h(x(ti, q), u(ti, q)) ≥ 0 i = 0, . . . , N (Nonlinear Path Constraints),

r(x(T, q)) = 0 (Terminal Constraints)
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This problem is solved by a �nite dimensional optimization solver, e.g. Se-

quential Quadratic Programming, as extensively described in [36]. The strong

points of SS are:

(i) It can use fully adaptive, error controlled state-of-the-art ODEs or DAEs.

(ii) It has only few optimization degrees of freedom even for large ODEs or DAEs

systems.

(iii) Only initial guesses for the controlled degrees of freedom are needed.

On the other hand, the weak points are:

(i) It is not possible to use knowledge of the state trajectory x in the initialization

(e.g. in tracking problems).

(ii) The ODE solution x(t, q) can depend very nonlinearly on q.

(iii) Unstable systems are di�cult to treat, in some cases numerical issues may

arise. This can be partially solved by including a penalty term on input variations

in the cost function, as suggested in [36].

7.4 Direct Methods: Multiple Shooting

The direct multiple shooting (MS) method tries to combine the advantages of

parallel computing with the major advantage of SS, namely the possibility to use

adaptive, error controlled ODE solvers. Firstly, the controls piece-wise are again

discretized on a coarse grid:

u(t) = qi for t ∈ [ti, ti+1] (7.4.1)

where the intervals can be as large as in SS. But secondly, the ODE is solved

on each interval [ti, ti+1] independently, starting with an arti�cial initial value si:

xi(ti) = si

ẋi(t) = f(xi(t), qi), t ∈ [ti, ti+1]
(7.4.2)
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By numerical simulation of these initial value problems, trajectory pieces

xi(t, si, qi) are obtained, where the extra arguments are introduced to denote

the dependence on the interval's initial values and controls. Simultaneously with

the decoupled ODE solution, the following integral is numerically computed:

li(si, qi) =

∫ ti+1

ti

L(xi(ti, si, qi), qi)dt (7.4.3)

Finally, in order to constrain the arti�cial degrees of freedom si to physically

meaningful values, continuity conditions si+1 = xi(ti+1, si, qi) are imposed. The

whole problem is graphically represented in Figure 7.4.

Figure 7.4: Illustration of Multiple Shooting Method

Thus, the result is the following NLP formulation, which is completely equiv-

alent to the SS formulation out of the extra variables si and the block sparse

structure:
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minimize
s, q

N−1∑
i=0

li(si, qi) + E(sN)

subject to

s0 − x0 = 0 (Initial Value Constraints),

ẋi(ti+1, si, qi)− f(xi(ti, si, qi), qi) = 0 t ∈ [0, T ] (ODE Constraints),

h(si, qi) ≥ 0 i = 0, . . . , N (Nonlinear Path Constraints),

r(sN) = 0 (Terminal Constraints),

si+1 − xi(ti+1, si, qi) = 0 i = 0, . . . , N − 1 (Continuity Constraints)

If all variables are summarized as w , (s0, q0, s1, q1, . . . , sN) an NLP in the

form of a �nite dimensional NLP is obtained, as in Eq. (7.2.2). The advantages

of MS are mostly that the knowledge of the state trajectory can be used in the

initialization, and that it robustly handles unstable systems and path state and

terminal constraints, in particular it is interesting to note that the terminal con-

straint is already satis�ed in the �rst iteration, due to its linearity, while on the

other hand it needs to be tackled explicitly in SS including in the cost function

some penalty terms on terminal conditions in order to obtain a sensible trajec-

tory, as suggested in [36]. The nonlinear e�ects of the continuity conditions are

distributed over the whole horizon, which is seen in the discontinuities. This is in

contrast to SS, where the nonlinearity of the system is accumulated until the end

of the horizon, and the terminal constraint becomes much more nonlinear than

necessary. As said above, MS can combine adaptivity with �xed NLP dimensions,

by the use of adaptive ODE/DAE solvers. Within each Sequential Quadratic Pro-

gramming iteration, the ODE solution is often the most costly part, that is easy

to parallelize. The possibility to use e�cient state-of-the-art ODE/DAE solvers

and their inbuilt adaptivity makes MS a competitive option. From a practical

point of view it o�ers the advantage that the user does not have to decide on the

grid of the ODE discretization, but only on the control grid.
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7.5 Simulations and Results

The construction of an optimal controller based on the previous methods is non-

trivial if a discontinuous system is taken into account, the main issue being pass-

ing the information of a switching dynamics and a switching controller to the

minimizer of the cost function. Due to this, the following scheme have been used.

Firstly, the simulation with the Tegotae controller was run until when a steady

state was reached. This was done by running the simulation for a su�ciently

large time. Secondly, the peak values of the trajectory in the very last jump were

taken. Now, in case these corresponded to peaks in �ight phase, the dynamics

was further cut up to the stance phase of the period only. In fact, this dynamics

was the reference dynamics with respect to which the optimal controller was sup-

posed to be constructed. It followed then that the �ight phase was not needed

to be tackled by the optimal controller, since a control would not be e�ective in

this phase. In case a �ight phase was absent, the peak point were directly taken

as reference point. Subsequently, the values of position and velocity were stored

and a Finite Horizon Optimal Control (FHOC) problem was solved using shoot-

ing methods. Firstly the MS only was taken into account, due to its numerical

robustness, then the results were compared with a SS method, for the sake of

clarity.

7.5.1 Optimal Controller with Multiple Shooting Only

The FHOC problem was solved with respect to these initial and �nal conditions,

which were automatically added via the extended formulation above cited. The

cost function was constructed by taking into account Eq. (5.3.1). Finally, accord-

ing to the Tacit Learning formulation, the energy stored in the spring system

may have had a leading role. On the other hand, if the original formulation

of energy e�ciency in chapter 5 was taken into account, the maximum height

in the vertical excursion was substituted by the length of the body itself, due
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to this considerations about the relevance of the �ight phase. The MS routine

was solved using again the interior-point method provided by MATLAB built-in

function fmincon. The FHOC for the MS method was formulated using the norm

notation ‖x‖2Q = xTQx :

minimize
s, q

N−1∑
i=0

‖qiṡi‖2Q1
+ ‖(Fk + Fc)ṡi‖2R1

+ ‖(l − si)‖2L1

subject to

A[s, q] = b, (Initial Value Constraints),

C[s, q] ≥ d, i = 0, . . . , N (Inequality Constraints),

si+1 − yi(ti+1, si, qi) = 0, i = 0, . . . , N − 1 (Continuity Constraints),

ms̈i(ti+1, si, qi)− (Fc + Fk −mg + qi) = 0, t ∈ [0, T ] (ODE Constraints),

h(si, qi) ≥ 0, i = 0, . . . , N (Nonlinear Path Constraints)

Here the initial value constraints A[s, q] = b coincided with the one in order

to have:

s0 − yin
ṡ0 − vin

 = 0

And the inequality constraints C[s, q] ≥ d such that:



si − 0 + ε

−si + l + ε

ṡi − vmin
−ṡi + vmax

qi − 0− ε
−qi + Fmax


≥ 0

The optimization was run over several values of the mass, in order to validate

the results for di�erent feedback dynamics, while all the other parameters were
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kept at the same value as the monoped case study. On the other hand, the

Tegotae controller were taken according to the policy 2 as in Eq. (6.2), in order

to exploit the adaptivity of the Tegotae feedback. The values of the weights in

the cost functions for each relevant simulation are reported in Table 7.1 with

respect to each simulation to check the e�ectiveness of the weights.

Table 7.1: Weights Values for MS Only

Simulation Case m [Kg] Q1 R1 L1

MS 1 0.1 1e1 −1e1 −1e1

MS 2 0.1 0 −1e1 −1e1

MS 3 0.1 1e1 0 −1e1

MS 4 0.1 1e1 −1e1 0

MS 5 0.3 1e1 0 0

MS 6 0.6 1e1 0 0

It follows that an actual e�ect of the weights is restricted to the power injection

by the controller, while on the other hand the optimal controller has neither

access to the energy stored in the spring and damping system nor to the vertical

excursion as shown in Figure 7.6, 7.7, 7.8. In fact, no particular e�ect is shown by

removing each weight previously referred to out of the case of Q1, which leads to

an utterly di�erent solution. On the other hand, the ability to dynamically adapt

to the mass changes proper of the Tegotae controller is veri�ed by the optimal

controller as well, as shown in Figure 7.5, 7.9, 7.10, where the control trajectory

varies accordingly to the mass change.

Further increments of the mass might require a change of the value of σ or the

use of a non linear spring in order to avoid negative values of vertical movements:

the case of 7.10 was already at the limit of applicability.
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Figure 7.5: Multiple Shooting only: m = 0.1 Kg (Case MS 1)
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Figure 7.6: Multiple Shooting only: Q1 = 0 (Case MS 2)
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Figure 7.7: Multiple Shooting only: R1 = 0 (Case MS 3)
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Figure 7.8: Multiple Shooting only: L1 = 0 (Case MS 4)
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Figure 7.9: Multiple Shooting only: adaptation to m = 0.3 Kg (Case MS 5)
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Figure 7.10: Multiple Shooting only: adaptation to m = 0.6 Kg (Case MS 6)
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7.5.2 Optimal Controller with Multiple Shooting and Sin-

gle Shooting

These results represent merely the MS case. In fact the SS has several practical

drawbacks which motivate this choice. Firstly, it requires extremely high weights

on the sensitivity function to the �nal conditions and on the smoothness of the

control policy, conditions automatically satis�ed by the continuity constraints in

the MS. Secondly, its convergence is harder to be obtained. Nonetheless, it was

implemented as well for comparison purposes, aiming at obtaining meaningful

di�erences with respect to the Multiple Shooting case. The MS routine was

solved using again MATLAB built-in function, on the other hand the SS routine

was solved using BFGS method and SQP designed on the material provided by

[36]. As far as the integration of the dynamics is concerned, the time interval

have been split in 40 nodes with 2 points per sub-interval for the MS case, while

a sampling time of 0.01s have been used for the SS case. For both cases, the

integration of the dynamics have been done via an explicit Runge-Kutta method

of order 4, since the restricted dynamics is now non-sti�. The step-size being

0.01s for both the methods. The FHOC for the SS method is formulate using the

norm notation and additional weights to guarantee sensitivity to �nal conditions

and control policy:

minimize
y, q

∫ T

0

‖qiẏ‖2Q2
+ ‖Fkẏ‖2R2

+ ‖(l − y)‖2L2
+ ‖qi‖2S2

+

‖qi − qi−1‖2γ1
dt+ ‖yend − y(T )‖2F2

+ ‖ẏend − ẏ(T )‖2F2

subject to

A[y, ẏ] = b, (Initial Value Constraints),

C[y, ẏ] ≥ d, i = 0, . . . , N (Inequality Constraints),

mÿ(t, q)− (Fc + Fk −mg + q) = 0, t ∈ [0, T ] (ODE Constraints)

Here the initial value constraints formulation A[y, ẏ] = b coincided with the
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one in order to have:

y0 − yin
ẏ0 − vin

 = 0

And the inequality constraints C[y, ẏ] ≥ d such that:



y − 0− ε
−y + l + ε

ẏ − vmin
−ẏ + vmax

qi − 0− ε
−qi + Fmax


≥ 0

In this case, γ1 = 1e4, F2 = 1e10. As previously noticed, these values resulted

to be extremely high compared to the remaining weights of the cost function,

shown in Table 7.1, while for the MS case the weights have been maintained the

same as for MS 5 in Table 7.2.

Table 7.2: Weights Values for MS-SS Comparison

Simulation Case m [Kg] Q2 R2 L2 S2

MS-SS 1 0.3 1e1 −1e1 −1e1 1e3

MS-SS 2 0.6 1e1 −1e1 −1e1 1e3

MS-SS 3 0.4 1e1 −1e2 −1e2 1e3

MS-SS 4 0.6 1e1 −1e2 −1e2 1e3

Interestingly, it has not been a trivial fact to obtain similar results between

the two optimal controllers. It was possible to obtain similar control trends

with respect to the MS case, as shown in Figure 7.11 and Figure 7.12. On the

other hand, cases more similar to the Tegotae controller were reached as well, as

shown in Figure 7.14 and Figure 7.13, by appropriately changing the values of

the weights to higher weights for the energy stored in the spring system and for
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the vertical excursion. For the SS case then, the cost function was more sensitive

to the terms proper of the monoped cost function Eq. (5.3.1) and of the spring

force. This might be due to the fact that the absence of continuity constraints

let higher freedom to the optimizer to follow the constraints.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time (s)

0

1

2

3

4

5

6

u

Control values

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time (s)

0.4

0.5

0.6

0.7

0.8

0.9

1
Position

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time (s)

-3

-2

-1

0

1

2

3
Velocity

Multiple S.

Tegotae

Single S.

Figure 7.11: Multiple Shooting and Single Shooting similarities: m = 0.3

Kg (Case MS-SS 1)
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Figure 7.12: Multiple Shooting and Single Shooting similarities: adapta-

tion to m = 0.3 Kg (Case MS-SS 2)
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Figure 7.13: Multiple Shooting and Single Shooting di�erences: m = 0.4 Kg

(Case MS-SS 3)
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Figure 7.14: Multiple Shooting and Single Shooting di�erences: adaptation to

m = 0.6 Kg (Case MS-SS 4)



Chapter 8

Lyapunov Exponents: Theory and

Results

8.1 Introduction

As previously described in the Subsection , the Tegotae feedback leads to a com-

plex dynamics. In order to further extend the stability analysis and possibly

de�ne in a rigorous way how to design the values of the parameters in the feed-

backs and control laws, a dynamical analysis is performed. Due to the switch-

ing nature of both the mechanical system itself and the control law designed,

in both cases of the monoped and biped bodies an analysis of bifurcations via

MATCONT would not not possible, since these typologies of dynamics are not

supported. Then, the analysis is conducted by studying the Lyapunov exponents

of the whole system. In fact, these may require a simple dimensional extension of

the ODE system, which is able to support discontinuities via an event detection.

As far as the theory of Lyapunov exponents is concerned, seminal works such

as [40] and [41] has been used, while for the algorithmic computation aspect,

[42] and [43] have been the main reference. In our case study, the proper theory

of switching systems has been found in Fillipov Systems and Fillippov Convex
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Methods, as �rstly introduced in [44]. Yet for brevity's sake, these references are

reported but the theory itself is not treated extensively.

8.2 Lyapunov Exponents

Lyapunov Exponents (LEs) are mostly used to study the nature of a dynamical

system, and the way this evolves over time. In particular, they are extremely

e�ective in the study of chaotic systems. To be called chaotic, a system should

show sensitive dependence on initial conditions, in the sense that neighboring

orbits separate exponentially fast, on average. This means that two trajectories

starting very close together will rapidly diverge from each other. A chaotic orbit

is one that forever continues to experience the unstable behavior that an orbit

exhibits near a source, but that is not itself �xed or periodic. It never manages

to �nd a sink to be attracted to. At any point of such an orbit, there are points

arbitrarily near that will move away from the point during further iteration.

This sustained irregularity is quanti�ed by Lyapunov numbers and Lyapunov

exponents. The Lyapunov number will be the average per-step divergence rate of

nearby points along the orbit, and the Lyapunov exponent the natural logarithm

of the Lyapunov number. In fact, for a dynamical system whose dynamics is

described by the n-dimensional smooth vector �eld:

ẋ(t) = f(x(t)) (8.2.1)

It is possible to de�ne the T-period map which, at any state x, links the state

after T instants, that is:

ẋ((k + 1)T ) = FT (x(kT )), T > 0

This being a discrete-time system, it is possible to compute the LEs: L̃1, . . . , L̃n,

de�ned as the discrete-equivalent of the continuous case L1, . . . , Ln, Li = L̃i/T .
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From the numerical point of view, it is crucial that the computation horizon T is

little enough to avoid numerical errors and divergence. The discrete case being

descriptive of the average separation of perturbed trajectories with respect to the

initial conditions, in the mono-dimensional case:

|∂x(t)| → eLx(0)t|∂x(0)|

Where the Lx(0) is the LE of the trajectory starting from x(0).

Figure 8.1: A three-dimensional example of the deformation of the sphere into

an ellipsoid

In the discrete n-dimensional case, there are n di�erent LEs. Consider the

evolution of an in�nitesimal sphere of perturbed initial conditions. During its

evolution, the sphere will become distorted into an in�nitesimal ellipsoid, as in

Figure (8.1). The LEs quanti�es this phenomenon. Let δk(t) denote the length of

the kth principal axis of the ellipsoid. Then δk(t) = δk(0)eLkt, where Lk is the kth

LEs. When a system has a positive Lyapunov exponent, there is a time horizon

beyond which prediction breaks down. Such case is, again, called chaotic, where

the most universal working de�nition being found in [40]:

Chaos is an a-periodic long-term behavior in a deterministic system that ex-

hibits sensitive dependence on initial conditions

Here �A-periodic long-term behavior� means that there are trajectories which

do not settle down to �xed points, periodic orbits or quasi periodic orbits. For
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practical reasons, we should require that such trajectories are not too rare. �De-

terministic� means that the system has no random or noisy inputs or parameters.

8.3 Filippov Systems

The case of study falls in a special class of discontinuous systems known as the

Filippov (or piece-wise smooth) systems. A Filippov system is a collection of

vector �elds Fq de�ned on domains Dq ⊂ Rn separated by a set of (possibly

intersecting)(n − 1)-dimensional smooth manifolds. As also treated in [45], a

solution of a Filippov system is any absolutely continuous function that satis�es

almost everywhere the di�erential inclusion:

ẋ ∈ co{Fq1(x), . . . , Fqn(x)}

Where co is the convex hull and Dq1 , . . . , Dqn is the set of domains that in-

tersect every arbitrary small neighborhood of x. By the above de�nition, a given

initial condition x may admit multiple solutions, whenever the di�erential inclu-

sion of Eq. (8.3) admits multiple trajectories starting at x, and solutions may

belong to the interior of a domain or they may slide along a boundary between

two or more domains when this is consistent with Eq. (8.3). More precisely, if

the convex hull of Fq1(x), . . . , Fqn(x) has no intersection with the tangent space

to the boundary, the only admissible solution is one that crosses the boundary. If

the convex hull intersects the tangent space to the boundary, but all vector �elds

locally point out of their respective domains, then locally solutions of Eq. (8.3)

are bound to slide on the boundary. If the convex hull intersects the tangent space

to the boundary, and some of the vector �elds locally point inside their domain,

then Eq. (8.3) admits both solutions that slide along the boundary and solutions

that leave the boundary and enter one of the neighboring domains. Discontinuity

boundaries are consequently partitioned into crossing, sliding, and escaping re-
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gions. Filippov systems are a particular type of hybrid systems, where a value of

the discrete variable q is assigned to each of the smooth domains of the Filippov

system as well as to each of the sliding regions. For each q, the discontinuity set

Gq collects all the discontinuity manifolds triggering a switch of the vector �eld.

The switch is de�ned by the reset map (Rq(x), q′) = R(x, q), whose x-component

Rq is always the identity. Now, given a reference initial condition for Eq. (8.2.1)

x0 = x(t0), and its forward-time trajectory x(t), the fundamental solution matrix

ψ(t, t0) is de�ned as the unique matrix that satis�es the relation:

x′(t)− x(t) = ψ(t, t0))(x′(t0)− x0) +O(‖x′(t0)− x0‖2)

for any possible in�nitesimal perturbation x′(t0) of x0. The fundamental

solution matrix is therefore associated with the reference trajectory originating

at x(t0). For smooth systems as in Eq. (8.2.1), the fundamental solution matrix

can be obtained in an elegant manner by integrating the so-called variational

equation as presented in [46]. It is obtained as the solution of the matrix initial

value problem:

ψ̇(t, t0) = J(x(t))ψ(t, t0), ψ(t0, t0) = I (8.3.1)

Here J = J(x(t)) denotes the Jacobi matrix of partial derivatives of the

vector �eld at the point x(t), the initial condition being the identity matrix I.

Discontinuous systems however exhibit discontinuities, or saltations, in the time

evolution of the fundamental solution matrix. The jumps in the fundamental

solution matrix can be computed analytically by means of the theory of [47].

Such theory was �nally used by [48] to calculate LEs of discontinuous systems, as

in the case of analysis. Now, it is derived how the fundamental solution matrix

J jumps if the solution x(t) crosses a hyper-surface Σ, on which the vector

�eld is discontinuous, using the notation as in [44]. By considering a nonlinear

system with discontinuous right-hand side in the Filippov notation starting from
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an initial condition x(t = 0) = x0:

ẋ(t) ∈ F (t, x(t)) =


f−(t, x(t)), x(t) ∈ V−

co{f−(t, x(t)), f+(t, x(t))}, x(t) ∈ Σ

f+(t, x(t)), x(t) ∈ V+

(8.3.2)

with co being the convex combination.

Figure 8.2: Projections of derivatives on the normal of the hyper-surface

Assume that at a certain point in time, say tp, the solution x(t) will cross Σ.

With the de�nition of an indicator function we obtain:

s(x(tp)) = 0

That is the discontinuity set is represented as a zero set of a smooth function

as in [45]. At this hyper-surface there are two derivatives fp+ and fp− which

lie in the direction of the solution as denoted in Fig. (8.2). The derivatives

have perpendicular components to the hyper-surface with magnitudes fp+nT and

fp−n
T .

In these conditions the Jacobian of the discontinuity mapping at the point

of discontinuity of the reference trajectory is the correction factor resetting the

state of the variational system at the time of discontinuity. This Jacobian is
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known in the literature of piece-wise smooth systems as the saltation matrix.

Complex phenomena arises from the de�nition of such matrices. In particular,

the saltation matrix at the onset of sliding, for example, is singular, and this

makes the fundamental solution matrix singular as well. Generally, the matrix S

is called the saltation matrix because it describes the jump by mapping X(tp− ; t0)

toX(tp+ ; t0) in the variational equation used to compute the Lyapunov exponents.

The saltation matrix can be regarded as a fundamental solution matrix from time

tp− to tp+ , omitting the dependence on the state vector:

S = ψ(tp− , tp+)

It follows that:

ψ(t, t0) = ψ(t, tp+)Sψ(tp− , t0)

The saltation matrix can be derived by inspecting the nonlinear dynamical

system in the neighborhood of the occurrence of a discontinuity. It follows that

it can be de�ned as:

S = I +
(fp+ − fp−)nT

nTfp−
(8.3.3)

In our case of analysis, even though the Jacobian in the variational equation

is discontinuous, its tangent vectors are locally unvaried through Σ. This leads

to the fact that the saltation matrix will correspond to the identity matrix. Due

to this, the computation of the LEs through the discontinuity hyper-surface are

de facto unvaried.
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8.4 Numerical Computation of Lyapunov Expo-

nents

In order to compute the LEs in the continuous-time cases, several ways can

be followed. Tenderly, the calculation of the Lyapunov spectrum is based on

matrix decomposition techniques. It can in principle be computed by a singular

value (SV) decomposition or QR decomposition for a su�ciently large chosen

time t. Practically, however, the computation fails for large times, as previously

said. This can be avoided with the help of suitable schemes. One approach is

to approximate the LEs in a �nite number of time steps, for example in the

QR decomposition here explained, following [49]. When dealing with continuous

systems the associated matrix variational equation previously introduced is again:

ψ̇ = Jψ, ψ(t0, t0) = I (8.4.1)

This has to be integrated simultaneously with the Eq. (8.2.1). Taking into

account once more the deformation of the initial sphere as in Figure (8.1), the

ith LE Li of the reference trajectory measures the average exponential growth of

the ith principal axis of the ellipsoid:

Li = lim
t→∞

1

t
ln[σi], i = 1, . . . , n

with σi being the ith singular value of the fundamental solution matrix ψ(t, t0).

The computation of the LEs is then based on the computation of the fundamental

solution matrix ψ(t, t0). The most popular numerical methods are variations of

the discrete QR algorithm. The idea is to work on a set T of time instants

{t0, t1, t2, . . . }, tj > tj−1, and compute the fundamental solution matrix ψ(t, tj−1)

in each time interval [tj−1, tj], j ≥ 1. This is done by simulating the linearized

dynamics:
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ψ̇(j)(t, tj−1) = J(x(t))ψ(j)(t, tj−1)

Starting from the initial condition ψ(j)(tj−1, tj−1) = Q(j−1) obtained for j ≥ 2

from the QR decomposition ψ(j−1)(tj−1, tj−2) = Q(j−1)R(j−1), with Q(0) = R(0) =

I. Then, by the initial condition ψ(tj−1, tj−1) = I, it follows ψ(t, tj−1)Q
(j−1) =

ψ(j)(t, tj−1) for t ∈ [tj−1, tj], and the composition of the fundamental solution

matrices gives:

ψ(tj, t0) =

j∏
k=1

ψ(tj−k+1, tj−k) = Q(j)

j∏
k=1

R(j−k+1) (8.4.2)

The n LEs associated to the reference trajectory x(t) are approximated by:

Li = lim
j→∞

1

tj − t0

j∑
k=1

ln[R
(k)
ii ]

Accurately performing QR decomposition (typically via the Gram�Schmidt

algorithm) is extremely important from a numerical standpoint, since the mag-

nitude of each of the columns of ψ(t, t0) tends to diverge/vanish if the column

is associated to a positive/negative LE. The repeated re-orthonormalization of

the fundamental matrix allows us to avoid numerical cancellations. The QR

decomposition of a m× k matrix P consists in a decomposition of the form:

P = QR = (Q1, · · · , Qk)


R11 · · · · · · R1k

0 R22
. . .

...
...

. . . . . . · · ·
0 · · · 0 Rkk

 (8.4.3)

being Q an orthogonal m× k matrix (QiTQj = δij), (1 ≤ i, j ≤ k), and R an

upper triangular k × k matrix with positive diagonal elements Rii > 0.

The solution of the LEs computation consists then in the solution of the vari-

ational problem together with the computation of the saltation matrix once the
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hyper-surface Σ is crossed. In our case of analysis, the crossing of the hyper-

surface Σ corresponding to the transition from stance phase to �ight phase hap-

pens without a variation of the derivatives, leading to a mere identity matrix in

Eq. (8.3.3). Due to this, the problem itself corresponds merely to the integration

of the variational equation. Finally, it is important to �nally specify how this

calculation actually corresponds to the calculation of the discrete-time LEs. As

reported in [43] and previously said, the values will have to be further divided by

the period of the T-period map.

8.5 Simulations and Results

As previously said, the main objective of the current analysis is the study of the

dynamics in the transition between one gait and one other in the biped case.

These being guaranteed by the group theoretic properties of the system, it is

in our interest how this transition is obtained de facto. The calculation of the

Lyapunov exponents was done via MATLAB code on the basis of the previous

theory. Again, the event detection function was used to avoid numerical errors in

the computation of the LEs. The mechanical parameters were left unvaried with

respect to the biped case-study. The number of cycles assumed to be su�cient for

the convergence of the LEs was Neps = 10, due to the relatively simple dynamics.

This was done after checking the actual fast convergence on several trials. Finally,

the error in this convergence were set to be ε = 0.01. The main characteristic

of the in-phase and anti-phase trajectories being the relationship between the

velocities of the two legs v1, v2, the gait was studied via the introduction of the

following functional test function:

G =
1

T ?

∫ t?+T ?

t?

v1v2
‖v1‖‖v2‖

dt (8.5.1)

The integration of the functional was performed over the period of oscillation
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T ?, calculated numerically as the mean distance between each peak of oscillation.

The relationship between the period of oscillation in the CGPs and the mechanical

value was usually almost 1 : 1, out of the transition phases here reported, so that

numerical errors induced in this procedure were assumed to be negligible. This

functional gives values coinciding with +1 in the in-phase hopping, with −1 in the

anti-phase case. Furthermore, the simulation was performed in a continuation-

wise manner. That is, after the perturbation of the bifurcation parameter, the

initial condition was selected as the �nal state for the previous value of such

parameter. In this way, it was possible to actually follow the attractors over their

bifurcation curves and avoid to fall into other basin of attractions.

5.5 6 6.5 7 7.5 8

-3

-2

-1

0

1

2
Lyapunov Exponents (Ly)

Figure 8.3: LEs trend without hysteresis approach

The initial trend of the LEs is reported in Figure (8.3). It is apparent that

there is a critical value ωc for which the LEs undergo a qualitative change in their

variation. For ω < ωc the greatest Lyapunov Exponent results to be decreasing,

while for ω > ωc it increases. In Figure (8.3) the perturbation on the bifurcation

parameter corresponded to ∆ω = 0.2 rad/s.
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Finally, in order to determine possible bifurcations, since the �rst result was

not e�ective, the perturbation of the parameter ω was performed in a bidirec-

tional manner, from the minimum value to the maximum value and back again

to the minimum value. This was done in order to underline possible hysteresis

e�ects. This means that the attractor follows di�erent paths during the pertur-

bation in each direction, and that it settles on the same curves after a while. By

doing this, and by reducing the window of perturbation around ωc and the per-

turbation to ∆ω = 0.02 rad/s, it was possible to notice an interesting behavior.

By perturbing ω in an increasing manner, an example of the resulting trajectories

is reported in Figure (8.4), Figure (8.5), and Figure (8.6) where the time is nor-

malized. It is apparent how the trajectory is increasingly perturbed by increasing

the values of ω, passing from an in-phase hopping to an anti-phase hopping. Sub-

sequently once ωc is surpassed, the direction of perturbation is inverted and the

hysteresis e�ect is noticed. In fact, the value of ω at which a gait transition is

shown changes, as reported in Figure (8.7), Figure (8.8) and Figure (8.9). In

particular, for ω = 6.27 rad/s the gait is di�erent on the basis of the direction of

perturbation. The same happens for ω = 6.3 rad/s, as reported in Figure (8.10)

and Figure (8.11). Finally, the hysteresis is shown for the three biggest exponents

in Figure (8.12) together with the test function in Figure (8.13), where the two

di�erent lines represent the two di�erent directions. In order to have higher It is

clear then in our case of analysis there are two di�erent attractors, which become

gradually unstable/stable respectively together with the perturbation of the bi-

furcation parameter. This justi�es the co-existence of both gaits on the basis of

the initial conditions, often shown in more complex mechanical cases and already

noticed in 6, and it also gives a motivation to the fact that the test function

seldom falls in the other gait case, even before the bifurcation.
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Figure 8.4: Trajectory sample along the forward contin-

uation: in-phase hopping
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Figure 8.5: Trajectory sample along the forward contin-

uation: anti-phase hopping
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Figure 8.6: Trajectory sample along the forward continuation: gait transition
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Figure 8.7: Trajectory sample along the backward con-

tinuation: hysteresis e�ect
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Figure 8.8: Trajectory sample along the backward con-

tinuation: in-phase hopping regeneration
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Figure 8.9: Trajectory sample along the backward continuation: gait transition

at di�erent ωc
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Figure 8.10: Hysteresis e�ect example: gait transition in

forward continuation
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Figure 8.11: Hysteresis e�ect example: anti-phase hop-

ping in backward continuation
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Figure 8.12: Hysteresis e�ect of the Lyapunov exponents
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Figure 8.13: Test Function trend



Conclusions

Central Pattern Generators are still an open issue, both in their biological foun-

dation and in their robotic application. Nonetheless, the deep awareness of the

fact that the design of a biological controller, that is the nervous system, hap-

pened to evolve in a strict relation to the body itself, this awareness has been

proven to lead not only to robust behaviors, but also to enhanced performances

in energy e�ciency, which is believed to be one of the main leading factors in

terms of biological �tness. A smart design with a clear purpose, such as in the

Tegotae approach, has been shown to be able to lead to a minimalist architecture

with broad positives. The analysis methodologies showed these last, yet also they

underlined how little is the knowledge of the complex dynamics of such architec-

tures. Finally, the main theoretical contributions, such as the comparison with

other learning frameworks and the group theoretic analysis, were not directly

applied to derive novel results, yet they suggested new paths for further research

on these topics, and their e�ective appllication is still to be found.

In conclusion, we hope that showing not only the positives of our research but

also the limits will generate new questions. Because this is how science evolves.
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