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Abstract

Fluid flows for which the continuum Navier-Stokes formulation becomes inade-
quate due to a high Knudsen number can be found in the study of rarefied gas flows,
computational materials science or microfluidics. The Enskog-Vlasov kinetic equa-
tion is employed in order to reproduce multi-phase flows and capillarity effects in
microfluidics, as it is capable of describing multi-species dense gas flows undergoing
phase transitions. Direct Simulation Monte Carlo Method is employed to perform
numerical simulations. The central idea behind DSMC lies in the integro-differential
structure of the equations of kinetic theory of gas: the streaming of an ensemble of
particles representing a probability density function is propagated deterministically,
while collisions between particles are performed stochastically. Particles schemes are
generally easy to parallelize; however, the version of DSMC for EV equation poses
issues due to the non-local nature of the mean-field interactions and the collisions
between particles. A C++ code with MPI parallelization for distributed memory
architectures is developed.

Keywords: Enskog-Vlasov equation, DSMC, MPI

Sommario

Problemi di fluidodinamica per i quali la formulazione continua delle equazio-
ni di Navier-Stokes diviene inadeguata, a causa di un elevato numero di Knudsen,
possono essere riscontrati nello studio di flussi di gas rarefatti, della scienza dei ma-
teriali o della microfluidica. L’equazione cinetica di Enskog-Vlasov viene impiegata
per studiare flussi multifase ed effetti di capillarità nella microfluidica, in quanto
in grado di descrivere flussi di gas densi multi-specie in coesistenza o transizione
di fase. Il metodo Direct Simulation Monte Carlo viene utilizzato per eseguire si-
mulazioni numeriche; l’idea principale alla base del DSMC risiede nella struttura
integro-differenziale delle equazioni della teoria cinetica del gas: un ensemble di
particelle, che rappresenta una funzione di densità di probabilità, viene propagato
deterministicamente, mentre le collisioni tra particelle vengono eseguite in maniera
stocastica. I metodi computazionali a particelle sono generalmente facili da pa-
rallelizzare; tuttavia, la versione di DSMC per l’equazione di Enskog Vlasov pone
alcuni problemi a causa della natura non locale delle interazioni di campo medio e
delle collisioni tra particelle. Viene pertanto sviluppato un codice C++ ad hoc, con
routines di parallelizzazione MPI per architetture a memoria distribuita.

Parole chiave: Equazione di Enskog-Vlasov, DSMC, MPI
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Chapter 1

Motivation

The vast majority of numerical methods seek to provide solutions of the mathematical
equations that describe the physical processes of interest, rather than provide a direct
physical simulation of these processes. However, some cases represent an exception to the
preceding observation either because the underlying mathematical model presents over-
whelming difficulties to conventional computational methods or because the very structure
of the process of interest readily lends itself to direct physical simulations [10]. One of such
cases is represented by fluid flows for which the continuum Navier-Stokes formulation be-
comes inadequate due to a high Knudsen number. Notable examples can be encountered
in the study of rarefied gas flows, computational materials science or microfluidics. Var-
ious particle methods find their natural collocation in these situations, according to the
time and space scale of the phenomena of interest; Lattice-Boltzmann methods, Molecular
Dynamics and Monte Carlo methods are notable examples: each one of these approaches
is tailored to work on a particular space-time scale, being it nanoscopic, microscopic or
mesoscopic. The present work will focus on yet another method, that is Direct Simulation
Monte Carlo.

The Direct Simulation Monte Carlo method (DSMC) was introduced in the 1960s
by Bird [11] to compute re-entry flow fields between the free-molecular and continuum
regimes, for which results could not be obtained from more traditional approaches based
on solving partial differential equations. Since then the fundamental physics-based nature
of the DSMC algorithm in conjunction with ever-increasing computational power has al-
lowed DSMC to tackle complicated non-equilibrium problems outside its original regime
of applicability, even in the near-continuum regime. The essential idea behind this tech-
nique lies behind the integro-differential structure of the mathematics of kinetic theory
of gas, exemplified by the Boltzmann equation: an ensemble of particles representing a
probability density function is first propagated through time and space, according to a
differential streaming operator; consequently, collisions between particles are simulated in
a Monte Carlo fashion, so that the collision integral is computed stochastically.

Micro-electromechanical systems have found an increased application in a variety of
industrial and medical fields; in many of these MEMS applications, the operation and
performance of the microdevice depend directly or indirectly on gas dynamics [15]: rar-
efied flow phenomena can form the basis of important systems in the micromechanical
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domain [3]. As an example, the formation of liquid menisci may lead to spontaneous
adhesion between mechanical parts which should maintain the capability of relative mo-
tion [17]. A proper treatment of multiphase flows and capillarity is needed in order to
resolve and simulate these phenomena: this is commonly investigated on the basis of con-
tinuum theories; however, the validity of the macroscopic approach is not obvious when
applied to physical processes at the typical scale of the Knudsen layers developing in
these microdevices. DSMC has the advantage of being in principle able to automatically
capture the micro/nanoscale features of flows in microchannels; this advantage is coun-
terbalanced by a lower computational efficiency per volume with respect to continuous
approaches. The original DSMC method was devised for rarefied flows, which can be
effectively modelled by the Boltzmann kinetic equation; however, dense gas flows demand
a modification of the aforementioned equation, especially regarding the collision integral.

The Enskog-Vlasov equation is a kinetic model capable of describing dense gas flows
undergoing phase transitions and with liquid-vapor and fluid-walls interactions. It essen-
tially consists in a modification of the Boltzmann equation, in which particle interactions
are modelled by a self-consistent force field, at long distances, and by a non-local col-
lision integral, at short distances. Enskog-Vlasov equation poses challenging questions
regarding both modelling and analysis; some of these problems (such as the derivation of
a H-theorem, the expression of the short-range correlation functions and the formulation
of criteria for phase transition) have been successfully tackled in the past years, but in
general the discussion regarding well-posedness remains far from being complete, from
a mathematical perspective; however, it is possible to obtain significant insights which
prove to be useful in the following numerical procedure. In this work a possible DSMC
scheme consistent with Enskog-Vlasov equation will be illustrated.

In the past years numerous DSMC codes for rarefied gas flow have been developed both
for industrial and research purposes (SPARTA, MONACO, DS2V); the fundamental com-
ponents such a code needs to incorporate have been therefore thoroughly established. The
case of dense gas flows does not represent an exception, but and augmentation. The main
goal of this thesis work is to design a code implementing DSMC for the Enskog-Vlasov
model; the language adopted for this purpose is C++, as it offers good encapsulation
and modularity features, retaining a satisfactory computational efficiency. The code will
be based on and inspired by an already existing Fortran code for dense fluids DSMC
simulations.

DSMC is inherently computationally intensive, being a direct method. Parallelization
can be envisioned as an effective way to speed-up simulations, especially since it usually
results easy to implement for particle methods. Parallelization of the standard DSMC
method is fairly straightforward: domain decomposition is employed to subdivide particles
between processes, and collisions are performed locally in each sub-domain; communica-
tion occurs only when transferring particles from a process to another. In case of dense
gas the computation of the self-consistent force field as well as the non-local nature of
collisions poses a challenging obstacle, especially when considering distributed memory
architectures. One of the primary aspects of our DSMC code will be the implementation
of MPI routines to overcome the non-locality issue.
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Figure 1.1: Validity regimes of a gas or fluid simulation method as a function of density relative to air
and length scale [16]; the case of interest for this work situates in the bottom-right corner.

Figure 1.2: Various approaches to computational fluid dynamics together with their preferred range of
applicability [16]; all these methods have their respective strengths at different Knudsen numbers.
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1.1 Validity of continuous and kinetic models

Rarefied gas dynamics can be defined as the study of gas flows in which the average
value of the distance between two subsequent collisions of a molecule is not negligible in
comparison with a length typical of the structure of the flow being considered [3]. The
degree of rarefaction of a gas flow is normally expressed through the Knudsen number :

Kn =
λ

L
, (1.1)

being λ the particles’ average free path and L a typical dimension of the flow field. In-
homogeneous configurations are characterized by different values for the local Knudsen
number; for example, it will be higher for the vapour phase with respect to the liquid
one (due to a larger mean free path), and yet it will be different at interfaces (as the
characteristic lengths would be on the same order of magnitude of the layer thickness).
Definition (1.1) may be misleading, since both λ and L are not some overall dimensions
of the flow [1]. The Knudsen number has therefore to be always intended as local ; a
possible, more precise, definition would define L as the scale length of the macroscopic
gradients [50]:

Kn(r) =

[
λ
||∇Q||
Q

]
(r) , (1.2)

being Q a physically relevant differentiable and positive scalar quantity, such as density,
temperature or kinetic energy.

The Navier-Stokes model for continuum flows may be assumed as valid when Kn� 1
and the limit for whichKn→ 0 may be identified with the inviscid limit expressed through
the Euler equations; the opposite limit, as Kn → ∞, corresponds to the collisionless or
free molecule flow in which intermolecular collisions may be neglected. The flow regime
between free molecule flow and the limits of validity of of the Navier-Stokes equations is
generally referred to as the transition flow regime; a Knudsen number about Kn ' 0.1 has
traditionally been quoted as the boundary between continuum NS and transitional regime.
For 0.01 < Kn ≤ 0.1 continuous hypothesis holds, but a free molecular flow is observed
at the solid walls boundary, entailing the need for slip boundary conditions [10] [15].

The mean free path is dependent on density and one of its possible definition is, in
case of only one specie [4]:

λ =
1

π
√

2nσ2χ
, (1.3)

Knudsen number Regime Model

Kn ≤ 0.01 Continuous flow Navier-Stokes equations
0.01 < Kn ≤ 0.1 Slip flow Navier-Stokes + slip b.c.
0.1 < Kn ≤ 10 Transition regime Kinetic equations (Boltzmann, Enskog)

Kn > 10 Free molecular flow Collisionless Boltzmann equation

Table 1.1: Summary of the validity ranges of continuous and kinetic formulations.
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being n the flow number density, σ the particles’ diameter and χ a correlation function
(being χ = 1 identically for an ideal gas). In order to clarify the relation between the
Knudsen number and viscosity let us recall the phenomenological expressions dynamic
viscosity, in case of a uniform gas of hard spheres [2]:

µ = νρ =
1

2
ρ 〈v〉λ =

√
2kbT

πm
ρλ , (1.4)

being ρ the fluid density and 〈v〉 the average peculiar velocity (assumed computed from
the Maxwell-Boltzmann distribution); therefore, the Knudsen number reads:

Kn =
λ

L
=

√
πm

2kbT

µ

ρL
=

√
πm

2kbT

ν

L
. (1.5)

It is then possible to relate the Knudsen number with the Reynolds Number and the
Mach number :

Ma

Re
=

U∞/c

ρLU∞/µ
=

√
m

γkbT

µ

ρL
; Kn =

√
γπ

2

Ma

Re
, (1.6)

being U∞ the free-stream speed, c the speed of sound and γ = Cp/CV the ration of
specific heats. In most microfluidics applications the flow regime is stated to be high-
Knudsen/low-Mach, especially as the device dimensions shrink.

1.2 Structure of the thesis report

The goal of this thesis work is to study the features of the physical model (Enskog-Vlasov
equation) and the computational method (DSMC), being thus able to develop a code
capable to produce parallel simulations for two-phases microflows.

A top-down approach will be employed: in chapter 2 the mathematical model will be
discussed, underlying its peculiarities and its characteristics of interests for the continu-
ation; in chapter 3 the DSMC methods will be presented, focusing on its modifications
with respect to the standard method in the context of dense gas flows; in chapter 4 the
main structure of the code will be reported, as well as the parallel computing procedures;
results concerning consistency and parallel speed-up will be presented in chapter 5, while
chapter 6 will contain the conclusions, as well as hints for further developments.
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Chapter 2

Mathematical model

The goal of this work is to propose a computational model which can simulate the flow
of a dense gas interacting with solid walls and in which phase transitions may incur; it is
therefore paramount to be consistent with a mathematical model capable of tackling all
these aspects.

In order to be able to treat dense gases, the kinetic theory developed by David Enskog
(1922) is considered: it consists in a modification of the classical theory of rarefied gas
devised by Ludwig Boltzmann. The use of the Boltzmann equation must be indeed
restricted to sufficiently diluted gas flows (i.e. in which molecular dimensions are small in
comparison with the mean distance between particles), so that only binary collisions may
be taken into account and molecular chaos may be assumed (Stosszahlansatz ). Enskog’s
extension is a rigid sphere model with instantaneous collisions; the collisional operator is
modified in order to account for correlations and non-local collisions (that arises from the
particle diameter being no longer small compared to the average intermolecular distance)
[2].

It is equally important to treat long-range interactions between particles, as they are
related to the appearance of phase transition. These interactions are modelled through
a soft-tail non-directional pair potential, which physically correspond to van der Waals
forces in monoatomic non-ionic gasses. The self-consistent force field (also referred as
mean field) arising from pair interactions is determined by a linear functional of the
fluid number density. In case no collision between particles occurs the mean field model
leads to an equation formally equivalent to what is referred as Vlasov equation in plasma
physics [37].

The resulting equation, which combines both the collisional and the mean-field con-
tributions, is referred as Enskog-Vlasov equation and provides a simplified description
of the microscopic behaviour of the fluid but it has the capability of handling both the
liquid and vapour phase, thus eliminating the necessity of postulating ad hoc models for
boundary conditions at the vapour-liquid and solid-liquid interfaces [17], [19].
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2.1 The form of EV equation

Let us consider a set of coordinates in a 6-dimensional phase space, parametrized by time
(r,v|t) ∈ Ω × R3, t ∈ [0, tmax]; the density function f at time t is defined in such a way
that its integral over a volume V in the phase space is equal to the number of particles N
having positions and velocities in V :∫

V

f(r,v|t)drdv = N ∀t ; (2.1)

the fluid number density is therefore defined as:

n(r|t) =

∫
R3

f(r,v|t)dv . (2.2)

The Enskog-Vlasov equation (that from now on will be referred as ‘EV’) may be written
in a form that emphasizes a structure similar to the one of Boltzmann equation:

∂f

∂t
+ v · ∇rf +

F

m
· ∇vf = C(f, f) , (2.3)

being F the mean field, C(·, ·) the collisional operator and m the particles’ mass; alter-
natively, the formulation proposed by Grmela [31] may be used instead:

∂f

∂t
+ v · ∇rf = REf +RV f = Rf , (2.4)

so that RE and RV are now respectively the non-linear Enskog and the Vlasov operators
acting on f .

EV equation may be intuitively derived just by superimposing the dense gas collisional
operator with the mean-field one; the structure of these operators will be discussed in the
following sections. However, it is possible to derive this equation rigorously from BBGKY-
hierarchy by introducing a proper Hamiltonian and using entropy maximization as closure
principle [2], [29]; a brief overview of this method is displayed in the appendix.

2.2 Self-consistent force field

In this section the form of the self-consistent force field is discussed; the collision operator
will be neglected for the moment. As previously stated, the Vlasov term models the
van der Waals forces, similarly to the way electromagnetic forces are modelled in plasma
physics. Let the particles exert on each other an attractive force with an isotropic pair
potential φ, and be F (r|t) the force field generated collectively by all the molecules and
evaluated at a point r, at time t. The potential φ appears in the modelling of long-
range interactions, while short-range interactions are instead modelled by the collision
integral, as it will explained in the next section; this formally corresponds to the choice
of a Sutherland potential of the kind:

φ(ρ) =

{
+∞ ρ < σ

ψ(ρ) ρ ≥ σ
, (2.5)
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being ρ the inter-particles distance, σ the diameter of the particles (which determines the
hard-sphere part of the interaction) and ψ a function modelling the soft-tail part.

0 0.5 1 1.5 2 2.5 3
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-0.8

-0.6

-0.4

-0.2
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0.4

0.6

0.8

1

Figure 2.1: Example of Sutherland potential; in this case: ψ(ρ) = −ε(σ/ρ)γ , being ε = σ = 1 and γ = 6
(non-dimensional quantities).

The Vlasov operator takes the following form [17]:

RV f =
1

m
∇v ·

∫
R

∫
ρ>σ

f2(r,v, r1,v1)∇φ(r − r1)dv1dr1 , (2.6)

where ρ = ||r1− r|| and the domain of integration is given by the form of the Sutherland
potential. f2 is the pair density function corresponding to a couple of particles respectively
with position and velocity (r,v) and (r1,v1). In order to express the mean field in terms
of the one-particle density function it is assumed that the two-particles distribution can
be factorized as:

f2

(
r,v, r1,v1|t

)
= µ

(
r, r1|t

)
f
(
r,v|t

)
f
(
r1,v1|t

)
, (2.7)

function µ corresponding to the long-range 2-particles correlation. By inserting the fac-
torization of the pair density into the expression for the Vlasov operator, the following is
obtained:

RV f =
1

m

{∫
R

∫
ρ>σ

∇φ(r − r1)µ
(
r, r1|t

)
f(r1,v1|t)dv1dr1

}
· ∇vf(r,v|t) , (2.8)

so that the force field is given by comparing equations (2.3) and (2.4):

F =

∫
R

∫
ρ>σ

∇φ(r1 − r)µ
(
r, r1|t

)
f(r1,v1|t)dv1dr1 . (2.9)

9



In conclusion, the final expression of the self-consistent force field is obtained by perform-
ing the integration over v1:

F
(
r|t
)

=

∫
ρ>σ

∇φ
(
r1 − r

)
µ
(
r, r1|t

)
n(r1|t)dr1 =

∫
ρ>σ

dφ

dρ

r1 − r

||r1 − r||
µ
(
r, r1|t

)
n(r1|t)dr1 .

(2.10)
The correlation function may be taken constant (basically µ = 1, as a constant term may
be absorbed into the potential): other than being a common choice performed by various
authors (since spatial correlations are expected to decay rapidly, it is not unreasonable to
ignore them completely [64]), it is also justified by that fact that setting µ = const is a
sufficient condition to ensure total energy conservation, as stated by Benilov [37]. With
this assumption, expression (2.10) becomes:

F
(
r|t
)

=

∫
ρ>σ

dφ

dρ

r1 − r

||r1 − r||
n(r1|t)dr1 . (2.11)

The expression for the mean field can also be derived using an empirical approach
[65]; let us consider the ensemble of particles described in section 2.1 being subject to
Newtonian dynamics: ṙi = vi

v̇i =
F i

m

, i = 1, ..., N , (2.12)

being F i the force exerted on the i−th particle, resulting from the interactions F ij with
all other particles:

F i =
∑
i,j

F ij =
∑
i,j

∇φ(ri − rj) . (2.13)

The following simplification is performed: the phase space is partitioned in subsets Vj,
each centred at rj; a empirical density may be approximated as a piecewise-constant
function on each patch:

fj

∣∣∣
(r,v)∈Vj

=
Nj

Vj
,
(
Nj = #particles in the j-th patch

)
. (2.14)

An approximation for the mean field at position r can be therefore computed as:

F (r|t) =
∑
j

Nj∇φ(rj − r) =
∑
j

Vjfj∇φ(rj − r) ; (2.15)

F (r|t) |Vj |→0→
∫∫

f(r,v|t)∇φ(r − r1)dvdr1 . (2.16)

(2.10) and (2.18) are hence obtained by integrating over the velocities and considering
the shape of the Sutherland potential.

As a final remark, it may be interesting to note that equation (2.10) exhibit a convo-
lutional structure; in fact, by defining:

K̃(r1 − r) =
dφ

dρ

r1 − r

||r1 − r||
1ρ>σ , (2.17)
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it is possible to rewrite the force field as:

F (r|t) =
[
K̃ ? n

]
(r|t) , (2.18)

‘?’ representing the convolution in the spacial coordinate.

2.3 Enskog collisional operator

In this section the structure of the collisional operator will be discussed; staring from a
suitable expression of the Boltzmann operator, modifications for a dense-gas case will be
presented.

In the derivation of the Boltzmann collisional operator (see [2], chapter 3, section 1) it
is found that for a gas at normal pressure the average number of collisions per unit time
at time t such that the centre of the first particle lies in in the volume element dr, the
velocities before the collision lie respectively in dv and dv1 and the geometrical collision
variables lie in db and dε around b (impact parameter, i.e. the relative distance between
the two centres when particles are infinitely far away) and ε (scattering angle) is equal to:

f
(
r,v|t

)
f
(
r,v1|t

)
vrbdbdεdvdv1dr , (2.19)

being vr the magnitude of the relative velocity vr = v1 − v. Before stating the Enskog’s

Figure 2.2: Geometry of a binary encounter; particle 1 is at rest with its centre in the origin. In addition to
all the parameters in (2.19) the angle θ0 between the pre and post-collisional relative velocity is reported.

modification to the previous formula, let us introduce the unit vector joining the centres
of the two particles k̂ (going from particle 2 to particle 1, as shown in fig. 2.3) and the
angle ψ between k̂ and vr; then, recalling that the impact parameter remains constant
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during the collision for a fixed ψ in the case of hard spheres, the following is obtained:

b = σ sinψ =⇒ d2k̂ = sinψdψdε =
bdbdε

σ2 cosψ
, (2.20)

being σ the particle’s diameter (that in case of the rigid spheres model with only one

Figure 2.3: Geometry of a collision of two rigid spheres.

specie corresponds to the distance between particles’ centres); since cosψ = k̂ · vr, we
obtain that the infinitesimal solid angle vrbdbdε is equal to σ2(k̂ · vr)d2k̂; it follows that
(2.19) is equal to:

f
(
r,v|t

)
f
(
r,v1|t

)
σ2
(
k̂ · vr

)
d2k̂dvdv1dr . (2.21)

The above expression requires corrections when the gas is dense. First of all the centres
of the colliding particles are not in the same point, because of their finite size; if at the
instant of the collision the centre of the first particle is at r, that of the second it at
r − σk̂, so that we obtain:

f
(
r,v|t

)
f
(
r − σk̂,v1|t

)
σ2
(
k̂ · vr

)
d2k̂dvdv1dr . (2.22)

Furthermore, in a dense gas the volume per particle becomes comparable with the volume
of a particle, that is:

1

n
∼ 4

3
π
(σ

2

)3

, (2.23)

being n the characteristic number density of the gas; hence, the particles’ free volume
is reduced, and the probability of a collision increases. Enskog’s theory account for this
effect by multiplying (2.22) by a function of the number density χ (referred as short-range
pair correlation function), evaluated at the contact point r − σk̂/2 [2]:

χ
[
n
(
r − σk̂/2

)]
f
(
r,v|t

)
f
(
r − σk̂,v1|t

)
σ2
(
k̂ · vr

)
d2k̂dvdv1dr . (2.24)
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Corresponding to any direct collision specified by v, v1 and k̂ there exists an analogous
inverse collision having v′ and v′1 as post-collisional velocities and −k̂ is the direction of
the apse-line; in such a collision the centre of the second molecule is at r + σk̂, while the
point of contact is at r + σk̂/2, so that (2.22) reads:

χ
[
n
(
r + σk̂/2

)]
f
(
r,v′|t

)
f
(
r + σk̂,v′1|t

)
σ2
(
− k̂ · v′r

)
d2k̂dvdv1dr ; (2.25)

Liouville’s law for elastic collisions entails that −k̂·v′r = k̂·vr, so that the above expression
can be written as:

χ
[
n
(
r + σk̂/2

)]
f
(
r,v′|t

)
f
(
r + σk̂,v′1|t

)
σ2
(
k̂ · vr

)
d2k̂dvdv1dr . (2.26)

The Enskog collision operator has, therefore, the following expression:

C(f, f) = σ2

∫
R3

∫
S+

{
χ
[
n
(
r + σk̂/2

)]
f
(
r,v′|t

)
f
(
r + σk̂,v′1|t

)
+

− χ
[
n
(
r − σk̂/2

)]
f
(
r,v|t

)
f
(
r − σk̂,v1|t

)}(
vr · k̂

)+
dv1d

2k̂ ; (2.27)

the unit vector k̂ lies on the portion of the unit sphere S+ where the condition vr · k̂ > 0
holds. The relation between pre- and post-collisional velocities is:{

v′ = v + k̂
(
vr · k̂

)
v′1 = v1 − k̂

(
vr · k̂

) . (2.28)

2.4 Correlation function

In this section the form of the short-range correlation function will be briefly discussed.
Let us first state its general definition:

χ
(
r1, r2|t

)
=

f2

(
r1, r2,v1,v2|t

)
f
(
r1,v1|t

)
f
(
r2,v2|t

) , (2.29)

being f2 the 2-particles density function. In the derivation of the Enskog operator χ
has been described as a function of the density evaluated at the contact point, as it is
stated by the standard Enskog theory (SET); however, the revised Eskog theory (RET,
see Ernst, Van Beijeren [34], [35]) proposes to replace the 2-particles correlation in case
of a non-uniform fluid with a functional of the whole density field n(r|t):

χRET[n]
(
r1, r2

)
= 1 +

∫
dr3n(r3)V(12|3) +

1

2

∫
dr3dr4n(r3)n(r4)V(12|34) + ... , (2.30)

being V(·|·) Husimi functions representing possible interactions of pair (1, 2) with all
other particles (see [5], chapter 8, section 2, for an analogous formalism); the functional
nature of the pair-correlation function can also be deducted by inspecting Ornstein-Zernike
equation [36].
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Although an expression can be obtained as a formal cluster expansion in the density,
in practical applications simpler approximations are recommended; we opt therefore for a
compromise proposed and justified by Fischer and Methfessel [24] and already exploited
by Frezzotti et al. [21], namely taking χ locally as the pair correlation function of a
homogeneous fluid at a density that correspond to the average over a spherical volume of
radius σ:

n
(
r|t
)

=
3

4πσ3

∫
ρ<σ

n
(
r1|t

)
dr1 , (2.31)

χ[n](r, r ± σk̂
)
' χSET

[
n
(
r ± σ

2
k̂
)]

, (2.32)

the averaging hence being done over a volume of molecular size (that is a spherical volume
of radius σ).

An approximate but accurate expression for χSET as function of the local density
can be obtained by comparing the equation of state of hard sphere fluids proposed by
Carnahan and Starling [39] and the expression for the hydrostatic pressure of a Enskog
fluid [2]: 

p

nkbT
= Z

(CS)
=

1 + η + η2 − η3

(1− η)3

p =
1

3
P : I

(EV )
=
(

1 +
2

3
πnσ3χ

)
nkbT = (1 + nbχ)nkbT

, (2.33)

being Z the compressibility factor, b the specific covolume and η the reduced density:
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Figure 2.4: Plot of the compressibility factor and correlation from Carnahan-Starling equation of state
over reduced density (also referred as packing fraction).

b =
2πσ3

3
, η =

πσ3n

6
. (2.34)
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Finally, we identify the density with its averaged value n and solve for χ, thus obtaining:

χ(η) =
1

2

2− η(
1− η

)3 , η =
πσ3n

6
. (2.35)

2.5 Energy conservation and H-theorem

The complete expression of EV equation is obtained by combining (2.10) and (2.27) into
(2.3):

∂f

∂t
+v·∇rf+

1

m

[∫
ρ>σ

∇φ
(
r1−r

)
µ
(
r, r1|t

)
n(r1|t)dr1

]
·∇vf = σ2

∫
R3

∫
S+

{
χ
[
η
(
r+σk̂/2

)]
·

· f
(
r,v′|t

)
f
(
r + σk̂,v′1|t

)
−χ
[
η
(
r− σk̂/2

)]
f
(
r,v|t

)
f
(
r− σk̂,v1|t

)}(
vr · k̂

)+
dv1d

2k̂ .

(2.36)

It is now essential it satisfies the fundamental principles of thermodynamics, such as
energy conservation (corresponding macroscopically to the first law) and the H-theorem
(corresponding macroscopically to the second law); for this purpose, the discussion by
Benilov and Benilov [37] is briefly reported.

Net energy can be defined as the sum of kinetic and potential energy, as chemical
effects or polyatomic molecules are not taken into consideration; recalling equation (2.7),
and assuming that f decays sufficiently fast as ||r|| → ∞, the total energy can be written
as:

U =

∫
R3

∫
Ω

m||v||2

2
f
(
r,v|t

)
dvdr +

1

2

∫∫
ρ>σ

µ
(
r, r1|t

)
n(r|t)n(r1|t)φ

(
||r − r1||

)
dr1dr .

(2.37)
Time derivative of U can be computed by combining (2.2), (2.10), (2.28) and (2.36):

dU

dt
=

∫ (4)

f(r,v|t)f(r1,v1|t)φ(r1 − r)
[∂µ
∂t

+ (v · ∇r + v1 · ∇r1)µ(r, r1|t)
]
dvdv1drdr1 ;

(2.38)
hence, U is conserved if the long-range correlation µ = const, which justifies the choice
made in section 2.2.

The H-theorem states the existence of a quantity H = −S/kb (negative entropy) such
that ∂tH ≤ 0; in that it portrays a quantitative formulation for the fact that kinetic
theory describes a process irreversible in time and represents a key result in the analysis
of the trend to global equilibrium of spatially inhomogeneous kinetic systems. Resibois
proved an H-theorem for the a modified version of the Enskog equation [38]; Benilov et
al. propose a proof in the case of the Enskog-Vlasov equation for a entropy functional of
the following form:

S = −kb
∫
R3

∫
Ω

f
(
r,v|t

)
ln f
(
r,v|t

)
dvdr + kbQ[n] , (2.39)
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being Q a functional of the number density, such that:

∇δQ
δn

=

∫
Ω

χ
(
r, r1|t

)
n(r1|t)δ

(
||r − r1|| − σ

)r − r1

σ
dr1 . (2.40)

Equation (2.40) is derived carrying out a similar algebra to the one used in the usual
proof of the H-theorem for the Boltzmann equation. One interesting remark regards the
non-local nature of the H-theorem for EV equation: the system is found to relax toward
an distribution function

feq(r,v) = n(r)
exp
[
−m(v−u)2

2kbT

]
(2πkbT )3/2

(2.41)

which is very different from the local equilibrium solution of the Boltzmann collision term,
in that u and T are constant over the whole system; this noteworthy feature can be traced
back to the mechanism of collisional transfer: this latter allows the different points of the
system to exchange momentum and energy through (non-local) collisions [38].

2.6 Kinetic equation approach to phase transition

As it is stated at the beginning of this chapter, EV equation offers the possibility of de-
scribing phase transition. Grmela analyses equation (2.4) in order to show there exists
a set of critical parameter for which phase transition may occur [31]; his derivation is
coherent with Kirkwood-Monroe theory [32]: equilibrium KM theory states that phase
transition occurs as the thermodynamic parameters have such values that there is a dis-
continuity in the equilibrium distribution functions; non-equilibrium KM theory studies
instead the approach to equilibrium by analysing the spectrum of the linearized dynamical
operator and identifies phase transition with the presence of linear instabilities. Grmela
analyze EV equation within the scope of both theories, proposing bifurcation conditions
for the van Kampen equation [33] derived from a suitable equilibrium inhomogeneous so-
lution on one hand, and studying the spectrum of the linearized EV operator on the other
(exploiting mathematical tools similar to the ones used to analyse the spectral properties
of the Boltzmann equation [3]).

Another viable approach is proposed by Frezzotti et al. [18], [19]; it is shown that the
equation of state of a fluid described by (2.36) has the following generalized van der Waals
form [5]:

p(n, T ) = phs(n, T )− αtailn2, (2.42)

being phs the contribution to hydrostatic pressure given by hard-sphere collisions, having
the form proposed by Carhahan and Starling (2.33), and αtail a constant depending on
the soft-tail potential. The critical temperature Tc corresponds to the value for which
(2.42) has a point ηc with null derivative; for T < Tc two physically consistent values for
η coexists.
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Figure 2.5: Left: Isothermal curves for temperatures above, equal and below Tc in case of a Mie potential
with γ = 6 (reduced pressure p? = pσ3/φ is plotted against reduced density η); right: vapor-liquid
equilibrium coexistence curve for the same choice of potential (relative reduced density plotted against
relative temperature).

Tc ultimately depends on the type of potential chosen to model soft-tail attractions;
a possible expression for function ψ inside (2.5) may be given by a Mie-like algebraic
potential:

ψ(ρ) = −φ

[
σ

ρ

]γ
, (2.43)

or by a Morse-like exponential potential, instead:

ψ(ρ) = −φ exp
[
− α(ρ− σ)

]
, (2.44)

being φ the depth of the potential well and γ, α parameters tuning the soft-tail decay.
The critical temperature is obtained as:

T (γ)
c =

φ

kbαc

4γ

γ − 3
, (2.45)

in case of (2.43), while in case of (2.44):

T (α)
c =

4φ

kbαc

(
1 +

3

λα
+

6

λ2
α

+
6

λ3
α

)
, (2.46)

being αc ' 10.60122838879298 and λα = ασ; the critical reduced density is ηc '
0.1304439008, regardless of the tail potential. The equilibrium liquid and vapour bulk
density values nv(T ), nl(T ) can be determined by Maxwells equal areas rule applied to
isothermal curves given by (2.42).
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2.7 Wall interaction

One key aspect of this kinetic model, as it is stated in the motivation section, regards
the interaction between the liquid/gas phase and solid walls; in the following the fluid
properties will be labelled with the subscript g (or the subscript will be omitted), while
walls properties with w.

Fluid-fluid and fluid-wall interaction forces are supposed to be given by the Sutherland
potentials:

φgg(ρ) =

{
+∞ ρ < σg

ψgg(ρ) ρ ≥ σg
, φgw(ρ) =

{
+∞ ρ < σgw

ψgw(ρ) ρ ≥ σgw
, being: σgw =

1

2
(σg+σw) .

(2.47)
Different sets of parameters or even different forms for the tail function may be chosen
in order to tune interaction ranges; the self-consistent force field generated by the tail
potentials is a superposition of the fluid-fluid and the fluid-wall components:

F (r|t) = F gg(r|t) + F gw(r|t) , (2.48)

being: 
F gg(r|t) =

∫
r>σg

dφgg
dr

r1 − r

||r1 − r||
n(r1|t)dr1

F gw(r|t) =

∫
r>σgw

dφgw
dr

r1 − r

||r1 − r||
nw(r1)dr1

. (2.49)

Similarly, the collisional operator reads:

C(f, f) = Cgg(f, f) + Cgw(f, fw) , (2.50)

being:

Cgg(f, f) = σ2
g

∫
S+

{
χgg[n]

(
r, r + σgk̂

)
f
(
r, r + σgk̂,v

∗
1|t
)
f
(
r,v∗|t

)
+

−χgg[n]
(
r, r − σgk̂

)
f
(
r, r − σgk̂,v1|t

)
f
(
r,v|t

)}(
vr · k̂

)+
dv1d

2k̂

Cgw(f, f) = σ2
gw

∫
S+

{
χgw[n, nw]

(
r, r + σgwk̂

)
fw
(
r, r + σgwk̂,v

∗
1|t
)
f
(
r,v∗|t

)
+

−χgw[n, nw]
(
r, r − σgwk̂

)
fw
(
r, r − σgwk̂,v1|t

)
f
(
r,v|t

)}(
vr · k̂

)+
dv1d

2k̂

(2.51)

No explicit assumption is made about the interaction among wall molecules, and it is
simply assumed that walls are in a prescribed state of equilibrium which is not altered
by the interaction with the fluid. Hence, the velocity distribution function will take the
form of the local equilibrium Maxwellian:

fw(r,v) =
nw(r)(

2πRwTw(r)
)3/2

exp

[
−
(
v − uw(r)

)2

2RwTw(r)

]
, (2.52)
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being nw(r), Tw(r) and uw(r) the prescribed wall molecules number density, temperature
and mean velocity, respectively; the gas constant Rw is defined as kb/mw. The calculation
of the fluid-wall pair correlation function can be performed by assuming that excluded
volume effects are determined solely by wall molecules through a modified number density
ñw [17]; the specific form of χgw(η̃w) is given by (2.35), with:

η̃w =
πñwσ

3
gw

6
; (2.53)

this number density can be different from the value of nw that appears in equation (2.49).
The rationale is to be able to tune independently the behaviour of the long-range attractive
interaction and of the short-range repulsive interaction between fluid and walls [17].

In this section a specific example of two-species flow has been described; indeed, fluid
and walls particles have different diameter and mass. The application of EV equation to
more general multi-species fluids is briefly presented in the appendix.
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Chapter 3

Numerical method

This chapter is devoted to the numerical procedure to solve EV equation. As it is stated
in chapter 1, Direct Simulation Monte Carlo will be employed; even if this technique finds
its natural collocation in the context of kinetic theory, its original formulation has been
devised to solve the Boltzmann equation [11] and therefore some modifications have to
be performed in order to be able to apply the same numerical scheme to dense gasses.

DSMC is a particle technique: the distribution function f is represented by a number
Np of particles (each one characterized by its position ri and velocity vi) which move
in the computational domain and collide according to stochastic rules derived from the
kinetic equation. It is important to specify in this sense that particles are mathematical
entities (as they represent a statistical ensemble of possible realizations of the density
function), rather than physical, even if their identification with real molecules seems
natural. Macroscopic flow properties are usually obtained by time averaging suitable
particle properties, ultimately representing momenta of f .

The particular aspects in which the method proposed in this work differs from the
standard DSMC regard the force field computation and the simulation of collisions [17].
The mean-field needs to be re-computed at each time step, being self-consistent, as it
depends on the configuration of the ensemble. Moreover, collisions are non-local: while
the original scheme searches for collision partners in the same computational cell, it is
now paramount to extend the research to neighbouring cells 1.

In the following all quantities will be non-dimensional, unless otherwise specified; in
particular, the reference quantities will be the gas particle’s diameter, the depth of the
gas-gas potential and the gas particle’s mass; apices will be dropped to simplify notation.

1Here ‘neighbouring’ is not intended as ‘directly attached’; collision partners will be searched in cells
up to a distance of σ/2 (may be several, depending on the discretization).
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Distance Temperature Mass Density Pressure

r∗ = r
σg

T ∗ = kbT

φgg
m∗ = m

mg
n∗ = σ3n p∗ = pσ3

φgg

Mean path RMS speed Mean time

λ∗ = λ
σ

v∗RMS =
√

3T ∗ τ ∗ = τ
σ

√
φgg
m

Table 3.1: List of non-dimensional units.

3.1 Time splitting procedure

The numerical solution of (2.3) is obtained by a time splitting procedure, in which the
distribution function, represented by the computational particles, is advanced from time
t to time t+ ∆t in two main stages:

1. free flight stage, in which particles positions and velocities are propagated in the
phase space following the transport part of the equation:

∂f (1)

∂t
+ v(0) · ∇rf

(1) +
F (0)

mg

· ∇vf
(1) = 0 ; (3.1)

2. collisional stage, in which the integral part of the equation is considered, that is 2:

∂f (2)

∂t
= C(f (2), f (2)) . (3.2)

Examining the details, phase (1) requires the self-consistent force field to be computed
from the previous configuration, while phase (2) is in turn divided into (2.1) gas-gas
collisions and (2.2) gas-walls collisions, so that the overall scheme reads:

1. the force field F (0)(t) is computed from the initial ensemble;

2. the ensemble is streamed in the free-flight phase and the intermediate distribution
f (1)(t+ ∆t) is obtained;

3. collisions between gas particles are simulated, giving the intermediate distribution
f (2)(t+ ∆t) is obtained;

4. finally, collisions between gas and wall molecules are performed and the final distri-
bution f(t+ ∆t) is attained.

2 With respect to what has been presented in section 2.5, the collisional stage does not describe a
locally homogeneous relaxation, as it does in the case of the Boltzmann equation.
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f(t)
streaming−→ f (1)(t+ ∆t)

gas-gas coll.−→ f (2)(t+ ∆t)
gas-wall coll.−→ f(t+ ∆t) .

It is crucial to observe that in the free-flight both positions and velocities are updated,
while in the collision phase particles’ positions are not changed, but their velocities are
modified according to stochastic rules consistent with the mathematical structure of the
collision integrals; in this sense the collisional operator may be interpreted as a stochastic
source term for the velocities.

3.2 Computational domain

The numerical problem is set in a two-dimensional rectangular domain. The inner part
(a rectangle of area LxLy) is where the fluid particles are placed, whereas the boundary is
placed in a halo (of width Lx,ext and Ly,ext): it would be populated by solid particle in case
of a solid wall, while it will contain the density values of the diametrically opposite part of
the domain, in case of periodic boundary conditions; in case of other boundary conditions
(e.g. reflective walls) it will be left empty. Furthermore, in case of solid walls the area
available for gas particles is reduced by an half-diameter of a solid particle, leaving a
buffer between the ‘logical’ and the ‘physical’ domain of width Lx,lim and Ly,lim.

Figure 3.1: Layout of the computational domain.

The computational grid consists in a regular Cartesian mesh, with uniform spacing
∆x in the x direction and ∆y in the y direction. It is crucial to clarify the purpose of the
computational grid: on one hand, it is instrumental for the collisional phase, as collision
partners are searched in the cells neighbouring the one in which the selected particle is;
on the other hand, all quantities on interests for the numerical procedure (e.g. number
density and forces) are considered to be constant within each cell. A more advanced
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DSMC procedure would employ different overlapping grids for collisions and for density
or mean-field computations (in a ‘chimera’ fashion [62]): this is particularly important in
case of rarefied gasses, as the collisional grid may be coarser; nonetheless, in our case of
interest the shorter mean free path dictates a finer collisional grid, thus suitable to resolve
flow field gradients.

3.3 Density binning and averaging

In the simulation of a two-dimensional flow-field the number of computational particles
can always be made equal to the number of real molecules by a proper choice of the height
of the computational domain along the homogeneity direction z [17]; on other words, it
is possible to tune Lz (and therefore the volume per cell: Vij = Vcell = ∆x∆yLz) and Np

to achieve the desired initial number density for each cell:

n0
ij =

Np,ij

Vcell
, i = 1, ..., Nx; j = 1, ..., Ny . (3.3)

This expedient can be exploited in quasi one- or two-dimensional simulations, while in the
three-dimensional case the ratio of real to simulation particles will be generally higher and
an appropriate weight for the simulated particles has to be introduced; the weight can be
interpreted as the inverse of the number of similar real systems needed to be simulated
to obtain good statistics [19].

The number density is obtained at each stage via a binning procedure; the averaged
density is computed by a discrete convolution of the number density and a mask matrix
of weights, comprising the cells inscribed within a circumference of radius σ:

ntij =
i+Nsx∑

k=i−Nsx

j+Nsy∑
l=j−Nsy

ntklwkl ; wij =
12

πσ3w̃

√(σ
2

)2

− s2
x,ij − s2

y,ij ; (3.4)

{
sx,ij = i∆x i = −Nsx, ..., Nsx

sy,ij = j∆y j = −Nsy, ..., Nsy

,


Nsx =

⌊ σ

2
√

2∆x

⌋
Nsy =

⌊ σ

2
√

2∆y

⌋ , (3.5)

being w̃ a normalization constant.
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Figure 3.2: Effect of density averaging: on the left is the plot of the number of particles per cell, while on
the right is the averaged reduced density η. The system is composed by 625000 particles in a 250× 250
grid; the reference density is n = 6.551× 10−2.

3.4 Force field computation

A salient point of the numerical procedure is the computation of the mean-field. In the
two-dimensional case only the x and y components of the force field are considered; hence,
integrating over the homogeneity direction z first, expression (2.10) reduces to:

F (x, y|t) =

∫
||r1−r||>σ

[
(x1 − x)i + (y1 − y)j

]
n(x1, y1|t)K(x1 − x, y1 − y)dx1dy1 ; (3.6)

where the kernel

K(x1 − x, y1 − y) =

∫
Sz1

dφ

dr

1

||r1 − r||
dz1 , (3.7)

r = xûx + yûy + zûz , Sz1 = {z1 s.t. ||r1 − r|| > σ} , (3.8)

depends on the chosen potential and not on the actual value of the density field: this fact
makes possible to compute the kernel K only once for a suitable range of the variables
x1 − x and y1 − y.

Expression (3.7) can be computed and stored by imposing z = 0 (which is a viable
choice, since the flow is assumed to be homogeneous in this direction); being δ2 = (x1 −
x)2 + (y1 − y)2, it becomes:

K(δ) =

∫ +∞

−∞

φγσγ(
δ2 + z2

1

)(γ+2)/2
1(δ2+z21≥σ2)dz1 , (3.9)
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in case of the Mie-type potential (2.43), while for the Morse-type potential (2.44):

K(δ) =

∫ +∞

−∞

φαeασ√
δ2 + z2

1e
α
√
δ2+z21

1(δ2+z21≥σ2)dz1 . (3.10)
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Figure 3.3: Left: profile of K(δ) for a Mie-like potential with parameters γ = 6.0, φ = 1.0; right: values
of K(δ) stored in a mask-matrix.

Two storing strategies are can be applied:

• the values of the potential kernel may be evaluated for each inter-cell distance and
stored in a mask matrix : the components of the force field would therefore result
from a convolution of this matrix with the one storing the values for the number
density; this strategy can be employed efficiently only in case of a uniform grid;

• the potential kernel may be stored in an array containing only a limited number of
inter-cell distance evaluations, while other values are interpolated when needed; this
strategy is more flexible, as it can be employed also in case of non-uniform grids.

In conclusion, it is common practice for particle methods and direct simulations to
introduce a cut-off distance ρc, thus limiting the domain of integration for the mean-field:

F̃ (x, y|t) =

∫
ρc>||r1−r||>σ

[
(x1−x)i+(y1−y)j

]
n(x1, y1|t)K(x1−x, y1−y)dx1dy1 ; (3.11)

the introduction of a cut-off distance allows to reduce the memory required to store the
potential kernel as well as the computational burden for the force field calculation.
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3.5 Time marching

Let us now briefly discuss the time-marching technique adopted. In the streaming phase
positions and velocities are updated via an explicit forward scheme:

ri(t+ ∆t) = ri(t) + vi(t)∆t+
1

2

F
(
ri(t)|t

)
m

∆t2

vi(t+ ∆t) = vi(t) +
F
(
ri(t)|t

)
m

∆t

; (3.12)

in this case the overall scheme (streaming + collisions) is first-order accurate in time step
∆t and in linear cell dimension ∆r = max(∆x,∆y). An acceptable level of accuracy is
guaranteed in all the phases of the time splitting procedure if the following conditions are
fulfilled [1]: {

∆t < min
(
τgg, τgw

)
∆r < min

(
λgg, λgw

) , (3.13)

being τgg, τgw the mean free times between collisions dictated by fluid-fluid and fluid-wall
short-range interactions and λgg, λgw are the respective mean free paths, defines as (in
non-dimensional units):

λ =
1√

2πnχ(η)
, τ =

λ

vrms
, (3.14)

being vrms the root-mean-square of a standard Maxwellian.
It may seem appropriate to employ more advanced time marching techniques in the

advection phase. As an example, Verlet schemes are usually employed in molecular dy-
namics, in order to overcome the stability issues of (3.12) [6]; more sophisticated tech-
niques would involve leapfrog or Runge-Kutta time integration. However, it is important
to remind that the whole time step includes advection and collisions: even if more sophis-
ticated techniques may in principle increase the order of accuracy of the streaming phase,
it is not self-evident the same applies to the overall procedure.

Unless the fluid is dense everywhere in the computational domain, τgw can be much
smaller than τgg. In this case condition (3.13) would restrict the time step to an adequate
value in a layer of thickness σgw close to the wall, but unnecessarily small in the rest of
the domain. A straightforward modification of the time splitting procedure is introduced
to overcome such a limitation: fluid particles that are likely to collide with the wall
are identified; for these particles the first and second stage are computed as a sequence
of sub-cycles each with a time step of the order τgw, the number of sub-cycles being
Ns = ∆t/τgw [17]. This a convenient way to introduce an adaptive time-step in this
numerical procedure; time-step adaptation is considered a crucial feature in state-of-the-
art DSMC procedures [12].

A final remark regards the mesh-width. In case of dense vapour, it can be λ > σ;
a choosing ∆r greater than the particles’ cross-section should however be avoided, as it
would prevent density averaging. As a rule of thumb, the mesh-with shouldn’t be taken
larger than 1/4 of the cross-section.
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3.6 Simulating collisions

The final step in the DSMC iteration involves the simulation of particle collisions. The
standard method devised by Bird is called time-counter technique (TC) [1] and consists
in:

1. selecting a collisional pair with velocities (v,v1);

2. estimating a collisional time interval ∆tc;

3. updating the velocities from collision dynamics;

4. repeating 1., 2., 3. until
∑

∆tc ≥ ∆t.

Despite its simple nature, TC has a principle fault in the evaluation of the collision
number, that is indeed overestimated.

Koura [40] proposed an alternative scheme, called collision-frequency technique (CF),
which successfully estimates the expected number of collisions per unit time (i.e. the
collisional frequency); the primary problem of this alternative technique is that it requires
a significant amount of computation. In order to overcome this difficulty, Koura devised
a null-collision technique (NC, also referred as majorant frequency method), in which
the expected number of collisions is estimated via a stochastic process. In the case of the
Enskog equation, the collision integral involves the distribution function at different spatial
locations because of the finite extent of a molecule. Hence, the particles in a given cell
interact with particles located in nearby cells, during the collisional step. A modification
of the standard NC technique in case of dense gases is proposed by Frezzotti [20], and it
will be discussed in the following.

The construction of the algorithm begins from the expression of the expected number
of collisions per unit time in a subdomain D:

〈NC〉 =
1

2

∫
D
dr

∫
R3

dv

∫
R3

dv1

∫
S(r)

W
(
r, k̂,v,v1|t

)
d2k̂ ; (3.15)

W
(
r, k̂,v,v1|t

)
= σ2χ

[
η(r + σk̂/2)

]
f
(
r,v|t

)
f
(
r − σk̂,v1|t

)
(vr · k̂)+ , (3.16)

being S(r) the set of admissible unite vectors k̂ applied at r. This expression may be
simplified by representing the ensemble density with a superposition of Np Dirac’s delta
functions:

f
(
r,v|t

)
=

Np∑
i=1

δ
(
r − ri

)
δ
(
v − vi

)
. (3.17)

Once the position of the first particle is fixed, the collision partner may lay in one of the
Mi cells containing a portion of the sphere of diameter σ and centre ri. Furthermore,
the number density is spatially regularized to be piecewise constant in each of the cells
in which D has been subdivided; being nm and Nm respectively the number density and
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the number of particles on the cell Cm (out of the possible Mi), the distribution takes the
following form:

f̃
(
r,v|t

)∣∣∣
r∈Cm

=
nm
Nm

Nm∑
j=1

δ
(
v − v(j,m)

)
, (3.18)

where (j,m) indicates the j-th particle in the m-th cell. Inserting (3.17) and (3.18) in the
expression for 〈NC〉 one obtains:

〈NC〉 '
1

2

∫
D
dr

∫
R3

dv

∫
R3

dv1

∫
S(r)

Np∑
i=1

σ2χ
[
η
(
r − σ

2
k̂
)]
δ
(
r − ri

)
δ
(
v − vi

)
·

·
Mi∑
m

nm
Nm

Nm∑
j

δ
(
v − v(m,j)

)(
vr · k̂

)+
d2k̂ =

1

2

Np∑
i

Mi∑
m

Nm∑
j

ν(m,j),i ; (3.19)

ν(m,j),i = σ2 nm
Nm

∫
S(m,j)

χ
[
η
(
ri −

σ

2
k̂
)](

vr · k̂
)+
d2k̂ . (3.20)

The quantity ν(m,j),i represent the contribution of the pair collision between i-th the
(m, j)-th particles to the overall expected collisional frequency. The probability of collision
between a selected i-th particle and a (m, j)-th neighbour particle can therefore be defined
as:

P
[
i, (m, j)

]
=

1

2

ν(m,j),i

〈NC〉
, so that:

∑
i,(m,j)

pi,(m,j) = 1 . (3.21)

A direct evaluation of quantity (3.19) would require a computational effort propor-
tional to O(N2

p ); procedures with super-linear complexity are generally considered un-
acceptable in direct particles simulations. The null-collision technique allows to reduce
the computational burden by employing a stochastic process that first produces an over-
estimate of the total number of collisions and then selects a subset composed of “true”
collisions, the rest being “fake”. This technique is also named majorant frequency method
as it is based on the following inequality:

ν(m,j),i ≤ ν(m,j),i = σ2AiCi
Nm

∫
S(m,j)

d2k ; (3.22)

Ai ≥ nmχ
[
n
(
ri −

σ

2
k̂
)]

∀k̂ ∈ S(m, i),∀m , Ci ≥ ||v(m,j) − vi|| ∀(m, j) , (3.23)

which leads to the following definition for the estimate number of collisions:

NC =
1

2

Np∑
i

Mi∑
m

Nm∑
j

ν(m,j),i ≤ 2πσ2

NP∑
i

AiCi . (3.24)

Once the above estimated is provided, the process to select and compute collisions reads
as follows:
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1. The i-th particle in D is selected for collision with probability:

p
(1)
i =

AiCi∑Np

i=1AiCi
. (3.25)

2. A random vector k̂ is selected on a unit sphere of radius σ; the m-th cell in the
neighbourhood of the i-th particle is selected with probability:

p
(2)
m,i =

∑Nm

j=1 ν(m,j),i∑Mi

m=1

∑Nm

j=1 ν(m,j),i

=
1

4π

∫
S(m,i)

d2k̂ . (3.26)

3. The j-th particle in the m-th cell is selected with probability:

p
(3)
(m,j),i =

ν(m,j),i∑Nm

j=1 ν(m,j),i

=
1

Nm

. (3.27)

4. The collision between i and (m, j) is either accepted (true collision) or rejected (false
collision) accordingly, with probability:

p
(4)
(m,j),i =

∫
S(m,i)

ϕ(m,j),i(k̂)d2k̂∫
S(m,i)

d2k̂
, (3.28)

being:

ϕ(m,j),i(k̂) =
nmχ

[
n
(
ri − σk̂/2

)](
vr · k̂

)+

AiCi
. (3.29)

Once the collision has been selected as true, the new velocities for the i-th and (m, j)-th
particles are computed, according to the following relations:{

v∗i = vi + (vr · k̂)vr

v∗(m,j) = v(m,j) − (vr · k̂)vr
, (3.30)

thus ensuring the exact global conservation of momentum and kinetic energy.
Lastly, let us discuss how the majorants involved in the computation of the total

number of collisions are computed and updated. A and C are stored locally in each cell:

Aij = max
k=0,...,Np,ij

Ak , Cij = max
k=0,...,Np,ij

Ck . (3.31)

A first estimate is computed by sampling NtestNp particles, with Ntest � 1, and selecting
a possible collision partner for each one. The majorants are not updated at every time
step, for efficiency reasons; this may cause the estimate of (3.28) to be grater than 1. If

the number collisions for which p̂
(4)
(m,j),i > 1 exceeds a pre-defined threshold, the majorants

are re-computed. On the other hand, until the threshold is reached, the number of
total collisions is reduced at each time steps, in order not to waste time simulating fake
collisions.
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Figure 3.4: Time series of real (black), fake (red) and total (blue) collisions for 500 time-steps, displaying
the effect of majorants updating. The simulated system is a homogeneous gas composed by 150000
particles, in a 120× 120 grid (T = 0.50, n = 1.2213× 10−2).

3.7 Thermostat and Sampling

Fluid temperature T0 is prescribed in the initial configuration by sampling velocities from
a suitable Maxwellian. At t = 0, once the ensemble has been populated, both kinetic and
potential energy have been set; hence, total energy has been imposed as well:

U(0) = Ekin(0) + Epot(0) =
1

2

Np∑
i=1

mi||vi(0)||2 +

Np∑
i=1

∑
j>i

φ
(
ri(0), rj(0)

)
= U(t) ∀t .

(3.32)
While the total energy is conserved in time, kinetic energy can transform into potential
energy, and vice-versa. In other words, the conditions for a microcanonical statistical
ensemble are implicitly imposing initially, while the desired macroscopic constraint on
temperature defines a canonical ensemble. In order to preserve the desired temperature,
a simple Gaussian thermostat procedure has to be employed: its purpose is to rescale
velocities every Nther iterations of the DSMC algorithm, in order for them to match T0

asymptotically; more advance thermostats can be found in literature (e.g. Berendsen [41]).
The thermostat may be applied globally to the whole ensemble or locally, confining its
action to a portion of the computational domain.

Macroscopic quantities are obtained via a sampling procedure. In statistical mechan-
ics, ensemble averages of any given quantity Q can be computed as time averages on a
suitably long time window whenever the ergodic hypothesis holds; more practically, in
particle simulation time averages can be employed if the sampling time is chosen sensibly
shorter than the characteristic time of the phenomena to capture:

〈Q〉 ' 1

∆tsam

∫ ∆tsam

0

Q
(
r(t),v(t)

)
dt . (3.33)
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All physical properties of interest are evaluated in each cell. The sampling procedure
involves capturing, averaging for each particle in the cell (Np,ij) and averaging over Nsam

sampling steps; therefore, the total sample has size Np,ijNsam: increasing one of the two
factors leads to less-noisy results. The relevant literature, however, suggests constraint
on the minimum values of these parameters; Bird reports having at least 10 particles per
cell, as rule of thumb [12]; physical arguments would suggest choosing the sampling time
large enough that a signal moving at the speed of sound could traverse the computational
domain at least more than one time.

3.8 Computational complexity

In order to assess the asymptotic complexity of the DSMC scheme each step is analysed
separately.

Density : the binning procedure is O(Np), as cell coordinates need to be computed for
each particle of the ensemble; the averaging procedure is instead O(NcellsNw), being
Ncells = NxNy and Nw the number of values stored in the weights matrix (generally
Nw � Ncells).

Force-field : the convolution between the kernel matrix and density is performed di-
rectly by point-wise multiplication and reduction, which entails a complexity of
O(NcutNcells), being Ncut the number of values stored in the kernel matrix; non-
ionic pair potentials usually decay rapidly, so that also in this case Ncut � Ncells;
however, this procedure is typically more computationally expensive than density
averaging, as Nw � Ncut.

Streaming : time marching procedure is O(Np), since each particle is propagated inde-
pendently using data already available.

Collisions : assessing the complexity of the collisional phase deserves more thought; the
computation of the expected number of collisions is O(Np), provided the majorants
are already available. Computing the majorants at each time step would take in
principle O(NpMiNm) operations, which is infeasible, as it would essentially have
the same complexity of the collision-frequency technique; therefore, majorants are
initialized explicitly only initially and re-computed only when a collision takes place,
therefore involving O(NC) operations.

Sampling : the sampling procedure is O(Np). Every time-step, cell coordinates are
extracted for each particle; velocities and local densities are aggregated in each
cell. The actual computational cost of this procedure considerably depends on the
number of physical properties being sampled.
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3.9 General issues related to DSMC

In this last section some references regarding consistency and uncertainty quantification
for DSMC are listed. The results obtained by the authors reported below concerns the
standard DSMC algorithm (i.e. the one derived from Boltzmann’s equation), while no
result regarding the procedure for dense gas has been proposed in the relevant literature;
we believe it is however opportune to report these papers, for the sake of completeness.

3.9.1 Consistency to kinetic equation

Given the physical basis of the DSMC method, the existence, uniqueness and convergence
issues that are important in the traditional mathematical analysis of equations are often
overlooked [1]. Furthermore, attempts to construct an analytical representation of all
procedures have generally proved to be inimical, a common issue being the difficulty
to incorporate many important practical details, especially regarding the probabilistic
aspects of DSMC.

The main theoretical convergence result for the original DSMC algorithm was pro-
posed by Wagner [42]. The proof associates a random empirical measure to the DSMC
algorithm, whose limit for vanishing discretization and for an infinite number of particle
is shown to be a deterministic measured-valued function satisfying an equation close to
the Boltzmann equation. A Markov jump process is introduced, which is related to Bird’s
collision simulation procedure via a random time transformation; convergence is estab-
lished for the Markov process and the random time transformation. Another convergence
proof has been presented by Babovsky and Illner [43]; this one, however, refers to a varia-
tion of the original DSMC method introduced by Nambu [44], which does not posses the
property of total energy conservation.

3.9.2 Convergence and error analysis

Facing the topic of error analysis and convergence in case of DSMC simulation may
be a challenging task. Indeed, this method employs deterministic but also stochastic
procedures: all physical macroscopic properties of interest are related to these either
directly or indirectly and analysing these errors mathematically may be too involved.
Moreover, the parameters influencing numerical errors and convergence are various and
involve the time step, the cell dimensions, the number of particles and sampling time
window.

Chen and Boyd studied the statistical error associated with DSMC [45]: the root-
mean-square error related to the computed physical properties is expressed via a model
equation involving a statistical scattering term and a bias term [46], with the intention of
analysing and quantifying the effect of the number of particles per cell and the sample size.
Alexander, Garcia et al. examined the problem of cell size dependence by comparing the
calculated transport coefficients for a Couette flow with their reference values obtained
from Green-Kubo theory [47]; it was shown that the truncation error in the transport
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coefficients is O(∆x2). In a similar spirit, Wagner and Garcia studied the time-truncation
error, finding a O(∆t2) dependency with respect the reference transport coefficients [48].

34



Chapter 4

Code Implementation

In order to implement the DSMC algorithm described in the previous chapter, a C++
code with MPI parallelization routines has been produced; the main features as well as
the design principles of the code will be presented in this chapter.

DSMC software has been developed in the past years both for research and indus-
trial applications; notable examples are SPARTA (Stochastic PArallel Rarefied-gas Time-
accurate Analyzer), by Sandia National Laboratories [66], MONACO, by I. D. Boyd
(Department of Aerospace Engineering, University of Michigan) [52] and DS2V, by G. A.
Bird [12]. For the purposes of this work one ad hoc code is developed, in order to study
and analyze the algorithms needed to address the case described by Enskog-Vlasov equa-
tion; in fact, the need to compute a self-consistent mean field and to perform non-local
collisions poses a challenge uncommon to standard DSMC codes.

C++ is a widely used programming language in the field of scientific computing; its
value lies in the possibility to exploit general programming techniques, while retaining
a satisfactory computational efficiency. DSMC is a inherently computationally intensive
algorithm: the bulk of the code has therefore to be optimized in term of computational
complexity, memory allocation and compilation; however, it is still possible to renounce
to a certain degree of computational efficiency in the phases of pre- and post-processing,
when general programming paradigms (e.g. run-time polymorphism) may be desirable.

Particles schemes are ordinarily easy to parallelize, as the communication between
processes is usually very limited; indeed, in the standard DSMC procedure communication
is employed only to move particles from a process to another. In our case, however, non-
locality (due to interactions and collisions) poses an additional issue. The goal of this
work is to provide thorough and scalable MPI procedures to manage particle exchange,
mean-field computation and collisions.

While the code structure has been designed de novo, part of the algorithms defining the
low-level procedures are based on a Fortran code developed by Professor Paolo Barbante
[17].
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4.1 Structure of the C++ code

While investing vast efforts into computational efficiency, the importance of software
maintainability also needs to be addressed, especially in research projects, where codes are
likely to be changed, for example, to test different physical models; modularity, therefore,
represents an important aspect of software development for computational physics, and it
is important to take this aspect into account in an early design phase [52]. With respect to
the most used procedural languages (e.g. C, Fortran), C++ offers improvements in term
of encapsulation, errors handling, unit testing and documentation; for these reasons much
industrial and research software in the field of computational physics is moving toward
C++ releases [55], [66].

The code for this project, although tailored to suit a specific DSMC procedure, has
been developed taking into account the aforementioned design principles; the source code
can be found in two separate public GitHub repositories (for the serial version and for the
parallel one):

• https://github.com/MichelePellegrino/enskog vlasov serial.git

• https://github.com/MichelePellegrino/enskog vlasov parallel.git

4.1.1 DSMC modules

Modularity is facilitated by separating physical modelling, geometrical issues, and organi-
zational tasks. All data related to one module should in principle kept local and can only
be shared among subroutines in the same module: this encapsulated design ensures that
source code changes cannot cause side effects outside of the module, so that searching
for errors is also localized [52]. The design pattern implementing this paradigm has been
inspired by the one utilized by SPARTA. The bulk of the source code is comprised by the
classes representing the modules for each DSMC procedure. The main class, DSMC, en-
capsulate the whole algorithm; modules are implemented as classes, referred by DSMC via
smart pointers. Each class inherits from a base (Motherbase), which contains references
to smart pointers for all other classes: in this way it is possible to access public methods
of the core classes. This expedient simplifies sharing data between modules. Moreover,
code enhancement/maintenance is eased: adding an additional module would only require
the addition of another smart pointer in the DSMC and the Motherbase classes; in case a
module needs to be revised, changes in the code would be localized in the corresponding
class.

The classes referenced by DSMC are briefly summarized below:

• ParallelEnvironment encapsulates information regarding the parallel environment
(communicator, rank, size) and wraps some of the MPI functionalities used through-
out the code.

• ConfigurationReader reads the input file, distributes data to other modules and
set-up the initial configuration parameters; since most MPI implementations only
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allow process 0 to access to standard input, reading is performed by the master,
which then broadcast to slave processes.

• Species contains data regarding the physical properties of chemical species (in our
case of interest: masses and cross-sections).

• Times contains numerical parameters for time marching, as well as the time con-
straints of the simulation.

• Boundary contains information regarding physical properties of boundaries (length,
boundary conditions).

• Grid contains information regarding the computational grid (number of cells, cell
volume, mesh width, centroids); it also encapsulates functions to map cells in lexi-
cographic order.

• Topology defines the static domain decomposition and the partition of sub-domains
in quarters (to perform parallel collisions, as will be explained in the following).

• Ensemble contains the data structure storing the particles and defines the function-
alities to populate the ensemble and communicate particles between processes.

• Thermostat implements the functionality that rescales particles’ velocities in order
to match the prescribed temperature.

• DensityKernel stores density values and performs the operations of binning, density
averaging and communication of boundary data regarding density between neigh-
bouring processes; it also defines a map to locate particles referring to a given cell.

• NondirectionalPairPotential is a virtual class acting as base for the implemen-
tation of isotropic pair potentials (SutherlandMie, SutherlandMorse); classes in
the hierarchy encapsulate the parameters defining the potential function, as well as
the expression of its derivative and of the kernel function K.

NondirectionalPairPotential

SutherlandMie SutherlandMorse

Figure 4.1: UML for the classes in the hierarchy of non-directional pair potentials.

• CorrelationFun is the class implementing a correlation function χ (by default:
Carnahan-Starling expression).

• ForceField computes and stores the potential kernel matrix; it also encapsulates
the functionalities to compute and store the force field.
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• TimeMarching encapsulates the functionality handling particles’ free-flight.

• CollisionHandler encapsulates all functionalities related to the collisional stage:
computation and adjustment of majorants, simulation of collisions (local to the
process and between processes) and gathering of collisional statistics.

• Sampler defines the functionalities to capture, average and gather samples from
each sub-domain.

• Output deals with output files; since most MPI implementations don’t provide any
automatic scheduling of access to standard output, writing is performed by the
master process only.

The code have been documented using Doxygen (doxygen.nl).

DSMC

- DefaultPointer<ParallelEnvironment>

- DefaultPointer<ConfigurationReader>

- DefaultPointer<Species>

- DefaultPointer<Times>

- DefaultPointer<Boundary>

- DefaultPointer<Grid>

- DefaultPointer<Topology>

- DefaultPointer<Ensemble>

- DefaultPointer<Thermostat>

- DefaultPointer<DensityKernel>

- DefaultPointer<ForceField>

- DefaultPointer<TimeMarching>

- DefaultPointer<CollisionHandler>

- DefaultPointer<Sampler>

- DefaultPointer<Output>

- RandomEngine

- Stopwatch

- NondirectionalPairPotential

- CorrelationFun

+ void initialize simulation(void)

+ void dsmc iteration(void)

+ void dsmc loop(void)

+ void output all samples(real number)

Table 4.1: Sketch of DSMC class layout.
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Motherbase

AbstractTimeMarching

Boundary

CollisionHandler

ConfigurationReader

DensityKernel

Ensemble

ForceField

Grid

IOHandler

Output

ParallelEnvironment

Sampler

Thermostat

Topology

Figure 4.2: UML of the classes implementing DSMC modules; dashed arrows represent protected inheri-
tance.

4.1.2 Libraries

Classes for numerical procedures and data structures are included in separate header files.
Eigen library (eigen.tuxfamily.org) has been used to implement the arrays employed for
storage. Dynamic-time polymorphism has been avoided in all stages that include intensive
calculations, for efficiency reasons, in favour of static-time polymorphism; the latter has
being implemented via the usage of template classes and template functions. The custom
libraries are now briefly outlined:

• integration.hpp contains a class for numerical integration of 1D functions (with ei-
ther bounded or unbounded support); it implements Romberg’s quadrature scheme,
which consists in k refinements of the trapezoidal or the mid-point rule, in order to
remove error terms less than order O(N−2k) [7].
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• matrix.hpp contains the classes implementing arrays for data storage; the base
class of the hierarchy inherits from Eigen::Array, while MPI communication func-
tionalities for exchanging blocks between processes have been added to the already
available methods; moreover, these derived classes support Fortran-style negative
indexing.

ev_matrix::MaskMatrix< data_type, StorageOrder >

Array< data_type, Dynamic, Dynamic, StorageOrder >

ev_matrix::HaloMaskMatrix< data_type, StorageOrder > ev_matrix::SlideMaskMatrix< data_type, StorageOrder >

Figure 4.3: UML for the hierarchy of custom matrices for data storage.

• random.hpp consists in wrappers for STL RNG generators, as well as template
specializations for custom ones; RNG represents a key element in DSMC, due to
its stochastic nature, and investigating engines’ suitability is paramount: a brief
discussion is reported in the appendix.

ev_random::StdRngObject< engineType >

ev_random::RngAbstract

ev_random::CustomRngObject< dummy_rng_type >

ev_random::RngAbstract

Figure 4.4: UML of the wrappers for (a) STL random number engines, (b) user-defined engines; in the
latter case, template specialization defines a new kind of engine.

• stopwatch.hpp contains a class for timing numerical procedures, storing partial
elapsed times.

• types.hpp contains numerical constants, macro for type names, and includes a
functionality for converting C++ types to MPI Datatype.

• utility.hpp includes all-purpose utility functions (i.e. exponentiation).

4.2 MPI parallelization

The world of parallel computing is, for the most part, divided into distributed-memory
and shared-memory systems. A distributed-memory system (which represents our case of
interest) consists of a collection of core-memory pairs connected by a network, and the
memory associated with a core is directly accessible only to that core. These systems are
usually programmed using the message-passing paradigm: the communication of signals
and data between processes is performed via the exchange of messages. MPI (Message-
Passing Interface) is a message-passing protocol which defines a library of functions that
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can be called from C, C++, and Fortran programs. MPI results suitable for SPMD (Single
Program Multiple Data) paradigm: all process execute the same program, each one with
its own local data [8], [9].

Figure 4.5: Layout of a distributed memory system.

A common parallelization strategy employed by DSMC codes is domain decomposi-
tion [51]: the computational domain is divided into a number of sub-domains equals to
the number of processes that will be used; each process will therefore perform particles
advection, collisions and compute the force field in within its sub-domain. The code cur-
rently supports conforming grids of rectangular sub-domains. Regarding data storage a
replicated grid approach has been followed: each process stores all information regarding
the computational grid, while particles and data concerning each sub-domain are dis-
tributed. Data within a sufficiently thick halo will be also collected in local memory, in
order to be able to perform convolutions with the density and the force-field kernels.

One of the most significant obstacles to good parallel performance is the cost asso-
ciated with inter-processor communication: from a software design perspective, serious
consideration should be given to minimizing the amount of communication in an effort to
delay the effects of this bottleneck as much as possible [51]. This can be accomplished by
maximizing data locality : the data needed by each process should in principle be available
locally, that is without involving communication.

Before delving into the details of each parallelization procedure, it is important to
remark that the computational load for each process is characterized by the number of
particles, the number of computational cells and also by the amount of communication
needed at each step; these considerations are crucial in assessing parallel scaling and load
balancing.

4.2.1 Particle streaming

Each process oversees the streaming of all particles that are within its sub-domain at the
beginning of the time-step. Once all particles have been propagated, the ones that ended
up outside the sub-domain are stored in a buffer and sent to the process they now belong
to. Each process stores a incidence matrix and a counter for incoming and departing
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Figure 4.6: Layout of a feasible sub-domains grid; the shaded area represents the portion of data stored
in local memory.

particles, as well as a map comprised by (rank, buffer) pairs; every time communication
occurs buffers are resized, if needed, in order to contain enough memory, according to the
incidence matrix and then particles are passed in blocks; the number of total particles per
process is then updated accordingly.

rank 0 rank 1
rank 0 0 Np,01

rank 1 Np,10 0

Figure 4.7: Scheme of particles communication between two processes; particles remaining inside their
sub-domain are not counted in the incidence matrix, as they are not involved in the communication
procedure.

A particle is represented by a struct containing data regarding its position, velocity,
cell, domain rank and a tag; even if MPI does not support abstract data types, it is possible
to construct aggregate types by using the MPI Type create struct and MPI Type commit

functions. A custom data type (MPI PARTICLE TYPE) is therefore committed, in order to
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be able to pass all quantities in blocks, without the need of multiple communication steps.

MPI PARTICLE TYPE

double xp, yp

double vx, vy, vz

int cell x, cell x

int p tag

int r tag

Table 4.2: Layout of the MPI data structure for particles.

4.2.2 Density kernel and mean-field computation

Regarding the computation of the force field, three steps have to be analysed: (a) the
distribution of density values, (b) the actual computation of forces. Step (b) does not
require any communication, provided each process already posses all density data within
its halo. Step (a) instead requires matrix blocks to be communicated between processes.

In order to encapsulate block communication, as well as the convolution operation to
compute the force field, three matrix classes are defined, augmenting the types already
provided by Eigen:

• MaskMatrix, which stores force-field results and maps to the process sub-domain;

• SlideMaskMatrix, which stores the values of the potential kernel (inherits from
MaskMatrix as specialization);

• HaloMaskMatrix, which stores density values and maps to the process sub-domain,
plus its halo (inherits from MaskMatrix as it adds new features).

Class MatrixConvolutioner is used at each time-step to perform the convolution be-
tween density and potential kernel. HaloMaskMatrix also contains the subroutines to
send/receive halo blocks. Communication of blacks is performed by the density kernel;
no communication is employed in the forces kernel, making this procedure quite simple
to parallelize.

Lastly, the same scheme is applied when computing the averaged density field, for the
computation of correlation: the matrix of weights will be stored in a SlideMaskMatrix,
while the resulting density values in a MaskMatrix.

4.2.3 Collisions

Message passing for collisions simulation is designed similarly as for streaming, since the
information to be exchanged mostly concerns single particles instead of cells: it may
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Figure 4.8: Class diagram for the types defined in matrix.hpp header; dotted arrows represent references.

happen that when process i selects a collisional pair the second particle lies in the sub-
domain of process j; in this case the particle’s velocity, as well as the local number density,
has to be communicated to i; if the collision results to be true, the newly updated velocity
vector has to be communicated back to j.

Figure 4.10: Flow chart for inter-processes communication in the collision kernel; red arrows represents
message-passing.

A problem regarding collisional conflicts has to be tackled: incoherent velocity modifi-
cations between neighbouring processes needs to be prevented; indeed, it may happen that
both processes i and j selects the same collisional pair; then, after the collision occurs,
final velocities would almost surely differ for each process; since the algorithm does not
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Figure 4.9: Layout example, showing the blocks that need to be sent to process 1 in case of periodic
boundary conditions on every edge of the domain.

prescribe an order in which collisions should be performed, neither i nor j claims priority,
and so a conflict in updating particles velocities arises. A way to circumvent this issue is
to subdivide each sub-domain in quarters and to perform collisions concurrently in each
process, but one quarter at the time; indeed, be the first particle in quarter (i, k) and
the second in (j, l) (the first index referring to the process, the second to the quarter): if
each sub-domain is sufficiently large, it will be k 6= l, so process i would have priority in
updating the particles’ velocity (the collisional pair won’t be selected by process j until
all collisions in (j, k) are performed).

Figure 4.11: Layout of collisional quarters in each sub-domain.
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Figure 4.12: Left: two processes tries to compute the same collisions, leading to incoherence in the
resulting post-collisional velocity. Right: the subdivision in collisional quarters prevents conflicts.

The procedure is devised so that collisions not involving communication are performed
at first, while data for message-passing are stored in buffers; once all ‘local’ collisions
have been performed the routine simulating collisions between processes is run. In order
to prevent spurious correlations, cells are selected one at the time at random, instead
of following a lexicographic order; the order of sub-domain quarters is also selected at
random.

Algorithm 1 DSMC parallel non-local collisions

1: procedure SimulateCollisions
2: compute number of collisions per cell
3: shuffle order of sub-domain quadrants
4: for q ∈ quadrants order array do
5: nc = n cells(q)
6: while nc > 0 do
7: select a cell (i1, j1) at random in q with equiprobability
8: select a particle belonging to the cell at random with equiprobability
9: for i = 1 : n collisions cell(i1, j1) do

10: generate vector k s.t. ||k|| = σ and the direction is random
11: select the cell (i2, j2) where vector k points
12: if (i2, j2) in within the sub-domain then
13: select at random with equiprobability a particle in the cell (i2, j2)
14: compute relative velocity and correlation
15: if collision is true then update velocities

16: else
17: push cell and particle data in communication buffer

18: nc← nc− 1

19: perform collisions involving communication
20: update collisions statistics
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Chapter 5

Results

In this chapter the DSMC code will be tested, both in terms of consistency with the
physics of dense gas and in terms of parallel efficiency. Numerical simulations requiring
either a considerable amount of computations or numerous cores (i.e. to asses speed-up)
will be performed on the HPC system (cluster) of Politecnico di Milano; the available
computational resources amount to 16 nodes DELL M630 with Intel(R) Xeon(R) CPU
E5-2630 v3 @ 2.4GHz processors, for a total of 256 cores and 1024 Gb RAM. Smaller
simulations, which do not require much computational resources, will be carried on a
laptop (MacBook Pro 15” mid 2012, Intel Core i7 @ 2.6GHz, 8 Gb RAM).

5.1 Uniform liquid

The first test case for the DSMC code consists in checking the consistency of simulations
with equation of state (2.42). In case of an algebraic potential (with parameters γ and
φ), EoS reads [19]:

p = CS(η)nkbT −
2πσ3

3

γ

γ − 3
φn2 ; CS(η) =

1 + η + η2 − η3

(1− η)3
. (5.1)

Using the non-dimensional units defined at the beginning of chaper II we obtain:

p∗ = CS(η)n∗T ∗ − 2π

3

γ

γ − 3
(n∗)2 . (5.2)

The equilibrium value for pressure can therefore be easily obtained; the results for some
values of temperature and density have been tabulated; apices will be dropped in the
following.

The kinetic contribution to the hydrostatic pressure can be computed from samples
of the velocity field; according to its definition, in non-dimensional units [2]:

pK =
1

3
PK : I =

1

3
n∗
〈
c2
〉

=
1

3
n∗
[ 〈
c2
x

〉
+
〈
c2
y

〉
+
〈
c2
z

〉 ]
, (5.3)
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T T/TC nl nv p λv
0.40 0.5301 8.3952×10−1 2.0776×10−3 8.3338×10−4 105.82
0.45 0.5964 7.7914×10−1 5.6092×10−3 2.4525×10−3 39.315
0.50 0.6626 7.1866×10−1 1.2213×10−2 5.6822×10−3 17.988
0.55 0.7288 6.5677×10−1 2.3111×10−2 1.1154×10−2 9.4004
0.60 0.7951 5.9171×10−1 3.9941×10−2 1.9436×10−2 5.3298
0.65 0.8613 5.2051×10−1 6.5517×10−2 3.1009×10−2 3.1434

Table 5.1: Tabulated temperature, density, pressure and vapour mean-free path (in non-dimensional
units) for a Lennard-Jones fluid (γ=6) [18]; TC indicated the critical temperature for phase coexistence.
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Figure 5.1: Averaged CPU time (in milliseconds) for advection, density kernel, forces computation,
collisions simulation and sampling; the histograms correspond to the following cases: T = 0.40, n =
2.0776× 10−3; T = 0.50, n = 1.2213× 10−2; T = 0.60, n = 3.9941× 10−2.

being c = v − u the peculiar velocity and u the local hydrodynamic velocity. We expect
this quantity to diverge from the reference value (5.2) for dense configurations: as num-
ber density increases, the effect of collisional transfer and mean field interactions on the
pressure tensor become preponderant.

The following results concerns simulations with a fixed parameters γ = 6. The system
is composed by 150000 particles, while the domain dimensions are: Lx = 35, Ly = 35;
the grid is composed by 120× 120 cells, and the time-step have been set to ∆t = 0.5; the
simulations lasted 2000 time-steps: samples averages have been computed on windows of
200 steps and the thermostat has been applied every 20 iterations.

CPU time diagrams show that in the case of dense vapour the force-field stage dom-
inates, in term of computations performed; the time expended for the collisional phase
is negligible for rarefied gas, and it becomes more noteworthy as density increases. It
can be noticed that the hydrostatic pressure obtained from simulations starts to diverge
from its reference value as the vapour density increases (or, alternatively, as temperature
approaches its critical value), as expected.

Simulations involving (a) an increased number of cells, (b) a larger sampling window
and the number of particles are performed in order to asses the accuracy of the results.
A new system of 625000 particles in a 250 × 250 grid is considered; the same behaviour
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Figure 5.2: Results for the EoS calculations; blue circles (O) represent the reference values, while red
crosses (×) the computed ones.

pref pA pB pC pD
0.0194 0.0240 0.0240 0.0240 0.0240
0.0310 0.0427 0.0426 0.0426 0.0426

Table 5.2: Comparison with reference pressure for cases: (A) 120× 120, 150000 particles; (B) 250× 250,
625000 particles; (C) 250× 250, 1250000 particles; (D) 350× 350, 1250000 particles.

is observed. In fact, the values obtained from the new computation perfectly match the
values from the old one. A further increase in the number of cells and particles produces
similar results.
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Figure 5.3: Comparison between results from ‘coarser’ (blue circles) and ‘finer’ (black squares) simula-
tions.

5.2 Knudsen layer formation

The second test case consists in reproducing equilibrium density profile of a liquid-vapour
interface. The simulation will be initialized by arranging a homogeneous liquid slab at
temperature T < Tc in the centre of the computational domain. The system evolution is
then computed until the evaporation of part of the liquid brings the liquid and vapour in
equilibrium [19].

A quantity characterizing the two-phase system is the reciprocal interface thickness
(i.e. the thickness of the Knudsen layer); its characteristic length can be defined as [56]:

l∗ =
T

πp
; (5.4)

a possible estimate of the reciprocal interface thickness can be obtained from the density
profile along the non-uniform direction, as [19]:

l̂−1 = max
x

∣∣∣dn
dx

∣∣∣ 1

nl − nv
. (5.5)

The test for the Knudsen layer formation does not provide the results we hoped for:
non-physical oscillations appear at the interface between liquid and vapour. A steep
increase of the number density at the interface is typical of contact with hydrophilic
surfaces, which naturally is not the configuration we are attempting to simulate. This
observation leads to a thorough examination of the routines computing the force field and
collisions.
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Figure 5.4: Initial configuration for a system composed by 5 × 106 particles in a 1300 × 300 grid (@
T = 0.45, nl = 0.7791, nv = 5.619× 10−3); the density profile along x is obtained by averaging along y.
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Figure 5.5: Density profile after 400 time-steps (∆t = 0.25× 10−2).
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Figure 5.6: Profile of |dn/dx| (left) and Fx (right).
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5.3 Parallel scaling

In order to evaluate the performance of the code in terms of parallelization, the following
speed-up and efficiency parameters are introduced:

S =
Tserial
Tparallel

, E =
S

Ncores

, (5.6)

being Ncores the number of processes. In case of ideal parallelization S equals the num-
ber of cores (i.e. E = 1); however, since it is not possible to avoid the code having a
serial fraction, ideal scaling is never achieved. More realistically, speed-up would follow
Amdahl’s law :

S =
1

fs + fp
Ncores

, (5.7)

being fs the serial fraction of the code, fp the parallel fraction. Amdahl’s law is valid
for a small number of processors; in case of distributed memory architectures with many
cores, communications would lead to a further degradation of performance [57].
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Figure 5.7: Amdahl’s law in case of 16 cores and with fp = 1.00, 0.99, 0.95, 0.90.

Furthermore, it is important to establish which kind of scaling to evaluate. Strong
scaling is assessed when the problem size is kept fixed, while the number of processes is
increased; otherwise, weak scaling is assessed when the size the problem is increased with
the number of processes. In the following the strong scaling of the parallel procedure will
be tested.

The case of a homogeneous dense gas represents an important benchmark for the
parallel procedure; given the particles are equally distributed in space and the mesh-width
is uniform, load should in principle be statically balanced, entailing a theoretically good
parallel performance. Here the results for a simulation of 4500000 particles on a 700×580
grid are displayed; the computational domain has been evenly divided between processes.

The parallel scaling appears overall satisfactory. The force-field computation scales
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Figure 5.8: Layout of the parallel sub-domains; each colour corresponds to a different process. Currently
the code support domain decomposition in quadrants and in stripes, along x and y direction.
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Figure 5.9: CPU time, speed-up and efficiency of the force field kernel in case of a homogeneous dense
gas.

particularly well, due to the lack of communication; the deviation from ideal behaviour
can be explained by considering that the data needed for computing the force field is
proportional to Ncells[k] + Ncut, being k the core label: as the number of cores increases,
Ncells[k] decreases quadratically, while Ncut only linearly. The density kernel exhibits
less-satisfactory scaling; this is probably due to large amount of communication needed
for transferring boundary data from a process to another. Collision kernel achieves the
worst scaling, most probably due to the fact that it requires three phases of point-to-
point communication between pairs of processes, each time collisions are performed in a
quadrant. The overall scaling, in case of a dense vapour, appears satisfactory. Testing
and exception handling features should in general be augmented.
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Figure 5.10: CPU time, speed-up and efficiency of the advection kernel in case of a homogeneous dense
gas.
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Figure 5.11: CPU time, speed-up and efficiency of the density kernel in case of a homogeneous dense gas.
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Figure 5.12: CPU time, speed-up and efficiency of the collision kernel in case of a homogeneous dense
gas.
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Figure 5.13: CPU time, speed-up and efficiency of the sampling kernel in case of a homogeneous dense
gas.
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Figure 5.14: CPU time, speed-up and efficiency for the overall procedure in case of a homogeneous dense
gas.
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Chapter 6

Conclusions

Results for the tests conducted on physical consistency and parallel scaling are not com-
pletely satisfactory, both in terms of quality and completeness. The inability to reproduce
the Knudsen layer entails the presence of a bias that may be explained solely by one or
more implementation of numerical routines in the code being faulty. In order to be sure
this is indeed the case, simulations may be repeated for a longer time, so to asses whether
they actually attained convergence.

Checking the code correctness would involve inspecting each and every procedure in
the density, advection, forces and collisions kernels; specific tests should be devised, and
results might be possibly confronted with the ones outputted by the Fortran code.

Serial tests on dense fluid configurations should also be performed, so to study the
equation of state and the CPU time employed by each kernel; parallel tests on dense
configurations are impractical at the moment because of a bug regarding the evaluation
of the pair correlation function: more debugging should be employed to solve this issue
as soon as possible.

Parallel scaling for homogeneous configurations appears satisfactory. However, a thor-
ough assessment in case of unfavourable configurations has to be performed. Such cases
may concern:

• high-speed collisionless flows, where the advection procedure might be stressed, as
the amount of data needed to be exchanged at each time-steps would be on the
same order of magnitude of the total number of particles;

• high-density configurations, where the collisional procedure might be stressed, be-
cause of both the tapering of the grid and the increase in the number of collisions;

• longer cut-off distances, which would lead to the efficiency degradation of both the
force field and the density kernels, due to an increase in the boundary data;

• inhomogeneous configurations, where the absence of dynamic load balancing and
proper asynchronous communication would lead to an increase of idle time, possibly
jeopardising the overall speed-up.
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Lastly, the cost of parallel synchronous communication, in terms of CPU time, should
be quantified, in particular in those situations where point-to-point communication may
produce considerable idle times (in the collision kernel, for example). One possible esti-
mate may be the difference between the maximum CPU time, over all processes, and the
mean time.

All the issues mentioned above have to be addressed before properly assessing the
quality of the current implementation of the parallel DSMC procedure. Once all these
problems have been successfully tackled, it would be opportune to focus on enhancements.
We report some possible suggestions.

6.1 Modelling enhancements

The hard-sphere model has proven its effectiveness in the computation of correlation
functions and transport coefficients for simple fluids; its primary strength lies in the
simplicity of collision mechanics calculations, due to isotropic scattering in the centre
of mass frame reference. However, this model is unrealistic, as the cross-section results
independent of the relative translational energy; this flaw leads to an inexact prediction of
the viscosity dependence on temperature [1]. In order to overcome this issue, Bird (1981)
introduced the variable hard sphere (VHS) molecular model; the effective cross section
becomes a function of the relative velocity. This methodology, devised in the context of
rarefied flows, may yield more accurate estimates of viscosity for relatively dense gas flows;
for liquid phases the cross-section greatly influences the values of pressure: it should not
be assumed a better estimate would be provided.

Another approach involving variable cross-section was proposed by Weeks, Chandler
and Andersen, in order to study the scructure of dense fluids; the hard-sphere varies in
function of the local density and temperature [59]. Both approaches present computational
issues; first of all, the effective diameter is required before selecting the collision partner;
secondly, the values of the potential kernel are now a function of the cross-section σ[n(r)],
other than just the inter-particles distance.

Another quite natural modelling enhancement would regard the presence of multiple
species of particles. The resulting system of EV equations is reported in the appendix;
while the generalization of the force field and the collision integral is straightforward, the
pair correlation function presents some subtleties [21].

6.2 Numerical enhancements

The current implementation of the code does not support complex geometries. A possible
extension may be aimed to tackle the problem of defining a grid compliant with complex
surfaces. Unstructured grids result very flexible in this context; they are however not
particularly advisable for DSMC, as they made particles’ search rather cumbersome with
respect to regular grids; moreover, the definition of boundary between sub-domains be-
comes more involved, as well as data communication. In order to combine the flexibility
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of unstructured grids with the simplicity of data access and manipulation of structured
ones a overlapping grids or embedded grid approaches may be pursued; nevertheless, this
route brings about the issue of sharing data, and possibly particles, between cells which
may not be compliant [52] [63].

Inhomogeneous configurations are characterized by multiple mean free path values
across the domain; therefore, it is reasonable to think about devising a mesh adaptation
procedure. Unstructured grids are flexible also in this context, but they carry the afore-
mentioned problems. A possible alternative would be to retain a regular grid and employ
octree refinement; the resulting grid would be, however, non-conforming [51] [52].

Lastly, a possible enhancement of the numerical procedure would regard finding better
estimate for the real collisions. Results show the number of fake collisions is at least one
order of magnitude larger than the number of real ones, partly jeopardizing the efficiency
of null-collision technique.

6.3 Code enhancements

One key feature the current version of code does not include is an automatic procedure
for load balancing, i.e. the distribution of data and work to minimize processors idle
time. Considering the currently supported grid (rectangular, Cartesian), a orthogonal
recursive coordinate bisection method would be a simple, yet natural, choice [60]. There
are however two subtleties regarding the implementation: (1) the work load of each process
is determined by both the number of particles and the number of cells in the sub-domain,
(2) RCB generates a non-conforming grid of sub-domains; the former can be tackled
by defining the loss function associated to each process as a convex combination of the
number of particles and the number of cells:

L[k] = αNcells[k] + (1− α)Np[k] , k = 0, ..., Ncores , α ∈ [0, 1] . (6.1)

The latter issue is a bit more problematic: the code does not support non-conforming sub-
domains; forcing conformity would lead, on one hand, to a severe loss in terms of balancing
optimality, while, on the other, allowing it would require a different implementation of
the matrix classes. It is finally important to remark that applications to unsteady flows
would require dynamic load balancing; a suitable disequilibrium index has to be defined,
and a re-partitioning procedure has to be implemented [68].

Even if long-range interactions decay quickly, allowing a short cut-off distance, the
force-field computation still results quite time demanding (especially when the meshwidth
has to shrink, for reasons of physical consistency or for sampling). The procedure may be
rendered more efficient by a proper re-arrangement of the degrees of freedom in the data
structures used to perform convolution. Other possible solutions to increase efficiency
can be borrowed by methods employed in molecular dynamics, such as particle mesh
methods : instead of performing a direct convolution between the density field and the
potential kernel, the operation may be performed in Fourier space, by employing a 2D
FFT [61].
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Lastly, another aspect limiting the efficiency of the current code is the lack of asyn-
chronous message-passing [51], [52], [53]: each time communication between a pair of
processes is involved data are exchanged one couple at the time, utilizing synchronous
message passing and barriers. The parallel topology configuration may be exploited to
reduce the total idle time.

6.4 New test cases

The study of fluid-wall interaction represents one of the fundamental goals of the Enskog-
Vlasov kinetic formulation and the modified DSMC method; extensions of the model and
the numerical procedure can be easily inferred from the discussions in chapters 2 and 3.
Additions to the present code would concern the computation of mean-field interactions
between fluid and walls particles, as well as the formulation of advection and collision
procedures regarding the particles in the proximity of solid wall boundaries; parallelization
should be straightforward, since the mean-field computation and the collisional stage
would regard only local data. New test scenarios might involve the study of the three-
phase contact angle or the formation of liquid menisci [17].

Finally, weak scaling should be addressed: since it is possible to increase the number
of particles and taper the grid to obtain more accurate results, it is natural to envision
an increment in the dimension of the numerical problem as the number of processes
grows. Moreover, theoretical results assessing weak scaling are encouraging: Gustafson’s
law states that scaled speedup (i.e. the speedup gained with respect to the problem
dimension) increases linearly with the number of processors [58]; in other words: enlarging
the problem entails better parallel scaling.
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Appendix A

Derivation of EV equation from
general theory of dense gas

In this appendix the procedure for deriving EV proposed by Karkheck and Stell [29]
is presented, focusing on the main concepts (while details in the computations will be
omitted). Let us consider an ensemble of N particles characterized by coordinates xi =
(ri,vi) in a phase-space of volume V ; given a pair interaction function ϕ, the Hamiltonian
for a set of s particles reads:

Hs =
s∑
i=1

||vi||2

2m
+

s∑
i<j

ϕij . (A.1)

The s-particles distribution function Fs satisfies the BBGKY-hierarchy of equations:

∂Fs
∂t

+
{
Hs, Fs

}
= n

∫
V

[
s∑
i=1

∂ϕi(s+1)

∂ri
· ∂Fs+1

∂vi

]
dxs+1 , (A.2)

being {·, ·} the Poisson’s brackets and n = N/V ; Fs is normalized so that:
∫
V
Fsd

sx =
|V |s. As it can be easily noticed, the hierarchy of equations is not closed, since the
equation for the s-particles distribution depends on the (s + 1)-particles’ one. The goal
of the derivation is to obtain a closed equation for F1 in case of a dense gas where the
intermolecular interactions consist in a hard-core repulsion plus smooth attractive tail.

Closure principle
Closure can be obtained by performing a constraint maximization of the statistical
entropy:

S = −kb
∫
V

WN ln
(
Wn

)
dNx . (A.3)

WN is a probability density on the phase space V (i.e.
∫
V
WNd

Nx = 1); all known
information regarding the generic s-particles distribution can be obtained from WN :

fs(x
s|t) = nsFs(x

s|t) =
N !

(N − s)!

∫
V

WN(xN |t)dN−sx . (A.4)
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The maximization problem can be expressed using the Lagrange multipliers formal-
ism, that is multiplying the constraints expressed above by coefficients

{
γ, λ(xs|t)

}
and maximizing the following functional:

I
[
WN

]
= S

[
WN

]
+kbγ

[
1−
∫
V

WNd
Nx

]
+kb

∫
V

λfsd
sx−kb

N !

(N − s)!

∫
V

λWNd
Nx .

(A.5)
Imposing ∂I/∂γ = 0 yields the normalization condition for WN , while δI/δλ =
0 yields the consistency condition between WN and fs; imposing the functional
variation with respect to WN to be zero and using the symmetry properties of
Lagrange multiplier λ and functions fs, the following is obtained:

δI

δWN

= 0 =⇒ ln
(
WN(xN |t)

)
= −γ − 1−

N∑′

i1,...,is

λ(xi1 , ...,xis|t) , (A.6)

where the primed summation means that indices are not repeated.

Assumptions
One key assumption that has to be made in order to close the equations regards
time-smoothing ; let us consider the time-smoothed 1-particle distribution function:

F 1(x1|t) =
1

τ

∫ τ

0

F1

(
S

(1)
ξ x1|t+ ξ

)
dξ , (A.7)

with:
S(j)
τ [ · ] = e−τ{Hj , · } . (A.8)

The role of time smoothing is to establish a time scale which captures a complete
collision. We assume only binary collisions takes places, while higher order collisions
are neglected; the range of validity for τ can be expressed as:

τc � τ � τm , (A.9)

being τc the mean collision time and τm the mean free time. Since:

F 1(x1|t) = F1(x1|t) +O
( τ
τm

)
, (A.10)

we can identify the smoothed distribution with the un-smoothed counterpart only in
the limit τ → 0+; to simplify matters the repulsive part of the potential potential is
modelled by a hard-sphere repulsion: the duration of a collision in such a case is τc =
0 so that above inequality can be maintained while taking the limit. This is a key
assumption, as the leading order equation derived from the BBGKY hierarchy can
be written in an advantageous form if the aforementioned identification is performed.
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The entropy maximization principle and the assumption on hard-sphere collisions are
the two crucial concepts leading to the Enskog-Vlasov equation; before delving into the
explanation, let us define the two-particles correlation function as:

g2(x1,x2|t) =
F2(x1,x2|t)

F1(x1|t)F1(x2|t)
. (A.11)

The starting point of the derivation is the solution of (A.2) in powers of n (proposed by
Lewis, 1961, [30]):

Fs(x
s|t+ τ) =

∞∑
k=0

nk
∫
V

[
k∑
j=0

(−1)k−j

j!(k − j)!
T j+s−τ Fs+k(x

s+k|t)

]
dk−1x , (A.12)

being T the multi-particle streaming operator:

T
(j+s)
−τ Fk+s = Fk+s

(
S

(j+1)
−τ xj+s, S

(1)
−τxj+s+1, ..., S

(1)
−τxs+k

)
. (A.13)

The leading order of (A.12) can be written in the following way by exploiting the symmetry
properties of operators S and T , and by considering (A.10):

τ

[
∂

∂t
+ v1 · ∇

]
F1(x1|t) = n

∫ [
T

(2)
−τ T

(1)
τ F2(x1,x2|t)− F2(x1,x2|t)

]
dx2 . (A.14)

It is now convenient to factorize the p.d.f. into WN = EN(rN)DN(xN); Enskog-Vlasov
equation is obtained from (A.14) by assuming a prescribed form for EN :

EN(rN) = Θ(rN) =

{
1 if ||ri − rj|| > σ ∀i 6= j

0 if ||ri − rj|| < σ ∃i, j
, (A.15)

and by splitting the inter-particles’ interaction into a non-local hard sphere collisions
and an attractive tail ϕtailij (which depends on relative positions only). The following
considerations are therefore made:

• taking τ → 0+ and performing Hamiltonian dynamics calculations an exact equation
is obtained from (A.14) in terms of generics distributions:[

∂

∂t
+ v1 · ∇

]
f1(x1|t) =

=

∫ {∂ϕtail12

∂r1

· ∂

∂v1

[
g2(x1,x2|t)f1(x1|t)

]
f1(x2|t)

}
dx2+

+ σ2

∫ ∫ {[
g(r1,v1, r2 + k̂σ,v′2|t)f1(r1,v1|t)f1(r2 + k̂σ,v′2|t)+

− g(r1,v1, r2 − k̂σ,v2|t)f1(r1,v1|t)f1(r2 − k̂σ,v2|t)
](
k̂ · vr

)+
dk̂

2
dv2

}
;

(A.16)
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• from the closure principle (A.6) the p.d.f. takes the form:

WN(xN) = ΘN(rN)DN(xN) = e−γ−1ΘN(rN)
N∏
i=1

e−λ(xi|t) ; (A.17)

this expression hints to the correlation function having a RET expression:

f2(x1,x2|t) = g(r1, r2|n1(t))f1(x1|t)f1(x2|t) , (A.18)

which does not depend on particles’ velocity.

The following kinetic-variational equation is obtained exploiting the two previous consid-
erations:[

∂

∂t
+ v1 · ∇

]
f1(x1|t) =

∂f1

∂v1

·
∫
∂ϕtail12

∂r1

n1(r2|t)g2

(
r1, r2|n(t)

)
dr2 + CE

(
f1, f1

)
, (A.19)

being CE Enskog’s collision integral.
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Appendix B

Generalization to a multi-species
fluid

Let us now consider a mixture composed of spherical particles having masses mi and
diameters σi, with i = 1, ..., Ns, being Ns the number of components. This system,
therefore, models a set with Ns chemical species of monoatomic molecules, interacting
through Sutherland potentials φij and colliding according to the integrals Cij, while no
chemical reactions are taken into consideration; a system of EV equations is therefore
obtained [21]:

∂fi
∂t

+ v · ∇rfi +

∑Ns

j=1 F ij

mi

· ∇vfi =
Ns∑
j=1

Cij(fi, fj) , i = 1, ..., Ns , (B.1)

being:

F ij

(
r|t
)

=

∫
ρ>σij

dφij
dρ

r1 − r

||r1 − r||
nj(r1|t)dr1 , σij =

σi + σj
2

, (B.2)

and:

Cij(fi, fj) = σ2
ij

∫
R3

∫
S+

{
χij[ni, nj]

(
r, r + σijk̂

)
fj
(
r,v′|t

)
fi
(
r + σijk̂,v

′
1|t
)
+

− χij[ni, nj]
(
r, r − σijk̂

)
fj
(
r,v|t

)
fi
(
r − σijk̂,v1|t

)}(
vr · k̂

)+
dv1d

2k̂ , (B.3)

being ni(r|t) the number density of the i-th specie and χij the short-range correlation
between particles of the species i and j. It can be noticed that the correlation has
been expressed in the most general functional form; indeed, while the extension of the
mean-field interactions to a multi-species system is straightforward, the collision integral
deserves more thought.

If it is assumed that atoms of different species have the same diameter σi = σ the
pair correlation functions of different species can be taken equal to the one valid for the
single-component case and subscripts can be omitted; here the assumption of section 2.3
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regarding the form of χ can be employed again:

χij[ni, nj](r, r±σijk̂) = χ[n](r, r±σk̂) = χ
[
n
(
r± σ

2
k̂
)]

, n(r|t) =
N∑
i=1

ni(r|t) . (B.4)

In case molecules of different species have different diameters σi the correlation function
has to be modified accordingly; a possible route is suggested by Santos, Yuste and de
Haro [25], [26]. The extension of the equation of state (2.33) in case of a Ns-component
hard-sphere mixture is given by:

p

nkbT
= 1 +

2

3
πn

Ns∑
i=1

Ns∑
j=1

xixjσ
3
ijχij , (B.5)

being xi = ni/n, the molar fraction of species i. In the same spirit as for the single
component system, Mansoori et al. proposed the following equation of state (BMCSL)
[27]:

p

nkbT
=

1

1− η
+
π

2

nζ1ζ2

(1− η)2
+
π2

36
n2ζ3

2

3− η
(1− η)3

, (B.6)

being ζn =
∑

i xiσ
n
i and η = πnζ3/6. It is no more possible to obtain the expression for

χij by just comparing (B.5) and (B.6), similarly as what observed in section 2.4. Lee et
al. proposed a possible closure by considering an expression for the correlation function
(GHLL) which is consistent with BMCSL equation of state [28]:

χij =
1

2π

(
λ+

λ′

2

σiσj
σij

+
1

18

(λ′)2

λ

σ2
i σ

2
j

σ2
ij

)
, (B.7)

being λ = 2π/(1− η) and λ′ = π2ζ2/(1− η)2.
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Appendix C

RNG quality assessment

In this appendix we would like to briefly describe a set of strategies to test whether a
random number generator is able to produce a sample that can be safely described as
uniform.

Histogram and scatterplot

The idea behind these simple visual methods is the following:

a) given any b ∈ [0, 1], we should verify that:

lim
n→∞

# samples s.t. Ui ∈ [0, b]

n
= b , (C.1)

that is Ui is a uniform sample in [0, 1];

b) the pairs {(U1, U2), ..., (Un−1, Un)} should be uniformly distributed in [0, 1]2;

c) ∀ 1 ≤ k ≤ n, {(Ui, Ui + 1, ..., Uk+i−1)}k should be uniformly distributed in [0, 1]k.

Items (a) and (b) can be easily verified graphically by plotting the histogram of Ui and
the 2D scatterplot of (Ui, Ui+1).
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Figure C.1: Histograms representing the distribution of 106 random numbers generated by the Knuth
engine and by std::rand().
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Figure C.2: Scatterplots of 103 couples of random numbers generated by the Knuth engine and by
std::rand().

Momenta

Another idea is to compare the k-th moment of the generated sequence with the k-th
moment of a uniform distribution, that is:

mk =
1

N

N∑
i=1

Uk
i '

∫ 1

0

xkdx =
1

k + 1
; (C.2)

the tolerated deviation is of order O(1/
√
N).

68



Correlations

It is possible to use the autocorrelation function of the generated sequence to asses whether
the pseudo-random numbers are statistically not-independent:

C(k) = E
[
UiUi+k

]
− E

[
Ui
]
E
[
Ui+k

]
' 1

N − k

N−k∑
i=1

UiUi+k −
1

4
; (C.3)

also in this case, the tolerated deviation from the true correlation C(k) = 0 should be no
larger than O(1/

√
N).
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Figure C.3: Plots of C(k) for k = 0, ..., 1000; the red lines represents the bounds [−1/
√
N, 1/

√
N ].

χ2 test

This last method is the most consistent from a statistical point of view. The idea is to
obtain a discrete uniform distribution via a binning procedure so that:

• fi = ni/N is the observed relative frequency of a sample to be in the i-th bin;

• pi = P (X = i) is the P.D.F. of a discrete uniform in {1, ..., k} (k being the number
of bins);

the following test is then considered:{
H0 : pi = fi ∀ i
H1 : pi 6= fi ∃ i

. (C.4)

If H0 is true, the expected number of outcomes that equal i would be approximately
Npi and the quantity (ni − Npi)

2 should not be too large; so the following statistic is
considered:

V =
k∑
i=1

(ni −Npi)2

Npi
. (C.5)
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Engine m1 m2 V

Knuth 0.4998 0.3333 88.7380
Marsiglia 0.5004 0.3338 104.2392
ParkMiller 0.4998 0.3332 86.4082
Splitmix 0.5004 0.3336 118.5602

Xorshift64 0.4997 0.3330 100.3290
std::rand 0.4998 0.3331 111.8128

Table C.1: Table of first and second momenta, and χ2 statistics for the tested RNGs; the reference values
are: χ2

99,0.95 = 123.2252, χ2
99,0.99 = 134.6416.

According to a result by Pearson (1900) for large values of N , when H0 is true, V will
have an approximately chi-squared distribution with k − 1 degrees of freedom; therefore
H0 will be rejected (H1 be accepted) in case

V > χ2
k−1,1−α , (C.6)

being α typically 0.05 or 0.01.

Final considerations

The examples reported above represent the simplest types of statistical tests; more ad-
vanced tests may be employed (i.e. Kolmogorov-Smirnov). RNG quality can be assessed
also through empirical tests; large suites of such tests have been developed for research
and for application purposes [67].

Lastly, it is important to remind that while RNG quality is paramount in stochas-
tic simulations, efficiency has to be addressed too; usually, a trade-off between quality
and efficiency occurs, as better RNG may require either more memory usage or more
algorithmic steps.

Engine CPU time [ms]

Knuth 17805
Marsiglia 25509
ParkMiller 14247
Splitmix 9811

Xorshift64 15013
std::rand 9625

Table C.2: CPU time occurred computing 106 pseudo-random numbers.
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