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Moreover, I would like to thank Géraldine Constant-Filaire and all the team of DSO/DV/MS, for
their welcome and constant openness.

I would also like to thank Professor Camilla Colombo, who provided me with support, insight and
immense expertise during this work and has conveyed the passion for orbital mechanics during her
course in Politecnico di Milano.
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Abstract

Station keeping operations are essential for a satellite mission. They enable the maintenance of a
satellite on a reference orbit, counteracting the effects of perturbing non-Keplerian forces. Making the
orbit control autonomous would reduce the ground-based workload, with great advantages in terms
of operational costs. Anyway, this raises the issue of the collision risks management process. The
Centre National d’Etudes Spatial (CNES) is developing the Autonomous Orbit Control (AOC), an
autonomous orbit controller and is studying an algorithmic method to make it predictable. The up-
coming manoeuvres are computed in advance, allowing to establish a future action plan that makes
possible to estimate the impact risk probability. Two kinds of manoeuvres can be executed at time:
one to perform an in-track station keeping; the other one to perform a cross-track station keeping.
This thesis work has contributed to the improvement of AOC, by conceiving and introducing of a
third kind of manoeuvre, a mixed manoeuvre, allowing to handle both the in-track and the cross-
track station keeping at the same time. Moreover, an algorithmic procedure has been implemented to
determine the temporal slots, during which the mixed manoeuvres can be performed by fulfilling mis-
sions and systems constraints. Finally, a further study concerning the orbit inclination drift under the
perturbations effects has been performed. This parameter estimation is important for the manoeuvres
computation. Analytic and semi-analytic models of the inclination drift have been introduced to get
a good estimation, by minimising the computational time required.
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Symbols

a semi-major axis [km]
ap perturbing acceleration [km/s]
e eccentricity
eX ,eY eccentricity vector’s components
E eccentric anomaly [deg]
F thrust [N]
f thrust-induced acceleration [km/s2]
G universal gravitational constant [m3km−1s−2]
h angular momentum [m2s−1]
H local hour angle [deg]
i inclination [mdeg]
IJK geocentric inertial equatorial coordinate system
n orbital angular speed [rad/s]
r position vector [m]
RθN Gaussian coordinate system
Re equatorial Earth radius [m]
t time variable [s]
T0 orbital period [s]
TE Earth rotation period [s]
TSO Sun apparent orbit period [s]
U Earth potential [J/kg]
Vp potential [J/kg]
V velocity vector [m/s]
α argument of latitude [deg]
α∗ right ascension [deg]
γ manoeuvre orientation angle [deg]
δ declination [deg]
∆T in-track deviation [m]
∆W cross-track deviation [m]
µ Earth standard gravitational parameter [m3 s−2]
ν true anomaly [deg]
ρ̂ electric manoeuvre efficiency
ρTN satellite coordinate system
ω argument of perigee [deg]
Ω right ascension of the ascending node [deg]
ωe Earth rotation rate [rad/s]
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Introduction

All the satellites in orbit around the Earth are subjected to non-Keplerian forces, which deviate them
from their assigned operational orbit: this makes station keeping operations essential in a mission.
Up to now, the orbital control is performed by the missions ground segments. However, there is an
increasing interest in making it autonomous, handled on-board by the satellite itself.

The Centre National d’Etudes Spatiales (CNES) has developed an autonomous orbit control
method, Autonomous Orbit Control (AOC), that has been successfully tested by means of a con-
troller demonstrator on the Demeter satellite, launched in 2004 [1]. Its advantages are several. First
of all, there is a significant reduction of the operations cost since the orbit maintenance is not anymore
ground-based: for a Low-Earth Orbit (LEO) constellation, it would imply a net savings in total annual
operations cost in the order of 10/20% [2]. Then, the mission scheduling becomes more predicable
and easier to handle. Anyway, there is still a problem to solve in order to make autonomous station
keeping exploitable for missions. Indeed, the autonomous orbit control raises the issue of the collision
risk management. The avoidance strategy against space debris is determined by ground stations and
needs an accurate knowledge of the satellite orbit: this requirement can not be achieved with an
on-board orbit control. Thus, CNES is studying a way to make AOC predictable by means of an
algorithmic method under development. This thesis concerns a work of adjustment and improvement
that has been conducted on it, in the contest of a six months internship at CNES.

The interest in making satellite and spacecraft operations autonomous dates back to the late 80s.
NASA was investigating the way to make the control of orbital operations autonomous, with a focus on
interplanetary missions to Mars [3]; indeed, some of them, requiring pinpoint landing and ascent and
rendez-vous operations, would not be practicable without a greater autonomy. In those year, the first
guidance, navigation and control algorithms were in development, along with the techniques to perform
autonomous landing, rendez-vous and docking. The interest in the autonomous station keeping can
be dated back to those years and it is increased since then, especially because of the advantages that
it would bring to the management of mega-constellations on Low-Earth orbits, such as OneWeb [2][4].
Over the years, several studies and tests have been carried out. The first works are about the techniques
to make the navigation systems autonomous, which is essential for an autonomous orbit control. In
[5], Maute proposes a method based on the exploitation of star trackers and solar detectors for the
measurement of the angles formed by the Sun, the Polar Star and the Earth seen from the satellite to
determine its state vector. In [6], Chan and Bernstein proposes to perform the orbit estimation thanks
to Global Positioning System (GPS) receivers. This last technique is used by Microcosm Inc., which
studies an autonomous orbit controller on behalf of the US Air Force Research Laboratory and NASA.
Its controller generates thruster firing commands, controlling the deviation of the orbit elements (the
orbital period and the right ascension of the ascending node, in particular) from their expected values
[7], [8]. In [9], De Florio et al. study a similar controller, based on an analytic feedback control
algorithm, comparing its performance to that of a linear and a quadratic optimum regulators. Also
Pervez and Xing in [10] propose an autonomous orbit control based on the classical control theory:
they suggest the use of a multivariate feedback regulator, like a linear-quadratic regulator (LQR) or
an H∞ robust controller, minimising the control error on the satellite position and velocity and the
control effort. These kinds of regulators have very good performances: indeed, they compute the orbit
manoeuvres punctually without the need of estimating the non-Keplerian forces. However, they do
not allow long-term prediction of the satellite dynamics and of its orbit. For this reason, the CNES
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controller, AOC, is based on orbital mechanics, by measuring the orbital parameters deviations with
respect to the guidance orbit and by applying a correction strategy based on theoretical equations.
The focus is on low Earth orbits station keeping. The satellite orbit is determined on-board by means
of Global Navigation Satellite System (GNSS) measurements, thanks to Global Positioning System
(GPS) or GALILEO receivers. In order to reduce propellant burns, a control technique, exploiting
the perturbing forces effects on the satellite orbit, has been developed [11]. The adopted strategy is
adopted for satellites exploiting whether a chemical or an electric propulsion system.

To make the autonomous orbit control more predictable, CNES has implemented an algorithmic
method consisting in the introduction of a predictable horizon for upcoming manoeuvres [12]. It is
based on the same AOC original strategy, so on the control of the inclination, right ascension of the
ascending node, semi-major axis and argument of latitude, optimising the orbit eccentricity. To this
aim, two different kinds of manoeuvres are implemented according to the need: tangential manoeu-
vres with respect to the satellite orbits, used to perform the in-track station keeping; out-of-plane
manoeuvres exploited for the cross-track station keeping. The algorithm is still under development at
CNES, to improve its station keeping performance and to make it suitable also for satellites exploiting
an electric propulsion system.

The main objective of the work presented in this thesis was to study and integrate an other type
of manoeuvre, a mixed manoeuvre, performing at the same time an in-track and a cross-track station
keeping control. It enables significantly improving the controller performance, especially if a low-thrust
propulsion system is operated. Finally, always with the objective to improve the AOC algorithm, in
both terms of station keeping performance and computational time, a further study has been started:
it concerns the analytic estimation of the inclination drift under the effects of the orbital perturbations,
whose knowledge is important for the correct computation of the out-of-plane manoeuvres.

Thus, this thesis work contribution has consisted in:

• improving the original AOC algorithm, by conceiving and introducing both impulsive and low-
thrust mixed in-track cross-track manoeuvres;

• generating a algorithmic procedure to determine the temporal slots during which it is allow to
perform the mixed in-track cross-track manoeuvres, on the basis of the standard manoeuvres
already defined temporal slots: these slots have the objective to fulfill missions and systems
constraints, such as the avoidance of the on-board instruments glare;

• introducing analytic and semi-analytic models for the computation of the inclination drift under
the effects of orbital perturbations, whether provided by the literature or based on it; the semi-
analytic determination of the inclination drift is a computationally not expensive way to predict
the evolution of the orbital inclination, useful for an autonomous orbit control.

This thesis is organized as follows:

• Chapter 1 provides general background information: the exploited reference systems, the orbits
of interest and reminders of the two-body problem and of orbital perturbations;

• Chapter 2 presents the working principles and the manoeuvres strategy of the AOC original
algorithm, before the changes done during the internship;

• Chapter 3 is about the conception and the integration of impulsive mixed manoeuvres;

• Chapter 4 is about the concetpion and the integration of electric mixed manoeuvres;

• Chapter 5 concerns the methodology adopted to determine the temporal slots during which
mixed manoeuvres can be performed;

• Chapter 6 presents the performed study about the analytical and semi-analytical estimation of
the inclination drift induced by orbital perturbations.



0.1 Working environment

AOC has been developed at CNES and this work has been realised during an internship in this
research centre. The CNES is the French space agency for space programs. It is a public, industrial
and commercial, scientific and technical institution and it is financially independent.It is responsible
for advising the government, implementing the French space policy and designing new space systems.

CNES has two main missions: to provide an overall vision of space solutions through its systems
skills and to innovate. In addition to this, it is attentive:

• to remain attentive to users and their requirements;

• to remain at the crossroads of scientific/ technological laboratories, and industrial;

• to stimulate scientific, technological and industrial research and innovation for institutional and
commercial requirements.

It is structured into four centres, each dedicated to complementary objectives. There is the headquarter
in Paris Les Halles. All CNES administrative operations are directed from it. Administrators at
headquarters, together with the overseeing ministries, establish and promote CNES policy. They also
define the strategic guidelines for the agency technical centres and its relations with outside partners.

The centre in Toulouse (CST) is more focused on satellites control and orbital vehicles design
and development. The opening of the CST in 1968 was the result of the decentralization of French
high-tech industries from the Paris area to the provinces. The CST replaced the former space centre
at Bretigny-sur-Orge. At this key site for space research, the centre develops complete space systems
with its partners in industry and the scientific community, right up to their entry into operational
service. The CST is unique in terms of its size and the diversity of its activities. The CST participates
in scientific and instrumentation projects, and leads research and application programs such as Argos,
Helios and Insight. It also leads the orbital system projects (satellites and on-board payloads, ground
segments) and satellite station acquisition and keeping operations. It manages the technical policy
and preparation of the future as well. This centre develops and executes scientific balloon-borne
experiments and ensures the use of data as well as development of innovative applications.

Then, there is a centre is in Kourou, where the launch base is placed: the Guaiana Space centre
(CSG). It is dedicated to Europe’s launcher program. It coordinates all resources needed for launch
infrastructures, launcher and payload preparation, control of launch operations and the equipment
required for launch. As well, it participates in the construction of new launch units (Ariane 6).

Finally, the Launcher Directorate (DLA) is placed in Paris Daumesnil, where all the study, design
and development of Ariane, Soyuz and Vega launch systems are carried out. It leads all developments
of new European launch systems under contract to the European Space Agency (ESA). The DLA
maintains constant supervision of the launcher from production to marketing and launch, through
Arianespace. It develops technological demonstrators in order to prepare for future launchers. It also
leads the research on new concepts for launchers and advanced propulsion systems.

The internship has taken place in the Toulouse Space centre. In particular, it has been conducted
into a division of Orbital Systems and Flight Dynamics Department, that is the Space Mechanics
Service.

The Orbital Systems and Flight Dynamics Department (DSO/DV) develops and carries out the
studies on the space mechanics aspects, such as orbit restitution and resources localization and on the
Attitude and Orbit Control System (AOCS). All the phases Research and Technology (R&T), phases
0 and A, development phases and operation monitoring are carried out in this department. In the
department one can find several divisions. One of them is the Space Mechanics Systems (MS) division.
Its goals are to coordinate the support for space mechanics aspects in a project, to optimise satellite
positioning and maintenance strategies for isolated or in-formation satellites, collision avoidance, in-
orbit services, interplanetary transfers and guided atmospheric flights.



Chapter 1

Background

1.1 Reference Frame

Several reference frames have to be considered in this work. Indeed, even if the AOC algorithm
exploits mainly one reference system, others are used for the models and the conception. Below, the
main reference frames are introduced.

Geocentric inertial equatorial coordinate system IJK

It is inertial and centred at the Earth centre [13] (Figure 1.1). The I axis lies on the equatorial plane
and points the vernal equinox, which corresponds to the ascending node of the apparent orbit of the
Sun around the Earth. The K axis is perpendicular to the equatorial plane. Finally, the J axis lies
on the equatorial plane, completing the frame according to the right-hand rule.

Fig. 1.1: Geocentric inertial equatorial coordinate system [13]

Celestial intermediate reference frame (CIRF)

It is a quasi-inertial geocentric reference frame [14]. It is related to the geocentric equatorial coordinate
system by a time-dependent rotation accounting for precession and nutation phenomena. It is the
reference frame exploited by AOC for the orbit propagation and the manoeuvres computation.
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Gaussian coordinate system RθN

It is a rotating system centred at the satellite [13] (Figure 1.2): the R axis has the direction points
from the Earth center towards the satellite in the direction of its position vector; the θ axis points in
the direction of the satellite velocity vector and it is perpendicular to the R axis; the N axis is normal
to the orbit plane. Considering the satellite ground track, the in-track displacements are normal to
the R axis; in the case of quasi-circular orbits, they are nearly parallel to the θ axis. The cross-track
positions are normal to the orbital plane, along the N axis.

Fig. 1.2: Gaussian coordinate system [13]

Satellite coordinate system ρTN

It is a rotating reference frame centred at the satellite [13] (figure 1.3). The T axis is tangential to the
orbit: it has the direction of the satellite velocity vector. The N axis is normal to the orbital plane.
The ρ axis lies on the orbital plane and completes the frame according to the right-hand rule. With
regard to the satellite ground track, the in-track displacements are deviations along the T axis. It is
possible to observe that this reference frame coincides with the Gaussian coordinate system in case of
a perfectly circular orbit.

The time is expressed exploiting both the International Atomic Time (TAI) [15] and the Modified
Julian date (MJD) [13].

1.2 Two-body problem

In the Keplerian two-body problem, considering a satellite orbiting around the Earth, only the po-
tential of the planet, modeled as perfectly spherical, is taken into account. The acceleration of the
satellite is:

r̈ = − µ
r3

r (1.1)
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Fig. 1.3: Satellite coordinate system [13]

where r is the position vector, r its modulus and µ the standard gravitational parameter. Indeed
U = − µ

r2 is the Earth gravitational potential.
Classically, in this context, there are specific elements defined as orbital parameters which are

exploited to characterise an orbit. They are:

• The semi-major axis a, which is the measure of the amplitude of the orbit. It is related to the
energy, integral of motion:

E =
V 2

2
− r

µ
= − µ

2a
(1.2)

where V is the orbital velocity.

• The eccentricity e, referring to the shape the orbital shape. It is the modulus of the eccentricity
vector which is a constant of integration of the two-body problem:

e =
h×V

µ
− r

r
(1.3)

where h = r ×V is the satellite angular momentum and it is another integral of motion. The
eccentricity vector points the orbit perigee, the closer point to Earth.

• The inclination i is the tilt of the orbital plane with respect to the equatorial plane. It can
been mathematically defined exploiting the K and the N axis, being these vectors normal with
respect to the considered planes. Thus, we have:

cos i = NK (1.4)

• The right ascension of the ascending node Ω is the angle measured positively from the I axis
to the ascending node, which is the point on the equatorial plane where the satellite crosses
the equator from south to north. The opposite point with respect to the Earth center is the

12
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Fig. 1.4: Generic orbit orientation and geometry with respect to the geocentric inertial coordinate
system [13]

descending node; the segment connecting these two points is the so called line of nodes. It is
possible to write:

cos Ω = I(K×N) (1.5)

• The argument of perigee ω is the angle between the ascending node and the perigee:

cosω =
e · (K× h)

e|h|
(1.6)

• The true anomaly ν is the angle defining the current satellite position with respect to the perigee:

cos ν = r · e (1.7)

1.3 Orbital parameters

For low-Earth missions, generally the orbits of interest are quasi circular. Their eccentricity is in the
order of 10−3 [16]. Therefore, in order to define the satellite position along the orbit, the notion of
argument of perigee is less significant as well as the notion of true anomaly. Instead of these classical
orbital parameters, the eccentricity vector of coordinates eX and eY and the argument of latitude, α,
are exploited. Hence, the orbital parameters used are:

a;
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eX = e cosω, eY = e sinω;

i;

Ω;

α = ω + ν, defined as argument of latitude.

1.4 Orbital Perturbations

Reality doesn’t conform exactly the Keplerian model. Earth is not a perfect sphere and there are
other bodies gravitational potentials and other additional forces acting on the satellite that have to
be taken into account. The actual satellite motion will deviate from the theoretical two-body path:
the deviations from the nominal Keplerian orbit are called orbital perturbations. The real satellite
acceleration is:

r̈ = − µ
r3

r + ap (1.8)

where ap is the acceleration component due to the perturbing forces.

1.4.1 Osculating parameters

Under the effect of perturbations, the orbital parameters change in time: they are no longer two-body
elements, but osculating elements. It is possible to determine the variation of each parameter as a
function of the perturbing acceleration, as shown in [13].

The state vector [r; v] can be expressed as a function of the osculating parameters and time:

r = x(a, e, i,Ω, α, t) = x(c, t) (1.9)

V = ẋ(a, e, i,Ω, α, t) = ẋ(c, t) (1.10)

where v is the velocity vector and c = [a, e, i,Ω, α]T .
Consequently, equation 1.8 can be re-written as:

ẍ(c, t) +
µx(c, t)

|x(c, t)|3
= ap (1.11)

In order to get the variation of the osculating parameters in time, this last equation can be
compared with the one obtained differentiating twice equation (1.9). Differentiating once, the result
is:

ẋ(c, t) =
dx(c, t)

dt
=
∂x(c, t)

∂t
+
∑ ∂x(c, t)

∂ci

dci
dt

To differentiate a second time, a constraint has to be imposed to assure that each state vector
defines an osculating ellipse: ∑ ∂x(c, t)

∂ci

dci
dt

= 0 (1.12)

Indeed, an osculating orbit is a two-body orbit at each instant of time.
Thus, we have:

ẋ(c, t) =
dx(c, t)

dt
=
∂x(c, t)

∂t
(1.13)

ẍ(c, t) =
∂2x(c, t)

∂t2
+
∑ ∂ẋ(c, t)

∂ci

dci
dt

(1.14)
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In the case of a Keplerian two body problem, where no perturbation is active, the relations would
have been:

ẍ(c, t) +
µx(c, t)

|x(c, t)|3
= 0 (1.15)

ẍ(c, t) =
d2x(c, t)

dt2
=
∂2x(c, t)

∂t2
(1.16)

Comparing equations (1.11), (1.14), (1.15) and (1.16), we get:∑ ∂ẋ(c, t)

∂ci

dci
dt

= ap

Thus, we can write: [∑ ∂x(c,t)
∂ci

dci
dt∑ ∂ẋ(c,t)

∂ci
dci
dt

]
=

[
0
ap

]
(1.17)

Taking the dot product of the first equation with ∂ci/∂ẋ and of the second with ∂ci/∂x and adding
the obtained relations, we get : ∑(∂cj

∂x

∂x

∂ci
+
∂cj
∂ẋ

∂ẋ

∂ci

)dci
dt

=
∂cj
∂ẋ

ap

As the elements are mutually independent, the result is:∑
δi,j

dci
dt

=
∂cj
∂ẋ

ap

where δi,j is the Kronecker δ. So each orbital parameter changes in time because of the action of the
natural perturbing forces, according to the following relation:

dcj
dt

=
∂cj
∂ẋ

ap (1.18)

1.4.2 Gauss equations

Gauss developed a system of equations, allowing to express the rates of change of the osculating pa-
rameters as explicit functions of the acceleration induced by the specific disturbing forces. As reference
frame, the Gaussian coordinate system is exploited; the generic specific acceleration considered is of
the type:

ap = apRR + apθθ + apNN (1.19)

The procedure to obtain the Gaussian equations follows the one by [13].

To derive the expression for the semi-major axis, it is helpful to exploit the expression (1.2), linking
it to the energy integral. The energy is not constant as in the Keplerian two-body problem; it varies
in time because of the work made by the perturbing forces:

dE

dt
= apV

In view of the following equivalences:

r = rR

V = ṙR + ν̇rθ = ν̇
(dr
dν

R + rθ
)

15
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we get:
dE

dt
= ν̇

(dr
dν
apR + rapθ

)
where:

r =
p

1 + e cos ν

dr

dν
=

re sin ν

1 + e cos ν

rν̇ = h =
√
µa(1− e2) = na2

√
1− e2

being h the modulus of the orbital angular momentum h. Applying equation (1.2), the result is:

da

dt
=
µ

2

1

E2

dE

dt
=

2e sin ν

n
√

1− e2
apR +

2a
√

1− e2

nr
apθ

The eccentricity of an elliptical orbit can be expressed as:

e =

√
1− h2

a
(1.20)

(see [13]). The h the angular momentum, which is constant in the two body problem, varies in time
in case of perturbed motion:

dh

dt
= r× ap = rapRN− rapN θ

dh

dt
= ḣN + h

dN

dt

ḣ = rapR

Differentiating equation (1.20) results in:

de

dt
=

1

2

(
1− h2

a

)−1/2(− 2

µa

dh

dt
+

h2

µa2

da

dt

)
=

= − h

µae
rfθ +

h2

2µa2e

( 2e sin ν

n
√

1− e2
apR +

2a
√

1− e2

nr
apθ

)
Exploiting the relations:

h =
√
µa(1− e2)

n =
√
µ/a3

we get:
de

dt
=

√
1− e2

na

(
sin νapR +

(
cos ν +

e+ cos ν

1 + e cos ν

)
apθ

)
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Because the angular momentum is directed as the N axis, it can be exploited in order to define the
orbital inclination, following the relation (1.4):

cos i =
hK

h
(1.21)

Differentiating the equation results in:

− sin i
di

dt
=

1

h

dh

dt
K− 1

h2
ḣ(hK)

Considering that θK = cosα sin i and that NK = cos i, and substituting dh/dt and ḣ:

di

dt
=

r cosαapN
na2
√

1− e2

Also the right ascension of the ascending node can be defined as a function of the angular momentum,
applying it to equation (1.5):

cos Ω = I
K× h

|K× h|
(1.22)

Differentiating the equation, we get:

− sin Ω
dΩ

dt
= I

K× ḣ

|K× h|
− I

K× h

|K× h|2
d

dt
|K× h| =

=
I
(
K(rapRN− rapN θ

)
h sin i

− h cos Ω sin i

h2 sin i2

(
ḣ sin i+ h cos i

di

dt

)
Since I(K× θ) = (I×K)θ = −Jθ = sinα sin Ω− cosα cos Ω cos i :

dΩ

dt
=

r sinαapN
na2
√

1− e2 sin i

The argument of latitude is the angle between the vector aligned with the line of nodes K× h and
the position vector r:

cosα =
r

r

K× h

|K× h|
(1.23)

So, differentiating equation 1.23 we obtain:

− sinα
dα

dt
=
|K× h|

(
K× ḣr

)
+ (K× hr) ddt |K× h|

r|K× h|2

From the following equations:

K×Nr = r sin i cosα

K× θr = rθ ×RK = −rNK = −r cos i

K× hr = rh sin i cosα

by means of a substitution, we have:

dα

dt
= −r cot i sinαapN

h

17
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Summarising, the equations of Gauss are:

da

dt
=

2

n
√

1− e2
(e sin νapR + (1 + e cos ν)apθ) (1.24)

de

dt
=

√
1− e2

na

(
sin νapR +

(
cos ν +

e+ cos ν

1 + e cos ν

)
apθ

)
(1.25)

di

dt
=

r cosα

na2
√

1− e2
apN (1.26)

dΩ

dt
=

r sinα

na2
√

1− e2 sin i
apN (1.27)

dα

dt
= −r cot i sinα

na
√

1− e2
apN (1.28)

Another useful Gaussian equation concerns the true anomaly. The two-body problem trajectory
equation is expressed as follows:

r(1 + e cos ν) = −h
2

µ

Differentiating it results in:

r(
de

dt
cos ν − e sin ν

dν

dt
) = −2

h

µ

dh

dt

Substituting de/dt and dh/dt, we get:

dν

dt
=

√
1− e2

nae

(
cos νapR −

2 + e cos ν

1 + e cos ν
apθ

)
(1.29)

1.4.3 Lagrange equations

Another set of equations defining the orbital elements drift was developed by Lagrange. Differently
from the set of Gauss equations which are valid for every kind of perturbing acceleration, it can be
applied if the perturbation is represented by a gravitational potential: the acceleration is conservative
and equal to the gradient of the potential. In order to derive them, it is possible to apply the procedure
by Battin [17].

Considering the system (1.17), let’s perform the dot product between the first equation and −∂ẋ(c,t)
∂ck

and between the second and ∂x(c,t)
∂ck

:

∑ dci
dt

(∂x(c, t)

∂ck

∂ẋ(c, t)

∂ci
− ∂x(c, t)

∂ci

∂ẋ(c, t)

∂ck

)
=
∂Vp
∂ck

being Vp the perturbing potential. Let be:

[ci, ck] ≡
∂x(c, t)

∂ck

∂ẋ(c, t)

∂ci
− ∂x(c, t)

∂ci

∂ẋ(c, t)

∂ck
(1.30)

[ci, ck] is the so called Lagrangian bracket. Thus, it is possible to express the time derivative of
each orbital element as:

dc

dt
= L−1∂Vp

∂c
(1.31)
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where:

L =

 [c1, c1] · · · [c1, cnoe ]
...

. . .
...

[cnoe , c1] · · · [cnoe , cnoe ]


In order to determine the orbital elements drifts it is convenient to to exploit the orbital frame,

having an axis directed as the eccentricity vector e, an axis directed as the angular momentum h and
an axis directed as h×e

eh . Indeed, the position vector and the velocity vectors can be expressed as:

x = R

 a(cosE − e)
a
√

1− e2 sinE sin ν
0



ẋ = R


−
√

µ
a

sinE
1−e cosE

−
√

µ(1−e2)
a

cosE
1−e cosE

0


where

R =

cos Ω cosω − sin Ω sinω cos i − cos Ω sinω − sin Ω cosω cos i sin Ω sin i
sin Ω cosω − cos Ω sinω cos i − sin Ω sinω − cos Ω cosω cos i − cos Ω sin i

sinω sin i cosω sin i cos i


and E is the eccentric anomaly:

tan
E

2
=

√
1− e
1 + e

tan
ν

2

The eccentric anomaly can be expressed as a function of the so called mean anomaly M =
√

µ
a3 · t

by means of the following equation:
M = E − e sinE

Therefore, we have:

∂(x, ẋ)

∂(Ω, ω, i)
=

∂R

∂((Ω, ω, i)

( a(cosE − e)
a
√

1− e2 sinE sin ν
0

 ,

−
√

µ
a

sinE
1−e cosE

−
√

µ(1−e2)
a

cosE
1−e cosE

0

)

∂(xẋ)

∂(a, e,M)
= R

∂

∂(a, e,M)

( a(cosE − e)
a
√

1− e2 sinE sin ν
0

 ,

−
√

µ
a

sinE
1−e cosE

−
√

µ(1−e2)
a

cosE
1−e cosE

0

) (1.32)

Considering that the following conditions hold:

• [ci, ci] = 0

• [ci, ck] = −[ck, ci]

and evaluating the Lagrangian brackets at the perigee, where E = 0 (the Lagrangian brackets don’t
depend on time explicitly so they can be evaluated for any convenient value of t and consequently of
E), the Lagrangian equations can be determined:

da

dt
= − 2

na

∂Vp
∂M

(1.33)

de

dt
=

√
1− e2

na2e

∂Vp
∂ω

+
e2 − 1

na2e

∂Vp
∂M

(1.34)
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di

dt
=

1

na2
√

1− e2 sin i

∂Vp
∂Ω

+
cot i

na2
√

1− e2

∂Vp
∂ω

(1.35)

dΩ

dt
=

−1

na2
√

1− e2 sin i

∂Vp
∂i

(1.36)

dω

dt
= −
√

1− e2

na2e

∂Vp
∂e

+
cot i

na2
√

1− e2

∂Vp
∂i

(1.37)

dM

dt
− n =

2

na

∂Vp
∂a
− e2 − 1

na2e

∂Vp
∂e

(1.38)

1.4.4 Osculating parameters evolution

The evolution of each orbital parameter p can be modeled as the sum of different terms:

• a term associated to the secular evolution :

psec(t) =
n∑
i=1

Bi(t− t0)i

• a term associated to the periodical evolution:

pper(t) =
m∑
j=1

Aj sin
(

2 ∗ π ∗ t

Tj
+ φj

)

• a mean parameter p0.

The secular evolution represents the long term trend of the orbital parameters: in this time, indeed,
the perturbations periodic effects can be neglected. Each periodic component of the parameters
evolution is characterised by its proper period Tj and amplitude Aj . In particular, according to the
period length, it is possible to identify:

• the short period evolution if Tj < T0, being T0 the orbital period;

• the medium period evolution if T0 < Tj < Te, being Te the Earth rotation period;

• the long term period evolution if Tj > Te.

Finally the mean parameter is the nominal value of the orbital parameter.
Thus, it is possible to write :

p(t) = p0 + pper(t) + psec(t);

1.4.5 Disturbing Forces

There are several contributions to the perturbing acceleration. Indeed, the general form of the equation
of motion can be expressed as [18]:

d2r

dt2
= aGR + a3rd + aSRP + aD + asf

where:

• aGR is the acceleration due to real Earth gravitational potential, which includes also the Keple-
rian two-body acceleration.
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• a3rd is the acceleration generated by the gravitational attraction of other celestial bodies, mainly
the Moon and the Sun: it corresponds to the so called three-body effect.

• aSRP is the Solar radiation pressure effect, due to the photons radiated from the Sun.

• aD is the acceleration due to the atmospheric drag. When the orbit is less than 1500 km, the
air molecules encounters the satellite, determining a variation of their momentum. This change
creates a force acting on the surface of the satellites itself. The impact of this force depends on
the local atmosphere density and on the satellite cross-section area.

• asf is the sum of smaller effects, for example the tides, the Earth infrared radiation and the Earth
optical albedo. In this work only the effect of terrestrial tides are considered: they can be seen
an time-varying components of the geopotential (more precisely of the geopotential coefficients
Clm and Slm that will be introduced in the following paragraph).

In the following paragraph, the first contribution, due to the geopotential is analysed more in
detail. In Table 1.1 , the effects of each perturbing forces on the orbital parameters are summarised,
following the analysis performed in [16] and in [19] .

Earth’s gravity field

Since Earth is not a perfectly spherical body, its gravitational potential differs from the one assumed
in the Keplerian model. The classical assumed model for it is the one by Chobotov [18]. The potential
is defined as an infinite series of harmonics:

U =
µ

r

∞∑
l=0

k∑
m=0

(
Re/r

)l
Plm

(
sin δ

)(
Clm cosmλ+ Slm sinmλ

)
(1.39)

where Plm are Legendre functions (see Appendix A), δ is the satellite declination (which is the angular
distance of the satellite with respect to the equatorial plane), and λ is the satellite longitude, with
respect to the geocentric inertial coordinate system. The terms Clm and Slm are coefficients to
determine from observation. Finally, Re is the Earth equatorial radius. For l = 0 and m = 0, the
potential of a perfect spherical body is obtained.

There are three kinds of harmonics: the zonal, the sectorial and the tesseral harmonis. The zonal
ones correspond to the zero order terms (m = 0). Taking only them into account, the potential
becomes:

U =
µ

r

(
1−

∞∑
l=2

(Re/r)
lJlPl(sin δ)

)
(1.40)

where Jl = −Cl0.
Sectorial harmonics are function of longitude only(l = m). Tesseral harmonics are function of both

longitude and declination (l 6= m).
The harmonic which determines the strongest perturbation due to the Earth shape is the zonal

one associated to the term J2. J2 is almost 1000 times larger than the next largest coefficient (J3).

1.5 Sun-synchronous orbits

Very frequently the orbits of interest are not only quasi-circular, but also sun-synchronous.
Adequate and not fluctuating light conditions are useful for remote-sensing missions, above all if no

other means other than the Sun light is used to the Earth. For this reason, the local hour of the passage
of the satellite over a certain region is something fixed. The local hour is the angle between the plane
of the meridian which passes through the satellite and the plane of the Sun meridian. For convention
an angle of 0◦ corresponds to 12 h. In a sun-synchronous orbit, the local hour is constant: the angle
between the Sun and the orbital plan does not change. The orbital perturbations are exploited in
order to obtain sun-synchronous orbits. The right ascensions of the ascending node drift is imposed
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equal to the Earth rotation angular velocity, by means of selecting and orbit with a semi-major axis
and an inclination fulfilling the following equation:

− 3

2
J2

( Re
a(1− e2)

)2
√
µ

a3
cos i = ωe (1.41)

being ωe the Earth angular velocity. Since the semi-major axis is usually fixed to fulfill missions
requirement, the inclination is selected in order to make the orbit sun-synchronous. For low-Earth
orbits, these orbits are almost polar.

Table 1.1: Perturbing forces effects on orbital parameters

orbital parameter semi-major axis

type of perturbation effects

geopotential short and medium period effects
lunar-solar potential no effect

atmospheric drag short period, long period and secular effects
solar radiation pressure no effect

orbital parameter eccentricity

type of perturbation effects

geopotential short period, medium period, long period and secular effects
lunar-solar potential no effect

atmospheric drag short period and secular effects
solar radiation pressure long period effects (secular if sun-synchronous)

orbital parameter inclination

type of perturbation effects

geopotential short and medium period effects
lunar-solar potential long period effect (secular if sun-synchronous)

atmospheric drag short period, long period and secular effects
solar radiation pressure long period effects (secular if sun-synchronous)

orbital parameter right ascension of the ascending node

type of perturbation effects

geopotential short period, medium period and secular effects
lunar-solar potential long period effect (secular if sun-synchronous)

atmospheric drag short period and long period effects
solar radiation pressure no effects

orbital parameter argument of latitude

type of perturbation effects

geopotential short period, medium period and secular effects
lunar-solar potential no effect

atmospheric drag short period, long period and secular effects
solar radiation pressure long period effects (secular if sun-synchronous)
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Chapter 2

Autonomous Orbit Control : Control
Strategy and Original CNES Algorithm

In this chapter the models on which AOC is based and the algorithm as it was before the internship
are described. AOC is implemented in JAVA and exploits the CNES libraries Sirius and Patrius.

2.1 Manoeuvres strategy

As in case of a standard on-ground station keeping, the main aim of AOC is to confine the satellite
ground traces inside a specific spatial box. Indeed, the satellite orbit deviates from the nominal orbit
because of the perturbing forces acting on it: manoeuvres have to be performed to hinder them.
In comparison to the standard station keeping, the automatic control has to assure the spacecraft
inside a reduced box, not only for mission-linked reasons, but also for on-ground antennas stations
planification for tracking and telemetry. With respect to the satellite ground track, the box is defined
by the in-track largest admitted deviation ∆T and the cross-track one, ∆W , in both the directions.
The in-track station keeping is the control of the satellite on the orbital plane; the cross-track station
keeping is the control of the orbital plane orientation (see Figure 2.1).

To fulfill the station keeping requirements, the natural perturbations are exploited: the reference
and guidance orbit is not Keplerian, but it is perturbed by the geopotential effect and the manoeuvre
strategy is based on its natural evolution. Moreover, the control has been moved from a direct one,
based on the measurement of ∆T and ∆W , to an indirect one, based on the variation of selected orbital
parameters.There exist an interdependence among these lasts and the variations of the in-track and
cross-track positions.

The in-track position changes at the variation of several parameters, which are the argument of
latitude, the eccentricity, the argument of the ascending node [12]:

∆T

a
= 2(∆ex sinα−∆ey cosα) + ∆Ω + ∆α (2.1)

From the equation (2.1), it is possible to observe that the variation of the argument of latitude has a
direct effect on ∆T .

Experimentally, it has been observed that the cross-track position changes with the variation of
several orbital parameters like the inclination, the semi-major axis, the argument of latitude, but the
parameter with the largest influence is right ascension of the ascending node [20].

The temporal evolution of both the argument of latitude and the right ascension of the ascending
node under the perturbing forces effects is fast, being parabolic. Thus, the cross-track station keeping
is assured limiting the variation of ∆Ω and the in-track one imposing a control on ∆α.

Two kinds of manoeuvres were designed: tangential and out-of-plane, with respect to the satellite
orbit. They were designed as impulsive, with the hypothesis of a chemical propulsion system. Then,
their conception has been extended to integrate the case of satellites exploiting an electrical propulsion
system.
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Fig. 2.1: Definition of in-track and cross-track deviations

2.1.1 Thrust effects

Before describing the manoeuvres implementation, the thrust effects on the orbital parameters is
analysed. The thrust induces on the satellite an acceleration composed by three components: the
radial fρ, the tangential fT and the normal fN . To determine the orbital parameters variations that
it induces, it is treated as a perturbation: the Gauss equations (from (1.24) to (1.29)) are used. The
hypothesis of quasi circular orbit is assumed, such that the two reference frames RθN and ρTNcan
be considered coincident and several simplifications can be adopted:

• the eccentricity can be considered null: e ∼ 0;

• the orbital radius can be considered coincident with the semi-major axis: a = r;

• the orbital velocity magnitude V can be considered constant and equal to the product between
the semi-major axis and the orbital angular velocity: V = an.

Moreover, considering that:

deX
dt

= cosω
de

dt
− e sinω

dω

dt
(2.2)

deY
dt

= sinω
de

dt
+ e sinω

dω

dt
(2.3)

dω

dt
=
dα

dt
− dν

dt
(2.4)

the following relations are obtained:

da

dt
=

2a

V
fT (2.5)
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deX
dt

=
sinα

V
fR +

2 cosα

V
fT (2.6)

deY
dt

=
cosα

V
fR +

2 sinα

V
fT (2.7)

di

dt
=

cosα

V
fN (2.8)

dΩ

dt
=

sinα

V sin i
fN (2.9)

dα

dt
= −sinα cos i

V sin i
fN (2.10)

With the assumption of impulsive manoeuvres, the following expressions can be deduced:

∆a =
2a

V
∆VT (2.11)

∆eX =
sinα

V
∆Vρ +

2 cosα

V
∆VT (2.12)

∆eY =
cosα

V
∆Vρ +

2 sinα

V
∆VT (2.13)

∆i =
cosα

V
∆VN (2.14)

∆Ω =
sinα

V sin i
∆VN (2.15)

∆α = −sinα cos i

V sin i
∆VN

polarorbits−−−−−−−→ 0 (2.16)

where ∆Vρ, ∆VT and ∆VN indicate respectively the radial, tangential and normal directions of ∆V.
It can be observed that it is possible to impose a direct variation of Ω and α by directing the

thrust in the normal direction. However, this is not the implemented strategy. Considering the
equation (2.16) concerning the argument of latitude, the reason is evident: in case of quasi-polar
orbits the thrust effect would be almost negligible. More in general, another reason concerns the fuel
consumption. The direct manoeuvres, aimed to modify a considered parameter, are more expensive
than the rendez-vous manoeuvres, which impose a variation to the parameter time derivative. Actually,
this is true only if a relatively long time is admitted for the manoeuvres realization. As explained in
[16], calling y the generic parameter to modify, the two possible manoeuvres are:

• direct: ∆y = K1∆x1;

• rendez-vous: ∆ẏ = K2∆x2, so ∆y = K2∆x2∆t
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where x1 and x2 are other two generic orbital parameters and K1 and K2 are proportionality coeffi-
cients. Calling C1 and C2 the two manoeuvres consumption, given by:

C1 = Cm1∆x1

C2 = 2Cm2∆x2

Cm =
∂m

∂x

it can be deduced that

C1 < C2 ⇔ ∆t < 2
Cm2

Cm1

|K1|
|K2|

= ∆t12 (2.17)

being ∆t12 the drift time. Thus, after a time equal to ∆t12, a rendez-vous manoeuvre is more
economic. This is the case of interest: indeed, the guidance orbit is not a Keplerian one and the
objective is not to join a given orbit but to keep the considered one in an admitted spatial box.

2.1.2 Out-of-plane manoeuvres

The guidance orbit is not Keplerian: it is affected by the effects of the geopotential perturbation. The
main component of this last one, causing the nodal drift, is the J2 term. Under its effect the natural
evolution of nodal drift is quadratic, as demonstrated in [13].

The nodal drift is sensitive to inclination changes, more than to changes of a and e:

∆Ω̇ =
3

2
n
( Re
a(1− e2)

)2
J2 sin i∆i+O(∆i)2 (2.18)

∆Ω̇ = −Ω̇ tan i∆i+O(∆i)2 (2.19)

The inclination drift at time t is:

∆i = ∆i0 +
di

dt
(t− t0) (2.20)

di

dt
= f(perturbations) (2.21)

where the term di/dt is evaluated considering other perturbations effects as explained later and it can
be considered constant over time: the inclination drift is linear. Thus, the nodal drift is:

∆Ω = −Ω̇ tan i
di

dt
(t− t0)t2 −−Ω̇ tan i∆i0(t− t0) (2.22)

In Figure 2.2, the natural evolution of ∆i and ∆Ω are shown: the first one is linear and in-
creasing, the second one is parabolic and convex; it is also possible to have a decrease of ∆i and a
concave parabolic trend of ∆Ω. The oscillations, which are visible along the curves, are due to other
perturbations effects, mainly the solar-lunar gravitation one.

In order to reduce as much as possible the number of manoeuvres (so, also the fuel consump-
tion), this trend is exploited. The manoeuvre is performed only in proximity of a defined threshold
∆Ωthreshold, depending on the largest admitted ∆W . Moreover, in order to delay a next station keep-
ing operation, the manoeuvre is conceived to target a tangent parabola: so the given ∆V is such that
∆Ω̇ is modified, not directly ∆Ω.

At the date of the manoeuvre, the values ∆Ωmes and ∆Ω̇mes (where the subscript mes means
measured) are measured and the targeted ∆Ω̇targeted is defined. So, it is possible to deduce the
variation of ∆Ω̇, ∆Ω̇comm (where comm means commanded), to impose:

∆Ωcomm = ∆Ω̇targeted −∆Ω̇mes (2.23)

If ∆Ωmes > −∆Ωmes and ∆Ω̇mes > 0, applying quadratic equations, the result is:

∆Ω̇comm = −
√

2∆Ω̈targeted

√
∆Ωmax + ∆Ωmes −∆Ω̇mes (2.24)
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Fig. 2.2: Trends of the inclination and right ascension of the ascending node and manoeuvre strategy

where ∆Ωmax is the largest admissible value of ∆Ω and ∆Ω̈targeted is defined as follows:

∆Ω̈targeted = Ω̇ tan i
di

dt
(2.25)

In the case ∆Ωmes = −∆Ωmax and ∆Ω̇mes < 0, it is evident that ∆Ω̇t = 0, so:

∆Ω̇comm = −∆Ω̇mes (2.26)

Since this last manoeuvre doesn’t follow the natural evolution of ∆Ω, it implies a larger consump-
tion of fuel: it has to be avoided as much as possible. The value ∆Ωmax in equation (2.24) is chosen
in order to fulfill this objective. It defines the targeted parabola vertex: indeed, this last is a point of
coordinate (t̂,∆Ωmax). To assure a good orbit station keeping and to avoid the manoeuvre described
by equation (2.26), ∆Ωmax is not imposed to be equal to ∆Ωthreshold, in terms of absolute value: a
smaller value is adopted. It will be indicated as ∆Ωtg parab. In the following, more details are provided
about the definition of both ∆Ωthreshold and ∆Ωtg parab.

Once defined ∆Ω̇comm, the variation of inclination to be imposed is deduced:

∆i = ∆Ω̇comm/kΩ−i (2.27)

Therefore, to perform the manoeuvre is necessary to impose a variation of inclination, while not
changing ∆Ω = ∆Ωmes (Figure 2.3). From equations (2.14) and (2.15), it is evident that this is
possible by directing the thrust in the normal direction and by performing the manoeuvre at α = 0 or
α = π, i.e. at the orbital nodes. Because of this characteristic of the out-of-plane manoeuvres, they
are also called inclination manoeuvres. The value of ∆V is expressed as:

∆V = V∆i (2.28)

Inclination evolution

When considering di/dt, it is necessary to consider the three main sources of perturbation: the Moon
and the Sun gravitation, the atmospheric drag and the terrestrial tides. The last two sources are
usually neglected, as the long period variation of inclination is mainly consequence of a third body
(Sun and Moon) effect. However, during periods characterised by a strong solar activity it is not
possible to neglect the other two sources without committing significant errors.
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Fig. 2.3: Model of the evolution of the right ascension of the ascending node as a function of
inclination

The inclination evolution due to a three body gravitational potential is:

di

dt3rdB
=

3

2

µ

nd3

Z√
1− e2

(cosω(1 + 4e2)X − sinω(e2)Y ) (2.29)

where:

• µ: gravitational parameter of the third body

• X,Y, Z : components of the vector going from the Earth to the third body

• d =
√
X2 + Y 2 + Z2

(see [21]).
Since an analytic model of the other two sources effects is complex, they are deduced from the past

inclination evolution (obtained by means of a backwards numerical propagation in the simulator) by
subtracting the effects of the Sun and Moon potentials. An averaged value of di/dt is obtained and it
is considered constant for the next ∆Ω semi-parabola.

Quasi-equatorial orbits

While considering smaller and smaller value of the nominal orbital inclination, the implemented strat-
egy becomes problematic. Indeed, the value ∆i to impose is significant, and it can become too
important for nominal orbits which are not polar. In these cases, the manoeuvre is split. If the value
∆i to be imposed is too high, it is reduced to its largest possible value and a direct variation of ∆Ω
is also planned. This manoeuvre has some limitations. By considering equation (2.1), it is evident
that, in order to assure an in-track deviation smaller than the largest admitted ∆T , the variation of
the right ascension of the ascending node implies a variation of the eccentricity. This last one can’t
be excessive in order to maintain the orbit quasi-circular. So the manoeuvre has to be executed at a
convenient argument of latitude and the value ∆Ωcomm is bounded.
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Fig. 2.4: Control margins for the inclination controller [20]

Thresholds

As already highlighted, the manoeuvre depends on two control values: the control margin ∆Ωthreshold

and the targeted ∆Ωtg parab. The former represents the threshold that activates the manoeuvre when
overcome. The latter defines the targeted parabola and, as consequence, the ∆V to be imposed.
∆Ωtg parab is smaller than ∆Ωthreshold: a margin is taken in such a way that the specified threshold
is not overcome in case of not predicted satellite dynamics variations, as the ones due to the solar
activity. Moreover, it is imposed also to avoid as much as possible the manoeuvres associated to
equation (2.26), that imply a fuel over consumption. The value of ∆Ωthreshold is defined as a margin
of ∆W , while ∆Ωtg parab is expressed as a percentage of ∆W .

Table 2.1: Control margins

Margins ∆Ωtg parab ∆Ωthreshold

Definition %∆W 1−%∆W

2.1.3 In-Plane manoeuvres

Also the secular drift of the argument of latitude is caused by the geopotential perturbation. Under
the effect of the J2 term, it is [16]:

1

α̇
∆α̇ = − 3

2a

[
1 +

7

2
J2

(Re
a

)2
(4 cos i2 − 1)

]
∆a− 6J2

(Re
a

)2
sin 2i∆i (2.30)

As the inclination drift, also the semi-major axis drift can be considered linear. As consequence,
the argument of latitude drift is quadratic and highly dependant on both ∆a and ∆i. In Figure 2.5, it
is shown the evolution of the argument of latitude and of the semi-major axis. The strategy adopted
for the in-track station keeping is very similar to the one adopted in the case of the cross-track one.
A manoeuvre is performed only when ∆α is close to an imposed threshold and a tangent parabola is
targeted.
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Fig. 2.5: Trends of the semi-major axis and argument of latitude and manoeuvre strategy

At the manoeuvre date, ∆αmes and ∆α̇mes are computed, and the variation to be imposed is
deduced:

∆α̇comm = ∆α̇targeted −∆α̇mes (2.31)

where ∆αtargeted is the targeted drift.
If ∆αmes > −∆αmax and ∆α̇mes > 0, from quadratic relations, the result is expressed as:

∆α̇comm = −
√

2∆α̈targeted
√

∆αmax + ∆αmes −∆α̇mes (2.32)

where ∆α̈t = f(perturbations).
If ∆αmes = −∆αmax and ∆α̇mes < 0, ∆α̇targeted = 0, we have:

∆α̇comm = −∆α̇mes (2.33)

Since this last manoeuvre does not follow the natural evolution of ∆α, it implies an over con-
sumption of fuel. In order to avoid it, the same strategy used for out-of-plane manoeuvre is adopted.
The value ∆αmax, identifying the targeted parabola vertex, is imposed equal to ∆αtg parab, which is
smaller than the imposed threshold triggering the manoeuvre.

To obtain the desired drift, a variation of the semi-major axis is imposed:

∆a = ∆α̇comm/kα−a − kα−i∆i/kα−a (2.34)

This is the reason the in-plane manoeuvres are also called sma (semi-major axis) manoeuvres.
The thrust has to be directed tangentially to the orbit. The value of ∆V , from equation 2.11, is

computed as follows:

∆V =
∆a

2a
V (2.35)

Of course, this kind of manoeuvre implies also a variation of eccentricity, as it can be deduced
from equations (2.12) and (2.13):

∆eX =
2 cosα

V
∆V (2.36)

∆eY =
2 sinα

V
∆V (2.37)
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Fig. 2.6: Model of the evolution of the argument of latitude as a function of the semi-major axis

Since ∆eX and ∆eY have to kept close to zero, the manoeuvre should be performed as closer as
possible to the optimal argument of latitude, equal to (Figure 2.7):

αoptim = arctan
∆eY
∆eX

(2.38)

with ∆eX and ∆eY computed at the date of the manoeuvre. The correction of eccentricity that the
manoeuvre provides is:

correcc = ∆e−
√

∆e2 + ∆e2
man − 2∆e∆eman cos(αman − αoptim) (2.39)

∆eman =
2

V
∆V (2.40)

where αman is the argument of latitude at which the manoeuvre is performed.

Thresholds

The in-plane manoeuvres depend on three control variables: the margins ∆αthreshold up and ∆αthreshold down
and the targeted ∆αtg parab. The first two represent the thresholds that activate the manoeuvre when
overcome: the first is associated to the manoeuvre defined by to equation (2.32); the second one
is associated to the manoeuvre defined by equation (2.33). They are imposed as margin of ∆T .
∆αtg parab characterises the targeted parabola: the required ∆V depends on it. It is smaller than
∆αthreshold down: a margin is taken in order to assure the correct in-track station keeping in case of
not predicted variations of the satellite dynamics, as the ones due to the solar activity. Moreover, it
is imposed also to avoid as much as possible the manoeuvres associated to equation 2.33, that implies
a fuel over consumption. Its value is defined as a percentage of ∆T .

Since the two kinds of manoeuvres, with a positive variation of the semi-major axis and with a
negative one, are regulated independently, the first ones are called sma-up manoeuvres, the second
ones sma-down manoeuvres.

Table 2.2: Control margins [20]

Margins ∆αtg parab ∆αthreshold up ∆αthreshold down
Definition %∆T 1−%∆T 1−%∆T
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Fig. 2.7: Relation between the argument of latitude, ∆eX and ∆eY

Fig. 2.8: Control margins for the semi-major axis controller [20]

2.1.4 Manoeuvres slots

Manoeuvres can be performed only in determined time slots. They are defined according to mission
constraints. First of all, the mission has the priority and must not be constrained by station keeping
operations. Moreover, the slots depend also on system constraints; for example, it is necessary to
avoid the solar glare of optical instruments or thrust on eclipse for electrical thrusters. This kind of
constraint imposes an important limitation to manoeuvre opportunities.
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2.2 The AOC algorithm

The AOC is activated at each ascending node of the orbit. In this way the 2D guidance orbit which
depends on both the argument of the latitude and the longitude of the ascending node, becomes
1D. Once activated, AOC computes the future necessary station keeping manoeuvres. The collisions
management requires an accurate knowledge of the satellite position within 12 and 24 hours, which
implies to define the manoeuvres plan in advance. To fulfill this objective, at each activation, AOC
divides the future temporal line into three intervals: in chronological order, these are the frozen
horizon, the semi-frozen horizon and the research horizon. The frozen horizon and the semi-frozen
horizon belong to the predictable horizon, which includes the manoeuvres calculated at previous AOC
activations: the frozen horizon ones cannot be modified; the semi-frozen horizon ones can be modified
only in magnitude, in order to handle unpredictable variations of the satellite dynamics, mainly due
to the solar activity. The research horizon is the following time interval analysed in order to calculate
the eventual necessary future manoeuvres: these lasts can become the next semi-frozen manoeuvres.

At each activation the algorithm performs the following steps:

1. It measures the deviations of the measured orbit at the node with respect to the guidance
orbit: ∆eX , ∆eY , ∆Ω and ∆α are determined. Exploiting the past stored deviations, and
assuming simple linear or quadratic trends, also the derivatives are determined by means of a
polynomial fitting: the evolution of ∆eX , ∆eY and ∆Ω are considered linear; the evolution of
∆α is considered parabolic. So ∆ėX , ∆ėY , ∆Ω̇, ∆α̇ and ∆α̈ are estimated.

2. Exploiting the measured and estimated data and in particular assuming that ∆ėX , ∆ėY , ∆Ω̇
and ∆α̈ are constant, an analytic propagation is conducted along the frozen horizon to obtain
the satellite state after this interval. Of course, the effect of the eventual previously planned
manoeuvres is taken into account.

3. The same operation is done along the semi-frozen horizon. Anyway before performing the
propagation, the semi-frozen manoeuvres are updated, by modifying their amplitude. Finally,
the satellite state after the semi-frozen horizon is estimated.

4. The analytic propagation is conducted along the research horizon until an imposed threshold is
overcome: the limit date before which the next manoeuvre will have to be performed and the
type of the next manoeuvre are defined.

5. The next operations done by AOC depend on the determined next manoeuvre type:

• If it is an out-of-plane manoeuvre: the admitted time slots are analysed in an inverse
chronological order from the limit date to the final date of the semi-frozen horizon searching
from the optimal one, that is a slot including the optimal argument of latitude. As soon as
an appropriate slot is found the research is interrupted.

• If it is an in-plane manoeuvre: first of all a criterion of evaluation of the manoeuvre is
selected. Indeed, this manoeuvre can be performed either with the aim to minimise the
effect of the correction on eccentricity or to increase the ∆V (to minimise the number of
manoeuvre). At the limit date a value of ∆eman (equation (2.40)) is estimated and com-
pared to the current value of ∆e: if the number of manoeuvre to achieve ∆e is larger than
a threshold value n, ∆e > n∆eman, AOC will search for a manoeuvre optimising the ec-
centricity correction. Once established the criterion, the slots are analysed in chronological
order until the limit date. The manoeuvres calculated at the different slots are evaluated
according to the selected criterion and the best one is chosen. If no slot is found before
the limit date, the research continues after it: the first acceptable manoeuvre is selected,
independently on the implied eccentricity correction.

6. The selected manoeuvre is evaluated according to the propulsion system constraints: the ∆V
has to be included between a minimum and maximum. If this is not the case, it is discarded.
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Fig. 2.9: Predictable horizon

7. If the date of the selected manoeuvre occurs in the orbital period following the semi-frozen
horizon, it becomes a semi-frozen manoeuvre; otherwise, it is discarded.

In orbit, at each ascending node when AOC is activated, the satellite navigation system will
measure the deviations ∆eX , ∆eY , ∆Ω and ∆α. In the simulator, they are determined by performing
a numerical propagation which takes into account all the natural perturbing forces. The numerical
propagation gives a very fine estimation of the orbital parameters so these last ones can be assumed
as real. However, the numerical propagation is very expensive from a computational point of view:
an on-board computer would not be able to perform it. This is the reason why the part of the
algorithm that predicts the orbit evolution to calculate the future manoeuvres, which is the one that
will characterise the on-board controller, exploits an analytic propagation.

Frozen and semi-frozen horizons

As already explained the semi-frozen horizon is conceived in order to reduce the effects of the un-
predictability of the solar activity. Not only it allows to modify the already designed manoeuvres
magnitude, but it gives the possibility to force the introduction of the so-called opportunity manoeu-
vres. These lasts are null in-plane manoeuvres, introduced according to the solar flux intensity at
the AOC activation. More precisely, they are imposed if the time spent from the last inclusion of a
manoeuvre in the semi-frozen horizon is longer than a reference time, which depends on the solar flux.
In this way they could eventually be exploited in future to hinder the solar activity. In particular, the
ooportunity manoeuvres are of the type sma-up: if eventually a ∆V is necessary, it is always positive.

When semi-frozen, the manoeuvres amplitude can be modified without respecting the propulsion
system constraints. Only when the considered manoeuvre occurs within the first orbit after the frozen
horizon, these constraints are considered; indeed, in this case the semi-frozen manoeuvre becomes
frozen.

The temporal length of frozen and semi-frozen horizons (expressed in number of orbits) are control
parameters to impose. To increase the predictability, the ideal solution would give a frozen horizon
as longer as possible and a semi-frozen horizon as shorter as possible, while respecting the station
keeping threshold. Moreover, the total predictable horizon should be almost 24 h long.

2.3 Electric propulsion system

A strategy to perform manoeuvres assuming an electrical propulsion system is also implemented.

The electric manoeuvre is conceived as a degraded impulsive manoeuvre, because of the time needed
to reach the desired ∆V : an efficiency ρ̂ is introduced. By considering the Newton second law, the
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thrust is:

F = m
dV

dt
(2.41)

With respect to Figure 2.10, it is possible to determine the effective imposed ∆V , ∆Vreal:

∆Vreal =

∫ αend

−αstart

F

m
cosudu

dt

du
=
F

m
(sinαend − sinαstart)

∆Vimpulsivem

F

1

αend − αstart
(2.42)

∆Vreal = ∆Vimpulsive
(sinαend − sinαstart)

αend − αstart
(2.43)

As consequence, we obtain:

ρ̂ =
(sinαend − sinαstart)

αend − αstart
(2.44)

The efficiency is an user defined parameter: it depends on the assumed electric propulsion system.
Considering the reduced ∆Vreal with respect to the desired ∆Vimpulsive, it can be understood that the
searched ∆Velec will be larger:

∆Velec =
∆Vimpulsive

ρ̂
(2.45)

In order to model the electric manoeuvres, other relations are considered, based on equation 2.41
and the Tsiolkowski law:

∆m = minitial(1− e
−∆Velec

gISP ) (2.46)

The following hypothesis are assumed:

• constant value of the thrust F and constant mass flow ṁ

• constant specific impulse ISP

• ∆Velec << gISP

So the mass consumption to achieve a given ∆Velec is:

∆m = minitial
∆Velec
gISP

(2.47)

and the time required is

∆t =

∫ mfinal

minitial

−g ISP
T
dm =

ISP
F

=
minitial∆Velec

F
(2.48)

This relation is exploited in order to determine the largest value of ∆Velec that can be imposed:
∆Vachievable. Once established the available time to perform the manoeuvre, assuming the same
hypothesis already introduced and that the satellite mass is constant along one orbit, ∆Vachievable is
computed. Of course, its determination takes into account also the thrust system limitations: it has
to be between the minimum and the maximum, that the propulsion system is able to provide.

The strategy to introduce electric manoeuvres is conceived as an extension of the strategy adopted
for the impulsive manoeuvres. The electric manoeuvre is considered as an impulsive manoeuvre spread
in time, as a certain time is necessary in order to get the desired ∆V value. The required time is too
long to be achieved in one only slot; for this reason, several slots along one orbit have to be used.
When the next future required manoeuvre type is established, the slots analysis starts: the algorithm
takes into account all the slots included between the final date of the predictable horizon and the limit
date and stores those which would allow an acceptable impulsive manoeuvre. These slots are sorted
according to a defined criterion (the one already described for the in-plane manoeuvres; the date in
case of out-of-plane manoeuvres). Moreover, the computed impulsive manoeuvres associated to the
slots are modified according to the efficiency ρ̂, in order to get ∆Velec from ∆Vimpulsive. Finally, the
best manoeuvre is selected and its ∆Vbestman is spread among the sorted slots, as much as possible
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Fig. 2.10: Electrical thrust as degraded impulsive thrust

depending on the available time. This last one depends on the slots length and on the optimal
argument of latitude at which the manoeuvre should be performed. The sorted slots are considered
one after the other: the manoeuvres are planned at each of them until the sum of the achievable
∆Vachievable becomes equal to ∆Vbest man or they terminate.

2.4 AOC: analysed missions and control parameters

Previous studies have determined the optimal parameters to be imposed according to the analysed
mission in order to obtain the best performance consisting in the best compromise between station
keeping requirements and the most extended predictable horizon. Moreover, the parameters allowing
to respect the imposed thresholds with the smallest number of manoeuvres have been selected. The
main among these control parameters are:

• the number of frozen orbits;

• the number of semi-frozen orbits;

• the control margins ∆Ωthreshold, , ∆αthreshold up and ∆αthreshold down;

• ∆Ωtg parab, ∆αtg parab;

• the number n of manoeuvres leading the criterion choice for the in-plane manoeuvres.

In table 2.3, the considered missions are recorded. Among them, mission A1 and mission A2
coincide except for the solar activity. Then, what changes between mission D2 and D3 is the length
of the predictable horizon, longer for the first one.

In table 2.4, the objectives to achieve in terms of station keeping performance for each mission are
shown. The performance is expressed as the annual percentage of the mission time during which the
satellite is successfully kept inside specific station-keeping window, identified by means of a threshold
S. In particular, for the in-track orbital control, two deviation values, S1 and S2, are taken into
account: for each of them a different targeted station keeping percentages are specified.

2.5 Internship work

The state of the art before the internship has been described. At this point, it is possible to observe that
one limit of AOC is the impossibility to perform concurrently an in-track station keeping manoeuvre
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and a cross-track one. Either an out-of-plane manoeuvre or an in-plane manoeuvre can be computed
and mixed manoeuvres, which are manoeuvres with a ∆V characterised by both a normal and a
tangent component, are not taken into account. This is one of the main reason that causes the non-
respect of the thresholds, above all in case of very low thrust due to electrically-powered satellite
propulsion.

The objective of this work is to integrate the algorithm to allow mixed manoeuvre, both considering
chemical and electric propulsion systems.

Finally, a study has been started in order to determine a semi-analytic model of the inclination drift
di/dt, necessary for the computation of the out-of-plane manoeuvres. The aim is to obtain a sufficiently
accurate estimation of this parameter in such a way to minimise also the required computational time.

Table 2.3: Analysed Missions (SSO points a sun synchronous orbit)

Name Mission Altitude i Local trace Mode solar
type time propulsion activity

A1 Constellation 470 km SSO 10:30 15+8/27 chemical high
observation electric

A2 Constellation 470 km SSO 10:30 15+8/27 chemical medium
observation electric

B1 Optical/Radar 689 km SSO 10:30 14+19/32 chemical high
Imaging

B2 Optical/Radar 689 km SSO 06:00 14+19/32 chemical high
Imaging

C Earth 689 km 10 deg - 14+19/32 electric high
observation chemical

D1 Scientific 800 km SSO 22:00 14+7/27 chemical high
environment electric

D2 Scientific 800 km SSO 22:00 14+7/27 chemical Low
environment electric

D3 Scientific 800 km SSO 22:00 14+7/27 electric Low
environment

E Telecom 1200 km 88 deg - 13+4/39 chemical High
electric

F Altimetry 1336 km 66 deg - 12+7/10 chemical High

Table 2.4: Missions Constraints

mission ∆T - S1 ∆T - S2 ∆W - S

A1 98% 100% 100%

A2 98% 100% 100%

B1 98% 100% 100%

B2 98% 100% 100%

C 98% 100% 100%

D1 98% 100% 100%

D2 98% 100% 100%

D3 98% 100% 100%

E 98% 100% 100%

F 98% 100% 100%
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Chapter 3

Impulsive Mixed In-track Cross-track
Manoeuvres

3.1 Interest in mixed in-track cross-track manoeuvre

The integration of mixed in-track cross-track manoeuvres is useful for two main reasons. First of
all, they allow to perform both in-track and cross-track corrections simultaneously. This is necessary
above all in the case of low-thrust propulsion, for which the occurrence and spreading of needs of both
in-track and cross-track corrections require performing these lasts on the same orbit. Then, mixed
manoeuvres are convenient for fuel saving. A mixed manoeuvre ∆V will be always inferior than the
sum of two distinct necessary in-plane and out-of-plane manoeuvres ∆V :√

∆V 2
in−plane + ∆V 2

out−of−plane < |∆Vin−plane|+ |∆Vout−of−plane|

Moreover, an out-of-plane manoeuvre may also have an effect on the semi-major axis: it induces
its positive variation. Indeed, as it can be observed from Figure 3.1, the manoeuvre changes both the
direction and the magnitude of the satellite velocity vector. Thus, mixed manoeuvres are convenient
when both a variation of the inclination and a positive variation of the semi-major axis are required.
AOC algorithm is modified to introduce mixed manoeuvres if such a situation shows up, keeping the
so called sma-down manoeuvres independent.

This chapter is about the integration of mixed manoeuvres in case of a chemical propulsion system.
The next chapter (Chapter 4) concerns the case of an electric propulsion system.

3.2 Strategy

The impulsive mixed manoeuvres are introduced in such a way not to modify the working principles of
the AOC algorithm. The algorithm works as before: only if both an inclination (or right ascension of
the ascending node) and a semi-major axis corrections are necessary, mixed manoeuvres are computed
in place of the standard in-plane and out-of-plane manoeuvres. This means that, only if, at the limit
date of the research horizon the variations to impose to the ∆Ω and ∆α drifts, ∆Ω̇comm and ∆α̇comm,
are not null (in particular, ∆α̇comm is such that the ∆a to be imposed is positive), mixed manoeuvres
are evaluated.

The same models and strategies adopted for the computation of the standard in-plane and out-of-
plane manoeuvres are used as inspiration for the new manoeuvres conception.

The dimensioning of station-keeping window implies ∆i corrections that are less frequent but larger
than ∆a corrections. Thus, the algorithm behaviour is such that these manoeuvres are delayed as
much as possible until the most suitable slot is found. This strategy is efficient; thus, it is maintained
and exploited also for the mixed manoeuvres integration, as done also by [21]. Mixed manoeuvres are
conceived as an extension of the out-of-plane manoeuvres. Once a required out-of-plane manoeuvre
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is determined, the need for a semi-major axis correction is evaluated and a tangent component is
eventually added. In this case, the evaluated ∆V in-plane component, ∆VT , is reduced according to
the variation of the semi-major axis due to the out-of-plane component, ∆VN :

∆VTinduced =
√
V 2
initial + ∆V 2

N − Vinitial (3.1)

∆ainduced ∼ 2a
∆VTinduced
Vinitial

Thus, the imposed value is :
∆VT = ∆VTrequired −∆VTinduced (3.2)

The average value of the guidance orbit velocity is taken as value of Vinitial.
In order to avoid glare risks, the mixed ∆V direction is subjected to limitations: the ∆V inclination

with respect to the orbital plane has to be into an admitted range. This last one depends on the mission
characteristics like the largest admissible angle between an optic instrument and the Sun direction.
Evidently, it depends also on the satellite position with respect to the Sun (eventually also with respect
to the Moon). Since the out-of-plane component ∆VN is fixed, this results in a limitation of ∆VT :
∆VT ∈ [0; ∆VTmax glare ]. In Chapter, 5 the technique to determine ∆VTmax glare is described. There
exists also a limitation linked to the propulsion system, related to a maximum, ∆Vmax propu, of the
∆V that can be practically imposed. Thus, the added in-plane component has to be smaller than
∆VTmax propu =

√
∆V 2

max propu −∆V 2
N . In conclusion ∆VT has to be smaller or equal to a maximum,

∆VTmax , which is computed as:

∆VTmax = min
(
∆VTmax propu ,∆VTmax glare

)
The possibility of mixed manoeuvre is not the only change done. The new algorithm gives also the

capability to plan more than one manoeuvre along one same orbital period, combining a standard out-
of-plane manoeuvre with an in-plane manoeuvre or a mixed manoeuvre with an in-plane manoeuvre.
So, if the need of a mixed manoeuvre is detected, the algorithm can compute four possible results:

• a mixed manoeuvre;

• a mixed manoeuvre and a standard in-plane manoeuvre;

• a standard out-of-plane manoeuvre and a standard in-plane manoeuvre;

• a standard out-of-plane manoeuvre, if no in-plane manoeuvre is found.

The new algorithm integration behaviour is described more in detail in the next section.

3.3 New algorithm

As first step, the algorithm determines the limit date of the research horizon, before which a manoeuvre
has to be performed to avoid that the imposed thresholds are not crossed. At this date, the need of
a mixed manoeuvre is checked. When the most urgent manoeuvre is an out-of plane one, a mixed
manoeuvre will be considered necessary if, at the limit date, also a positive semi-major axis variation
is required; similarly, when a positive in-plane manoeuvre is the most urgent, the need is identified
if, at the limit date, an inclination correction is required. At this point, the algorithm performs the
following steps:

1. The criterion of evaluation of the manoeuvres is selected, following the same convention of the in-
plane manoeuvre: a mixed manoeuvre will be selected to maximise either ∆VT or the eccentricity
correction.
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Fig. 3.1: An out-of-plane manoeuvre doesn’t implies only an inclination variation but also a
semi-major axis variation

2. All the possible out-of-plane manoeuvres in the research horizon are calculated. Each manoeuvre
can be potentially converted into a mixed manoeuvre, by adding an in-plane component to the

computed ∆V =

 0
0

∆VN

. In case no out-of-plane manoeuvre is found and the most urgent

manoeuvre is an in-plane manoeuvre, the algorithm works as the original one, searching for a
standard in-plane manoeuvre.

3. For each out-of-plane manoeuvre found, the largest addable in-plane component value, ∆VTmax ,
is determined.

4. For each out-of-plane manoeuvre found, the eventual necessary semi-major axis correction is
computed. Thus, the required in-plane component ∆VT is determined. If ∆VT is different from
zero and it is smaller than ∆VTmax , then the out-of-plane manoeuvre is transformed into a mixed
manoeuvre:

∆V =

∆VT
0

∆VN


On the contrary, the research horizon is investigated again in order to find an eventual standard
in-plane manoeuvre that can be exploited to impose the required semi-major axis correction. If
several manoeuvres are found, only one is selected according to the previous determined criterion.
In the case the most urgent manoeuvre is an out-of-plane one, only a portion of the research
horizon is investigated: the time interval following the analysed out-of-plane manoeuvre date.
On the contrary, if there is an urgent need of an in-plane manoeuvre, all the horizon is explored;
in this case, the value of the analysed out-of-plane manoeuvre is updated to take into account
the orbit variation due to the eventually selected in-plane manoeuvre. It is also checked if it is
possible to transform the out-of-plane manoeuvre into a mixed manoeuvre to combine with the
in-plane manoeuvre.

5. Once the two previous operations are executed for each found out-of-plane manoeuvre, the
manoeuvre or the combination of manoeuvres to be imposed is chosen according to the selected
criterion.

The new integration behaviour, which has been described, is schematised in Figure 3.2: a kind of
flow chart is shown. The arrows link an operation to the successive one. The yellow windows concern
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the preliminary steps, from the selection of the research horizon limit date to the determination of the
manoeuvres selection criterion. The light blue windows are relative to all the following steps, about
the manoeuvres computation. More specifically, all the windows inside the largest blue box are the
operations effectuated for each out-of-plane manoeuvre found.

Fig. 3.2: Mixed manoeuvres integration: algorithm behaviour scheme
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3.4 Analysis of the results: comparison with the original algorithm

Once effectuated the integration, a series of simulations are carried out, by exploiting the missions
introduced in Section 2.4 and described in Table 2.3. All the missions are characterised by low-
Earth orbits, with altitudes between 470 km and 1340 km. Among them, only three orbits are not
sun-synchronous.

As explained in Section 2, to test the algorithmic control method, AOC, the real orbital dynamics
is simulated by means of a numerical propagation, which consequently provides all the measures that
would be obtained by a navigator on-board. The standard already implemented numerical simulator
exploited at CNES has been used. Each simulation covers a period of one year.

The simulations show that, in comparison with the original algorithm, the controller has a larger
efficiency. Either the performance improves or the in-track station keeping and cross-track one result
to be more balanced. Indeed, even though the first deteriorates little, the other improves or vice-
verse (like in missions B1, D2 and F). There are just two missions for which the mixed manoeuvres
seem not to have a positive influence: missions A1 and A2. The cross-track station keeping is almost
unchanged, while the in-track one gets worse. Anyway, these two missions are the most complex to
handle since they are characterised by low orbit highly affected by the atmospheric drag. Moreover, a
general analysis of the missions show that the cause of the performance degradation is not an incorrect
evaluation of the mixed manoeuvres. All the missions behaviour depends on a series of parameters, set
in order to optimise the performance, as explained in Section 2.4. The integration of mixed manoeuvres
modifies the algorithm behaviour: the parameters have to be adjusted in order to find the new optimal
configuration. The conducted optimisation is focused only on some selected parameters, which have
the largest influence on the performance: the control variables ∆Ωthreshold, ∆Ωtg parab, ∆αthreshold up
∆αthreshold down and ∆αtg parab. The predictable research horizon length is left unchanged in order to
verify that mixed manoeuvres can allow a better performance for the same AOC predictable capacity.
More details about the performed optimisation are explained in Section 3.5.

In the case of mission A2, an additional problem arises. It is linked to the negative in-plane
manoeuvres: an excessive delay in their execution, due to the unpredictable solar activity effects,
degrades the performance. For this reason, a further algorithm modification is done, which is the
possibility to introduce negative opportunity manoeuvres: these manoeuvres are of type sma-down,
so they are such that their magnitude can become negative.

After the optimisation process and the introduction of the sma-down opportunity manoeuvres, the
simulations are repeated with new control margins.

All the outcomes are shown in Tables 3.1 - 3.9. The performance obtained with the new algorithm,
before and after the optimisation process, is compared to the performance obtained with the original
algorithm. As already introduced in Section 2.4, the performance is expressed in terms of annual
percentage of the mission time during which the satellite doesn’t cross a cross-track threshold S and
two in-track thresholds S1 and S2, with S1 < S2. The outcomes show also the distance of the largest
in-track and cross-track deviations with respect to the associated thresholds, respectively S and S2:
this quantity is negative if the threshold is never crossed during one year. Moreover, the trends of the
in-track and cross-track deviations, obtained after the optimisation process, are shown: in the figures,
the blue lines show the evolution of the deviations measured at the orbital ascending nodes; the red
lines are referred to all the other orbital points. In the figures, it is possible to observe eventually also
the lines associated to the thresholds.

The new and original algorithms comparison in terms of performance is summarised in Figure
3.3. After the optimisation process, the performance improves. For five missions the in-track station
keeping annual percentage increases; for six missions the cross-track station keeping annual percentage
increases. For seven missions, the largest in-track deviations over one year decreases; for eight missions,
the largest in-track deviations over one year decreases. For six missions the total ∆V decreases; for
the other three missions it increases but not in a significant way. In the case of missions B1 and C,
the small increase of the cost is justifiable considering the important improvement of the performance.
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The only mission for which performance is not satisfying is mission A2. The problem is linked to the
difficulties of the algorithm to predict the necessary standard positive in-plane manoeuvres in a period
of high variation of the solar activity (Figures 3.4, 3.5).

In general, the obtained results are good and demonstrate the advantage of the mixed manoeuvres.
In some cases (see missions D1, D2 and F), they allow to fulfill the missions constraints.

Fig. 3.3: Impulsive mixed manoeuvres integration outcomes

Fig. 3.4: Mission A2 - cross of the in-track station
keeping threshold

Fig. 3.5: Mission A2 - solar activity at the
crossing of the in-track station keeping threshold

3.5 Optimiser

In order to maximise the station keeping performance (defined in Section 2.4), five variables are mod-
ified for each mission: ∆Ωthreshold, ∆Ωtg parab, ∆αthreshold up ∆αthreshold down and ∆αtg parab. These
lasts are the control margins that trigger the manoeuvres and impact their magnitudes: they have been
described in Sections 2.1.2 and 2.1.3. Even though they are not the only control parameters affecting
the missions behaviour, they are those to which this last is more sensible. The optimisation problem
to consider is multiobjective. Indeed, good performance coincides with the following objectives:

1. to maximise the time percentage of correct in-track station keeping;

2. to maximise the time percentage of correct cross-track station keeping;
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3. to minimise the maximum in-track deviation;

4. to minimise the maximum crossed-track deviation;

5. to minimise the total energy cost.

To evaluate the in-track station keeping three different spatial boxes are considered: a smaller, a
medium and a larger. In the case of cross-track station keeping, the boxes are two. So five percentages
are to be considered. The cost function is written as a linear combination of the cost function associated
to each objective:

f(∆Ωlimit,∆Ωtg parab,∆αlimit up,∆αlimit down,∆αtg parab) = k1fo1 + k2fo2 + k3fo3 + k4fo4 + k5fo5

where the k1...k5 are constants settled to impose the same weight to the first four objectives, and a
smaller weight to the last objective: the fulfillment of the missions constraints has the priority over
the minimisation of the total ∆V . Moreover, the cost function is built in order to have a minimisation
problem. Indeed, fo1 and fo2 are written as:

fo1,2 =
∑ 1

percentage

In this way, higher percentages imply a smaller cost function.
An optimiser already avaiable in Java is used: it is based on the covariance matrix adaptation

evolution strategy (CMA-ES). The brief description of this method is reported in Appendix A. The
optimiser is global, so it would be capable to determine the global minimum over the whole problem
domain. However, this last is reduced so that the optimiser has to investigate only a reduced portion
of it. This is done for two main reasons. Before the mixed manoeuvres integration, an optimisation
process had been already realized and consequently small adjustments of the parameters are sufficient.
The second reason is linked to the computation process. Each evaluation of the cost function implies
the execution of the AOC algorithm. In some cases, it is sufficient to simulate a small period. However
some missions optimisation requires the simulation of a significant time period. In any case, the
optimisation process is very expensive in terms of both computational time and cost. This is also
the reason only the five most significant parameters are considered as variables of the problem. If an
entire optimisation process has to be done, it is recommended to perform a parametric study such
the one done in [20] in order to determine the domain region of the optimum and then to execute the
described optimisation process.

3.6 Analysis of the algorithm behaviour

After the optimisation process, the conducted simulations (described in Section 3.4) show two main
trends in the algorithm behaviour:

• mixed manoeuvres are usually computed when there is an urgent need of performing a right
ascension of the ascending node trend correction, which is perfectly coherent with the way
they are conceived, as modified out-of-plane manoeuvres; this is also linked to the algorithm
characteristic of delaying out-of-plane manoeuvres until the most suitable slot is found;

• when the need of a mixed correction is detected, the manoeuvres, the most frequently selected
by the algorithm, are mixed manoeuvres. Indeed, they allow small semi-major axis corrections,
which would be impossible to perform by means of a standard in-plane manoeuvre: the propul-
sion system can not provide a ∆V smaller than a certain limit. In terms of selection frequency,
they are followed by the combination of an in-plane manoeuvre and an out-of-plane manoeuvre.
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The results obtained in terms of performance highlight the correct behaviour of AOC. Figures 3.6-
3.14 show the free evolution of the missions orbits under the effects of perturbations: no orbital control
is performed. The geopotential, the three body effect, the solar radiation pressure, the atmospheric
drag and the terrestrial tides are taken into account. The deviations of the orbital parameters with
respect to the reference orbit ones are represented. In particular, the blue points are referred to the
orbital parameters deviations at the orbital nodes; the red points are relative to all the other orbital
points.

In the case of mission A1, the manoeuvres associated to the in-track station keeping are significantly
larger in number of those aimed to correct the right ascension of the ascending node trend: the ratio
is 1 : 0.006. This outcome is consistent with the perturbations effects on the orbit. This last one has a
nominal altitude of 470 km so it is highly subjected to the atmospheric drag. This perturbation, which
has important effects for altitudes lower than 1500 km, is preponderant up to 600 km [16]. Moreover,
mission A1 is subjected to an high solar activity, which increases the effects of the atmospheric drag
and the solar radiation pressure. Focusing on mission A2, which is equal to the mission A1 except
for its lower solar activity, the argument of latitude free deviation is reduced of more than one half;
coherently, the manoeuvres ratio is 1 : 0.016 and the in-track station keeping performance is higher.

Missions B1 and B2 have an altitude such that the atmospheric drag influence is significantly
reduced. The largest free semi-major axis and argument of latitude deviations reached in 35 days would
be 1000 m and 4◦, against the values of 8000 km and 35◦ of the mission A2. This determines a lower
number of in-track executed corrections. For mission B1 the manoeuvres ratio is 1 : 0.021; for mission
B2 it is 1 : 0.459. Indeed, mission B2 has a largest need of cross-track station keeping manoeuvres
than mission B1: its right ascension of the ascending node free deviation is more important, being
characterised by a dawn orbit. A dawn orbit is a sun-synchronous orbit whose local mean time for
passages at the equatorial latitude is around sunrise (6 h). For dawn orbits the effect of solar potential
on the right ascension of ascending node is more significant. The solar potential usually determines
long period variations of the orbital inclination, right ascension of the ascending node and argument
of latitude. In the particular case of sun-synchronous orbits, it has secular effects on the inclination
and the right ascension of the ascending node. In first approximation, the secular drifts are expressed
as:

di

dt
∼ 3π
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T 2
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where the following notations are used:

• T0 is the orbital period;

• TS0 is the period of the apparent solar orbit around Earth;

• iS0 is the inclination of the apparent solar orbit around Earth;

• TE is the Earth rotation period;

• H is the local hour at the ascending node.

For a dawn-dusk orbit (or for orbits whose local hour is 12 h, 18 h and 24 h), there is no secular
variation on the inclination (Figure 3.15); indeed, the inclination deviation is larger for mission B1,
whose local hour is such that the solar potential imposes an inclination drift near to the maximum
possible. On the contrary, the right ascension of the ascending node drift is the maximum obtainable
(Figure 3.16), which justifies the larger deviations of this orbital element for mission B2. This is also
the reason the performance of mission B1 is higher than that obtained of mission B2.
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Also comparing missions D1 and D2, the obtained performance results coherent. The two missions
are coincident except for the solar activity which is higher for the first. Indeed, the performance of
mission D2, for both the in-track and the cross-track station keeping, is slightly superior. Moreover,
the manoeuvres ratios are 1 : 9 for mission D1 and 1 : 15 for mission D2: for a comparable number of
out-of-plane manoeuvres, the number of in-track station keeping corrections is lower for mission D2.

The analysis carried out until now by comparing missions characterised by sun-synchronous orbits
with the same altitude shows the correct behaviour of the algorithm. However, an apparent anomaly
emerges if a cross comparison among all the discussed missions is done. At the increase of the orbital
altitude, the right ascension of the ascending node free deviations decrease. Nevertheless the number
of out-of-plane manoeuvres becomes more important (Figure 3.17). Indeed, the number of out-of-plane
manoeuvres computed by the algorithm seems to have a relation of inverse proportionality with the
perturbations effects on the argument of latitude. The reason is linked to the algorithm behaviour,
which is coherent with the implemented strategy concerning the detection of a mixed manoeuvre
need. At the limit date of the research horizon, when the argument of latitude or the right ascension
of the ascending node would cross the imposed threshold, there is the possibility that the variation
to be imposed to the other orbital parameter trend is not null: only in this case a mixed manoeuvre
is considered necessary and it is evaluated. For missions subjected to perturbations highly affecting
the argument of latitude, the limit date is closer and closer to the date of beginning of the research
horizon and it is farther and farther to the time period when a correction of the right ascension of the
ascending node trend should be performed. Thus, in these cases the algorithm very frequently doesn’t
detect the need of a mixed manoeuvre. On the contrary, lower the perturbations on the argument of
latitude, farther in time the limit date: thus, the algorithm has the possibility to detect an out-of-plane
manoeuvre or a mixed manoeuvre need. A modification to this strategy is not conceivable. Indeed,
even if a mixed manoeuvre was fixed after the limit date it would be imposed as closer as possible to
it in order to avoid an excessive threshold crossing: thus, this is the time to take as reference.

There is also another important reason for the observed behavior. Previously, it has been demon-
strated that an out-of-plane manoeuvre determines not only a variation of the inclination, but also of
the semi-major axis. This is one of the causes why mixed manoeuvres have been integrated in the first
place. Thus, an out-of-plane manoeuvre induces an involuntary in-track correction. That is a further
reason in addiction to the perturbation effects of the observed trend characterised by the increasing
of cross-track station keeping manoeuvres and the decreasing of in-track station keeping ones.

Also the results obtained for mission C are consistent. The mission is comparable to mission B2,
as the reference orbit has the same altitude and the perturbations cause similar right ascension of
ascending node and argument of latitude free deviations. Indeed, the manoeuvres ratio has the same
order of magnitude: 1 : 0.25. The number of out-of-plane manoeuvres is lower than that of mission
B2, but this is linked to the almost equatorial orbit of mission C. Orbits with lower inclinations imply
a different method for the out-of-plane manoeuvre evaluation, because of the need to avoid that a pure
inclination variation could excessively move it from its reference value. This is also the reason the
number of out-of-plane manoeuvres is higher for mission E (30) with respect to mission F (13), whose
right ascension of the ascending node free deviations are larger: indeed, mission F orbit inclination is
lower.
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Fig. 3.6: Mission A1 - orbital parameters free
evolution. From left to right, from the top to the
bottom: ∆a [m], ∆i [mdeg], ∆α [deg], ∆Ω [deg],

∆ex, ∆ey. Simulated time: 35 days

Fig. 3.7: Mission A2 - orbital parameters free
evolution. From left to right, from the top to the
bottom: ∆a [m], ∆i [mdeg], ∆α [deg], ∆Ω [deg],

∆ex, ∆ey. Simulated time: 35 days

Fig. 3.8: Mission B1 - orbital parameters free
evolution. From left to right, from the top to the
bottom: ∆a [m], ∆i [mdeg], ∆α [deg], ∆Ω [deg],

∆ex, ∆ey. Simulated time: 35 days

Fig. 3.9: Mission B2 - orbital parameters free
evolution. From left to right, from the top to the
bottom: ∆a [m], ∆i [mdeg], ∆α [deg], ∆Ω [deg],

∆ex, ∆ey. Simulated time: 35 days
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Fig. 3.10: Mission D2 - orbital parameters free
evolution. From left to right, from the top to the
bottom: ∆a [m], ∆i [mdeg], ∆α [deg], ∆Ω [deg],

∆ex, ∆ey. Simulated time: 35 days

Fig. 3.11: Mission D1 - orbital parameters free
evolution. From left to right, from the top to the
bottom: ∆a [m], ∆i [mdeg], ∆α [deg], ∆Ω [deg],

∆ex, ∆ey. Simulated time: 35 days

Fig. 3.12: Mission C - orbital parameters free evolution. From left to right, from the top to the
bottom: ∆a [m], ∆i [mdeg], ∆α [deg], ∆Ω [deg], ∆ex, ∆ey. Simulated time: 35 days
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Fig. 3.13: Mission E - orbital parameters free
evolution. From left to right, from the top to the
bottom: ∆a [m], ∆i [mdeg], ∆α [deg], ∆Ω [deg],

∆ex, ∆ey. Simulated time: 35 days

Fig. 3.14: Mission F - orbital parameters free
evolution. From left to right, from the top to the
bottom: ∆a [m], ∆i [mdeg], ∆α [deg], ∆Ω [deg],

∆ex, ∆ey. Simulated time: 35 dayss

Fig. 3.15: Inclination drift due to the
solar potential at the variation of the

local mean time H, in case of
sun-synchronous orbits

Fig. 3.16: Right ascension of the
ascending node drift due to the solar
potential at the variation of the local

mean time H, in case of
sun-synchronous orbits

Fig. 3.17: Trend of the manoeuvres ratio (cross-track station keeping manoeuvres/in-track station
keeping manoeuvres) with respect to altitude, for sun-synchronous missions
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Table 3.1: Mission A1 outcomes: in-track and cross-track station keeping performance; in figures,
the in-track and cross-track deviations in time

A1 mission

old algorithm new algorithm

percentage of respected in-track deviation (S1) 98.888% ) 98.781%

percentage of respected in-track deviation (S2) 99.863% 99.843%

maximum in-track deviation - S2 712 m 712.3 m

percentage of respected crossed-track deviation (S) 100% 100%

maximum crossed-track deviation - S −293.86 m −292.54 m

total number of manoeuvres 1191 1114

total ∆V 38.966 m/s 38.827 m/s

optimised algorithm

percentage of respected in-track deviation (S1) 99.955%

percentage of respected in-track deviation (S2) 99.83%

maximum in-track deviation - S2 773.9 m

percentage of respected crossed-track deviation (S) 100%

maximum crossed-track deviation - S −314.06 m

total number of manoeuvres 1121

total ∆V 38.685 m/s
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Table 3.2: Mission A2 outcomes: in-track and cross-track station keeping performance; in figures,
the in-track and cross-track deviations in time

A2 mission

old algorithm new algorithm

percentage of respected in-track deviation (S1) 99.801% 99.554%

percentage of respected in-track deviation (S2) 100% 99.984%

maximum in-track deviation - S2 −1482.2 m 118.7 m

percentage of respected crossed-track deviation (S) 100% 100%

maximum crossed-track deviation - S −282.47 m −282.54 m

total number of manoeuvres 416 435

total ∆V 12.794 m/s 12.801 m/s

optimised algorithm

percentage of respected in-track deviation (S1) 99.632%

percentage of respected in-track deviation (S2) 100%

maximum in-track deviation - S2 −15 m

percentage of respected crossed-track deviation (S) 100%

maximum crossed-track deviation - S −283.01 m

total number of manoeuvres 435

total ∆V 12.847 m/s
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Table 3.3: Mission B1 outcomes: in-track and cross-track station keeping performance; in figures,
the in-track and cross-track deviations in time

B1 mission

old algorithm new algorithm

percentage of respected in-track deviation (S1) 100% 100%

percentage of respected in-track deviation (S2) 100% 100%

maximum in-track deviation - S2 −2147.7 m −2297.4 m

percentage of respected crossed-track deviation (S) 100% 100%

maximum crossed-track deviation - S −313.7 m −281.16 m

total number of manoeuvres 283 289

total ∆V 6.3175 m/s 6.7306 m/s

optimised algorithm

percentage of respected in-track deviation (S1) 100%

percentage of respected in-track deviation (S2) 100%

maximum in-track deviation - S2 −2507.9 m

percentage of respected crossed-track deviation (S) 100%

maximum crossed-track deviation - S −334.13 m

total number of manoeuvres 291

total ∆V 6.4369 m/s
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Table 3.4: Mission B2 outcomes: in-track and cross-track station keeping performance; in figures,
the in-track and cross-track deviations in time

B2 mission

old algorithm new algorithm

percentage of respected in-track deviation (S1) 99.458% 99.842%

percentage of respected in-track deviation (S2) 100% 100%

maximum in-track deviation - S2 −1497.4m −1968.4 m

percentage of respected crossed-track deviation (S) 99.228% 99.622%

maximum crossed-track deviation -S 166.3 m 166.1 m

total number of manoeuvres 181 150

total ∆V 19.149 m/s 12.93 m/s

optimised algorithm

percentage of respected in-track deviation (S1) 99.97%

percentage of respected in-track deviation (S2) 100%

maximum in-track deviation - S2 −1893.3 m

percentage of respected crossed-track deviation (S) 99.903%

maximum crossed-track deviation - S 117.1 m

total number of manoeuvres 193

total ∆V 9.6547 m/s
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Table 3.5: Mission D1 outcomes: in-track and cross-track station keeping performance; in figures,
the in-track and cross-track deviations in time

D1 mission

old algorithm new algorithm

percentage of respected in-track deviation (S1) 99.433% 99.483%

percentage of respected in-track deviation (S2) 100% 100%

maximum in-track deviation - S2 −1719.2 m −1900.9 m

percentage of respected crossed-track deviation (S) 99.999% 100%

maximum crossed-track deviation - S 1.1 m −4.8 m

total number of manoeuvres 688 662

total ∆V 34.304 m/s 34.059 m/s

optimised algorithm

percentage of respected in-track deviation (S1) 100%

percentage of respected in-track deviation (S2) 100%

maximum in-track deviation - S2 −2081.7 m

percentage of respected crossed-track deviation (S) 100%

maximum crossed-track deviation - S −30.7 m

total number of manoeuvres 694

total ∆V 33.887 m/s
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Table 3.6: Mission D2 outcomes: in-track and cross-track station keeping performance; in figures,
the in-track and cross-track deviations in time

D2 mission

old algorithm new algorithm

percentage of respected in-track deviation (S1) 99.956% 99.99%

percentage of respected in-track deviation (S2) 100% 100%

maximum in-track deviation - S2 −1979.1 m −1986.3 m

percentage of respected crossed-track deviation (S) 98.608% 98.598%

maximum crossed-track deviation - S 285.1 m 285.1 m

total number of manoeuvres 484 491

total ∆V 40.356 m/s 40.37 m/s

optimised algorithm

percentage of respected in-track deviation (S1) 100%

percentage of respected in-track deviation (S2) 100%

maximum in-track deviation - S2 −2157.7 m

percentage of respected crossed-track deviation (S) 100%

maximum crossed-track deviation - S −73.6 m

total number of manoeuvres 726

total ∆V 31.897 m/s
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Table 3.7: Mission C outcomes: in-track and cross-track station keeping performance; in figures, the
in-track and cross-track deviations in time

C mission

old algorithm new algorithm

percentage of respected in-track deviation (S1) 82.095% 85.93%

percentage of respected in-track deviation (S2) 96.963% 98.384%

maximum in-track deviation - S2 2615.2 m 1957.8 m

percentage of respected crossed-track deviation (S) 90.523% 91.142%

maximum crossed-track deviation - S 279.6 m 265.7 m

total number of manoeuvres 152 136

total ∆V 4.7639 m/s 4.4951 m/s

optimised algorithm

percentage of respected in-track deviation (S1) 86.599%

percentage of respected in-track deviation (S2) 99.284%

maximum in-track deviation - S2 1085.7 m

percentage of respected crossed-track deviation (S) 96.194%

maximum crossed-track deviation - S 164.7 m

total number of manoeuvres 154

total ∆V 4.9845 m/s
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Table 3.8: Mission E outcomes:in-track and cross-track station keeping performance; in figures, the
in-track and cross-track deviations in time

E mission

old algorithm new algorithm

percentage of respected in-track deviation (S1) 100% 100%

percentage of respected in-track deviation (S2) 100% 100%

maximum in-track deviation - S2 −2543.3 m −2659.1 m

percentage of respected crossed-track deviation (S) 93.293% 93.644%

maximum crossed-track deviation - S 2591.6 m 2591.6 m

total number of manoeuvres 64 64

total ∆V 31.627 m/s 32.774 m/s

optimised algorithm

percentage of respected in-track deviation (S1) 100%

percentage of respected in-track deviation (S2) 100%

maximum in-track deviation - S2 −3008.8 m

percentage of respected crossed-track deviation (S) 99.439%

maximum crossed-track deviation - S 169.3 m

total number of manoeuvres 50

total ∆V 18.042 m/s
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Table 3.9: Mission F outcomes: in-track and cross-track station keeping performance; in figures, the
in-track and cross-track deviations in time

F mission

old algorithm new algorithm

percentage of respected in-track deviation (S1) 100% 97.361%

percentage of respected in-track deviation (S2) 100% 100%

maximum in-track deviation - S2 −2457.6 m −1480 m

percentage of respected crossed-track deviation (S) 99.987% 100%

maximum crossed-track deviation - S 29.1 m −22.5 m

total number of manoeuvres 42 50

total ∆V 6.4376 m/s 4.1554 m/s

optimised algorithm

percentage of respected in-track deviation (S1) 100%

percentage of respected in-track deviation (S2) 100%

maximum in-track deviation - S2 −2585.3 m

percentage of respected crossed-track deviation (S) 100%

maximum crossed-track deviation - S −24.9 m

total number of manoeuvres 57

total ∆V 4.1976 m/s
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Chapter 4

Electric Mixed In-track Cross-track
Manoeuvres

4.1 Strategy

The conception of electric manoeuvres is particularly complex. Indeed, time is necessary in order to
achieve the ∆V require to perform a correction, such that a manoeuvre has to be spread in time.
This has to be done by fulfilling the missions constraints: the manoeuvres have to be performed
only in specified temporal slots. Thus, there is an elevated risk that while an in-track correction is
performed, the cross-track threshold is crossed, or vice versa. For this reason, mixed in-track cross-
track manoeuvres can be very useful. Of course, even in this case, several problems have to be faced,
mainly concerning the manoeuvres slots managements: in particular they have to be exploited in such
a way to allow an eccentricity optimisation while fulfilling the station keeping constraints.

The integration of electric mixed in-track cross-track manoeuvres is done according to the same
logic adopted for the realisation of the impulsive mixed manoeuvres integration. Moreover, their
computation is performed following the same procedure used for the standard in-plane and out-of-
plane electric manoeuvres, explained in Section 2.3.

The electric mixed manoeuvres are conceived as a variation of out-of-plane manoeuvres, performed
when both a positive correction of the semi-major axis and a correction of the inclination are required.
They are evaluated as degraded impulsive manoeuvres, because of the time necessary to reach the
desired value of ∆V . As for the standard manoeuvres, an efficiency ρ̂, whose value depends on the
electric propulsion system, is introduced: the real targeted manoeuvre is characterised by ∆Velec = ∆V

ρ̂ .
Thus, a mixed manoeuvre has two components:

• the tangent one : ∆VTelec = ∆VT
ρ̂

• the out-of-plane one : ∆VNelec = ∆VN
ρ̂

where ∆VT is determined in the same way as for the mixed-impulsive manoeuvres, according to the
value of ∆VN : the variation of the semi-major axis that this last component induces is taken into
account (see Section 3.2). Moreover, its value is limited according to the propulsion system capacity
and to avoid optical instruments glare: it has to be always lower than a maximum, ∆VTmax :

∆VTmax = min(∆VTmax propu ,∆VTmax glare)

where :

• ∆VTmax glare is determined as explained in Chapter 5

• ∆VTmax propu =
√

∆V 2
max propu −∆V 2

Nelec

The mixed manoeuvres are evaluated when, at the limit date of the research horizon (date before
which a correction manoeuvre is required to avoid the crossing of a threshold), both an inclination
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(or/and a right ascension of the ascending node) and a positive semi-major axis corrections need
emerges. All the possible slots, where the manoeuvre could be correctly executed, are stored; they are
sorted according to the same criterion exploited for the selection of an impulsive mixed manoeuvre.
Then, the selected manoeuvre is spread among them until either the targeted ∆VTelec or the targeted
∆VNelec is obtained. Finally, if one of these is not achieved, standard out-of-plane and in-plane
manoeuvres are combined with the mixed manoeuvres along one same orbital period. In the case
no mixed manoeuvre is found, a combination of in-plane and out-of-plane manoeuvres is evaluated.
Thus, the results of the new algorithm integrated part can be the following:

• a combination of mixed manoeuvres;

• a combination of mixed manoeuvres and standard out-of-plane manoeuvres;

• a combination of mixed manoeuvres and standard in-plane manoeuvres;

• a combination of standard in-plane and out-of-plane manoeuvres;

• a combination of all the different types of manoeuvres.

In the next section, the algorithm behaviour is explained more in detail.

4.2 New algorithm

At the AOC activation, the limit date before which a manoeuvre has to be performed and the type of
the most urgent manoeuvre are determined. When this last is an out-of plane one, a mixed manoeuvre
is considered necessary if, at the limit date, a positive variation of the semi-major axis is required.
When a positive in-plane manoeuvre is the most urgent manoeuvre, it is considered necessary, if, at
the limit date, an inclination correction is needed. Once the mixed manoeuvre need is checked, the
algorithm performs the following steps.

1. The criterion of evaluation of the manoeuvres is selected: they will be sorted according to their
capacity of maximising either ∆VT or the eccentricity.

2. The research horizon is analysed in order to determine all the possible mixed and out-of-plane
manoeuvres. The two types of manoeuvres are sorted separately: the first ones according to the
selected criterion; the others in an inverse chronological order. For each manoeuvre the computed
value of ∆V is corrected with the efficiency ρ̂. For the out-of-plane manoeuvres the research
continues also after the limit date: indeed, the out-of-plane manoeuvre are more expensive and
the appropriate slots are more rare.

3. The best mixed manoeuvre is selected according to the evaluation criterion. Thus, the tar-
geted ∆VTelectargeted and ∆VNelectargeted are determined. Then, the manoeuvre is spread on the

slots where the other mixed manoeuvres were found. The inclination of each imposed mixed
manoeuvre with respect to the N axis is computed as:

γ = min
(

arctan
(∆VTelectargeted

∆VNelectargeted

)
, γmax

)
where γmax is a slot property imposed to avoid instruments glare as explained in Chapter 5. Of
course, during the best manoeuvre spread, the targeted values ∆VTelectargeted and ∆VNelectargeted
reduce. If ∆VTelectargeted is achieved, all the next imposed manoeuvres are converted into standard

out-of-plane manoeuvres. This distribution operation ends when the stored slots terminate or if
∆VNelectargeted is achieved.

4. Several situations can occur:

• both ∆VTelectargeted and ∆VNelectargeted are achieved: the research ends;
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• ∆VNelectargeted is not achieved: in this case the manoeuvre continues to be spread on the

simple out-of-plane manoeuvres slots previously stored. Eventually the previously imposed
mixed manoeuvres are converted into out-of-plane manoeuvres if their in-plane component
value is comparable to the out-of-plane component one (which is rare).

• ∆VTelectargeted is not achieved: all the research horizon is explored again to find standard

in-plane manoeuvres to associate to the ones already imposed.

5. Once all the possible manoeuvres are selected, they are organized in chronological order. Then,
their value is updated: it is necessary to take into account each manoeuvre effects on the
orbit, which can induce the cancellation or the variation of successive manoeuvres, previously
computed. For example, if a standard in-plane manoeuvre is added to the already selected
manoeuvres and chronologically it is before a previously computed mixed manoeuvre, the semi-
major axis correction that this last one imposes could become useless: it would converted into an
inclination manoeuvre. Also an inclination manoeuvre can modify the need in the semi-major
axis correction at a forward date. Thus, the updating is essential to impose the appropriate
needed corrections.

Evidently, if it is necessary to explore the research horizon in order to find standard in-plane ma-
noeuvres, only the slots which don’t overlap the previously selected manoeuvres slots are taken into
account. In case no mixed manoeuvre is found, standard out-of-plane manoeuvres are imposed; suc-
cessively, the research horizon is analysed to search for standard in-plane manoeuvres to associate to
them. If no inclination and mixed manoeuvres are found in the research horizon and the most ur-
gent manoeuvre is a positive in-plane, the original algorithm method for the computation of in-plane
manoeuvres is launched.

Figure 4.1 shows the scheme of the algorithm behaviour related to the electric mixed manoeuvres
integration: it is a kind of flow chart. The arrows link an operation to the successive one. The
yellow windows are about the preliminary steps, from the selection of the research horizon limit
date to the determination of the manoeuvres selection criterion. The light blue windows concern the
computation of out-of-plane and mixed manoeuvres. Inside the blue boxes, the windows are associated
to the operations done to spread a selected manoeuvre and eventually to combine different types of
manoeuvres. In particular, the right box is referred to the case in which no mixed manoeuvre is found.

4.3 Analysis of the results

In comparison with the performance of the original algorithm, the results are really satisfying. After
the integration of the new type of manoeuvres, the performance obtained improves significantly for
most of the analysed missions. Then, after the process of optimisation (see Section 3.5), the results
fully demonstrate the advantages of mixed manoeuvres for a satellite provided by an electric propulsion
system: they highlight the need of performing the required station keeping corrections contemporary.

As in the case of the impulsive mixed manoeuvres integration, the only missions for which the
results are not completely satisfying are missions A1 and A2. In the case of mission A1, the improve-
ment of the performance is slight and it causes an important increase of the energy cost. In the case
of mission A2, there is a small degradation of the in-track station keeping, even though the maximum
deviation decreases. However, both missions A1 and A2 are particularly problematic, as explained
in the previous Chapter 3, as they are characterised by low orbit highly affected by the atmospheric
drag. In addiction, mission A1 undergoes a very high solar activity. Moreover, even though the new
performance is not as good as that of other missions, a significant degradation does not arise. Consid-
ering this and also the fact they are the only exceptions, the conclusion is that the new manoeuvres
integration is useful to obtain a better station keeping performance.

An analysis of the obtained results is shown in Figure 4.2. It is possible to observe that the ∆V
decrease is rare. In some cases, its increase is significant. Anyway, with the exception of mission A1,
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Fig. 4.1: Mixed manoeuvres integration: algorithm behaviour scheme

it is usually associated to a significant improvement of the missions performance. All the outcomes
are shown in Tables 4.1 - 4.7.
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Fig. 4.2: Electric mixed manoeuvres integration outcomes

4.4 Analysis of the algorithm behaviour

In comparison to impulsive manoeuvres, the algorithm usually computes electric mixed manoeuvres,
when the most urgent correction is a cross-track station keeping one. However, the times, when
they are determined being an in-plane manoeuvre the most urgent, increase. This happens above
all for missions A1 and A2. Then, the algorithm has a largest tendency to select different kinds of
manoeuvres combinations, even though the more frequently selected remain the combinations of mixed
manoeuvres. These are followed by the combinations of mixed and standard in-plane manoeuvres.
The behaviour of the described algorithm is consistent with the greater need of performing manoeuvres
if an electric propulsion system is exploited, since a long time is necessary to achieve the required ∆V
.

The cross−track
in−track manoeuvres ratios and the performance obtained for the analysed missions are

perfectly consistent with that achieved for the corresponding chemical propulsion system missions.
The only exception is mission A1, for which the number of inclination manoeuvres increases: the
manoeuvres ratio is 1 : 0.098. This is motivated by the greater need of manoeuvreing in the case of an
electric propulsion system. Thanks to the integration of mixed manoeuvre, this is allowed even more
than before (the old algorithm manoeuvres ratio was 1 : 0.0095 for mission A1).
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Table 4.1: Mission A1 outcomes: in-track and cross-track station keeping performance; in figures,
the in-track and cross-track deviations in time

A1 mission

old algorithm new algorithm

percentage of respected in-track deviation (S1) 99.539% 99.541%

percentage of respected in-track deviation (S2) 100% 100%

maximum in-track deviation - S2 −374 m −374 m

percentage of respected crossed-track deviation (S) 100% 100%

maximum crossed-track deviation - S −390.09 m −309.09 m

total number of manoeuvres 1163 1234

total ∆V 42.886 m/s 79.823 m/s

optimised algorithm

percentage of respected in-track deviation (S1) 99.541%

percentage of respected in-track deviation (S2) 100%

maximum in-track deviation - S2 374 m

percentage of respected crossed-track deviation (S) 100%

maximum crossed-track deviation - S −390.09 m

total number of manoeuvres 1234

total ∆V 79.823 m/s
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Table 4.2: Mission A2 outcomes: in-track and cross-track station keeping performance; in figures,
the in-track and cross-track deviations in time

A2 mission

old algorithm new algorithm

percentage of respected in-track deviation (S1) 99.951% 99.679%

percentage of respected in-track deviation (S2) 100% 100%

maximum in-track deviation - S2 −899.6 m −783.8m

percentage of respected crossed-track deviation (S) 100% 100%

maximum crossed-track deviation - S −286.37m −286.37 m

total number of manoeuvres 665 664

total ∆V 13.687 m/s 17.256 m/s

optimised algorithm

percentage of respected in-track deviation (S1) 99.86%

percentage of respected in-track deviation (S2) 100%

maximum in-track deviation - S2 −924.2 m

percentage of respected crossed-track deviation (S) 100%

maximum crossed-track deviation - S −286.5 m

total number of manoeuvres 435

total ∆V 14.771 m/s
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Table 4.3: Mission C outcomes: in-track and cross-track station keeping performance; in figures, the
in-track and cross-track deviations in time

C mission

old algorithm new algorithm

percentage of respected in-track deviation (S1) 90.7% 95.698%

percentage of respected in-track deviation (S2) 95.949% 98.457%

maximum in-track deviation - S2 3242.6 m 2600.9 m

percentage of respected crossed-track deviation (S) 92.19% 91.883%

maximum crossed-track deviation - S 1236.4 m 1279 m

total number of manoeuvres 259 290

total ∆V 5.1403 m/s 5.1241 m/s

optimised algorithm

percentage of respected in-track deviation (S1) 96.265%

percentage of respected in-track deviation (S2) 99.191%

maximum in-track deviation - S2 2564.5 m

percentage of respected crossed-track deviation (S) 99.572%

maximum crossed-track deviation - S 58.2 m

total number of manoeuvres 266

total ∆V 5.1809 m/s
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Table 4.4: Mission D1 outcomes: in-track and cross-track station keeping performance; in figures,
the in-track and cross-track deviations in time

D1 mission

old algorithm new algorithm

percentage of respected in-track deviation (S1) 98.566% 99.995%

percentage of respected in-track deviation (S2) 100% 100%

maximum in-track deviation - S2 −1241.6 m −1981.8 m

percentage of respected crossed-track deviation (S) 98.136% 98.178%

maximum crossed-track deviation - S 185.9 m −236.6 m

total number of manoeuvres 458 422

total ∆V 38.224 m/s 37.613 m/s

optimised algorithm

percentage of respected in-track deviation (S1) 100%

percentage of respected in-track deviation (S2) 100%

maximum in-track deviation - S2 −2184.7 m

percentage of respected crossed-track deviation (S) 99.545%

maximum crossed-track deviation - S −123.3 m

total number of manoeuvres 586

total ∆V 36.534 m/s
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Table 4.5: Mission D2 outcomes: in-track and cross-track station keeping performance; in figures,
the in-track and cross-track deviations in time

D2 mission

old algorithm new algorithm

percentage of respected in-track deviation (S1) 80.324% 99.699%

percentage of respected in-track deviation (S2) 98.116% 100%

maximum in-track deviation - S2 249.1 m −1860.9 m

percentage of respected crossed-track deviation (S) 86.999% 98.107%

maximum crossed-track deviation - S 2745.9 m 188.7 m

total number of manoeuvres 363 427

total ∆V 14.799 m/s 37.736 m/s

optimised algorithm

percentage of respected in-track deviation (S1) 100%

percentage of respected in-track deviation (S2) 100%

maximum in-track deviation - S2 −2315 m

percentage of respected crossed-track deviation (S) 99.862%

maximum crossed-track deviation - S 95.3 m

total number of manoeuvres 653

total ∆V 34.658 m/s
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Table 4.6: Mission D3 outcomes: in-track and cross-track station keeping performance; in figures,
the in-track and cross-track deviations in time

D3 mission

old algorithm new algorithm

percentage of respected in-track deviation (S1) 100% 100%

percentage of respected in-track deviation (S2) 98.116% 100%

maximum in-track deviation - S2 −2200 m −2200 m

percentage of respected crossed-track deviation (S) 97.961% 98.08%

maximum crossed-track deviation - S 295.9 m 296.9 m

total number of manoeuvres 771 828

total ∆V 39.99 m/s 39.753 m/s

optimised algorithm

percentage of respected in-track deviation (S1) 100%

percentage of respected in-track deviation (S2) 100%

maximum in-track deviation - S2 −2674.1 m

percentage of respected crossed-track deviation (S) 99.784%

maximum crossed-track deviation - S 109.9 m

total number of manoeuvres 750

total ∆V 37.803 m/s
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Table 4.7: Mission E outcomes: in-track and cross-track station keeping performance; in figures, the
in-track and cross-track deviations in time

E mission

old algorithm new algorithm

percentage of respected in-track deviation (S1) 98.286% 98.286%

percentage of respected in-track deviation (S2) 100% 100%

maximum in-track deviation - S2 −934.2 m −934.2 m

percentage of respected crossed-track deviation (S) 99.378% 98.562%

maximum crossed-track deviation - S 249.6 m 270.5 m

total number of manoeuvres 106 129

total ∆V 15.394 m/s 21.981 m/s

optimised algorithm

percentage of respected in-track deviation (S1) 100%

percentage of respected in-track deviation (S2) 100%

maximum in-track deviation - S2 −3001.3 m

percentage of respected crossed-track deviation (S) 100%

maximum crossed-track deviation - S −95.4 m

total number of manoeuvres 88

total ∆V 6.7488 m/s
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Chapter 5

Mixed In-track Cross-track
Manoeuvres Time Slots

5.1 Slots definition problem

The introduction of mixed in-track cross-track manoeuvres triggers the necessity of defining the tem-
poral slots over which it is allowed to perform them. As explained in Section 2.1.4, the slots are
determined on the basis of the mission and the system constraints. In particular, it is necessary to
assure a specific smallest angular distance between the Sun (or eventually another celestial body) and
an optical instrument to avoid its glare. For example, in the case of a stars tracker the distance has
to be almost equal to 30◦ [16]. This implies some constraints on the direction of the imposed ∆V.

Because of the analysed missions characteristics, the smallest angular distance that has to be
assured between the Sun and the ∆V is equal to the smallest angular distance required between the
Sun and the optical instrument.

The objective of the procedure implemented, described in this chapter, is to determined the mixed
manoeuvres temporal slots: then, they are listed into files with all their essential characteristics (such
as the date and the duration), similar to the files already existing for the other standard manoeuvres
slots. These files are read by the algorithm at its activation, so that it gets the information about
the temporal intervals during which it is allowed to perform a specific manoeuvre. In particular, the
implemented procedure allows the mixed in-track cross-track manoeuvres slots generation starting
from the already existing out-of-plane manoeuvres slots.

5.2 Adopted strategy

The procedure adopted to generate the slots is a direct consequence of the way in which mixed
manoeuvres are conceived. A mixed manoeuvre is generated as an out-of-plane manoeuvre to which
a tangential component is added. Moreover, the magnitude of the out-of-plane component is usually
higher than that of the in-plane one. Thus, the mixed manoeuvres slots are generated from the existing
out-of-plane manoeuvres slots, which have been previously determined at CNES to satisfy the missions
and the systems constraints. To give an example, in the case of an electric propulsion system exploiting
solar panels, these slots have been already conceived to exclude the time intervals corresponding to
solar eclipses. Moreover, they are defined to avoid instruments glare in case of a simple out-of-plane
manoeuvre. Thus, it is sufficient to add the information relative to the largest tangential component
that can be added to the out-of-plane manoeuvre to continue avoiding the instruments glare in case
of mixed manoeuvres, without taking into account all the other missions constraints. In this way, the
determination procedure of the mixed manoeuvres time slots is simplified.

In particular, to evaluate the largest tangential component that can be added, the following ad-
ditional information is provided: the largest inclination angle, γ̃, of the mixed ∆V with respect
to the out-of-plane direction. Thus, the largest tangential component allowed will be equal to
∆VTmax = ∆VN tan γ̃, where ∆VN is the out-of-plane component calculated for the right ascension of
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the ascending node correction. The evaluation of γ̃ is performed at several dates during one single
slot; if its variation is important, the slot is divided into multiple slots. The value of γ̃, associated to
one slot, assures the possibility of a mixed manoeuvre without glare risks at each time in the interval.
The slots division has to be handled in such a way to avoid the optical instruments glare without
limiting the value of the largest tangential component excessively and minimising the total number of
resulting slots for computational reasons. Indeed, higher the number of slots that AOC has to analyse,
longer will be the computational time associated to each mission. The following section explains the
way in which the angle γ̃ is computed. Section 5.4 is about the way in which the out-of-planes slots
division is handled.

5.3 The largest angle γ : definition

As explained in Section 5.1, a smallest angular distance δadmissible between the manoeuvre ∆V and
the Sun directions is required. It is possible to define a cone having the satellite-Sun position vector
as axis and δadmissible as aperture: in the following, it will be indicated as Sun cone. It is evident
that the mixed ∆V has not to intersect it. In the case of a mixed manoeuvre the ∆V is not known
a priori. Thus, it is necessary to determine which directions of ∆V are forbidden on the manoeuvre
plane.

The manoeuvre plane corresponds to the TN plane of the satellite coordinate system, that will
be exploited for this analysis. In particular, the focus has to be on the semi-plane associated to
positive values of the T axis, as the mixed manoeuvres tangential component is always positive. Let
be γ ∈ [0, 2π[ the angle computed from the N axis on the TN plane positively clockwise (Figure 5.1):
it identifies every possible direction of ∆V on the manoeuvre plane. Thus, the range of forbidden
directions is identified by the range of γ values for which the angular distance to the Sun direction is
less than δadmissible.

At a considered date, the angular distance δdist between the Sun direction and each direction on
the TN plane can be determined solving a spherical trigonometry problem (Figure 5.2):

δdist = arccos cos γ cos b+ sin γ sin b cosβ (5.1)

where the following notations are adopted:

• β is the angle between the TN plane and the sN plane, being s the Sun position vector;

• b is the angle between N and s.

At a fixed date, δdist is a function of the only γ. It is continuous and it is characterised by a global
minimum and a global maximum. Indeed, the derivative of f(γ) is

dδdist
dγ

(γ) =
sin γ cos b− sin γ sin b cosβ√

1− cos2 δdist(γ)

It is equal to zero when
tan γ = tan b cosβ

The previous equation has two solutions : γ̂ = arctan(tan b cosβ) and γ̂+π. To identify the minimum
and the maximum, the second derivative has to be computed:

d2δdist
dγ2

(γ) =
cos δdist(γ)√

1− cos2 δdist(γ)
+

cos δdist(γ)
(

sin γ cos b− sin γ sin b cosβ
)2(

1− cos2 δdist(γ)
)3/2

Its value for γ = γ̂ is:
d2δdist
dγ2

(γ̂) =
cos δdist(γ)√

1− cos2 δdist(γ)
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The denominator is always positive, so its sign depends on the sign of cos δdist. From equation (5.1),it
can be notice that

cos δdist(γ̂ + π) = − cos δ(γ̂)

Thus, if δdist has its minimum at γ̂, it has its maximum value at γ̂ + π or vice versa. It is possible to
define a function fun(γ) equal to the difference between δ and δadmissible:

fun(γ) = arccos cos γ cos b+ sin γ sin b cosβ − δadmissible (5.2)

Also this function has a global minimum and a global maximum at the same γ values associated to
the minimum and the maximum of δdist(γ). It is evident that, if fun(γ) > 0 for every value of γ,
there is no intersection between the manoeuvre plane and the Sun cone. On the contrary, the range
of γ values, for which fun(γ) < 0, identifies the forbidden directions. This range will be centered at
the value γ̂ for which fun has its minimum funmin; its extremes are the function roots γ1 and γ2. In
order to find them, the Newton method (see Appendix A) can be adopted.

Once γ1 and γ2 have been determined, they are exploited to compute the largest angle of inclination
of ∆V with respect to N. Actually two angles are determined: γ+ ∈ [0, γmax] computed in the same
way of γ, that will be exploited in case ∆VN > 0; γ− ∈ [0, γmax], that is computed positive from −N
toward T on the TN plane and that will be used if ∆VN < 0. The value γmax ∈ [0, π4 ] depends on the

analysed mission. It is defined as a function of the smallest out-of-plane ∆V , ∆̂V Nmin , and the largest

in-plane ∆V , ∆̂V Tmax , resulting from the manoeuvres plan calculated by AOC before the integration
of the mixed manoeuvres:

γmax = arctan
∆VTmax
∆VNmin

+ 2◦

The value of 2◦ is added as a margin. The largest value that can be imposed to γmax is π
4 : indeed,

the tangential component of a mixed manoeuvre is always significantly smaller than the out-of-plane
one. For the computation of both γ− and γ+, γ1 and γ2 are adjusted in such a way to have the right
extreme smaller than the left one. Indeed, since γ is defined in [0, 2π], γ1 could be greater than γ2.
For the determination of γ+, if γ1 > γ2 γ1 is redefined as γ1 = 2π− γ1. Then, γ+ is defined as follows:

- if γ1 < 0, since every manoeuvre surrounding N would intersect the Sun cone:

γ+ = 0;

- otherwise,
γ+ = min(γ1, γmax)

For the computation of γ−, if γ1 > γ2, γ2 is redefined as γ1 = 2π + γ2. Then, γ− is determined as
follows:

- if γ1 < π < γ2, since every manoeuvre surrounding −N would intersect the Sun cone:

γ− = 0;

- if γ2 < π,
γ− = min(π − γ2, γmax)

- if γ1 > π
γ+ = γmax

Of course, the values γ+ and γ− are both imposed equal to γmax in the case of a solar eclipse or if
no intersection between the Sun cone and the manoeuvres plane occurs.

To reduce the risk linked to computational errors, the described procedure is executed considering
the value δadmissible increased by 0.1◦.
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Fig. 5.1: γ angle : inclination of the mixed ∆V with respect to the out-of-plane direction

Fig. 5.2: analysed spherical trigonometry problem

5.4 Slots definition

As already introduced in Section 5.2, at each mixed manoeuvre slot a value γ+ and a value γ− will
be associated. In this way, AOC will be able to compute the largest value of the ∆VT component as
either ∆VTmax = ∆VN tan γ+, if ∆VN > 0, or ∆VTmax = |∆VN | tan γ−, otherwise.

The values of both γ+ and γ− vary in time. Thus, they are evaluated at about each 3◦ along one
slot. With the assumption of a quasi circular orbit, 3◦ corresponds to a duration of

∆t =
n∆ttot

3

180

π

being δttot the total duration of the analysed slot. The considered orbit is the reference one: the

74



CHAPTER 5. MIXED IN-TRACK CROSS-TRACK MANOEUVRES TIME SLOTS

satellite state is evaluated by means of the Eckstein and Hechler’s analytic propagation method [16],
that takes into account only the perturbations linked to the Earth gravity field and, more in particular,
to the terms J2, J3, J4, J5 and J6. To avoid the risk of instrument glare at each time during one slot,
the values of associated γ+ and γ− are the smallest computed. This is the reason for which, even if the
analysed slots are the out-of-plane manoeuvres ones, the mixed slots do not necessarily correspond
to them. Indeed, even a small variation of both γ+ and γ− can determine an important variation
of ∆VTmax, since this last has the trend of tan γ+,−, for a fixed value of ∆VN . Having γ−,+ < 45◦,
∆ tan γ−,+ is about 0.1 each 5◦. Then, important variations can be occur also if a solar eclipse occurs
during part of the slot. In order not to be too restrictive in the definition of ∆VTmax, the initial slots
are divided. However, this operation is handled in such a way to minimise the total number of slots.
Indeed, the duration of the slot has an impact on the total value of ∆V that can be physically be
imposed by the propulsive system, above all in case of low thrust. Moreover, as the number of slots
increases, the computational time increases, as already explained in Section 5.2. Finally, it has to
be considered that usually ∆VT << ∆VN ; so, even a small value of tan γ+,− could allow the mixed
manoeuvre. Therefore, it is imposed that each slot cannot be divided into slots whose duration is less
than one third of the original one. Moreover, the division of the slots is triggered by a variation of γ+

or γ− larger that 10◦.

5.5 Results

The described procedure is carried out for the analysed missions (see Section 2.4), to determine the
temporal slots during which mixed manoeuvres can be performed, starting from the already existing
out-of-plane manouevres slots. In Table 5.1, the obtained results are reported: the largest angle γmax
and the number of determined mixed manoeuvres slots compared to the out-of-plane manoeuvres slots
number. It is possible to observe that the mixed manoeuvres slots correspond exactly to the out-of
plane manoeuvres ones for missions A1, A2 and B1. The reason is that their maximum angle γmax
is small. The slots increment of missions B2, D1 and D2 has the same order of magnitude. This is
a demonstration that the implemented procedure assures sufficiently accurate results. Indeed, these
missions are characterised by the same type of orbits: sun-synchronous orbits.

Table 5.1: Results concerning the generation of mixed manoeuvres slots

mission γmax number of out-of-plane manoeuvres slots number of mixed slots

A1 chemical 10.21◦ 11750 11750

A2 chemical 7.916◦ 11750 11750

B1 chemical 4.103◦ 11397 11397

B2 chemical 45◦ 14131 17807

D1 chemical 45◦ 10979 14453

D2 chemical 45◦ 10979 14453

F chemical 45◦ 10738 11773
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Chapter 6

Perturbations effects over the
inclination

6.1 AOC necessary improvements

The results obtained after the integration done show the need of performing mixed in-track cross-
track manoeuvres in order to obtain better performance. However, for some analysed missions, this
integration is not sufficient to fulfill the targeted constraints in terms of station keeping performance
(see Table 2.4). Other improvements can be implemented.

In Chapter 2, it was shown that the manoeuvres computation depend on the evaluation of two
parameters ∆α̈targeted and di/dt, both functions of the orbital perturbations. The acceleration of
the argument of latitude is evaluated on the basis of the values of this orbital parameter at previous
orbital nodes and considering it constant during the predictable horizon and the research horizon.
The long period inclination drift is approximated by summing the contribution caused by the solar
potential perturbation and the one due to the terrestrial tides and the atmospheric drag. This last is
evaluated as an approximated average value. The measures of ∆i at the previous ascending nodes are
used. At each node, the drift caused by the terrestrial tides and the atmospheric drag is computed
by determining the total inclination drift during one orbital period and by subtracting from it the
known long period contributions due to the solar and lunar potential perturbations. Then, all the
obtained values are used to compute the mean. The overall operation has an important impact on
the computational time of AOC: it slows down the computation of the out-of-plane manoeuvres.

A better estimation of the ∆α̈targeted and di/dt could imply an important improvement of the
AOC controller.

During the last period of the internship, a study of the perturbations effect on the orbital inclination
has been conducted, with main objective of determining an analytic, sufficiently accurate model of
the drift. This objective is linked to the need of improving the inclination drift estimation, reducing
as much as possible the computational time.

6.2 Perturbing forces effects on the orbital inclination

The perturbations that cause long period variations of the orbital inclination are the solar and lu-
nar potentials, the atmospheric drag and the solar radiation pressure (see Table 1.1). Moreover,
experimentally it has been observed that also the terrestrial tides have a long period impact on the
inclination drift. However, the impact of each perturbation contribution changes according to the
type of orbit. This is evident from the simulations carried out to obtain the free parameters evolution
under the effects of the different perturbations. In particular, missions A2, B2, D1, and F are taken
into account because they allow to analyse the sample of orbits of most interest for AOC. The same
numerical propagator used to simulate the orbital dynamics to test AOC has been exploited to obtain
the orbital parameters evolution in time, if no orbital control is performed. In particular, the pertur-
bations have been considered both together and separately. Figures 6.1-6.23 show the results of the
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simulations. In the figures, the blue line is refereed to the orbital parameters evolution considering
only the orbital ascending nodes; the red line is relative to all the other orbital points. The effects
of the geopotential are always simulated because they are included in the reference orbit. Moreover,
this perturbation has no impact on the secular inclination drift: the ∆i trend does not depend on it.
Including the geopotential effects enables also to show the dependence of ∆Ω on the inclination drift.
Because of this perturbation, the secular ∆Ω̇ depends on ∆i: if the secular inclination drift is null,
∆Ω has a linear drift; if the secular drift is constant, ∆Ω has a quadratic trend. A secular variation
of the right ascension of the ascending node due to the solar potential should also be considered for
certain kinds of sun-synchronous orbits, but it can be neglected in first approximation.

The conducted simulations show that the effects of the solar radiation pressure on the inclina-
tion drift are always almost null: the period of the inclination variations is very long and the drift
contribution is very small. Thus, this perturbation effects will be neglected in this study. The lunar
potential imposes a long period variation. Thus, the lunar potential has no impact on the secular
drift. Moreover, the characteristic period is lower than that of the periodical effects caused by other
perturbations. The solar potential is the perturbation with the most significant effects. In general, it
imposes long period variations; for some kinds of sun-synchronous orbits (see mission D1 and A2), it
causes a secular drift. However, in order to correctly estimate the inclination drift, it is not sufficient
to consider the solar potential effects: the terrestrial tides and the atmospheric drag contributions
cannot be neglected. As the solar potential, the terrestrial tides cause a secular drift for some kinds of
sun-synchronous orbits. On the contrary, the atmospheric drag generates always a secular inclination
drift. Indeed, if the dawn orbit of mission B2 is taken into account, the main contribution to the
inclination variation is caused by this perturbation. Also the orbit of mission F is subjected to a
secular inclination drift due to the atmospheric drag. However, the variation is very slow and very
slight in this case: the orbital altitude is high and the perturbation effects are reduced. Thus, if a
sufficiently high orbit is analysed, like that of mission F or mission E (see Figure 6.24), only in this
case it is possible to neglect the atmospheric drag as perturbation.

The conducted analysis confirms that, to determine the secular or the long period inclination
drift, the focus has to be on the effects of three main orbital perturbations: the solar potential, the
terrestrial tides and the atmospheric drag. These perturbations effects were already considered in
the AOC original algorithm. However, only the analytic models of the solar and lunar potential
contributions were implemented. An analytical and semi-analytical models relative the terrestrial
tides and the atmospheric drag effects have been introduced. In the case of the terrestrial tides,
the model has been determined on the basis of several works found in literature. In the case of the
atmospheric drag, the King-Hele model has been exploited. Moreover, for sun-synchronous orbits, a
standard analytic model of the secular contribution to the drift has been introduced as an alternative
to the already implemented long-period contribution model. Finally, also a study concerning the lunar
potential has been carried out to conceive an analytic model taking into account only the longest period
contributions to the drift, which can have a non-neglecting impact. More details are provided in the
following sections.
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Fig. 6.1: Mission A2 - all
perturbing forces effects

Fig. 6.2: Mission A2 -
geopotential and atmospheric

drag effects

Fig. 6.3: Mission A2 -
geopotential and solar potential

effects

Fig. 6.4: Mission A2 -
geopotential and terrestrial tides

effects

Fig. 6.5: Mission A2 -
geopotential and lunar potential

effects

Fig. 6.6: Mission A2 -
geopotential and solar radiation

pressure effects
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Fig. 6.7: Mission B2 - all
perturbing forces effects

Fig. 6.8: Mission B2 -
geopotential and atmospheric

drag effects

Fig. 6.9: Mission B2 -
geopotential and terrestrial

tides effects

Fig. 6.10: Mission B2 -
geopotential and lunar

potential effects

Fig. 6.11: Mission B2 -
geopotential and solar

radiation pressure effects
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Fig. 6.12: Mission D1 - all
perturbing forces effects

Fig. 6.13: Mission D1 -
geopotential and atmospheric

drag effects

Fig. 6.14: Mission D1 -
geopotential and solar potential

effects

Fig. 6.15: Mission D1 -
geopotential and terrestrial

tides effects

Fig. 6.16: Mission D1 -
geopotential and lunar potential

effects

Fig. 6.17: Mission D1 -
geopotential and solar

radiation pressure effects
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Fig. 6.21: Mission F -
geopotential and terrestrial

tides effects

Fig. 6.22: Mission F -
geopotential and lunar potential

effects

Fig. 6.23: Mission F -
geopotential and solar radiation

pressure effects

Fig. 6.18: Mission F - all
perturbing forces effects

Fig. 6.19: Mission F -
geopotential and atmospheric

drag effects

Fig. 6.20: Mission F -
geopotential and solar potential

effects

Fig. 6.24: Mission E - geopotential and atmospheric drag effects
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6.3 Solar potential effects

A satellite S is subjected not only to the Earth gravitational attraction, but also to the gravitational
attraction of other celestial bodies, mainly the Sun and the Moon. Let be A the considered celestial
body and MA its mass (Figure 6.25). Because of it, the satellite S is subjected to an acceleration apA
equal to:

apA = GMA

(SA

ρ3
A

− OA

r3
A

)
(6.1)

where:

• O is the central body, so the Earth;

• ρA is the distance between the S and A;

• rA is the distance between A and the Earth.

This acceleration is due to the potential VA :

VA = GMA

( 1

ρA
− OSOA

r3
A

− 1

rA

)
(6.2)

(see [16]). This potential can be expressed in two different ways.
Cook [22] writes it as a function of the satellite and the celestial bodies coordinates in the refer-

ence frame R, θ,N. By computing its gradient, it is possible to obtain the perturbing acceleration
components in the Gaussian reference frame and apply the Gauss equations in order to estimate the
inclination drift. This is the procedure followed in [21]. Here, the inclination drift is then integrated
over an orbital period to obtain its long period contribution. The result is the long period inclination
drift in equation (2.29).

Another way to write the potential VA is that adopted by Kaula [23]. As r < rA, where r is the
satellite distance from the Earth, it is possible to express 1/ρA by means of a Legendre polynomials
development and to write:

VA =
GMA

rA

∞∑
l=2

( r
rA

)l
Pl(cos θA)

where θA is the angle between OA and OS. By exploiting the Legendre polynomials properties, it
can be found:

VA =
GMA

rA

∞∑
l=2

( r
rA

)l l∑
m=1

km
(l −m)!

(l +m)!
Plm(sin δ)Plm(sin δA)(cosmα∗ cosmα∗A + sinmα∗ sinmα∗A)

(6.3)
where km = 1 if m = 0, km = 2 otherwise, and:

• δ and α∗ are the satellite declination and right ascension;

• δA and αA∗ are the three body declination and right ascension;

• Plm(x) is the Lagrange function.

In order to write the potential as a function of the orbital parameters, Kaula expresses each potential
contribution VAl as :

VAl =
GMAr

l

rl+1
A

l∑
m=0

km
(l −m)!

(l +m)!

l∑
p=0

Flmp(i)Clmp (6.4)

Clmp =

 Alm

−Blm

(l−m)even

(l−m)odd

cos [(l − 2p)α+mΩ] +

Blm
Alm

(l−m)even

(l−m)odd

sin [(l − 2p)α+mΩ]

Alm = Plm(sin δA) cosmα∗
A
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Blm = Plm(sin δA) sinmα∗
A

Flmp(i) is the Kaula inclination function:

Flmp(i) =

min(p,k)∑
t=0

(2l− 2t)!

t!(l − t)!(l −m− 2t)!22l−2t
sinl−m−2t i

m∑
s=0

 m

s

 coss i
∑
c

 l −m− 2t+ s

c

 m− s
p− t− c

 (−1)c−k

(6.5)

where k is the integer part of (l − m)/2 and c is summed over all the values making the binomial
coefficients nonzero. In Figure 6.26, the table reported from [24], with all the values of Flmp(i) for
l ∈ [2, 4], is shown. In a similar way, the potential expression can be modified again to express it as a
function of the third body orbital elements. So, each potential contribution can be expressed as:

VAl =
GMAr

l

rl+1
A

l∑
m=0

km
(l −m)!

(l +m)!

l∑
p=0

l∑
h=0

Flmp(i)Flmh(iA) cos [(l − 2p)α− (l − 2h)αA +m(Ω− ΩA)]

(6.6)
The potential contribution with the greatest influence is the one associated to l = 2 [16]. In

particular, from the obtained expression, applying the simplifying hypothesis of quasi circular orbit
and considering the Lagrangian equation (1.35), it is evident that the long period inclination drift is
due to the contributions associated to l − 2p = 0 and m 6= 0. If the third body is the Sun and the
considered orbit is sun-synchronous, the drift has a secular component for l− 2h = m since Ω−αA is
constant (in the case of non circular orbit, it is possible to express the solar orbit argument of latitude
as a function of the mean anomaly, and even in this case the constant term appears). Considering the
main potential contribution associated to l = 2, the inclination secular drift can be found for m = 2,
p = 1 and h = 0. Its expression has been already introduced in equation (3.3) in Chapter 3. In view
of this equation, it can be observed that the secular drift is zero for sun-synchronous orbits whose
local hour is 6 h, 12 h, 18 h or 24 h: this is the reason a secular inclination variation is not observed
in mission B2.

In the case of sun-synchronous orbits, AOC could exploit the secular inclination drift model in
equation (3.3) instead of the Lamy-Azema model (equation (2.29)), to filter the long period variations.
The secular drift has been determined for mission D1 orbit and compared to that obtained from the
simulation. This last one is computed by means of a least squares fit, with a linear polynomial model.
The relative error is 0.0019% (see Figure 6.27).

Fig. 6.25: Three Body potential perturbation: geometry of the problem
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Fig. 6.26: Kaula inclination function [24]

Fig. 6.27: Free evolution of ∆i under the effects of the solar gravitational potential, compared with
the trend obtained exploiting the secular drift analytic model evaluated at the beginning of the

simulation (mission D1)

6.4 Terrestrial tides

A third body generates a perturbation on a satellite-Earth system: its effects on the orbital inclination
have been discussed in the previous section. The perturbing force acting on the satellite is due the
different gravitational attractions that the third body imposes on it and on the Earth. The same
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principle explains the terrestrial tides. The third body (mainly the Sun and the Moon) induces an
attraction force acting on the different parts on the planet. The variation of its gravitational attraction
on the Earth center and the crust causes the deformation force generating the terrestrial tides. It’s
possible to apply the same logic of the previous section in order to determine the perturbing potential
causing these deformations. Considering Figure 6.25, in this case the point S doesn’t represent a
satellite, but a point of the Earth crust. The perturbing potential is expressed by:

Vp = GMA

( 1

ρA
− OSOA

r3
A

− 1

rA

)
Exploiting the Legendre functions, it can be expressed as:

Vp = GMA

∞∑
l=2

rl

rl+1
A

l∑
m=0

km
(l −m)!

(l +m)!
Plm(sinφ)Plm(sin δA)(cosmλ cosm(α∗A − θG) + sinmλ sinm(α∗A − θG))

km =
{ 1 m = 0

2 otherwise

where θG is the sidereal time (angle between the I axis and the Greenwich meridian) and λ and φ are
the longitude and the latitude of the point S. The angle λA = α∗A − θG is the third body longitude.
Thus, the potential is characterised by several contributions:

Vp =

∞∑
l=0

Vpl

If the Earth was fluid, each contribution would act as a perturbing potential causing a movement
ξ, supposed radial, such that:

U(r + ξ;λ, φ) + Vpl = U(r;λ, φ)

ξ =
−Vpl
∂U
∂r

≈ Vpl
g0

g0 =
µ

R2
e

Assuming the hypothesis of an elastic planet, the crust deformation is proportional to ξ, so to Vpl .
This is the first hypothesis of Love, who modeled the problem in order to obtain an approximation
of the geopotential variation due to the terrestrial tides. Precisely, his first hypothesis consists in the
assumption that the crust elevation is given by:

ηl = hl
Vpl
g0

where hl, l ∈ [2,∞], are constants. Supposing that the Earth is characterised by an initial ho-
mogeneous density, from this first hypothesis, Love formulates a second hypothesis. He hypothesizes
that the variation of the Earth potential due to the deformations is proportional to the perturbing
potential:

∆Ul(Re) = klVpl

where kl are constants called Love numbers. Evidently, this variation of the geopotential causes
an additional perturbation on a satellite orbit. In [16], the variation of the geopotential at a distance
r > Re from the Earth center is approximated in the following way:

∆Ul(r) =
(Re
r

)l+1
∆Ul(Re) = kl

(Re
r

)l+1
Vpl(Re) (6.7)
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Consequently, the perturbing potential acting on a satellite due to the terrestrial tides can be
expressed as:

VT = GMA

∞∑
l=2

kl
R2l+1

e

rl+1
A rl+1

l∑
m=1

km
(l −m)!

(l +m)!
Plm(sinφ)Plm(sin δA)(cosmλ cosm(α∗A − θG) + sinmλ sinm(α∗A − θG))

(6.8)

or, considering that
φ = δ

λ = α∗ − θG
as:

VT = GMA

∞∑
l=2

kl
R2l+1

e

rl+1
A rl+1

l∑
m=1

km
(l −m)!

(l +m)!
Plm(sin δ)Plm(sin δA)(cosmα∗ cosmα∗A + sinmα∗ sinmα∗A) (6.9)

The formulation in equation (6.8) is comparable to that used for the geopotential (equation (1.39)).
Therefore, it is possible to infer from it, the variations of the coefficients Clm and Slm:

VT =
µ

r

∞∑
l=2

(Re
r

)l l∑
m=0

Plm(sinφ)(cosmλ∆Clm + sinmλ∆Slm) (6.10)

with

∆Clm = kl ∗ km ∗
(l −m)!

(l +m)!

MA

Me

(Re
rA

)l+1
Plm(sin δA) cosm(α∗A − θG) (6.11)

∆Slm = kl ∗ km ∗
(l −m)!

(l +m)!

MA

Me

(Re
rA

)l+1
Plm(sin δA) sinm(α∗A − θG) (6.12)

where Me is the Earth mass. ∆Clm and ∆Slm are proportional to
(
Re
rA

)l+1
. Since rA >> Re, all the

contributions characterised by l ≥ 4 can be neglected: the most significant contributions are those
associated to l = 2 and l = 3.

In the literature, it is possible to find several works, all based on the Love theory, about the analytic
determination of the terrestrial tides long period effects on the orbital parameters. A semi-analytic
model is already included into the Standalone version of the Draper Semi-analytical Satellite Theory
(DSST) Orbit Propagator, implemented in the NASA Goddard Trajectory Determination System
(GTDS) [25]. In [26], Musen and Estes propose writing the terrestrial tides potential as a function
of the elliptical arguments of the Hill-Brown lunar theory, of the argument of perigee and the right
ascension of the ascending node: they develop it into into trigonometric series and, finally, they exploit
the Lagrangian equations to determine the orbital parameters deviations. The study carried out in
this work is similar to that of Lambeck et al. [27], who exploit the Kaula formulation in order to
express the potential and apply the Doodson theory for a better estimation of the Love number (this
last will be described in Section 6.4.2).

6.4.1 Terrestrial tides effects on the orbital inclination

The formulation of the perturbing potential due to terrestrial tides in equation (6.9) is comparable
to that of the perturbing potential caused by a third body (equation (6.3)). Indeed, the different
contributions of the two perturbing potential are proportional:

Vpl = kl

(Re
r

)l+1
VAl

It is evident that, if a third body causes the generation of terrestrial tides, these lasts effects on a
satellite orbit are reduced but completely comparable to the effects induced by the third body itself.
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The third bodies to be considered are the Sun and the Moon. The other planets are sufficiently far
from Earth to neglect their influence.

By adopting the Kaula formulation, it is possible to express each contribution of VT in the two
following ways:

VTl
=
µ

r

(Re

r

)l l∑
m,p=0

Flmp(i)
{[ Alm

−Blm

](l−m)even

(l−m)odd

cos [(l − 2p)α+mΩ] +

[
Blm

Alm

](l−m)even

(l−m)odd

sin [(l − 2p)α+mΩ]
}

(6.13)

Alm = kl
MA

Me

(Re

rA

)l+1

km
(l −m)!

(l +m)!
Plm(sin δA) cosmα∗A = ∆Clm cosmθG −∆Slm sinmθG

Blm = kl
MA

Me

(Re

rA

)l+1

km
(l −m)!

(l +m)!
Plm(sin δA) sinmα∗A = ∆Clm sinmθG + ∆Slm cosmθG

VTl
= kl

GMAR
2l+1
e

rl+1
A rl+1

l∑
m=0

km
(l −m)!

(l +m)!

l∑
p=0

l∑
h=0

Flmp(i)Flmh(iA) cos [(l − 2p)α− (l − 2h)αA +m(Ω− ΩA)] (6.14)

The first expression (6.13) can be exploited to determine the long period inclination drift. The variation

of the inclination in time is proportional to
∂VTl
∂Ω and to

∂VTl
∂ω (see the Lagrangian equation (1.35)). In

order to get the long period variation, it is possible to exploit the same strategy adopted by Lami et
al. in [21]: integrating the inclination drift over an orbital period assuming all the orbital parameters
constants except for the true anomaly. This is motivated by the fact that in practice the orbits won’t
be allowed to vary too much. Also the position of the third body can be considered constant since its
apparent angular motion nA is smaller than that of the satellite: nA << n. Applying the Lagrangian
equation (1.35), the inclination drift can be expressed as:

di

dt
=

1

na2
√

1− e2 sin i

∂VTl
∂Ω

+
cot i

na2
√

1− e2

∂VTl
∂ω

∂VTl

∂Ω
=
µRle
rl+1

l∑
m=0

l∑
p=0

Flmp(i)m
{−Alm

Blm

(l−m)even

(l−m)odd

sin [(l − 2p)α+mΩ] +

Blm
Alm

(l−m)even

(l−m)odd

cos [(l − 2p)α+mΩ]
}

∂VTl

∂ω
=
µRle
rl+1

l∑
m=0

l∑
p=0

Flmp(i)(l − 2p)
{−Alm

Blm

(l−m)even

(l−m)odd

sin [(l − 2p)α+mΩ] +

Blm
Alm

(l−m)even

(l−m)odd

cos [(l − 2p)α+mΩ]
}

In view of the following equations,

•
∫ T0

0
di
dtdt =

∫ 2π
0

di
dt

1
n

(1−e2)3/2

(1+e cos ν)2dν, having assumed constant the eccentricity

• sin [(l − 2p)α+mΩ] = sin ((l − 2pi)ν) cos [(l − 2p)ω +mΩ]+cos ((l − 2pi)ν) sin [(l − 2p)ω +mΩ]

• cos [(l − 2p)α+mΩ] = cos ((l − 2pi)ν) cos [(l − 2p)ω +mΩ]−sin ((l − 2pi)ν) sin [(l − 2p)ω +mΩ]

• rl+1 =
(
a(1−e2)
1+e cos ν

)l+1

the computation of the integral over an orbital period of the inclination drift implies the integration
the two following terms:

cos (l − 2pi)ν)(1 + e cos ν)l−1

sin (l − 2pi)ν)(1 + e cos ν)l−1
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where l − 1 ≥ 0. For the binomial theorem, we have:

(1 + e cos ν)l−1 =

l−1∑
k=0

( l − 1
k

)
(e cos ν)k

Since the orbit is quasi-circula, it is sufficient to consider the terms up to k = 2:

(1 + e cos ν)l−1 ∼ 1 +
(l − 1)!

(l − 2)!
e cos ν +

(l − 1)!

2!(l − 3)!
e2 cos2 ν + o(e3)

By substituting this expression in the integral, it can be easily found that ∀(l − 2p) 6= 0:∫ 2π

0
cos (l − 2p)(1 +

(l − 1)!

(l − 2)!
e cos ν +

(l − 1)!

2!(l − 3)!
e2 cos2 ν) = 0

∫ 2π

0
sin (l − 2p)(1 +

(l − 1)!

(l − 2)!
e cos ν +

(l − 1)!

2!(l − 3)!
e2 cos2 ν) = 0

since l − 2p is an integer number. Thus, it can be deduced that the long period variations of the
inclination are associated to the potential contributions characterised by p = l/2 and that they depend

only on
∂VTl
∂Ω . In particular, since p is an integer number and all the terms with l >= 4 are negligible,

the contributions to consider are those associated to l = 2, p = 1 and m 6= 0. At this point the integral
of the inclination drift is reduced to :∫ 2π

0
C(1 + e cos ν)dν = 2πC

C =
1

na2
√

1− e2 sin i

(1− e2)3/2

n(1− e2)3

µR2
e

a3

2∑
m=1

F2m1(i)m
{[−A2m

B2m

](2−m)even

(2−m)odd

sinmΩ+

[
B2m

A2m

](2−m)even

(2−m)odd

cosmΩ
}

To get the long period inclination drift is sufficient to divide for the orbital period T0 = 2π
n . Thus,

the long period inclination drift is :

di

dt
=

(1− e2)

na2 sin i

(∂VT211

∂Ω
+
∂VT221

∂Ω

)
(6.15)

∂VT211

∂Ω
= −3

2

1

(1− e2)3

µR2
e

a3
sin i cos i(A21 cos Ω +B21 sin Ω)

∂VT221

∂Ω
= 3

1

(1− e2)3

µR2
e

a3
sin2 i(B22 cos 2Ω−A22 sin 2Ω)

From the second formulation of the potential in equation (6.14), it can be deduced that, if the third
body is the Sun and the orbit is sun-synchronous, the perturbing potential causes a secular inclination
drift. Indeed, if l − 2h = m = 2, the constant quantity Ω − αA appears. The drift is proportional to
those induced by the Sun, discussed in the previous section 6.3. With the assumption of quasi circular
orbit, it is associated to the potential contribution characterised by l = 2, m = 2, p = 1 and h = 0
and it can be approximated as:

di

dt
= k2

3π

2

(Re
r

)5 T0

T 2
SO

sin i cos4
( iSO

2

)
sin
(

4π
( H
TE
− 1

2

))
(6.16)
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6.4.2 Love numbers

The Love’s theory assumes that the Earth geopotential variation is proportional to the terrestrial
tides. In 1980, John Wahr deepened the Love model showing that the Love numbers kl depend on the
excitation frequency [28]. Let the focus be on the coefficients ∆C20, ∆C21, ∆S21, ∆C22 and ∆S22. As
the perturbing third bodies are the Moon and the Sun and their motion is very slow in comparison to
the Earth rotation, it’s possible to assume that their declination is constant and that their longitude
has a one-day-long period. Thus, ∆C20 has long period variations, ∆C21 and ∆S21 have diurnal
variations and ∆C22 and ∆S22 have semi-diurnal variations. However, to have a precise estimation
of the terrestrial tides effects, it is not possible to neglect the third body motion with respect to the
Earth. This motion has its own periods; when combined with the Earth rotation, for each ∆Clm and
∆Slm it generates a spectrum always centered at m cycles per day, but characterised also by other
frequencies. Therefore, it can be affirmed that each ∆Clm and ∆Slm is given by a superposition of
tidal waves. The analytic representation of these waves depend on the theory adopted about the Sun
and the Moon motion. Usually that of Doodson, developed in 1921, is exploited. Doodson has shown
that the coefficients ∆Clm and ∆Slm can be determined as:

Re∆Clm = Nlm

∑
s

Hs

[ cos θS
sin θs

](m+l)even

(m+l)odd

Re∆Slm = Nlm

∑
s

Hs

[ − sin θS
cos θs

](m+l)even

(m+l)odd

where

• Nlm = (−1)m
√

2l+1
4π

(l−m)!
(l+m)!

• Hs is the amplitude of the wave s

• θs is the astronomic argument of the wave s. It is the linear combination of the six Doodson
fundamental arguments:

θS = n1τ + n2S + n3h+ n4P + n5N + n6pS

– τ is the Moon hour angle shifted by 180◦

– S is the Moon tropic longitude

– h is the Sun mean tropic longitude

– P is the Moon perigee mean tropic longitude

– N is the opposite of the Moon node tropic longitude

– pS is the Sun perigee mean tropic longitude

Each Doodson wave is identified by a number defined by means of the six integers ni, i = 1...6:

ν(s) = 100n1 + 10(n2 + 5) + (n3 + 5) +
n4 + 5

10
+
n5 + 5

100
+
n6 + 5

1000

For example the wave 255.555 correspond to the integers (2; 0; 0; 0; 0; 0).
On the basis of the Doodson theory, Wahr has computed the Love numbers. Wahr has assumed the

model of an elastic, elliptic and ocean-less Earth. He found out that there exist resonance phenomena
between the excitation tides and the rotation of the Earth core, causing different crust responses.
Thus, he determined the values of the Love numbers to consider for each tidal wave, in order to
evaluate ∆Clm and ∆Slm, with l = 2, 3. These values have been recomputed in 1991 by Zhu, who had
a better estimation of the terrestrial core nutation period available. He discovered that the important
corrections to perform concern the Love number k2. In particular, it is possible to consider one only
constant value for the long period and the semi-diurnal waves: k2 = 0.299 for ∆C20 and k2 = 0.302 for
∆C22 and ∆S22. For the diurnal waves the situation is more complex because the tidal waves impose
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important variations. In this case, the usually adopted procedure is to compute a first approximated
value of ∆C21 and ∆S21 considering a Love number equal to k2 = 0.3 and then to correct it in the
following way :

Re∆Clm = Nlm

∑
s

Hs∆ks

[ cos θS
sin θs

](m+l)even

(m+l)odd

Re∆Slm = Nlm

∑
s

Hs∆ks

[ − sin θS
cos θs

](m+l)even

(m+l)odd

where ∆ks is the difference between the Love number associated to the wave s and the previously
exploited approximated one. To an higher precision this procedure could be adopted for each ∆C2m

and ∆S2m; practically, it is sufficient to correct ∆C21 and ∆S21 considering a limited number of
Doodson waves, shown in Table 6.1.

Table 6.1: Love number corrections to adopt to estimate the coefficients ∆C21 and ∆S21

Doodson number ∆ks
145.555 -0.0016
163.555 -0.0098
165.545 -0.0299
165.555 -0.0317
165.565 -0.0338
166.554 0.1665

For the long period inclination drift model (equation (6.15)), the adopted Love numbers and ∆C21

and ∆S21 corrections are those of the IERS 2003 standard, used in the CNES Patrius library. For the
secular inclination drift (equation (6.4.1)), the Zhu estimated Love number k2 = 0.302 is exploited.

6.4.3 Inclination drift model evaluation

In order to verify the accuracy of the analytical long period inclination drift model, the estimated
drift value is compared to the drift obtained by simulation. In the simulations, the orbit evolution is
determined by numerical propagation, exploiting the terrestrial tides model included in the Patrius
library. The analytically estimated drift is updated only after a period equal to the predictable horizon
increased by an orbital period. Indeed, AOC exploits the drift value computed at the ascending node
to evaluate the eventual out-of-plane manoeuvres. The missions taken into account for the error
evaluation are mission D1 and mission B2. The results obtained for mission B2, being it characterised
by a dawn orbit, can be significant also for the missions not characterised by sun-synchronous orbits.
By exploiting the value of the drift updated at each ascending node, the mean relative committed
error is 0.0093% for mission D1 and 0.13% for mission B2 (Figures 6.29, 6.31). The error is higher for
mission B2 because the changes in the ∆i trends are less smooth and small medium period variations
appear. The obtained results are really positive and show that the model is accurate. This is also
confirmed by the simulations executed by considering the other missions (see Figures 6.32a - 6.32d).
In the all the figures, the red line represents the simulated ∆i trend induced by the terrestrial tides
(considering only the orbital ascending nodes), while the blue line represents the trend estimated by
means of the analytically determined drift.

Mission D1 has also be exploited to verify the secular drift model. The trend of the real ∆i shows
a drift equal to almost −2.181̇0−7 mdeg/s, while the analytic value computed at the beginning of the
simulation is −2.14381̇0−7 mdeg/s: the approximated relative error is 1.74%.
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Fig. 6.28: Mission B2 - Free evolution of ∆i
under the effects of terrestrial tides compared

with the trend estimated by exploiting the
inclination drift computed analytically and

updated at each ascending node

Fig. 6.29: Mission B2 - Free evolution of ∆i
under the effects of terrestrial tides compared

with the trend estimated by exploiting the
inclination drift computed analytically and

updated after a period equal to the predictable
horizon increased by one orbital period

Fig. 6.30: Mission D1 - Free evolution of ∆i
under the effects of terrestrial tides compared

with the trend estimated by exploiting the
inclination drift computed analytically and

updated at each ascending node

Fig. 6.31: Mission D1 - Free evolution of ∆i
under the effects of terrestrial tides compared

with the trend estimated by exploiting the
inclination drift computed analytically and

updated after a period equal to the predictable
horizon increased by one orbital period

(a) Mission A2 (b) Mission C (c) Mission E (d) Mission F

Fig. 6.32: Free evolution of ∆i under the effects of terrestrial tides compared with the trend
estimated by exploiting the inclination drift computed analytically and updated after a period equal

to the predictable horizon increased by one orbital period
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Fig. 6.33: Mission D1 - Free evolution of ∆i under the effects of terrestrial tides compared with the
trend estimated by exploiting the secular inclination drift computed analytically

The results are satisfying: both the analytic models to compute the long period and the secular
inclination drifts are acceptable and sufficiently accurate.

6.5 Atmospheric drag

The atmospheric drag is one of the perturbations with the greatest influence on near-Earth satellites.
The perturbing acceleration, that it causes, can be modeled as follow:

apdrag =
1

2

CDA

m
ρvrvr (6.17)

where:

• CD is the drag coefficient

• A is the effective cross-section area of the satellite

• m is the satellite mass

• ρ is the atmospheric drag

• vr is the satellite speed relative to the local atmosphere

The relative speed depends on the atmosphere rotation ωdrag speed:

vr = v − ωdrag × r

Its relative velocity component, imposed by the atmospheric angular velocity, causes the inclination
drift: it generates an acceleration component that is normal with respect to the orbital plane [29]:

apdragN = − ρvε

2
√
Q
rωdrag sin i cosα (6.18)

with ε = QACD
m , Q =

(
1 − rpωdrag cos i

vp

)2
, rp the satellite perigee distance and vp the satellite perigee

velocity. Applying equation (1.26), the inclination drift can be expressed as:

di

dt
=

r cosα

na2
√

1− e2 sin i
apdragN (6.19)

By means of this equations, it would be possible to get the long period drift of the inclination.
However, this evaluation is complicated. Indeed, even though a large literature exists on the atmo-
spheric drag, this is still one of the most difficult perturbations to evaluate. The reason is that it
depends on parameters, whose evolution is difficult to predict. The precision of the acceleration eval-
uation depends on the precision of the exploited atmosphere model since the parameters CD, ρ and
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Vr depend on it. In particular, the correct computation of the density is complex: this parameter
varies exponentially with the altitude, but it depends also on the solar hour, on the year epoch, on the
latitude, on the solar activity and on the geomagnetic activity. Very complex models which take into
account these factors have been developed. However, they cannot be exploited by AOC to compute
the inclination drift: indeed, there is no possibility to predict the solar activity and the geomagnetic
activity in a sufficiently accurate way. Consequently, another strategy has to be adopted.

King-Hele has developed formulas that can be used to compute the long period variation of the
inclination and of the other orbital parameters in a semi-analytic way for quasi circular orbits (e < 0.2).
He assumes that the atmospheric rotation velocity is proportional to the Earth rotation rate:

ωdrag = ζωe

Moreover, he adopts a very simple model for the density:

ρ = ρpe
− r−rp
Hscale (6.20)

where ρp is the value of the density at the orbital perigee and Hscale is an altitude scale. As in [21], he
considers all the orbital elements constant during one orbital period except for the true anomaly. After
having integrated over an orbital period, the inclination variation which he computes is expressed as
[19]:

∆i = −πaζωeερp
2n
√
Q

e−c sin i[I0(c)− 2eI1(c) + (I2(c)− 2eI1(c)) cos 2ω] (6.21)

where:

• c = ae
Hscale

• Is(c) is the modified Bessel function [30]:

Is(c) =
1

2π

∫ 2π

0
cos (sx)ec cosxdx

Dividing it for the orbital period, it is possible to obtain the long period inclination drift. The
problem of this formulation is linked with the correct computation of ρp. However, there is a way to
solve it. Indeed, it is possible to express the inclination drift as a function of the semi-major axis drift,
considering that the only long variation of this orbital parameter is due to the acceleration drag (see
Table 1.1) [29]. The semi-major axis long period variation is given by [19]:

∆a = −2πεa2ρpe
−c[I0(c) + 2eI1] (6.22)

Thus, we have:

∆i = C∆a (6.23)

C =
1

4

ζωe sin i

an
√
Q

I0(c)− 2eI1(c) + (I2(c)− 2eI1(c)) cos 2ω

I0(c) + 2eI1

As a consequence, it is possible to write:

di

dt
= C

da

dt
(6.24)

In this way, there is no a direct dependence of this formulation on the density. The values of
the altitude scale Hscale are furnished by Blitzer [19]. The semi-major axis drift can be computed
approximately by exploiting the values of the ∆a at the orbital ascending nodes. By measuring ∆aj
at a current ascending node j and having the measure of ∆aj−1 at the previous ascending node, da

dt
can be estimated as:

da

dt
∼ ∆aj −∆aj−1

T0
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This strategy is not optimal. Indeed, the inclination drift, estimated by applying equation (6.24),
includes the medium period, the long period and the secular contributions. It is no possible to isolate
the secular component or at least exclude the medium period one. In order to do that, the measures
done at a large number of ascending nodes should be exploited, which can be very expensive in terms
of computational time. If a lot of nodes are exploited, it would be necessary to take into account the
temporal variation of the coefficient C in equation (6.24): then, the long period drift would have to
be estimated as the mean of the values computed at the different nodes:

di

dtmean
=

1

n

∑
n

Cn
da

dt n

On the contrary, a shorter time interval allows to consider the coefficient constant, since the orbital
parameters variation in time is slow. Thus, it would be simply necessary to estimate an average semi-
major axis drift to determine an estimation of the long period inclination drift:

di

dtmean
= C

1

n

∑
n

da

dt n

In any case, the secular inclination drift cannot be determined and only an approximated value of
the long period drift can be found. It has to be verified that, assuming this last constant for a time
equal to the predictable horizon increased by one orbital period, the error is acceptable.

Several simulations are carried out to verify the validity of the strategy. MATLAB has been used
to compute the error. Missions B2 and D1 are taken into account. The simulations measures are used
to determine the average long period approximated trend of the inclination variation. This is used to
compute the local average real drift at the different times. The trend curve is determined by means
of the MATLAB moving-average filter (see Appendix A) (Figures 6.35-6.34).

Fig. 6.34: Mission D1 - real free evolution of ∆i
and estimated trend under the effects of the

atmospheric drag

Fig. 6.35: Mission B2 - real free evolution of ∆i
and estimated trend under the effects of the

atmospheric drag

The average real values of the long period drift obtained are compared to those computed using the
model in (6.24), considering the coefficient C constant. The measures at four, eight and sixteen
previous ascending nodes are used to approximate the semi-major axis drift. The average absolute
and relative errors are reported in Table 6.2 for mission B2 and in Table 6.3 for mission D1. The
results are shown in Figures 6.36 and 6.37. The error is significant, which is due to two main reasons.
First of all, the inclination drift formulation in equation (6.24) is based on a simplified model of the
atmosphere, while that exploited for the numerical propagation is more complex and accurate, since
it takes into account the solar and geomagnetic activity. Moreover, the outcomes confirm that the one
of the main issues of the strategy is linked to the medium period variations that cannot be filtered.
It can be observed that higher variations imply an higher error. Indeed, in mission B2 the error is
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lower because the medium period variations are reduced with respect to mission D1. Furthermore, at
the increase of the number of nodes exploited, the mean absolute error decreases. However, both the
average absolute error and the average relative error are still significant exploiting sixteen nodes.

Table 6.2: Mission B2 - average error of the inclination drift estimated as in equation (6.24)

Average absolute error [mdeg/s] Average relative error

measures at 4 nodes 1.18 · 10−6 290.73%

measures at 8 nodes 5.76 · 10−7 139.67%

measures at 16 nodes 1.28 · 10−7 37.8%

(a) n = 4 (b) n = 8

(c) n = 16

Fig. 6.36: Mission B2 - Average real long period inclination drift under the effects of the
atmospheric drag (blue) compared with drift computed semi-analytically and updated after a time
equal to the predictable horizon increased by one orbital period (red). The measures at n previous

node are used to estimate the drift.

Table 6.3: Mission D1 - average error of the inclination drift estimated as in equation (6.24)

Average absolute error [mdeg/s] Average relative error

measures at 4 nodes 1.89 · 10−7 1463.1%

measures at 8 nodes 3.8 · 10−7 157%

measures at 16 nodes 2.88 · 10−8 385%
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(a) n = 4 (b) n = 8

(c) n = 16

Fig. 6.37: Mission D1 - Average real long period inclination drift under the effects of the
atmospheric drag (lue) compared with drift computed semi-analytically and updated after a time

equal to the predictable horizon increased by one orbital period (red). The measures at n previous
node used to estimate the drift

The same simulations have been re-executed taking into account the temporal variation of the
coefficient C in equation (6.24). For mission B2, the results don’t change. For mission D1, if sixteen
nodes are used, the error decreases: the mean absolute error becomes 2.62 · 10−7 mdeg/s, the mean
relative error becomes 349%. Thus, if more than sixteen nodes are used, which could be done in order
to obtain an higher accuracy, it will probably be necessary to take into account the temporal variation
of C.

An alternative strategy can be exploited to determine the inclination drift due to the atmospheric
drag. It coincides with the same method already implemented in AOC: to estimate the average long
period drift by exploiting the measures of the ∆i values at the ascending nodes. At each node, the
total inclination drift over one orbital period is determined: by subtracting from it the long period
contributions due to the other orbital perturbations (the moon attraction, the sun attraction and the
terrestrial tides), the drift caused by the atmospheric drag is approximated. Then, the determined
values are used to get the mean. This strategy has the same problematic of the previous one presented:
the inclination drift estimation is subjected to the medium period variations. The only way to filter
them is to consider the measures at a large number of nodes, which has an impact on the computational
time. Indeed, at each node the long period contributions, due to the solar and lunar potentials and the
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terrestrial tides, would have to be computed. Even with this strategy, it is not possible to determine
the secular contribution, but only the approximated long period drift.

To evaluate the two strategies and comparing them, simulations involving all the orbital pertur-
bations have to be performed. This problem is discussed in the following section.

6.6 Inclination drift approximation: results

The three main perturbations that have to be considered in order to determine the secular or long
period inclination drift are: the solar potential, the terrestrial tides caused by the Sun gravitational
attraction and the drag. This last perturbation influence depends on the orbital altitude. The mis-
sions of interest for AOC involve very low orbits; so, the drag influence cannot usually be neglected.
This perturbation is the most complex to handle. In the previous section, two strategies have been
introduced. None of them is satisfying, because none of them allows to filter the inclination drift
from the medium period variations. In order to determine which strategy produces the smallest error,
several simulations are carried out. Missions D1 and B2 are exploited. The estimated inclination drift
is considered constant for a time equal to the predictable horizon increased by one orbital period,
after which it is updated. It is compared with an average real local drift evaluated on the basis of the
long period ∆i trend. This last one is determined as described in the previous section, for mission
B2. For mission D1, a simple least square fitting, based on a first order polynomial, has been used,
since the trend is linear. In the following, the strategy associated to equation (6.24) will be indicated
as method 1; the other strategy will be indicated as method 2. For both the methods, the estimated
drift is computed by considering the measures at sixteen previous ascending nodes.

Fig. 6.38: Mission D1 - real free evolution of ∆i
and estimated trend

Fig. 6.39: Mission B2 - real free evolution of ∆i
and estimated trend

The results for mission B2 are shown in Table 6.4 and in Figure 6.40. Those of mission D1 are
shown in Table 6.5 and in Figures 6.41 and 6.42. For mission D1, the solar gravitational attraction
and the terrestrial tides contributions are computed by means of both the long period model and the
secular model.

Table 6.4: Mission B2 - average absolute and relative errors of the inclination drift estimation,
executed considering the measures at sixteen ascending nodes

average method 1 method 2 drag
error neglected

absolute [mdeg/s] 2.89 · 10−7 1.11 · 10−6 3.69 · 10−7

relative 159.7% 630.55% 110.35%
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Fig. 6.40: Mission B2 - inclination drift estimated exploiting the measures at sixteen previous node

Table 6.5: Mission D1 - average absolute and relative errors of the inclination drift estimation,
executed considering the measures at sixteen ascending nodes

solar potential and average method 1 method 2 drag
terrestrial tides contribution error neglected

long period
absolute [mdeg/s] 6.52 · 10−8 3.67 · 10−7 6.42 · 10−7

relative 4.16% 23.39% 4.09%

secular
absolute [mdeg/s] 5.3 · 10−8 3.59 · 10−7 7.95 · 10−8

relative 3.38% 22.87% 5.064%

Fig. 6.41: Mission D1 - inclination drift
estimated considering the long period drift

models associated to the solar potential and the
terrestrial tides and exploiting the measures at

sixteen previous node

Fig. 6.42: Mission D1 - inclination drift
estimated considering the secular drift models

associated to the solar potential and the
terrestrial tides and exploiting the measures at

sixteen previous node

It is possible to observe that, the secular drift model is accurate as much as the long period one: so
it could be exploited for certain kind of missions. Moreover, it is evident that neglecting the drag can
not be an option: for mission D1 it could be acceptable, but not for mission B2, whose orbit is already
too low. From both the missions outcomes, it results that the most accurate method to include the
drag effects results to be method 1. Indeed, for the same number of nodes exploited to get the necessary
measures, method 1 gives better estimations of the long period inclination drift than method 2. This
is completely justifiable considering that, in method 2, the drift estimation is affected by the medium
period variations due to other perturbations, mainly the solar radiation pressure, in addiction to the
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atmospheric drag. To improve the accuracy, these medium period contributions should be modeled;
but, this is really complex since, as the atmospheric drag, also the solar radiation pressure effects
vary with the unpredictable solar activity. Moreover, method 2 is based on several analytic models:
even though these are accurate, the errors associated to them accumulate. Thus, with the objective
of exploiting a limited number of nodes, method 1 results to be more promising. However, its issues
concerning the model, discussed in the previous section, should be solved to increase its accuracy.
Indeed, it produces an important error, especially if the drag is the perturbation causing the main
contribution of the long period inclination variation, as in the case of mission B2; for mission D1, the
error is inferior only because the atmospheric drag has a significantly reduced effect in comparison to
the solar potential. It is expected that, increasing the number of nodes used to estimate the inclination
drift, the accuracy will increase for both the methods. However, for method 1, very likely, this would
imply to take into account the temporal variation of the coefficient C in equation (6.24).

The large error obtained for mission B2 can be caused also by another factor, which is not linked
to the atmospheric drag. The lunar potential effects have not been considered to estimate the drift.
Indeed, it causes inclination variations characterised by frequencies which are superior than those
induced by the other perturbations. However, there are contributions whose period is sufficiently high
to have potentially an impact.

6.7 Lunar potential contribution

The inclination variations due to the lunar potential have different characteristic periods: indeed the
inclination trend can be decomposed into several harmonics. Their period is usually lower than that of
other perturbations such that the lunar potential can sometimes be neglected in first approximation.
In particular, this is the case of low, non-dawn/dusk, sun-synchronous orbits, for which the secular
contributions of the Sun, the solar terrestrial tides and the atmospheric drag generate the main drift
contributions. However, for all the other kinds of orbits, there are some harmonics whose period is
sufficiently long to have an impact and to be taken into account. A study to determine the lunar
potential longer period contributions to the drift is carried out: it is based on the work of Kaula [23],
[13].

In Section 6.3, the Kaula formulation to express a third body potential has been introduced in
equation (6.6). This last one is exploited in order to determine the lunar potential drift contributions
with the longest periods. Considering that r << rA, the main components are those associated to
l = 2. The inclination variation is proportional to ∂VM

∂Ω and to ∂VM
∂ω . Indeed, applying equation (1.35),

the drift results to be:

di

dt
=

1

na2
√

1− e2 sin i

∂VM
∂Ω

+
cot i

na2
√

1− e2

∂VM
∂ω

∂VM

∂Ω
= −

GMMr
2

r3
M

2∑
m=0

l∑
p=0

km
(2−m)!

82 +m)!
mF2mpF2mh(i) sin (2− 2p)α− (2− 2h)αM +m(Ω− ΩM )

∂VM

∂ω
= −

GMMr
2

r3
M

2∑
m=0

l∑
p=0

km
(2−m)!

82 +m)!
(2− 2p)F2mpF2mh(i) sin (2− 2p)α− (2− 2h)αM +m(Ω− ΩM )

where subscript M is referred to the Moon. Integrating over one orbital period, it is possible
to determine the long period drift contributions. The lunar orbital parameters can be considered
constant, since the Moon angular velocity is significantly smaller than the orbital one. Moreover, as
in [21], also all the orbital parameters are considered constant except for the true anomaly.

Considering the following equivalences:

•
∫ T0

0
di
dtdt =

∫ 2π
0

di
dt

1
n

(1−e2)3/2

(1+e cos ν)2dν, having assumed constant the eccentricity

• sin [(2− 2p)α− (2− 2h)αM +m(Ω− ΩM )] = sin ((2− 2pi)ν) cos [(2− 2p)ω − (2− 2h)αM+m(Ω−
ΩM )] + cos ((2− 2pi)ν) sin [(2− 2pi)ω − (2− 2h)αM +m(Ω− ΩM )]
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• r2 =
(
a(1−e2)
1+e cos ν

)2

integrating over one orbital period implies to solve the following integrals:∫ 2π

0

sin[(2− 2p)ν]

(1 + e cos ν)4
dν∫ 2π

0

cos[(2− 2p)ν]

(1 + e cos ν)4
dν

The first one is always null for every value of p. The second one is always different from zero if
p = 1. If p = 0 or p = 2, the integral is null if e < 0.07. Since the orbits of interest are quasi circular,
the only significant contribution is that associated to p = 1. Thus the inclination drift will depend on
the only ∂VM

∂Ω . It can be divided into six components, associated to the different values of m ∈ [1, 2]
and h ∈ [0, 2]:

di

dt10
= − 1

6π

GMM

r3
M

(1− e2)3

n sin i
F211(i)F210(iM ) sin [−2αM + Ω− ΩM ]

∫ 2π

0

1

(1 + e cos ν)4
dν (6.25)
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n sin i
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∫ 2π

0

1

(1 + e cos ν)4
dν (6.26)
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= − 1

6π
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n sin i
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0

1

(1 + e cos ν)4
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0

1
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12π
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n sin i
F221(i)F221(iM ) sin [2(Ω− ΩM )]
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0

1

(1 + e cos ν)4
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di

dt22
= − 1

12π

GMM

r3
M

(1− e2)3

n sin i
F221(i)F222(iM ) sin [2αM + 2(Ω− ΩM )]

∫ 2π

0

1

(1 + e cos ν)4
dν (6.30)

where the integral
∫ 2π

0
1

(1+e cos ν)4dν can be easily solved by means of the trapezoidal rule (see Appendix

A). The sum of these contributions gives a very accurate estimation of the long period inclination
variation. Indeed, comparing it with that obtained by simulation, the resulting average relative and
absolute errors are 5.23% and 0.0080 mdeg, for mission B2 (Figure 6.43), 2.43% and 0.0087 mdeg, for
mission E (Figure 6.44).

Fig. 6.43: Mission B2 - estimated and simulated
inclination variations due to the lunar potential

Fig. 6.44: Mission E - estimated and simulated
inclination variations due to the lunar potential
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Analysing term by term, it is evident that the longer period contributions to the drift are associated
to h = 1, since they do not depend on the lunar argument of latitude: they are di

dt11
and di

dt21
. This

is confirmed also experimentally: see Figure 6.45. Thus, the longer period inclination drift due to the
lunar potential can be approximated as:

di

dt
= −GMM

r3
M

(1 − e2)3

n sin i

[ 1

6π
F211(i)F211(iM ) sin (Ω − ΩM ) +

1

12π
F221(i)F221(iM ) sin [2(Ω − ΩM )]

] ∫ 2π

0

1

(1 + e cos ν)4
dν

(6.31)

(a) Mission A2 (b) Mission B2 (c) Mission D1 (d) Mission E

Fig. 6.45: Estimated longer period contribution to the inclination drift due to the lunar potential

6.7.1 Inclusion of the lunar potential contribution

The longer period lunar contribution is added to the the contributions of the solar potential, the
terrestrial tides and the atmospheric drag. The new results obtained are shown in Table 6.6 for
mission B2 and in Table 6.7 D1 for mission D1.

Table 6.6: Mission B2 - average absolute and relative errors of the inclination drift estimation,
executed considering the measures at sixteen ascending nodes and including the lunar potential

longer period contributions

average method 1 method 2
error

absolute [mdeg/s] 1.069 · 10−7 1.06 · 10−6

relative 84.24% 556.7%

Fig. 6.46: Mission B2 - inclination drift estimated exploiting the measures at sixteen previous node
and including the lunar potential

101



CHAPTER 6. PERTURBATIONS EFFECTS OVER THE INCLINATION

Table 6.7: Mission D1 - average absolute and relative errors of the inclination drift estimation,
executed considering the measures at sixteen ascending nodes and including the lunar potential

longer period contributions

average method 1 method 2
error

absolute [mdeg/s] 2.34 · 10−7 4.45 · 10−7

relative 15.02% 28.55%

Fig. 6.47: Mission D1 - inclination drift estimated exploiting the measures at sixteen previous node
and including the lunar potential

As expected the mean error decreases in case of mission B2 and it increases in case of mission
D1. Indeed, including the lunar potential contribution improves the estimation of the long period
inclination drift, but the estimation of the secular inclination drift is degraded (see Figure 6.48). This
is the demonstration that the lunar potential longer period contributions can be neglected for sun-
synchronous orbit which are not dawn/dusk, but they have to be taken into account for all the others
orbits.

Fig. 6.48: Mission D1 - simulated free evolution of the orbital inclination compared to the one
estimated considering the long period solar potential, terrestrial tides, lunar and atmospheric drag

(method 1) contributions
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Even though the results improve, they confirm the conclusions deduced before the inclusion of the
lunar potential contribution. The error associated to method 1 is too significant, which implies that
the model has to be improved.

6.8 Future Work

In conclusion, further studies are necessary. The subject concerning the atmospheric drag has to be
deepened to find a better solution. The model of method 1 can be improved, for example by taking
into account the Earth oblateness and the variations of the altitude scales with the altitude and the
solar activity. Then, more simulations should be performed to test the validity of the model for a
largest sample of orbits. Moreover, it should be necessary to determine the number of nodes to take
into account in order to minimise the error for both method 1 and 2 and to compare the methods
in such a way to select that allowing to determine a sufficiently accurate solution, minimising the
computational time.
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Conclusion

The objective of the conducted work was the integration of a new kind of manoeuvre in AOC, the
CNES predictable autonomous orbit controller: mixed manoeuvres. They are useful to perform con-
currently the in-track and cross-track orbit control, which allows to improve the AOC station keeping
performances. Their integration has been conducted in such a way to maintain the original algo-
rithm working principles: they have been conceived as modified classical cross-track station keeping
manoeuvres to which a component is added if an in-track correction is necessary. Of course, some
limitations concerning the manoeuvres inclination over the orbital plane and their magnitude have
been taken into account in order to avoid the instruments glare and to fulfill the propulsion systems
constraints. The performed simulations show that the integration has been correctly executed and
demonstrate its utility: the results are consistent with the analysed missions characteristics and the
algorithm behaviour; the station keeping performances improve. In particular, as expected, the im-
provement is important for missions characterised by a low-thrust propulsion system. During this
work of integration, an optimiser has been realized to set the parameters with the largest influence on
the missions performances.

Finally, a new study has been started whose objective is to determine analytic and semi-analytic
models of the long period inclination drift, sufficiently accurate to be exploited by AOC for the cross-
station keeping manoeuvres computation. The main orbital perturbation causing long period and
secular variations of the low orbits inclination are the Sun gravitational potential, the terrestrial tides
and the atmospheric drag. The introduced analytic formulations of the drift due to these perturbations
are accurate, except for the atmospheric drag. The model associated to the Sun gravitational potential
was already exploited in the algorithm. An analytic model of the drift due to the terrestrial tides has
been determined: it allows to obtain very precise estimations. Finally, a semi-analytic model of the
drag effects has been introduced. The drag effects are the most complex to determine and it will be
necessary to continue the study of this subject in future. In future, it could be interesting also to
analyse the solar radiation pressure long period effects on the drift. The solar radiation pressure long
period contribution is almost negligible, but still present: it could be possible to estimate a priori an
appropriate constant value to take it into account in the drift estimation. Finally, it will necessary to
study the effects of the new proposed way to estimate the inclination drift on the algorithm behaviour,
mainly to determine if it is beneficial in terms of computational cost and station keeping performance.

Despite the promising results obtained with the integration of in-track cross-track manoeuvres and
the elevated station keeping performance obtained, the algorithm is not still able to fulfill completely
all the kinds of low-Earth orbit missions station keeping constraints. This is the main reason why the
study of the perturbations effects over the inclination drift has been performed. Thus, as first next
future step this study will have to be completed. Moreover, a similar study concerning the argument
of latitude acceleration will have to be performed.

104



Appendix A

A.1 Legendre polynomials and Legendre functions

For every l ≥ 0, a Legendre polynomial is defined as:

Pl(x) =
1

2ll!

dl[(x2 − 1)l]l

dxl
(A.1)

For every l ≥ 0, for every 0 <= m <= l, in the dominion [−1; 1], a Legendre function is defined
as:

Plm = (1− x2)
m
2
dmPl(x)

dxm
(A.2)

An important property of the Legendre functions and polynomials is the Legendre addition formula
[16]. Let be S1 and S2 two points belonging to the same sphere of latitudes and longitudes (φ1, λ1)
and (φ2, λ2) respectively. If θ is their angular distance, considering a frame centered at the sphere
center, it results that:

cos θ = sinφ1 sinφ2 + cosφ1 cosφ2 cos (λ2 − λ1)

Pl(cos θ) = Pl(sinφ1)Pl(sinφ2) + 2

l∑
m=1

(l −m)!

(l +m)!
Plm(sinφ1Plm(sinφ2) cos (m(λ2 − λ1))

A.2 Newton method

The Newton method is a numerical algorithm for computing an approximation of the roots of the
equation f(x) = 0.

Let be f(x) be a continuous differentiable function and let r be the searched root: f(r) = 0. The
Newton method is an iterative method that, starting from an initial guess x0, computes an improved
estimate xk of r at each iteration. It is based on the idea of linear approximation. Indeed at each
iteration the next estimate is computed as:

xk+1 = xk −
f(xk)
df(xk)
dx

From a geometric point of view, the method uses the slope of the function f(x) at the current
iterative solution xk to find the the solution xk+1 in the next iteration. The Newton method is
characterised by a locally quadratic convergence: from a suitable iteration, the number of correct
decimal places in the solution doubles after each iteration.

A.3 CMA-ES

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is an evolutionary strategy used to
solve non-linear non-convex black-box optimisation problems.
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It is possible to define a black-box optimisation problem as a problem whose objective is to minimise
a cost function

f : Rn → R
x→ f(x)

whose values at the evaluated search points are the only accessible information. The problem domain
is assumed continuous. The algorithms implementing CMA-ES generate randomly the search points,
by sampling a multivariate normal search distribution, N (m,C), characterised by a mean m and a
covariance matrix C:

xg+1
k ∼m(g) + σ(g)N (0,C(g))

k = 1, ..., λ

where

• xg+1
k is the k − th offspring (search point) at the g + 1 generation

• N (0,C(g) is a multivariate normal distribution with zero mean. It holds

m(g) + σ(g)N (0,C(g)) ∼ N (m(g)), σ(g)C(g))

• m(g) is the mean value at the g generation;

• C(g) is the covariance matrix up to the scalar factor σ(g) at the g generation;

• σ(g) is the step-size at the g generation.

A generation coincides to an algorithm iteration at which a set of search points (individuals) are
evaluated. After the analysis of each generation, the mean m and the covariance matrix C are
updated, until an acceptable solution is found. The covariance matrix updating is referred to as
covariance adaptation: it allows to reduce the number of f-evaluations needed to reach a target f-
value. At the first generation, the mean value coincides with the search point initial guess; the initial
covariance matrix is imposed as a diagonal matrix whose values are the guessed deviations of the initial
guess components with respect to those of the optimum. The new mean is computed as a weighted
average of ζ selected points, with 0 < ζ < λ:

m(g+1) =

ζ∑
i=1

wix
(g+1)
i

ζ∑
i=1

wi = 1

The new re-estimated covariance matrix is:

C
(g+1)
ζ =

ζ∑
i=1

wi(x
(g+1)
i −m(g))(x

(g+1)
i −m(g))T

Other covariance adaptation strategies can be adopted. For example, another possible estimator
to adopt after a sufficient number of generations can be the mean of the previous estimated covariance
matrixes. Indeed, in order to achieve a fast research, the population size λ at each generation should
be small. However, a small value of λ can imply bad estimator for the updated covariance matrix. As
a remedy, information from previous generations can be exploited, using the following estimator:

C(g+1) =
1

g + 1

g∑
i=0

1

σ2
i

C
(g+1)
ζ
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More detailed information about the algorithm and the other covariance adaptation methods can
be found in [31].

The CMA-ES is considered as state-of-the-art in evolutionary computation: it is used as standard
tool to solve continuous optimisation problem in research and industrial environment. It is imple-
mented in Java, Matlab, Octave and C, C++, Fortran and Phyton: it is possible to find the online
documentation in [32].

A.4 Moving-Average Filter

A moving-average filter is a common method used for smoothing noisy data [33]. It slides a window
of length along the data, computing averages of the data contained in each window. The following
difference equation defines a moving-average filter of a vector x:

y(n) =
1

windowSize
(x(n) + x(n− 1) + ...+ x(n− (windowSize− 1)))

A.5 Trapezoidal rule

The trapezoidal rule is a technique exploited in numerical analysis to approximate the integral:

I(f) =

∫ b

a
f(x)dx

with [a, b] finite. The trapezoidal rule consists in approximating f(x) by a straight line joining (a, f(a))
and (b, f(b)) and the area subtended by it by a trapezoidal region. Thus, the integral is approximated
as follows:

I(f) ∼
(b− a

2

)
[f(a) + f(b)]

If b−a is not sufficiently small, the trapezoidal rule is not sufficiently accurate. However, it is possible
to divide the integral into a sum of integrals over small sub-intervals, usually characterised by the
same length, and apply to each of them the trapezoidal rule:

I(f) ∼ b− a
n

(f(a) + f(b)

2
+
n−1∑
k=1

f
(
a+ k

b− a
n

))
with n ≥ 1, n ∈ N. It is possible to find further details in [34].
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