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Abstract

The modelling of species distribution plays an important role in both theoretical
and applied ecology. Given a set of species occurrences, the aim is to infer its spatial
distribution over a given territory. Joint Species Distribution models (JSDM) study
joint species occurrences or abundances at different locations. In the Bayesian frame-
work, this is often done by modelling a continuous latent variable in a hierarchical
generalised mixed linear model framework. The regression term models the effect of
the environmental conditions on the species, to account for their habitat, while the
covariance structure of the residuals of the regression models the interactions between
species.

We have reviewed and compared different JSDMs on a simulated dataset, in order
to understand their prediction ability as well as the use of these models to infer the
interactions between species.

In order to reduce the dimension of the parameters space of these models, as a
second goal of this thesis, we have proposed four models that combine latent factors
and a Bayesian nonparametric prior to cluster and further reduce the effective number
of rows of the matrix representing the random effect induced by the covariance matrix.
Such models, that are extensions of a model which has already appeared in the
literature , allow the underlying clustering process to be more flexible and to take into
account an ecological prior knowledge on the number of clusters. In two of these
extensions we used a Pitman–Yor (PY) process prior, that we have approximated
using a new truncation method that could satisfy our need for a fast sampling scheme.
We have implemented these new models in R and we have tested their predictive
performance on both simulated and real datasets.
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Estratto

La modellizzazione delle specie gioca un ruolo importante sia nell’ecologia teoretica
che in quella sperimentale. Dato un insieme di osservazioni di una specie, l’obiettivo
è quello di fare inferenza sulla distribuzione spaziale della specie in un certo territorio.
I Joint Species Distribution models (JSDM) studiano la distribuzione di più specie
contemporaneamente. In un contesto Bayesiano, tale compito viene svolto model-
lizando una variabile latente continua all’interno di un modello gerarchico lineare
misto generalizzato. Il termine di regressione modellizza l’effetto delle condizioni
ambientali delle specie, per tenere conto del loro habitat, uno dei principali fattori per
la presenza di una specie. Un altro fattore importante, le interazioni tra le specie, sono
modellizzate dalla struttura di covarianza dei residui della regressione.

Abbiamo recensito e paragonato alcuni JSDMs su un dataset simulato, per capire la
capacità predittiva di tali modelli e la loro abilità nel ricostruire le interazioni tra le
specie.

Per ridurre la dimensione dello spazio dei parametri di tali modelli, come secondo
obiettivo della tesi, abbiamo proposto quattro modelli che combinano i modelli a
fattori latenti con un prior Bayesiano non parametrico per raggruppare e ridurre il
numero di righe della matrice che rappresenta gli effetti aleatori indotti dalla matrice di
covarianza. Tali modelli, che sono estensioni di un modello già esistente in letteratura,
permettono di incorporare una conoscenza ecologica a priori sul numero di gruppi.
In due di queste estensioni abbiamo usato come prior un processo di Pitman–Yor
(PY), e abbiamo introdotto un nuovo metodo di troncamento per consentire una
simulazione efficace della posterior. Abbiamo implementato questi nuovi modelli in
R a ne abbiamo le capacità predittive su dataset sia simulati che reali.
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Introduction

Understanding how species are distributed across space has been one of the main
goals of ecology. In particular, investigating which environmental factors drive species
distribution within communities, across regions or along environmental gradients
can improve our understanding of fundamental ecological processes underlying such
patterns, as well as our ability to anticipate future biodiversity changes (Guisan
et al., 2017; Thuiller et al., 2013). When building models to explain and predict the
distribution of organisms we necessarily need to ask the same questions as the early
biogeographers. It is now clear that three main conditions need to be met for a species
to occupy a site and maintain populations (see Figure 1.1, Pulliam, 2000; Lortie et al.,
2004; Soberón, 2007) :

• the species has to physically reach the site, i.e. to access the region (Barve et al.,
2011);

• the abiotic environmental conditions (i.e. temperature, precipitation...) must be
physiologically suitable for the species ;

• the biotic environment (interactions with other species) must be suitable for the
species.

The first condition is a matter of species dispersal capacity from those areas previ-
ously occupied by the species. It includes the biogeographic history of the species,
and thus all factors limiting its distribution from the place where it first originated,
such as barriers to migration, biotic and abiotic dispersal vectors, etc.
The second condition is the matter of abiotic habitat suitability for the target species,
which means that the combination of abiotic environmental variables at the site –
often referred to as environmental suitability - are within the range of environmental
conditions that the species requires to grow and maintain viable populations. These
suitable environmental conditions are what ecologists call the environmental niche

(Hutchinson, 1957).

1



The third condition concerns biotic interactions, i.e. interactions with other or-
ganisms (see Figure 1.2), either positive (commensalism, mutualism) or negative
(competition, predation), which themselves are dictated by the environment through
their influence on all organisms in the local community.

Figure 1.1 – The three factors that determine the actual distribution of a species
(Soberon and Peterson, 2005)

From a statistical point of view, the most common tools to model how species are
distributed across space are species distribution models (SDMs). There are a variety
of SDMs that differ in statistical methods or flexibility (Guisan and Thuiller, 2005;
Merow et al., 2014; Guisan et al., 2017), but they all relate the presence or abundance,
and sometimes the absence, of a species to a set of environmental variables and project
this relationship in space and/or time. While SDMs have proven to be very useful and
reliable in many different areas and fields (see Yates et al., 2018; Guisan et al., 2017,
for reviews), they also have well-known limitations and assumptions that run counter
to ecological niche theory (Guisan and Zimmermann, 2000) and that may question
the robustness of their predictions. A first major criticism of SDMs is that they model
species independently, making the assumption that species respond individualistically
to the environment. However, species interactions, in the same way as environmental
filtering, are known to be a major factor shaping ecological communities and the
abundance of species (Alexander et al., 2015). The importance of species interactions
at the scale typically used in SDM studies is up for debate (Soberón, 2007; Godsoe
et al., 2017), but given it remains unknown for the vast majority of species, it is clear
that missing these interactions could decrease the predictive power of SDMs.

2



Figure 1.2 – Interaction strength and co-occurrence probability (Morales-Castilla
et al., 2015)

Recent advances in statistical methodologies and computing power have enabled
new models that have begun to address these limitations. Now species can be modelled
simultaneously with joint species distribution models (JSDMs) that combine two
major recent advances. The first advance is the ability to model species hierarchically,
which allows for estimates of species- and group-level responses to predictor variables
(Gelfand et al., 2005; Ovaskainen and Soininen, 2011; Pollock et al., 2012). Second,
JSDMs estimate associations between species through their residual correlations
(Clark et al., 2017; Ovaskainen et al., 2010; Pollock et al., 2014). In a Bayesian
framework, this is done by modelling a multivariate continuous latent variable in
a hierarchical generalised mixed linear model framework. Species co-occurrence
are modelled as the covariance structure of the residuals of the regression (see Chib
and Greenberg (1998) for presence/absence data). Several JSDM implementations
have been proposed in the recent literature (Ovaskainen et al., 2010; Kissling et al.,
2012; Clark et al., 2014, 2017; Pollock et al., 2014; Warton et al., 2015; Golding
et al., 2015; Letten et al., 2015; Harris, 2015; Thorson et al., 2016; Ovaskainen et al.,
2016a; Nieto-Lugilde et al., 2018), and recent studies compared these different models
(Norberg et al., 2019; Wilkinson et al., 2019).

However, as promising as they are, the large and extensive use of JSDMs is still
hampered by a number of limitations. From an ecological point of view, JSDMs
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provide estimates of correlation between species after accounting for influential
environmental effects. But do these correlations indicate true interactions between
species? And if so, are some types of biotic interactions better captured than others,
e.g. can we identify symmetric vs. asymmetric competition and negative vs. positive
interactions? At the Laboratory of Alpine Ecology in Grenoble, Pollock et al. (2019)
tested one of these models (Pollock et al., 2014) on a dataset that simulates an
ecological process where species distributions are filtered from both biotic and abiotic
filtering. On the suggestion of Wilfried Thuiller, we have enlarged this study by
comparing the results of two other important models (GJAM, HMSC) in order to
have a better understanding of the differences between the models, and to investigate
whether species interactions can be captured by JSDM in the residual correlation
matrix. Thanks to our contribution to the work, we will be among the authours of
Pollock et al. (2019). The ecological interpretation of the results was carried together
with Wilfried Thuiller and Laura Pollock.

From a mathematical point of view, JSDMs suffer from the curse of dimensionality,
since we deal with the challenge of joint modeling for a large number of species.
To appreciate the challenge in the simplest way, with just presence/absence (binary)
response and say, S species, we have an S-way contingency table with 2S cell proba-
bilities. Even if S is as small as 100 this is an enormous table, unfeasible to work with
without some structure to reduce dimension.
To address this challenge, Taylor-Rodriguez et al. (2017) proposed to reduce the
dimension of the residual variance-covariance matrix using Bayesian non-parametric
priors. In particular the authors use a Dirichlet Process (DP), which is parameterized
by a so called concentration parameter α > 0, in order to cluster the species that
share the same residuals correlations with respect to other species. In the authors
application the concentration parameter α is fixed equal to the number of modelled
species, even if such a parameter has a strong effect on the clustering properties of the
model (De Blasi et al., 2015; Murphy et al., 2017). Moreover a useful information that
ecologists have and that was not used in the study is the number of groups of species in
the network (i.e. the number of cluster of species that share the same interactions with
respect to other species). At best, this could be known by applying a stochastic block
model (Lee and Wilkinson, 2019) on the interactions graph if it is known. However,
we can also retrieve this information from other sources, for example the functional
traits. Our idea is to modify the model to take into account this prior knowledge on
the number of groups in the interaction networks. Even if the groups in the residual
correlation matrix are not necessarily the ones of the interaction networks, we believe
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that this information could however improve the abilities of the model by giving more
flexibility and sparsity.

The contributions of our thesis are the following. First, we have generalized Taylor-
Rodriguez et al. (2017) method by adding a hierarchical layer to the the DP, where
the prior distribution for the concentration parameter α was chosen in order to match
a prior knowledge on the number of groups in species interaction network. Then,
we have extended the DP to a Pitman–Yor process (PY), the natural extension of
the DP that allows for a more flexible clustering. Due to the big dimension of the
problem, the already implemented truncation techniques for PY were not feasible for
our problem. As an alternative, we have decided to use another truncation technique
than those proposed by Arbel et al. (2019) and the application of this method will be
described and justified in this manuscript. As for DP, we added a hierarchical layer
for the concentration parameter α and the discount parameter σ of the PY process,
by fixing their prior distribution in order to match the ecological prior knowledge of
the number of groups in the interaction network. Julyan Arbel suggested to extend
the DP to a PY process, while the idea of using an ecological prior knowledge for the
residual variance covariance was born during a discussion together with Julyan Arbel
and Wilfried Thuiller.

We implemented our new models and tested them on a simulated dataset, to test the
abilities of the models in retrieving the true number of clusters. Since these simulations
are simple, the original model from Taylor-Rodriguez et al. (2017) behaves well and
could retrieve the original number of clusters in most cases. However in the cases
where the wrong choice of the authors to fix the concentration parameter led to a prior
number of clusters really far from the true one, the original model was not able to
retrieve the true number of clusters, while our models did. We also applied our method
to a real dataset, that collects presences and absences of plants in the Bauges Natural
Regional Park, where we fixed the prior number of clusters to be equal to the number
of Plant Functional Groups (PFGs). The choice of the prior on the hyperparameters
strongly influenced the posteriors of the number of clusters, even if there was no
improvement with respect to the original model in terms of prediction. Since for our
models the posterior of the number of clusters did not move from the prior suggests
that PFGs are a good proxy for interactions between plants, which is an interesting
ecological results to deepen.

The posterior of the number of clusters of the original model moved from its prior
distribution towards the number of Plant Functional Groups (PFGs), but could not
reach it due to the peakiness of the prior distribution of the number of clusters. Instead,
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the posterior of the number of clusters of our extensions did not move from the prior,
suggesting that PFGs are a good proxy for interactions between plants, which is an
interesting ecological results to deepen. This work has been submitted as a poster to
the 12th International Conference on Bayesian Nonparametrics in Oxford, 24-29 June
2019.

The setup of the thesis is as follows. Chapter 1 gives a q uick introduction to
Bayesian statistics. Chapter 2 reviews the esisting Joint Species Distribution Models
and compare them on a simulated dataset. Chapter 3 introduces Bayesian non-
parametric priors and the way they are used in JSDM, and describes our extensions to
GJAM with the related computations of the full conditionals. Chapter 4 describes the
application of the models to a simulated and a real dataset and their comparison. In
Chapter 5 we resume our work and discuss further developments and extensions. This
manuscript is a thesis (master level) in Mathematical engineering; for this reason it is
addressed to an audience of mathematicians than of ecologists.
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Chapter 1

An introduction to Bayesian statis-
tics

All the Joint Species Distribution Models (JSDM) that try to solve the ecological
problems discussed in the introduction are Bayesian models. In order to allow
every reader to understand this manuscript, this chapter gives a quick introduction
to Bayesian statistics, without claiming to be exhaustive. To a formal and complete
introduction to Bayesian statistics, see Christensen et al. (2011), for instance.

1.1 Bayes’ theorem

Classical statistics is based on a framework where observations Y1,Y2 . . . are assumed
to be independent and identically distributed (i.i.d.) from an unknown probability
distribution pθ that is a member from a family of distribution P = {pθ : θ ∈Θ}. A
classical example is the case where P = N(µ,σ2), and thus θ = (µ,σ2). The aim of
statistical inference is to provide an estimation on the value of θ . Bayesian statistics
gives a prior distribution on the space of parameters π(θ) and uses Bayes’ Theo-
rem to compute the posterior distribution of θ given the observed data y. We introduce:

• π(θ) the prior distribution (tipically a density) of the parameters, that reflects
our information on the parameters themselves,

• p(y|θ) the likelihood of the data, which describes our subjective belief that y is
the outcome when θ is the true parameter value,

• π(θ |y) is the posterior probability of the parameters given the data, that will be
used for the inference.
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Bayes’ Theorem describes how our probability judgment on the parameters is updated
in the light of data to get the posterior distribution:

π(θ |y) = p(y|θ)π(θ)∫
Θ

p(y|t)π(t)dt
(1.1)

Since m(y) =
∫

Θ
p(y|t)π(t)dt is a constant w.r.t the parameters, it is common to write:

π(θ |y) ∝ p(y|θ)π(θ) (1.2)

Once the posterior distribution is determined, it is possible to compute the probability
distribution of a new sample yn+1 given the previously observed data y = y1, . . . ,yn:
the posterior predictive distribution. Indeed one has:

π(yn+1|y1, . . . ,yn) =
∫

Θ

p(yn+1|θ)π(θ |y)dθ (1.3)

1.1.1 Conjugate priors

The posterior distribution π(θ |y) is a probability distribution, but it is not always easy
to determine it in closed form or even to sample from it.

The easiest case to deal with is when the prior distribution and the posterior dis-
tribution are in the same probability distribution family. The prior is then called
a conjugate prior for the likelihood function. For example, the Gaussian family is
conjugate to itself with respect to a Gaussian likelihood function. Suppose to have
observed y1, . . .yn such that:

yi|µ,σ2 iid∼ N(µ,σ2), (1.4)

where the variance σ2 is known. Choosing a Gaussian prior for the mean µ ∼
N(µ; µ0,σ

2
0 ) will ensure that the posterior distribution is also Gaussian. Indeed:

π(µ|y) ∝ N(y; µ,σ2)N(µ; µ0,σ
2
0 ), (1.5)

and thus:
π(µ|y) = N(µ; µN ,σ

2
N), (1.6)

with µN = σ2
N

(
µ0
σ2

0
+ ∑i yi

σ2

)
and σ2

N =
(

1
σ2

0
+ n

σ2

)−1
.

A conjugate prior is an algebraic convenience, giving a closed-form expression for
the posterior.
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1.1.2 Montecarlo integration

Even when the posterior distribution is available in closed form, the calculation of
the integrals to compute its moments or the posterior predictive distribution can
be hard or even impossible. Historically, the application of Bayesian methods was
limited by one’s ability to perform these integrations. Modern Bayesian statistics
relies on computer simulations to approximate the values of integrals using Monte
Carlo approximation. Perhaps the simplest examples of Monte Carlo integration
involve computing the mean of a random variable. For instance, if we are interested in
computing the mean of the posterior distribution π(θ |y), i.e. E[θ |y] =

∫
Θ

θπ(θ |y)dθ ,
we can use the following Monte Carlo algorithm:

Algorithm 1: Monte Carlo estimation of the mean

1 for t =1 to T do
2 sample θ (t) from π(θ |y)
3 end
4 Estimate E[π(θ |y)] with T−1

∑
T
t=1 θ (t)

This method is based on the law of large numbers (LLN). Given a set of i.i.d.
samples x1,x2, . . . ,xn from a random variable X with expected value µ , the LLN
guarantees that the empirical mean X̄ = 1

N ∑
n
i=1xi converges to the true expected value

µ:
X̄ → µ for n→ ∞ (1.7)

There exists many useful applications and extension of the Monte Carlo principle
(e.g. importance sampling, the method of composition...) see Jackman (2009) for a
thorough review.

1.1.3 MCMC

Modern Bayesian statistics is based on the use of Monte Carlo integration, that requires
to sample from the posterior distribution π(θ |y). However, i.i.d.-sampling from a
multivariate distribution is not always straightforward. A key mathematical tool to do
so are Markov chain. The combination of Markov chains and Monte Carlo integration
gives birth to one of the most famous techniques in modern Bayesian statistics:
Markov Chain Monte Carlo (MCMC). MCMC is a very broad topic, but we will try
to introduce it quickly in this paragraph. The idea of Markov chain Monte Carlo
is to build a Markov chain on the parameter space Θ whose invariant distribution
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approaches the posterior density π(θ |y). We can store the ‘path’, ‘trajectory’ or
‘iterative history’ of the chain, treating these values as a series of samples from the
posterior density of interest. We can then use the Monte Carlo principle considered
before to compute any information that we want to obtain from the posterior. The
consistency of this method is guaranteed by the Ergodic theorem:

Theorem 1 (Ergodic Theorem). Let {θ (t)} be an ergodic Markov chain see (see
Jackman, 2009, for the definition of a ergodicity) on the parameter space Θ with
an invariant distribution π . Consider a measurable function h : Θ→ R such that∫

Θ
|h(θ)|π(θ)dθ < ∞. Then

lim
T→∞

T−1
T

∑
t=1

h(θ (t)) =
∫

Θ

h(θ)π(θ)dθ , (1.8)

where in our application π(θ) will always be equal to the posterior density π(θ |y).
Such a theorem justify to estimate h(θ) with the following method. If we can construct
a Markov chain the "right way", then:

• the Markov chain will have a unique, limiting distribution, a posterior density
that we happen to be interested in, π = π(θ |y);

• no matter where we start the Markov chain, if we let it run long enough, it will
eventually end up visiting sites in the parameter space A ∈ Θ with relative
frequency proportional to

∫
A π(θ |y)dθ ;

• the ergodic theorem means that averages h̄ = T−1
∑

T
t=1 h(θ(t)) taken over the

Markov chain output are simulation-consistent estimates of

E[h(θ)|y] =
∫

Θ

h(θ)π(θ |y)dθ .

The construction of a Markov Chain with a given stationary distribution π(θ |y) was
made possible thanks to the Metropolis–Hastings algorithm (1970). The Metropolis-
Hastings algorithm defines a set of acceptance/rejection steps that generate a Markov
chain on Θ, the support of π(θ |y). At the start of iteration t, we have θ (t−1) and we
make the transition to θ (t) as follows:
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Algorithm 2: Metropolis–Hastings

1 sample the candidate θ ? from a proposal distribution q(θ ?,θ (t−1)) ;

2 r← q(θ?,θ (t−1)p(θ?|y))
q(θ (t−1),θ?)p(θ (t−1)|y) ;

3 α ← min{r,1} ;
4 sample U ∼ Unif(0,1) ;
5 if U ≤ α then
6 θ (t)← θ ?

7 else
8 θ (t)← θ (t−1)

9 end

The quantity r is an acceptance ratio, assessing the plausibility of the candidate
point θ ? relative to the current value θ (t−1). This scheme means that if r ≥ 1, then
the algorithm makes the transition θ (t)← θ ? with probability 1; otherwise we make
that transition with probability r. With probability 1− r the algorithm does not
move at iteration t , setting θ (t)← θ (t−1). The candidate density q(x,y) is the key to
the algorithm, and an accurate choice of such a function will be crucial for a good
behaviour of the algorithm.

When θ is high dimensional, as if often the case in many statistical models, sam-
pling from the posterior density π(θ |y) is simply too hard for the Metropolis-Hastings
algorithm. Rather than sample from the p3ossibly high-dimensional density π(θ |y),
we will rely on algorithms that sample from the lower-dimensional conditional densi-

ties that together characterize the joint density. This idea drives one of the most widely
used MCMC algorithms, the Gibbs sampler. Consider partitioning the parameter
vector θ into d blocks or sub-vectors (possibly scalars), θ = (θ1,θ2, . . . ,θd). Then
the Gibbs sampler works as follows, with t indexing iterations:

Algorithm 3: Gibbs sampler

1 for t=1 to T do
2 sample θ

(t+1)
1 from g1(θ1|θ

(t)
2 ,θ

(t)
3 , . . . ,θ

(t)
d ,y) ;

3 sample θ
(t+1)
2 from g2(θ2|θ

(t)
1 ,θ

(t)
3 , . . . ,θ

(t)
d ,y) ;

4 . . .

5 sample θ
(t+1)
d from gd(θd|θ

(t)
1 ,θ

(t)
2 , . . . ,θ

(t)
d−1,y) ;

6 θ (t+1)← (θ
(t+1)
1 ,θ

(t+1)
2 , . . . ,θ

(t+1)
d )

7 end
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These algorithms aims to create a Markov chain that converges to its invariant distri-
bution that is equal to π(θ |y). It is thus very important to check for the convergence
of these algorithms, using diagnostics like traceplots, the autocorrelation function and
many others that are fully described in Christensen et al. (2011).

In this chapter we have tried to give an introduction to Bayesian statistics and a
quick description of the tools that we used in this manuscript. This chapter is of course
not an exhaustive description of these topics, but will hopefully allow the readers of
these manuscript to have a better comprehension of it.
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Chapter 2

Review and comparison of
Joint Species Distribution Models

The chapter is focused on the description and comparison of three Joint Species
Distribution Models (JSDM) to predict species distribution, their correct response to
environmental gradients and their inferred associations between them. We discussed
how we tested the different models on a simulated dataset to compare the results.
Thanks to the simple properties of this dataset, we were able to fully understand
the real properties of JSDM, in particular concerning their abilities in retrieving the
environmental niche and the interactions with other species.
Very few papers have so far compared JSDMs on simulated and real dataset, and none
of them really focused on understanding the reasons of their results. Here, we tested
the models on one simple dataset, where we analyzed the results deeply in order to
understand the limits and the potential of JSDM.

2.1 Models description

The three JSDMs that we will study are extensions of the generalised linear modelling
(GLM) framework, which is widely used for modelling species distribution data
(Gelfand et al., 2006). The statistical models are defined below using a common
notation.

The following terms are consistent across all models:

• Subscript notation for sites is i = 1, . . . ,n, for species j = 1, . . . ,J, and for
covariates k = 1, . . . ,K;

• y is the response variable, a n× J matrix where yi, j is 1 if species j is present at
site i, and 0 viceversa;
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• z, a normally distributed latent variable, which is also a n× J matrix;

• µ , the linear predictor for the measured covariates;

• X, the n×K matrix of measured covariates;

• I, the identity matrix.

2.1.1 The core model

One of the first JSDMs was proposed by Pollock et al. (2014), and we will refer to
it as the core model (CM). This model is built on the multivariate probit regression
model (Chib and Greenberg, 1998), by using a latent variable parametrisation of a
probit model rather than the probit link directly.

The probability of species presence is modelled as the probability of a latent
multivariate normally distributed variable exceeding a threshold, such that yi j = 1 if
zi j > 0, and yi j = 0 otherwise. The community (i.e. the set of species) present at site i

is thus characterized by the multidimensional latent variable zi,..

yi j = 1(zi j > 0)

zi j = B. jXi.+ ei j

B jk
ind∼ N(ωk,σk)

ei.
iid∼MV N(0,R),

(2.1)

where the dot notation B. j represents the j-th column of B, and Xi. is the i-th row of X .
The linear predictor µ. j = B. jX represents the environmental filtering over the

distribution of species j. The suitable environmental conditions for each species is
what is commonly called environmental niche in ecology. Correlations in the residual
error at each site ei are captured by R, a symmetric and positive-definite matrix. Its
diagonal elements are 1 and its off-diagonal elements are restricted between −1
and 1, as imposed by the multivariate probit regression. The elements of R reflect
species co-occurrence patterns not described by the environmental predictor: species
interactions, or missing predictors. By considering the interactions between species
and the environmental niche, JSDMs take into account two of the main drivers of
species distributions.

We complete the Bayesian model above assuming

ωk
iid∼ N(0,100),
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while the standard deviations have uniform prior

σk
iid∼U(0,100),

and correlation coefficients have an inverse Wishart prior

R∼ IW (J+1,I),

where J+1 is the degree of freedom and I the scale matrix (this notation is consistent
throughout the manuscript). All hyperpriors are chosen to be vague since no prior
information of these parameters is available.
The posterior distribution is sampled via MCMC using Gibbs sampling in JAGS
(Plummer, 2014).

2.1.2 Hierarchical Model of Species Communities (HMSC)

Hierarchical Model of Species Communities (HMSC) is a model appeared in a
sequence of papers (Ovaskainen et al., 2017a,b; Tikhonov et al., 2017) that aim to
give a very complete framework that takes into account all possible information about
species in one single hierarchical model. Since the data we used for the comparison of
the models do not include informations on functional traits and phylogeny, we are not
going to present these features in details (see the above cited papers for a complete
information on them).

HMSC is a very similar to (2.1), but allows the regression coefficients to be corre-
lated:

yi j = 1(zi j > 0)

zi j = B. jXi.+ ei j

B. j ∼MV N(ω,V )

ei j = νi j + εi j

νi j = ηi,.λ j,.

εi j
iid∼MV N(0,1)

η,i
iid∼MV N(0, In f )

(2.2)

where ω = (ωk)k=1,...K and each element of the vector has a vague prior

ωk
iid∼ N(0,100).
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The variance-covariance matrix of the regression coefficients of each species is V ,
with

V ∼ IW (5, I).

As above, the correlation coefficients have an inverse Wishart prior

R∼ IW (J+1,I).

HMSC biggest improvement concern the different representation of the error ei j.
In the CM, the full rank matrix R represents the variation in species occurrences
and co-occurrences that cannot be attributed to the responses of the species to the
measured covariates. With J species, each covariance matrix R as bijective mapping
to a space of J(J+1)

2 unrestricted parameters (Lewandowski et al., 2009), making their
estimation numerically challenging. In order to reduce the parameter space, HMSC
uses latent factors and latent loadings. Under the classic assumption made in factor
models that the latent factors marginally follow multivariate normal distribution η,i

iid∼
MV N(0, In f ), the latent loadings provide then a parametrisation of R as R = ΛT Λ+ IJ ,
where Λ = {λi j} is the J× n f matrix containing all latent loadings. The utility of
the latent factor approach comes from the dimension-reduced parametrization of R
in case where n f << J. Instead of fixing the number of latent factors n f , HMSC
treats n f as an unknown parameter through the shrinkage approach of Bhattacharya
et al. (2013), see this paper for a complete definition of the hierachical model and the
hyperpriors definition. This variance decomposition could be considered similar to a
linear regression where the latent loadings λ j,q are the parameters of the regression,
and the latent factors are interpreted to model some missing covariates, which have an
impact on the species occurrences and are not represented in the matrix. For more
detailed treatment of this interpretation see Warton et al. (2015).

The posterior distribution was sampled via MCMC using a Gibbs sampler, im-
plemented in R (R Core Team, 2013) in the HMSC package (Ovaskainen et al.,
2016b).

2.1.3 Generalized Joint Additive Model (GJAM)

GJAM is a Joint Species Distribution Model that aims to fit all type of response data,
using a latent variable. This is an important feature: since in ecology the collection
of data can be very heterogeneous, it is suitable to have a single model to deal with
multifarious data.
For presence-absence data it is a multivariate probit regression model that takes on
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two different forms depending on J, the number of species to be modeled, for the
same reasons we discussed above: when the number of species J is big, the model
suffers from the "curse of dimensionality". The small dataset form (i.e. when J is
small) is equivalent to the core model (2.1), but the regression coefficients B jk are
indipendent and vague:

yi j = 1(zi j > 0)

zi j = B. jXi.+ ei j

B j.
iid∼ N(0,100I)

ei.
iid∼MV N(0,R)

R∼ IW (J+1,I),

(2.3)

The big dataset form (i.e. when J is big and dimension reduction is needed) proposes
a latent factor approach similar to HMSC.

yi j = 1(zi j > 0)

zi,. = BXi,.+Ληi,.+ εi

εi
iid∼ N(0,σ2

ε IJ)

B j.
iid∼ N(0,100I),

(2.4)

where the random vector ηi are i.i.d. with ηi
iid∼ N(0, In f ). The variance of the error εi

has an inverse gamma prior

σ
2
ε ∼ IG(0.01,0.01).

Here the number of factor n f is fixed, and can be chosen in order to maximize some
goodness-of-fit/prediction metrics like DIC, BIC, or LPML (see Gelman et al., 2004,
for a complete description of these metrics).

A further reduction in the number of parameters can be attained by finding common
rows in Λ, using a Dirichlet process (DP). We are going to give only a brief description
of the Bayesian non parametric dimension reduction here, because it will be fully
analyzed in the following chapter. GJAM exploits the clustering properties of the
Dirichlet Process to find groups of species in the rows of Λ. Species in the same group
will have the share response to the unmeasured variables, meaning that in the variance
covariance matrix R = ΛT Λ+σ2

ε × IJ these species will share the same behaviour
with respect to other species.

GJAM uses the finite approximation of the DP proposed by Ishwaran and Zarepour
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(2000), which facilitates sampling with the blocked Gibbs sampler of Ishwaran and
James (2001). Given the truncation level N, the N vectors Z j ∈Rn f denote the N×n f

matrix whose rows make up all potential atoms (i.e., vector values that the rows of Λ

may take). The important thing to keep in mind, is that we only need to estimate a
N×n f matrix instead of a J×n f one. GJAM take N = min{150,J} that gives a good
dimension reduction. The full hierarchical model proposed in GJAM will be fully
specified in the next chapter. GJAM is implemented in R (R Core Team, 2013) in the
package GJAM (Clark, 2017), where the posterior distribution of the parameters is
sampled using a Gibbs sampler.

2.2 Models comparison

2.2.1 Introduction

In order to fully understand the models and their ability to fit the data and make
prediction, we decided to test them. Until recently, it was still unclear which models
perform best for interpolation or extrapolation of existing data sets, particularly when
one is concerned with species assemblages. To evaluate these differences between
the models, some recent papers have tested many JSDM on different datasets and
compared the results with stacked SDM (Norberg et al., 2019; Wilkinson et al., 2019).
These works show that there is no over performing model on all kind of datasets,
and suggest that researchers should choose the suitable model by evaluating the
performances on their own datasets. Moreover, this literature shows that JSDM do
not lead to overwhelming better results than training an indipendent SDM for each
species.

To complete the existing literature, we decided to test the models on a dataset based
on a simulated ecological process, following the work of Pollock et al. (2019) that
fitted the core model on these data. The interest of this approach is to understand
not only the ability to fit and predict, but also to understand whether the residual
correlation matrix is able to retrieve the network of interactions between species (a
task that SDM cannot achieve, since each species is supposed to be independent
from the others). The inference of the interaction network is a very complex topic
in ecology and represents an important feature that JSDM are supposed to achieve
(according to the authors of the models), and we think that it is important to test the
power of the different models on this task.

While almost every paper concerning JSDM evaluate how species attract/repel
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by considering the residual covariance matrix, we also took into account partial
correlations, that are expected to be more informative about causal links among the
species than the raw correlations.

JSDM have been recently shown to assign positive and negative interaction in a
homogeneous environment (Zurell et al., 2018), while other studies have shown that
species interactions can result in indirect effects that are not easy to measure from
co-occurrence data (Cazelles et al., 2016) and that strong species interactions can
be obscured by environmental variables in SDMs (and presumably in JSDMs) if the
two are correlated (Godsoe et al., 2017). Pollock et al. (2019) extended these tests
on the ability of JSDM to capture species interactions to more realistic situations
where species interactions need to be separated from the environmental context. In
their work, the authors created simulated communities where there is no residual
correlation due to unmeasured covariates. Therefore the covariance matrix is only
related to interactions, and this allows to really test whether the covariance matrix
is a good tool to retrieve the interactions between species. Our work in this section
contributed to Pollock’s paper and is waiting for submission.

2.2.2 Simulations of the ecological process

Ecological communities were simulated with a process-based, stochastic model that
simulates the assemblage of individuals into communities (a community is given by
the set of individuals living in one site) from a regional species pool (Münkemüller
and Gallien, 2015). These simulations take as input (see Figure 2.1 for illustration):

• n, the number of communities that we want to simulate (one community in each
site). We consider n = 800;

• One environmental covariate (that we call the environment) at each site (ran-
domly selected between 0 and 100);

• J, the number of species in the species pool. We fix J = 5,10,20;

• The environmental preferences (i.e. the environmental niche) of each species,
which is represented as a Gaussian curve, with a given optima and variance. For
simplicity, the optima of the environmental niches for each species was taken
on a regular grid between 0 and 100, and the variances were set to 20 for all
species;
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• A network of interactions between species, in the form of a matrix. The
interactions can be all positive (facilitation only), all negative (competition
only) or both (facilitation and competition). We also simulated the case with no
interactions (i.e. the matrix will be empty). The interactions can be either sparse
(one species can interact with at most 1 one species) or dense (one species
can interact with multiple species). However, even in the dense scenario, the
matrix remained highly sparse (we will never use matrices with more that 50%
of non-zero elements). We considered only symmetric matrices as input.

• A carrying capacity C, the maximum number of individuals that can live in one
site. We will took C=40.

Therefore, all the possible combinations of simulations parameters are 21 (Figure 2.1
for illustration).

The community assembly process is randomly initialized with a set of individuals
that are randomly chosen from the species pool until the carrying capacity, C, is
reached. At each time step, the probability of an individual from species j to replace
a random individual of the community i is Wj,i. This probability depends on how far
the environmental conditions at site i are suitable for species j (environmental filter),
on the number of individuals present in community i that interacts with species j

(facilitation and competition filter), and on the number of individuals of species j that
are already present in the community (reproduction filter).
More precisely, we have:

Wj,i = exp(Benv× log(Penv, j,i) +

Bcomp× log(Pcomp, j,i) +

B f ac× log(Pf ac, j,i) +

Babund× log(Pabund, j,i))

(2.5)

This equation defines the relative importance of environmental vs. competition vs.
facilitation vs. reproduction filters. Probability weights were then normalized to sum
to 1 over all species in the species pool to obtain a probability of replacement for each
species.
Penv, j,i accounts for the environmental filtering and is the normalized Gaussian density
with the optimum of species j as mean and variance 20, evaluated at at the environ-
mental value of community i. The more suitable suitable the environmental conditions
are in community i, the higher the probability for species j to enter the community.
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Concerning the terms related to the interactions we have:

Pcomp, j,i = 1− 1
C ∑

l : l competes with j
Nl,i

Pf ac, j,i =
1
C ∑

l : l facilitates with j
Nl,i,

(2.6)

where Nl,i is the number of individuals of species l in community i. When in commu-
nity i there are many individuals of species that facilitate species j, then its probability
to enter the community is higher. Viceversa for competition.
The reproduction filter Pabund, j,i = N j,i/C describes the probability of an individual
entering the community through the reproduction of conspecifics already present. The
more abundant the species in the community, the higher its probability of entering.
The coefficients Benv,Bcomp,B f ac,Babund weight the importance of the different filters.
We took all coefficients equal to 1.

At each time step the algorithm updates the communities randomly using the
probabilities defined above. The simulations are thus stochastic. The algorithm keeps
iterating until an equilibrium is reached (no changes in the communities for a fixed
number of time steps). When the algorithm stops, the communities are transformed
into an n× J matrix, whose element is 1 in position (i, j) if species j is present in
the i−th community. We fitted our models on 500 hundreds sites (our training set),
keeping the other 300 sites for validation.
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Figure 2.1 – Scheme of the simulations workflow

2.2.3 Model fitting

The simulations gave as output a presence-absence dataset of 800 communities, each
with an environmental value, that we used to fit the different models described in
Section 2.1. On each of the 21 simulated datasets we fitted the CM model, HMSC
and GJAM. We fitted GJAM both with and without dimensions reduction (DR-GJAM
and full GJAM from now on), leading to a total of 4 models to be fitted for each of
the 21 datasets. All models used as covariate the orthogonal polynomial of grade two
of the environment.

The CM was fit using the MCMC sampling software JAGS via the R language
interface “jagsUI” with 200,000 iterations and 20,000 as burn-in, 5 chains, thinned to
keep 1 every 10 samples, for a final sample size of 100,000.

HMSC was trained in R using the HMSC package, using 100000 iterations and
10,000 as burn-in, 2 chains, thinned to keep 1 every 10 samples, for a final sample
size of 18,000. Since we had no data concerning traits and philogeny, we did not take
them into account.

GJAM was fit in R using the package GJAM. For the full model without dimension
reduction we used 60,000 iterations with 10,000 burn-in for two chains, for a final
sample size of 100,000. The GJAM package does not allow to thin inside the Gibbs
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sampler, we then decided not to thin the chains a posteriori, motivated by the recent
beliefs that thinning of chains is not usually appropriate when the goal is precision
of estimates from an MCMC sample, since the only advantages are memory or time
constraints (Link and Eaton, 2012). For GJAM with dimension reduction we fixed
the number of latent factors in order to minimize the DIC, to favour a good fit while
penalizing the number of parameters. As for the full GJAM, we used 60,000 iterations
with 10,000 burn-in for two chains, without thinning, for a final sample size of
100,000.

We fixed the hyperpriors distribution in a vague and consistent way across the
different models. Convergence was assessed by visual inspection of trace plots, and
by considering for each model the Rhat values and the number of effective sample size
(nESS).

2.2.4 Methods of comparison

The aim of the study was to quantify how good the different models are in both
prediction and inference of the parameters. We thus repeated some of the analyses
described in (Pollock et al., 2019), and added a few different checks.
We assessed the predictive abilities of the models both for the in-sample and the out-
of-sample prediction. For the in-sample prediction we calculated the area under the
receiving operating characteristic curve (AUC) by comparing the predicted expected
probability of occurrence from the different models to the observed presence-absences
over all sites. Concerning the out-of-sample prediction we used the models fitted on
the 500 sites to predict on the test dataset of 300 sites, whose environment conditions
are in the same range as in the training dataset. We then calculated the AUC to compare
the prediction versus the out-of-sample presence/absences. For each model and for
each kind of interaction, we averaged the AUC over all species and simulations.

We also checked for the differences between the inferred regression coefficients by
representing the predicted responses, calculated for each species j as B., jX , along the
environmental gradient. We then compared this curve with the environmental niche
of each species (the Gaussian distribution used as input to the simulation models)
and the presence-absences data. We also fitted a univariate GLM where each species
was considered indipendently (SDM), to understand whether JSDM improved the
detection of the fundamental niche compared to SDM.

In order to evaluate how well the models detect interacting species pairs, we
calculated a success rate for competing, facilitating and non interacting species.
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Pollock defined the success rate as the number of pairs correctly identified out of the
total number of pairs interacting (or not) in the simulations. The pair of competing
(respectively facilitating) species i, j was correctly identified if the 95% credibility
interval of the corresponding element of the residual correlation matrix Ri, j was
entirely below zero (respectively above zero). We called this pair of correctly identified
species a true positive. The pair of non-interacting species i, j was correctly identified
if the 95% credibility interval of the corresponding element of the residual corretion
matrix Ri, j overlapped zero. We called this pair of correctly identified species a
true negative. By considering the ratio of correctly identified interacting species,
we detected the sensitivy, while we determined specificity by examining the ratio of
correctly identified non-interacting species. There were no case of totally misclassified
species (facilitating species assigned to competion and viceversa).

We then focused on the differences between correlation and partial correlation
matrix. Starting from the covariance matrix given by the models, one can easily
compute the partial correlation matrix as the scaled opposite of the inverse of the
covariance matrix. Indeed, for all mentioned models the underlying variable that
represent species has a multivariate normal distribution, and for such distribution the
partial correlation matrix coincides with conditional correlation, meaning that the 0
value for the partial correlation coefficient implies that the two random variables are
conditionally independent.
The partial correlation could be more suitable for inferring the species interactions
as partial correlation represents direct associations, while correlation coefficients
represent marginal associations, meaning that both direct and indirect association are
represented in this matrix. Even if this is well known in ecology, only Ovaskainen
et al. (2016a) considered both partial correlation and correlation for studying the
interactions in the community. However, in this study the authors showed that there
were not a lot of differences between partial correlation and correlation.
We computed the partial correlation matrices and we measured the difference between
the correlation and partial correlation matrix as : Kdi f f =

|R−Rp|
2 where R, Rp were the

matrices obtained from the correlation and partial correlation matrices as R = sign(R),
Rp = sign(Rp), so that we compared the position and the sign of non-zero. We
then calculated the mean value of Kdi f f across the different simulations, to see the
differences across models. Moreover, we repeated the same analysis for the correlation
matrix described above also for the partial correlation matrix.

We repeated Pollock’s study in assessing the pattern of species co-occurrences
from the simulated communities (the 21 site-by-species matrices) to compare and
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qualify the JSDM results with a method that does not account for the environmental
effect. We quantified co-occurrence between all species pairs using the probabilistic
co-occurrence method (Veech, 2013), which has a relatively straightforward interpre-
tation with a simple metric (the number of shared sites between two species), and
it corrects type I and type II errors that arise from using randomization procedure
to produce a test statistic. We used the standardized effect size, which is different
between observed and expected co-occurrence relative to the number of sampling
sites. This produces a metric between -1 and 1 that matches the range of the JSDM
residual correlation (although with a different specific interpretation). Significance
was assessed at alpha=0.05.

2.2.5 Results

Convergence

We first analyzed the convergence of the models. For convergence assessment we
used Rhat characteristics, effective size and visual assessment of the trace plots, as
none of the methods is reliable on its own. For Rhat parameter the desired values
are below 1.1, for the effective-size, the numbers are supposed to be close to the
number of samples from posterior, and the trace-plots should be stationary after some
period. Considering this three characteristics, we could see that HMSC and CM
converged fairly well, with an acceptable nESS and the Rhat below 1.1 for almost
every parameter (Figure 2.2). The time for running HMSC was significantly smaller
then for CM. It never took more than 1 hour minutes to complete, while the core
model was much slower, and needed up to 30 hours to achieve completion. Since the
softwares to fit the two models are different, this comparison is not really fair. How-
ever, the slowness of the sampling from the CM is a problem that has to be highlighted.

The full GJAM was not able to reach convergence, both for the beta coefficients and
the residual correlation matrix. The traceplots and the autocorrelation of the chains
were particularly bad for the off-diagonal terms of the covariance matrix. Most of the
parameters had a Rhat greater than 1.5, and the nESS were extremely small (Figure
2.2), especially for the elements of the residual correlation matrix.
Our opinion is that this is due to the fact that the full GJAM and the core model are
really similar, but their implementation is different.
As highlighted above, the two models are the same except for the prior specification of
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Figure 2.2 – Convergence assessment for CM model (left) and HMSC model (right).
For each model, we represent the histogram of the nESS and the Rhat for all the 21
simulations. We represent in green the regression coefficients, and in red the elements
of the residual correlation matrix.
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Figure 2.3 – Convergence assessment for GJAM model (left) and DR-GJAM model
(right). For each model, we represent the histogram of the nESS and the Rhat for all
the 21 simulations. We represent in green the regression coefficients, and in red the
elements of the residual correlation matrix.
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the regression coefficients. However, the CM takes advantages in term of optimization
of the posterior sampling by its implementation on JAGS, and was able to run for a
really high number of iterations.On the other hand, GJAM’s Gibbs sampler is directly
implemented in a R package, leading to a much less optimized sampling. Moreover,
it was not very convenient to run GJAM for the same number of iterations of the core
model, since the output object of the functions was to heavy to deal with.
DR-GJAM had a much better convergence then the full mode. The minimization of
the DIC generally gave a small number of latent factors n f , leading to a lighter model,
in term of number of parameters. Convergence is now almost reached, especially for
the regression coefficients (Figure 2.3).

In-sample prediction

In terms of the in-sample AUC, models’ performances were all extremely close to
each others (Figure 2.4), and the values where globally high, between 0.8 and 0.95.
However, competition led to a decrease in terms of in-sample prediction power, espe-
cially when interactions were dense.

Out-of-sample prediction

The AUC concerning the out-of-sample prediction reflected the same results of the
in-sample prediction (Figure 2.5). There were no clear differences across the models,
and, consistently, the AUC values were slightly smaller then the in-sample AUC, since
we were testing the goodness of the models on data that were not used to train the
model.
Again, the models had worse AUC values on the simulations with competition between
species.
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Figure 2.4 – Accuracy of JSDM predictions on the training dataset, averaged across
entire communities, represented as mean AUC and quantiles of order 2.5% and 97.5%.
AUC values are averaged across all species within communities simulated with
environmental filtering, competition, facilitation or both competition and facilitation.
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Figure 2.5 – Accuracy of JSDM predictions on an out-of-sample dataset, averaged
across entire communities and represented as mean AUC and 95% confidence inter-
vals. AUC values are averaged across all species within communities simulated with
environmental filtering (Enviro.), competition (Comp.), facilitation (Fac.) or both
competition and facilitation (C+F).

Regression coefficients

Concerning the case with environmental filtering only, for the core model, HMSC
and full GJAM all the beta coefficients were really close and their credibility intervals
overlapped, meaning that there was no evidence to say that the elements of the BBB

matrix are different across models (for example see the coeffiecients and the predicted
niche of species 10 in the case of a simulation with 20 species and environmental
filter only, Figure 2.6). By consequence, also the predicted environmental niches were
similar, and were close to the fundamental niche, confirming the goodness of fit of
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the models. We did not find any difference in the predicted environmental niche for
the independent model (SDM). For DR-GJAM, the results were slightly different for
the regression coefficients, but we couldn’t assess a real trend in terms of departure
from the other models. Moreover, the predicted niche was never far from the ones
of the other JSDM. In particular, the intersection with the line of probability 0.5
always happened almost at the same point along the environmental gradient for all
models, meaning that the prediction of presences and absences was consistent across
all models.

In the facilitation case, the retrieved niche of a species that facilitates was skewed
towards the species it facilitated with, leading to an overestimation of the fundamental
niche. In Figure 2.7 we showed a comparison of the predicted niche of species 6 in
the case of 10 species, with and without facilitation. Species 6 facilitated with 4,8,9
(whose environemental optima were to the left of the one of species 6 for species
4, and to the right for species 8 and 9) and we noticed that the species completely
colonized the gradient for environmental values above 25 (dots in the Figure). The
predicted environmental niche was consistent across models, and quite far from the
fundamental niche, being strongly skewed both to the left and to the right. All sites
where the environment value was above 25 were considered suitable.
Instead, in the case where a species competed, the predicted niche was less skewed,
but was decreased in magnitude with respect to the fundamental niche. Figure 2.8
shows the effect of competition in the case of a simulation with 10 species. Species 7
competed with species 2,5 and 10, and the results of competition was that we had many
absences at sites where the environment was suitable for the species. The predicted
environmental niche was slightly skewed but was strongly lower in magnitude than
the fundamental niche.
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Figure 2.6 – Left: Predicted environmental niche for the different models for species
10 (in the simulation case of 20 species) and sparse competition and facilitation.
The continuous line represents the prediction mean, while the ribbons are the 95%
credibility intervals. Right: The mean and the 95% credibility intervals of the three
regression coefficients of species 10 for the different models, in the same case study as
above.

Figure 2.7 – Predicted environmental niche for the different models for species 6 (in
the simulation case of 10 species) with dense facilitation where species 6 facilitates
with species 4,8,9 (left) and environment only (right). The continuous line represents
the prediction mean, while the ribbons are the 95% credibility intervals. Dots are the
presences/absences in the dataset and the violet curve is the fundamental niche (the
Gaussian curve given as input to the model)
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Figure 2.8 – The predicted environmental niche for the different models for species 7
in the simulation case of 10 species, with dense competition,where species 7 competes
with species 2,5,7 (right) and environment only (left). The continuous line represents
the prediction mean, while the ribbons are the 95% credibility intervals. Dots are the
presences/absences in the dataset and the violet curve is the fundamental niche (the
Gaussian curve given as input to the model)

Residual covariance matrix

HMSC and the CM were really close in terms of ability in retrieving the interactions,
while GJAM and DR-GJAM had a different behaviour compared to the previous
models, but a similar behaviour between them (Figure 2.9 and 2.10). HMSC and CM
could not retrieve facilitation. In particular, HMSC tended to identify less interacting
species then the CM, leading to a lower sensitivity but a higher specificity. Instead,
both GJAM and DR-GJAM retrieved many more non-zero coefficients in the residual
correlation matrix, leading to some well identified facilitating pairs (higher sensitivity),
but also to a lot of misclassified non interacting species (lower specificity). Between
the two models, DR-GJAM had higher sensitivity but lower specificity, with a lot
of misclassified species. All models tended to correctly identify more species when
the species pool was smaller. This was not true for DR-GJAM, that globally had
unchanged performances when the species pool grows.
However, the number of correctly identified facilitation species was globally low.

Concerning competition, all models had better results than facilitation. In particular
both HMSC and JSDM were able to increase a lot in terms of sensitivity, but managed
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Figure 2.9 – Success rate calculated on the covariance matrix of JSDMs for inter-
acting (competitors or facilitators, in green) and non-interacting species (in red) in
communities simulated with all possible interactions scenarios for the four different
models. Bars represent the following groups: all species pairs, species pools (5, 10,
or 20 species) and the density of interactions.

to keep the same very high level of specificity that they had in retrieving facilitation.
Again, GJAM and DR-GJAM had slightly different results compared to the two previ-
ous models, for the same reason as above. GJAM improved even more its sensitiviy,
being able to almost always correctly indentify at least half of the competing species,
without loosing power in terms of specificity. DR-GJAM had worse results, with a lot
of variations.
Concerning the results on the precision matrix, the differences compared to the corre-
lation matrix were not stunning. All the models showed globally the same behaviour
both in competition and facilitation (Figures A.1, A.2), but the element of the preci-
sion matrix were more shrunk towards zero, leading to a detection of less non-zero
interactions.
For probabilistic co-occurrence analyses that ignored the environmental influence,
facilitating species pairs tended to co-occur more than non-interacting species, espe-
cially in communities with sparse interactions (Figure 2.10). Unexpectedly, competing
species pairs were indistinguishable from non-interacting species in all cases except
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Figure 2.10 – Barplots representing the values of the probabilistic co-occurrence
index (top row) and of the residual correlation matrix for each model (the other rows).
For each scenario, species pairs are grouped into bars representing those that do not
interact (grey), that compete (red) or that facilitate (blue).

the ‘dense’ interaction, 5-species pool (Figure 2.10). Further, nearly all pairs were
deemed to be ‘significantly’ co-occurring more or less than expected, so this α = 0.05
level was not useful for assigning interacting species pairs in this study.

Partial correlation

By comparing the Partial correlation matrix, we observed similar result as in Ovaskainen
et al. (2016a). From Figure 2.11 we could see that the for CM and HMSC models the
partial correlation and the variance-covariance matrix were really close in the norm
that we defined. For DR-GJAM both the correlation and partial correlation had a lot
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of noise, and therefore there were more differences between the two matrices. The
GJAM model didn’t fully converge and for this reason the matrices contained a lot of
noise, and there was thus a bigger difference between the two matrices.
However,the differences between the two models didn’t depend on the type of interac-
tions or the number of species. (Figures A.1 and A.2).
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Figure 2.11 – Percentage of the number of different cells in the correlation and partial
correlation matrix for each of the 4 models across the 21 different scenarios
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2.3 Discussion

We have compared four models on simulated communities with different ecological
processing, with different types and strength of interactions. For GJAM and CM the
likelihood is the same, but the prior is different, as well as the software used to sample
from the posterior. While HMSC and DR-GJAM are two types of models that use
different approaches to reduce the dimensionality of the problem.
The datasets we used for this simulation had a relatively low/moderate dimension,
but even for this data size the CM and GJAM had difficulties with convergence and
needed many iterations to obtain reliable estimates, although CM was finally able to
converge due to his efficient sampling implemented in JAGS. In higher dimension we
would expect even more difficulties for both convergence and parameters estimation,
due to the quadratic growth of the number of parameters for these models.
For this reasons we are particularly interested in models that use dimension reduction
such as HMSC and DR-GJAM.

We showed that the models were often able to retrieve competition, while they
struggled in retrieving facilitation. This was due to the way JSDM fitted the data, and
in the difference in the simulated data related to facilitation and competition.
When a species facilitated with other species, the simulations led to a complete
colonisation of the gradient towards the species it facilitated with. There is thus a neat
division between the suitable and non-suitable environment. Since JSDM fitted the
data, the environment was predicted to be suitable at all the sites colonized by the
species. The fit was globally very good (high AUC values), and the residuals were
thus really low and do not contain any information about facilitation, and thus the
variance-covariance matrix Σ cannot retrieve significant interactions.
On the other one hand, competition did not lead to complete extinction, but causes
a lot of absences at the sites where the environment should be highly suitable. By
consequence, since the models fitted the data, the predicted probability of presence
was much lower then 1 even at the optima of the fundamental environmental niche.
This led to a worse fit (lower AUC values) and to more significant residuals then
in the facilitation case. Since these residuals were only due to competition, their
variance-covariance matrix Σ could correctly infer the interactions.
We thus cannot state that JSDM could retrieve competition but not facilitation. Instead,
we could affirm that JSDM do not disentangle the effect of the environment from
the one of biotic interactions, and thus parameter estimation strongly depends on the
way biotic interactions impact species distribution. In particular, when interactions
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caused complete extinction/colonisation the model related this colonisation to the
environment and not to the interactions. However, JSDM could retrieve interactions
in less neat cases, where the regression on the environmental covariates could not
adequately fit the data. An interesting future work could study the results of these
models when considering abundances (counts) instead of presence-absences. Indeed,
when we transformed the simulated communities in presence-absences we lost a lot
of information, especially in the facilitation case, where presence-absence data show
a too neat separation of the environmental gradient.

The models had similar results across all the different tasks, except for GJAM and
DR-GJAM that showed a lot of noise in the covariance matrix, due to convergence
issues for the former and to the approximation hypotheses. For DR-GJAM we could
see that the approximations led to a a change for the predicted environmental niche,
and thus this also impacts the variance-covariance matrix σ . However, DR-GJAM
is suitable for larger number of species compared to the ones we considered here,
and by the way perform globally well, being the only model that did not worsen his
retrieving ability when the number of species increased.

We were interested to test if the partial correlation would provide better estimates
for interactions in general, and for facilitation in particular, but the results were very
similar and didn’t provide additional information, since partial correlation and corre-
lation matrices were very close. This is coherent with some observations concerning
sparse covariance matrices. For example Sojoudi (2016) stated that when the corre-
lation matrix is sparse, there is almost no different between correlation and partial
correlation. In our case we know that the true number of interactions is small, and this
sparsity is also found in the inferred covariance matrices. Informally, in the sparse
case the number of indirect interactions is limited, and hence correlation and partial
correlation matrices are close.

In this chapter we repeated and deepened the work of Pollock et al. (2019), by
enlarging the study to multiple models, by analysing the partial correlation matrix.
We worked together with Laura Pollock, Wilfried Thuiller and Tamara M ünkem üller
to interpret the results of their study in the different and more complete way described
above. Our work will thus contribute to Pollock et al. (2019).
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Chapter 3

GJAM using Bayesian nonparamet-
ric priors

In this chapter we worked on GJAM and its dimension reduction approach that
makes use of the Dirichlet Process (DP). We highlighted the limits of the proposed
implementation, and extended the model in four different ways that should better
behave in terms of clustering properties, and that allow to give to the model a prior
knowledge on th expected number of clusters. In two of these extensions we replace
the DP with a Pitman–Yor (PY) process, and, based on the results of Arbel et al.
(2019) we proposed a novel approximation of the truncation error of stick-breaking
representation of the PY process, that allows to a fast approximated sampling from its
posterior.

3.1 The Dirichlet process and its application to
GJAM

Generalized Joint Additive Model showed its limits in term of applicability due to
the high dimension of the full residual correlation matrix when the number of species
grows. The dimension reduction proposed by Taylor-Rodriguez et al. (2017) is based
on the Dirichlet process, a Bayesian nonparametric prior that is widely used in many
different fields, and gave great advantages to GJAM in terms of convergence and
computational time. A brief introduction to the Dirichlet process is given in the next
section. For a complete introduction we refer to the classical literature in Bayesian
nonparametrics such as Ghosal and Van der Vaart (2017); Hjort et al. (2010). From
now on, we will focus on GJAM model and its dimension reduction approach, first of
all to give it a full description that completes the brief one that we gave in the previous
chapter. We also generalize the model to extend it to a more natural framework.
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3.1.1 The Dirichlet process: background theory

The Dirichlet process (DP) is a distribution over distributions on some space Θ. The
Dirichlet Process was first defined by Ferguson (1973).

Definition 1 (Dirichlet Process). Let H be a distribution over Θ and α be a positive
real number. We say that G is a Dirichlet Process, namely G ∼ DP(αH) if for any
finite measurable partition {A1, . . . ,Ar} of Θ, we have:

(G(A1), . . . ,G(Ar))∼ Dir(αH(A1), . . . ,αH(Ar)), (3.1)

where Dir(αH(A1), . . . ,αH(Ar)) with positive A1, ...,Ar denotes the Dirichlet distri-
bution. H is called base distribution, and α the concentration parameter.

The formal definition is although not very informative about the properties of the
Dirichlet Process.
Another feature is the Pólya Urn representation of the Dirichlet Process (Blackwell
and MacQueen, 1973). Let θ1, . . . ,θn be a sample from a Dirichlet process G, i.e.:

θ1, . . . ,θn | G
iid∼ G,

G∼ DP(αH).
(3.2)

The marginal distribution of the realisations θ1, . . . ,θn can be described as follows:

θ1 ∼ H

θ j|θ j−1, . . . ,θ1 ∼
αH +∑

j−1
i=1 δθi

α + j−1
, for j = 2, ...,n,

(3.3)

so that :

(θ1, . . . ,θn)∼ H(θ1)
n

∏
i=2

αH(θi)+∑
i−1
j=1 δθ j

α + i−1
. (3.4)

We are going to give a quick description of the generalized Pólya urn sampling
scheme in order to understand what is a sample from a DP. Suppose each value in Θ is
a unique color, and H is a distribution over the colors. The draws θ ∼H are thus balls
with the drawn value being the color of the ball. In addition we have an urn containing
previously seen balls. In the beginning there are no balls in the urn, and we pick a
color drawn from H, i.e. draw θ1 ∼H, paint a ball with that color, and drop it into the
urn. In subsequent steps, say the (n+1)st, we will either, with probability α

α+n , pick
a new color (draw θn+1H), paint a ball with that color and drop the ball into the urn,
or, with probability n

α+n , reach into the urn to pick a random ball out (draw n+1 from
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the empirical distribution), paint a new ball with the same color and drop both balls
back into the urn. The predicted law for the j−th sample ( j > 1) from the urn is thus:

θ j|θ j−1, . . . ,θ1 ∼
αH +∑

j−1
i=1 δθi

α + j−1
. (3.5)

The resulting distribution over the colours with the sampling scheme just derived
above is the same as the distribution over values in a Dirichlet process. Since the
values of draws (ball colors) θk are repeated, let θ ?

1 , . . . ,θ
?
m be the unique values among

θ1, ...,θn, and nk be the number of repeats of θ ?
k . Then the predictive distribution can

be equivalently rewritten as:

θn|θn−1, . . . ,θ1 ∼
αH +∑

m
j=1 n jδ

?
θ j

α +n−1
. (3.6)

Notice that θn will be equal to θ ?
k with probability proportional to nk, the number of

times it has already been observed. The larger nk is, the higher the probability that
it will grow. This is a rich-gets-richer phenomenon, where large clusters (a set of
θi’s with identical values θ ?

k being considered a cluster) grow larger and larger. This
leads to the fact that the draws from a DP(α , H) are discrete with probability 1, the
celebrated clustering property of the Dirichlet Process.

The polya urn representation of the DP can also be reinterpreted as a Chinese
restaurant process (CRP). The CRP(α) is a single parameter distribution over partitions
of integers. The idea of this representation is the following: suppose a restaurant have
infinite number of tables and sequence of customers labeled by {1, . . .n}, the first
customer sits at the first table and then each new customer joins a table populated by
n j customers with probability n j

α+n , where n is the overall number of customers that
already entered the restaurant, or can sit at a new table with probability α

α+n . The
CRP is a random partition induced by DP. With the given description it is easy to see
the similarity with Polya Urn representation, where taking a particular occupied table
is similar to choose an existing colour. Sethuraman (1994) proposed a constructive
representation of the Dirichlet process: the stick-breaking construction. Consider two
independent families {Vk} and {Zk} of random variables:

Vk
iid∼ Be(1,α) Zk

iid∼ H k = 1,2, . . . . (3.7)
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We can now define the random weights as:

p1 =V1,

pk =Vk

k−1

∏
j=1

(1−Vj), k = 2, . . .
(3.8)

The construction of p can be understood metaphorically as follows. Starting with a
stick of length 1, we break it at V1, assigning p1 to be the length of stick we just broke
off. Now we recursively break the other portion proportionally to V2,V3, to obtain p2,
p3 and so forth. Notice that ∑

∞
k=1 pk = 1 a.s..

Then the stick-breaking representation of the Dirichlet process can be written as:

G :=
∞

∑
k=1

pkδZk . (3.9)

The three different representations of DP can be united using the de Finetti theorem.
This theorem is based on the notion of exchangeability.

Definition 2 (Exchangeability of random sequence). A random process (θ1,θ2, . . .)

is called infinitely exchangeable if for any finite n ∈ N and any permutation σ on
1, . . . ,n, the joint probability of (θ1,θ2, . . . ,θn) is equal to the one of the permuted
vector (θ(1), , . . . ,θσ(n)):

P(θ1, . . . ,θn) = P(θθσ(1),...,θσ(n))
. (3.10)

Theorem 2 (de Finetti’s Theorem). If a random process (θ1,θ2, . . .) is infinitely
exchangeable, then the joint probability p(θ1,θ2, . . . ,θn) could be written as:

P(θ1, . . . ,θn) =
∫ { n

∏
i=1

G(θi)

}
dP(G), for any n (3.11)

for some random variable G.

By considering the Polya Urn representation of the DP that we have described
before, it can be proved that the random sequences generated by these processes are
exchangeable, and that the underlying distribution is the Dirichlet Process.
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3.1.2 Dirichlet process approximation

The infinite dimension of the stick-breaking representation comes with a cost: we can
not directly sample from it. There are two possible ways to solve this problem.
The first one is to marginalize out the base random measure, using the Pólya Urn
sampling scheme. Indeed thanks to the Blackwell and MacQueen (1973) Pólya Urn
characterisation the random variables Y1, . . . ,Yn are exchangeable and it holds that:

p(Yi|YYY−i) =
α

α +n−1
G0 +

1
α +n−1

n−1

∑
j=1

δY j ∀i = 1, . . . ,n. (3.12)

This possible solution is easily implementable in a Gibbs sampler, but has several
drawbacks. The most important one is the slow mixing of the chains, and the tendency
of the algorithm to get stuck for several iterations. When this occurs, the sampler can
get stuck at the current unique values Y ?

1 ...Y
?
m of YYY and it may take many iterations

before any new Y values are generated (West and Escobar, 1993). The second solution
is to use the stick-breaking representation of the Dirichlet process, and to truncate the
infinite sum at some truncation level N.

Ishwaran and James (2001) defined PN (aaa,,,bbb) as stick-breaking random measure if

P(.) =
N

∑
k=1

pkδZk(.) (3.13)

and p1 = V1, pk = (1−V1)(1−V2)..(1−Vk−1)Vk,k ≥ 2, where Vi

|=∼ Beta(ak,bk),
ak,bk > 0 , aaa = (a1, . . .),bbb = (b1, . . .).
The Dirichlet process is a special case of stick-breaking random measure where N = ∞

and the parameters ak and bk are defined as ak = 1, bk = α ∀k. By consequence the
random variables Vk are i.i.d. If N < ∞ then PN (a,b) is a finite dimensional prior.
In this case, in order to have ∑k pk = 1, one needs to have VN=1.
The weights p= (p1, ., pN) defined with the stick-breaking method have a Generalized
Dirichlet distribution (Connor and Mosimann, 1969) :

p = (p1, ., pN)∼ G D(a,b). (3.14)
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Where the density for G D(a,b) is :

N−1

∏
k=1

Γ(ak +bk)

Γ(ak)Γ(bk)
pa1−1

1 · · · paN−1
N−1 pbN−1−1

N (1−P1)
b1−(a2+b2) . . .(1−PN−2)

bN−2−(aN−1+bN−1)

(3.15)
where Pk = p1 + . . .+ pk.

An important property of this distribution is that if a vector of random variables
follow a Dirichlet distribution p = (p1, . . . , pN) ∼ Dir(a1, . . . ,aN), then p has a
G D(a,b) distribution with a = (a1, . . . ,aN−1) and b = (∑N

k=2 ak, · · · ,aN).
This means that if P = ∑

N
k=1 pkδZk(.) is a random measure where the weights follows

a Dirichlet distribution

p = (p1, . . . , pN)∼ Dir(a1, . . . ,aN), (3.16)

then and P is a PN(a,b) stick-breaking measure with Vk ∼ Beta(ak,∑
N
s=k+1 as).

Moreover, as the Dirichlet distribution, the Generalized Dirichlet distribution is
conjugate with the multinomial distribution.
Working with a Dirichlet distribution is very convenient thanks to its conjugacy
with the multinomial density. By theorem 4.19 in Ghosal and Van der Vaart (2017)
if PN(a,b) is a stick-breaking measure with Dirichlet weights p = (p1, . . . , pN) ∼
Dir(α

N , . . . ,
α

N ), then:
L {PN(g)}→L {P∞(g)}, (3.17)

where P∞ is a DP(αH). That is, PN converges weakly in distribution to a DP, and it
is thus a good approximation of a Dirichlet process. Due to this property, we will call
this approximation of the DP the weak limit representation. As suggested in Ishwaran
and Zarepour (2000), even for a very large number of elements, a moderate level of
truncation should suffice to approximate a DP(αH).

We are now interested in sampling from the posterior distribution of the following
hierarchical model with a Bayesian nonparametric prior:

(Xi | Yi)
iid∼ p(Xi | Yi)

(Yi | G)
iid∼ G

G∼P.

(3.18)

In GJAM model the Xi are the rows of a matrix, and the base measure H is a multi-
variate Gaussian distribution, but we will fully discuss about this later in Section .
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By rewriting the model under the approximation described above, we have:

(Xi | Z,K)
iid∼ π(Xi | ZKi)

(Ki | p) iid∼
N

∑
k=1

pkδk(.)

(p,Z)∼ π(p)π(Z),

(3.19)

Where K = (K1, . . . ,Kn), are the conditionally independent classification variable.
As we have seen before, p follows a Dirichlet distribution, p∼Dir(α

N , . . . ,
α

N ) , that can
be rewritten in terms of a G D(a,b) distribution, where ak =

α

N and bk =
α(N−k)

N k =

1, . . . ,N−1. We exploit the conjugacy of the latter distribution with the multinomial
distribution to sample from the full conditional of p:

f (p | K) ∝ f (K | p) f (p)∼ G D(a’,b’), (3.20)

where a’ = (α

N +m1, . . . ,
α

N +mN−1) and b’ = (α(N−1)
N +∑

N
i=2 mi, . . .) where mk =

card{Ki = k}.
By consequence (the detailed computations of the full conditional can be seen in
Ishwaran and Zarepour (2000) ), the sampling steps will be the following:

• ki
iid∼ ∑

N
j=1 p j,iδi(ki)

p j,i ∝ p j× p(xi | Z j)

• p1 =V1, pk =Vk ∏
k−1
l=1 (1−Vl), pN = 1− p1− . . .− pN−1

Vk
iid∼ Beta(α

N +mk,
α(N−K)

N +∑
N
j=k+1 m j), where mk = card{i : ki = k}

• Z j
iid∼ H, j 6∈ kkk

Z j
iid∼ H(dZ j)∏i:ki= j p(xi | Z j) , j ∈ kkk

In the next paragraph we are going to describe the DP application to GJAM, and we
will describe the related sampling scheme. Since Taylor-Rodriguez et al. (2017) used
this weak limit approximation truncation method, and the description of its Gibbs
sampler will be an example of the sampling scheme described above.
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3.1.3 The DP application to GJAM

Starting from the full GJAM model described in Section 2.1, we are going to build
the dimension reduction model proposed by Taylor-Rodriguez et al. (2017). We want
to model a latent variable Vi ∈RS (previously called zi, .) where S is the number of
species (previously called J) in every site i = 1, . . . ,n. As in (2.3), we model Vi as:

Vi = Bxi + ei with εi ∼MV N(0,Σ), (3.21)

where B is a N×K matrix that contains the regression coefficients and Σ is the S×S

matrix of the residual correlations (previously called R).
Since the size of Σ grows quadratically with S, we rewrite the model using latent
factors:

Vi = Bxi +Awi + εi, (3.22)

where the random vectors wi are iid with wi ∼MV N(0, Ir) and εi ∼MV N(0,σ2
ε Is).

Notice that in Section 2.3 we called Λ the matrix of the latent loadings A, and ηi

the latend loadings wi. The number of latent factors r gives the size of the S× r

matrix A. The model is actually the same as above, but the residual correlation Σ is
approximated with Σ = AAT +σ2

ε I.
Taylor-Rodriguez et al. (2017) made use of the clustering property of the Dirichlet

process to allow some rows of A to be common, which corresponds to clustering
species in their dependence behavior. Using the stick-breaking representation and the
truncation defined in Section 3.1.2, we have:

DPN(αH) =
N

∑
j=1

p jδZ j ,

with p∼ G D(aα ,bα),aα = (α

N , . . . ,
α

N ) and bα = (α(N−1)
N , α(N−1)

N , . . . , α

N )

(3.23)

The atoms of the stick-breaking representation are (ZT
j )

N
J=1 (with Z j

iid∼ H) that form
the lines of the N× r matrix ZZZ = (ZT

j )
N
J=1 representing all the vector values that the

lines of A may take.
The base measure H is such that Z j|Dz

iid∼ MV N(0,Dz). The prior specification for
the r× r matrix Dz will be given below and it follows the noninformative strategy to
sample covariance matrices described in Huang and Wand (2013).
In this setup, we need a vector of grouping labels k = (k1, . . . ,ks)(1≤ kl ≤ N) such
that al = Zkl . Now A can be represented as A = Q(k)ZZZ where Q(k) = (eeek1 , . . . ,eeeks)

T

is a S×N matrix where eeekl is the N-dimensional vector with a 1 in position kl and 0’s
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elsewhere.
Using this notation, the model is:

Vi|k,ZZZ,wi,B,σ2
ε

iid∼MV N(Bxi +Q(k)ZZZwi,σ
2
ε Is, for i = 1, . . . ,n,

(B,σ2
ε ) ∝

1
σ2

ε

,

wi
iid∼MV N(0, Ir),

kl|ppp
iid∼

N

∑
j=1

p jδ j(kl), f or j = 1, . . . ,S,

Z j|Dz
iid∼MV N(0,Dz), f or j = 1, . . . ,N,

ppp∼ G DN(aα ,bα), with aα = (α

N , . . . ,
α

N )

and bα = (α(N−1)
N , α(N−1)

N , . . . , α

N ),

Dz ∼ IW (2+ r−1,4diag(1/η1, . . . ,1/ηr)),

ηh
iid∼ IG(1/2,1/104), for h = 1, . . . ,r.

(3.24)

It is important to notice that both the regression coefficients B and the standard
deviations σ2

ε have an improper prior (whose posterior is proper). To sample from the
posterior of the parameters of the models, the authors use a Gibbs Sampler described
in the Appendix A of Taylor-Rodriguez et al. (2017).

3.2 Motivations and improvement directions

We have already discussed the advantages of the dimension reduction method proposed
by Taylor-Rodriguez et al. (2017). But what are its limits?

First of all, the concentration parameter α is treated as a constant, equal to the
number of species S, but α has an important impact on the model. In the stick-breaking
representation of the DP, the concentration parameter rules the distribution on the
random weights. When α is small, the Beta-distributed variables Vi tend to be closer
to 1 than to 0, implying that the random weights decrease (in expectation) really fast.
Viceversa, when α is large, the random weights decrease really slow in expectation.
Therefore, the realisations will be more concentrated in few clusters when alpha is
small, and the number of clusters increases with α . This is confirmed by the Pólya
Urn representation. Indeed, given the previous n observations, a new sample will be
assigned to a new cluster with probability α/α +n−1. The bigger α , the higher the
probability of creating new clusters.
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In GJAM, the clusters are the species that share the same behaviour with respect
to the other species in the residual covariance matrix. In many real applications it is
possible to have a prior knowledge on the species interaction network, even if this
information is often qualitative, or very weak. A useful information that ecologists
have is the number of groups of species in the network. At best, this could be known
by applying a stochastic block model (Lee and Wilkinson, 2019) on the interactions
graph. However, we can also retrieve this information from other sources, for example
the functional traits. Indeed, it is well known that species with similar traits tend to
compete. Under this hypothesis, one could cluster the species depending on their
functional traits, and use the obtained number of clusters as a prior information for
the expected number of groups of species in GJAM.
Our aim is to exploit the influence of α on the clustering properties of the DP to
improve the model, by fixing alpha such that the prior expectation on the number of
clusters matches our prior knowledge on the number of groups of species that share
the same behaviour with respect to other species. Even if the groups in the residual
correlation matrix are not necessarily the ones of the interaction networks, we believe
that this information could however improve the abilities of the model.

Another further improvement concerns the hierarchical structure of the model. One
of the advantages of Bayesian hierarchical modelling is the possibility of assigning a
prior distribution to the hyperparameters, treating them as random variables. Instead
of fixing α , we can leave it to be learnt from the data. We can work on the prior
distribution for α , in order to have that its prior mean matches the concentration
parameter determined above. That is, we will treat α as a random parameter, but the
prior expected number of groups will still match the prior knowledge on the number
of clusters in the species interaction network.

Another possible improvement of the non parametric method of Taylor-Rodriguez
is the extension of the Dirichlet process to the Pitman–Yor process (PY) (Ferguson,
1973), that is the natural extension of the DP. We are going to describe the PY process
later, but for now what is important to say is that PY is a stick-breaking random
measure where the Generalized Dirichlet distribution of the weights depends on two
parameters: the concentration (α) and the discount (σ ) parameters. The distribution
of the number of distinct clusters has a heavy-tailed power law with the number of
observations, meaning that, compared to the DP (where the number of distinct clusters
grows logarithmically with n), the PY process leads to a higher number of distinct
clusters.
Since GJAM suffers from slow convergence, we want to have an efficient sampling
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scheme. As for DP, PY can be implemented with a generalized Pólya urn sampling
scheme, but this leads to slow mixing. We implemented a truncated PY process,
based on the results of Arbel et al. (2019), but by fixing the truncation level N in a
novel approximating way that leads to a faster sampling scheme. Thanks to recent
developments in the statistical literature De Blasi et al. (2015), the mean of the prior
number of clusters for fixed α and σ is available in closed form. We want to fix the
hyperparameters α and σ such that the prior mean of the number of clusters is fixed
to the number of clusters known a priori.

For the same motivations as before, we added a hierachical layer to the model, by
letting α and σ depend on data. Again, we want to choose their prior distributions
such that the prior mean of α and σ will match the values found before.
In the following sections we will give a full description of the extensions that we gave
to the model, as well as their implementation in the Gibbs sampler.

3.3 GJAM improvements related to DP

The first improvement of the method proposed by Taylor-Rodriguez et al. (2017), is
to carefully choose the concentration parameter α .
Suppose from now on that we have a prior knowledge on the number of groups of
species that share the same behaviour with respect to the other species, and call this
number K̄.
Call Kn,α the discrete random variables that represents the number of distinct values
of n realizations. The law of Kn,α is given by (Antoniak, 1974) and depends on α:

P(Kn,α = k) =
αkΓ(α)

Γ(α +n)
|s(n,k)|, (3.25)

where |s(n,k)| is the Stirling number of the first type. When n is large, E[Kn,α ]

behaves as α log(n).
As it was shown in De Blasi et al. (2015) (see Section 3), this distribution is highly
peaked, therefore the specification of α should be done carefully, as the posterior
should not be able to move far away from a bad defined prior distribution, espacially
when the data sample size is small. Concerning the mean of this distribution, it can be
easily calculated thanks to the Pólya urn representation of the DP. Indeed, in (3.6) it is
clear that each new realisation, given the previous k−1, can take a new value (i.e. a
new cluster) with probability α

α+k−1 .
The mean of the prior number of distinct values among n realisations of a DP is then
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just the sum over this value:

E[Kn,α ] =
n

∑
k=1

α

α + k−1
(3.26)

The illustration of mean of prior number of distinct values for different values of α

and n could be seen in the appendix Section (A.2.6), on the Figure A.5 Our aim is to
fix α = ᾱ , where ᾱ is such that E[Kn,ᾱ ] = K̄.
Since it is not possible to analytically retrieve ᾱ from (3.26), we will approximate it
numerically, using the bisection algorithm, that proved to work really well due to the
monotonicity of (3.26).

We believe in the importance of α on the results of our model, and we thus want it to
learn from data. Therefore, a hierarchical layer is added by putting a prior distribution
on the concentration parameters α of the DP, and by fixing its related hyperparameters
so as to let the expected prior number of clusters match our ecological prior knowledge
on the number of clusters (defined as K̄ above).
The first strategy is to use the same DP truncation used in GJAM, the weak limit rep-
resentation described in Section 3.1.2. Then, we will describe another approximation
(the finite DP introduced by Ishwaran and Zarepour, 2000) that will lead to an easier
sampling scheme for the posterior of α .

3.3.1 Prion on α using the weak limit representation of the DP

The description of the weak limit representation given in Section 3.1.2 is characterised
by the Dirichlet distributed weigths:

p|α ∼ Dir(α

N , . . . ,
α

N ). (3.27)

The conditional density of α|p is then:

π(α|p) ∝
Γ(α)

Γ(α/N)N pα/N−1
1 . . . pα/N−1

N π(α). (3.28)

In the literature the gamma distribution is common choice as a prior for the concentra-
tion parameter α (Ishwaran et Zarepour 2000):

α ∼ Ga(ν1,ν2) (3.29)
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The Gibbs sampler for this model is the same one of (3.24) with an additional step to
sample from the full conditional of α :

α|p ∝
Γ(α)

Γ(α/N)N pα/N−1
1 . . . pα/N−1

N α
ν1−1e−ν2α (3.30)

To do this, we need a Metropolis–Hasting step in our Gibbs sampler. We modified
the Gibbs sampler of (3.24) implemented in the GJAM package and added a Random
Walk Metropolis–Hasting step for the concentration parameter α , with a truncated
normal as proposal, since our target distribution has support on R+. The variance
of the proposal density will be adjusted a posteriori by checking the convergence
metrics.
We now want to fix the hyperparameters of the prior distribution of α in order to have
the desired expected prior number of clusters. We have:

α ∼ Ga(ν1,ν2), (3.31)

and we want:
E[α] =

ν1

ν2
= ᾱ, (3.32)

where ᾱ is the one found above.
We want to have a quite large variance in order to let α move away from this prior
specification if indicated by the data.
Therefore, we set:

Var[α] =
ν1

ν2
2
=

ᾱ

ν2
= 20, (3.33)

(we can eventually modify the number 20)
From which it follows:E[α] = ν1

ν2
= ᾱ

Var[α] = ν1
ν2

2
= ᾱ

ν2
= 20

=⇒

ν1 =
ᾱ2

20

ν2 =
ᾱ

20

(3.34)

Concerning the truncation level N, since we are not changing the way we approximate
the DP, we are going to stick to the indication of the author and take N = min{S,150}.
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3.3.2 Prion on α using the almost sure truncation of a DP

Ishwaran and Zarepour (2000) proposed another approximation of the Dirichlet
process, called the almost sure truncation.
They proposed to consider equation (3.13) and to take all Vi ∼ Be(1,α) and VN = 1,
to guarantee that the weights sum to one. Which is equivalent of setting pN =

1− p1− . . .− pN−1.
By consequence:

p∼ G D(aaa,bbb), with ai = 1,bi = α ∀i = 1, . . . ,N (3.35)

Ishwaran and James (2001) established an upper bound of N by considering the
Bayesian marginal density. Indeed, if the random measure PN(aaa,bbb) is applied in a
Bayesian hierarchical model as a prior, then an appropriate method for selecting N is to
choose a value that yields a Bayesian marginal density that is almost indistinguishable
from its limit .
Being µµµN the marginal density of the observed data under the PN(aaa,bbb) prior and
µµµ∞ the marginal density of the observed data under DP(α H), the L1 norm of the
difference between the two marginal densities can be approximated as (theorem 2 in
Ishwaran and James (2001)):

‖µµµN−µµµ∞‖1 ∼ 4n exp(−(N−1)/α), (3.36)

that shows that the sample size n has almost no effect compared to the truncation
threshold N. In particular, the authors suggest to take N = 150 to guarantee a good
convergence for any n and α .

An important advantage of this approximation is that when weights p are distributed
as in (3.35), then the prior Gamma distribution for α is conjugate. Indeed:

π(p | α) ∝ α
N−1 pα−1

N implies :

π(α | p) ∝ π(p | α)π(α) ∝ α
N−1 pα−1

N α
ν1−1e−ν2α

∝ Ga(N +ν1−1,ν2− log pN),
(3.37)

where ν1 and ν2 are defined as in (3.34) for the same reasons.
We implemented this model in R by modifying the Gibbs sampler of (3.24) imple-
mented in the GJAM package (Clark, 2017). In this new Gibbs sampler we sampled
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from α using (3.37), and the weights using:

p1 =V1, pk =Vk

k−1

∏
l=1

(1−Vl), pN = 1− p1− . . .− pN−1,

Vk ∼ Beta(1+mk,α +
N

∑
j=k+1

m j),where mk = card{i : ki = k}.
(3.38)

Even if this truncation has good approximation properties only for big N, compared
to the weak limit representation, it comes with the great advantage of the conjugacy
for α .

3.4 GJAM improvements related to the Pitman–Yor
process

3.4.1 Pitman–Yor description

After having explored all the possible ways to increase the flexibility of the clustering
properties of GJAM, we decided to replace the Dirichlet Process with the Pitman–Yor
(PY) process. The Pitman–Yor process is a generalization of the DP process, and is
also a special case of a larger class of priors called Gibbs-type priors, which were
introduced in the seminal works of Pitman and Gnedin Pitman (2003); Gnedin and
Pitman (2006), see De Blasi et al. (2015) for a review.
The Pitman–Yor process was firstly defined by Pitman:

Definition 3 (Pitman–Yor process). The random measure G = ∑
∞
k=1 pkδZk defined by

the weights:
Vk

ind∼ Beta(1−σ ,α + kσ)

with p1 :=V1, pk :=Vk

k−1

∏
j=1

(1−Vj)

and Z1,Z2, . . . ,
iid∼ H

(3.39)

is called Pitman-Yor process with concentration parameter α , discount (or diversity)
parameter σ (with 0≤ σ ≤ 1) and base measure H.

Notice that when σ = 0 it holds: PY (α,0,H) = DP(αH).
The difference in terms of the stick-breaking representation is in the sampling of the
beta distributed variables Vk that now depend on two parameters. These variables are
no more identically distributed, and when k increases, the second parameter increases,
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leading to a decrease in the mean value of Vk. The Vk decrease (in mean) when k
grows, meaning that the weights pk will decrease (in mean), slower than in the DP.
That implies that the PY process have a greater number of distinct clusters.
Indeed, when the data are modelled with a Dirichlet process, the number of obtained
distinct clusters Kn grows logaritmically with n, while for the Pitman–Yor process Kn

grows as a power law with n. This power law property is a more natural assumption for
many applications, since it means that we have a small number of clusters with a high
number of observations, and a large number of clusters with only few observations (a
good example is the twitter users and their number of followers).

The Pitman–Yor process can also be described in terms of the generalized Pólya
urn representation.
Let G be a sample from a PY process, and let θ1, . . . ,θn be realisations from G. That
is:

θ1, . . . ,θn|G
iid∼ G

G∼ PY (α,σ ,H).
(3.40)

By marginalizing out the base measure G, the predictive law of a new realisation given
the previous n realisation is:

θn+1|θn, . . . ,θ1 ∼
(α +σKn)H +∑

n
j=1(N

n
j −σ)δθ j

α +n
, (3.41)

Where Ki is the number of distinct clusters between the first n observations, and N n
j

is the number of elements in the j-th clusters after n realisations. The probability that
a new realisation, given the previous n, enters in a new cluster is α+σKn

α+n , which is
greater than the one given by a DP base measure, confirming what stated above.
We are now going to describe how we can approximate a PY process to be able to
sample from it.

3.4.2 Truncation of a Pitman–Yor process

As for the Dirichlet Process, the Pitman–Yor process has infinite parameters, and thus
we can not directly sample from it.
A possible solution is to marginalize out the base random measure, using the Pólya
Urn sampling scheme and exploiting the exchangeability of the realizations. However,
as for the DP, this leads to slow mixing (West and Escobar, 1993).
The second solution is to use the stick-breaking representation of the Pitman–Yor
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process, and to truncate the infinite sum at some truncation level N, that is:

PN(.) =
N

∑
k=1

pkδZk(.), (3.42)

and p1 = V1, pk = (1−V1)(1−V2) . . . ,(1−Vk−1)Vk,k ≥ 2, where Vk

|=∼ Beta(1−
σ ,α + kσ) and VN = 1.
Once the truncation level is fixed, the sampling scheme is the same described in
(3.38),thanks to the conjugacy of the G D(aaa,bbb) distribution. However, instead of
having

ak = 1,bk = α ∀k = 1, . . . ,N, (3.43)

the parameters will be:

ak = 1−σ ,bk = α + kσ ∀k = 1, . . . ,N. (3.44)

Therefore, the step to sample the weights in the Gibbs sampler of (3.24) is changed to:

p1 =V1, pk =Vk

k−1

∏
l=1

(1−Vl), pN = 1− p1− . . .− pN−1,

Vk ∼ Beta(1−σ +mk,α + kσ+
N

∑
j=k+1

m j), where mk = card{i : ki = k}.
(3.45)

Nevertheless, the truncation error for PY is harder to bound than DP, and there’s no
result about a weakly convergence in limit as for the DP.
The key quantity to consider is thus the approximation error

Rn = ∑
i>n

pi = ∏
j≤n

(1−Vj), (3.46)

since when Rn is small the resulting truncated process PN will be close to PY
according to |PY (A)−PN(A)| ≤ Rn for any measurable set A. Ishwaran and James
(2001) proposed to determine the truncation level based on the moments of Rn.
Instead, Arbel et al. (2019) investigate a random truncation by setting n such that Rn

is smaller than a predetermined value ε ∈ (0,1) with probability one. The authors
define the ε-PY process as the Pitman–Yor process truncated at n = τ(ε), where
τ(ε) = min{n≥ 1 : Rn < ε} and Rn is the truncation error

Rn = ∑
i>n

pi. (3.47)
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Even if for studying the asymptotic behaviour of τ(ε) the common notations for the
precision parameter is θ and for discount it is α , we decided to stick to our previous
notation and to call α the precision parameter and σ the discount. The authors proved
that for the Pitman–Yor process with parameters α,σ the asymptotic distribution of
τ(ε) when ε → 0 is defined as (see Theorem 2 in Arbel et al., 2019):

τ(ε)−1∼a.s (εTσ ,α/σ)
− σ

(1−σ) as ε → 0, (3.48)

where Tσ ,α is a polynomially tilted random variable with density :

Γ(1+α)

Γ(1+α/σ)
x−α fσ (x), (3.49)

where fσ (t) is the density of a positive stable random variable Sσ with exponent σ ,
which satisfies E(e−sT σ ) = e−sσ .

The authors suggested two algorithms to sample from a ε−PY process. However,
even the fastest algorithm (Algorithm 2) still needs a supplementary sampling step
inside the Gibbs sampler, to sample from Tσ ,α .
Our approach was to fix the truncation level N to a value that guaranteed a bound to
the probability of τ(ε) to exceed N. Because of the properties of its distribution, it
was not easy to fix this bound.
We first wanted to use the mean of τ(ε) as estimator for the truncation number. How-
ever, the shape of distribution (εTσ ,α/σ)

− σ

(1−σ) strongly depends on the parameters
α,σ , and can become very skewed. Figure 3.1 shows this variation, and how skew-
ness and kurtosis grow when σ increases. More precisely, the graphs in Appendix in
Section A.2.5 , Figure (A.4) show the skewness and kurtosis on grid for α,σ .
Because of the shape of the distribution, the mean value could not be the optimal
estimator. Indeed τ(ε) can take values much greater then the mean with a considerable
probability, inducing an important error in truncation.
We thus decided to approximate N with the 95%-quantile of τ(ε) to bound the proba-
bility that the truncation error exceeds a desired threshold.

To work this out, we studied the moments of τ(ε): if we could find the analytical
expression for the moments, we could find a desirable tractable expression which
would be close to the 95% quantile, in order to have P(τ(ε))> N)< 0.05.

The distribution of the truncation number τ(ε) depends on the parameters ε,σ ,α .
We defined the moments of the truncation number as Mk

ε,σ ,α = E[τk
ε,σ ,α ] = E[τ(ε)k].
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Figure 3.1 – Density plot for approximation of τ(ε) for values σ = {0.4,0.5,0.6},
α = 1 and ε = 0.1, computed for n = 104.

For a fixed precision ε and fixed parameters σ ,α , we computed Mk
ε,σ ,α using (3.48):

E[τ(ε)k]≈ E[((εTσ ,α/σ)−σ/(1−σ))k] = (ε/σ)−kσ/(1−σ)E[T−kσ/(1−σ)
σ ,α ] as ε → 0

(3.50)
Then, using the fact that E[S−r

σ ] = Γ(1+r/σ)
Γ(1+r) :

E[T
−kσ

(1−σ)
σ ,α ] =

∫
Γ(1+α)

Γ(1+α/σ)
x
−kσ

(1−σ) x−α fσ (x)dx =
Γ(1+α)

Γ(1+α/σ)
E[S
−(α+ kσ

(1−σ)
)

σ ]

=
Γ(1+α)Γ(1+α/σ + k/(1−σ)))

Γ(1+α/σ)Γ(1+ kσ/(1−σ)+α)
(3.51)

In particular for k = 1:

Mε,σ ,α ≈ (ε/σ)
−σ

(1−σ)E[(Tσ ,α)
−σ

(1−σ) ] = (ε/σ)
−σ

(1−σ)
Γ(1+α)Γ(1+α/σ +1/(1−σ)))

Γ(1+α/σ)Γ(1+σ/(1−σ)+α)
(3.52)

Thanks to the well-known property of the Gamma function:

Γ(x+1) = xΓ(x+1), (3.53)
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we simplified (3.51) using (3.53):

Mk
ε,σ ,α ≈ (ε/σ)−kσ/(1−σ) Γ(α)Γ(α/σ + k/(1−σ))

Γ(α/σ)Γ(α + kσ/(1−σ))
(3.54)

We then wanted to study the asymptotic behaviour for Mk
ε,σ ,α when σ → 1 and α→∞

since we were interested to know the growth rate for the truncation number with the
change of parameters.
Firstly, consider the case where σ → 1

Using Stirling formula we obtained (see details in the Appendix A.2.1 ) the follow-
ing:

Mk
ε,σ ,α ≈ ε

−kσ

(1−σ) e−k
(

α +
kσ

(1−σ)

)k

ck(α,σ) (3.55)

where ck(α,σ)→ 1 as σ → 1.

Hence, we got

Mk
ε,σ ,α ≈ ε

−kσ

(1−σ)

(
k

1−σ

)k

with σ → 1. (3.56)

We could see that for fixed value of ε,α we had an exponential growth of the moments
of τ(ε) as σ approaches 1. Even if σ cannot be 1 by definition, we can intuitively
think that in the limiting case σ → 1, the probability of joining the existing cluster
would to 0, and so each new realisation would generate a new cluster, and we thus
could not truncate the infinite sum at any level. However, the case where σ → 1 is out
of our interest, since we are using the PY process because of its clustering properties.
Now we consider the case where α → ∞

Similarly to previous case using the Stirling formula and substituting in (3.54) (see
details in Appendix Section A.2.2) in case where α → ∞ we got:

Mk
ε,α,σ ≈

(
α +

kσ

(1−σ)

)k

≈ α
k with α → ∞. (3.57)

So, with two above results we obtained that we had an exponential growth when
σ approaches 1 and polynomial growth with growth of α . In Appendix A.2.4 we
computed the first moment for different ε = 0.1 on a grid for α,σ , we could observe
the different behaviour along the two axes (Figure A.3) .
We decided to approximate the 95%-quantile by taking N =E[τ(ε)]+2

√
Var[τ(ε)].
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As we obtained an analytical expression with Gamma function for mean and moments,
we could easily compute the mean and standard deviation, but the question was how
well it would approximate the quantile?

To answer this question we could use concentration inequalities, which assess
deviation ("concentration") of random variable around its mean. We had a distribution
for which we knew all the moments analytically and we know also that they are finite.
By calculating the asymptotic behaviour for the kth moment, we could classify the
distribution by its tail behaviour.
In our case we could easily see (see details in Appendix Section A.2.3 ) that:

E[Xk]≈ kk. (3.58)

Hence, using Theorem 2.1 from Vladimirova and Arbel (2019), there exists a constant
K1, K1 > 0 such that:

P{X−E[X ]≥ t} ≤ exp(−t/K1) for all t ≥ 0, (3.59)

where for us t = 2
√

Var[X ].
Based on this bound on the tail behaviour, we could use N =E[τ(ε)]+2

√
Var[τ(ε)]

as an approximation of the 95% quantile.
We have tested our approximation by calculating the 95% quantile by sampling from
the distribution of τ(ε), using the algorithm proposed by (Arbel et al., 2019). We
compared the results with our approximation Nest =E[τ(ε)]+2

√
Var[τ(ε)]. Figure

3.2 shows the difference between the two, for different values of ε ,α and σ .
We could see that the Nest is larger for all the values of the parameters, meaning
that Nest was conservative in estimation of the 95%-th quantile and thus it always
guaranteed that:

P(τ(ε))> N)< 0.05 (3.60)

Moreover, when σ< 0.5 and α<10 the difference between the approximation and
quantile was small. This implied that we don’t add any computational effort by
doing this approximation of the quantile. The gap between the true quantile and its
approximation grows with ε → 0, and therefore we overestimate the quantile more
when ε is smaller.

Since the truncation approximation error ε is the sum of the weights after the
truncation number, by choosing ε = 0.1 we obtain a bound on the largest pk that we
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Figure 3.2 – Difference between 95% quantile for τ(ε) and µ + 2SD for values
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Figure 3.3 – Truncation number N = min{µ + 2SD,1000} computed for different
values of ε: ε = 0.1 (left) and ε = 0.05 (right).

discarded, since pk < 0.1 ∀k ≥ N.
We justified both analytically and numerically our approximation of the 95% quantile
using N = µ +2SD. To sample from a PY process we can thus fix N a priori, without
adding an unbounded error, and then follow the blocked Gibbs sampler described
above. This error bound is valid only a priori, and we will check the posterior of the
truncation error in order to validate our approximation.
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3.4.3 Fixing α and σ for Pitman–Yor process: properties of the
prior number of clusters

In the previous sections we have described the Pitman–Yor process, listed some of its
properties, and discussed how to sample from its posterior.
It is now time to elicit the values of the discount σ and concentration α parameters.
In order to emphasize the motivations of our approach, we are going to investigate
the distribution of the prior number of distinct values of the realisations from a PY
process, and to compare it to the one of the realisations from a DP.
The distribution of the prior number of clusters of the realisations from a PY process
has been studied by De Blasi et al. (2015), and is given by:

P(Kn,α,σ ) =
Vn,k

σ k C (n,k;σ), (3.61)

with:

C (n,k;σ) =
1
k!

k

∑
i=0

(−1)i
(

k
i

)
(−iσ)n

Vn,k =
∏

k−1
i=0 (α + iσ)

(α +1)n−1
.

(3.62)

By taking σ → 0 one founds the distribution of the prior number of clusters in a DP,
given in (3.25).
In their work, the authors highlight the properties of this distribution (and its differ-
ences with respect to a DP) by a graphical display (Figure 3.4).

They fix n = 50 and consider different combinations of α and σ . For the Dirichlet
process, as we discussed in Section 3.2, the total mass parameter α controls the
location of the distribution of K50: larger values of α lead to a right-shift of the distri-
bution implying an (a priori) larger number of components (Figure 3.4). Moreover,
the distribution is highly peaked.
From Figure 3.4 it is evident that the addition of σ allows to control the flatness, or
the variability, of the distribution of K50 thus yielding a higher degree of flexibility for
the model. Indeed, as σ increases the distribution becomes flatter, less informative.
Elicitate in a correct way the parameters of a PY process is thus important, and needs
to be done carefully. We use the same approach for the DP (Section 3.3), and fix α

and σ in order to let the expected prior number of clusters match an ecological prior
knowledge on the number of clusters.

The expected prior number of clusters from a PY process comes from the Pólya
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Figure 3.4 – DP (left) and PYP (right) priors when N = 50, with different concentra-
tion and discount (here σ = d) parameter settings.

urn representation described in (3.41), where the probability that a new realisation,
given the previous n, enters in a new cluster is α+σKn

α+n . This last observation is useful
to compute the expected number of clusters.
Indeed, from above it easily follows that:

E[Kn+1,α,σ ] =E[Kn,α,σ ]+
α +E[Kn,α,σ ]σ

α +n
, (3.63)

which implies:

E[Kn,α,σ ] =
α

σ

{ n

∏
j=1

α +σ + j−1
α + j−1

−1
}
, (3.64)

by induction on n. Stirling’s approximation (see Pitman (2002) Chapter 3) then
implies:

E[Kn,α,σ ]�
Γ(α +1)

σΓ(α +σ)
nσ , (3.65)

It is interesting to notice that, with the same computations as in Section 3.4.2, one
can also show the consistency of the Stirling approximation of the expected (prior)
number of clusters. Indeed, Pitman (2002) gives the asymptotic: where Tα,θ is a
polynomially tilted random variable. Hence:

E[Kn,α,σ ] = nσE[(Tσ ,α)
−σ ] = nσ Γ(α +1)

Γ(σ +α)σ
, (3.66)
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which is consistent with (3.65), obtained via the Pólya urn representation.
Our aim is to find the pair:

(ᾱ, σ̄) s.t. E[Kn,ᾱ,σ̄ ] = K̄, (3.67)

where K̄ is the prior knowledge that we have on the expected number of groups.
As in Section 3.3 we are not able to analytically find (ᾱ, σ̄ ), but we can however
approximate them numerically. Here we potentially have an infinite number of
parameters satisfying (3.67), since we are working on a surface (see for example
Figure A.5). Since E[Kn,ᾱ,σ̄ ] is monotone with respect to both α and σ , we can fix
one of the two parameters on a grid (let’s say σ fixed to σ1, . . . ,σk) and then for all σi

use the bisection method to find the value αi that satifies:

(αi,σi) s.t. E[Kn,αi,σi] = K̄, (3.68)

obtaining thus a set of pairs {(αi,σi)}i=1,...,k among the ones we will choose (ᾱ, σ̄ ).
Since the choice of (ᾱ, σ̄ ) also drives the truncation level N and the vagueness
of the distribution of the prior number of clusters, we will them among all the
pairs {(αi,σi)}i=1,...,k by finding a trade-off between a high vagueness of the prior
distribution of the number of clusters (that increases with σ ) and a low truncation level
N (that increases with σ and α). See Figure A.7 in the Appendix to see graphically
the relationship between α,σ ,E[Kn,α,σ ] and N, and a possible choice for (ᾱ, σ̄ ) .
The truncation level N will thus fixed depending on (ᾱ, σ̄ ) with the formula determined
in Section 3.4.2. We implemented this model in R by modifying the Gibbs sampler of
(3.24) implemented in the GJAM package (Clark, 2017). In this new Gibbs sampler
we sampled the weights as described in (3.45).

3.4.4 Priors for the parameters α and σ

In the Bayesian framework when hyperparameters have a great influence on the results
of a model, it is important to consider them as a random variable and to give them
a prior knowledge that reflects some prior knowledge. We will thus repeat what we
have done in Section 3.3 for the Dirichlet Process, by giving a prior distribution to the
concentration parameter α and the discount parameter σ of the Pitman–Yor process,
and by elicitating the corresponding hyperparameters in order to guarantee that the
expected prior number of clusters matches an ecological prior knowledge.

This natural improvement comes however with two important drawbacks. First of
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all, as described in Section 3.4.2, the truncation level N depends on both α and σ .
This means that we should evaluate the complex formula that give N = µ +2SD at
each iteration, as a function on α and σ . Moreover, the truncation level N grows when
α and σ increase, and becomes dramatically big when σ is greater than 0.5.
Secondly, since the G D of (p|α,σ) depends now not only on α but also on σ , we
can not find a conjugate prior. Indeed, by replacing ak = 1−σ and bk = α + kσ in
(3.15) we obtain:

π(p|α,σ) ∝

(
N−1

∏
k=1

Γ(1+α +(k−1)σ)

Γ(1−σ)Γ(α + kσ)

)
p−σ

1 · · · p
−σ

N−1 pσ(N−1)+α−1
N (3.69)

We are going to solve the first problem by giving a truncated prior distribution to σ , so
that a posteriori it will never overcome a certain threshold with probability 1. We are
not going to truncate the support of α , but we are going to elicitate his hyperparameter
in order to fix most of the probability mass below a certain threshold.

We are then going to fix N̄ = Nαmax,σmax , where αmax and σmax will be the maximum
values that the parameters could take. Since N is monotone with α and σ , we will
guarantee that N̄ = Nα,σ for all α and σ that have a non zero probability a posteriori
(and thus they almost never occur in the Gibbs sampler).
To simplify the problem, we decided to consider α and σ to be independent, so that:

π(α,σ) = π(α)π(σ) (3.70)

As we did for the Dirichlet process, we are going to give a gamma prior distribution
to the concentration parameter α:

α ∼ Ga(ν1,ν2)

E[α] =
ν1

ν2
= ᾱ,

(3.71)

where ᾱ is the one found at the end of Section 3.3.
We do not want α to be too big, since the truncation level N grows linearly with alpha.
We will thus set:

Var[α] =
ν1

ν2
2
=

ᾱ

ν2
= 10, (3.72)

(we can eventually modify the number 10)
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From which it follows:E[α] = ν1
ν2

= ᾱ

Var[α] = ν1
ν2

2
= ᾱ

ν2
= 10

=⇒

ν1 =
ᾱ2

10

ν2 =
ᾱ

10

(3.73)

Concerning the prior distribution for σ , we decided to use as a prior a mixture of a
point mass at zero and a continous distribution as in Carmona et al. (2019), (what is
called a spike and slab prior) the first component is spike concentrated at zero and
second component is comparable flat slab. For our prior distribution we used uniform
distribution as slab:

π(σ) = ρδ0 +(1−ρ)U(0,0.5) (3.74)

where U(0,0.5) is the uniform distribution with support between 0 and 0.5.
Our prior is thus a mixture of two components. With probability ρ , σ = 0, making
thus the Pitman–Yor process become a Dirichlet process, while with probability 1−ρ ,
the discount parameter σ will be uniformly distributed around 0 and 0.5.
This choice leads to two important advantages. Firstly, by looking at the posterior
distribution of σ we will be able to see how often the Pitman–Yor recovers the
Dirichlet Process case, and this will be a strong justification of the goodness (or not)
of our choice to extent the DP to a PY process.
Secondly, the support of σ is bounded between 0 and 0.5, and thus we avoid unfeasible
values of the truncation level N.
Concerning the value of ρ , we want:

E[σ ] = σ̄ , (3.75)

where σ̄ is the one found at the end of Section 3.3.
Hence: to fix the value of ρ , we impose:

E[σ ] =
(1−ρ)

2
= σ̄ (3.76)

and thus:
ρ = 1−2σ̄ (3.77)

which requires that σ̄ ≤ 1
2 . We now want to fix the truncation level N̄ = Nαmax,σmax .

The maximum value that σ could attain a posteriori is σmax = 0.5, due to his trun-
cated support.
For α the problem is slightly more complicated, since his support is bounded. How-
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ever, we are going to take αmax as the 95%-th quantile of its prior distribution. This is
of course an approximation, since we could have α ≥ αmax, but with a low probability.
We are going to check a posteriori that this last hypotesis has worked out.
The full conditionals of α and σ are thus:

π(α|σ , p) ∝

(
N−1

∏
k=1

Γ(α+1+σ(k−1))
Γ(σk+α)

)
pα

Nα
ν1−1e−ν2α (3.78)

π(σ |α, p)∝
1

Γ(1−σ)N

(
N−1

∏
k=1

Γ(α+1+σ(k−1))
Γ(σk+α)

)
p−σ

1 p−σ

2 . . . pσ(N−1)
N [ρδ0(σ)+2(1−ρ)1[0,0.5](σ)]

(3.79)

We implemented this model in R by modifying the Gibbs sampler of (3.24) imple-
mented in the GJAM package (Clark, 2017). In this new Gibbs sampler we sampled
the weights as described in (3.45). To sample from (3.78) we used a random walk
Metropolis–Hasting step with a truncated normal proposal distribution, for the same
reason as described in Section 3.3.1. Again, the variance of the proposal density was
adjusted a posteriori by checking the convergence metrics.
Concerning the conditional distributions of σ we implemented a MH step with inde-
pendent proposal distribution π(σ) = 1

2δ0 +
1
2U[0,0.5] as suggested in Carmona et al.

(2019), but using a Uniform distribution instead of a Beta to constrain the proposal
between 0 and 0.5.

65



Chapter 4

Tests and applications

In this chapter we have applied our models (described in Sections ?? 3.3.2 3.4.3 3.4.4
) as well as the original GJAM model (Section 3.1.3). We have first used a very
simple simulation case, where the models were tested on their ability to retrieve the
true number of clusters in the covariance matrix that generated the data. Being the
task really easy, all models behaved well and we could not see any difference across
the model for most simulations scenarios. However, the original GJAM struggled to
retrieve the true number of clusters in the scenario with a lot of species and a low
number of clusters. Even if this is a quite extreme case, it has encouraged us to test
all the models on a more complex data. We have also applied our models on the
real dataset of the plants in the Bauges Regional park (BRP), using Plant Functional
Groups (PFG) to fix the a priori number of clusters. Our extensions (in Chapter
3) showed to outperform the original GJAM, even if the difference was not huge.
The posterior of the unique number of clusters showed the importance of carefully
choosing the prior, and suggests that the PFG partition reflects the way species interact
among them.

4.1 Simulation for continuous data

4.1.1 Motivation for simulation study

The aim of this simulation study was to see how the prior choice of α for DP and
α and σ for PY processes affected the clustering in our model. We know that the
DP and PY mixture models are consistent in density estimation, but inconsistent in
the identification of the true number of clusters (Miller and Harrison, 2014). But by
comparing the number of estimated clusters with the true one across the different
models, we were interested in seeing the difference in the models behaviour. We
tested how the models we implemented in Chapter 3 influences the posterior number
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of clusters and if this leads to better results in model fitting, which we evaluated as
the error in the estimation of the covariance matrix. While analyzing the posterior
of the models, we also discussed the approximation error for the truncation of stick-
breaking random measure by considering the posterior mean for the last weight
pN = 1−∑

N−1
k=1 pk.

4.1.2 Description of the data

The first type of simulation was made for continuous data. Following the framework of
Taylor-Rodriguez et al. (2017) we constructed the simulation for the latent multivariate
variable V , which is described in model definition for GJAM (3.21), to see if we could
recover the specified multivariate dependence structure. For simplicity, we took
the environmental response equal to zero, so for each plot i the response vector
yi ∼ NS(0S,Σ). We constructed the covariance matrix Σ of size S×S in the following
way:
The structure of Σ in the model defined as Σ = AAT + σ̃ IS, where A was matrix of
size S×q and q << S. To have a clustered covariance structure with Ktrue number of
groups, A had Ktrue repeated rows. Let al, l = 1, ...S be the rows of A. Then:

al = vk, where vk ∼ N(0,σAIq), k ∈ {1, . . .Ktrue}, l ∈ {1 . . .S}. (4.1)

Hence, we tested the model ability to recover the true number of clusters Ktrue. We
investigated how well the models retrieved the good number of clusters using the
posterior distribution of the unique numbers of rows of A. To measure the error
between the true covariance matrix Σ obtained with true A matrix as described before
and the estimated covariance matrix Σ̂ (the posterior mean of Σ) we calculated the
normalized Frobenius norm on the difference Σ− Σ̂, where the Frobenius norm is
defined as ||A||F =

√
∑

S
i=1 ∑

S
j=1 |ai j|2, if A is a S×S matrix, and we then normalized

it on the number of elements of A.
We fitted the models on the datasets simulated by using σA = 3, σ̃ = 0.1, q = 20.
Since we wanted to understand what is the effect of the number of plots n, the number
of species S and the number of true clusters Ktrue, we varied these parameters. For
each combination of r,S,Ktrue,n we generated five datasets and all the models were
fitted individually on each dataset, in order to reduce the stochasticity related to data
generation.
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4.1.3 Models parametrization

We varied all the parameters of the simulations in order to have a complete under-
standing of the results and of the effect of the parameters on them.
We considered the number of species S ∈ {100,300,500,1000} and the true num-
ber of clusters Ktrue ∈ {4,8,10}. We also changed the sampling size n, with n ∈
{10,50,100,500} in order to study the cases whether the sampling size is small and
thus the prior information had more power, which is one of the case where our model
should work better.
GJAM also allows to choose the parameter r, which is the number of columns in
the A matrix. We know that the true number of columns is q = 20, and we tested
different values of r to assess for the impact of the latent factor approximation on
the simulations. In general, the choice of r could be done by model selection, based
on DIC or out-of-sample error (as we did in chapter 2), however for this simulation
we were not interested in selecting the best r, but in testing the behaviour of the
models for different values of r ∈ {5,10,15,20} . Concerning the description of each
model and their truncation level we refer to sections 3.3 and 3.4. The choice of the
hyperparameters is described below:

• GJAM refers to the original model proposed by Taylor-Rodriguez et al. (2017).
We follow authors indication by setting N = min{S,150} as truncation level
and α is automatically set to α = S. We modified the package only to have the
possibility to have the chains for the stick-breaking weights pk.

• GJAM1 is the almost sure truncation version (see Section 3.3.2), where we set
truncation N = 150, and we use the bisection method on (3.26) to find ᾱ such
that the expected prior number of clusters is Ktrue. We then use (3.34) to fix the
hyperparameters of the prior distribution ν1,ν2.

• GJAM2 is the weak limit version (see Section 3.3.1) where we set N =min{S,150}
α = ᾱ . For the hyperparameters of the prior of α we use the same method as
in GJAM1.

• GJAM3 is the PY version with fixed α ,σ (see Section 3.4.3), we use the method
described in the section to define ᾱ and σ̄ . We set the truncation error as
ε = 0.05 and truncation number using N = Neps as described in the section.

• GJAM4 is the PY version with prior distribution for parameters α , σ (see
Section 3.4.4). We take the same ᾱ ,σ̄ of GJAM3, and fix the hyperparameters
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ν1, ν2, ρ in the way described in the section. We choose ε = 0.1 as we use
more conservative upper bound for N = Neps.

All models were run for 10,000 iterations and 3000 as burn-in, and thinned to keep
1 every 10 samples, for a final sample size of 1000. For GJAM the posterior was
simulated using the GJAM package (Clark, 2017) in R. To sample from the posterior
of the other models we used the functions that we implemented in R.

4.1.4 Posterior inference

The MCMC of all models typically proved to converge for all possible combinations
of the simulation parameters. However, we had poor mixing regarding the number of
unique values of the DP realisations (Figure 4.1), for all models and all combinations
of the simulation parameters.
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Figure 4.1 – Traceplots of the number of clusters under the different models, for
S = 300 and r = 5, Ktrue = 10, n = 500.
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We first analysed the influence of the number of species S in the simulations. To rep-
resents easily the results, we fixed the true number of clusters Ktrue = 10 and the num-
ber of samples n = 500 and r = 5. We varied S by taking S ∈ {100,300,500,1000}
as described above and for each S we fitted the models on all the 5 simulated datasets.
For every tested S, except S = 1000 there were no differences across all models. They
were all able to retrieve the correct number of clusters (Figure 4.2), and the error in
retrieving the true values of Σ was the same across models and grew with the number
of species (Figure 4.3). When the number of species was big, in particular in the case
S = 1000, the original GJAM got worse both in the posterior number of clusters and
in the posterior of Σ, while all the other models kept doing well, with no substantial
difference across models. We had consistent results also with other values of Ktrue,n,r,
and in particular the case of Ktrue = 4 is presented in Appendix A.2.9.

We analyzed the effect of the number of random factor r by seeing whether the error
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in retrieving the true matrix Σ depended on r, by varying r and S and leaving other
parameters unchanged. Figure 4.4 shows that for these settings of the parameters all
the models had the same ability in retrieving the true matrix: the variation of r did not
lead to a substantial change of models error for any value of S.

We also checked for the goodness of the truncation approximations in the models
by inspecting the posterior distribution of the last weight of the stick-breaking repre-
sentation (see Section 3.4.2). For all models the posterior distribution of the error was
globally low, with the approximation error of the DP model well below 0.1 (Figure
4.5 shows the posterior of the last weight pN for some simulation scenarios). The PY
approximations was worse than the DP approximation, as expected. However, the
posterior mean was always below the maximum error ε that a priori we fixed to be
0.05 for GJAM3 and 0.1 for GJAM4.
Table 4.1 gives the behaviour of Nε when Ktrue and S varied and shows that by choos-
ing the hyperparameters as described in section 3.4.3 the truncation level Nε did not
grew too much compared to the original case where N = min{S,150}.

We were interested in checking for the posterior density of the hyperparameters
when we added a hierachical level to the model.
For GJAM1 and GJAM2 the concentration parameter α had the same prior distribution,
that was updated with a supplementary Metropolis–Hastings step for GJAM2, while
GJAM1 exploits conjugacy to easily update α in the Gibbs sampler (Sections 3.3.1
and 3.3.2). Since the prior distribution of α was such that the prior expected number
of clusters was equal to Ktrue, we do not expect the posterior to move away from the
prior. This not what happened in GJAM1 where the posterior distribution of α went
far away from its prior distribution setting to values between 25 and 45 instead of
2.5 (Figure 4.6). Instead in GJAM2 the posterior of α stayed really close to its prior
distribution as expected. (Figure 4.6).
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Figure 4.3 – Error between the true matrix Σ and the inferred posterior mean Σ̂ in
the normalized Frobenius norm with different values of S for different models. Here
n = 500, r = 5 and Ktrue = 10 and S varies.

Figure 4.4 – Error between the true matrix Σ and the inferred posterior mean Σ̂ in
the normalized Frobenius norm for different values of r and S (for small values of S),
and n = 500,Ktrue = 10
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Figure 4.5 – Posterior distribution of the last weight pN for different values of Ktrue
and S.

Model S K Neps
GJAM 3 100 10 26
GJAM 4 100 10 203
GJAM 3 300 20 38
GJAM 4 300 20 203
GJAM 4 500 50 98
GJAM 4 500 50 203

Table 4.1 – Truncation number Neps for models GJAM3 and GJAM4 for different
values of S and K .
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Figure 4.6 – Posterior distribution for α in models GJAM1 (left) and GJAM2 (right)
for case when Ktrue = 10, n = 500, S = 100, r = 5. The blue dashed line is the prior
mean (equal for both distributions) while the red dashed line is the posterior mean.

4.1.5 Discussion

The main goal of these simulations was to test the clustering properties of the original
GJAM version and to compare it to those of the models that we implemented. We
decided to simulate the data in a very simple way, by generating them from a multi-
variate normal with zero mean, and whose variance-covariance matrix is such that its
Cholesky decomposition contains repeated rows. This is a very simple case because
the data generating process has the same form of the model that we used to fit the data.
Since the original GJAM model always sets α = S, the prior expected number only
depends on S due to (3.26) (n in the formula is the number of realisations of the DP,
and is thus the number of species S). Moreover, due to the peaky shape of the prior
distribution of the number of clusters in a DP, we expected that when the true number
of clusters in our data generating process is far from the expected prior number of
clusters given by (3.26), the posterior would be far from the true value.

The unexpected result was that the original GJAM model can retrieve the true
number clusters, also when the prior was very far from it. For example, in Figure 4.2
we see that GJAM was always able to retrieve the true number of cluster Ktrue = 10
for S = 100,200,500, even if the expected prior number of clusters was, respectively,
E[KS,α ] = 69,138,346. Moreover, also the values of the variance-covariance matrix
where retrieved with the same precision of the other models.
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This unexpected ability of the original model contradicts our prior expectation based
on the results of De Blasi et al. (2015). However, we think that this can be due to the
easy structure of the data generating process, that leads to a very strong likelihood
that compensates the effect of the wrong prior. Since the number of data-points n is
different from the number of realizations of the DP (that is the number of species S),
we think that data can help the model in retrieving the good numbers of clusters. We
also noticed the chain of the unique number of clusters goes really fast to a value and
does not mix anymore (Figure 4.1). Therefore, we think that the differences between
the models might arise on more complex datasets.

However, when the number of species reached very high values, for example
S = 1000, the original GJAM encountered some difficulties in retrieving the true
number of clusters and the true values of Σ, since in this case the expected prior
number of clusters was very big (around 690) and far from Ktrue. Our models could
instead easily retrieve the true number of clusters. Since the dimension reduction
proposed in Taylor-Rodriguez et al. (2017) is particularly addressed to datasets were
the number of species is really high (it is common to have S > 1000 in microbiome
dasets, for example) our extensions can be considered as an improvement of GJAM
and this result encourages us for testing the models on more complex datasets.

These simulations also allowed to test and compare the different models that we
implemented. In Chapter 3 we discussed the a priori truncation error of the BNP
priors, and we were interested in observing its behaviour a posteriori. The posterior
distribution of this approximation error, given by the last weight pN , was globally
low, meaning that all the truncations discussed before were a fair approximation. In
particular, for the models based on PY process the bound on the error that we put
a priori is confirmed a posteriori, showing that our approximation method worked
correctly. Not only the bound on the error was respected a posteriori, but the truncation
level Nε remained at feasible levels and we could not see any substantial difference
concerning the computation times of the different models. Our approximation proved
to be a good tool, providing a new possible algorithm to sample from the posterior of
a PY process.

We were also interested in checking the behaviour of the posterior distribution of
the hyperparameters for the models where we added a hierachical layer. Concerning
GJAM2, based on the weak limit approximation where we sample α using a MH
step, we observed that the posterior distribution of α does not go far from the prior
distribution (whose mean is set to the value of α that gives a prior the true number of
clusters Ktrue), meaning that our MH step was well implemented, and that this model
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worked as expected. However, this was not the case for GJAM1, that uses the finite DP
truncation, where the posterior of α moved far away from the prior. For example in
the case where Ktrue,S = 100, the correct value of α that gives an expected number of
clusters equal to Ktrue was α ' 2.5, but the posterior moved far away with a posterior
mean around 35. Looking at the full conditional of α in GJAM1, given by (3.37), we
see that the only parameter that change along the iterations is the truncation error pN .
In particular in order to have small values in the posterior of α , we need to have very
small values of pN . In our case if we wanted be able to move to very small values of
α we need to have extremely low values of pN , that are not easily reachable. This
means that GJAM1 struggles when it has to fit data that require a very small value
of α . However, due to simplicity of the datasets, GJAM1 was still able to retrieve
the true number of clusters, since the posterior of α still set around more reasonable
values then the S that is taken by GJAM.
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4.2 Application to plants data in the Bauges Natural
Regional Park

4.2.1 The dataset

We applied our models to a dataset containing the presences and absences of over
1.500 species over 17,351 plots (i.e. plot is the common term for site in ecology)
in the Bauges Natural Regional Park (BNRP) available from the Alpine Botanical
Conservatory, CBNA, Figure 4.7. BNRP is a typical subalpine massif of 90,000ha
located in the northern French Alps, with an elevation ranging from 250m to 2,217m.
More than 70% of the BNRP is covered by forests up to 1,500 m, and the remaining
areas are covered by open pasture and cliffs. See Thuiller et al. (2018) for a thourough
description of the dataset.

Figure 4.7 – Spatial distribution of the vegetation plots used to select the dominant
species list and to model the habitat suitability of the plant functional groups.
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We considered only significant species, by selecting species whose presence counts
in vegetation plots were within the 95% quantile among all species, and species that
are characteristic of each habitat of the park and thus occur in at least 25% of the
vegetation plots within those habitats. The habitat classification and mapping were
extracted from the CBNA data at a 1:5 000 resolution. We ended up having 136
dominant species (to select the dominant species we followed the same procedure of
Thuiller et al., 2018).

We considered the same Plant Functional Groups (PFGs) that were built on the
same dataset in Thuiller et al. (2018). PFGs are groups of species that share the same
characteristics, in particular:

• their tolerance of abiotic conditions (e.g. temperature, precipitation...),

• their response to competition for light (whether they germinate and grow under
specific light conditions),

• their "physical" characteristics (e.g. heights, type of leaf...)

• their demographic characteristics (e.g. age of maturity, longevity...) .

Using this variables, the authors run a hierarchical clustering that gave 16 Plant
functional groups. See Thuiller et al. (2018) for a complete description of these PFGs
and the way they were built. We considered such a number, K̄ = 16, to be the a
priori number of groups of species that share the same behaviour with respect to other
species, and used this information to fix the models hyperparameters as described in
Chapter 3.

We extrapolated the climatic covariates for GJAM from the WorldClim daset
(https://www.worldclim.org/), a set of global climate layers with a spatial resolu-
tion of about 1km2. Such a dataset is composed of 19 bioclimatic variables (see
https://www.worldclim.org/bioclim for a description), that we found out to be highly
correlated in our region of interest. Because of this, we only considered the least
correlated variables (mean annual precipitation and slope), and their interaction and
quadratic terms as covariates for GJAM.

4.2.2 Models parametrization

Since the model with the Dirichlet Process prior and the almost sure truncation
(GJAM1) seemed to have some troubles with the truncation error pN and the posterior
of the concentration parameter α , we decided not to consider this model. We thus fitted
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GJAM,GJAM2,GJAM3 and GJAM4. We chose the hyperparameters of each model
as described in Sections 3.3.1, 3.4.3 and 3.4.4 respectively, with E[Kn] = K̄ = 16. In
particular this gave:

• GJAM2 ν1 = 1.12, ν2 = 0.23

• GJAM3 σ = 0.25,α = 2.13

• GJAM4 ρ = 0.2,ν1 = 0.08, ν2 = 0.09

The choice of the number of latent factors r was done by fitting the models for different
values of r, and choosing the value of r that gave the smallest DIC. We found r = 5 to
be the optimum number of latent factors, coherently with the other applications of
GJAM (Chapter 2) where the values of r were always quite small. We randomly split
the plots in training (70% of the plots) and test (30% of the plots) to test compare the
prediction abilities of the models.

All models were run for 10k iterations, 5k burnin, thinned to keep 1 every 10
samples, for a sample size of 1000.

4.2.3 Posterior inference and discussion

All the four models globally converged. In particular the mixing of the number of
clusters was way better then in Section 4.1 (Figure 4.8). This is probably due to the
simplicity of the previous simulated dataset, where the true unique number of values
was too obvious and identifiable for the model. Real data come of course with a lot of
noise and the structure of data is not so clear. However, the variance of the posterior
of our models was much smaller then the original model and the posterior mean was
close to the prior mean, meaning that the prior number of clusters is well specified
(Figure 4.8). Instead the original model, as we expected, was not able to converge to
the same value of the other models, due to the wrong specification of the concentration
parameter α . Here with 136 species and thus α = 136 the prior number of clusters
for the original model was 94: the posterior moved away from the prior, but was not
able to go further and reach the same value of the other models.

The fact that the number of PFGs is also the posterior mean of the unique number of
clusters in the variance covariance matrix is very interesting from an ecological point
of view. PFGs are defined as groups of species sharing the same characteristics, but
the implication that these species also share the same behaviour with respect to other
species is not straightforward. The fact that the posterior number of cluster is the same
as the number of PFGs is a hint in this sense. We did not have the time to analyze the
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cluster assignment, but if the partition of the rows of the variance-covariance matrix Σ

was the same of the PFGs, it would be a nice ecological discovery.
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Figure 4.8 – Traceplots of the posterior of the unique number of clusters for the four
models. The red line shows the prior mean K̄ = 16

We tested the ability of the models in prediction by computing for each species the
AUC (Area Under the Curve of the Receiver Operating Characteristic) and the Tjur
R2. Tjur coefficient (Tjur, 2009) compares the estimated probabilities of presence
for observed presences and observed absences. Using the notations from the (Taylor-
Rodriguez et al., 2017) T R = (π̂1− π̂0) ,where π̂1 and π̂0 are average probabilities
of presence for observed ones and zeros respectively. This coefficient measures the
models ability to discriminate between presences and absences. We then computed
the average AUC and Tjur R2 across all species. Both indices showed that our models
are not worse than the original one (Table 4.2). These values are globally very small,
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but this is due to the complexity of modelling more then one hundred species over a
very large area such as the BNRP. Also the distribution of the AUCs was really similar
across the models, even if the GJAM3 and GJAM4 had less species with a very low
AUC (Figure 4.9).

Figure 4.9 – Accuracy of JSDM predictions represented as the species AUC. Each
boxplot shows the values of the AUC of all species for a given model.

Model Mean AUC Mean Tjur R2

GJAM 0.595 0.035
GJAM 2 0.596 0.036
GJAM 3 0.601 0.036
GJAM 4 0.599 0.036

Table 4.2 – Accuracy of JSDM predictions averaged across communities, represented
by average AUC and average Tjur R2. Both indices are averaged across species.

The posterior of the concentration parameter in GJAM2 did not move from the prior
distribution, consistently with the fact the number of values (Figure 4.10). Choosing
such a prior distribution for α was the right way to allow the number of clusters to
be the good one. Instead the posterior of α for GJAM2 shifted to the right of the
prior, while the posterior of σ moved to the left of the prior. Nonetheless, if we
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replace the posterior mean of α and σ in the formula to compute the expected number
of clusters in a PY process, we still get K̄ = 16. The model prefers to settle on a
different combination of such parameters, but without changing the expected number
of clusters, coherently with Figure 4.8. As for the simulation case, the spike of the
prior distribution of σ did not affect the posterior distribution, and σ = 0 was never
visited by the chain, confirming that the PY process is better than DP for this problem.
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Figure 4.10 – Posterior distribution of the concentration parameter α in GJAM2 The
blue dashed line is the prior mean while the red dashed line is the posterior mean.
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Figure 4.11 – Posterior distribution of α (left) and σ (right) in GJAM4. The blue
dashed line is the prior mean while the red dashed line is the posterior mean.
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Chapter 5

Conclusions

Understanding species distribution is one of the main goals of ecological research.
Among the other possible methods, JSDMs allow to simultaneously estimate the
species-environment relationship and the residual correlation between those species.
In the recent literature there have been a few comparison studies that showed the
similarities in the estimation of environmental coefficients between JSDM and SDM,
as well as between different JSDMs.
Pollock et al. (2019) applied one family of JSDMs to a simple process-based simula-
tion data, to understand whether JSDMs could detect species interactions, showing
that JSDMs were better in retrieving the negative interactions. To better understand
JSDMs, we have extended their work to two other state-of-the-art models (HMSC,
GJAM). We have confirmed the previous findings and gave a better interpretation of
the inference, showing that, in many cases, JSDMs can not disentangle the effect of
the environment from the effect of species interactions, and thus the inference from
these models should be interpreted with caution.

Due to estimation of residual covariance matrix, the number parameters grows as
O(S2) and these models suffer from the curse of dimensionality. We have studied a
particular dimension reduction approach used in GJAM, and we have proposed few
extensions Bayesian nonparametric extensions, that allow the underlying clustering
process to be more flexible and to take into account prior knowledge on the number
of clusters. We have implemented four different BNP models and tested them on
simulated data. On our very simple simulated dataset, the original GJAM could work
very well, and was outperformed by our models only for scenarios with a high number
of species, where the prior number of clusters for the original model was far away
from the true one. We also tested our model on a real dataset (plants in the Bauges
Regional park), using Plant Functional Groups (PFG) to fix the a priori number of
clusters. Even if there was no improvement with respect to the original model in
terms of prediction, the lack of robustness of the posterior of the number of cluster is
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what shows the importance of carefully choose the prior, and suggests that the PFG
partition could reflect the way species interact among them.

This is an ongoing work that I will continue during my Phd. Concerning the first
part of the work, I would like to test how JSDMs behave on the simulated datasets with
abundances, without clumping the simulated communities to presence-absences that
can lead to a loss of information. Regarding the second part, I would like to analyze
more carefully the real data application, that I did not have the time to deepen. I would
also like to check the posterior of the clusters assignments, to check if the clusters
of the variance covariance matrix match the PFGs, which would be an interesting
ecological statement. I would also like to introduce the polynomial PY instead of the
truncated PY that we implemented.
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Appendix A

Appendix

The supplementary material.

• A.1 section corresponds to part 1: comparisons of JSDM models.

• A.2 section corresponds to part 2: GJAM using Bayesian nonparametric priors.

A.1 Comparison of JSDM models

A.1.1 Partial correlation

In the chapter 3 we used the plots illustrating the similarity between the correlation
matrix and matrix of true interactions, used as input for the simulation. In this section
we provide similar plot, where the similarity was considered between the partial
correlation matrix and true interaction matrix.
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Figure A.1 – Success rate calculated on the partial correlation matrix of JSDMs for
interacting (competitors or facilitators, in green) and non-interacting species (in red)
in communities simulated with all possible interactions scenarios for the four different
models. Bars represent the following groups: all species pairs, species pools (5, 10,
or 20 species) and the density of interactions.
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index (top row) and of the partial correlation matrix for each model (the other rows).
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A.2 GJAM using Bayesian nonparametric priors

A.2.1 Asymptotic behaviour of the kth moment for σ → 1

Firstly, consider the case where σ → 1

Using the following expression for the Gamma function we obtain:

Γ(x) =

√
2π

x

(x
e

)x
(

1+
1

12x
+o
(

1
x

))
. (A.1)

Using (A.1) for (3.54):

Γ((θ/σ + k/(1−σ)))

Γ((θ + kσ/(1−σ))
=

√
2π
√

σ(1−σ)(θ(1−σ)+ kσ)θ/σ+k/(1−σ)
√

θ(1−σ)+ kσ√
θ(1−σ)+ kσ(σ(1−σ)e)θ/σ+k/(1−σ)

√
2π
√

1−σ
×

× (e(1−σ))θ+kσ/(1−σ)12(θ(1−σ)+ kσ)+σ(1−σ))+o((1−σ))

(θ(1−σ)+ kσ)θ+kσ/(1−σ)(12(θ(1−σ)+ kσ)+(1−σ)+o(1−σ))

Simplifying this we get

Γ((α/σ + k/(1−σ)))

Γ((α + kσ/(1−σ))
= σ

1/2−α/σ−k/(1−σ) · eα−α/σ−k ·
(

α +
kσ

(1−σ)

)α/σ−α+k

· (1+o(1−σ))

Substituting this in (3.54):

Mk
ε,σ ,α = ε

−kσ

(1−σ) σ
1/2−α/σ−keα−α/σ−k Γ(α)

Γ(α/σ)

(
α +

kσ

(1−σ)

)α/σ−α+k

· (1+o(1−σ)) =

= ε
−kσ

(1−σ) e−k
(

α +
kσ

(1−σ)

)k

· ck

where ck = σ1/2−α/σ−k · Γ(α)
Γ(α/σ)

(
α + kσ

(1−σ)

)α/σ−α

· (1+o(1−σ)) and ck → 1 as
σ → 1.

In particular:
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lim
σ→1

(
α +

kσ

(1−σ)

)α/σ−α

= lim
σ→1

exp
(
(α/σ −α) ln

(
α +

kσ

(1−σ)

))
=

= lim
σ→1

exp

 ln
(

α + kσ

(1−σ)

)
1/(α/σ −α)

= exp lim
σ→1

 ln
(

α + kσ

(1−σ)

)
1/(α/σ −α)

= exp(0) = 1

Hence,we get

Mk
ε,σ ,α ≈ ε

−kσ

(1−σ)

(
α +

kσ

(1−σ)

)k

≈ e
−k lnεσ

(1−σ)

(
k

1−σ

)k

with σ → 1. (A.2)

where for 0≤ ε ≤ 1, − lnε > 0

A.2.2 Asymptotic behaviour of the kth moment for α → ∞

Now we consider the case where α → ∞.
Similarly to previous case substituting (A.1) in (3.54) in case where α → ∞:

Γ(α)

Γ(α/σ)
= α

α−α/σ eα/σ−α
σ

α/σ−1/2
(

1+
1−σ

12α
+o
(

1
α

))
And

Γ((α/σ + k/(1−σ)))

Γ((α + kσ/(1−σ))
= σ

1/2−α/σ− k
(1−σ

(
α +

kσ

(1−σ)

)α/σ+k−α

eα−α/σ−k×

×
(

1− (σ −1)2

12(α(1−σ)+ kσ)
+o
(

1
α

))
Using both above equations and substituting in (3.54)

Mk
ε,σ ,α(ε/σ)−kσ/(1−σ)e−k

σ
−k/(1−σ)

(
α +

kσ

(1−σ)

)α/σ−α+k

α
α−α/σ

(
1+o

(
1
α

))
=

= ε
−kσ/(1−σ)

σ
−k
(

α +
kσ

(1−σ)

)k

ck

where ck =
(

1+ kσ

α(1−σ)

)α/σ−α

e−k (1+o
( 1

α

))
and ck→ 1 as α → ∞.

Hence,we get

Mk
ε,σ ,α ≈

(
α +

kσ

(1−σ)

)k

≈ α
k with α → ∞. (A.3)

89



A.2.3 Asymptotic behaviour for the kth moment as k→ ∞

Asymptotic behaviour for the kth moment as k→ ∞

Using the equation (3.54) and applying (A.1) formula for the part that depends on k

we have:

Γ(α/σ + k/(1−σ))

Γ(α + kσ/(1−σ))
= σ

1
2+α/σ+k/(1−σ)

(
αe−1 +

kσ

e(1−σ)

)α/σ+k−α(
1+o

(
1
k

))
Hence, for Mk

ε,σ ,α we have

Mk
ε,σ ,α ≈ K1σ

k
ε

kσ/(1−σ)e−k
(

αe−1 +
kσ

e(1−σ)

)α/σ+k−α(
1+o

(
1
k

))
=

= K1(c1)
k (c2 + k)α/σ+k−α

(
1+o

(
1
k

))
≈ Kckkk+θ

where K,c,θ are constants that doesn’t depend on k.

We also know that x1/x→ 1 as x→ ∞, because x1/x = eln(x)/x and we know that
ln(x)/x→ 0 as x→ ∞, hence:

(E[|X |k])
1
k = (Mk

ε,σ ,α)
1
k ≈ k
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A.2.4 First moment of truncation number
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Figure A.3 – First moment for τ(ε) for values α ∈ [0.1, 0.6],α ∈ [1,10] and ε = 0.1

A.2.5 Skewness and kurtosis
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Figure A.4 – Skewness parameter for values α ∈ [0.1, 0.6],θ ∈ [1,10] and ε = 0.1
(rigth) and kurtosis for the same values (left).
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A.2.6 Expected number of clusters for DP and PY
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Figure A.5 – Expected number of clusters for DP process and values of α ∈ [1, 100],
and different number of points n ∈ [20,150] (left) and Expected number of clusters
for PY process for values of α ∈ [1, 10] and σ ∈ [0.1,0.5] (right).

A.2.7 Expected number of clusters for DP
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Figure A.6 – Expected number of clusters for DP process as function of α for fixed
N = 104 (left) and function of N for α = 20
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A.2.8 Relations between α and σ for particular expectation on
prior number of clusters
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Figure A.7 – A priori expected number of unique values from a sample of size n = 104

(left) and as a function of n for α = 20 (right). Once we have the sample size, we can
then decide a suitable combination of α and σ that guarantees the needed E[Kn,α,σ ].
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A.2.9 Posterior number of groups for K = 4
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Figure A.8 – Posterior mean of number of clusters (left) and RMSE error between
estimated and true covariance matrix for all models (right) for a number of species
S ∈ {100,300,500,1000},n = 500 and Ktrue = 4.

S GJAM GJAM 1 GJAM 2 GJAM 3 GJAM4
1 100 0.005 0.008 <0.001 0.071 0.096
2 200 0.015 0.006 0.012 0.049 0.062
3 500 0.003 0.046 <0.001 0.045 0.086
4 1000 0.003 0.004 <0.001 0.061 0.058

Table A.1 – Posterior mean for the last weight pN averaged across all the simulations
for the same set of parameters as in A.8, and for the different models.
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