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Abstract

The development of Internet based communication systems, such as so-
cial networks, chat services, etc., has exponentially increased the amount
of multimedia objects we can share with other people. The parallel dif-
fusion of easy-to-use editing tools poses issues on the authenticity of the
content we are seeing. With the pervasiveness of social media in every-
day life, including politics, the malicious use of these edited objects is
a threat to the personal and public safety of people. There is therefore
an urgent need for tools that automatically determine the authenticity
of the content at hand, which are the object of study of the multimedia
forensics research field. Goal of this thesis is the development of an effi-
cient methodology for the detection of malicious editing on video signals.
Specifically, we resort to deep learning tools, convolutional and recurrent
neural networks in particular, to identify and localize image-based at-
tacks, consisting in the addition of portions of other source videos in
order to alter or hide the content of the original signal.

We address this task using an anomaly detection approach. We pro-
pose different types of autoencoders, networks designed to learn a reduced
dimensionality representation of their input. Training them to perfectly
reconstruct non-altered portions of videos, image-based attacks are local-
ized as regions of the input that are badly reconstructed. By measuring
the reconstruction error, we are able to create an heatmap of the pos-
sible attacks. We train three different families of autoencoders, both in
a recurrent version, where we resort to the convolutional LSTM model,
and in a non-recurrent one, where instead we use convolutional neural
networks only.

Part of the novelty of this work consists in the way we look at the
video signal. Considering it as a volume, we train each family of networks
to reconstruct it from different perspectives, by "rotating" the volume of
90◦ along the frame axes. The use of the convolutional LSTM model,
along with this volume rotation procedure, to the best of our knowledge
have never been tried in literature, and we show that in some scenarios
help the localization of the attack.

To train the autoencoders, we resorted to different forms of loss func-
tions. Among them, we propose a regularization term that empirically
enabled us to achieve the best results in our tests.

The results obtained pave the way to future lines of research, such
as the use of neural networks that are more suited for handling video
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data according to the "volume" paradigm and semantic (3D convolutional
neural networks indeed), or the integration of the different perspectives of
the rotated volume in a single model. Using semi-supervised approach, or
mixing unsupervised and supervised approaches, are also viable options.



Sommario

Lo sviluppo di sistemi di comunicazione basati sull’utilizzo della rete,
come i social network, le app di messaggistica istantanea, etc., ha espo-
nenzialmente aumentato la quantità di contenuti multimediali scambiati
fra le persone ogni giorno. La diffusione, allo stesso tempo, di strumenti
di editing dal facile utilizzo, pone il problema di valutare l’autenticità del
contenuto che stiamo osservando. Considerando la pervasività dei social
media nella vita di tutti i giorni, e in ambiti sensibili come quello politico,
l’uso illecito o malevolo di questi strumenti di editing è una seria minac-
cia per la sicurezza privata, e pubblica, di un gran numero di persone.
Vi è pertanto un bisogno urgente di strumenti in grado di determinare in
modo automatico l’autenticità di contenuti multimediali. Tali strumenti
sono oggetto di studio del campo di ricerca della forensica multimediale.

Obiettivo di questa tesi è lo sviluppo di una metodologia per l’identi-
ficazione di operazioni di manomissione su segnali video. In particolare,
utilizziamo strumenti di deep learning, reti neurali convoluzionali e ricor-
renti, per identificare e localizzare i cosiddetti image-based attack, ovvero
le addizioni di porzioni di video esterni usate per alterare o nascondere
il contenuto originale del segnale.

Affrontiamo il problema utilizzando un approccio ispirato al campo
della anomaly detection, proponendo diversi tipi di autoencoder, reti
progettate per imparare una rappresentazione di dimensionalità ridotta
del proprio input. Addestrando queste reti a ricostruire perfettamente
porzioni di video non alterate, gli image-based attack sono localizzati
come regioni del video in input che sono ricostruite sommariamente. Mis-
urando l’errore di ricostruzione, siamo in grado di creare una heatmap
delle zone attaccate. Addestriamo tre differenti famiglie di autoencoder,
declinate sia in una versione ricorrente, basata sul convolutional LSTM
model, sia in una non ricorrente, basata invece solamente sulle reti neurali
convoluzionali.

Parte del contributo innovativo di questo lavoro consiste nella modal-
ità con cui osserviamo il segnale video. Considerando il video come
un volume, addestriamo ogni famiglia di reti a ricostruirlo da differenti
prospettive, "ruotando" il volume di 90◦ lungo gli assi dell’immagine.
L’uso del convolutional LSTM model, insieme alla procedura di rotazione
del volume, a nostra conoscenza non sono mai stati proposti in letter-
atura, e mostriamo come in alcuni scenari possano aiutare la localiz-
zazione dell’attacco.
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Per addestrare gli autoencoder, ricorriamo a diversi tipi di loss func-
tion. Tra di essi, proponiamo un termine di regolarizzazione che em-
piricamente ci ha permesso di raggiungere i migliori risultati nei nostri
test.

I risultati ottenuti aprono diverse future prospettive di ricerca, come
l’uso di reti neurali che siano più adatte all’elaborazione dei segnali video
secondo il paradigma e la semantica dei "volumi" (come ad esempio le reti
neurali convoluzionali 3D), o l’integrazione delle differenti prospettive del
volume ruotato all’interno di un unico modello. Altre opzioni percorribili
sono l’uso di approcci semi-supervisionati, o l’utilizzo di approcci misti
supervisionati e non supervisionati.
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Introduction

In the last few years, the development and diffusion of low-cost com-
putational devices such as smartphones, tablets, etc., together with the
spreading and improvement of Internet connections all around the world,
has given a further boost to the already impressive development of the
World Wide Web as the most preferred tool for connection and commu-
nication among people.

The combination of these factors, along with the rise of social media
and chat services like Facebook, Instagram, Twitter, WhatsApp, Tele-
gram, etc., has guided the type of virtual interactions between people
towards forms that are usually integrated by, if not completely centered
on, some kind of multimedia content sharing. Considering that the type
of content accessible by web sites nowadays is almost always integrated
with images, videos or audio files, and that this trend couples together
with the presence of peer-to-peer file sharing systems of different nature
from the early ’90s like Napster, eDonkey, etc., the dimension of multi-
media content shared on the Internet has now reached really impressive
numbers1. While on one hand, we can think of this phenomenon as a
direct manifestation of the democratic nature of the Web, where infor-
mation can be shared and obtained freely by anybody, on the other this
free exchange of data poses severe issues on whether we can trust the
authenticity of the content we are seeing.

In 2016, the defense minister of Pakistan Khawaja Muhammad Asif,
reacting to a false article published on a website reporting that Pakistan
had been threatened with nuclear weapons, wrote a menacing Twitter
post directed to Israel [12]. This is a clear example of not verified con-
tent available on the Web (a so called "fake news"), that could lead to
a potential terrible outcome since both countries have a nuclear arsenal.
This example clarifies the urgent need for tools that are able to automat-
ically verify the authenticity of the uploaded material, being a fake news
or a forged image, video or audio file. This is one of the main object of
study of the multimedia forensics community.

Multimedia forensics is a discipline mainly concerned in assessing the

1The statistics offered by this website [11] give an overall idea on the dimension of
data exchanged through social networks and chat services alone. The figures are quite
impressive, and give just a little picture of what Big Data is really about. However,
this theme is of no concern for this thesis.

xv
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trustworthiness of a multimedia content, that is a digital (multidimen-
sional) signal like an image, audio, or video file. In fact, the vast offer
of dedicated software, from entry-level to professional tools, for editing
almost any type of multimedia file, has made in the recent years dig-
ital objects authentication and validation significantly harder. Digital
photographs or videos, for instance, which are largely used to provide
objective evidence in several applications ranging from surveillance to
legal and medical services, can no longer be trusted since their integrity
might be compromised [13]. Besides, due to the wide diffusion and per-
vasiveness of Internet’s social media in today’s society, cases such those
of the minister Khawaja suggest that the possible dangers resulting from
a forged content can arrive from areas completely different from the legal
or medical ones. Forged photos or videos can be used for creating politi-
cal tensions, with unthinkable consequences, and for this reason they are
starting to be considered as destabilising factors even by governmental
agencies [14].

Anyway, forged multimedia content is somehow recognizable, not only
by some skilled professional looking at its actual content, but also in an
automatic way from a signal processing perspective. Indeed, the main
idea behind multimedia forensics is that most of the operations that
alter the authenticity of a signal are not reversible. Depending on the
specific nature of the signal itself and of the operation executed, each
step of the forging process alters in a more or less detectable way the
underlying features of the multimedia object, leaving some kind of traces
or footprints behind. Therefore, by simply looking for the characteristic
footprints left by an editing operation, it is possible to reconstruct at least
part of the processing chain that the object has undergone.

Great parts of the research efforts of the multimedia forensics com-
munity has been directed towards the analysis of still images. For giving
an idea of the results obtained in this field, nowadays forensics techniques
allow to determine many steps of the processing history of an image [15]
[16] [17], whether it has been altered through cut and paste operations
from other images, or if part of it has been artificially modified and how.
However, in spite of the rich literature available on images, forensics anal-
ysis of video signals presents many unexplored area of research [18].

This is partly due to the specific nature of video signals which are
difficult to manage for their dimensionality and size, and partly due to
the wider range of possible forgeries that can be executed on the orig-
inal content in order to alter it. Indeed, considering videos simply as
sequences of frames, all alterations that can be performed on still im-
ages can be executed singularly on each video frame too. Moreover, the
forger might think of working directly in the temporal dimension, erasing
or hiding details from the scene. The spread of powerful yet easy-to-use
video editing tools, such as Adobe Premier, FaceSwap or Adobe After
Effect CC, enlarges the set of options available for the forger.

All these different, yet concurring, aspects make the work of forensics

https://www.adobe.com/it/products/premiere.html?gclid=EAIaIQobChMI8Kvxvv784gIVhc13Ch3-cg3mEAAYASAAEgJqD_D_BwE&sdid=8DN85NTV&mv=search&ef_id=EAIaIQobChMI8Kvxvv784gIVhc13Ch3-cg3mEAAYASAAEgJqD_D_BwE:G:s&s_kwcid=AL!3085!3!340617944562!e!!g!!adobe%20premiere
http://faceswaplive.com/
https://www.adobe.com/it/products/aftereffects.html?gclid=EAIaIQobChMInbjO4NDu4gIVC6QYCh2MMAbfEAAYASAAEgKzrfD_BwE&sdid=8DN85NTV&mv=search&ef_id=EAIaIQobChMInbjO4NDu4gIVC6QYCh2MMAbfEAAYASAAEgKzrfD_BwE:G:s&s_kwcid=AL!3085!3!340641302794!e!!g!!adobe%20after%20effects
https://www.adobe.com/it/products/aftereffects.html?gclid=EAIaIQobChMInbjO4NDu4gIVC6QYCh2MMAbfEAAYASAAEgKzrfD_BwE&sdid=8DN85NTV&mv=search&ef_id=EAIaIQobChMInbjO4NDu4gIVC6QYCh2MMAbfEAAYASAAEgKzrfD_BwE:G:s&s_kwcid=AL!3085!3!340641302794!e!!g!!adobe%20after%20effects
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researchers in detecting some characteristic footprints in the content un-
der analysis more difficult when dealing with video signals. As we have
already said, "footprints" depend on the type of signal and on the type
of forgery executed, therefore some kind of knowledge of the attack from
the researcher which has to devise a method for detecting it is needed.

In the recent years, with computational devices increasingly getting
cheaper, techniques coming from the deep learning field have regained
popularity in different research applications. The main assumption be-
hind these techniques is that if we have a reasonable end-to-end model
that formulates our problem, together with enough data to train it, so
to tune its parameters, we are close to solve it. The multimedia forensics
community has started recently to approach these methods, also called
data-driven algorithms, since they show the appealing property of
learning by themselves, directly from the data, the features characteriz-
ing the footprints left by a forging process [19] [20] [21] [22].

Goal of this thesis is to try to apply deep learning algorithms in
order to detect whether and where a video signal has been tampered.
In particular, our work has been focused in using convolutional and
recurrent neural networks (CNNs and RNNs), in order to local-
ize specific regions of video signals forged by the addition of material
coming from another source object. This is the so called splicing or
image-based attack. CNNs are tools developed in their most known
and diffused form starting from the ’80s. They have been applied with
success for different tasks, included imaging and vision [23] [24], and re-
cently they have started to be applied with good results in the image
and video forensics fields too [19] [25] [26]. RNNs instead are tools ex-
plicitly designed to capture patterns and dependencies in sequences of
data samples. Their most famous model, the Long Short Term Mem-
ory (LSTM), has been proposed originally in 1997 [27], and in the last
years it has been applied widely in almost every task involving time-series
data like speech recognition, handwriting recognition, polyphonic music
modeling, etc [28].

In our work, while still utilizing these tools belonging to the area
of deep learning, we tried to cope with one of the main difficulties en-
countered by multimedia forensics researchers: the scarcity of datasets of
forged content. In order for deep learning algorithms to work in fact, well
organized datasets are needed. Referring ourselves to the specific context
of the multimedia forensics, this often translates in having a dataset con-
taining samples of both forged and "clean" objects in a sufficient number
in order to make the algorithm "learn" to discriminate between the two
classes. However, this is seldom the case, mainly due to the lack of forged
data.

We tried therefore to address this problem taking inspiration by the
work done in the video anomaly detection field. Anomaly detection
is a subdiscipline of unsupervised learning whose main goal is, given a set
of training samples containing no "anomalies", to learn a representation
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of data that captures the behaviour of "normal" samples in some kind of
feature space. Anomalies are therefore defined as samples deviating from
this normal behaviour, with the deviation measured in different ways,
for instance like the approximation error of the anomaly projection in a
vector space, or like a posterior probability of seeing the anomaly given a
distribution modeling the normal samples. We can see that considering
the "normal" behaviour of samples that of clean content, and "anomalous"
that of forged content, we can cast the forensic problem of detecting if a
video has been tampered with as an anomaly detection one.

Anomaly detection for video signals presents the same problems re-
lated to the high dimensionality structure of videos faced by multimedia
forensics. Employing deep learning methods has offered therefore the
same appeal to the researchers of this area, and in fact in the last years
many contributions to the literature using deep learning methods have
appeared [29].

In our case, we resorted to the idea of using CNNs and RNNs as au-
toencoders, tools able to reconstruct the signal gave as input to them.
"Training" these algorithms to perfectly reconstruct forged-free videos,
we show that they are able to detect forging simply by "badly" recon-
structing the video in forged areas. Confronting the original tampered
video with the reconstructed one, measuring the deviation of the re-
construction through a measure of error, areas with high reconstruction
error are highly probable forged for the addition of material coming from
another object. Interested in how the use of a model that takes into
account sequentiality along a dimension of the input data might improve
the detection performances, we have devised and compared two different
versions of autoencoders: one, based on CNNs, which is not recurrent,
and therefore works on each video frame separately; one based on the
LSTM model, which instead works considering sequences of frames ex-
tracted from the videos.

Other authors have approached the video forensics problem in a way
similar to ours: we cite the work done for image forensics in [5] and in
video forensics in [8]. This last paper particularly has been chosen as
a starting point for this thesis: in first place, because the authors have
used RNNs, and secondly because they have published the dataset on
which they have worked, which was used for our tests too. However, our
work differs from theirs for two main reasons.

First, in both works they resorted to deep learning models starting
from features extracted from the images/frames 2, while we have directly
worked with the pixel data of the videos. Therefore, our models differ
significantly, and in fact the ones which can be considered the closest to
our work are those presented by [29] as reconstruction and predictive
models. Specifically, we cite works using models that take into account
explicitly the sequentiality given by the temporal dimension in video

2In particular, they used co-occurrences extracted from the residuals of a third-
order high-pass filter for each image/frame.
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data such as [30], using LSTM networks like for instance [31], and more
specifically those using convolutional LSTM networks i.e. [9]. This
last paper employs the same recurrent neural network architecture used
by us, convolutional LSTM networks indeed, which was first proposed by
Shi et al. in [32] for precipitation forecasting problems. To the best of
our knowledge however, this kind of network has never been applied to
the video forensics task.

Secondly, another novel aspect of our work is that we analyze each
video from different perspectives. A video signal can be considered as a
simple sampling over a 3D lattice of a function s(x, y, t) representing the
evolution of luminance along the time axis in a spatial location defined
by the cartesian coordinates x, y. From another point of view, we can
consider all the samples corresponding to a time instant t as an image
or frame of the video. We have already said that RNNs are models ex-
plicitly designed to exploit patterns in sequences of data samples, but in
video processing areas they have usually been used in order to capture
information along the time axis only. In order to obtain a representa-
tion of clean content more and more robust, we have trained different
models of our autoencoders, both the recurrent and non-recurrent ver-
sion, changing the axis along which we wanted to focus the attention of
the networks. This operation can be viewed, if we consider the whole
video data as a 3D volume, as a "rotation" of the volume that allows the
autoencoders to represent the same information from a different point
of view, while preserving the semantic of the data. We will show that
this approach helps our autoencoders in detecting some of the malicious
manipulations that are not detectable when considering videos as only a
sequence of frames along the temporal dimension.

The thesis is organized as follows.
In Chapter 1 we provide a general background on the deep learning

tools used and on the video forensics problem in general.
In Chapter 2 we present some techniques and state of the art meth-

ods for tampering detection and localization in both image and video
forensics.

In Chapter 3, we describe the proposed methodology along with the
models and architectures developed, including a general formulation of
the problem of tampering detection and localization and a description of
the volume rotation operation.

In Chapter 4, we illustrate the dataset used and the experiments
performed with some considerations on the results obtained.

Finally, in Chapter 5 we draw the final conclusions on our work and
we outline some possible future lines of research in this same topic.





1
Theoretical background

This chapter aims at providing to the reader who is not acquainted with
the matter of this thesis the necessary theoretical background in order
to understand its results.
We will first illustrate the main concepts behind multimedia forensics
techniques, remarking the main goals of this discipline and the differ-
ences between active and passive methods for achieving them, and then
in a separate section introduce the main deep learning tools used in
our work. In particular, we will focus first on some general concepts of
machine learning, and then on convolutional and recurrent neural
networks and autoencoders.

1.1 Multimedia forensics: a brief introduc-
tion

In the previous pages we have analyzed how the evolution of the Internet-
based media communication systems, along with the diffusion of devices
and tools allowing an easy manipulation and editing of multimedia con-
tent, has made the need for multimedia forensics techniques more and
more pressing for different types of applications.

To assess the content authenticity and trustworthiness, we can rely
on two main categories of methods: active and passive. While the first
are based on the idea of a trustworthy acquisition device, meaning that
at acquisition time a particular signature or watermark is computed
such that the authenticity of the multimedia object can be assessed by
simply looking at it, the second comprehends all the techniques that
blindly analyzing the content at disposal try to determine its genuine-
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ness. The former methods are seldom adopted, since they require a set
of implementation duties all on the acquisition device producer. The lat-
ter techniques instead constitute the main research field of multimedia
forensics experts.

The core idea of passive methods is the identification of forging by
searching for characteristics footprints left during each of the stages
of a multimedia object lifecycle. Every digital signal lifecycle1 in fact can
be divided into three main steps: acquisition, coding and editing,
each of them characterized by some non-linear operations that generate
some more or less recognizable artifacts on the resulting object.

For images and videos, acquisition consists in the generation of a
digital signal through the focusing of the light coming from a natural
scene into the camera active-pixel sensor (APS), an integrated cir-
cuit made by the combination of thousands of small units called pixels,
which in turn consist of a photodetector and an active amplifier. Light
generally is focused by means of lenses on pixels, but not directly: in
fact, a thin film is interposed between the lenses and the pixels so that
only certain components of light are actually captured. This film is the
so called Color Filter Array (CFA), which makes each pixel gather
only one particular colour (green, red or blue). The overall image or
video frame is then obtained by interpolating the different components
captured by the pixels of the APS, obtaining the digital colored image.
This is the so called demosaicing process, which is usually followed by
additionally elaboration and processing like white balancing, color pro-
cessing, etc. Typical footprints that we can found left at this stage are
related to lens characteristics (like artifacts left by the phenomenon
of the chromatic aberration), APS characteristics (like the Photore-
sponse Non Uniformity noise, PRNU), and the pattern used in the
demosaicing process, and are common to image and video signals.

After acquisition the image or video is saved into the memory of the
digital camera, and to accomplish this task usually they are coded or
compressed to save space. The compression schemes used are in general
lossy, and one of the most common standards applied for images is the
JPEG (see figure 1.2 for an example of processing chain of a lossy com-
pression codec). Typical artifacts left by JPEG for instance are related
to the blocking and quantization operations performed by the codec,
and can be found not only in images but in video frames too, since many
of the most common video compression codecs use operations similar to
those of JPEG in part of their processing chain. However, even though
the acquisition of a video signal can be considered as a repetition in time
of the image acquisition stage, video codecs are not a mere application of
image standards for compression frame by frame: they usually exploits
temporal redundancy in order to reduce the amount of information to
encode. Therefore, along with JPEG-like traces, we can found artifacts
connected to the spatial and temporal prediction techniques used

1The scheme in figure 1.1 resumes the typical lifecycle of a digital image.
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to further reduce the information encoded. Typical video formats of this
type are the MPEG-x, H.26-X or 3GP for instance.

Finally, we arrive to the final stage of a multimedia object lifecy-
cle, the editing. This step comprehends any kind of signal processing
manipulation that can enhance or modify its content. For images, we
range from filtering, blurring, sharpening, etc., to geometric transforma-
tions (rotations, scaling, etc.), cloning (copying and pasting portion of
the image on the image itself) to, finally, splicing, which consists in
the composition of an image using parts taken from other images. Ob-
viously, each operation executable on single images can be executed on
single video frames too, therefore comprehending the splicing altogether
a new range of attacks that exploit the temporal dimension in order to
cover or alter the video’s content. Footprints left in editing are extremely
various and strongly depends on the type of operation performed: in our
work we focused on splicing, most specifically on splicing localization,
and we refer the reader to the following chapter focused on the SOA
methods for tampering detection and localization for images and videos.

Each of the traces described so far can be used for a wide range of
tasks. In the literature, methods that look for acquisition stage footprints
are commonly used for device identification, while coding footprints
for determining if a double compression has been executed on an image
or video, and both of them along with some other specific footprints are
used for editing detection 2. In general, by detecting the footprints we can
reconstruct the lifecycle of the object under our analysis, and therefore
expose any possible forging that it might had undergone. A detailed
overview regarding the different footprints and the tasks they are used
for by multimedia forensics researchers is out of the scope of this thesis,
but can be found in [17] for images and in [18] for videos.

While the presence of these artifacts is related to the non-linear op-
eration characterizing each lifecycle stage of the multimedia content, is
a duty of the researcher the development of methods for detecting them,
and of course the development of algorithms that use these footprints to
accomplish the task at hand, being a device identification or a tampering
detection. This is why in the recent years, deep learning techniques
have gained a great popularity in the multimedia forensics community.

1.2 Convolutional and Recurrent Neural Net-
works and autoencoders

Before analyzing the SOA for image and video tampering detection, we
dedicate some time to the description of the deep learning tools used in
our work. As we stated previously, the use of deep learning techniques has
gained a great appeal in the multimedia forensics community in the recent

2For instance, double compression detection is considered as a sign related to the
presence of an out-camera processing.
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Figure 1.1: Image lifecycle stages. Videos’ lifecycle is almost identical, with
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introduced depending on the codec (for instance, the blocking artifacts of the
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years. Deep learning can be considered as a subfield of the machine
learning research area, and before the recent rise of deep learning tools
machine learning techniques have been consistently used by multimedia
forensics researchers too. But what do we mean by machine learning?

1.2.1 Machine learning and deep learning basics
Following the classic definition by [33], a machine learning program is
defined as a program which can improve its performance accomplishing
a certain task T with respect to some performance measure P, using
experience E. The task T is usually described in terms of how the program
should process a certain input, which is composed as a set of features
quantitatively measured from the object or event we want the program
to elaborate, in order to produce a desired output. Features are almost
always organized in vectors xi ∈ Rn, with each vector xi being a new set
of n features fed to the program.

In the context of multimedia forensics, the task at hand depends on
the goal of the forensics analysis, whether it is a device identification,
a splicing detection, etc.; the input instead is made out of the foot-
prints extracted by the researcher from the multimedia object. We can
see therefore how machine learning techniques helped the researchers,
since they allowed, given the footprints extracted from the object under
analysis, to automatically derive an algorithm capable of accomplishing
the task. However, these techniques show a major drawback: their per-
formances are heavily influenced by the way data are presented to the
program, meaning that depend on the features extracted from the raw
objects. In our case, this means that these algorithms need to be pro-
vided with meaningful footprints, leaving to the researcher the major
duty of the forensics analysis.

Manually designing features is a time-consuming work that can keep
busy a research community for years. Therefore, it would be greatly
desirable to have some mechanism through which we can extract the
footprints in an automatic way too. In other words, it would be desirable
to let the program learn directly from the data a useful representation
in order to accomplish the task. This is the main object of research of
representation learning, not only let the program learn how to process
the representation, but allow it to learn the best representation, so the
best set of features, to produce the desired output.

Deep learning can be considered as a subset of the machine learning
research field that incorporates the ideas from representation learning.
Core of this set of techniques is the use of neural networks, of which
the most common and used versions are the Multi Layer Perceptron
(MLP) and the Convolutional Neural Networks (CNN)3.

3We will explain in details this second type of networks along with the other tools
used in this work, while for a deeper discussion of the MLP we address the reader to
the classical book on deep learning by Goodfellow et al [1].
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Without going too much deep into details, we can say that both ty-
pologies of networks base their functioning on the construction of a good
representation of the input data through the stacking of simple modules,
called layers. Each layer is a simple mathematical function mapping in-
put to output values, where the output is a new representation of the data
that is used by the successive layer. Concatenating this outputs together
substantially creates a hierarchical list of concepts, with each concept
defined starting from simpler ones (the outputs of the previous layers),
allowing to construct representations that are more and more abstract
with respect to the starting input data (see figure 1.3 for an example).
The depth of a model therefore refers to the number of layers concate-
nated together. But how can these networks learn the representation and
the task?

Figure 1.3: Illustration of a deep learning model, taken from [1] page 21. We
can see how the different layers construct more and more abstract represen-
tations that, from the raw pixel data in input, allow to identify the different
objects present in the image.
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They learn the representation while learning the task. All machine
learning, including deep learning and multimedia forensics, tasks can be
roughly divided into some general categories. The most common are
the simplest ones like classification of the input into some category,
or predicting a continuous numerical value given a input (regression).
However, we can develop even some more elaborated computations like
image description, machine language translation, or some very
specific jobs like probability density estimation or anomaly de-
tection, where the program is asked to model a particular category of
events/input and flag those inputs which are unusual with respect to the
category modeled.

For all of these the role played by the performance measure P is
crucial in determining how the model learns both the task and the rep-
resentation. The performance measure is a quantitative measure of the
overall behaviour of the model, and is the main, and only, means through
which the model itself can learn the task.

This statement is clearer if we analyze the process through which
these networks are able to learn, which is called training. Training
is generally an iterative procedure, consisting in the processing of some
inputs by the algorithm (the training set) and the update of the model’s
weights by the maximization/minimization of the performance measure
used to evaluate it after it has processed the inputs.

All machine learning algorithms indeed are written in a parametric
form, where the parameters are usually called weights. At the beginning
of training these are set usually randomly or with some initialization
procedure, and during training are updated accordingly to the form of
the model and the task (and loss) being taught to the algorithm. In the
case of classification or regression, the performance measure is defined as
a loss function, a function that quantifies the value of an hypothetical
loss when an input is misprocessed compared to a desired output, and
the values of the weights are found by computing the gradient of the
loss function with respect to the weights of the model and posing it equal
to zero. In formulas, we can express the output of the algorithm as

y = f(x;w), (1.1)

with x being the input and w the parameters of the model, and our
loss function J(y; ŷ;w) as a function of the output, desired output ŷ
and of the weights. Example of loss functions are the mean squared
error (MSE) for regression tasks, for instance, or the cross entropy
for classification. The equation for finding the best set of parameters w∗

given J(y; ŷ;w) is then equal to

∇wJ(w
∗) =

∂J(w∗)

∂w
= 0. (1.2)

where we have omitted the other variables of the function.
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Some algorithms permit a closed form solution for equation 1.2 that
leads to the best performances; others need iterative algorithms that
update the weights sequentially during training. The latter is the case of
neural networks, where the most common used algorithm is the stochas-
tic gradient descent (SGD) and its variants (like Adam [34]). The
value of the weights is found iteratively using the following formula, where
k indicates the step of the algorithm and α is a convergence parameter

w(k+1) = w(k) − α∇wJ(w), (1.3)

until some convergence criteria is met.
While this method might seem really simple, it has some numerical

implementation details that are critical. Neural networks can implement
some really complicated computational graphs, due to the stacking
of the different layers. On one hand, this stacking gives them great
flexibility in learning very difficult mappings from input to output, but
on the other makes the computation of the gradients not an easy task.

The reason lies on the fact that each layer has a parametric form of its
own. Sequentially stacking functions makes more difficult to understand
which parameter of which function influenced the final result, and there-
fore when training the model we should update each weight of each layer
accordingly to how it determined the final output. Mathematically, this
problem translates in computing the gradient of the final output function
1.1, which derives from the composition of the function of the different
layers. We solve this problem using the chain rule of calculus. A
simple example is given in figure 1.4, where the final output function can
be expressed as

t = f3(z) = f3(f2(y)) = f3(f2(f1(x))), (1.4)

and the update of the weights to be inserted as the second term of
equation 1.3 can be computed considering pair of nodes of the computa-
tional graph as

∂J

∂wij

=
∂J

∂yj
· ∂yj
∂xi

· ∂xi

∂wij

, (1.5)

with y being the output, x being the input and w the weights of the
layer between the nodes i, j of the computational graph.

Output
layer	1	y

Input
x

Output	
layer	2	z

Final	
output	w

f1 f2 f3

Figure 1.4: Example of a simple computational graph of a 3-layer neural
network. Each element of the graph is a variable, input/output of a layer, and
each edge a function implemented by the layer.

The algorithm of computation of the gradients from the loss for each
weight of the layers of the network is referred to as backpropagation
(backprop).
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Training neural networks therefore can be thought as a two phase
"sweep" iterative procedure:

1. a forward computation of the output of the network given the
input, comprehending the performance measure altogether;

2. a backpropagation of the gradients computed from the loss in
order to update the model’s weights;

3. repeat until the model reaches some desired performance.

To this end, it is recommendable to evaluate the performance not only
on the data used for training, but on some unseen examples in order to
have a better and clearer idea of the generalization capabilities of the
model. For this reason, usually the data available for training a neural
network is split into three different sets:

• a training set, used for training indeed and for updating the
model’s weights;

• a validation set, used for stopping the training;

• a test set, used to evaluate the general performance of the model
at the end of training.

The motivation behind this approach is the fact that training loss
is generally an optimistically biased measure of the performance of the
model. Validation loss instead can be considered as a more unbiased
measure, and can be used for determine different characteristics of the
models like the number of layers, type of function implemented etc., that
are usually called hyperparameters (parameters not determined with
training). This is the so called model selection procedure, which is
used to compare different design patterns and architectures to find the
most appropriate for the task.

With this final remark we close the introduction on the deep learning
basics of the section. In the next pages we will explain in more details
the functioning of CNNs and recurrent neural networks (RNNs).
We will then close the chapter illustrating the «quintessential example of
a representation learning algorithm»[1], the autoencoder.

1.2.2 Convolutional Neural Networks (CNNs)
Convolutional Neural Networks are a specialized kind of neural net-
works for processing data with a grid-like topology. Examples of this
kind of input are digital signals, since they are the result of a sampling
process, and we can think of the sampling process as the conversion of
a continuous signal into a sequence of discrete values (samples) gathered
by an imaginary regularly spaced grid lying in the physical dimensions
where the signal lives. Obviously images, which can be thought of a
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2-dimensional grid of pixels, or any time-series data like audio files or
videos, the latter which can be considered as a sampling over a 3D lat-
tice of a function s(x, y, t)4, are examples of this kind of data.

As we said before, CNNs are constituted by the stacking of several
layers (see figure 1.8 for an example), these being simple mathematical
mappings, and in particular CNNs take their name by the use of an
operation in each of their layers, which is indeed the convolution. Con-
volution is a mathematical operation defined between two functions of
the same variables. Taking two functions x(t) and w(t) ∈ R of a single
real variable, convolution c(t) is defined as:

c(t) =

∫
x(a)w(t− a)da, (1.6)

and often indicated with an asterisk as c(t) = (x ∗ w)(t). When we
deal with discrete functions, meaning that our independent variable (in
this case t) does not assume values in a continuous range but only fixed
integer ones (in other words, it has been sampled like happens for time
in audio signals), we can define the discrete convolution as

c(t) = (x ∗ w)(t) =
∞∑

a=−∞

x(a)w(t− a). (1.7)

With functions of more than one discrete variable we can still define
discrete convolution by simply adding a summation taking into account
each one of their other variables. This is what usually happens in deep
learning: the first term of the convolution, which is referred to as input,
is a multidimensional array (a tensor) of data, like an image I, and the
second term, which is referred to as the kernel, is a multidimensional
array of parameters.

Arrays are a common implementation in computer science for stor-
ing the values of a sampled signal. Monodimensional arrays are used for
audio signals, bi-dimensional arrays for images, three-dimensional arrays
(tensors) for videos, etc. Obviously, these data structures are not infi-
nite in size. This implies that our terms are not infinite functions, and
therefore we can implement our convolution as a finite summation over
the array/tensor elements. As an example, we can write the convolution
C between a 2-dimensional input I and kernel K as

C(i, j) = (I ∗K)(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n),

(1.8)
4As we have stated previously, recall that the function s(x, y, t) represents the

evolution of luminance along the time axis in a spatial location defined by the
cartesian coordinates x, y. Video signals in reality are 4-dimensional tensors, with the
last dimension representing the different color channels relative to the components
of light filtered by the CFA. Our convention of considering the video signal as the
evolution of the luminance only will be explained in Chapter 3.
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where we have exploited the commutative property of the convolu-
tion to write it in a form called without flipped kernel, which is more
straightforward to implement in a machine learning library5.

Convolution alone is rarely used in deep learning. Very often, it is
immediately followed by some activation function. A common example
of activation function is the rectified Linear Unit (ReLU), defined as

a(z) = max(0, z) (1.9)

but others exist and are used depending on the type of task encountered.
For instance hyperbolic tangent or sigmoid are other commonly used
activation functions. They all share the fact of working in a non-linear
fashion on the input values, adding non-linear behaviour to the output
of the convolution. This role is crucial in determining the feature map.

The feature map is the name given to the output of the convolution
after the processing executed by the activation function (in what is called
the detector stage of the layer). Referring ourselves to the our previous
reasoning regarding representation learning, the feature map is nothing
but the abstract representation created by the convolutional layer, which
is then used as an input by the successive layers of the CNN (see figure
1.6 for an example).

The feature map is usually followed by another mathematical oper-
ation called pooling. Pooling consists in the substitution of the values
of the feature map at a certain location with a summary statistics of its
neighbour locations. Example of pooling functions are the max pool-
ing, where we select the maximum value of a neighbourhood of locations
of the map, like a small rectangle or square, or some average of this
neighbourhood. This operation causes a downsampling of the feature
map, since it reduces the dimensionality of the output by selecting only
a statistics of portions of it.

Finally, convolution along with activation and pooling constitute what
is commonly called a convolutional layer6.

As we have stated in the beginning of the subsection, CNNs have
become a specialized tool for the processing of grid-like data, such as
digital signals. The motivations lie in the specific nature of the layers:
convolution is the core operation of filtering in digital signal processing
(DSP), and the structure of convolutional layers makes the feature maps

5Note that convolution shows some close similarities to the mathematical operation
of cross-correlation, which, in two dimensions, is defined as

C(i, j) = (I ∗K)(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n)

. This operation is almost equal to convolution without kernel flipped, and in fact
many machine learning libraries implement this operation calling it convolution [1].

6Please note that there are two different terminologies when dealing with convo-
lutional layers. One, called complex by [1], considers the convolutional layer as the
sequential union of the three operations described before. The other, the simple, con-
siders each operation as a separate layer. See figure 1.5 for a graphical representation.



12

Input	to
layer

Convolution
stage

Detector	stage:
activation

function	e.g.	ReLU

Pooling	stage

Convolutional	layer

Input	to
layers

Convolution
layer

Detector	layer:
activation

function	e.g.	ReLU

Pooling	layer

Next	layer Next	layer

Complex	layer
terminology

Simple	layer
terminology

Figure 1.5: Graphical representation of what is considered a convolutional
layer by the two terminologies. Throughout this thesis, we will use the "com-
plex" one.

Convolution Activation
(ReLU)

Figure 1.6: Example of a feature map produced by the 64th filter of the first
layer of the VGG16 network [2]. In this case, the activation function is a
ReLU. We can see how some details of the image (like the edges) are more
accentuated. This feature map will be then used by the successive layers of
the network to produce a more abstract representation of the input.
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produced by CNNs have some really nice properties. Some of them de-
rive from the characteristics of the convolution operation stage, such as
the use of sparse weights and of parameter sharing, which produce
invariance to translation; others from the pooling stage, which causes
properties like the invariance to local transformations.

With sparse weights we indicate the fact that convolutional layers use
a kernel that is much smaller than the input. Often one or more kernels
are employed, so that the convolution stage implements what in DSP
is called a bank of filters: it executes several convolutions/filtering in
parallel. By keeping the number of parameters of these filters much lower
than the dimension of the input, these allow to detect small meaningful
features while still maintaining low memory requirements and achieving
good execution performances. With respect to the MLP7, besides the
aforementioned improvements (convolutions are way faster than linear
transformations), we have a complete different semantic of the operation
applied to the data, that allows different interactions between the lay-
ers and the construction of abstractions that are more purposeful with
respect to the nature of the input and of the task executed.

Moreover, while with the MLP we apply a linear transformation in-
stead of the convolution, meaning that we have one parameter applied to
each element of the input, the nature of convolution is such that the same
kernel (or kernels in case we are implementing a bank of filters) is ap-
plied to the different portions of the input. This is the so called parameter
sharing of the convolution stage. Besides the already cited advantages in
memory requirements, the parameter sharing property makes the convo-
lutional layer also invariant to translations.

Saying that a function c is equivariant to another function means that
if the input is modified by some transformation expressed by a certain
function g, the same modification appears in the output after applying
c. In other words, this means that c(g(x)) = g(c(x)). Convolution has
this property for some transformations, in particular for translation. If
we take for instance as input an image I, and compute a translation of
one pixel to the right I ′ = I(x − 1, y), the result of a convolution C
would be the same if applied to I ′ or if applied to I and then translating
the output. Convolution produces a sort of timeline that detects when
particular features in the input show independently of their position.
Moving a feature/event in the input would not make it undetectable,
but it would only postpone its identification. However, please notice that
convolution is not equivariant to all functions, like local transformations
such as rotation or scaling.

Fortunately, the last stage of the convolutional layer introduces equiv-
7Again, here we will not deepen the description of the MLP. For the sake of the

discussion, the reader can simply imagine a MLP as a CNN where each layer is a
perceptron. The perceptron instead of performing a convolution in its first stage,
applies a linear transformation of the type y = Ax + b, where y ∈ Rm, x ∈ Rn are
respectively the output and the input of the stage, and A ∈ Rmxn, b ∈ Rm are the
parameters of the transformation.
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ariance to some other transformations. Pooling executed over spatial
regions causes the layer to become invariant to translation exactly like
the parameter sharing property; moreover, pooling over the outputs of
different parametrized filters, each one producing a feature map of the
same features but with different transformed inputs, the layer can become
equivariant to the transformation applied to the input8. An interesting
example is the invariance to rotation, as depicted in figure 1.7. In this
case, three filters have been parametrized to learn the hand-written 5
digit with different rotations. Using a max-pooling over the outputs of
the filters, therefore taking the output with the highest activation value
in the detector stage, makes the layer detection of the digit invariant to
rotation.

This last example gives us an idea of what kind of features CNNs
are able to learn. As we said in the introduction of the section, deep
learning tools learn meaningful features while learning the task, and in
the years CNNs have been applied to different problems with encouraging
results. Starting from handwritten digit recognition as done in [23], to the
astonishing results obtained by the VGG16 network [2], CNNs are now a
common tool in image processing, and recently the image forensics field
too has started to use them with success. Examples are the work done for
the detection of median filtered images done in [35], image manipulation
detection in [21], and device identification done in [19].9

1.2.3 Recurrent Neural Networks (RNNs)
Just like CNNs are specialized networks for processing grid-like data,
recurrent neural networks (RNNs) are a family of networks for pro-
cessing sequential data. For sequential data we mean a sequence of
values x(1), x(2), . . . , x(τ) that are related through some temporal process
generating it, where the apexes are the indexes indicating when the ele-
ments have been produced.

From CNNs, they take the idea of parameter sharing, with the differ-
ence that instead of using it for processing different portions of the input,
the sharing happens across the different time steps of the sequence. This
is obtained by making each output a function of

• the input at time index t;

• the output or outputs at some previous time step t
′
< t− 1;

and using the same function to compute the output at each sequence
index. The networks therefore implement a recurrent formulation (from

8The equivariance property of the convolution and pooling stages can be thought as
the assumption of an infinitely strong prior probability distribution that the function
the layer learns must be invariant to some transformations. We address again the
reader to [1], chapter 9 section 4, for a complete discussion of this idea.

9For what concerns video signals, our object of interest, and other works in the
image splicing localization task, we address the reader to Chapter 2.
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Figure 1.7: Example of how pooling over the outputs of filters learning the
same features with different parameters allow the layer to detect features in-
variantly with respect to the transformation applied to the input. Figure taken
from [1], page 344.

Figure 1.8: Schematization of the architecture of the VGG16 model [2]. The
model won the first and the second places in the localisation and classification
tracks respectively at the ImageNet Challenge 2014. Figure taken from https:
//neurohive.io/en/popular-networks/vgg16/ .

https://neurohive.io/en/popular-networks/vgg16/
https://neurohive.io/en/popular-networks/vgg16/
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here their name), resulting in a sharing of the parameters through a very
deep computational graph.

Various architectural variations of RNNs exist, but almost all of them
share the idea of computing the output relative to the next element in
the sequence taking into account the whole sequence history seen by the
network. This task is accomplished by using a special variable, called
the state of the network, which is nothing more than the value of
the outputs of the intermediate layers (the so called hidden units).
Mathematically speaking, we can write the state/value of the hidden
units h(t) at time index t as a vector

h(t) = g(t)(x(t), x(t−1), x(t−2), . . . , x(2), x(1)) = f(h(t−1), x(t), θ) (1.10)

with x(τ) being an input vector of features at time step τ and θ the
parameters of the network. Equation 1.10 shows two possible interpre-
tations of the computation of the state h(t): from one point of view, we
can see it as the application of a function g(t) different at each time step
t, since it considers sequences of different length; from another, h(t) is
computed using the same function f with the same weights θ at each
time step t.

In the latter case, RNNs use the state as a sort of lossy summary
of the history of the inputs/outputs, since sequences of any length are
always mapped to the same variable of fixed length, the hidden state h(t).
However, this mapping in reality can be considered as an ability of the
network to generalize information from sequences of any length, since we
learn a single model f operating on all indexes instead of many functions
g(t) as time steps t the sequence is long.

Besides this common trait among all RNNs, design patterns for this
type of networks differentiate in many aspect such as the connections
between hidden units, recurrence of the output, mismatch dimension
between input and output sequence length, etc. Figure 1.9 shows two
examples of a computational graphs for a general RNN architecture for
input classification, where we have recurrent connections only between
hidden units or between outputs and hidden units.

The figures highlight one operation which is essential in the use of
RNNs, which is the unfolding. On the left side of both pictures in fact,
we can see that the recurrent connection from previous states/outputs
is implemented as a delay element. However, this type of representation
does not allow to actually implement numerically the graph, for which
an unfolding or unrolling, meaning a repetition of the graph across the
different time steps, is therefore necessary.

Only through unfolding is it possible to actually perform training,
through an adapted version of the backpropagation algorithm called
backpropagation through time (BPTT). This is not really a special-
ized algorithm, but only the application of the backprop in the unfolded
computational graph of the RNN, taking into account each time step of
the sequence. Using BPTT, it is possible to perform a normal training
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Figure 1.9: Computational graphs from the folded and unfolded point of view
of two generic RNNs used for a classification task where the input and output
have the same length. The two design patterns differ for the use of the pre-
vious state or of the previous output for the computation of the next state.
Therefore, they differ in the function W used for the computation of the next
state.
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of the networks: however, computing the gradients with respect to the
unrolled graph reveals to be complicated somehow.

Two major problem in fact arise in the training of RNNs. The first
is the fact that the forward propagation of the input in the network
is inherently sequential, and this affects the network performances (but
with some design patterns this problem is not a major concern); the
second is defined as the vanishing gradient problem.

We have seen in the first subsection that the function implemented by
a neural network derives from the composition of the functions charac-
terizing each layer, like the example of equation 1.4. The same situation
happens for RNNs, where the unfolded computational graph involves the
composition of the same function multiple times (once per time step),
leading to an highly non-linear behaviour (see figure 1.10 for an exam-
ple). The vanishing gradient problem manifests for this reason: when
learning long-term dependencies (when we are processing very long se-
quences), the gradients propagated over the steps of the sequences tend
either to vanish or to explode.

Figure 1.10: 1D linear projection of a 100-dimensional hidden state of a RNN,
resulting from the (multiple) composition of a non-linear activation function
(an hyperbolic tangent in this case) due to the unrolling procedure of the
computational graph. On the y axis we have the projection, on the x axis the
coordinate of the initial state along a random direction in the 100-dimensional
space. The figure shows the behaviour of the hidden state up to 5 composition
of the tanh function, so up to 5 steps in the unrolling graph. Taken from [1],
page 403.
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Taking as an example the first RNN of figure 1.9, let’s suppose that
the computation of the state h(t) at step t is described by the recurrent
function W , which in this case is a simple linear transformation with no
activation function, something along the line of

h(t) = W Th(t−1), (1.11)

where the matrix W with its elements represents the parameters of
the recurrent layer and where we are omitting the input x(t) for simplicity.

Clearly, taking the initial state h(0) we can rewrite h(t) as

h(t) = (W t)Th(0). (1.12)

Let us assume that W admits an eigenvalue decomposition of the
type W = QΛQT . Equation 1.12 becomes equal to

h(t) = QTΛtQh(0). (1.13)

The eigenvalues of vector Λ are raised to the power of t, causing those
whose magnitude is less than 1 to vanish, and those whose magnitude is
greater than 1 to explode, discarding any component of the hidden state
h(0) which is not aligned with them10 11.

This problem is common to CNNs and MLPs which show a very deep
architecture, but indeed it is really particular to RNNs due to the nature
of the unfolded computational graph. For this reason, while for CNNs
some fixes have been found only recently [37], from the discovery of the
issue [38] [36] in the RNNs field several solutions have been proposed.

One idea is to not learn the weights of the recurrent connection’s
function: learn only the parameters of the output functions, and fix
the recurrent weights so that they capture a rich history of the past
inputs/outputs. In this way therefore the problem of vanishing gradients
is avoided. This is the design pattern followed by echo state networks
(ESN) [39] and liquid state machines [40], which are also generally
referred to as reservoir computing.

Another solution is to not let the gradient flow freely in the unfolded
computational graph. The main problem of vanishing gradients indeed
is that, pursuing the goal of learning long-term dependencies, we let

10Here we have simplified the discussion in order to show the basic motivation
behind the phenomenon of vanishing gradients. A more complete demonstration
based on the power method can be found in [1], page 289.

11Please note that the vanishing gradient problem does not prevent the network
from learning the right parameters for the task. The problem lies in the fact that
gradients deriving from a long-term interaction (a very long sequence) will have a
very small magnitude compared to the those of a small-term interaction. Therefore,
it would take a very long time to learn something from them, since the variations of the
weights would be constituted of very small fluctuations easily hidden by those caused
by shorter-term interactions. However, what happens in practice is that gradient-
based optimization becomes increasingly difficult, with success in training almost
impossible for even very short sequences (10-20 elements) [1] [36].
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the gradients of the recurrent connections12 flow freely without neither
controlling their values nor checking which of the weights are useful for
learning the temporal information. Gated RNNs starting from this
idea, by using mechanisms called gates, control the flow of data rep-
resenting the history of inputs through the different time steps of the
unrolled computational graph.

As for reservoir computing networks, different variants of gated RNNs
have been devised during the last 20 years. One model in particular has
gained a lot of attention: the Long-Short Term Memory (LSTM)
model, first published in 1997 by Hochreiter et al. [27], has been widely
adopted with good results in a great variety of tasks involving sequences
of data [28]. LSTM uses three types of gates, which can be considered
like layers from a certain point of view, since they are composed by
a linear transformation, followed by an activation function (a sigmoid
in this case), and finally by a point-wise element multiplication. The
three gates control different parts of the variables used by the function
implemented by a recurrent layer, and specifically they are called:

• forget gate, which is used to control which elements of the old
state h(t−1) might or might not be preserved;

• input gate, which instead controls which elements of the new
input x(t) are useful for the task;

• output gate, which finally decides which elements of the new
output y(t) are relevant.

Figure 1.11: Example of a unfolded computational graph of a RNN imple-
menting the LSTM model. We can see the internal structure composed by the
three gates. Picture taken from [3].

In figure 1.11 we can see the internal structure of a LSTM layer with
the three gates, which is also usually referred to as cell.

12Here we refer to recurrent connection as recurrent connections’ weights, meaning
the weights of the functions realizing the connections in the computational graph.
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To understand how the gates work, we can take a closer look to the
forget gate. This layer takes as input the previous output y(t−1) and the
actual input x(t), concatenates them and multiply them by a matrix Wf .
It then produces as output a vector f (t) of the same dimension of the cell
state according to the formula

f (t) = σ(Wf · [y(t−1), x(t)] + bf ). (1.14)

with σ being a sigmoid activation function, · a matrix multiplica-
tion and [ ] a concatenation operation. The forget vector f (t) can be
considered as a linear transformation of the previous input and output,
whose values are forced by the sigmoid to lie in the range 0-1. Since the
vector has the same dimension of the "old" state h(t−1), we can view it as
a simple vector of weights which, indeed, is multiplied element-wise to
h(t−1) to decide which elements of it to preserve (see equations 1.16).

The input and output gate behave similarly, with their outputs de-
scribed respectively by the following formulas

i(t) = σ(Wi · [y(t−1), x(t)] + bi),

o(t) = σ(Wo · [y(t−1), x(t)] + bo),
(1.15)

with separate matrices and biases vectors Wi,Wo, bi and bo. The
new cell states and outputs are then produced according to the following
formulas

h̃(t) = tanh(Wh · [y(t−1), x(t)] + bh),

h(t) = f (t) ◦ h(t−1) + i(t) ◦ h̃(t),

y(t) = o(t) ◦ tanh(h(t)).

(1.16)

where h̃(t) is the candidate state for the time index t, ◦ denotes a
element-wise multiplication and tanh is a simple hyperbolic tangent.

While the whole set of equations describing the functioning of the
LSTM model might be quite cumbersome (and appalling in some sense...),
and we suggest anybody who is interested to deepen the argument in the
really accurate and intuitive walk through by Christopher Olah [3], we
would like to focus the reader’s attention on two main points:

1. the gates, each one with their separate sets of parameters, allow to
control the data flow in different points of the unrolled computa-
tional graph. This is accomplished by generating vectors of weights
in the range 0-1 which are multiplied element-wise to the variables
of interest of the recurrent function f(x(t), h(t−1)) implemented by
the network. The network therefore is able to learn during training
to discriminate between which information are more useful between
the new input or the previous history of the sequence to accomplish
the task;
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2. the presence of the gate functions makes the computational graph
have gradients that do not explode neither vanish, but with re-
spect to reservoir computing networks the weights of the recurrent
connections are not set manually, but learned during training.

The description carried out until now is the one of the "classic" LSTM
model presented by Hochreiter et al. [27]. We have seen how each gate
can be considered as a sort of MLP layer, composed by a linear transfor-
mation followed by a sigmoid activation function. However, this kind of
design somehow limits the capabilities given by the gates’ mechanism to
use the sequence history depending on the type of input data given.

In the previous subsection on CNNs we have analyzed some of the
benefits that the convolutional stage gave in the analysis of grid-like data.
But what about data with both grid-like and sequential topology, just
like video files? It would be really convenient to have the benefits of
both recurrent and convolutional architectural patterns.

Aiming at this goal, Chen et al. [35] presented in 2015 the convo-
lutional LSTM (convLSTM) model. We can see the convolutional
LSTM as an LSTM model where instead of having simple linear transfor-
mations in the input-state and state-state transition in the gates, presents
convolutions, resulting in the full model described by the following set of
equations:

i(t) = σ(Wxi ∗ X (t) +Wyi ∗ Y(t−1) +Whi ◦ H(t−1) + bi),

f (t) = σ(Wxf ∗ X (t) +Wyf ∗ Y(t−1) +Whf ◦ H(t−1) + bf ),

o(t) = σ(Wxo ∗ X (t) +Wyo ∗ Y(t−1) +Who ◦ H(t) + bo),

H̃(t) = tanh(Wxh ∗ X (t) +Wyh ∗ Y(t−1) + bh),

H(t) = f (t) ◦ H(t−1) + i(t) ◦ H̃(t),

Y(t) = o(t) ◦ tanh(H(t)).

(1.17)

Here the letters have the same meaning used for the previous descrip-
tion of the classic LSTM model, the ∗ means a convolution operation and
the ◦ the Hadamart product (element-wise multiplication), and the ma-
trices of parameters instead of being multiplied in a linear transformation
are used as kernels in convolutions.

The main remarkable difference is in the nature of the input and
output data X and Y , as well in the state H, which are no more vectors,
but 3D tensors where the first dimension is the temporal (sequence) one,
and the last two represents row and columns of a matrix-like structure
(like an image). The convolutional LSTM therefore, due to the use of
convolutions in its gates, determines the future state of a certain cell in
the grid by inputs and past states of its local neighbours, combining the
characteristics in handling sequences of inputs of the LSTM model with
those of CNNs in processing grid-like data (see figure 1.12).
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Even if the authors used histories of radar maps for precipitation
forecasting, this kind of network can be easily adapted to process 3D
data like videos as well with simple modifications.

H(t-1),	Y(t-1)

H(t),	Y(t)

H(t+1),	Y(t+1)

X(t)

X(t+1)

Figure 1.12: Use of the convolution operation inside the gates of the convL-
STM for the computation of the output Y(τ) and state H(τ). From this point
of view is clearer the nature of the variables as 3D tensors.

1.2.4 Autoencoders
We close this chapter introducing autoencoders, a type of neural net-
works specialized in the task of copying their input to their output.
Autoencoders can be thought as composed by two parts:

1. an encoder network, which maps the input x to an output h =
f(x) called the hidden or internal representation, also referred
to as the code of the autoencoder;

2. a decoder network, which executes the inverse operation g(f(x)) =
x of mapping the code to the original input.

While this task might seem trivial, there are several reason behind
having such kind of tool. Autoencoders in fact are trained not to re-
produce the input perfectly. In doing such an operation, the model is
therefore constrained in selecting, inside the hidden representation, which
aspects of the data to preserve for the decoding operation, in this way
implicitly learning useful properties about the input.

Recalling our previous discussion about representation learning, we
can see autoencoders as neural networks whose main and only task is that
of learning representative features of the input, which are "encoded" in
the hidden representation indeed, in different ways which are defined by
the deep learning practitioner again with the loss function used during
training.
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One of the way through which autoencoders are able to learn useful
properties about the data is to force the hidden representation to have
smaller dimensions than the input. Such family of autoencoders is called
undercomplete, and comprehends all kinds of networks that map the
input to its output having a code of smaller dimensionality with respect to
the input. Learning an undercomplete representation forces the network
to learn only the distinctive features of the training data, with the loss
function defining which features are distinctive or not.

A simple example of such kind of architecture is the linear autoen-
coder. In this case, encoder and autoencoder are both composed by a
perceptron without activation function, and the loss function is simply
defined as the MSE between input and reconstructed output: in this
case, the operations executed are the same of the Principal Compo-
nent Analysis (PCA), and in fact the hidden representation is nothing
more than the projection of the input on the same span of the PCA.

Obviously, by using a normal perceptron with a nonlinear activation
function more salient features can be learned. In fact, any kind of archi-
tecture, even deep, can be used to create an autoencoder, comprehending
CNNs or RNNs as well. However, another way to capture useful features
about the data is to use more complicated loss functions than the MSE.
This is the case of regularized autoencoders, where by using a regu-
larization term in the loss function we encourage the model to have other
properties besides the dimensionality reduction of the input.

Regularized loss are loss functions of the type

L̃(y; f(x;w)) = L1(y; f(x;w)) + L2(w), (1.18)

with x,y and w being respectively the input and relative output of
the training set and the parameters of the network. They are composed
by two terms where the first is relative to task, so in how the input should
be processed with respect to its corresponding output in the training set,
and the second is a term relative only to the model, often defined with
respect to its parameters w.

Regularization terms are usually employed for avoiding the phenomenon
of overfitting, which describes the behaviour of a network which is not
able to generalize to unseen data (which is at the base of the dataset
splitting into training and validation set too). However, regularization
terms can be also used to encourage properties of the learned model.
One of them is the sparsity, which leads in the case of the autoencoders
to sparse autoencoders: the model tunes to only determined features
of the data, so rather than learning an identity mapping from input to
output, responds only to unique statistical features of the dataset.

Another desiderable characteristic for models is the ability of pro-
cessing noisy data, so to be robust to noise in the input. Autoencoders
with this property are called denoising autoencoders, and their aim
is to learn the underlying distribution of the data regardless of the noise
affecting them. A specialized version of denoising autoencoders are the
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contractive autoencoders, whose feature extraction process is able to
resist even to the tiniest variation of the input.

In literature, many other different types of regularized autoencoders
have been proposed. However, we can state that all of them base their
effectiveness on the idea that their input data concentrates around a low-
dimensional manifold, or a small sets of them. Manifolds are connected
regions, sets of points with a neighbourhood associated to each of them,
that locally appears as an Euclidean space. A common example is the
surface of the Earth, a spherical manifold in a 3D space that appears as
a 2D plane.

In machine learning usually manifolds tend to be used to designate
a connected set of points that can be approximated well by considering
only a small number of degrees of freedom, or dimensions, embedded in
a higher-dimensional space, with each dimension representing a direction
of local variation. What machine learning actually do, for training data
defined in Rn, is effectively to learn manifolds of interests: instead of
learning functions with variations across all Rn, we assume that most
points of Rn are invalid inputs, and that the interesting inputs lie in a
manifold or sets of manifolds with their local directions of variation being
the variations of interest of the function approximated by the algorithm.
From a probabilistic perspective, we can see manifold learning as the
process of modeling the regions of the probability density/mass function
of the input data which are most concentrated.

Regularized autoencoders during training need to balance two impor-
tant factors: learn a representation such that the input can be approx-
imately recovered through the decoding function, and satisfy the addi-
tional constraints imposed by the regularization terms of the loss. Since
the training points are drawn from the training set, so a set of points
that are probable in the domain of the function, this results in the fact
that autoencoders can afford to learn only variations that are essential
to reconstruct the training samples. If the data generating distribution
concentrates near a low-dimensional manifold, this yields representations
that implicitly capture a local coordinate system for this manifold.

Autoencoders therefore are able to learn in their hidden representa-
tion information regarding the local manifold, or probability distribution,
generating the input data. We would see that these concepts are essen-
tial in the use of autoencoders in unsupervised learning tasks, such
as anomaly detection.
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State of the Art (SOA)

This chapter introduces a review of the state of the art (SOA) tech-
niques proposed in the literature for splicing detection and localiza-
tion, either using deep learning instruments or not, applied to video
signals. As we have stated previously, techniques in video forensics have
their roots in those developed for images. For this reason, we will first
dedicate a section on methods for image tampering detection, then a sec-
tion on methods for video tampering detection. In both we will initially
analyze methods that do not make use of deep learning techniques, and
then focus on works that exploit them. Since the literature for video
forensics has fewer contributions for what concerns splicing localization,
we will list briefly some other works of interest for our task that are,
however, not immediately related to our work.

2.1 Images tampering detection overview
When dealing with image tampering detection, the first point to make is
the differentiation of the types of forgeries we might encounter. The most
common categories of forgeries to detect are the copy-move, splicing,
inpainting and the broad-scope image operations.

Copy-move refers to taking a part of the image and copy it on another
portion of it, either to add false information or to hide the content of the
portion covered. Splicing, our matter of study in this thesis, is a very
similar forgery that differs from copy-move only for the fact that the
portion of image copied is taken from a different source. Inpainting is
used instead to refer the "drawing" on the image with a software editing
tool, such as a "brush", with the purpose of reconstructing missing or
damaged parts of it: we can see it basically as an interpolation. Finally
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with broad-scope image operations we indicate all those operations such
as cropping, filtering, rescaling or histogram adjustments that can be
performed even without malicious intent.

We can easily see that both copy-move and splicing cause some dis-
turbance in the local image structure, and in some sense the copy-move
forgery can be considered as a "specialized" technique of splicing. For
this reason, splicing detection algorithms are usually able to recognize
copy-move forgeries too [41].

Although almost all algorithms dedicated to image splicing are based
on the assumption that the portion of image spliced will differ for some
of its characteristics from the rest of it, many of them are able to only
detect the splicing, therefore to say if the image is spliced or not, without
localizing where. In this work instead we focus on the localization of
splicing, and for this reason in the following pages we will review methods
dedicated to this task.

In the first section of Chapter 1 we have outlined the three major
steps in the lifecycle of a multimedia object, and saw how each of them
leaves some traces on it that can be used to reconstruct the processing
chain it has undergone. All of the traces we have seen previously can be
used to determine where an image has been spliced.

We have seen PRNU noises being a unique trace left by the APS of
the camera during the acquisition stage, and that it can be used to assess
the authenticity of an image under analysis. Several authors exploit this
footprint, and the basic idea shared by them is that having at disposal a
set of varied images taken by the same device, it is possible to estimate the
device’s PRNU. Thus, having different sets of images taken by different
devices, it is possible to have a set of PRNU noises of several cameras.
They can then be used for evaluating whether the image under question
conforms to any of them. If local deviations appear, the presence of a
splice in the corresponding region is posited. Works along these line are
[42] [43] [44].

Other authors exploit the fact that the combination of capturing de-
vice, the capture parameters of each image, and any subsequent image
postprocessing or compression, create unique noise patterns that differ
from image to image. In [45] the authors localize splicing by identifying
noise patterns wavelet-filtering the image, assuming that the local vari-
ance of the high-frequency channel will differ significantly between the
splice and the recipient image. In [46], local noise is isolated by observing
that in the frequency domain, each sub-band of the frequency content of
an image has positive kurtosis coefficient, and allows to discriminate be-
tween spliced and clean regions. A significant work done by Cozzolino et
al. in [47] constructs synthetic features from co-occurrences of residuals
of the image filtered with a linear high-pass filter: assuming that spliced
regions will exhibit different statistical properties of these features, the
authors developed an algorithm, Splicebuster, that works both in an
unsupervised and semi-supervised scenario. In the latter, the user indi-
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cates a region that it is possibly tampered; the algorithm then calculates
the natural statistical properties of the co-occurrences of that portion
of the image, and consecutively evaluates regions of the rest of the im-
age with respect to their conformance to the constructed model. In the
unsupervised case instead we are not sure of which areas of the image
have not been tampered: therefore, the method uses an Expectation-
Maximization algorithm to fit two different distributions (tampered and
non-tampered) to the local descriptors.

CFA patterns are exploited too. Splicing in fact can easily disrupt
the original interpolation pattern of the image, mainly because different
cameras use different CFAs and even different interpolation algorithms.
A spliced image would therefore highly probably present discontinuities,
but not only. Indeed, spliced regions are often rescaled or filtered, there-
fore they change heavily the original pixel interrelation; moreover, even
simply misaligning the splice with the rest of the image disrupts the CFA
pattern. Typical CFA array patterns follow a 2x2 grid: thus, there is a
75% chance that any splice (or even copy-move) forgery will alter it. The
authors of [48] [49] [50] use this information to detect spliced regions. In
[49], they use two methods. In the first, they try to detect the CFA pat-
tern used during the image acquisition stage by subsampling the image
using various possible selection patterns; then, they re-interpolate it, and
finally compare it to the original, looking for discrepancies between the
reconstructed and the original image in order to detect spliced regions.
In the second, by filtering the image with a de-noising filter they compute
the image noise pattern, and then calculate a measure of relationship be-
tween the noise variance of interpolated and natural pixels. They then
show that there is a high probability that pixel values have been dis-
rupted by tampering if the two variances in a region are highly similar.
In [50] the authors compute the same measure of the variance relative to
natural and interpolated pixels, but in this case they estimate on a block
per block basis a probability that the image has been tampered.

The main drawback of methods exploiting CFA patterns is that they
tend to be easily covered by simple scheme of compression, like the JPEG.
Fortunately, almost all lossy compression formats leave recognizable arti-
facts too, and in fact another prosperous field in the forensics literature of
splicing detection is based on JPEG compression footprints. These
can be broadly divided in two categories: quantization artifacts and
grid discontinuities.

The first family of footprints is relative to the process of quantization
of the DCT coefficients in the JPEG processing chain. What usually
happens when a splicing is performed, is that the malicious attacker
would process the spliced region, add it to the tampered image and then
usually saved it in a compressed format. Assuming that the original
image was saved in a JPEG format too, and that the spliced portion
does not show compression artifacts relative to its previous history, the
tampered image would exhibit traces of a double compression.



30

It has been observed that the DCT coefficients’ distribution exhibits
some periodicity when multiple compressions have been executed on the
image. This observation lead therefore to the family of splicing local-
ization methods denoted as Double Quantization, which attempt to
model the periodic DCT coefficients’ patterns caused by a double com-
pression, and detect local regions that do not fall into this model. Works
based on this concept are [51] [52] and [53]. In [53], the distribution
of the DCT coefficients is modeled for the entire image, and then the
image is divided in blocks of the JPEG format dimension and each of
those is evaluated with respect to its conformance to the overall image
model, evaluating the probability that it has originated from a different
distribution. In [51], the authors extend this method, making the model
significantly more robust by considering that the DCT coefficients’ dis-
tribution estimation may be influenced by the presence of both tampered
and non-tampered blocks. The work in [52] is based instead on another
observation: the value of the distribution of the DCT coefficients fol-
lows the Benford’s law, meaning that in the first digits low values are
significantly more probable with respect to high values. When multiple
JPEG compressions are performed, this characteristic fades. Therefore,
the authors trained a set of Support Vector Machines (SVMs), a machine
learning algorithm for binary classification, for assigning the values of the
DCT coefficients’ distribution to a single or double compressed one. Di-
viding the image in blocks, they are therefore able to indicate as a strong
evidence of tampering the presence of single-compressed portions of the
image.

For what concerns grid discontinuities methods, they are based on the
quantization performed by the JPEG format, which is based on a 8x8
block grid. Based on the previous assumption that the spliced content
does not show evident signs of its previous history, traces of splicing
therefore simply derive by the absence or by the misalignment of the
JPEG grid on original and tampered regions (in case these last ones show
remaining sign of a previous compression). In [54], descriptor vectors
which model the presence of such JPEG blocking artifacts are extracted
from the image, and then used for training a SVM for detecting, but
not localizing, image-level inconsistencies. In [55] instead the authors
use as feature the local intensity of the blocking pattern. The features
variations indicate local absence or misalignment of the grid, but they
can depend also on the image content.

Other two methods for splicing localization based on JPEG artifacts
are the JPEG Ghost and the Error Level Analysis. Both meth-
ods rely on two considerations on multiple JPEG compressions. The
first, proposed in [56], considers the fact that compression with different
quality factors leads to portions of the image that have different range
of values. By taking the image under analysis and re-compressing it with
different factors, then subtracting the image to itself, it is possible to
construct a residual map where areas with a different compression factor
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from the test ones are highlighted. This provides evidence that those
regions might be spliced on the original content and come from a differ-
ent quantized source. The second relies on the evidence that if an image
undergoes multiple JPEG compression, it starts losing its high-frequency
content. This means that if we assume the multiple compression hypoth-
esis of splicing, if we subtract the image to itself and then filter it with an
high-pass filter, spliced regions, which have undergone less compressions,
will present an higher residual than the original portions of the image.
This idea is exploited in [57] and [58].

In the last years some works dedicated to image forensics using deep
learning tools have come to the attention of the research community.
The most notable ones are the work done in [19], where CNNs have
being used for device identification, and a successive work by the same
authors [4]. This last one proposes a splicing localization method in
the scenario of spliced regions and original image coming from different
cameras. The proposed method exploits CNNs for features extraction,
and then analyzes them by means of iterative clustering techniques in
order to detect whether and where the image under analysis has been
forged. The pipeline used by the authors is depicted in figure 2.1.

Figure 2.1: Pipeline used in [4] for splicing localization.

Another recent work related to splicing localization has been pre-
sented by Yarlagadda et al. in [10]. The authors tackled the task of
splicing localization in images coming from satellite technology. Using
a completely unsupervised approach, the authors exploit CNNs as fea-
ture extractor and generative adversarial networks (GANs) for creating
a feature representation of pristine images. They then train a SVM to
determine their distribution and localize splicings of different dimensions
and shapes.

A similar work exploiting a unsupervised approach is the one by Coz-
zolino and Verdoliva in [5], with their pipeline shown in picture 2.2.
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The authors worked using the same features presented in [47], this time
employing autoencoders to construct an internal representation of the
distribution of these features for clean frames. They show that using an
offline training procedure with discriminative labeling and adding a
regularization term in the loss function, the autoencoder at last is able
to distinguish the spliced regions of the image with promising results.

Figure 2.2: Block diagram of the algorithm proposed in [5].

Next we will see some works dedicated to the area of video splicing
localization.

2.2 Video splicing localization overview
Video splicing localization literature has less contributions with respect to
the images’ one. The reason, as we have stated several times previously,
lies in the nature of video signals, which, for their dimensionality, on
one hand are more difficult to manage, and on the other are exposed to
a wider range of manipulations for the forger that makes the forensics
analysis more difficult.

A forensics analysis based on methods developed for images is pos-
sible for videos too, if we consider videos as a simple collection in time
of frames [18]. All methods seen in the previous section are therefore
appliable. However, precedently we have discussed how the presence of
the temporal dimension in video signals gave to the forger the possi-
bility of altering or hiding the content of the signal without modifying
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the frame in its singularity. We can call this type of attack as tempo-
ral splicing, or video-based attack, and it mainly consists in frame
deletion or addition (see figure 2.3). More often, what happens is that
the forger modifies the video both in space and time, either by using
a spatio-temporal region of the same video (a sort of video copy-move
attack), or by employing a region coming from a different source, or by
replacing it with a still image. In this case we call this type of splicing
image-based attack.

Specific algorithms for video splicing detection and localization, which
therefore can take place in the temporal dimension only without altering
the frames’ content, are harder to find. Thus, in the following we will
simply list all works related to video forensics, trying to focus our atten-
tion on the most specific on both temporal and spatio-temporal splicing
localization.

In [59], the authors study the effect of frame deletion and addition
and the resulting fingerprints left by the operation in video signals. They
also study the effect of anti-forensics techniques, methods aimed at
hiding or deleting fingerprints left by a forging operation, developing an
approach for detecting the fingerprints left by these anti-forensics tech-
niques too. In [6], the authors develop methods for the detection of both
temporal splicing and spatio-temporal splicing (video-based and image-
based attacks), using an algorithm based on iterative morphological op-
erations and clustering which is completely unsupervised (no information
about spliced regions of the video sequences are given in advance).

Original
frames'	
sequence

Original
frames'	
sequence

Attacker's
frames

Spliced
frames'	
sequence

Addition

Figure 2.3: Representation of temporal splicing with frame addition.

In [60] the problem of re-encoding artifacts is studied. For re-encoding
artifacts we refer to the problem of re-encoding of low-quality bitrate
videos with high-quality factors. The authors have analyzed videos in
MPEG-2 format, developing a 16-dimensional feature vector through
which are able to recover the original bitrate of the video. Interest-
ingly, some of the artifacts noticed by them are similar to the double
quantization factor of double JPEG compression, in particular those re-
lated to the DCT coefficient’s distribution (since the MPEG-2 employs
a coding procedure for each frame similar to the JPEG’s). In [7] the
authors similarly analyze re-encoded videos, aiming at blindly discover
the original codec adopted in the first compression along with some of
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Figure 2.4: Representation of image based attack taken from [6]. The forger
can perform this operation by repeating a still image in time or by inserting
a whole 3D volume, in this case taken from another region of the video.

its parameters, specifically the original Group Of Pictures (GOP).
The functioning of the proposed method relies on the fact that coding
is almost an idempotent operation, meaning that re-encoding a sequence
using the same parameters would produce a sequence with very small
difference from the original. Let’s imagine a simple processing chain like
the one pictured in figure 2.5.

Codec	1Frames
sequence

X

Encoded
frames
sequence

X1

Codec	2 Re-encoded
frames
sequence

X2

Re-encoded
frames
sequence

X2

Codec	1
Encoded
frames
sequence

X3	≅	X1

Figure 2.5: Compression chain assumed by the authors of [7].

By exploiting the idempotency of the encoding operation, it is possi-
ble to re-encode the double compressed video with different parameters,
until the original codec configuration is found by looking at the maxima
in the Peak Signal to Noise Ratio of the residual maps obtained by
subtracting the re-encoded video X2 to the "triple" encoded video X3.
The core idea is the exploitation of the artifacts left by the quantiza-
tion step of the encoding, and it might considered as an extension of the
JPEG Ghost method.

For what concerns video splicing localization, a pioneering contribu-
tion is the one presented in [61]. The authors use a Gaussian Mixture
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Model (GMM) to estimate the distribution of the correlation of tem-
poral noise residuals of forged videos on a block per block basis. They
then use the estimated parameters of the model for training a Bayesian
classifier to determine if a block of the video under analysis is tampered
or not. A more recent work [62] extracts statistical descriptors from
noise residuals on a block per block basis too, computing then a statis-
tical model that allows: given a sequence, to determine if and where it
has been spliced; given two, to determine if they come from the same
acquisition device. Noise descriptors are computed also by the authors
of [63], in this case to localize temporal splicing in video sequences ob-
tained by the composition of clips coming from different devices. The
idea is that the noise residuals (combination of PRNU and other noise
characteristic of the acquisition device) can characterize a sequence of
frame, so the temporal correlation of the residual noise of the shots are
different if coming from separate devices, and can be used to localize the
splicing.

In [64], a specific type of spatio-temporal splicing is studied, the copy-
move, consisting in the splicing of a portion of the video with a region
coming from the video itself. Copy-move has been exhaustively studied
in the image forensics field, and almost any SOA method exploits a very
simple idea: divide the image in patches; extract some features from
them; finally, look for patches which are almost identical in two separate
regions of the image. In executing these operations they usually compute
what is called a nearest-neighbour field (NNF), which is the set of
nearest pixels with best matching features. The computation of such field
can also be applied to video signals, but it is extremely expensive from the
computational point of view (even for images, since the complexity grows
quadratically with their size). For this reason, the authors exploit the
idea of PatchMatch [65], an algorithm producing a dense approximated
NNF over an image which is orders of magnitude faster than general-
purpose techniques, adapting it for 3D signals (videos). They develop
a method capable to detect copy-move splicing which is also resistant
to some common post-processing operation like rotation, rescaling, etc.,
thanks to a set of noise-resilient rotation-invariant features. Using some
ad hoc operations, the authors are also able to remove some false alarms.

Some very recent works tackle some new type of splicing attacks which
employ deep learning tools. This is the case of the Face2Face [66] and
DeepFake softwares, the last one which is able to splice a video with
artificially generated faces using a combination of convolutional autoen-
coders and transfer learning. Matern et al. [67] exploit the different
visual artifacts left by these two manipulation techniques to expose forg-
eries in videos. Works done by [68] and [69] are able to detect spliced
videos with DeepFake by using CNNs as feature extractor, and then cre-
ating sequences of features for each time index analyzed to classify the
video as tampered or not using recurrent LSTM classifiers.

The use of RNNs is quite appealing when processing video data, since
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theoretically are well suited in handling patterns in the temporal dimen-
sion of video signals. Another work besides the ones cited in the previous
sentence is the one done by D’Avino et al. [8]. Following an anomaly
detection approach, which was used by the authors in a previous work
on image splicing localization [5], the authors construct an autoencoder
trained on reconstructing perfectly sequences of features extracted from
non-tampered video frames. These features are extracted on a block per
block basis, and are essentially the same used by the authors in [47],
thus residuals of high-pass filtering. The main assumption is that the
internal representation of the autoencoder would implicitly represent a
local system of coordinates for the manifold of the distribution of clean
frames’ features blocks, and therefore spliced blocks would be detected
since the autoencoder would not be able to reconstruct it perfectly1.
Measuring the reconstruction error between original and reconstructed
features’ blocks, an heatmap is produced which leads to splicing localiza-
tion and detection. The complete pipeline followed is reported in figure
2.6.

Figure 2.6: Pipeline for the video splicing localization followed by the authors
in [8].

This method is of great interest since avoids the problem of using
labeled datasets for the training of the autoencoder. In the procedure
followed by the authors, it is possible to perform a classification task

1How autoencoders are able to represent a manifold for the distribution of the
input data is described in the last part of the subsection dedicated to autoencoders
in Chapter 1.
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(decide if an area is spliced or not) while not having a labeled dataset of
videos. The availability of such data is in fact an issue for multimedia
forensics researchers, since it employs hours of manual work to be done
for categorize each tampered video in a dataset.

The challenges posed by this problem and the way the authors faced
them encouraged us to pose ourselves in the same scenario.





3
Problem formulation and

proposed methodology

In this chapter we will formulate the problem of splicing localization
using a multimedia forensics passive technique. We will then illustrate
our proposed methodology, based on an approach taken from the video
anomaly detection field, which in turns exploits autoencoders as main
processing tool. Each stage of our pipeline will be then deepened in a
separate section.

3.1 Formulation for splicing localization
In Chapter 2 we have described in what consists a splicing forgery and the
types of forgeries that can be executed on a video signal in order to alter
its content. We have furthermore described the differences between the
detection and localization of splicing. Here we will briefly formulate them
from a signal processing perspective introducing the notation necessary
to illustrate our methodology.

Consider a digital video signal V of which we want to assess the in-
tegrity. This video can be considered as multidimensional tensor coming
from a 3D lattice, which samples the temporal evolution of the light
coming from a natural scene and which is captured by an acquisition
device (a digital camera). Specifically, a video signal can be considered
as a 4-dimensional tensor, where the first dimension represents time, the
second and third cartesian coordinates where each element is used to
represent the light intensity in a point (pixel) of the captured scene,
and finally the last one the different color channels of the signal.

We have in fact previously described how the CFA allows each pixel
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to capture only one component of light, and how a color image or video is
obtained by the interpolation of three different signals which are relative
to the components filtered by the CFA (red, green and blue, the pri-
mary colours). Most image and video coding formats however consider
not these three components, but a separate color space, composed by
the luminance, the simple brightness of the image/frame (the "black
and white" achromatic portion of the image), and the blue and red
chrominances, simply defined as the difference between the blue and
red components of the image/video and its luminance content.

The reason behind such operation is that the human visual system
is more sensitive to luminance variations, therefore allowing to use lower
bitrates in coding for the chrominance components. In this way it is pos-
sible to reduce the final amount of information to encode while preserving
the perceived quality of the object, since the luminance channel, which is
the most informative, is encoded with higher quality. For multimedia re-
searchers, this translates in the possibility of "ignoring" the chrominance
channels, and to consider, for their analysis, luminance only, "dropping"
the last dimension of the signal.

From now on, our video signal V therefore will be considered as a 3D
tensor, with the dimensions having the semantic described before: V will
be a discrete function f(t, x, y), representing the temporal evolution of
the luminance channel only in the cartesian coordinates x, y. As we have
pointed out several times before, our video can be considered also as a
sequence of frames, or images, ordered along the temporal dimension in
order of acquisition.

Now, let us consider a single frame F. We can represent the integrity
of the frame by creating a mask M, of the same dimensions of F, where
each pixel takes a binary value 0 or 1, such that a pixel belonging to a
spliced region has value 1, and a "clean" pixel instead has value 0. An
example is given in figure 3.1. The overall video mask is made of the
collection in time of the masks of each frame.

For splicing in our work we refer to the image-based attacks de-
scribed in Section 2.2, therefore to the addition of regions of video coming
from a different source object. Within this context, our main goals of de-
tecting and localizing the splicing translates in computing M̂, an estimate
of the mask for each frame, where any pixel with value 1 represents a
forged position (splicing localization), and therefore if the frame presents
any pixel with value different from 0 is detected as spliced (splicing de-
tection).
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Figure 3.1: Example of a frame taken from a spliced video and relative mask
used to represent the spliced region. In this case the man walking is added
through an editing software. The mask belongs to the dataset presented in
[8].
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3.2 Proposed methodology

Our proposed methodology is based on different works in the field of
video anomaly detection which rely on deep learning tools. Anomaly
detection is a well known subdomain of machine learning and data mining
research, whose main goal is to identify and detect abnormal patterns
or motions in data that are by definition infrequent or rare [29]. Ap-
plied to video signals, it is mainly used in surveillance systems in order
to detect "strange" events analyzing the motion and appearance patterns
of data coming from CCTV cameras. The main issue encountered in ac-
complishing this task is that, imagining of tackling it as a classification
problem for instance, datasets with labels for anomalous samples are hard
to be found. In fact, while the "normal" class can be well characterized,
the "anomalous" one comprehends a wide set of rare events or unseen
objects that, for the sake of the goal, can be considered consistent, but
in fact might be very different from each other.

Therefore, the objective of anomaly detection is, given a dataset of
training samples containing no anomalies, to design or learn a feature rep-
resentation that captures their behaviour, and allows to detect anomalies
by measuring the deviation of samples from this "normal" behaviour.

Deviations can be considered as the approximation error of the projec-
tion of the sample in a geometric space, for instance, or the probability
of observing the anomalous sample given a distribution modeling the
"normal" ones. Thus, when dealing with video anomaly detection, to the
issues which we can say are inherent to the task of anomaly detection, we
have to consider the well known problems relative to the dimensionality
of video signals too.

We can see therefore that there are a lot of analogies between the
anomaly detection and video forensics field. The first of them can be
considered the very low availability of labeled datasets; the second, the
problems in handling video signals; finally, the last one the difficulties
in designing a set of characteristic features to extract from the data in
order to accomplish the task at hand.

It should not surprise then if deep learning techniques gained popu-
larity in the video anomaly detection field too. The work of Kiran et al.
[29] makes an exhaustive overview of the different approaches followed in
the field. Two in particular, namely the representation learning for
reconstruction and the predictive modeling approaches, caught our
attention.

The first aims at constructing a representation for normal video sam-
ples using autoencoders, and detecting anomalies as samples that are
poorly reconstructed. The second considers video frames as temporal
patterns or time series, and therefore aims at constructing the conditional
probability distribution P (Ft|Ft−1, . . . ,F0), so at predicting the current
frame given a history of past frames. Again, deviations are measured as
frames that are badly reconstructed, and in this case the main tool used
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are RNNs such as the LSTM model. Combining the two approaches,
the work by Chong and Tay [9] uses the convLSTM model described in
subsection 1.2.3 for creating a spatio-temporal autoencoder.

It is trivial to see that if we consider as our "normal" samples frame
sequences without splicing, and as our "anomalous" spliced frames
sequences, we can translate the problem of splicing detection and local-
ization as an anomaly detection one1. Our pipeline, which is represented
in figure 3.2, can be briefly summarized into the following steps:

• we pre-process the incoming video signal, dividing it into smaller
sequences of video frames. These sequences are smaller both in
the spatial and time dimensions;

• we train an autoencoder to reconstruct sequences with no splic-
ings: our aim is to make the internal representation of the au-
toencoder capture the local coordinates, as explained in subsection
1.2.4, of the manifold where splicing-free videos lie in the input
space;

• after the training procedure has stopped, we test the autoencoder
on videos forged with splicing attacks;

• on the assumption that the hidden representation of the autoen-
coder is well suited for clean sequences only, spliced regions of the
video are detected since they are badly reconstructed: therefore,
we measure the reconstruction error between the original spliced
video and the reconstructed one, producing a splicing heatmap;

• finally, after producing the heatmap we binarize it to have our
estimate of the mask M̂ for the sequence of frames.

Splicing localization is possible since each sequence is extracted
from small portions of the video, also called patches, so that the origi-
nal video is subdivided into spatio-temporal regions analyzed separately.
For the sake of our discussion, we will divide patches into two types:
sequence patches, that we can consider as a collection of few small
frames coming from the original video2, and which are extracted from
both the spatial and time dimension with a process we call spatio-
temporal cropping; and frame patches, which instead are extracted
from the spatial dimensions only considering a single frame at a time (see
figure 3.3 for an exemplification).

1The same idea has been used by D’Avino et al. [8], but our works differs in
different aspects. First, the authors work with hand-designed features extracted from
each frame, that in a second moment are organized in sequences and analyzed by a
recurrent autoencoder based on the classic LSTM model. Our pipeline works directly
with the pixel data of the video, and employs convolutional structures in all the
architectures developed. Moreover, our pipeline includes a pre-processing operation,
that we call volume rotation, that is absolutely novel in the field.

2Each sequence patch can be considered approximately as a very short and low
resolution video "cropped" from the original one.
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In the next sections we will describe in details each step of our
pipeline, the different versions of autoencoders used along with the train-
ing procedure executed, and finally our testing procedure with the
heatmap computation and mask estimation. Interested in how the infor-
mation present in a sequence of frames could help the splicing localization
procedure, we wanted to compare two different design architectures for
our autoencoder:

1. a recurrent architecture, based on the convLSTM model and in-
spired by the work of Chong and Tay [9];

2. a non-recurrent architecture, based on convolutional neural net-
works and taken from part of the work done in [10], which proved
to be effective in the splicing localization of attacks executed on
images coming from satellites services.

Both have been trained on different versions of patches, using a ro-
tation procedure which will be explained in details in the next section.

3.3 Video pre-processing
As we have explained previously, images and videos are usually encoded
using the luminance-chroma color space. A common operation in mul-
timedia forensics research, based on the motivations described in the
previous section, is to work directly with the luminance component only.
This operation indeed has the advantage of reducing the dimensionality
of the object at hand (we consider a single color channel instead of three),
while still providing enough information for the forensics analysis.

As the first step of our pipeline therefore, we convert the range of
the pixels’ values of the video frames from the standard 8-bit encoding
of almost all video formats (from 0 to 255), to a 0-1 range. We then
normalize each video by subtracting the mean computed averaging the
pixels’ values at each location for every frame, resulting in a final range
between -1 and 1. Finally, we take the luminance channel only.

From the original video, representable as a 4-dimensional tensor V ∈
Nt×H×W×c, whose elements are integer values from 0 to 255, where t
represents the temporal dimension, H and W the height and width of
the resolution of the video, and c the number of color channels, we then
arrive to a 3D tensor V̂ ∈ Rt×H×W , whose elements are float values from
-1 to 1 representing the temporal evolution of the luminance channel.

The next operation in the pipeline is the sequence patch extraction.
Each patch is extracted from cropped regions of the video, with the
cropping taking place both in the time dimension t and in the spatial
dimensions H and W . This leads to the creation of a dataset of sequence
patches cropped from each video, that for the sake of training our net-
works can be considered as independent samples taken from an uniform
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Figure 3.2: Pipeline followed by our methodology.
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probability distribution. This procedure can be seen as an "extension" in
time of the simple "cropping" procedure used for data augmentation by
many deep learning practitioners (see again figure 3.3), that in our case
is essential for having a fine granularity in detecting the splicing in both
the temporal and spatial dimension.

Original	video	frame	sequence

Sequence	patch

Spatio-temporal	cropping

Spatial	cropping

Original	video	frame

Frame	patch

Figure 3.3: Spatio-temporal and spatial cropping on the normalized video
signal. We can see how the sequence "patch" extracted is smaller in the height,
width and temporal dimension, as an "extension" in time of a normal frame
patch. The frames are taken from a video of the dataset presented in [8].

A novel aspect of our work is that sequences are not only extracted
considering videos as a collection of frames. Taking a step backward, let
us look at our 3D tensor V̂ as a 3D volume. This volume is nothing more
than the digital signal resulting from the sampling of a multidimensional
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function. Looking at it as a sequence of frames, we have what we can
call a "frontal" view of the signal. This frontal view can be interpreted,
as we have already done, as the temporal evolution of luminance in the
points defined by a cartesian coordinate system. However, if we take
this volume, and rotate it, we would observe the same evolution from a
different perspective. Let us take as an example a volume R, which we
rotate along the y axis by 90◦, as depicted in figure 3.4. The resulting
"view" of the volume would be different from the one we are used to:
instead of viewing the luminance sampled at different time instants in
a cartesian point p = (x, y), in the rotated volume R̃ we would observe
the whole temporal evolution of the luminance in a cartesian point y
sampled at different positions in the x axis.

x

yt

t

yx

Original	video	volume Rotated	video	volume

Figure 3.4: Example of volume rotation along the y axis.

While the overall semantic of our 3D object does not vary consid-
erably, what really changes, accordingly to the paradigm of the "views"
explained before, is the semantic of the patches of sequences given to our
autoencoder. Considering our proposed methodology, this operation can
provide it a more robust perspective for constructing an hidden repre-
sentation of clean video sequences. Looking at the volume from three
different angles, our hypothesis is that splicings which are less evident
in the "classic view" of a video signal can be spotted from the rotated
perspectives.

Image-based attacks indeed can be considered as a factor introducing
discontinuities in the evolution of the sampled signal. Rotating the vol-
ume can give different insights for several reasons, of which one can be
simply the fact that often the resolution of video signals is much higher
in the spatial dimensions rather than in the temporal one. The temporal
dimension can be considered as the most "sacrificed" in the encoding pro-
cedure of many video formats, due to reasons relied to the perception of
motion by the human visual system. Rotating the volume therefore, from
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a simple signal processing point of view, gives us a signal with higher res-
olution with respect to the classic "frontal" view, such that image-based
attacks are easier to be noticed.

Another motivation, is that by looking at the volume from the frontal
perspective only, our networks have an high chance of learning to rep-
resent the observed scene from an object-detection point of view. Inter-
estingly indeed, the purpose for which the convLSTM model has been
developed in the first place was to extend the basic LSTM model in order
to have an hidden representation capturing the movement of objects in
the scene3. Such semantic however is too specific for the splicing local-
ization task. By rotating the volume, we are avoiding the networks to
concentrate on these aspects of the scene, and forcing them to have a
more general representation of the analyzed volume.

This approach is independent of the type of networks used. We can
still perform our patch extraction procedure (as an example see spatio-
temporal cropping executed on a rotated volume in figure 3.5), and even-
tually use both recurrent and non recurrent networks and compare their
performances in detecting image-based attacks. In practice, the rota-
tion procedure simply translates in permuting the elements of our final
3D tensor V̂ ∈ Rt×H×W , so that it results in a tensor Ṽ ∈ RH×t×W or
Ṽ ∈ RW×H×t, therefore rotating the volume of 90◦ along the x or y axis.

x

yt

Original	video	volume
t

yx

... .........

... ...

......
......

Rotated	video	volume

Not	rotated	sequence	patch Rotated	sequence	patch

Figure 3.5: Example of patches extraction with spatio-temporal cropping from
the volume rotated by 90◦ along the y axis.

3Specifically, the author proposed it for predicting radar maps for precipitation
nowcasting tasks.
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3.4 Autoencoders architectures
As we have stated previously, part of our work consisted in the com-
parison between a recurrent and a non-recurrent architecture for the au-
toencoder employed in our pipeline. The reason lies in the curiosity of
understanding if models that process data with a dimension that rep-
resents the sequentiality of the process generating it, might have more
insight in the localization of splicing attacks.

Our recurrent autoencoder is inspired by the work done by Chong and
Thay in [9], and in figure 3.6 we have represented both schematically. The
architecture by Chong and Thay takes as input frame sequences of 10
frames 227× 227 pixels wide, and it can be divided into three modules:

1. a spatial encoder, which is used to reduce the dimensionality of
each frame singularly, and is composed by two convolutional layers;

2. a temporal autoencoder, composed by three layers based on the
convLSTM model, which constructs the hidden representation
of the overall sequence of frames;

3. a spatial decoder, which takes the hidden representation in out-
put from the temporal autoencoder and outputs the reconstructed
frame sequence with the same dimensions of the input.

All the parameters of the convolution operation are described in the
picture (number of filters and dimension of their kernels, eventual stride).
Please notice that all layers are activated using an hyperbolic tangent,
so that their output still lies in the range -1 to 1 of the input sequence,
and that no pooling has been used. Our architecture mirrors the one
developed by the authors, with two major differences:

• between each layer, we employ a layer of batch normalization
[70]: it is indeed a common practice between deep learning practi-
tioners to add it in convolutional chains, since it allows to control
the dynamic of the inputs given to intermediate layers;

• the sequences gave as input to the autoencoder are extracted with
the spatio-temporal cropping procedure described in the previous
section, while the authors resized full videos to the dimension spec-
ified in figure 3.6.

The use of batch normalization and the dimension of the patches,
in particular the length of the sequences, has been decided in a specific
stage of model selection of our work explained in Chapter 4.

For what concerns our non-recurrent autoencoder, it is mainly in-
spired by the work of Yarlagadda et al. in [10]. Here the authors worked
with images coming from satellite services, and used a convolutional au-
toencoder as a feature extractor for a successive classification task in a
splicing localization context.
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Figure 3.6: The spatio-temporal autoencoder proposed in [9] (on the left) and
our basic recurrent architecture (on the right). On the right of each layer we
can see the dimensionality of the tensor in output.
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In our work instead we rely on the ability of the autoencoder to
capture the manifold of splicing-free frames, therefore we simply use the
architecture of the convolutional autoencoder proposed by the authors
for the feature extraction process, depicted in figure 3.7, for our anomaly
detection task.
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 cropping
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patch
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Figure 3.7: The convolutional autoencoder proposed in [10]. Please notice
that also in this case no pooling is used, and that the activation of each layer
is linear.

The autoencoder works with frame patches as input, 240×240 pix-
els’ wide. Hence, differently from the recurrent autoencoder previously
described, when training this network we perform a simple spatial crop-
ping and reconstruct the patches extracted from each frame singularly.
This operation still allows us to localize the splicing in time, since we
work on a frame per frame basis, but also to compare if the presence of a
sequentiality dimension, being time or space depending on the rotation
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of the volume, could give an advantage in localizing image-based attacks.
The autoencoders described so far can be defined as our "basic" ver-

sions. Regardless of the architecture used, both of them have been
trained to reconstruct the input given using as a loss function the mean
squared error computed between the reconstructed and the input se-
quence/frame patch. The mean squared error (MSE) can be defined
statistically as a measure of the performance of a predictor. Specifi-
cally, taking a vector of N predictions x̂ and a vector of N observations
x of the predicted variable x, the MSE is defined as

MSE =
1

N

N∑
i=1

(x̂i − xi)
2. (3.1)

Algebrically, we can view the MSE as the norm of the distance
between the two vectors in an Euclidean space where they are defined
(RN in this case). In both interpretations, it gives us a measure of the
"goodness" of the approximation of the "real" vector x using x̂. We can
easily extend this measure for multidimensional tensors by simply using
the correct norm for the space where they are defined. In our case, we will
use it to verify the correctness of the reconstruction of the input given
to our autoencoders, therefore the sequence patches for our recurrent
autoencoder and the frame patches for our non-recurrent one.

However, our patches are defined over of an high dimensionality Eu-
clidean space. Assuming that the two "classes" of spliced and clean
patches are distinguishable, it would be easier to observe their sepa-
ration in a lower dimensional space4. Since the loss is the only means
for the autoencoders to learn the differences between the original and
reconstructed patches, computing the MSE in an high dimensional space
might not give the networks enough clue to construct an effective hidden
representation. For this reason, we have devised another training pro-
cedure, where instead of computing the loss between the actual and the
reconstructed input, we do so between the hidden representations of
the original and of the reconstructed patch, as depicted in figure 3.8.

Using this loss function, which we can call L2, we trained different
autoencoders, where we have tried to balance the reconstruction errors
measured by the MSE computed for both the hidden representation and
the reconstructed patch. In fact, defining instead the MSE between the
input and reconstructed patch as L1, we can use as performance measure
during our training the overall loss Lenc

5 equal to

Lenc = αL1 + βL2, (3.2)

where α and β are hyperparameters which could be determined during
a stage of model selection.

4This is a well known problem in machine learning theory defined as curse of
dimensionality.

5The enc subscript refers to the name given to the autoencoders trained with this
loss function, encoding loss autoencoders indeed, as we explain in the following.
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Figure 3.8: In order to compute the loss between the hidden representations,
we first make the autoencoder reconstruct the input patch, and then recon-
struct the "reconstructed" patch another time. We then take the hidden rep-
resentation of the two patches and compute the MSE between them. In this
figure we use as an example the reconstruction of a sequence patch by our
recurrent autoencoder.
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In our work we have simply tested three pairs of values for them, as
we will explain in the following chapter, in order to evaluate the impact
of both MSEs during the training of our networks. We will refer to this
group of autoencoders, both recurrent and not and working with rotated
and not rotated volumes, as encoding loss autoencoders, for the use
of the MSE computed on the hidden representation during their training.

Based on the experiments conduced for this last types of networks,
as a final step of our work we trained another model of autoencoder.
Using again as loss function during training the MSE computed on the
hidden representation, we insert as an additional term a regularization
term. Inspired by the work of Cozzolino and Verdoliva [5], we insert
a term trying to mimic the class intra-variance used by the authors.
After some reflections, our choice fell on the use of the mean of the
energy of the patch, computed as the mean of the squared elements of
the reconstructed patch.

Our assumption is that this regularization term would constrain the
autoencoder to reproduce content with "smoother" transitions. Consid-
ering image-based attacks as a source of discontinuities in the signal,
such a property would therefore limit the autoencoder in reproducing
spliced regions of the video with an high overall quality, leading to their
localization following our pipeline.

This choice revealed indeed to be the most effective approach for
splicing detection, as we will highlight in the following chapter. As we
did for the encoding loss autoencoders, defining the regularization term as
L3, we tried to balance it with the term representing the MSE computed
on the hidden representations according to the following formula

Lreg = αL2 + βL3. (3.3)

From now on, we will refer to the autoencoders trained in such way,
that are both recurrent and non-recurrent, and work with both rotated
and non-rotated volumes, as regularized autoencoders.

Please note that for both the encoding loss and the regularized au-
toencoders, the procedure of splicing localization does not change. Both
typologies of networks return as output the reconstructed input patch:
what changes is only the procedure of training in the form of the loss
function used. Therefore, both types allow us to follow the pipeline
defined before, of which only the last step, the heatmap and mask
computation, needs to be described.
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3.5 Heatmap and mask computation
The last step of our pipeline comprehends the computation of an heatmap,
through which we aim at constructing an estimate of the mask M̂ to
localize the spliced regions of the video under analysis.

After having reconstructed all the patches extracted from the original
test video, our procedure simply consists in the following steps (repre-
sented in figure 3.9):

1. compute the squared difference between the elements of the orig-
inal and reconstructed patches, creating what we can call a patch
of quadratic residuals;

2. from the quadratic residuals, apply a multidimensional mean fil-
ter, of the following dimensions: for the reconstructed sequence
patches, a 3D tensor of dimension t and 8 × 8 pixels wide, with t
being the sequence length (10 frames in our case); for the frame
patches, a simple window 8× 8 pixels wide. This leads to the cre-
ation of patches of MSE between the original and reconstructed
ones;

3. convert the MSE patches’ values to a 0-255 range, obtaining an
heatmap for each patch;

4. binarize the heatmap by imposing a threshold above which the
pixels are considered spliced, obtaining a mask estimate for each
patch.

The use of the mean filter allows us to localize very small splicings
in the spatial dimension, while keeping into account all the frames of the
sequence. The performance of our pipeline can then be evaluated in two
ways:

1. by reconstructing a mask for the overall video, and comparing the
estimated mask with the original;

2. by extracting patches from the mask video and then comparing the
estimated masks for each patch.

The performance of the networks are then evaluated by changing the
threshold computed at point 4 and creating Receiver Operative Char-
acteristic (ROC) curves, as we will explain in the following chapter.
Figure 3.10 shows a representation of the mask estimation procedure.



56

... ...

Difference

Squaring

Convolution

Linearization
and	conversion

Original	test	video	patches Reconstructed	video	patches

Quadratic
residuals

Mean	filter

Splicing
heatmap

Figure 3.9: Heatmap computation procedure executed on sequence patches.
The process is almost identical for frame patches, changing only the size of
the mean filter.
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Figure 3.10: Thresholding of the heatmap in order to create different mask es-
timates. Each of them are then confronted with the reference mask to compute
ROC curves as explained in Chapter 4.
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Experimental results

The present chapter is going to illustrate the tests carried out to validate
our proposed methodology. We will begin describing the dataset used
for our experiments. We will then outline the training and validation
procedure used for our autoencoder models, closing with a detailed re-
port on the tests executed. In particular, a section will be devoted to
explain the preliminary experiments used for determining some of
the hyperparameters of our models and methodology, and a section
dedicated to the description of our final tests will close the chapter.

4.1 Dataset description
Several times we have pointed out how the lack of labeled datasets is one
of the major difficulties encountered by multimedia forensics researchers.
Fortunately, D’Avino et al. [8] made publicly available the dataset of
videos used for their experiments. In order to have a reference and per-
forming our tests under known and controlled conditions, our choice fell
over this set of videos too.

The overall dataset consists in two separate groups of 10 videos each.
The first one, namely the clean set, is made of videos acquired using nine
different smartphones. All of them have the same resolution of 720×1280
pixels and a frame rate of 30 frames per second, but differs for their over-
all length, which is around ten to twenty seconds. The second group
instead, namely the forged one, is constituted by the same 10 videos,
which however have been altered through image-based attacks created
using Adobe After Effects CC R©. In particular, using chroma-key com-
position (see figure 4.1 for an example), the authors have spliced the
original videos using as external sources green-screen acquired clips
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available on YouTube under the Creative Common License. Therefore,
for each of the videos of the clean set, a spliced counterpart exists, to-
gether with a mask indicating the spliced regions (which we have shown
previously in Chapter 3, figure 3.1).

Figure 4.1: Illustration of the splicing process executed by the authors in [8].
In the top row we can see frames of the original video, in the middle the green-
screen clip used for forging, and in the bottom the final spliced video. Image
taken from [8].

All files are available in the Audio Video Interleave (AVI) format,
and are encoded using the Advanced Coding Video (AVC) codec
according to the High Profile of the H.264 standard.

4.2 Models training and validation
In the previous chapter we have described the different typologies of
autoencoders devised in this work and the motivations behind their use.
In the following we will describe the procedure used for their training.

First of all, the primary goal of our approach is the creation through
the autoencoders of an effective hidden representation of splicing-free
patches. It is immediate therefore that the training of our networks uses
the clean videos set only. We take each element of the group, normal-
ize it, and then crop it individually according to the type of autoencoder
trained (recurrent or not). The patches, as we have pointed out previ-
ously, can be considered as independent samples taken from an uniform
distribution: therefore, after having processed all the videos, we split
them in a training and in a validation set. Specifically, we insert in
the training set the patches extracted from the first seven videos, and in
the validation set the patches coming from the last three. The patches of
each set are then randomly shuffled before training begins. In this way,
we are avoiding to sequentially show the autoencoders patches coming
from the same source, ideally speeding up the learning process, and at
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the same time avoiding to overfit their hidden representation with the
content of the videos from the training set.

Training is then carried out using a variant of the stochastic gradient
descent algorithm named Adam [34], arranging the patches obtained in
mini-batches of 16 elements each. The deep learning framework used
for our experiments, based on the programming language Python, is
Keras [71], with the hyperparameters chosen for our optimizer being:

• learning rate equal to 0.001;

• exponential decay rates for moment estimation β1 = 0.9 and
β2 = 0.999;

• ε = 10−7.

Training has been executed for a maximum of 50 epochs, early stop-
ping the procedure if the reconstruction error on the validation set did
not change after 10 consecutive epochs. We then kept the best model
according to the performances on the validation set.

As for the loss functions used during the process, we have already
illustrated them in the previous chapter. We also specified how each of
them characterizes one of the three families of autoencoders developed.

We will recap them briefly here. Recalling that the MSE between the
original and reconstructed input is defined as L1, and the MSE between
the hidden representations of the original and reconstructed patches as
L2:

• for our basic autoencoders, the loss function is simply L1;

• for our encoding loss autoencoders, the loss function Lenc is de-
fined in equation 3.2 as Lenc = αL1 + βL2;

• for our regularized autoencoders, the loss function Lreg is defined
in equation 3.3 as Lreg = αL2+βL3, with L3 being the regulariza-
tion term described in Chapter 3.

The parameters α and β have not been tuned, but simply tested with
three sets of values to observe their effects on the performances of the
last two families of autoencoders. The three set of values chosen are 0.25
and 0.75, 0.5 and 0.5, and 0.75 and 0.25.

Other significant choices for the positive outcome of our experiments
regarded for instance the length of the sequence patches processed by
our recurrent autoencoders, the way the elements are extracted in the
temporal dimension, and the use of batch normalization between their
layers. All of them have been made during a specific set of preliminary
experiments, to be explained later in a following section.
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4.3 Evaluation metrics
In the previous section we have already described how we evaluated the
performance of our networks during training. By simply measuring the
reconstruction error on the patches extracted from the clean video set,
we are able to stop the procedure and then proceed to testing.

The overall test performances of the trained networks instead have
been evaluated by reconstructing the spliced videos and measuring the
reconstruction error as described in the last section of Chapter 3. As
for the training, the reconstruction error considered has been the MSE,
from which a splicing heatmap is constructed through linearization and
conversion into an 8-bit encoding scale of the pixels’ values. We finally
obtain an estimate for the masks of each video by imposing a threshold
above which the pixels are considered spliced.

We can create a mask either for each patch reconstructed, or, by
reassembling the whole video and then creating the heatmap, for the
whole reconstructed video. In any case, by varying the threshold and
comparing our estimates with the reference masks, we can measure the
number of pixels which are classified as spliced while being really spliced,
or true positives, and the number of pixels which are classified as spliced
while in reality not being so, also defined as false positives (see figure
4.2 for a representation). These two numbers defines the statistical
measures of:

• True Positive Rate (TPR) = # of true positives
total # of samples classified ;

• False Positive Rate (FPR) = # of false positives
total # of samples classified ;

By plotting the TPR and FPR as a function of the threshold, we
obtain what is called a Receiver Operative Characteristics (ROC)
curve. For each of our experiments, we plotted the ROC curves for
all the test videos, computing altogether the Area Under the Curve
(AUC), which is usually adopted as a summary measure of the overall
performance of the algorithm in the task.

We can roughly view it as the probability of our networks of correctly
assigning a spliced pixel the positive value, and it gives an useful metric
for comparing all the different solution proposed in our work.

Now we will start describing our initial set of preliminary experiments.

4.4 Preliminary experiments
After the initial phase of delineation of our methodology, the very first
step of our work consisted in a preliminary test of the basic architectures
described in Chapter 3. In particular, we wanted not only to have an early
response on whether we chose our networks correctly, but we needed some
clues in deciding two fundamental aspects of our recurrent autoencoders.
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Figure 4.2: Illustration of the division of samples in the feature space into
true positives and false positives according to a binary classification algorithm.
Samples inside the circle are classified as positives, those outside as negatives.

These aspects are:

• the length of the sequence patches given as input;

• the modality of extraction of the patches in the temporal dimen-
sion.

The length of the sequence can be considered almost directly propor-
tional to the depth of the "view" of the recurrent network in the temporal
or spatial dimension. Using longer sequences therefore would, at least in
theory, provide our autoencoder more information, or context, in recre-
ating the patch in input.

All our experiments have been executed on an Intel Xeon E5-2687W
with 48 Cores, having 252 GiB of RAM and using CUDA accelerated
computations when possible on a TITAN V GPU with 12 GiB of RAM.
Despite the good amount of resources for our computations, the fact of
working with multidimensional tensors forbade us to work with very long
sequences, which could not be easily loaded into the GPU’s memory. For
this reason, the maximum number of elements in the sequence has been
set to 20.

However, using longer sequences is not the only way to provide the
network with a more informative input. Another strategy consists sim-
ply in not taking elements sequentially, but with some dilation (e.g., 1
element every 2 or 3) in the dimension of interest. Such an approach
should be used carefully, since it might result in the loss of some infor-
mation: for instance, taking elements with dilation when the volume is
rotated would imply to "skip" some pixels of the frame, while in temporal
dimension would imply to ignore some frames entirely.
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In the light of this, we studied the behaviour of our networks chang-
ing the length of the sequence, while taking elements in the temporal
dimension only (so with no volume rotation) with different dilation ratios
too. Our first test thus forecast the training of different network proto-
types, trained and validated with the videos of the clean set divided as
explained before in training and validation set and tested on those of the
forged group. However, for the sake of brevity, we report here only four
of them, which are:

1. a first prototype which has been trained on patches extracted from
a single region of interest for each video, of dimensions 10× 227×
227;

2. a second prototype trained on patches extracted from 4 regions of
each video, again of size 10 × 227 × 227 but with the frames in
the temporal axis selected with a dilation ratio of 1/3, meaning
that a frame is selected every 3 (so that a sequence of 10 frames is
extracted from a volume of 30);

3. a third prototype which was also trained on patches extracted from
4 regions of each video, but without dilation;

4. a final prototype trained on patches cropped from 2 regions, but
with size 20 × 227 × 227, and same dilation ratio of the second
prototype (therefore a sequence of 20 frames is extracted from a
volume of 601).

Each of these prototypes has then been tested on the whole set of
10 forged videos, but extracting patches from a single region of interest.
The reason of such procedure lies simply in the time efficiency of train-
ing and testing the prototypes on reduced portions of our dataset. Each
reconstructed patch has been then reassembled into the original video,
from which we obtained the splicing heatmap and finally the mask esti-
mation by varying the threshold and obtaining the different ROC curves
for each of the test clips.

The values of the AUC obtained by each of the prototypes is reported
in figure 4.3. As we can see, the overall performance of the networks do
not show relevant differences, independently of the sequence length or of
the dilation ratio used. On one hand, this motivated us in keeping the size
of the patches as the one originally used by the authors in [9], so 10×227×
227, and on the other suggested us that we could work in the temporal
dimension using dilated sequences without loss in performances, therefore
easening the overall burden on the machine used for our computations.

As a second experiment, we considered the insertion of batch nor-
malization [70] layers in our recurrent architecture. The benefits of

1Please note that with a framerate of 30 frames per second, these volumes of 30
and 60 frames coincided with lengths of 1 and 2 seconds respectively.
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Figure 4.3: AUC values for the ROC curves of the first four prototypes.

using batch normalization are well known in the deep learning field, es-
pecially for what concerns the mitigation of the phenomenon noticed as
covariance shift, and the independence from the distribution of the
input values gained by each layer in their feature learning process. This
last property is particularly desirable for our networks, in order to have
an hidden representation which is less conditioned by the pixel content
of the videos seen during training.

Figure 4.4: AUC values for the ROC curves of the prototypes with batch
normalization.

In figure 4.4 we reported the results obtained testing again four pro-
totypes, with the same parameters of the first test regarding the sequence
length and the dilation, but inserting batch normalization between each
layer of the architecture proposed in [9]. This experiment led to the de-
sign of our recurrent autoencoder represented in figure 3.6 of Chapter 3.
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Even though we gained no sensible improvement in the overall perfor-
mances of our networks, for the considerations made before for the rest
of our experiments we preferred to maintain our recurrent architecture
with batch normalization.

Finally, as the last preliminary experiment we tested our volume ro-
tation procedure. In doing so, we used our batch normalized recurrent
autoencoder, using as dimension for the patches 10 × 227 × 227, as in-
dividuated in the first experiment, and developed two prototypes which
differs from the fact that:

• in one case the autoencoder during training returns the patch re-
rotated, so that the MSE is computed as if the patch has not been
rotated at all;

• in the other, the autoencoder returns the patch without re-rotating
it, so that the MSE is computed from the "rotated" view explained
in Chapter 3.

The reason in such operation relies on the fact that, even though in
the first case the autoencoder would still have an hidden representation
which is based on the rotated view of the volume, the loss, and therefore
the information provided to the network, would still be "encoded" in
the classic perspective of the volume. Being interested in seeing if the
network would still be able to localize splicing even if trained in such a
way, we therefore trained four prototypes, two rotating the volume along
the x axis and two along the y axis, according to the casuistry illustrated
above.

Figure 4.5: AUC values for the ROC curves of the prototypes trained with
volume rotation.

As we can see in figure 4.5, the performances worsens with the only
exception of the autoencoder trained with volume re-rotation along the x
axis. This experiment therefore convinced us in applying the re-rotation
of the volume even for the rotation along the y axis.
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4.5 Main experiments
After the first stage of preliminary experiments, needed to set some de-
tails of the procedure and of the architecture of our networks, we have
then proceeded in executing our main experiments. Basically, we have
performed a group of tests for each of the families of autoencoders de-
veloped, with an experiment for each rotation of the volume. Moreover,
for the two families of encoding loss and regularized autoencoders, we
executed a test for each pair of values of parameters of the loss function
proposed in the second section. Within this setup, every network has
been trained on patches extracted from all the regions of the videos
of the clean set, and tested on patches extracted from all the regions
of the videos of the forged set. Masks have been estimated for each re-
constructed patch, and therefore the ROC curves have been computed
considering the total set of masks estimated by our networks for each
singular video. For what concerns our recurrent autoencoder, the size of
the patches is the same decided during the preliminary stage, therefore
10 × 227 × 227, while the dilation ratio may change depending on the
rotation of the volume. Whenever it is necessary, we will specify the
different choice of this parameter.

4.5.1 Basic autoencoders
Concerning our "basic" autoencoders, the patches for our recurrent archi-
tecture have been extracted, for the non-rotated volume, with a dilation
ratio of 1 frame every 2 in the temporal dimension. For what regards
the networks working on rotated volumes instead, we preferred to not
use any dilation ratio in any of the dimensions. Finally, in the case of
our non-recurrent autoencoder, no dilation ratio has been applied in any
dimension: we simply take one element of the volume at a time, in the
order gave by the axis on which the sequence is considered ordered. The
AUC values of the ROC curves scored by each type of network working
on the different rotations of the volumes are depicted in figure 4.6.

As we can see, the mean value of the different AUC are only slightly
larger than 0.5, suggesting that our networks are not performing better
than random guessing. Among the videos, there are some exceptions,
with values of the areas greater than 0.8. In any case, surely the most
performant network for this group of tests revealed to be our recurrent
autoencoder working on the x axis rotated volume, with a mean AUC
value of 0.7. However, we must notice that this number is biased by some
very good performances of the network on singular videos (specifically,
the video number 7), while great part of the scores on the other clips of
the dataset are around or below 0.5 (see figure 4.7 for an example).

Four videos in particular seems to be critical for all the networks
tested, which are the videos number 1, 4, 6 and 8. The first and the last
one share the fact that the spliced regions have a texture which is quite
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Figure 4.6: AUC values for the ROC curves of the basic autoencoders, both
recurrent and not.

similar to the one of the non-spliced regions (see figure 4.8 for a clarifi-
cation). Therefore, they might "trick" the networks, which reconstruct
them, in spite of the splicing, with an overall good quality. Regarding the
videos number 4 and 6, their splicings, while still quite evident, might
nevertheless have some components that are mistakable as clean. The
opposite reasoning might indeed be formulated for the very good results
obtained by the networks on video number 7, where the splicing stands
out quite evidently from the rest of the content of the video.

Therefore, our basic networks ability of spotting spliced attacks seems
to be too dependent on the type of content of the spliced regions.

Figure 4.7: ROC curves scored by the recurrent autoencoder working on the
x axis rotated volume for the video number 7 (left) and the video number 6
(right).
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Figure 4.8: Forged version of video number 8 and relative mask representing
the spliced region. As we can see, the texture of the spliced area (a tree among
other trees) is almost identical.
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4.5.2 Encoding loss autoencoders
For our second family of autoencoders, as we have previously said, we
have executed a test for each of the three pair of values used as the
parameters α and β of the training loss function, which again are 0.25−
0.75, 0.5 − 0.5 and 0.75 − 0.25. Moreover, we tested each combination
with all the volume rotations tried previously, therefore resulting in three
tests for each configuration of the parameters of the loss function.

The results for the experiment executed on each pair of values are
depicted in figures 4.9, 4.10 and 4.11 respectively.

Figure 4.9: AUC values for the ROC curves scored by the encoding loss au-
toencoders trained with α = 0.25 and β = 0.75.

Figure 4.10: AUC values for the ROC curves scored by the encoding loss
autoencoders trained with α = 0.5 and β = 0.5.
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Figure 4.11: AUC values for the ROC curves scored by the encoding loss
autoencoders trained with α = 0.75 and β = 0.25.

For this last group of tests, we can observe immediately that for all
the combinations of α and β the recurrent autoencoders seem to perform
slightly better than their non-recurrent counterparts. Specifically, the
recurrent networks working with the rotated volumes have better mean
values for the AUC and more consistent performances across all videos.

We can take as the best example the recurrent autoencoder working
on the y axis rotated volume, with α = 0.25 and β = 0.75. This net-
work, while reaching the same performance of our basic autoencoders in
videos such as the number 7, improved its results on other more critical
videos such as the number 8 (AUC=0.77) and number 6 (AUC=0.68,
see figure 4.12). Similarly, the recurrent autoencoders working on the y
axis but with α = 0.5 and 0.75, and β = 0.5 and 0.25, improved their
performances on video number 4, reaching as AUC values respectively
0.66 and 0.64.

These results suggest us that the combination of recurrency, volume
rotation and working with the loss function on the hidden representation,
makes our autoencoders’ performances less dependent on the content of
the splicing, therefore making its hidden representation more able to
generalize the manifold of splicing free patches.

Anyway, we must notice that this solution is not yet generalizing well
on all videos, with again the video number 1 being the most critical and
resistant in the localization of the splicing. Finally, no sensible difference
is observable by changing the parameters α and β, probably due to the
magnitude of the values considered in our test.

4.5.3 Regularized autoencoders
We close this chapter illustrating the last group of tests executed on the
family of regularized autoencoders. The procedure followed is the same
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Figure 4.12: Some of the ROC curves scored by the recurrent autoencoder
working with the y axis rotated volume and trained with α = 0.25 and β =
0.75. On the top row we have: on the left, the ROC curve for the video number
8; on the right the one scored for video number 6. On the bottom row: on the
left the ROC scored for the video number 1; on the right for video number 7.
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of the precedent subsection: we have tested each autoencoder, recurrent
and non-recurrent, for each combination of the values α and β of the
regularized loss function used during training. For each pair moreover,
we have tested the network with all the possible rotations of the volumes.

We have reported the AUC values of the ROC curves scored by each
network in the figures 4.13, 4.14 and 4.15. The results obtained are so
far the best among all tests executed. We first notice that there is no
significant difference in this case between the performances of the recur-
rent and non-recurrent autoencoders. All networks present an average
AUC value greater or equal than 0.73, repeating the performances of the
basic and encoding loss autoencoders in the precedent tests. Moreover,
on videos 6 and 8, which showed to be quite critical, the performances
are again improved with respect to the encoding loss autoencoders, since
on both of them all the regularized autoencoders reached an AUC greater
or equal to 0.75.

Figure 4.13: AUC values for the ROC curves scored by the regularized au-
toencoders trained with α = 0.25 and β = 0.75.

Another important aspect regards the consistency of the performance
of the networks. On almost all the videos the minimum AUC obtained
is greater than or equal to 0.7, with the only exceptions of videos 1
and 4. This aspect denotes that the regularized autoencoders are the
best networks trained in our work so far in creating an effective hidden
representation of splicing free patches. However, we have to notice that
the low performances on video 1 and 4 are probably an indication that the
splicing localization process of our network is somehow still dependent on
the content of the attack. Still, the improvements on videos 6 and 8 are
encouraging, denoting that the presence of a regularization mechanism
in the loss function during training is an essential factor in "forcing" the
hidden representation to capture the local coordinates of the manifold of
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Figure 4.14: AUC values for the ROC curves scored by the regularized au-
toencoders trained with α = 0.5 and β = 0.5.

Figure 4.15: AUC values for the ROC curves scored by the regularized au-
toencoders trained with α = 0.75 and β = 0.25.
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clean patches2.
Interestingly, besides the fact that even in this case there is no sensible

difference in performance when using one pair of values for α and β with
respect to another, we can also notice that the networks working on
the rotated volumes in this case do not show any enhancement in their
performance with respect to the others (see figure 4.16).

This is not bad news by the way. Indeed, this means that all rotated
volumes bring enough information to the network for a correct tampering
detection. Results obtained with these network can be potentially merged
in a fusion framework exploiting the possible complementarity of the
obtained tampering masks.

Figure 4.16: ROC curves for the video number 8. On the top row we can see:
on the left, the ROC scored by the recurrent autoencoder working with no
volume rotation; on the right, the ROC obtained by working with the x axis
rotated volume. On the bottom, we can see: on the left, the ROC scored by
the non-recurrent autoencoder working on the y axis rotated volume; on the
right, the recurrent autoencoder working with the x axis rotated volume. The
values of α and β are equal to 0.25 and 0.75 for all networks.

2This factor is often highlighted by Goodfellow et al. in [1], chapter 14 section 2.
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4.6 Label-unaware results
All results shown up to now have been presented under the very strict
assumption that a forensic analyst is interested in detecting which portion
of the video is original, and which is modified. However, video splicing
detection is an ill-posed problem by definition: when two videos are
merged together, the definition of which sequence is the original and
which sequence is the alien one is strongly ambiguous.

In other words, this means that we are not really interested in la-
beling one portion of the video as pristine, and one portion as forged.
Conversely, we are mainly interested in detecting that two regions of
the spliced sequence do not belong to the same class (i.e., pristine or
modified).

In the light of this consideration, in this section we report the re-
sults achieved evaluating a selected series of the proposed networks in an
anomaly detection framework: we consider flipped tampering masks (i.e.,
those with zeros and ones inverted) as correct. In doing so, we evaluate
how good are the networks in recognizing that a video is a composition,
and which regions of the video are not coherent, disregarding the fuzzy
and ambiguous concept of forged vs. pristine.

Figure 4.17 shows these results for a selected subset of networks of
all the three families of architectures. It is possible to notice that in this
label-unaware framework, results improve up to 10%, especially for the
non-recurrent models. Our best models instead repeated their perfor-
mances, confirming the value of the solution proposed in the precedent
setting.

In conclusion, this highlights that even some of the very simple and
light proposed architectures can be used in this scenario.

Figure 4.17: AUC mean values for a selected set of networks. We took networks
working only with volumes rotated along the x axis.
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Conclusions and future works

The fast and widespread diffusion of Internet-based media communica-
tion all around the globe, together with the predominant role that social
media are assuming in every aspect of our life, including politics, has
brought back to the attention of multimedia forensics researchers the
problem of video splicing localization. Indeed this field has been some-
how neglected due to the difficulties related to the processing of video
signals in an efficient way. Goal of this thesis, therefore, has been to test
deep learning tools, which offer several advantages for the forensics anal-
ysis such as great computational speed, easiness of configuration, etc., in
the challenging scenario of video splicing detection and localization.

The use of convolutional and recurrent neural networks is at the base
of this work. The first in fact are nowadays employed as a standard ap-
proach in many tasks related to computer vision and image processing,
and have started to be explored by multimedia forensics researchers too.
The latter, being specifically designed to handle sequential data, are par-
ticularly suited for elaborating time-series of objects such as video signals.
For this reason, they have been consistently exploited in fields such as
video anomaly detection, with some recent attempts done in the forensics
literature too.

The analogies between the video forensics and video anomaly de-
tection fields motivated us in using an anomaly detection approach for
the localization of splicing. Considering as anomalies patches extracted
from spliced regions of the videos, we built different models of autoen-
coders, fitting their hidden representation to the manifold of splicing-free
patches, and localizing splicing as inputs badly reconstructed. The use
of spatio-temporal and spatial cropping in the extraction of the patches
gave us a fine granularity in spotting attacks, which take place in both
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the spatial and temporal dimension of the signal.
After some preliminary tests, needed to decide some of the parame-

ters of our pipeline and some architectural choices of our networks, we
proceeded in evaluating the performance of our proposed method. We de-
veloped three families of autoencoders, declined in both a recurrent and
a non-recurrent version. The recurrent version is based on the convolu-
tional LSTM model, designed to handle temporal sequences of images.
To the best of our knowledge, this has never been applied to the task
of video splicing localization. The non-recurrent model instead is based
on convolutional neural networks, and proved to be an effective feature
extractor when applied to the task of copy-detection in images. Aim of
our work was to verify if the use of networks that specifically take into
account the sequential generating process of the input data, can improve
the performance for the task at hand.

The three families have been defined as basic, encoding loss and regu-
larized autoencoders, and differ for the type of loss function used during
training. The basic family employed a simple MSE between the input and
reconstructed patch; the encoding loss, in addition to the basic term, uses
the MSE between the hidden representation of input and reconstructed
patch; finally, the regularized autoencoders employ the MSE between
the hidden representation of input and reconstructed patch plus an addi-
tional term that accounts for the mean of the energy of the reconstructed
patch. For these last two families of networks, we investigated how the
different loss terms contributed to the final detection performances.

All the networks have been evaluated using the dataset presented by
the authors in [8]. It is composed by two sets of videos. The first contains
only clean videos, the second the same clean videos but spliced adding
content coming from other sources. Together with the "forged" set, all
the masks used for the splicing addition are provided. We trained our
autoencoders only on the clean video set, extracting patches from all the
regions of each video and dividing them in a training and in a validation
set to stop the procedure, and then tested them extracting patches from
the forged video set and estimating a mask for localizing possible attacks.

A novel aspect of our work is the approach used in the patch ex-
traction process. Considering the tensor representing the discrete video
signal as a volume, by permuting the dimensions of this tensor we are able
to gather the patches from a rotated version of the volume. Patches ex-
tracted in such way have a different semantic with respect to the ones that
are cropped when considering the "frontal view" of the volume, therefore
as a temporal sequence of frames. Such an approach on our assumption
gives our networks a different perspective in observing their inputs, allow-
ing them to spot splicing attacks otherwise not noticeable. We tested our
hypothesis by training each network of each family on patches extracted
from non-rotated, and 90◦ rotated volumes along the x, y axes.

The experiments with our basic family of autoencoders showed some
interesting results. In general, the recurrent networks worked slightly
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better than the non-recurrent ones, with the models analyzing rotated
volumes having the best average and individual performances on most
of the videos. We observed however that the evaluation metric used, the
mean AUC of the ROC curves scored by the networks on each video,
is biased by some very good performances of the networks on singular
videos, with other examples of the dataset being critical. In particular
video number 1, 4, 6 and 8 have been the most resistant to the splicing
localization, with all of them being characterized by having the splicing
content quite similar to the non-spliced regions. This suggests that our
basic autoencoders are not really able to create an hidden representation
which is specific to clean patches. Probably the representation is still
quite general, robust and able to recreate spliced frames without much
effort. It is interesting though to see that the convolutional LSTM model
and the rotated volume still give good insights in localizing the splicing
in some of the videos.

In the light of the aforementioned considerations, we expected the
encoding loss autoencoders to show better performances with respect to
their basic counterparts. Indeed, the experiments conducted on these
networks confirmed and improved the results obtained by the recurrent
autoencoders in their overall average performances. Again, the recurrent
autoencoders working with rotated volumes performed best, just showing
some troubles when processing some of the videos, in particular video 1
and 4. We observed improvements on video number 6 and 8, especially
for the recurrent autoencoder analyzing the y axis rotated volume, but
no sensible difference in behaviour for the use of one set of parameters
for the terms of the loss function over another. Indeed, the presence of
the MSE on the hidden representation is behaving like a regularization
term on the representation itself, thus "forcing" it on the manifold of
splicing-free patches.

This last consideration therefore brought us to our last set of experi-
ments on regularized autoencoders. Working with the MSE on the inter-
nal representation, following the work of [5], while still remaining in our
unsupervised approach we added a term in our loss function. Specifically,
we chose the mean of the energy of the overall patch, on the assumption
that such a regularization term would constrain the autoencoder to re-
produce content with "smoother" transitions.

In fact, this last family of autoencoders revealed to be the most ef-
ficient on all videos. We still observed difficulties in the localization of
splicing for videos number 1 and 4, but a good improvement on all the
remaining 8 videos. Interestingly, there is no sensible difference in the
performances between recurrent and non-recurrent autoencoders in this
family of networks, and no difference when working with rotated and
non-rotated volumes. The different set of loss weights seem to not have
an huge impact on the results obtained by the autoencoders.



80

As a final remark, we would like to highlight that we considered video
splicing detection as a binary classification task: determine, given one
sample, if it belongs to the spliced class or not. However, we proposed
a solution that follows an anomaly detection pipeline, not taking class
labels into account. We have seen that, without a mechanism that implic-
itly, or explicitly, makes our model distinguish between the two typologies
of samples, video splicing detection is not an easy task. However, if we
relax the two-class constraint, and we simply focus on evaluating how
good the network is in finding anomalies (no matters of which class),
results improve significantly also with the worst performing networks.

Thanks to the performed tests and analysis, we have been able to
outline some possible steps to further improve our method in the future.
A possible future work in fact might consider the use of other types of
neural networks, for which the paradigm of the rotation of the volume
is more suited. An example are 3D convolutional neural networks
[72]. Recurrent neural networks surely provided to be effective, but using
3D CNNs we could directly work with the patches considering them as
volumes instead of sequences, therefore changing the semantics of how
the data is processed by the network.

Another viable and immediate future work might consider instead
a more clever way of exploiting the paradigm with the deep learning
tools already used. For instance, instead of simply making our recurrent
autoencoders reconstruct the patches re-rotating them, we can think of
making different networks see the same patch from the three different
angles. Taking the reconstructed volumes of each one, we can merge or
integrate them in some way, obtaining an output which is a weighted
and summarizing view of the three perspectives of the rotated volume
(see figure 5.1 for an exemplification). Such approach can be followed by
using non-recurrent autoencoders too.

tx

y

Figure 5.1: Example of a possible procedure of volume merging. The three
colored small volumes represent sequence patches extracted from the rotated
volume separately. If instead they are cropped from the same region of in-
terest, as it happens in the bottom left corner, we can construct an overall
representation that is a weighted perspective of the three different angles.
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In general, we can say that the proposed methodology is enough flex-
ible to be declined in several ways, with different tools and in different
scenarios. Other interesting future directions of research may be the use
of our pipeline in a semi-supervised context, developing a software which
allows a user to indicate to the networks spliced areas for training and
testing, or the comparison and integration of our work with more classical
supervised approaches.

Living in a world where safety and trust are fragile and in constant
danger, with the rising role of multimedia content in our everyday life, we
hope that our work could provide some inspiration to other researchers
in order to restore the attention which video forensics surely deserves in
the field.
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