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ABSTRACT 

 

Robot-assisted surgery (RAS) is a type of surgery performed by a robotic system in 

collaboration with a surgeon-operator. Despite the numerous benefits introduced by 

robotic systems in Minimally Invasive Surgery (MIS), complications (such as intra-

operative bleeding) are still plausible and likely to affect the outcome of the procedure. 

Blood vessels can be accidentally damaged by unintentional contact with surgical 

tools, or by motion in sub-surface areas which are not visible to the operator. Assistive 

guidance tools represent a possibility to correct surgical gestures and are a big step 

forward towards safer procedures in the Operating Room (OR). The only component 

of a surgical robot that can provide insight of the interaction between surgical tools 

and the protected vessels is an endoscope equipped with a stereo camera. Creating 

an image analysis framework that can provide stable, robust and noise invariant 

solution for real-time implementation in a surgery, is yet to be overcome. However, 

once done, an assistive tool can be provided to surgeons that will correct the tool 

movement and notify them if a critical tissue is in danger of being injured. The 

introduction of Active Constraints (AC) is the first step towards safer surgeries, and 

this thesis is providing a tracking tool that will transform the AC accordingly in real-

time during surgical procedures. The aim of this thesis is to develop a computer vision 

algorithm to robustly track areas of soft tissue, defined intra-operatively by a surgeon-

operator based only on a real-time endoscopic video stream. The proposed 

framework combines feature tracking and adaptive recognition algorithms to track, 

localize and redefine the considered soft tissue after a tracking failure has occurred 

due to occlusion or severe deformation. The performance is assessed on two 

datasets, representing a controlled environment and a real-world in-vivo 

pancreatectomy. The results demonstrate that the proposed method successfully 

tracks and rediscovers the region of interest with good performance while maintaining 

real-time computing. 

 

Key words:  robot-assisted surgery, soft-tissue tracking, endoscopic image analysis, 

anatomy-based constraint, online adaptive recognition, real-time
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SOMMARIO 

 

Un intervento Robot-Assistito è un tipo di intervento effettuato da un chirurgo in 

collaborazione con un sistema robotico. Nonostante i numerosi benefici che un 

intervento Robot-Assistito ha introdotto nell’ambito degli interventi poco invasivi, 

alcune complicazioni (come le perdite di sangue durante l’intervento stesso) sono 

ancora possibili ed essi possono condizionare il risultato finale dell’operazione. I vasi 

sanguigni possono essere danneggiati da un contatto accidentale con gli strumenti 

chirurgici, o attraverso un movimento che avviene sotto la superficie di un’area non 

visibile dal chirurgo. Una possibile soluzione per la correzione dei movimenti chirurgici 

sono gli strumenti di guida che rappresentano un notevole passo avanti verso 

procedure sempre più sicure all’interno delle Sale Operatorie. L’unico componente di 

un robot chirurgico che può fornire informazioni riguardo l’interazione tra strumenti 

chirurgici e vasi sanguigni protetti, è un endoscopio equipaggiato con una stereo-

camera.  Creare un framework di analisi delle immagini che può fornire una soluzione 

stabile, robusta e non affetta da rumore della dinamica che circonda questo tipo di 

intervento, è un obbiettivo ambizioso. In ogni modo, una volta raggiunto, strumenti di 

assistenza basati su questo framework possono affiancarsi al chirurgo che 

correggerà i movimenti errati e li notificherà nel caso in cui un tessuto critico corre il 

pericolo di essere danneggiato. L’introduzione di vincoli attivi è il primo passo verso 

interventi sempre più sicuri. 

Questa tesi illustra lo sviluppo di un sistema di tracciamento di vincoli attivi in grado 

di lavorare in tempo reale durante l’intervento stesso. Lo scopo di questa Tesi è infatti 

quello di sviluppare un algoritmo di visione artificiale per tracciare in modo robusto i 

tessuti morbidi, che il chirurgo, basandosi su una visualizzazione su schermo in tempo 

reale, definisce durante l’intervento. Il metodo proposto combina algoritmi di 

tracciamento e di riconoscimento additivi per tracciare, localizzare e ridefinire i tessuti 

morbidi considerati dopo che è stato rilevato un errore dovuto a una mancanza di 

visuale o a una deformazione. Il risultato è stato valutato su sue insiemi di dati 

sperimentali, rappresentanti un ambiente controllato e una pancreatectomia in-vivo. I 

risultati hanno dimostrato che i metodi proposti tracciano e riscoprono con alti valori 
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di successo le regioni di interesse su tutte le metriche delle prestazioni calcolate, 

mantenendo un calcolo in tempo reale. 

 

Parole chiave: intervento Robot-assistito, tracciamento di tessuti morbidi, analisi di 

immagine endoscopica, vincoli anatomici, riconoscimento additiva online, tempo 

reale. 
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Chapter 1  CHAPTER 1 
                         Introduction 

The introduction of Robots in Minimally Invasive Surgery (RMIS) allows to overcome 

many obstacles introduced by traditional laparoscopic techniques, by improving 

surgeon dexterity and the ergonomics during the surgical procedure and restoring the 

surgeon hand-eye coordination.  

Since their introduction in cardiosurgery, robots have entered all surgical 

subspecialties. Hundreds of robotic systems are commercially available, and the most 

widely known are the da Vinci System (Intuitive Surgical, Sunnyvale, CA, USA), Zeus 

and Aesop (Computer Motion, Goleta, CA, USA), RoboDoc (Integrated Surgical 

Systems, Sacramento, CA, USA), and Naviot (Hitachi Ltd., Tokyo, Japan). Advanced 

robots now assist surgeons in procedures, which were unthinkable just a few years 

ago, ranging from minimally invasive surgery in laparoscopy to complex 

reconstruction surgery.  

Despite the increased adoption of robot-assisted surgery (RAS), the execution of 

surgical tasks on soft tissue remains entirely manual under a human-controlled 

paradigm. Functional outcomes, including complication rates, have remained highly 

variable owing to human factors, such as a surgeon’s hand-eye coordination and 

experience. With more than 44.5 million soft tissue surgeries in the United States each 

year, autonomous soft tissue surgery promises substantial benefits through improved 

safety from reduction of human errors, increased efficiency due to procedure time 

reduction, and potential access to optimal surgical techniques and consistent 

outcomes independent of  surgeon training, condition, or experience. 
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 In current years, research on RMIS has been very popular and evolving at an 

exponential rate. Research institutions and clinics around the world have been 

adopting RMIS, and it is one of the most popular topics worldwide by constantly 

attracting funding for new ideas to improve the overall structure of medical robots. 

Compared to conventional surgery, surgical robots have many advantages, but also 

many disadvantages. While they are more dexterous and precise while replicating the 

operator’s motion, they are still prone to mistakes from the surgeon. The introduction 

of active constraints as a concept in surgical robots provides the opportunity to 

decrease errors whether the surgeon is a junior surgeon or an expert one.  

Active constraints allow the surgeon to decide what region of the patient’s organs 

should not be touched during surgery. This would provide minimal bleeding and even 

less surgical injuries. A complex algorithmic solution is needed to succeed to follow 

and track all of the movements of the organs inside the patient’s body in order to 

transform the active constraint while the patient is breathing or unconsciously moving. 

Stochastic environments, such as surgeries, require incredible knowledge, powerful 

computational machines and complex mathematical solutions. In addition, a general 

solution is needed because each patient is different than the others. To date, no direct 

solution has been created to allow precise, stable and real-time constrained control 

of surgical robots. Such control would be able to track and estimate the deformations 

of the selected organ and force the robot out of a precisely defined area (i.e. a vein) 

to protect that area, achieving a safer environment and removing many injury prone 

situations. 

The work done in this thesis is meant to be an integral part of the SMARTsurg project 

[1], funded by the European Commission’s Directorate-General for Research and 

Innovation (DG RTD), under its Horizon 2020 Research and innovation programme 

(H2020).  

The present thesis work consists of seven chapters. In Chapter 2, the latest 

developments of tissue deformation tracking are presented, as well as state of the art 

research work conducted on real-time active constraints implementations. In Chapter 

3 and Chapter 4 the proposed method is presented along with brief and functional 

explanation of pre-existing methods. In Chapter 5, experimental results and validation 

of the proposed method are presented, along with comparisons with existing solution 
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Chapter 2       CHAPTER 2 
                           State of the art in medical 

robots 

 

2.1. Medical robots – General overview 

Advances in engineering have paved the way in the past 20 years to the development 

of highly flexible and functional robots, which assist surgeons during surgery. These 

robots are called medical (or surgical) robots and the surgeries where they are used 

are called robot-assisted surgeries. Many innovative surgical techniques can be now 

implemented and performed in spaces too difficult to reach and/or visualize without 

the help of this technology. The first surgical robots ever used in a procedure is the 

PUMA 560 (Unimation, Danbury, CT, USA) and NeuroMate (Integrated Surgical 

Systems, Davis, CA, USA). They are adaptations of the technology available in the 

late 80s which were predominantly based on technology developed for the industrial 

sector. The latter are the first robots who have bridged the gap between industrial 

robotics and neurosurgery and stereotactic biopsy. A major positive step in the field 

of surgery was made when a robot was first used in the theater of surgery about 25 

years ago. The robot was a PUMA 200 (Westinghouse Electric, Pittsburgh, PA) which 

was used for needle placement in a CT-guided brain biopsy [2]. Since then it has been 

exciting to see that the field of robotic surgery grows in leaps and bounds. 
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Figure 2.1 Robot-assisted surgery setup 

The field of robotics has expanded and has been delivering many options for surgical 

procedures and different solution for ease of use. Latest advanced robots can assist 

surgeons in such procedures that have been unthinkable years ago, ranging from 

minimally invasive laparoscopy to complex reconstruction surgery and neurosurgery. 

Robotic surgery, or robot-assisted surgery (RAS), allows doctors to perform many 

types of complex procedures with more precision, flexibility and control than is 

possible with conventional techniques. Robotic surgery is usually associated with 

minimally invasive surgery (MIS) — procedures performed through tiny incisions. It is 

also sometimes used in certain traditional open surgical procedures. The bond 

between RAS and MIS has become very strong, leading to certain MIS being only 

done with RAS. The benefits of minimally invasive surgery include: 

• Fewer complications, such as surgical site infection 

• Less pain and blood loss 

• Quicker recovery 

• Smaller, less noticeable scars 

However, robot-assisted surgery involves risk, some of which may be similar to those 

of conventional open surgery, such as a small risk of infection and other 

complications. 
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2.2. Computer – assisted surgery  

Computer-assisted surgery (CAS) is a surgical concept and set of methods, that use 

computer technology for surgical planning, and for guiding or performing surgical 

interventions. CAS is a leading factor in the development of robotic surgery. 

General principles of CAS include: 

- Creating a virtual image of the patient: this is conducted through a number 

of medical imaging technologies including Computer Tomography (CT), 

Magnetic Resonance Imaging (MRI), x-rays, ultrasounds and many more. For 

this generated 3D model, the anatomical region to be operated needs to be 

scanned and uploaded into the computer system. 

- Image analysis and processing: it involves the manipulation of the patient’s 

model to extract relevant information from the data using different image 

processing techniques. 

- Diagnostic, preoperative planning, surgical simulation: using specialized 

software. The gathered dataset, rendered as a virtual 3D model of the patient, 

can be easily manipulated by a surgeon to provide views from any angle and 

at any depth within the volume, thus gaining the ability to better assess the 

case and establish more accurate diagnosis. 

- Surgical navigation: in CAS, the actual intervention is defined as surgical 

navigation. Using the surgical navigation system, the surgeon uses special 

instruments which are tracked by the navigation system. The position of a 

tracked instrument in relation to the patient’s anatomy is shown on images of 

the patients, as the surgeon moves the instrument. 

 

2.3. Surgical navigation system 

A surgical navigation system is similar to the common automotive navigation system, 

in the sense that both of them attempt to localize or determine a position in space in 

the context of its surroundings. However, the actual technology used differs by a great 

margin as surgical navigation is not able to use triangulation such as a global 

positioning system (GPS). Modern surgical navigation systems use a stereoscopic 
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camera emitting infrared light which can determine a 3D position of particular 

structures, like reflective marker spheres. This allows for real-time tracking of the 

marker spheres. As presented in the paper of U. Mezger et. al. [3], this basic setup 

includes a stereoscopic camera, computer platform with screen and proprietary 

navigation software. Camera movements are intraoperatively possible because only 

the tracked instruments of the tracked patient reference is relevant.  

 

 

Figure 2.2 Surgical navigation system 

 

A big improvement to this approach is using preoperative knowledge, usually done by 

acquiring imaging data from preoperative CT or MRI images which will improve the 

navigation in the Operating Room (OR). This type of approach is called “image-

based”. The patient’s 3D model is created from the CT or MRI scans, and using image 

registration it is matched to the current patient position. This is to establish a relation 

to the “real” coordinate system. 

A state-of-the-art image-guided surgical navigation allows surgeons to actively look 

inside of the body and see lesions inside cavities, narrow passages and hidden 

tumors positioned deeply inside of the tissue. In classical surgeries, an endoscope 

can also be used for helping the surgeon to analyze the tissue but for this, first the 

surgery must be paused so that the surgeon can view the endoscope output on a 

monitor. In robot-assisted surgeries, there is no need for such delay. The surgeon is 

always actively focused on the tissue that needs to be removed or operated on. 
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Figure 2.3 Intraoperative surgical navigation setup 

 

2.4. da Vinci Robotic system 

Ever since 1995 the USA based company “Intuitive Surgical” has been developing 

robotic-assisted systems to empower doctors and hospitals to make surgery less 

invasive than an open approach. This has resulted with one of the most advanced 

systems called “da Vinci”. It is responsible for more than 6 million minimally invasive 

surgeries worldwide by 2018. 

The da Vinci Surgical System (dVSS) is a telerobotic surgical system assembled 

using the da Vinci Research Kit (dVRK), a collection of robotic components from the 

first-generation da Vinci Surgical System provided by Intuitive Surgical. It includes 

controllers developed at Johns Hopkins University and Worcester Polytechnic 

Institute, and software developed at John Hopkins University. The dVSS  is also the 

only US Food and Drug Administration (FDA) – approved robotic system for surgery 

since 2000.  

Complex activities such as surgeries require a complex system with many 

components working synchronously. The components of a surgical robot, in this case 

dVSS, are the following: 
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Surgeon Console: 

- Using the da Vinci Surgical System, the operator is seated comfortably in front 

of a console from where he/she can operate while viewing a high definition, 

3D image inside of the patient’s body. 

- There are two da Vinci Master Tool Manipulators (MTMs) with force feedback 

which are at arm’s length, and the operator uses his/her fingers to grab the 

master controls attached to these components. They are placed slightly below 

the display to allow the operator a natural and comfortable movement and 

positioning of hands and wrists relative to the eyes. 

- The system replicates and translates the operator’s hand movements into 

precise, real-time motion of all surgical elements. 

- A foot pedal tray, as part of dVSS, may be used by the operator for multiple 

purposes such as moving the camera, reconfiguring the sitting position, 

disabling movement etc. 

Patient-side cart: 

- This refers to he place where the patient is positioned during surgery. 

- Includes three to four da Vinci Patient Side Manipulators (PSMs), or robotic 

arms, that carry out the operator’s commands. 

- PSMs move around fixed pivoting points located at the “core” (remote center 

of motion) where the instruments are inserted. 

- It is required that every maneuver is under the direct control of the surgeon, 

making the robot an assistant to the surgeon instead of an automatic device. 

Fail-safe systems and repeated safety checks prevent any independent 

movement of the instruments or robotic arms. 

- Each PSM has seven degrees of freedom, which is even greater than the four 

degrees of freedom that the human wrist has. 

Vision system: 

- The vision system is equipped with a high-definition 3D endoscope. It is a 

flexible tube with stereo camera and a light at the tip. Alongside this there is a 

high-level image processing equipment that provides true-to-life images of the 

patient’s anatomy. 

- The operating field is viewable to the entire Operation Room team on a large 

viewing monitor, placed on the vision cart. This widescreen view provides the 
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surgical assistants at the patient’s side with a broad and detailed perspective 

of the procedure, albeit in 2D. 

 

Figure 2.4 da Vinci Surgical System setup. A) Surgeon cart; B) Patient cart; C) Vision system 

 

Endowrist Instruments: 

- The line of dVSS-specific surgical tools is called Endowrist Instruments 

- A full range of instruments is available to the surgeon while operating. 

- Each instrument is designed for the specific surgical application such as 

clamping, cutting, cauterizing, suturing and tissue manipulation. 

- Quick-release levers are used for fast instrumental change during surgery. 

 

Figure 2.5 Endowrist instruments 
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The system enables a minimally invasive approach to traditional laparoscopic 

surgeries by allowing entire operations to be performed through relatively small 

incisions. In traditional laparoscopic surgeries, a larger incision is made in the patient’s 

body and the surgeon performs the operation while standing using long-shafted 

instruments and viewing their movements on a nearby video screen. These surgeries 

typically last many hours and can be quite exhausting for the surgeon. In contrast, the 

da Vinci Surgical System allows the surgeon to perform the entire operation while 

seated at an ergonomic console. The surgeon rests their head on a soft pad in a 

downward-facing position, as it would be if they were performing the surgery directly, 

and views their movements through a high-resolution, stereoscopic display of the 

video feed from the endoscopic camera inserted in the patient. The camera can be 

controlled with the Endoscopic Camera Manipulator (ECM). The MTMs are placed 

where the surgeon’s hands would be if they were performing the surgery directly. The 

motion of the MTMs is translated to scaled motion of the PSMs with seven degrees 

of freedom, and the PSMs also feature tremor cancellation to reduce potential 

shakiness of the surgeon’s hands. 

 

2.5. The da Vinci Research kit 

The da Vinci Research Kit, however, differs from the full DVSS. The Research Kit is 

a collection of first-generation da Vinci components that can be used to assemble a 

research platform for exploring telerobotics in medicine. The Kit contains the following 

components: 

- Two da Vinci Master Tool Manipulators (MTMs) 

- Two da Vinci Patient Side Manipulators (PSMs) 

- A stereo viewer 

- A foot pedal tray 

- Manipulator Interface Boards (dMIBs) 

- Basic accessory kit 

 

The dVRK began as an attempt to create an open-source telerobotics research 

platform from an existing complete telesurgical system [4]. Because the da  Vinci 



 

12 

Surgical System is a proprietary product and was not meant to be an open source 

product, entirely new controller hardware had to be designed and produced to allow 

complete access to all control points. The hardware is based on an approach known 

as centralized computation and distributed I/O, by which a real-time communication 

network allows all control computations to be implemented on a high-performance 

computer while keeping the I/O distributed, thereby preserving the advantages of 

reduced cabling.  

Though the newest model of the da Vinci Surgical System includes two MTMs, three 

PSMs, and one ECM, the actual dVRK includes only two MTMs and two PSMs. 

Nevertheless, it is a simple straigthforawd procedure to combine dVRK electronics 

and software with a full da Vinci Surgical System. To control a single manipulator, two 

FPGAs controller boards are needed and each of these boards required a unique ID 

to be properly addressed by the communication protocol. 

 

2.6. da Vinci Research kit vision system 

The dVRK is equipped with a stereo camera enclosed in an endoscope. Unlike dVSS, 

which has an ECM, dVRK is using a rigid endoscope. A rod-lens endoscope, design 

proposed and patented by Harold Hopkins, was proposed in order to improve on 

previous rigid endoscopes which had low light transmittance and poor image quality. 

Tomkinson et al. in their paper have provided an extensive comparative study on rigid 

endoscopic relay systems [5] and their experimental use in different applications. 

 

 

Figure 2.6 Gradient Index Relay vs Hopkins Rod-lens design 

 

The essential components of an endoscope are:  
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• A rigid or flexible tube – depending on whether the Endoscope is Rigid 

Endoscope or Flexible Endoscope 

 

Figure 2.7 Rigid tube endoscope 

• Light delivery system to illuminate the organ or object in focus. The light 

source is normally outside the body and the light is typically directed through 

optical fibers.  

• Objective lens turns the light into an image, projecting it onto the following 

component. It comprises of between two and nine lenses as well as a prism if 

different viewing directions are required. 

• Relay System transmits the image from the objective lens to the viewer, 

typically a Rod- relay lens system in the case of rigid endoscopes or a bundle 

of fiber optics in the case of a fiberscope.  

• Eyepiece lens - The eyepiece lens magnifies the image transmitted by the 

rod lenses, providing the viewer with a large image circle. Depending on the 

use, this can be implemented for a camera system. 

The rod lens system was developed by Hopkins and therefore referred to as the 

Hopkins System. 

 

Figure 2.8 One stage of Hopkins Rod Lens 

The reversal system consists of a series of rod lenses (relay lenses). They serve to 

transmit the image within the endoscope. Rod lenses made of glass provide a clearly 

http://en.wikipedia.org/wiki/Organ_%28anatomy%29
http://en.wikipedia.org/wiki/Optical_fiber
http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Objective_lens
http://en.wikipedia.org/wiki/Relay_lens
http://en.wikipedia.org/wiki/Fiberscope
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higher light transmission efficiency compared to conventional lenses where the area 

filled with air between the lenses is relatively large. 

 

Figure 2.9 Section drawing of a typical rod lens endoscope 

 

The focus control unit is controllable through a foot pedal and is capable of automatic 

and manual focus adjustment. The two Camera Control Units (CCU) are bolted to the 

vision cart, which are directly connected to the optical cables, which lead to the video 

sensors on the tip of the endoscope. 

The endoscope is entirely motorized and controllable by the surgeon. One of the 

robotic arms is dedicated to the endoscope, and by pressing one of the foot pedals 

the operator can gain instant access to the endoscope and position it properly during 

surgery. 

2.7. Image registration and 3D reconstruction 

In robotically assisted Minimally Invasive Surgery (MIS), recovering of 3D structure of 

the operating field is crucial for registering pre-operative data to the surgical field-of-

view for providing dynamic active constraints (to be introduced later in this chapter)  

and motion control near the operated tissue. Tomographic imaging can potentially 

provide anatomical information about the 3D shape and morphology of the soft 

tissues, but their implementation in operating theatres is a great challenge [2]. 

Currently, the most practical method of recovering the 3D structure of the operating 

site is through optical techniques using a stereo laparoscope. This information can be 

used to align multimodal information within a global reference 3D coordinate system 



 

15 

and enhance robotic instrument control. However, the recovery of 3D geometry from 

stereo imaging during robotic procedures is difficult due to tissue deformation, partial 

occlusion due to instrument movement, and specular inter-reflections. 

The recovery of 3D information from stereo images is one of the greatest challenges 

in the field of computer vision. Given a calibrated stereo vision rig, the task is to identify 

the unique correspondence across a stereo image pair. Recent review articles [6], [7] 

provide a good summary of progress in the field of 3D reconstruction. 

In the study of Stoyanov et.al. [6], a technique is proposed for building a semi-dense 

reconstruction of the operating field in MIS that can operate in real-time. The method 

starts with sparse 3D reconstruction based on feature matching across the stereo pair 

and subsequently propagates structure into neighboring image regions. 

 

 

Figure 2.10 Example images from stereo-laparoscope and the corresponding stereo 

reconstructions [5] 

The proposed method which was tested through two 3D reconstruction experiments 

applied on two different datasets with ground truth obtained by CT scan data, and 

experimentally gave disparity error 0.89 [∓1.13] and 1.22 [∓1.71] pixels, with respect 

to both experiments. The mean disparity error with value of 1/10 with respect to the 

other compared methods BP, RT, CUDA with the only setback of having a semi real-

time processing by approaching a maximum processing speed of 15 Hz for 

compressed images to resolution of 360 x 288 pixels. 

Kowalczuk et al [8], propose a method which does not depend on preoperative CT or 

MRI scans, but rather acquiring knowledge by applying image-based techniques that 

perform stereo matching only on the images obtained from a stereoscopic camera 

(Figure 2.11).   
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Figure 2.11 Flow diagram of the proposed digital stereoscopic method [8] 

 

Experimental results from a real-time generation of a 3D model of porcine surgery 

show that the measurements extracted from the 3D model differ from those obtained 

manually by <1.5 mm, resulting in a mean absolute error of 0.637 mm.  

One of the latest advances in real-time 3D reconstruction of soft tissue is presented 

in the work of H. Zhou and J. Jagadeesan [9]. ORB-SLAM framework is implemented 

as the basis for this work which can be seen in Figure 2.12, but in order to overcome 

difficulties with feature matching in surfaces with repeating textures, a novel histogram 

voting scheme is introduced along with a novel 1-point RANSAC based algorithm. 

According to the paper, a semi real-time computation is achieved at 13.1 Hz with no 

compression of the video resolution. The achieved precision averages root mean 

square errors in the range from 1.3 to 2 pixels acquired from experiments on datasets 

with 960 x 540 pixels.  

A setback for most of these methods is that they are assuming a close-to-static 

environments with minimal deformations between frames and are suitable on for static 

or semi-static minimally invasive surgeries. 
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Figure 2.12 Flow chart of proposed method [9] 

 

2.8. Advances in haptic feedback 

Human-machine communication is predominantly based on only two senses: sight 

and hearing. Haptic feedback is a mode of communication rather than a specific 

technology or application. The tactile sensations named “touch” are part of what is 

known as the somatosensory system. This sensory system also includes a huge 

variety of sensations, including touch, vibration and pressure. These three sensations 

are some of the principles of how haptic feedback is implemented. An everyday use 

is the vibrations of a telephone which mimic the sensation of pressing a button. 

One of the setbacks of robot-assisted surgery is the loss of haptic feedback. Though 

robotic surgery has many benefits over conventional surgery such as motion scaling 

for finer motion control, stereoscopic vision, increased dexterity and additional 

degrees of freedom, loss of haptic feedback is one setback that can make a 

difference. The ability of robotic surgical systems to apply strong compressive and 

shear forces has led to the increased risk of tissue damage, reduced performance 

and increased number of mistakes [10]. As RAS become more popular, 

implementation of haptic feedback systems (HFS) become more present in every 

commercially available solution. 
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Having an advanced system which will provide the surgeon with multiple sensory 

excitation that can convey tactile information of pressure applied and tool-tissue 

interference is of great importance and a way to improve human-machine 

communication in robot-assisted surgery. 

A. Abiri et al [11] provide an advanced multi-modal solution to haptic feedback devices 

for surgical robots, claiming that Kinesthetic force feedback (KFF) is the most broadly 

researched area of haptics [12] because its relative ease of integration with the master 

controls of surgical robots. Their proposed solution is having a multi-modal haptic 

feedback system with the goal to convey more than one aspect of touch by targeting 

multiple classes of mechanoreceptors in the skin and muscles. The proposed sensory 

excitations are pressure and vibration. The experimental results show a comparison 

between: free hand grip, da Vinci robot grip with no HFS, and tri-modal HFS applied 

to the da Vinci, where he average forces applied are 0.88 N, 2.78 N and 1.27 N 

respectively. 

These numbers provide a conclusion that a combined tactile sensation to the surgeon 

improves safety and is able to provide a more natural communication between the 

surgeon and the surgical tool. However, haptic feedback does not have to only be 

used for tactile sense of the pressure applied to the tissue. One other possible 

implementation is for guidance of the tool through a path or to protect going into a 

possible region of the organ which must be protected. Such concept as the latter is 

called active constraints. 

 

2.9. Active constraints 

Active constraints (AC) can be defined as collaborative control strategies, which can 

be used in human manipulation tasks to improve or assist by iso or anisotropically 

regulating motion. Motion regulation is achieved by attaching tools to a robotic arm, 

which is primarily controlled by a human user, under teleoperation control. Throughout 

operation the robot controller monitors tool motion and analyzes it with respect to 

known restricted regions. The AC controller then attenuates or nullifies any user 

command, which will cause the manipulator to digress from a plan. Referring to survey 
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paper of Bowyer et al [13] regarding their implementation, they can be divided in 

several groups, such as: 

- Impedance device control, where the impedance constraint which, when 

active, applies force to the user which will nullify the motion that violates the 

constraint; 

- Admittance device control, where the admittance constraint allows the 

component of motion which does not violate the constraint; 

- Attractive, which encourage movement to the permitted region once the 

restricted region has been breached. Usually used with guidance AC, to 

encourage movement along the path (see Figure 2.13 - a) ; 

- Repulsive, which is active when the tool is near the restricted space. Usually 

used with regional AC, to filter out components of motion trying to breach the 

region (see Figure 2.13 - b); 

- Regional, which prevents the tool from entering the defined region (see Figure 

2.13 - c); 

- Guidance, which encourages the tool to move in a specific path and 

conversely, try to nullify when breaching the boundaries of the guidance path 

(see Figure 2.13 - d); 

- Unilateral, which acts only on one side. It will prevent tool motion into the 

restricted space. Conventionally, regional constraint would be constructed 

from unilateral surfaces (see Figure 2.13 - e); 

- Bilateral, which acts on both sides. It will enforce tool motion along the 

guidance path (see Figure 2.13 - f). Conventionally, guidance constraint would 

be constructed from bilat 
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Figure 2.13 Examples of constraints. a) Attractive; b) Repulsive; c) Regional; d) Guidance; e) 

Unilateral; f) Bilateral. Permitted regions are shown in lighter colors and restricted regions 

are shown in darker colors. [13] 

The final and conceptually most important classification of active constraints is: 

- Static AC, where the environment is considered as stable enough that no 

change of the AC is needed in time. 

- Dynamic AC, where the AC is a moving and deforming geometric figure as 

result of the environmental changes.  

The implementation and use of the aforementioned constraints depends on how they 

are defined. Their definition needs to be computationally feasible, but they need to 

also be implemented correctly in order to describe geometrically regions that may be 

mathematically complex to define. Based on the type of definition, they can be: 

- Point constraints, are the most simple type with one simple 3-D coordinate, 

used for tool positioning (see Figure 2.14 (a)) . 

- Linear constraints, are formed from vectors within the task space. Used for 

straightforward guidance constraints, for direct approach from point to point 

(see Figure 2.14 (b)). 

- Parametric curve constraint, have a complexity range from sinusoidal 

functions to splines. They are geometrically flexible and can be used to 

describe a wide range of complex tool paths (see Figure 2.14 (c)). 
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- Hyperplanar constraints, are simple to implement and can be used to 

separate task space into subspaces, as well as regional and guidance 

constraints (see Figure 2.14 (d)).  

- Parametric surface constraints, are complex to implement due to need for 

nonuniform rational B-splines (NURBS), but research [14] done has shown 

success (see Figure 2.14 (e)). 

- Polygonal mesh constraints, are very complex to implement, construct, 

evaluate and store. If the surface is extracted from “real-world” surfaces, they 

are very useful (see Figure 2.14 (f)). 

- Point cloud constraints, represent a sample set of Cartesian points on the 

surface of a geometry. Common in practice, and usually produced from 3-D 

scanners, range cameras and fiducial tracking systems. Very important is that 

they are very simple to implement in real time, and in literature has found use 

in static and dynamic active constraints (see Figure 2.14 (g)) 

 

Figure 2.14 Example illustrations of the constraint representations described within the 

literature. (a) Point; (b) Linear; (c) Parametric curve; (d) Planar; (e) Parametric surface; (f) 

Polygonal mesh; (g) Point cloud; (h) Volumetric primitive; (i) Explicitly described 

 

Implementation of AC in a real control system is directly connected to the control unit. 

Their definition affects the control of multiple motion parts of a robot. A block diagram 

of how they are implemented in a real system is shown in Figure 2.15. 
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Figure 2.15 Generalized active constraint implementation framework 

 

Having a static constraint requires that the operated region is not affected by the 

environment and will have little to no deformation or movement during surgery. 

However, such assumption very big and unlikely to be fulfilled, because it is difficult 

to provide such scenario in a real surgical procedure. In the literature, there has been 

extensive research on static AC but very little on dynamic AC. The reason for this is 

that dynamic AC are difficult to realize and computationally very expensive. 

2.10.  Dynamic active constraints – Overview of literature 

Dynamic active constraints are a type of AC where the constraint geometry moves 

continuously, as a result of changes in the physical environment or the particular task 

being undertaken. An investigation of dynamic active constraints was carried out 

using simple proximity based constraints by Gibo et al. [15]. They constructed an 

experiment where a linear actuator was used to move a soft tissue phantom in 1 DOF, 

while a human user attempts to affect the model tissue (phantom) by a fixed amount 

using a teleoperated robot. They constructed a regional dynamic active constraint, 

which provided guidance through the tissue phantom at a predefined tissue depth, 

where the user is assisted while the tissue was moved periodically and randomly. 

Gibo et al. used two methods for computing the necessary position of the dynamic 

constraint; one based on the current tissue position and one based on its predicted 

position. They found that the two methods gave similar results and both were 

significant improvements on static constraints or unconstrainted operation.  

Big portion of dynamic AC research has focused on beating heart surgery, Navkar et 

al. [16] considered the heart’s left ventricle and generated multidimensional dynamic 

AC based on a proximity function. A dynamic guidance curve was generated in real 

time, applied to the end effector, between the inner walls of a beating heart. A haptic 

master device was implemented to render constraint force to the user. The results 
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show that off-path error was reduced compared to cases with no guidance or with 

only visual guidance. 

In the paper of Shademan et al. [17] an entire concept is proposed on autonomous 

robotic soft tissue surgery. They propose that a supervised autonomous soft tissue 

surgery in an open surgical setting is the next step for robot-assisted surgeries. In this 

method, the key elements to achieving this is using plenoptic three-dimensional and 

near-infrared fluorescent (NIRF) imaging system and autonomous algorithm for the 

surgical procedure of suturing. One of the biggest advantages a surgeon can have to 

a robot is the awareness of environmental changes and following them. The proposed 

system integrates NIRF and 3D plenoptic vision, force sensing, nano-scale 

positioning and actuated surgical tools. The tissue is marked at reference points with 

NIRF markers. Markers can be easily distinguished from the rest of the frame due to 

the specific light they emit.  

 

Figure 2.16 Top left - Marking of tissue with NIRf markers; Top right - Point clouds of initial 

(blue) and deformed (red) tissue; Bottom left - 3D point cloud before (blue) and after (red) 

deformations; Bottom right - Representative average marker deformation [17] 

Preoperative CT model is used to generate a model of the tissue, and an offline 

registration of the 2D NIR image and 3D point cloud data. To this point cloud, initial 

NIRF markers are added with blue color. In online surgery, the current locations of 

these points are applied with the color red. The approach is motivated by Finite 
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Element Method, by separating the distances between two markers as finite rigid 

elements. 

This method does not provide complete knowledge of the tissue deformation, but only 

around reference points which are of interest for a particular application such as 

suturing. This approach is trying to remove the surgeon from the actual procedure, 

and only have one in preoperative planning and as supervisor. However, the results 

show improvements with respect to conventional robot-assisted surgery (RAS) at 

certain aspects such as reduced mistakes and suture spacing performance while it 

falls back behind the conventional open surgery, laparoscopy and RAS in most of the 

other aspects. 

 

2.11.  Soft tissue deformation tracking 

Dynamic AC are directly connected to the physical geometry of the organ. Thus, if the 

same organ is translating, rotating or deforming, the dynamic AC must always be in 

line with these changes. Estimating these changes in such environment is a very 

difficult task and is yet to be overcome. Environmental effects can be fast changing 

and easily cause malfunctions of tracking algorithms.  

In the work of P. Mountney et al. [18] a framework is proposed which incorporates an 

online learning algorithm with feature tracking method that is suitable for in vivo 

applications. The problem of feature tracking is formalized as a classification problem 

where the classifier is trained with unlabeled data and adaptive updates during the 

tracking process. This approach does not assume about the type of image 

transformations or visual characteristics, which makes it suitable for dealing with 

nonlinear tissue deformations. The claimed strength of the algorithm when dealing 

with drift and occlusions, as well as tissue deformation is demonstrated in the 

experimental results done on simulated, porcine and in vivo data (Figure 2.17). 

Compared to three different techniques (SIFT, LK, mean-shift) it achieves bigger and 

very stable sensitivity to deformations during long term datasets. 
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Figure 2.17 Relative performance values for the five different tracking techniques compared; 
green – the proposed tracker, red – SIFT, dark blue – Lucas Kanade, black – mean-shift 1 

and light blue – mean-shift 2 [18] 

  

In the work of D. Stoyanov and G. Yang [19],a  framework is presented which uses a 

2D video stream, instead of the usual 3D. Based on geometric surface representation, 

surface deformation is inferred from a reliable set of tracked salient feature points, 

which may be obtained using any reliable feature-based approach. The calculation 

time, however, is largely affected by the number of nodes in the mesh which is 

tracked. This mesh acts as an active constraint to be tracked and transformed.  

 

 

Figure 2.18 (a) Laparoscopic image of the phantom heart model with CT fiducials rendered 
onto the image to align with the observed points; (b) 3D rendition of the phantom model and 

fiducials within the camera’s coordinate system; (c-d) trajectory motion of a fiducial 
recovered using the proposed surface tracking approach shown in blue and  compared to 

the data obtained from the CT ground truth shown in red. [19] 
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This proposed method achieves good repeatability and robustness in environments 

not largely affected by scene changes and tool interference. 

A probabilistic framework to track affine-invariant anisotropic regions has been 

developed by Giannarou et al [20]. where a recovery strategy from potential tracking 

failure has been approached using spatial context and region similarity information to 

update an Extended Kalman Filter tracking framework. 

 

Puerto-Souza and Mariottini in their work [21] introduced Hierarchical Multi-Affine 

(HMA) algorithm to map features between two endoscopic images allowing to recover 

features that were lost after a complete occlusion or sudden camera motions. It is a 

method which improves over existing feature-matching methods because of the larger 

number of image correspondences, increased speed and higher accuracy and 

robustness. In the provided test results, HMA outperforms the existing methods in 

terms of speed, accuracy and robustness. 

 

A fast and adaptive algorithm for tracking non-rigid objects is proposed in the paper 

by Duffner et al. [22], where the unconstrainted problem of tracking a non-rigid, 

moving and deforming object is addressed. Their proposed method generalizes the 

unseen and new appearances of soft tissues within a video sequence and avoids drift, 

by applying an adaptive approach which is a combination of a detector using pixel-

based descriptors and a probabilistic segmentation framework. The pixel-based 

detector is developed by using a Hough voting scheme. This method shows great 

computational speed which allows for real-time application in surgical robots. 

 

An approach which directly addresses the problem of 3D deformation tracking in 

Minimally invasive surgery (MIS) is provided in the work of V. Penza et al. [23] which 

is a solution for safety volume tracking. This framework provides an approach to 

minimize the risk of intraoperative bleeding during abdominal MIS. Following on the 

published work of Penza et al. [24], long-term tissue tracking and dense tissue 3D 

reconstruction method,  the 3D information obtained from this reconstruction is used 

to identify a Safety Volume (SV) fitted around the area it aims to protect. Any time an 

instrument approaches the SV, the surgeon is warned through graphical 

representation of the distance between the instruments and the reconstructed 
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surface. This proposed method was realized and implemented in a dVRK system and 

was tested and validated under realistic Robotic MIS (RMIS) conditions. 

 

In addition to the aforementioned works of Penza, another published work by Penza 

et al. [25] is done concerning long-term Safety Area (SA) tracking. This framework 

combines optical flow algorithm with a tracking-by-detection approach in order to be 

robust against failure. A Model Update Strategy (MUpS) is additionally implemented 

to improve the SA re-detection after failures, taking into account changes of 

appearance of the SA model through time. The presented method was tested and 

verified in order to assess it’s capability of maintaining high tracking performance for 

extended periods of time (length of 5 min, containing different types of occlusions). 

Results show high precision and recall values, 0.85 and 0.6 respectively. These 

results show great promise, however the computational time at each cycle is at least 

1.6 s up to 8 s. This does not allow real time implementation due to possible latency 

and blockage of motion commands. The results concerning method effectiveness are 

shown in the following Table 1. 

 

Table 1 F-measure values (without/with MUpS) for three different overall threshold (low = 
0.2, medium = 0.5, high =0.8) and Recovery Time [# frames] (without/with MUpS) [25] 

 In-vivo  ex-vivo 

 EV1 EV2 EV3 IV1 

Low 0.93/0.96 0.44/0.96 0.97/0.97 0.34/0.60 

Medium 0.93/0.95 0.44/0.96 0.90/0.93 0.34/0.60 

High 0.80/0.71 0.30/0.45 0.20/0.38 0.22/0.32 

Rec. time 0.84/0.50 37.50/0.88 7.00/2.00 16.00/8.04 

 

 

 

2.12.  SMARTsurg project 

The SMARTsurg project, funded by the European Commission’s Directorate-General 

for Research and Innovation (DG RTD) under its Horizon 2020 Research and 

innovation programme (H2020), is a collaboration between several European 
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research institutions. The main vision of the SMARTsurg project is to enable complex 

minimally invasive surgical operations by developing a novel robotic platform for 

assisting the surgeon in such tasks. Advanced features will be developed and 

integrated into the proposed platform including: 

 

- Wearable surgical system to provide natural usability and high dexterity to 

allow the undertaking of more complex surgical procedures and to reduce the 

surgeon’s cognitive load. 

- Anthropomorphic multi-fingered surgical instrument controlled by the 

anthropomorphic wearable system, enabling user-centered design and 

modifications by means of additive manufacturing. 

- Software embedded visual and force augmentation for increased safety and 

dependability. 

- Functionalities enhancing the system’s cognition abilities and dependability, 

such as dynamic active constraints construction and enforcement, as well as 

user intention detection 

This thesis, as a part of the SMARTsurg project, was done under the guidance of prof. 

Giancarlo Ferrigno in NEuroengineering and medicaAl Robotics Lab (NEARLab) 

2.13.  Aims of the work 

In practice, having a well posed system for tissue deformation tracking and dynamical 

active constraint transformation has not been successfully implemented. There are 

barriers for adoption for real-time implementation of the aforementioned system, such 

as providing reliable mathematical and programming basis required to capture the 

fast changes in a very mixed and dynamic environment that is a robot-assisted 

surgery. Furthermore, providing a system that is able to correct itself and learn at each 

step in order to recover from the changes in tissue structure, lighting, projection, and 

tool interference in the scope of view. It is also needed to reduce the complexity of 

the solution in order to provide calculations fast enough not to lose any information 

that is provided at each frame received. For this reason, the main purpose of this 

thesis is development of an estimation technique which will account for all of these 

occurrences, particularly the deformation of the tissue that occurs from tissue 
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manipulation by the surgeon and due to natural movement of organs during surgery 

due to breathing, heartbeat etc. 

Tracking of certain characteristic features of the tissue of interest is a key process of 

the behavior that is of interest to analyze. By monitoring the changes of these 

features, the amount of geometrical change of the tissue can be assessed. If there is 

an excess of noise, parameters can be changed in order to stabilize the process. 

A deep understanding of the correlation between the motion of characteristic features 

and the geometrical change is fundamental to know how to estimate the geometrical 

transformation of the organ in a mathematical manner, and to know how to control 

and correct the parameters so that the entire process is stable and reliable. While the 

method that will be proposed in this work is completely working on 2-D input images, 

the results will be projected into 3-D space point cloud so the data can be effectively 

implemented in the GUI designed by the collaborators from the SMARTsurg project ( 

Chapter 2.12 ) 

Experimental campaigns have been carried out on datasets provided from real life 

surgeries done by surgeons using a medical robot. Each provided dataset was 

specifically picked out to encapsulate all possible disturbances that may happen in 

the operating room in a real surgery. Additional tests were done using a kidney 

phantom in order to cover particular behaviors in a controlled test environment. 

 



 

30 

 

Figure 2.19 Thesis work logical scheme 
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Chapter 3 CHAPTER 3 
Methodological background 

In this chapter, a brief yet detailed analysis can be found of the pre-existing processing 

algorithms used in this thesis work is discussed. Because of the large number and 

diversity of these algorithms, they have been separated into groups depending on 

their function and in which stage of the full process they are used. 

3.1. Color Spaces   

3.1.1. Red – Green – Blue (RGB) and Grayscale 

In the world of graphics there are additive and subtractive colors. The primary additive 

colors are red, green and blue, hence RGB. By combining them, the entire spectrum 

of visible colors can be recreated. 

The color of each pixels is presented by three values, each corresponding to the 

intensity of each primary color. The value of each pixel ranges from 0 to 255. 

The triples corresponding to black (i.e. absence of light) and white (i.e. absolute 

presence of light) 

𝑅𝐺𝐵𝑏𝑙𝑎𝑐𝑘 = (0, 0, 0)                                  𝑅𝐺𝐵𝑤ℎ𝑖𝑡𝑒 = (255, 255, 255) 

respectively. Also, the triples corresponding to the primary colors are: 

𝑅 = (255, 0, 0)               𝐺 = (0, 255, 0)                 𝐵 = (0, 0, 255) 
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Figure 3.1 RGB cube of color distribution 

An RGB image is a m x n x 3 matrix, where m and n are the width and height of the 

image respectively, and the third dimension refers to having three matrices with size 

m x n for each R, G and B channel.  

In order to transform an RGB image from three dimensions to two, a calculation needs 

to be done in order to keep as much as information possible. The most used 

approached is ‘”grayscale”. To convert a color in grayscale, we compute: 

𝐺𝑆𝑥,𝑦 =  
𝑅𝑥,𝑦 + 𝐺𝑥,𝑦 +  𝐵𝑥,𝑦

3
 

Eq. 3.1 

This is a very basic and simple step and can be done for any other color space but 

due to different definitions of values in each channel, it only makes sense to be used 

for RGB. 

3.1.2. Hue – Saturation – Value (HSV) 

One of the alternative representations to the RGB color model is HSV which stands 

for Hue-Saturation-Value. It was designed in order to align colors in a way which is 

close to the way human vision perceives color-making attributes.  

For this reason, each component has a different role in this color space: 

- Hue is the color portion of the model, and it can be expressed as a number 

from 0° to 360°. 

- Saturation describes the amount of gray in a particular color, and ranges from 

0 % to 100 %. Reducing this component produces a faded effect. 
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- Value (or brightness) works in conjunction with saturation and describes the 

brightness or intensity of the color, that it ranges from 0 % to 100 %. Here, 0 

% stands for absolute black and 100 % is maximum brightness. 

These  values are mathematically correlated to RGB because most visual multimedia 

is encoded in RGB. This connection is important, and  it will be further discussed. 

 

 

Figure 3.2 HSV cylinder of color distribution 

 

This color space gives the opportunity to easily process colors based on shades of 

color, which would show very useful throughout this thesis, especially the Saturation 

channel. 

 

3.1.3. Luma – Channel Blue – Channel Red (YCbCr) 

Another color space focused on how the human eye percepts colors is YCbCr which 

stands for: 

- Y for Luma component; 

- Cb for blue component; 

- Cr for red component. 
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Figure 3.3 YCbCr cube of color distribution 

 

The human eye is most sensitive to the Y component and during the conversion or 

transmission this channel is most accurate. Cb and Cr are less important because the 

human eye does not react as sensitively as to Y. 

However, this gives a good range of opportunities especially when working with 

Histogram thresholding of organs and tissues. The Cb channel has a well posed 

distinction between red-rose shades and the rest of the spectrum. 

 

 

Figure 3.4 YCbCr channel decomposition 

 

3.1.4. CIELab 

Lab, or CIELab, is the most complex and robust color space for quantitative 

comparisons.  Lab makes assumptions about the colors in the environment based on 

the specific lighting conditions. In this color space, each pixel has three different 
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values in order to represent a color. The description of each of the three values is 

what Lab stands for: 

- L for Luminance (black to white) ranging between 0 % and 100 %, 

- a for channel green-to-red ranging from -100 to 100, 

- b for channel blue-to-yellow ranging from -100 to 100. 

 

Figure 3.5 CIELab color distribution 

 

Lab color space is defined as a perceptually uniform color space, meaning that the 

sets of colors separated by the same distance in Lab space will seem about equally 

different in sense of color hue or shades. 

3.2. Image Preprocessing 

In image processing procedures, the most important step is preprocessing, as it 

prepares the image for further analysis. Once the image is correctly preprocessed to 

improve contrast, decrease noise effect, equalize intensity etc. for a particular 

application, it will give much more information than an image that has not been 

prepared for analysis in the same experimental setup. 

Therefore, the principles presented in this part are the ones used in preprocessing 

the video frames before analyzing them. 
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3.2.1. Gamma correction 

Gamma correction is a nonlinear operation that was primarily developed in order to 

correct the luminance in video and images [26]. It is applied directly to an RGB image 

to each pixel individually. When applied, the intensity of the entire image will be 

modified depending on the choice of the γ coefficient. In its simplest form it is defined 

by the expression: 

𝑉𝑜𝑢𝑡 = 𝐴𝑉𝑖𝑛
𝛾

 

Eq. 3.2 

Where 𝑉𝑜𝑢𝑡 is the non-negative real output , 𝑉𝑖𝑛 is the non-negative real input value 

which is raised to the power of γ and multiplied by the constant A. Since Gamma 

Correction is applied to each pixel individually, 𝑉𝑖𝑛  is the pixel color value of the 

original image while 𝑉𝑜𝑢𝑡 is the pixel color value of the image after gamma correction 

is applied. A is commonly 1, and the inputs and outputs are normalized to fit a range 

of values between 0 and 1. 

There are three cases: 

- γ < 1 means that the correction is doing gamma compression, which results 

with a darkened image 

- γ = 1 will results with the exact same image on the output as the input 

- γ > 1 means that the correction is doing gamma expansion, which results with 

a more luminated image. 

This method was primarily used to match the colors of the image or video taken from 

a camera with the intensity which the human eye is supposed to see it. There is a 

nonlinear relationship between these two occurrences. 

 

 

Figure 3.6 Perceived vs Physical brightness 
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The power-law takes care of this nonlinear relationship with the aforementioned 

equation which takes the form of the curve specified in the following graph (Figure 

3.7). 

 

Figure 3.7 Gamma correction non-linear dependencies 

 

This operation is performed pixel-wise and is not an approach which introduces 

correlation between pixels, unlike other procedures which involve moving windows. 

Even though it was primarily developed for the use in monitors, it has many 

applications in other fields. One of them, which is used in this thesis, is the capability 

to compress visual characteristics of certain areas of an image. By using gamma 

correction, regions with no explicit boundaries have a more distinguishable visual 

outlook than the rest of the image. In a way, it is a step before approaching a 

background-foreground segmentation. Thanks to it, it is possible to acquire an image 

that resembles a surrounding which encapsulates a salient object. 

3.2.2. Gaussian blur 

One of the most common and efficient ways to blur an image is Gaussian blur or 

Gaussian smoothing. The Gaussian smoothing operator is a 2-D convolution 

operator that is used to ‘blur’ images and remove noise. In this sense it is similar to 

the mean filter, but it uses a different kernel that represents the shape of a Gaussian 

curve. The kernel takes advantage of Gaussian distribution to create a 2-D moving 

window of weights which is then applied through the image. It can be applied only on 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/mean.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/kernel.htm
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2-D images, such as grayscale, or on 3-D images by applying it separately to each 

channel (i.e. separately to R, G and B). 

The mathematical formula of a Gaussian function in two dimensions is: 

𝐺(𝑥, 𝑦) =  
1

√2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2  

Eq. 3.3 

where x is distance from the horizontal axis, y from the vertical axis and σ is the 

standard deviation of a Gaussian distribution. A kernel is then created based on this 

distribution, in two dimensions. Because Gaussian distribution is asymptotic, a kernel 

of infinite size will be needed to cover the entire distribution. A finite size needs to be 

chosen which is of size n by n, where n is an odd number. An odd number is needed 

in order to make sure there is a central element, at position (
𝑛−1

2
,

𝑛−1

2
). The element at 

this position is the core element and will be in line with the processed pixel. The kernel 

is moved through the image in the same way a moving window is done. In Figure 3.8, 

the first image shows a 2D gaussian distribution, where it can be seen that the highest 

value is in the central point. The kernel is defined by this distribution but in a discrete 

manner, as shown in third image in Figure 3.8. The value of 1 is positioned in the 

center, and by following the Gaussian distribution lower values are set to the other 

pixels in waves of concentric circles. This approach gives the maximum priority to the 

central element. By the principle of convolution, the kernel is taken through the image. 

When multiplied with a set of n by n pixel sub-matrix from the original image, only the 

central pixel will change the value. Each element pixel sub-matrix from the original 

image will be multiplied with the corresponding element of the kernel. After this, the 

sum of all multiplication results is calculated and then divided by the sum of all weights 

in the kernel. This value will be the new value of the central pixel, as shown in the last 

image of  Figure 3.8. 

 

 

 

 

Figure 3.8 Gaussian blur kernel definition 
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A good survey can be found in the work of Gedraite et al. [27] on the effects of 

Gaussian Blur in image filtering and image segmentation. One of the setbacks of this 

procedure, especially for the use in this thesis, is that blurring an image reduces the 

clear edges throughout the image 

3.2.3. Contrast – Limited Adaptive Histogram Equalization (CLAHE) 

A common image processing technique to improve contrast is Adaptive histogram 

equalization (AHE), and it differs from ordinary histogram equalization in the sense 

that it will compute several histograms, each corresponding to a separate distinct 

section of the image, used to redistribute the lightness values of the image. However, 

this principle tends to overamplify noise in relatively homogenous regions of an image. 

This is easily noticeable in a situation where a small histogram window is used, and 

that particular window is dominated by noise effect. The result will be a histogram 

based on noise.  

A variant of AHE called contrast limited adaptive histogram equalization (CLAHE) 

prevents by limiting the amplification. Ordinary AHE tends to overamplify the contrast 

in near-constant regions of the image, since the histogram in such regions is highly 

concentrated. 

CLAHE uses a windows in which the histogram is equalized, and is very important for 

this window to be larger than the features to be preserved. For the calculation of 

CLAHE, color space LAB is to be used. From the Lab image, a histogram with N bins 

is calculated only on the L (lightness) channel. that should not be more than 256. It 

limits the maximum contrast in its intensity transfer function, by implementing a clip 

limit.  

Anything that exceeds this clip limit will be cut off from the top and redistributed at the 

bottom equally among all histogram bins (Figure 3.9). The value at which the 

histogram is clipped, the so-called clip limit,and depends on the normalization of the 

histogram and thereby on the size of the neighborhood region. Common values limit 

the resulting amplification to between 3 and 4 [28]  
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Figure 3.9 Redistribution of the part of a histogram above the clip limit to the lower bound 

3.3. Features, Detectors and Descriptors 

In image processing, a feature is a piece of information that includes relevant data, 

necessary for resolving computational tasks for image processing applications. In a 

sense, it is similar to pattern recognition but by having a very sophisticated collection 

of features. They are specific structures in an image such as points, edges or objects 

depending on the feature detection algorithm. 

An interest point (key point or salient point) detector is an algorithm that chooses 

points from an image based on some criterion. Typically, an interest point is a local 

maximum of some function, such as a "cornerness" metric. The detector uses a 

sophisticated set of rules in order to decide whether a certain point qualifies to be a 

point of interest. Together, an interest point and its descriptor is usually called a local 

feature. Local features are used for many computer vision tasks, such as image 

registration, 3D reconstruction, object detection, and object recognition. There are 

many types of features, and each one of them requires a certain algorithm to be used 

as a detector. Generally, they are divided in the following groups: 

- Corner detection: 

o FAST (Features from Accelerated Segmentation Test) 

o Harris Corner Detector 

o Shi and Tomasi  

o SIFT (Scale-Invariant Feature Transform) 

- Blob detection: 

o SURF (Speeded Up Robust Features) 

o KAZE 
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o MSER (Maximally Stable Extremal Regions) 

- General feature detection: 

o BRIEF (Binary Robust Independent Elementary Features) 

o ORB ( A hybrid of Oriented FAST and Rotated BRIEF) 

For the purpose of choosing the most appropriate feature detector and descriptor in 

this thesis, a brief survey, motivated by the work of Tareen et al. [29] was done on a 

video sequence of partial nephrectomy in order to experimentally see which feature 

detection algorithm will be most usable for this thesis. The final choice was made 

according to: 

- Average number of features detected in the video sequence 

- Average detection time per frame 

- Dispersion of features 

The results are shown on the Table 2. 

Table 2 Comparative study of feature detectors 

Name Average Time Average Features Detected 

FAST 0.0073 s 224.8246 

Min-Eigen 0.1283 s 693.6864 

Harris 0.1037 s 178.4189 

BRISK 0.2098 s 390.3268 

SURF 0.0439 s 178.2127 

KAZE 0.1070 s 1274.1 

MSER 0.1422 s 258.0570 

ORB 0.0861 s 2072 
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Figure 3.10 Comparison of different feature detectors applied to the same video sequence 
with length of 405 frames 

 

The conclusions are: 

1. The fastest algorithm is FAST but gives only third smallest number of 

features. 

2. The algorithm with most average features per frame is ORB and has third 

fastest execution time. The only problem is that without filtering the frame, it 

does not cover the entire frame. 

3. KAZE gives a fairly good amount of features, and its execution time is in the 

middle. However, it is crucial to emphasize covers the entire frame with 

trackable features and has a very low standard deviation compared to the 

average number of detected features (see Figure 3.10 Comparison of different 

feature detectors applied to the same video sequence with length of 405 frames). 

4. SURF is the most cost-efficient detector of blob-like structures. 

5. ORB is the most cost-efficient detector of points of interest (based on 

adaptive FAST). 
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6. What can not be seen from the table is the dispersion of trackers. While 

SURF and ORB seem to be the most cost-efficient, their performance in 

registering features more sparsely through the image was below average. This 

lead to choosing KAZE as the used feature detector because it was able to 

detect features throughout the image at a very stable and predictable 

performance. Since the region of interest may be at any segment of the image, 

choosing KAZE was the obvious choice. From here on each mention of feature 

related processes will imply that KAZE were used. 

In the core of most feature detectors and descriptors lies the analysis on image 

gradient. Image gradient is the directional change of intensity or color in an image. 

Mathematically, it is a function with two variables at each point of an image, as a 2D 

vector with components given by the derivatives in the horizontal and vertical 

directions. At each point, this vector points in the direction of the largest intensity, and 

the length corresponds to the rate of change in that direction. 

The novelty in KAZE features [30] is the computation of nonlinear scale space in 2D, 

to detect features of interest that exhibit a maxima of scale-normalized determinant of 

the Hessian response through the nonlinear scale space. 

For detecting keypoints of interest, the response of a normalized determinant of the 

Hessian is computed at multiple scale levels. In the case of multiscale detection, 

differential operators are normalized with respect to the scale, because the amplitude 

of spatial derivatives decreases with scale: 

𝐿𝐻𝑒𝑠𝑠𝑖𝑎𝑛 =  𝜎2 (𝐿𝑥𝑥𝐿𝑦𝑦 −  𝐿𝑥𝑦
2 ) 

Eq. 3.4 

Where (𝐿𝑥𝑥, 𝐿𝑦𝑦) are the second order derivatives in horizontal and vertical directions 

respectively, and 𝐿𝑥𝑦 is the second order cross derivative, and 𝜎 is the scale level. 

The derivatives are approximated by using 3 x 3 Scharr filters of different derivative 

step sizes. Aside from the importance of the response 𝐿𝐻𝑒𝑠𝑠𝑖𝑎𝑛 in order to determine 

if some point is a keypoint feature, it can also be used as a good metric for how good 

and how distinctively has that point been described by the descriptor. 
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To obtain rotation invariant descriptors, estimation of the dominant orientation in a 

local neighborhood centered at the keypoint location is needed. In a circular area with 

a radius of 6σ with a sampling step of size σ for each sample, first order derivatives 

are weighted with a Gaussian kernel centered at the interest point. The derivative 

responses are represented in vector space and the dominant orientation is found by 

summing the responses within a sliding circle segment. 

The descriptor is built upon the M-SURF descriptor, but adopted to a nonlinear scale 

space framework. 

 

Figure 3.11 Structure of KAZE feature descriptor 

 

From experimental results, it can be seen that KAZE is a step in-front of the other 

descriptors in its class in detector repeatability, as well as precision in nearest 

neighbor matching strategy by using any of the three possible diffusivity protocols 

(G1, G2 or G3) 

 

 

Figure 3.12 On the left, repeatability graph while zooming and rotation is featured in the 
testing set. On the right, precision and recall scores for the same test set. 
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 The most important results regarding this thesis is KAZE’s capability of great 

precision in matching deformable surfaces. Detection time is larger than most of the 

detectors but having a good descriptor to track is better than redetecting at every few 

frames. 

 

3.4. Feature tracking 

In the realm of computer vision, the Lucas-Kanade method [31] is perhaps the most 

widely used differential method for optical flow estimation. It works under the 

assumption that the flow is constant in a local neighborhood of the pixel in 

consideration and computes the basic optical flow its neighborhood by the least 

squares criterion. Another assumption is that the displacement is less than 1 pixel 

between two frames. It is specifically a  local method and does not provide flow 

information of uniform regions of the image. Since motion tracking can be sparse or 

dense, this method falls under Sparse Optical Flow tracking. 

A more popular name for this algorithm is KLT (Kanade-Lucas-Tomasi) but in that 

implementation there is a corner detection implemented by the Tomasi-Kanade 

feature extraction framework called GoodFeaturesToTrack. For this thesis, only 

Optical Flow Estimation by Lucas-Kanade will be used because the 

GoodFeaturesToTrack output did not provide any useful features to track. 

Problem statement: 

Two images in grayscale are provided to the algorithm, called I and J. 

- I(x,y) is the grayscale value of a pixel from the image I at (x,y). 

- Let  𝑢 = [𝑢𝑥 𝑢𝑦]𝑇 be a point of interest on the first image I. 

- 𝑑 = [𝑑𝑥  𝑑𝑦]𝑇 is the image velocity at u, or the optical flow at u. 

- The goal is to find v in J, where I(u) and J(v) are similar enough. 

𝑣 = 𝑢 + 𝑑 =  [
𝑢𝑥 + 𝑑𝑥

𝑢𝑦 + 𝑑𝑦
] 

Eq. 3.5 
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The residual function is two-dimensional least squares method covering the 

neighborhood of the pixel tracked. The leading cost function that should converge and 

lead to a solution is this residual function which is being minimized with respect to the 

two components of the optical flow [dx dy]T. 

A big issue appears when object moves by more than one pixel. Since this method 

only can be applied to small movements, it should not be able to track that. However, 

Pyramidal Implementation takes care of this part. 

The concept behind this is that the pixel is tracked at multiple levels. The pyramid 

representation, as presented in the work of Bouguet [32], is built recursively in which 

Level 0 is the original image, Level 1 is scaled down to one quarter of the original 

image (both width and height are scaled to half), Level 2 is one eighth and so on. 

Let L be the pyramidal level, from here it is follows that 

𝑢𝐿 =  
𝑢

2𝐿
 

Eq. 3.6 

And for the displacement (optical flow)  

𝑑 =  ∑ 2𝐿𝑑𝐿

𝐿𝑚

𝐿=0

 

Eq. 3.7 

A simplified overall pyramid tracking algorithm is depicted on Figure 3.13. 

 

 

Figure 3.13 Simple overall pyramid tracking algorithm 
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With respect to the level L, it must be defined as: 

�̅� = [𝑣𝑥  𝑣𝑦]𝑇 =  𝑑𝐿 

𝑝 = [𝑝𝑥  𝑝]𝑇 =  𝑢𝐿 

Eq. 3.8 

The previously mentioned residual function being minimized with respect to d 

implemented for pyramidal representation will be: 

휀(�̅�) =  휀(𝑣𝑥, 𝑣𝑦) =  ∑ ∑ (𝐴(𝑥, 𝑦) − 𝐵(𝑥 +  𝑣𝑥 , 𝑦 +  𝑣𝑦))2 

𝑝𝑦+𝑤𝑦

𝑦=𝑝𝑦−𝑤𝑦

𝑝𝑥+𝑤𝑥

𝑥=𝑝𝑥−𝑤𝑥

  

Eq. 3.9 

Where 휀  is the residual, (𝑑𝑥 , 𝑑𝑦)  is the displacement vector, ( 𝑤𝑥 , 𝑤𝑦 ) are the 

dimensions of the integration window, (𝑝𝑥 , 𝑝𝑦 ) is the point vector,   (x,y) are the 

coordinates in the source image, A is the source image, and B is the destination 

image. 

To find the optimum of (𝑑𝑥 , 𝑑𝑦) the following differential equation must be solved: 

𝜕휀(�̅�)

𝜕�̅�
|

�̅�= �̅�𝑜𝑝𝑡

= [0  0] 

Eq. 3.10 

This is solved iteratively by the first order Taylor expansion about the point �̅� = [0 0]. 

For a clearer representation of the previously discussed subject, the following flow 

chart gives a functional representation of how one tracking sample works. 
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Figure 3.14 Flow chart of an example implementation of LK tracking 

 

Optical flow estimation is a widely used concept with many different implementations 

which improve performance in their respective applications. It is completely 

implemented in OpenCV with a very stable performance. Many of the mentioned 

equation have parameters which must be user defined in order to achieve useable 

results since using default parameters only works good for stock images and videos. 

 

 

Figure 3.15 Graphical representation of tracked feature points with LK 
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3.5. Feature matching 

In general there are two common approaches for matching features in Image 

Processing. They are Brute Force matching and FLANN-based matching. Brute force 

tries to find the best match between all the features of both images using a particular 

method such as Euclidean distance (L2 – norm), while Flann (Fast Library for 

Approximate Nearest Neighbors) looks for an approximate nearest neighbor. Flann 

can be much faster but only finds an approximation which the cost paid for gaining on 

speed. Flann is more commonly used for large sets of features (above 1000) which is 

not the case in this application. 

 

 

Figure 3.16 Feature matching by using Brute Force approach 

 

Because feature matching in this thesis is a difficult task on its own, the method used 

will be Brute Force in order to find the best possible match. There are a couple of 

steps prior to matching which make sure a small number of very strong features is 

matched to reduce workload, which will be explained in the next sub-topic. 
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3.6. Types of transformations and transformation matrix 

estimation 

3.6.1. Types of transformations 

A linear transformation is a function which maps a vector space into another, in a form 

of a matrix. A mapping is a linear transformation if it preserves vector addition and 

scalar multiplication. To apply a linear transformation to a vector (x,y coordinates of 

one pixel point), it is necessary to multiply this vector by a matrix which represents 

the linear transform. The output will be a new vector with the transformed coordinates. 

There are wo classes of linear transformations - projective and affine. Affine 

transformations are a special case of the projective transformations. Both of the 

transformations can be represented with the following matrix: 

 (

𝑎1 𝑎2 𝑏1

𝑎3 𝑎4 𝑏2

𝑐1 𝑐2 1
) 

Where: 

• (
𝑎1 𝑎2

𝑎3 𝑎4
) is a rotation matrix.  

• (
𝑏1

𝑏2
) is a translation vector.  

• (𝑐1 𝑐2) is a projection vector. For affine transformations all elements are 

always equal to 0. 

If x and y are the coordinates of a point, the transformation can be done by the simple 

multiplication: 

(

𝑎1 𝑎2 𝑏1

𝑎3 𝑎4 𝑏2

𝑐1 𝑐2 1
) × (

𝑥
𝑦
1

) =  (
𝑥′

𝑦′

1

) 

Eq. 3.11 

Here, x' and y' are the coordinates of the transformed point. 



 

51 

The only difference between these two transformations is in the last row of the 

transformation matrix. For affine transformations, the first two elements of this row are  

zeros. This leads to different properties of the two operations: 

• The projective transformation does not preserve parallelism, length, and 

angle. But it still preserves collinearity and incidence. 

• Since the affine transformation is a special case of the projective 

transformation, it has the same properties. However, unlike projective 

transformation, it preserves parallelism. 

 

Figure 3.17 Graphical representation of Projective and Affine transformation 

 

In literature, projective transform can be found also as perspective transform.  

There are also more complex and non-linear types of transformations, but the 

transformation between two frames is assumed to be small enough to be estimated 

by perspective transformation, as it is the linear transformation that can cover most 

sub-transformations (parallelism, length and angle). 

3.6.2. Transformation matrix estimation 

Going back to feature matching (Chapter 3.5) , once features have been matched, 

many of them have been discarded because not a suitable match has been found. In 

applications where matching is not done on a salient object, but rather on a region 

from a very non-homogenous image where background and foreground are not easily 

segmentabl, many features will be discarded becausee they have not been matched. 
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In addition, there will be many wrong matches since the background is spread 

throughout the image with similar repeating patterns. In order to make an estimation 

on how the features have transformed from one image to another, it is necessary to 

estimate a transform matrix while also discarding many possible outliers which may 

cause difficulties when estimating this matrix.  

If not all of the point pairs ( Source Points, Destination Points) fit the rigid perspective 

transformation (meaning, outliers are accounted for), this initial estimation will be poor. 

In this case, one of the two robust methods should be used, RANdom Sample 

Consensus (RANSAC) or Least Median of Square regression (LMeDS). Both of them 

try many different random subsets of the corresponding point pairs (of four pairs 

each), estimate the homography matrix using this subset and a simple least-square 

algorithm, and then compute the quality/goodness of the computed homography 

(which is the number of inliers for RANSAC or the median re-projection error for 

LMeDs). The best subset is then used to produce the initial estimate of the 

homography matrix and the mask of inliers/outliers. 

Regardless of the method, robust or not, the computed homography matrix is refined 

further (using inliers only in case of a robust method) with the Levenberg-Marquardt 

method [33] to reduce the re-projection error even more. 

 

Figure 3.18 Matching of a template with applied bounding box by estimated perspective 
transform 

 

The RANSAC method is able to any ratio of outliers but requires a threshold to 

distinguish inliers from outliers. The method LMeDS does not need any threshold but 

it works correctly only when there are more than 50% of inliers.  
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The function can be used to find initial intrinsic and extrinsic matrices. Homography 

matrix M is determined up to a scale. Thus, it is normalized.   

A RANSAC reprojection threshold is added, such as the maximum allowed 

reprojection error in order to treat a point pair as an inlier. That is, if: 

||𝑑𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝑠𝑖 − 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑃𝑜𝑖𝑛𝑡𝑠𝐻𝑜𝑚𝑛𝑜𝑔𝑒𝑛𝑜𝑢𝑠(𝑀 ∗ 𝑠𝑟𝑐𝑃𝑜𝑖𝑛𝑡𝑠𝑖)|| > 𝑟𝑎𝑛𝑠𝑎𝑐𝑅𝑒𝑝𝑟𝑜𝑗𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

Eq. 3.12 

Holds, then point i is considered an outlier. If source and destination points are 

measured in pixels, it is a rule of thumb for this threshold to be between 1 and 10. 

Because of the aforementioned reasons and capabilities of each method, and from 

experimental results which show 50+ % inliers cannot be always achieved, RANSAC 

is the best suitable choice. Creating an adaptive threshold is something that has been 

tried and implemented in many applications, but no foolproof design has been 

adapted for applications similar to the one it will have in this thesis. 

 

3.7. Statistical methods 

3.7.1. Density - based spatial clustering of applications with noise 

(DBSCAN) 

DBSCAN is a well-known data clustering algorithm that is commonly used in data 

mining and machine learning [34]. It is a density-based clustering non-parametric 

algorithm. From a given data set, it will group points into groups that are closely packed 

together (points with high number of neighbors). 

DBSCAN requires three inputs: 

- Data set of points described by coordinates of location, 

- ε is a parameter which specifies the radius of a neighborhood with respect to 

a point, 

- minPts is minimum number of connected points in order to consider a group 

as a cluster. 
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The working principle of DBSCAN can be described through core points: 

- A core point must have at least minPts points within radial distance ε of it 

- There can be many core points in a cluster 

- A data point is directly reachable from a core point if the same point is within 

distance ε from the core point. A point can be directly reachable only from 

core points 

- All points which are not reachable from any other point are outliers or noise 

points 

 

Figure 3.19 Working principle of DBSCAN 

 

 

In Figure 3.19, the working principle of DBSCAN is depictured. The minimum points 

parameter minPts is set to 4, while the radius in an arbitrary ε. All red points are core 

points, because the area surrounding them in ε radius contains at least 4 points 

(including itself). Because they are all reachable from one another, they form a single 

cluster. Points B and C are not core points but are reachable from A (by other core 

points) and therefore belong to the cluster as well. Point N is a noise point that is 

neither a core point nor directly reachable. 

For a cluster to be defined, two properties must be satisfied: 

- All points within the cluster are mutually density-connected. 

- If a point is density-reachable from any point of the cluster, it is part of the 

cluster as well. 
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Figure 3.20 DBSCAN clustering example 

 

3.7.2. Jaccard similarity score 

Jaccard similarity score or score measures the similarity between two sets. It is also 

called Intersection over Union because of its working principle and is a very simple 

mathematical calculation which provides estimate of how similar two sets are. The 

mathematical formula is 

𝐽(𝐴, 𝐵) =  
|𝐴⋂𝐵|

|𝐴⋃𝐵|
 

Eq. 3.13 

Where A and B are to distinct sets, and J is the Jaccard similarity score. A predefinition 

must be made, claiming in the case of both sets A and B being empty, J(A,B) = 1. 

The result is ranged between 0 and 1, where 0 is no equality possible and 1 means 

complete equality. The Jaccard distance, which measures dissimilarity between sets 

has a very similar mathematical formula to the previously mentioned equation Eq. 

3.13. 

𝑑𝐽(𝐴, 𝐵) = 1 − 𝐽(𝐴, 𝐵) 

Eq. 3.14 
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Figure 3.21 On the left, intersection of two sets A and B. On the right, union of two sets A 
and B 

 

In image processing, in can be used on bounding box estimation of a recognized 

patter compared to the ground truth. Alongside its native functional purpose, it has 

found extensive use in medical imaging as described in the paper of Yeghiazaryan et 

al. [35]. 

In this thesis it will be used to calculate a reliability index of an estimation, as well 

tracking quality metric compared to predefined ground truth. 

 

3.8. Edge detection – Canny 

Canny edge detector, as proposed in the groundbreaking paper of J. Canny [36], is a 

sophisticated edge detection operator which uses a multi stage algorithm to detect a 

wide range of edges in a grayscale image.  

Even though in the basis of the algorithm there is preprocessing being done, it is a 

good practice to do it a priori. 

This algorithm is of great importance in this project because it provides information 

upon which stable long-term tracking is possible at very low computational cost. 

In order to understand it, the five steps of Canny need to be mentioned and explained. 

The input picture must be 2-D, which leads to using a grayscale image or single 

channel from any color space representation. In the respective order of execution, 

they are: 
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1. Gaussian filter is applied with adaptive parameters to reduce noise. 

 

Figure 3.22 Gaussian filter effect on stock image 

 

2. Finding intensity gradients of image is done in four directions (horizontal, 

vertical and in two diagonals). The Sobel operator is most widely adapted 

method for this and returns the first derivative in horizontal direction (𝐺𝑥) and 

vertical direction (𝐺𝑦). From this information, the edge gradient and direction 

can be determined with 

𝐺 =  √𝐺𝑥
2 +  𝐺𝑦

2 

Eq. 3.15 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝐺𝑥, 𝐺𝑦) 

Eq. 3.16 

 where G is the edge gradient amplitude, and θ is the edge orientation. 

 

Figure 3.23 Output of Sobel operator 
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3. Non-maximum suppression is used as technique to acquire thin edges. Canny 

gives binary results with logical ‘one’s where it has detected an edge and 

logical ‘zero’s in the rest of the image, which means it returns an edge mask. 

The purpose of the algorithm is to check if the pixels on the same direction are 

more or less intense than the ones being processed. If there are no pixels in 

the edge direction having more intense values, then the value of the current 

pixel is kept. 

Each pixel has two main information: edge direction and pixel intensity. Based 

on these inputs the non-maximum suppression steps are: 

- Create a matrix of zeros with same size as the original intensity matrix; 

- Identify the edge directions from the angle matrix; 

- Check if any pixel in this direction has a higher intensity than the pixel in 

consideration; 

- Return the image processed with the non-max suppression algorithm 

 

Figure 3.24 Non-maximum suppression 

 

4. The double threshold step identifies 3 kinds of pixels: strong, weak, and 

irrelevant: 

- Strong pixels, pixels with intensity so high that it is sure they contribute to 

the final edge. 
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- Weak pixels, pixels that have an intensity value that is not enough to be 

considered as strong, but not small enough to be considered as irrelevant 

for the edge detection. 

- Other pixels are considered as irrelevant for the edge 

 

 

Figure 3.25 Double threshold 

 

5. Edge tracking by hysteresis uses the threshold results, and transforms weak 

pixels into strong ones, if and only if at least one of the pixels around the one 

being processed is a strong one and belongs to the edge. 

 

Figure 3.26 Edge hysteresis 
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3.9. Post-processing and refining 

Until now, a couple of methods have been described which lead to localization and 

recognition of the Region of Interest (ROI) defined at the very initialization of the 

algorithm. The following subtopic concentrates on methods used in re-describing the 

region in order to feed the algorithm with a new boundary of the region after 

deformation, occlusion or partial occlusion. 

Because there is no time window to specify a training data set so more complex 

recognition networks can be used, a set of sequential procedures are applied in order 

to morphologically find the best description of the region the robot needs to track. 

3.9.1. Convex Hull 

The convex hull of a set of points is defined as the smallest convex polygon, that 

encloses all of the points in the set. Convex means, that the polygon has no corner 

that is bent inwards. The points are defined by Euclidean 2D space coordinates. 

 

 

Figure 3.27 Convex Hull 

 

This approach will be applied to the output of previously described DBSCAN. 

 

3.9.2. Active contours 

Segmentation is a part of Image Processing best described as a process of 

partitioning a digital image into multiple segments as sets of pixels. It has variety of 
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applications ranging from segmenting written text to segmenting tumors from healthy 

brain tissue in an MRI image. 

Active contours, also called snakes, is a subset of techniques used for iteratively 

finding the outline of an object with hard defined edges but as well as outlines of softly 

defined edges of an object. 

The snakes model is popular in computer vision, and is widely used in applications 

like object tracking, shape recognition, segmentation, edge detection and stereo 

matching. 

A snake is an energy minimizing, deformable spline directed by constraint and image 

forces that pull it towards object contours and internal forces that resist deformation, 

controlled by two evolution parameters. They are a special case of the general 

technique of matching a deformable model to an image by energy minimization. 

Snakes do not solve the entire problem of finding contours in images, since the 

method requires knowledge of the desired contour shape beforehand. Rather, they 

need an initial mask upon which they evolve.  

 

Figure 3.28 Evolution of Chan-Vese snake 

The  Chan-Vese approach is a segmentation algorithm  designed to segment objects 

without clearly defined boundaries. In this thesis Morphological Chan-Vese (MCV) is 

used, an approach based on level sets that are evolved iteratively to minimize an 

energy function, which is defined by weighted values corresponding to the sum of 

intensity differences from the average value outside the segmented region, and a term 

which is dependent on the length of the boundary of the segmented region. It requires 

https://en.wikipedia.org/wiki/Image_segmentation
https://en.wikipedia.org/wiki/Edge_detection
https://en.wikipedia.org/wiki/Spline_(mathematics)
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a 2-D input image with predefined initial mask. Once initialized, MCV will expand the 

initialization mask through the energy equation in all directions, inwards and outwards, 

depending on the parameter definitions. The energy equation is being directed by: 

- lambda1 : weight parameter for the outer region 

- lambda2 : weight parameter for the inner region 

- smoothing parameter for nonlinear interpolation of edges. 

If lambda1 is larger than lambda2, the snake will force towards expanding and vise 

versa. 

Snakes might not always return only one region, but rather a couple of contours. In 

order to separate them in different objects, a procedure for finding contours is applied. 

But before this is used, the regions must be processed in order to discard of small 

specks of grouped pixels and different spikes and peaks on the outskirts of a region 

which are most likely noise. This procedure is called Morphological Opening. 

 

3.9.3. Binary filters 

Morphological Opening is the process of applying dilation after erosion using a 

structuring element. A structuring element is a 2-D matrix element which can be of 

different types, see figure below. 

 

 

Figure 3.29 Types of kernels (structuring elements) 

 

This element is applied to each pixel just outside of the boundary of a binary contour. 

In the case of erosion, if the pixels in the contour correspond at that iteration with 

some of the logical ‘one’s from the element they are switched to a logical ‘zero’. This 
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way the contour decreases inwards depending on the size and type of the element. 

Having a larger structuring element will result with a more extreme erosion effect. 

 

 

Figure 3.30 Effects of erosion on binary image 

 

In the case of dilation, the opposite happens. When the logical ‘one’s from the element 

reach a logical ‘zero’ from the contour, they will switch it to ‘one’ resulting with an 

expanded contour. 

Morphological opening will first use erosion to remove boundary parts of the contour 

which are most likely to be caused by noise, and afterwards gives a well-posed 

contour by expanding the firm boundaries and filling up concave cavities. 
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Chapter 4 CHAPTER 4 
The proposed method 

In this chapter, the proposed method will be described. It will be seen how the 

previously described algorithm were implemented and the specific purpose they have. 

Also, the choice of parameters will be provided and explained why that value has 

been used. The additional metrics, created for the specifically for this thesis, will be 

explained along with some functions proven to give great results regarding precision 

and computational effectiveness. 

4.1. Control Problem Statement and Solution Concept 

The elements of a conventional control system are: 

- Input - reference signal, 

- Controller, 

- Controlled plant, 

- Feedback. 

 

 

Figure 4.1 Sample control block diagram 

 

A medical robot is a complex system which requires synchronous control of each 

moving element, (joints of the manipulator arms). The control of each of these joints, 
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installed as rotational or translational elements, is directly commanded by a master 

control unit. The position of the end effectors, in the case of medical robots it is either 

the endoscope or a surgical tool, can be directly computed from the initial calibration 

as presented by Roh et al. [37]. By knowing: 

- initial points of end effectors,  

- amount of movement for all moving elements (actuators) of each arm,  

- distances between each joint of an arm (fixed translations),  

- static positions of the ‘root’ of each robotic arm,  

- transformation matrices (D-H parameters) between each joint of an arm 

- transformation matrices (D-H parameters) between each arm, 

it is safe to assume that at each point of time the 3D position and orientation of the 

end effector and every element of the arm is known (Figure 4.2).  

 

Figure 4.2 Robotic arm motion variables 

 

This allows for the master control unit to plan the path of each element of each robotic 

arm with full control of the motion. Having such freedom, the application of active 

constraints (AC) becomes plausible. 
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The reference motion and position signals are provided to the controller, which 

accounts for the constraint generator and the dictated constraints from it. With this 

influence on the output motion of the robot, the actual effective motion is: 

 

𝐴𝑐𝑡𝑢𝑎𝑙𝑀𝑜𝑡𝑖𝑜𝑛 = 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑀𝑜𝑡𝑖𝑜𝑛 − 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑃𝑒𝑛𝑎𝑙𝑡𝑦  

 

The controller uses the active constraint generator effectively to modify the output in 

order to satisfy the constraint. Such constrained control system is the one presented 

in Figure 4.1, where the controller takes the form of Figure 2.15. The type of constraint 

is not of interest to this thesis, as it only affects the motion and position of the tools 

tips and does not affect the visual aspect of the surgery. However, it is confident to 

say that a mixture of positioning and motion constraints is used. Their effectiveness 

is directly related to the performance of the AC tracking method, as the positional 

vicinity and penalty magnitude is dictated by the current definition of the AC 

The initial concept of the solution presented in this chapter was an adaptation of Model 

Predictive Control, which is an advanced method for that is used to control a process 

while satisfying a set of constraints through optimization at each step. After some 

time, many aspects evolved or diverged from the idea based on MPC, but some 

details remain. A flow chart capturing the general outlook of the proposed method is 

shown in Figure 4.3. 

 

 

Figure 4.3 General flow chart of the proposed framework 

 

The proposed method in this thesis is completely implemented as a 2D concept. 

However, it is required to provide this information as 3D information in order to be 

effectively used in a surgery. It is needed to provide them in 3D in order to cover the 

area of an organ, which is in 3D. Not only cartesian position is needed, but also depth. 

For this reason, a method is used for projecting 2D points to a 3D point cloud. In this 
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way, the active constraint will be able to protect the tissue at all times regardless of 

the absolute distance between the tool tip and the tissue being operated.  

In addition, a brief yet informative set of data is being displayed at the top left corner 

to provide the surgeon at all times with data on how reliable the AC tracking at every 

moment of the surgical procedure is. The proposed method is entirely implemented 

for a 2D video stream, most often by using the left camera from a stereo camera pair, 

but it will be shown in the end how these 2D points can be projected onto the 3D 

surface reconstructed from image pairs from the stereo camera. 

4.2. Implementation overview 

The main program is written in Python, and the most used library is OpenCV. OpenCV 

is natively written in C++. In OpenCV, all algorithms are implemented in C++. However,  

these algorithms can be used in different languages like Python, Java etc. This is 

made possible by the bindings generators. These generators create a bridge between 

C++ and Python which enables users to call C++ functions from Python. It allows for 

the performance of running image processing functions in C++, while having the 

simplicity of Python for the rest of the project. The second most used library is Numpy, 

which is a dedicated Python library for numerical calculation. The third most important 

is Scikit-learn, which is a library vastly used for scientific purposes and it includes 

many published algorithms which are useful in many situations including numerical 

analysis, image analysis and statistics. In this chapter, the proposed method will be 

explained.  

For visual representations of the processed frames of each step from the proposed 

method, a surgical video of pancreatectomy is used with resolution of 1280 x 720 and 

frame rate of 25 Hz. 

4.3. Initialization and Pre-processing 

The initialization phase is responsible for creating instances of all methods to be used 

in this method. From Figure 4.3, it encapsulates the two blocks outside of the loop. 

The definition of the AC to be tracked will happen in this phase and everything that 
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will happen further on is to keep this AC definition alive and as close to the original 

possible. A brief flow chart of the workflow of this phase is depicted in Figure 4.4.  

 

Figure 4.4 Initialization phase flow chart 

 

The initialization phase starts at the moment the algorithm is activated or called. At 

that instance, a frame from the video stream is received in RGB color space. This 

image (Figure 4.5) is used and displayed in front of the operator. Then, he/she is able 

to use any kind of input device, such as touch, stylus, or mouse, to define in a free-

hand manner region of the tissue, which needs to be kept reserved and protected 

(active constraints from Chapter 2.9). 
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Figure 4.5 Initial frame from video stream 

The vertices of the polygon are shown on Figure 4.6 as red points. The goal of this 

thesis is to be implemented in partial nephrectomy, which is a procedure where the 

key tissues (renal vein and renal artery) require protection from possible damage. This 

means that active constraints will be most likely applied on these vessels. 

 

Once this region is selected, the program will translate the drawn points to an array 

of vertices with horizontal and vertical coordinates of a 2D Euclidean space: 

𝑆𝐴 =  [

𝑥1 𝑦1

𝑥2 𝑦2

⋮
𝑥𝑛

⋮
𝑦𝑛

] 

Eq. 4.1 

Figure 4.6 Selected points of Active constraint 
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This is to be stored and saved in the program’s memory, because it will be used in a 

couple of different situations. 

After defining the Region of Interest (ROI), which is the region described by the Active 

Constraint (AC), the initialization phase can continue. Firstly, the image needs to go 

through a sequence of image processing steps. 

The very first applied method is resizing. Both axis, x and y, are scaled by particular 

ratio coefficients, ratio_x and ratio_y. In this thesis the ratio 0.5 was used, meaning 

that: 

ratio_x = ratio_y = ratio = 0.5 . 

This will scale the image to one quarter of the original size, because both of the axis 

are halved. This will size the frame down from 1280x720 to 640x360. 

 

 

After resizing, Contrast-Limited Adaptive Histogram Equalization (CLAHE) is applied 

with a ClipLimit of 3. The theory and meaning behind CLAHE is covered in Chapter 

3.2.3. Contrast – Limited Adaptive Histogram Equalization (CLAHE)This will adjust 

the local contrast of the inner blocks with size of 8 by 8 pixels in order to equalize the 

redistribution of lighting throughout the image and locally enhance contrast to 

increase visibility of edges. CLAHE is computer on the Lightness channel of Lab color 

space representation of the processed image. The pictured figures Figure 4.7 and 

Figure 4.8, have been converted back to RGB for ease of display. 

Figure 4.7 Contrast-Limited Adaptive Histogram Equalization 
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Figure 4.8  The first row shows the histograms of the frame before CLAHE is applied, with 
each sub-figure corresponding to each R, G and B channel. The second row shows the 

histograms of the frame after CLAHE is applied. The dashed line is the cumulative 
representation of each histogram 

 

The visual effect of CLAHE can be seen in Figure 4.7, while the output histogram 

effects compared to the input of the CLAHE algorithm are shown in Figure 4.8. 

The following step is Gamma Correction (Chapter 3.2.1. Gamma correction) This will 

adjust the saturation of pixels with the goal to again, enhance edge revealing 

characteristics even more. The gamma coefficient is set to be γ = 0.5, and applied to 

the equation: 

𝑉𝑜𝑢𝑡 = 𝐴𝑉𝑖𝑛
𝛾

 

Eq. 4.2 

where A is commonly set to 1. This low value will introduce darkening of the image, 

but for the computer it will mean more details regarding edges and characteristic small 

regions that will provide much more information for edge detection and feature 

extraction. The visual effect can be seen by comparing Figure 4.7 to Figure 4.9, where 
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the latter one is after applying Gamma adjustment. Gamma is intensity based, and is 

applied to each pixel of each RGB channel individually. 

 

Figure 4.9 Gamma correctiont 

 

This will result with a change of distribution of the histogram bins, due to the nature of 

Gamma correction which compresses some parts of the image and stretches others. 

This is best seen with the “spikes” which appear in the second row of Figure 4.10. 
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Figure 4.10 The first row shows the histograms of the frame before Gamma Correction is 
applied, with each sub-figure corresponding to each R, G and B channel. The second row 
shows the histograms of the frame after Gamma Correction is applied. The dashed line is 

the cumulative representation of each histogram 

 

The next filter to be applied is Gaussian Blur or Gaussian smoothing. This is used to 

smooth out objects affected by noise. It is usually done in the beginning of image 

preprocessing phase, but here it is done at the end in order to decrease the noise 

effect that might have been amplified by edge preserving filters done prior to this. The 

reason for this is the assumption that much of the noise is due to non-regular lighting 

in the image. It is proposed here to first enhance the effect of lighting in order to gain 

stronger edge definitions. Gaussian blur is defined by a kernel, which acts as a moving 

window in 3-D matrix.  
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Figure 4.11 Gaussian smoothing 

The size of this kernel in this thesis is 5 by 5. The reason for this size is that according 

to the size of the scaled image, everything above 7 by 7 introduces too much blur 

effect, which becomes rather more visible instead of just removing small noise content 

and smoothing out edges. Anything less than 5 would have little to no effect. The 

results are not visible to the naked eye but can be monitored through the outputs from 

the algorithm and improvement of stability and repeatability. 

 

Figure 4.12 The first row shows the histograms of the frame before Gaussian smoothing is 
applied, with each sub-figure corresponding to each R, G and B channel. The second row 
shows the histograms of the frame after Gaussian smoothing is applied. The dashed line is 

the cumulative representation of each histogram 
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At this point, all procedures applied on the three channels RGB and Lab are done. 

The following methods work with grayscale images.  

 

Figure 4.13 Grayscale frame 

The first one is Histogram Equalization. It will provide a normalized image with respect 

to the intensity of each pixel in a grayscale representation. Through empirical results, 

it was chosen to use a grayscale image for this step instead of doing it separately for 

each channel because there were no substantial improvements, especially not ones 

which will gain more visible and detailed image, while, when using histogram 

equalization on grayscale, an image is gained which has much more visibility and 

much more details.  

 

Figure 4.14 Histogram equalization 
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It is noticeable from Figure 4.15 that the effect of Histogram equalization (HE) has a 

similar effect to CLAHE ( Figure 4.8 ) in the sense of stretching and compressing the 

image. However, from the cumulative slope it can be seen how HE affects the 

distribution of pixel values in order to equalize it through each color value. Thus, 

gaining a cumulative histogram with the form of linear equation. This makes up a 

more robust image with an even distribution and average pixel value of 128.  

 

Figure 4.15 The first plot shows the histograms of the frame before HE is applied; the 
second row shows the histograms of the frame after HE is applied. The dashed line is the 

cumulative representation of each histogram 

 

Histogram equalization provides a more even distribution of light intensity through the 

image, and improves performance in distinguishing tools from tissue. 

With this, the preprocessing is finished. A grayscale image is gained with well-defined, 

enhanced and preserved edge definitions, distinctive details and with noise reduced 

as low as possible. 

Now it is required to detect and track certain morphological and color features of the 

video stream input. A surgery is an environment with many objects overlapping, and 

no salient objects can be defined for a well-posed foreground-background 

segmentation. Thus, it is proposed to take advantage of the enhanced edge 
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definitions. Previously, it was shown what type of preprocessing each frame is put 

through, with the motivation of robustness and edge preservation.  

This following step is one of great importance in this thesis, and an idea that is rarely 

used in practice. Here the Canny Edge (Chapter 3.8)  detector is introduced as the 

input for the tracking phase. To understand how and why it is used, it will be divided 

in two parts. 

Firstly, the image received from preprocessing is fed into the Canny detector. This 

image has been prepared in order to provide such basis that it will be possible to 

extract as much well-defined edges as possible.  Here arises the problem of choosing 

the correct lower and higher threshold parameters in order to have a stable output, 

robust towards noise content.  

For this purpose, Otsu’s threshold is used [38]. It is an algorithm used for adaptive 

conversion from grayscale to binary images. It was applied to randomly chosen 

frames from five segments of three videos from different surgical procedures, and the 

mean value was used on each video. An interesting finding was that each segment 

had a mean value of Otsu’s segment ranging from 0.078 to 0.0795. After averaging 

all data gathered, the number 0.0783 was chosen. In practice Otsu’s threshold is 

considered as the upper threshold for Canny Edge Detection, while the lower 

threshold is 0.0783/2.5 = 0.0313. This proportion of 2.5 is used as rule of thumb (taken 

from MATLAB’s implementation of Canny Edge detector) when it is expected for the 

objects not to have distinct edges, which is the case here where there is no salient 

object present. The output from Canny with these coefficients is shown in the Figure 

4.16. 
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Figure 4.16 Canny edge detection output 

However, this binary image looks like a messy mosaic with randomly dispersed white 

pixels on top of a black background. Feature detectors and tracking algorithms expect 

grayscale images rather than binary ones, so it is possible to infuse more details to 

the binary output of Canny’s detector in order to make the edges even more 

characteristic and distinguishable. 

The next step, which gives detail to these edges, is element-wise multiplication of the 

binary image (mask) with edges and the grayscale image used as input to Canny 

(Figure 4.14). This will give color and morphological value to the edges. In a sense, not 

only the shape of an edge is of great use to the procedure but also the values of each 

pixel of the edge. The final look of a frame is shown in Figure 4.17.  

 

Figure 4.17 Enhanced Canny output with morphological structure 
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It is noticeable that some sections are dark, even though it is expected to have 

information there. This is not a setback, and the reason is that they are most likely not 

to produce any valuable information for the procedures that will be applied later, or 

that they are regions that lack texture. 

Processing an image filled with non-binary edges will produce much more features 

than needed. Working with all of them is neither needed, nor effective. For the purpose 

of tracking only the selected region, that segment will be extracted from the image by 

selecting only that part. This selection is done by applying a mask, which is created 

upon the polygon defined by the surgeon in initialization. This mask will allow only the 

pixels inside of it to keep their value, while everything outside of it will be kept to ‘0’. 

Having a black background will not produce any feature detections. The output from 

this masking is shown on the image Figure 4.18. 

 

Figure 4.18 Enhanced Canny edge inside of AC 

During the initialization phase, one more thing needs to be introduced. This is the 

‘Buffer’ concept, which includes a an accumulator of AC models which will be used 

for re-initialization of the AC definition. Together with the models, several different 

specific information for each model are stored. These data that come together with 

each model are used either to decide if the model needs to be updated with a newer 

one, or some information that will be used for re-initialization of the AC definition. A 

very specific voting scheme is used in order to fill each place in the Buffer, and for this 

some equally specific definitions need to be made. 
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The Buffer has length of 13 elements (Temp refers to template, or a model), of which: 

- 𝑇𝑒𝑚𝑝1: The first model is always the one defined by the surgeon. 

- 𝑇𝑒𝑚𝑝21,22,23 : The following three (2-4) models are the ones with highest 

number of detected features. 

- 𝑇𝑒𝑚𝑝31,32,33: The following three (5-7) models are the ones with strongest 

features, features with highest response. 

- 𝑇𝑒𝑚𝑝41,42,43 : The following three (8-10) models are the ones with highest 

number of detected feature during re-initialization and acceptable Jaccard score (part 

of re-initialization sub-chapter). 

- 𝑇𝑒𝑚𝑝51,52,53The last three models are the last known ROI transformations 

during tracking with an acceptable number of trackers alive (>80%) 

A pseudo-code representation of the Buffer array is 
 
Buffer
= {(Temp1, No. KAZE, Av. Resp, No. KAZEreinit)1, . . , (Temp53, No. KAZE, Av. Resp, No. KAZEreinit)13 } 

Each element of the array, has a model and three additional different elements: 

- 𝑁𝑜. 𝐾𝐴𝑍𝐸 : Number of detected KAZE features 

- 𝐴𝑣. 𝑅𝑒𝑠𝑝  : Average response of the strongest 40 features (Chapter 3.3, 

equation Eq. 3.4) 

- 𝑁𝑜. 𝐾𝐴𝑍𝐸𝑟𝑒𝑖𝑛𝑖𝑡 : Number of detected KAZE features at re-initialization phase 

 

Each of the tissue models in the buffer will provide insight and data on different 

aspects of feature tracking and detection. 

For now, it is enough to be said that at initialization every element of Buffer will be 

filled with the same model and that model is the one from the very first frame on which 

the operator draws the ROI . As for the other data in the Buffer, each element of any 

kind is set to 0, the virtual minimum. The reason for this is that the first element is 
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never changed, and the rest need to be updated as quickly as possible. By setting the 

virtual minimum, all elements will be updated in the first 13 computational cycles. The 

model is acquired by applying the mask which allows data to be preserved only by 

the pixels inside of the AC. This masked image is than cropped with respect to the 

bounding box around the AC definition, as shown in Figure 4.19. By excluding 

everything from the image that is not in the region of interest, a more robust feature 

matching method will be achieved.  

 

Figure 4.19 Model template 

 

Going back to the masked figure with non-binary edges (Figure 4.18), the next step is 

to apply feature detection. As mentioned in the previous chapter, in this thesis KAZE 

detector and descriptors are used. Using the stock default parameters, the results 

are not very useful. Therefore, a set of parameter used for KAZE detection are: 

- Threshold = 0.0001. Responsible for detection of local extrema. Higher values 

mean only more significant are taken into consideration. 

- Number of Octaves = 3. The highest order of scaling allowed. Similar to Pyramidal 

Method from LK (Chapter 3.4), it will scale down to detect over a compressed image 

for larger objects. 

- Number of Octave Layers = 3. Amount of levels between scales, used to achieve 

smoother transition between layers. 
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Characteristic keypoints, called features, will be returned from KAZE’s detector. 

These points will be considered as reference points for tracking until re-initialization 

is required. Because the only area of interest is what is inside the AC definition, 

KAZE detection is applied only to that area. Instead of using a normal grayscale 

image, the method in this thesis uses the enhanced Canny mask, depicted in Figure 

4.18. This grayscale edge defined image will produce much more features with edge 

specific feature descriptors. In Figure 4.20, a graphical representation of all 

descriptors detected is given, with red circles for each keypoint. 

 

 

Figure 4.20 KAZE detection in AC area 

 

4.4. Tracking 

Upon acquiring these points, it is now possible to initialize the LK (Lucas-Kanade) 

tracker, see Chapter 3.4. Tracking is a phase which should be as stable as possible 

in order to achieve performance that will allow stable estimation of the tissue 

deformation without re-initializing when not completely needed. A simple flow chart of 

the tracking phase workflow is depicted in Figure 4.21. 
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Figure 4.21 Tracking phase workflow 

For this, two parameters need to be set. One is the size of window which goes through 

the image to look for matching features to be tracked. It needs to be in compliance 

with the size of the image, not too small nor too big. By window size, it is meant the 

integration window in each dimension. As for the other parameter called MaxLevel, it 

means the maximum allowed scaling depth of Pyramidal method. 

These are given to the system only at the first initialization and the same parameters 

are used throughout the entire runtime. Using these parameters an LK tracker object 

can be initialized, and once it is initialized at each new frame it will be called. For this 

LK requires to be fed with keypoints to be tracked, and this is why KAZE detection 

was done on the initial frame. The window size use is 31 by 31, and MaxLevel is 4. 

At each frame, LK must be provided with: 

- Origin frame (last frame) 

- Points to be tracked 

- Destination frame (current frame). 

In the very first cycle of LK, the points to be tracked are directly the ones detected by 

KAZE. They are the initialization points for tracking, and at each cycle they can only 

be found or lost unless it has been re-initialized with a new set of points to be tracked. 

In Figure 4.22, a finite set of 40 points are tracked and the ones which are successfully 

tracked are connected with a colored line in both images.  

 

Figure 4.22 LK tracked points 
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Once Pyramidal Optical Flow estimation is done by LK tracker, it will provide an array 

with the found points and their new estimated locations. Along this matrix, there is a 

‘status’ array. This array of type mask has the size of the input array and has: 

-  ‘TRUE’ at the place corresponding to a point which was found and tracked in the 

destination frame; 

-  ‘FALSE’ at the place corresponding to a point which was not found nor tracked in 

the destination frame. 

Now the goal is to find a mathematical representation on how the points have 

transformed from one frame to the other. These points are the tracked features, and 

the following assumptions are made: 

- The transformation between two frames is at most of type Perspective (rigid). 

- There are more than 5 live tracked points, because 4 is the required minimum 

for estimating perspective transformation (Chapter 3.6.2. Transformation 

matrix estimation). 

- LK requirements have been correctly held and satisfied, and estimation 

procedure will converge. 

The tracked features, which were estimated in the destination frame can be 

considered good estimations as they must meet the minimal requirements defined in 

LK. But still, some of them may be not correct, or in other words outliers. 

Therefore, an estimation technique for the transformation matrix must be used which 

includes discarding of outliers, and one such is used. It is a stock OpenCV function 

called FindHomography (Chapter 3.6.2. Transformation matrix estimation)., which is 

a technique based on RANdom SAmple Consensus (RANSAC). 

The method is iterative, and randomly picks 4 pairs of each image. The way RANSAC 

is included here is that the rule for RANSAC to consider some random sampling pair 

as outlier, the re-projection error must be below some predefined threshold. If the re-

projection is less than this value, it will be an inlier. 

For the tracking phase, this RANSAC reprojection threshold is defined to be 25. With 

respect to the size of the image, and the characteristic of LK to only track subpixel 
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movements, this may be considered a very large value. However, it is very useful to 

have it as a large value for the following reasons: 

- Setting a small value will make the algorithm very strict, and any small 

movement will be discarded. This is not useful because a tracker will be lost, even 

though in the end estimation this small movement will not affect the transformation 

matrix. 

- Because of the Pyramidal method, there will be occurrences of wrongly 

tracked points. This value is fail-safe to exclude large movements even though they 

are highly unlikely to happen. 

At each iteration, an estimation of the transformation matrix is gained. Also, while 

excluding outliers at each iteration, a new transformation matrix is acquired from the 

new subset of pixel pairs with respect to the  RANSAC, meaning that at each iteration 

the transformation is improving and refining. 

The end results of this function is a transformation matrix M and a matrix of type ‘mask’ 

which has ‘TRUE’ if a point was considered as an inlier. 

By multiplying the array of the operator-defined Safety Area polygon with this 

transformation matrix, each point will be transformed. This way it can be considered 

that now the new and deformed Safety Area is acquired. Based on the estimated rigid 

transformation of the tissue, a transformation matrix is calculated that only accounts 

for the transformation of the pre-selected section of the frame. 

𝑆𝐴𝑛 = 𝑀𝑥𝑆𝐴𝑛−1,             𝑀 =  [

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 1

] 

Eq. 4.3 

where, 𝑆𝐴𝑛 is the transformed SA, 𝑆𝐴𝑛−1is the SA from the last frame, and M is the 

transformation matrix used to transform 𝑆𝐴𝑛−1 to 𝑆𝐴𝑛. Bear in mind that SA is an array 

of vertices of the SA polygon. 

The current frame and the Safety Area that has been accordingly transformed with 

matrix M and is considered the new estimated Safety Area after a minor deformation 
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between two frames, will now be changed from Destination Frame and New Safety 

Area Points to Origin Frame and Old Safety Area Points. At the next iteration, when a 

new frame is acquired, it will be the state to which it is desired to estimate the 

transformation and deformation. 

Ideally, the algorithm would stop here. However, this is not the case, because the 

environment in a surgical procedure is very dynamic and sudden changes. Trackers 

can and will be lost at almost each new frame. Although using Canny filter allows 

tracking to be more robust, there are many occurrences that make trackers disappear, 

such as: 

- Partial or full occlusion 

- Abrupt lighting change or change of size of projection  

- Tool interference. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23 1) Partial occlusion; 2) Full occlusion; 3) Tool interference; 4) Change of focus 
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This implies that a good metric and voting rules for tracking failure need to be made. 

The first intuitive one is to save the amount of trackers initialized, and check if the 

number of live ones has dropped below 70%. However, this simple type of failure 

check has faults. One of them is when the number of lost trackers is small, but the 

ones which are still alive are densely situated in one part of the SA region. The 

subroutine responsible for deciding if a tracking failure has happened will check the 

requirement of having 70% trackers alive, and it will decide that no failure has 

happened. However, the tracking dynamics will be wrong because the densely 

populated part will dominate, shown in Figure 4.24. Estimating a transformation matrix 

in this situation will result with a very precise estimation but only for that densely 

populated part. This is a very bad situation because the other end of the ROI will 

diverge instead of having a stable transformation, and it will also be erroneously 

considered as trustworthy. 

 

 

Figure 4.24 On the left, a good uniform distribution of descriptors. On the right, an upper right 
corner piling up of descriptors 

 

For this purpose a new metric is needed, one for uniformness of distribution of points 

in an irregular 2-D space. 

Evaluation of uniform distribution of points inside a non-regular form is a very difficult 

task. However, an exact solution for this is not needed. For this particular application, 

in this thesis a dispersion of trackers inside the AC is considered uniform when the 

Centroid of the AC polygon and the Centroid of the set of trackers are below a certain 

Δ value. This Δ is dependent on the size of the frame and also the area covered by 
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the AC. The centroid is calculated as the mean value of all vertices (for AC) or all 

points in the set of trackers, for x and y respectively. Or, mathematically: 

𝐶𝐴𝐶 = (𝑚𝑒𝑎𝑛𝐴𝐶,𝑥, 𝑚𝑒𝑎𝑛𝐴𝐶,𝑦) 

Eq. 4.4 

𝐶𝑠𝑒𝑡 = (𝑚𝑒𝑎𝑛𝑠𝑒𝑡,𝑥 , 𝑚𝑒𝑎𝑛𝑠𝑒𝑡,𝑦) 

Eq. 4.5 

𝛿 =  √(𝑚𝑒𝑎𝑛𝐴𝐶,𝑥 −  𝑚𝑒𝑎𝑛𝑠𝑒𝑡,𝑥)
2

+  (𝑚𝑒𝑎𝑛𝐴𝐶,𝑦 −  𝑚𝑒𝑎𝑛𝑠𝑒𝑡,𝑦)
2

  

Eq. 4.6 

𝛥 = 𝑓(𝑠𝑖𝑧𝑒(𝑓𝑟𝑎𝑚𝑒), 𝑎𝑟𝑒𝑎(𝐴𝐶)) 

Eq. 4.7 

{
𝛿 <  𝛥, 𝑢𝑛𝑖𝑓𝑜𝑟𝑚
𝛿 ≥  𝛥,   𝑛𝑜𝑡 𝑢𝑛𝑖𝑓𝑜𝑟𝑚

 

Eq. 4.8 

If these two tracking failure metrics do not give a signal that tracking re-initialization is 

needed, the algorithm continues to work in tracking mode. Before the new cycle starts, 

the confirmation that no failure has happened requires that the current AC definition 

needs to be checked if it fits to replace any model of the Buffer. The buffer was defined 

in Chapter 4.3, but the updating protocol will be now explained in detail. 

At each successful tracking cycle, KAZE detector is applied to the area inside of the 

current AC definition. Once done, for this array of KAZE features it is calculated to see 

how many detected features there are; the average value of the strongest 40 

responses. 

 𝐾𝐴𝑍𝐸𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 = 𝑠𝑜𝑟𝑡𝑏𝑦𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝐾𝐴𝑍𝐸𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)  

Eq. 4.9 
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𝐴𝑣𝑔. 𝑅𝑒𝑠𝑝 =
1

40
∗  ∑ 𝐾𝐴𝑍𝐸𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠

39

0
    

Eq. 4.10 

Newer AC models are always better than old, and at each step the new AC definition 

received from tracking a model candidate for updating the Buffer (see Figure 4.25). If 

the number of detected features in the model candidate is more than 85% of the model 

in place 𝑇𝑒𝑚𝑝21, than it will take its place. Or, if the number of detected features is 

more than 75% of the model in place 𝑇𝑒𝑚𝑝22, than it will take its place. And lastly, if 

the number of detected features is more than 65% of the model in place 𝑇𝑒𝑚𝑝23, than 

it will take its place.  The first model of the Buffer (at position Buffer[0]) is the initial AC 

definition and therefore never changed during runtime. 

 

Figure 4.25 Buffer update scheme 

Same principle goes for the rest of the Buffer groups, with exact same percentages. 

Only difference is that, 𝑇𝑒𝑚𝑝31,32,33  is updated regarding response of features, 

𝑇𝑒𝑚𝑝41,42,43 is updated regarding quality of re-initialization (this is not updated when 

tracking). 𝑇𝑒𝑚𝑝51,52,53 is updated regarding newest frames with more than 65% active 

trackers, where the oldest of the three is updated to the newest model candidate. 

If one of the two tracking failure metrics gives a value that is not acceptable for 

trustworthy tracking, it means that the region needs to be redefined if possible. By 
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redefining the region, it is meant that the SA which was initially given by the operator 

needs to be redrawn and all the features that are tracked need to be re-initialized. 

This phase is called ‘Re-initialization’. 

4.5. Re-initialization 

The procedure for re-initialization is a complex and intricate procedure, which will be 

separated in three general sub-chapters: Localization, and Redefinition and refining. 

A flow chart of the workflow of this phase is presented in . The current frame received 

by the video stream is considered in this part as the input, to assess the location and 

description of the AC. Each matching applied is between a model in the Buffer and 

the current frame. 

 

 

 

Figure 4.26 Flow chart of Re-initialization phase 

 

4.5.1. Localization 

The previously defined model buffer, filled with models of the tissue of interest, is the 

primary source of information in this part. Each of the models is being matched to the 

current frame, which is the one that has been detected to have given a tracking failure. 

Each model will give a different set of matched features with this current frame.  
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Figure 4.27 Flow chart of template matching 

The total number of models to be matched is 13, as defined for the model buffer 

previously. This is done in parallel processes, and each of these 13 procedures gives 

a set S with different amounts of matched features (keypoints). Once all of them are 

gathered, they are stacked in one big array called Accumulator  ( Figure 4.27 Flow 

chart of template matching). 

 

Figure 4.28 Single template matching 
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Feature matching between a template and the current frame is done using the Brute 

Force approach ( Chapter 3.5 ), as can be seen in Figure 4.28 where matched points 

are connected by lines, matched points are good enough for localization of the area 

but will not describe the region fully, which is the motivation for using multiple 

templates for matching with different characteristics. All matching is done on grayscale 

images, but for ease of understanding the data will be displayed on color images. 

 

 

Figure 4.29 Features matched from all available templates 

 

In Figure 4.29, all matched points have been graphically presented by a blue filled 

circle. This is a graphical representation of the points found in the Accumulator. The 

vast majority of them are directly positioned on the tissue, while there are others 

dispersed through the image by mismatching. In order to discard these mismatches, 

the use of a density-based algorithm is proposed, in particular Density-based spatial 

clustering of applications with noise (DBSCAN), as explained in Chapter 3.7.1. 

Density - based spatial clustering of applications with noise (DBSCAN) 

It is most likely that a big portion of the matched destination points from the current 

frame will appear multiple times and it is of great importance to keep all of them. They 

may appear multiple times at the matching between the model and the current frame 

([xᵢ,yᵢ] ϵ Si), and also the same points may appear even in different model matchings 

( [xᵢ,yᵢ] ϵ S1 ∩ S2... ∩ S13). Although having the same point multiple times may seem 

as non-beneficiary to the general knowledge at this stage, it will present itself as very 
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important in the next step which is the use of DBSCAN. The minPoints and radius 

parameters were identified by series of experiments, and the results were correlated 

to the size of the image and the size of the tracked tissue. They are adaptive and have 

been calculated as a function of the input video stream’s width and height, and also 

the area covered by the AC definition. The most common values for MinPts and radius 

were 35 and 25, respectively. 

The large set of data in the Accumulator of all matched points is fed into the DBSCAN. 

It requires two parameters in order to function, one is the search radius and the 

second one is the required minimum (of neighboring points), as discussed in Chapter 

3.7.1. Density - based spatial clustering of applications with noise (DBSCAN) The 

aforementioned copies of same points will come in handy here. The reason for this is 

that if a point is matched multiple times, it will be considered with great trust that this 

point is an available feature that is found in the tissue of the current frame. In addition, 

the distance between these copies is 0 and according to DBSCAN it will be considered 

as a core point with great trust. This will happen because the Euclidean distance 

between two points with same exact coordinates is 0 and is always less than the 

search radius defined for DBSCAN. According to DBSCAN clustering theory, if there 

is number of points larger than the required minimum provided through a parameter 

within a radius also given through a parameter, than those points can be considered 

as core points. This acts like a small voting scheme for including or discarding certain 

points. 

Having these copies is also very likely to happen in the region matched from the model. 

This helps DBSCAN to get rid of the mismatched outliers which are dispersed through 

the image. The algorithm for matching used is of Brute Force type, but even this 

thorough approach will have wrong conclusions. 

Once DBSCAN has returned the clusters found, the largest one is chosen. The reason 

why it is always acceptable to consider the biggest one, is again because of the 

matching copies, which provide the possibility for this cluster to  have amount of points 

which is multiple times larger than the other clusters found, thus making it a dominant 

cluster. This way of thought was motivated by the Hough accumulator, which acts in 

a similar manner by voting certain points or lines as winners if during the analysis they 

appear more times than others in continuity. This implementation of the Hough 
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accumulator is using Hough transform which is an algorithm used for line detection in 

images [39]. The resulting dominant cluster provided by DBSCAN is graphically 

presented in Figure 4.30, where each point of the cluster is shown as a filled blue circle. 

 

 

Figure 4.30 DBSCAN output cluster 

 

One way of creating a robust binary mask out of this data set is by finding the outer 

boundary and then filling it with white pixels. Most common approach for this is by 

using Convex Hull (Chapter 3.9.1. Convex Hull). However, Convex Hull has a big 

problem with finding boundaries if the distance between points which are candidates 

for boundary vertices have 0 distance between them. For this, a set of only unique 

values is required. This is achieved by checking for each point if there is another point 

with the same coordinates, and removing each occurrence of it after the first one has 

been found. Hence, achieving a set of unique values. 
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Figure 4.31 Convex Hull of DBSCAN cluster 

 

4.5.2. Re-definition and refining 

Using the Morphological implementation of Chan-Vese (MCV) active contours 

(Chapter 3.9.2. Active contours), which belongs to the group of Active Contours 

Without Edges (ACWE), it is possible to expand the region that has been defined by 

Convex Hull. For this reason, the initial mask for active contours will be exactly the 

mask acquired from the boundaries defined through Convex Hull. The energy function, 

which MCV needs to minimize has two coefficients, with lambda1 working in favor of 

expanding while lambda2 in favor of contracting. It has been shown experimentally 

that the cluster which localizes the tissue is usually inside the tissue, so a mask based 

on this will need to expand. MCV will be initialized with parameters lambda1 = 8 and 

lambda2 = 0.4, with the difference of exactly 20 times in order to prefer expansion. 

MCV is applied on the first channel of HSV color space representation of the current 

frame. It is used because the Hue channel (first channel of HSV) provides a good 

distinction between different shades of a color, and especially between different colors. 
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Figure 4.32 Morphological Chan-Vese evolution at different iterations 

 

Since it is largely affected by color, noise and morphological structures due to the 

minimization of the residual equation, two outcomes are possible: 

-  Well posed contour with a dense core and very small sparse ‘spikes’ around it. 

-  Badly posed contour with a small core and big sparse ‘spikes’ around it. 

If the region MCV wants to describe is from the same object it will expand in a stable 

manner and will not grow sparsely in multiple directions 

 

 

Figure 4.33 On the left, the mask created upon MCV’s method is implemented. On the right, 
the mask acquired after binary filtering operations.    

  

Using Morphological Opening and erosion, these spikes will be removed, and small 

gaps inside will be filled. Aside from refining the contour, it will be useful to have a 
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reliability index as measure for this new contour. Assuming a badly posed contour will 

have these spikes which are vastly lost after erosion, Jaccard score can be used. 

Again. Jaccard similarity score will calculated over two sets. An intersection between 

two sets will be a coordinate where both have a logical ‘one’.  The three conclusions 

to be drawn from Jaccard index are: 

- If the sets before and after the binary filters are very similar, it will mean it is 

well posed ( Figure 4.34 on the left ) and the Jaccard score will be very high 

(0.85-1).  

- If it is badly posed, erosion will remove a large portion of these spikes and 

Jaccard score will be low (<0.6)This will be considered as unacceptable for 

redefinition of AC (Figure 4.34 on the right) 

- Everything between 0.6 and 0.85 will be shown in a circle, while changing 

color shades from red for <0.6, through yellow to green for >0.85.  

This classification, with the color shades described, is used to provide the surgeon 

with online information on the tracking quality and status. 

At each point, the operator can see this metric and decide if the re-initialization is good 

enough. If it is not, a manual switch can be used to force a re-initialization. 

               

Figure 4.34 The gray zone is the mask before erosion, and in white after erosion. Jaccard 
score on the left is 0.83 (good estimation), and on the right Jaccard score is 0.68 (bad 

estimation) 
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In the case of a reliable description of the AC, the boundary vertices of the contour 

are calculated, and they are returned to the tracking algorithm, as seen in Figure 4.35. 

The tracking algorithm instead of using the last known SA, uses the new form of the 

SA retrieved by this redefinition phase and re-initializes all parameters as in the very 

first cycle, as it was described in the first sub-topic from this chapter. Once re-

initialization is finished, the new AC is checked if it should be used to update the model 

buffer, as discussed at the very end of the previous sub-chapter (Chapter 4.4) 

 

 

Figure 4.35 Estimated new SA definition is used in tracking 

 

 

In Figure 4.35  there can also be seen five lines of information, selected with a red 

bounding box. The meaning of each line provides a different type of information 

provided to the surgeon and their meaning is respectively: 

- Phase, and it can be TRACKING or RE-INITIALIZATION 

- Computational speed, in HZ 

- Jaccard score of current re-initialization 

- Colored circle for conveying a visual AC Reliability index (red for not reliable, 

through yellow for semi-reliable, to green for reliable) 

- Colored circle for tracking reliability index as measure of active trackers 

available (red for not reliable, through yellow for semi-reliable, to green for 

reliable) 
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4.6. 2D to 3D projection 

As discussed in the beginning, this method is completely implemented in 2D. 

However, when implemented in a surgical robot it needs to provide 3D information on 

how the area of the AC has transformed. For this, an approach to transform 2D points 

to a 3D point cloud is used.  

The developed GUI, SmartSURG, is used for definition of the point clouds from which  

the AC is modelled. The used technique ( Figure 4.36 ) deploys a virtual plane placed 

between the observer (viewpoint) and the point cloud (3D scene). On this plane, using 

a mouse or a master robotic arm, the surgeon can draw an area to delimit the AC 

(Figure 4.37). 

 

 

Figure 4.36 Structure of the projection of 3D scene on the plane where safety areas are 
drawn. 

 

 

Figure 4.37 Projecting Point cloud on a 2D plane where the AC contour is then drawn 
(polygon bounding the green area) and projecting the points inscribed in green area back to 

the 3D scene, identifies the points belonging to the AC as a point cloud (green spots). 
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The projection of the points included in the safety area projected on the plane back to 

the 3D scene identifies the points belonging to the AC as a point cloud (i.e. defines 

the AC to be rendered visually and haptically).  

 

This step is of fundamental importance since the selected points will be used to 

reconstruct the 3D surface of the anatomical structure that will form the AC volume, 

from which the surgical tool will be steered away. The problem is defined in the 3D 

space, so the primary challenge consists in identifying the 3D points confined within 

a 2D polygon seen from the perspective point of the user who drew the area. 

To solve the problem, it was decided to transform the 3D formulation into a 2D one. 

Instead of projecting the AC on a parallel plane beyond the scene to create a 

polyhedron, it turned out to be more convenient to project the point cloud on the same 

plane of the AC (Figure 4.36). Following this step, by applying a 2D ray-casting 

algorithm, it is possible to identify the points inside the polygon and then project them 

back to their original position to obtain the points of the safety volume's surface.  

This solution for projecting the 2D polygon of AC to 3D is being used continuously to 

provide a 2D-to-3D projection of the 2D defined AC polygon from the method 

proposed in this thesis to the reconstructed 3D image from the endoscope. 
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Chapter 5 CHAPTER 5 
Experimental results 

In this chapter, the experimental results used to validate the proposed method will be 

presented.  Several metrics and statistical methods validation for of the method will 

be briefly discussed, as well as description of each experiment and the purpose it 

holds in the experimental campaign. The videos used in all experiments are pre-

recorded and simulate a different aspect of a real surgery and potential situations that 

may arise. The videos are recorded using endoscopes, and once processed the data 

acquired while processing will be used to assess the performance of the algorithm. 

 

.  

 

5.1. Experimental setup 

5.1.1. Computing setup 

 

The conducted experiments were done using a workstation provided by NearLab 

laboratory. The algorithm developed to execute the proposed method was built, 

compiled and tested on the same machine. This workstation is equipped with: 

- Intel i9 9900k @ 3.60 GHz with 8 cores / 16 threads and max turbo speed of 

5.00 GHz 

- 16 GB DDR4 RAM at 2133 MHz 

- Quadro M5000 GPU with 8 GB of GDDR5 memory 
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The machine was running on Ubuntu distribution version 16.04.6 LTS. The complete 

programming was done in Python 3.6.8 with Ubuntu 16.04.6 compatible versions of 

the OpenCV, numpy and scikit-learn libraries. 

During this experimental campaign, the proposed method was not implemented on 

the dVRK. 

 

5.1.2. Monitoring setup 

This method is purely visual and does not depend on any other input from the robot 

except for what is provided by the camera, which in this application is the endoscope.  

Richard-Wolf stereo ENDOCAM Epic 3D HD endoscope 

This endoscopic system includes two high definition (HD) cameras on the tip of the 

endoscope shaft to provide a fully HD image with three-dimensional depth (Figure 5.1). 

Human beings use their two eyes for orienting in a space, and it is why ENDOCAM 

Epic 3DHD also uses two cameras to generate an image of a space. 

 

 

 

Figure 5.1 Richard-Wolf ENDOCAM 

 

All experiments were done using prerecorded video sequences as input to of the 

method proposed in this thesis, in order to test and assess specific aspects of its 

behavior and performance. The used video datasets are classified in two groups: 

- Controlled environment: 4 datasets, 

- Real world surgery: 1 dataset. 
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The dataset from an actual surgery used was provided by the TrackVes repository 

[40] and it is not disclosed what type of endoscope it is used. However, it is safe to 

assume that it is a da Vinci RAS surgery and the endoscope is a proprietary device. 

In Table 3 Endoscopes used in experiments, each experiment to be done is identified by 

the endoscope used in it. 

Table 3 Endoscopes used in experiments 

Experiment Endoscope 

Controller environment 1 Richard-Wolf stereo ENDOCAM 

Controller environment 2 Richard-Wolf stereo ENDOCAM 

Controller environment 3 Richard-Wolf stereo ENDOCAM 

Controller environment 4 Richard-Wolf stereo ENDOCAM 

Real surgery Not disclosed 

 

5.2. Methodological overview of statistical metrics 

To assess the algorithm behavior and performance, and to be able to compare to 

other works, several approaches were used. In this sub-chapter these metrics will be 

discusses, as well as the theory behind them. 

 

5.2.1. Visibility of AC area 

Regarding visibility of AC, as proposed by Penza et al. [25] where Safety Area is used 

to annotate the area inside the AC, the video may have four different (see Figure 5.2) 

visibility situations: 

- Safety Are Visible (SAV) 

- Partial Occlusion (PO) 

- Total Occlusion (TO) 

- Out of Field of View (OFV) 
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Figure 5.2 Occlusion types.(a)SAV; (b) PO; (c) TO; (d) OFV 

 

5.2.2. Ground truth labeling 

Ground truth (GT) is a term used in statistics that means checking the results of the 

statistical estimations for accuracy against the real world. It is a term borrowed from 

meteorology for independent confirmation at a site, for information obtained by remote 

sensing. 

These tests allow researchers to refine their algorithms for better accuracy. 

For instance, in this thesis the GT that is used for determining the accuracy of the 

method is a polygon drawn at an interframe step of k frames. This means that the GT 

will be defined at each kth frame. The region that will be drawn by the user is relative 

truth and does not always represent the absolutely correct AC definition to be 

expected, therefore it may not always be the best description of the region to be 

assessed for accuracy. 
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Figure 5.3 GT labeling 

This is why similarity coefficient of 100% is never to be expected, but rather everything 

above 80% similarity will be considered as “equal”. 

 

5.2.3. Jaccard similarity score 

Jaccard similarity score (JSS) is a metric used to assess how similar are two sets. It 

will be used in the experimental results of this thesis for assessing the performance 

in two different aspects: 

- Re-initialization reliability index, 

- Quality of tracking. 

Re-initialization reliability index 

This index (see Chapter 3.7.2. Jaccard similarity score) shows how good is the region 

proposed by Morphological Chan Vese (MCV) in the phase of re-definition while re-

initializing. JSS is calculated as the similarity score between S₁ and S₂, where S₁ is a 

binary mask over the region proposed by MCV to be the new AC, and S₂ is a binary 

mask over the region that is received after Morphological Opening and erosion has 

been applied to MCV. A low Jaccard similarity index will mean that there were many 
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sparse elements on the boundary of the region, meaning it was affected by noise 

(Figure 5.4, right image).  

 

 

Figure 5.4 MCV output. On the left, a well-posed contour. On the right, a contour largely 
affected by morphological noise 

Quality of tracking 

In quality of tracking, Jaccard is the set similarity score between the AC acquired by 

the proposed method and the AC definition provided by GT. Three outcomes are 

possible: 

- 0, if there is no common element. Which leads to the conclusion that False 

Positive, False Negative or mismatching has occurred. 

- Low value (<0.4) means that the AC redefinition is ill-posed. 

- High value (>0.4) means that the AC redefinition is well-posed.  

Jaccard similarity score is a dimensionless quantity, ranging from 0 for no intersection 

at all, to 1 for complete overlap of sets.   

5.2.4 Precision, Recall and Accuracy 

Building a statistical or mathematical model is an integral part in the fields of computer 

science, statistics and patter recognition. Once built, this model needs to be put 

through tests to assess how good it is, and if it is possible to improve it in some way. 

The evaluation of the model built is the most important task of a data science project 
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to delineate how good the predictions are. Model based estimations can be of several 

types, and it is best described by using the so-called ‘confusion matrix’ (see Table 4) 

 

Table 4 Confusion matrix 

 Predicted Class  

 

Actual Class 

 Class = Yes Class = No 

Class = Yes True positive False negative 

Class = No False positive True negative 

 

True positive and true negatives are the observations that are correctly predicted and 

therefore shown in green. The goal is to minimize false positives and false negatives, 

so they are shown in red color.  

In order to explain the mathematical background behind these concepts, first some 

abbreviation must be defined. 

TP – Number of True Positive occurrences, is how many times the algorithm has 

detected and defined some AC correctly. 

FP – Number of False Positive occurrences, is how many times the algorithm has 

detected the AC even though it is not actually visible at that moment. 

TN – Number of True Negative occurrences, is how many times the algorithm has not 

detected the AC because it is not actually visible.   

FN – Number of False Negative occurrences, is how many times the algorithm has 

not detected the AC even though it is visible. 

 

However,  AC estimations are not binary (True or False) but rather arrays of vertices 

describing an area, and this means that there needs to be a definition to what is True 

Positive. 

In order to consider something as True Positive Jaccard similarity index will be used 

again. In this case, if the algorithm’s description of the AC and the GT differ by less 

than a threshold it will be considered as TP. Or, mathematically: 

𝜕 =  
|𝐴𝐶𝑃𝑀  ∩  𝐴𝐶𝐺𝑇  |

|𝐴𝐶𝑃𝑀  ∪  𝐴𝐶𝐺𝑇  |
 

Eq. 5.1 
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where 𝐴𝐶𝑃𝑀  is the AC described by the proposed method (PM) and 𝐴𝐶𝐺𝑇  is the 

ground truth AC. 

If 𝜕 is over a predefined threshold ε, the occurrence of TP will be accounted for. 

𝑂𝑇𝑃 =  {
1, 𝜕 ≥  ε 
0, 𝜕 < ε

 

Eq. 5.2 

where 𝑂𝑇𝑃 is the occurrence of True Positive point. In the experiments conducted in 
this chapter, the ε values which will be used are : 0.3, 0.5, 0.7 and 0.8. 

 

Accuracy 

Accuracy is the most intuitive performance measure and is simply the ratio between 

correctly predicted observations and the total observations. Accuracy is a great 

measure but only when the number of false positives and false negatives is almost 

the same. If not, other measures should be considered. Mathematically, Accuracy is 

calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Eq. 5.3 

Precision 

Precision is the ratio of correctly predicted positive observations to the total predicted 

positive observations. Mathematically, precision is calculated as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Eq. 5.4 

Recall 

Recall is the ratio of correctly predicted positive observations to the all observations 

in actual class – yes from Table 4.  

While, recall is calculated as: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Eq. 5.5 
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Figure 5.5 Precision and Recall definitions 

Accuracy, Precision and Recall are dimensionless quantities, ranging from 0 to 1. In 

both cases, 0 is considered bad performance, while 1 is considered perfect 

performance. 

 

5.2.5. F1 Score 

In most problems, priority can be given to maximizing precision, or recall, depending 

on the type of problem. But in general, there is a metric that can take into account 

both precision and recall, and it can be used to maximize this number to make the 

method more accurate. The generic form is called Fβ score, where β is a parameter 

used to prioritize either precision or recall. The mathematical formula of Fβ is : 

𝐹𝛽 = (1 +  𝛽2) ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Eq. 5.6 

A special case of Fβ is F1 score, which is simply the harmonic mean of precision and 

recall. Setting parameter β to 1 gives equal importance to both precision and recall. 
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𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Eq. 5.7 

 

F1 Score can also be considered as the weighted average of Precision and Recall 

and is considered the measure which encapsulates most outcome. It is often more 

useful than accuracy especially when the class distribution is uneven. 

Same as Precision and Recall, F1 Score is a dimensionless quantity, ranging from 0 

to 1. A F1 score of 0 is considered bad performance, while 1 is considered perfect 

performance. 

As proposed by Wu et al. [40], it is widely used as tracking benchmarking measure.  

 

5.3. Validation of the method in controlled environment 

The first four experiments are done using molded objects based on 3D computer 

models of kidney, tumor, renal vein, renal artery, inferior vena cava and descending 

aorta (see Figure 5.6, on the left). The 3D printing consists of printing of the molds 

using a PLA 3D printer (see Figure 5.6, on the right). PLA is preferred due to its non-

toxicity and extrusion ease. This material is manufactured using 40% in volume of 

Prochima Prolastix silicon base, 40% of cross-linking agent and 20% silicon oil to 

obtain correct anatomical density. They are molded with a silicon-based material 

which is soft to the touch and can mimic deforming behavior similar to the real 

situation. 

The  complexity in this type of experiments is in the lack of texture and the object 

having an almost homogenous surface of same color hue. Unlike real organs, this 

object lacks details such as bumps, vessels and other irregularities that are unique 

and can be particularly distinguished from other parts of the object and environment.  
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Figure 5.6 On the left, Phantom kidney setup. On the right, kidney molds 
Some blood vessel-like details were drawn on the kidney phantom manually with a 

color marker. 

The video sequences used in this group of experiments are recorded using the 

Richard-Wolf stereo ENDOCAM (Chapter 5.1.2. Monitoring setup). 

5.3.1 Result analysis of experiment 1 

The first experiment is done using the proposed method with video input from a 

dataset which has basic movement such as rotation and translation but does not have 

any occlusions nor deformations. Here only the kidney phantom with a tumor will be 

used, without any of the aforementioned additions. This test is done in an enclosed 

and controlled environment, using the kidney phantom over a dark background. 

Having a dark background provides a test which is not affected by specular noise and 

can show the level of reliability of the method in such stable environment. This, 

however,  is not applicable to the real surgery environment which is highly dynamic.  

In this experiment, the tracked AC is always visible. The table concerning AC area 

visibility is shown in Table 5. 

Table 5 AC area visibility coverage in Experiment 1 

SAV PO TO OFV 

100% 0% 0% 0% 
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Figure 5.7 Frame from Experiment 1 

 

This dataset has a resolution of 1840 x 1044 pixels and is 19 seconds long at 25 Hz, 

which amounts to a total of 475 frames. The selected AC encircles a region from the 

tumor artificially applied to the phantom kidney, depicted in Figure 5.8. 

 

Figure 5.8 Tracked AC on phantom kidney 

 

 

Precision, Recall, Accuracy and F1 Score  

Precision, recall, accuracy and F1 Score will be calculated and compared in order to 

have some sense of precision, repeatability and false detection, These values, as 
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previously stated (Chapter 5.2.4 Precision, Recall and Accuracy), were calculated by 

using several thresholds for considering something as True Positive, with respect to 

the current ground truth. Ground truth is defined at each 50 frames, which for this 

video results with 9 labeled frames from which the following calculations are acquired. 

 

Table 6 Statistical results for Experiment 1 

Threshold Precision Recall Accuracy 
F1 

Score 

False 

Positive 

False 

Negative 

True 

Positive 

0.3 1 1 1 1 0 0 9 

0.5 1 1 1 1 0 0 9 

0.7 1 1 1 1 0 0 8 

0.8 1 1 1 1 0 0 4 

 

The results presented in Table 6 Statistical results for Experiment 1 are ‘ideal’, which is not 

in any way surprising because the dynamics in this experiment are very low. Even 

with low texture, the edge-based approach in this method for tracking proves itself as 

reliable. Depending on the threshold set, only the number of TPs changes. 

These results only consider if a detection has happened and if it is correct, in a very 

‘binary’ manner. However, it gives no information on how the tracked AC compares 

to the GT. 

 

Tracked AC quality performance 

In Table 7, it can be seen how the tracked AC differs from the GT. For this purpose and 

because AC and GT can be considered as sets, Jaccard similarity score (JSS) is used 

again to determine how much do the sets differ. 

Table 7 AC tracking quality in Experiment 1 

 Mean Standard deviation Minimum Maximum 

AC quality JSS 0.779 0.041 0.688 0.819 

From this Jaccard similarity score graph (Figure 5.9), it can be observed that the 

maximum value is the starting one with 0.82 and the lowest is 0.69. This can be 
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considered a narrow range of 0.13 score value, considering a mean value of 0.78 and 

standard deviation of 0.041. 

 

Figure 5.9 AC tracking quality in Experiment 1 

 

There are no clearly visible defects of the AC throughout the tracking process, except 

for minor transformation difficulties because of the oval geometry of the object, which 

makes tracking of points difficult when they move out of view due to rotation 

(projection). From this data it can be concluded that during this experiment, the 

method has successfully tracked the AC and when compared to the provided GT the 

Jaccard similarity score has a mean value of 0.78. 

Number of active trackers 

Even in such stable environment, movement of types translation and/or rotation will 

cause change in: reflection on the object with respect to the fixed background lightning; 

moving points out of view and projection differences. Considering this, it is important 

to track how many trackers are active at any moments. In Figure 5.10, the number of 

active trackers for LK method are shown at all times.  

Table 8. Number of active trackers in Experiment 1 

 Mean Standard deviation Minimum Maximum 

No. of active trackers 209.825 3.168 207 219 
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In this scenario, the number of trackers falls only to 95% (Table 8 )of the initialized 

tracker. Drops of active trackers can be easily correlated to sudden movements which 

cause an abrupt reflection or projection changes. Since until the end of the dataset, 

no more than 5% of trackers are lost the re-initialization voting scheme never votes 

for a re-initialization. The initial drawing of AC is always considered as the correct AC 

definition,  so Jaccard score to that AC definition is set always set as 1 to initialization 

AC polygon. According to what was previously stated, re-initialization in this scenario 

never happens and Jaccard score for the AC definition remains 1 during the entire 

video 

 

Figure 5.10 Number of active trackers in Experiment 1 

 

Program execution speed 

In this experiment, as shown in  Figure 5.11, the computational speed had an average 

value 73.505 Hz, with standard deviation of 5.93 Hz, with a minimum of 20.78 Hz and 

maximum of 87.229 Hz.  
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Table 9. Program execution speed in Experiment 1 

 Mean Standard deviation Minimum Maximum 

Program execution speed 

[Hz] 
73.505 5.933 20.780 87.229 

 

These numbers lead to the conclusion that real-time application in this scenario is 

plausible. The average computational speed on the desktop computer for this 

experiment of 73.505 Hz is several times more than the minimum required for real-

time image processing which is 25 Hz. 

 

Figure 5.11 Program execution speed in Experiment 1 

 

Since there has been no re-initialization occurrence in this experiment, there are no 

metrics regarding re-initialization.  
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5.3.2 Result analysis of experiment 2 

The second experiment is done using a more complex organ setup. Urethra, renal 

vein, renal artery, inferior vena cava and descending aorta are added to the phantom 

kidney ( Figure 5.12 ). The test is done in an enclosed and controlled environment, 

using the phantom setup over a dark background. Having a dark background provides 

a test which is not affected by specular noise and can show the level of reliability of 

the method in such stable environment. 

 

Figure 5.12 Sample frame from experiment 2 

 

This dataset has a resolution of 1840 x 1044 pixels and is 62 seconds long at 25 Hz, 

which amounts to a total of 1550 frames. The selected AC encircles a region from the 

urethra (middle and biggest tubal structure exiting the kidney) artificially applied to the 

phantom kidney, depicted in Figure 5.13. In order to create a longer video sequence 

to test the behavior when it is supposed to track for a longer period of time, this video 

is created by looping a 15.5 seconds long video for four times. The reason for this is 

to accumulate the error which is done by the tool manipulation of the object and 

assess this repeatable behavior). Unlike Experiment 1, here the setup is static but the 

main testing goal is achieved when a surgical tool is used to manipulate with each 

part of the setup. For brief periods of time, it will also interfere with the AC. 
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Figure 5.13 AC definition on kidney phantom 

 

In this experiment, the tracked AC is always visible so the table concerning AC 

visibility is shown in Table 10. 

Table 10 AC visibility coverage in Experiment 2 

SAV PO TO OFV 

98.6% 1.4% 0% 0% 

 

Precision, Recall, Accuracy and F1 Score 

 

Precision, recall, accuracy and F1 Score will be calculated and compared in order to 

have some sense of precision, repeatability and false detection, These values, as 

previously stated, were calculated by using several thresholds for considering 

something as True Positive, with respect to the current ground truth (see Chapter 

5.2.4 Precision, Recall and Accuracy).Ground truth is defined at each 50 frames, 

which for this video results with 31 labeled frames from which the following 

calculations are acquired. 
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Table 11 Statistical results for Experiment 2 

Threshold Precision Recall Accuracy 
F1 

Score 

False 

Positive 

False 

Negative 

True 

Positive 

0.3 1 1 1 1 0 0 31 

0.5 1 1 1 1 0 0 31 

0.7 1 1 1 1 0 0 19 

0.8 1 1 1 1 0 0 9 

 

The results presented in Table 11 are again ‘perfect’, which is not in any way surprising 

because the dynamics in this experiment are very low and the AC area to be tracked 

is almost always visible (Table 10 AC visibility coverage in Experiment 2) . Even with low 

texture, the edge-based approach in this method for tracking proves itself as reliable. 

These results only take into account if a detection has happened and if it is correct, in 

a very ‘binary’ manner. However, it gives no information on how the tracked AC 

compares to the GT. 

Tracked AC quality performance 

In Table 12 it can be seen how the tracked AC differs from the GT. For this purpose and 

because AC and GT can be considered as sets, Jaccard similarity score (JSS) is used 

again to determine how much do the sets differ. 

Table 12 AC tracking quality in experiment 2 

 Mean Standard deviation Minimum Maximum 

AC quality JSS 0.737 0.098 0.574 0.903 

 

From these Jaccard similarity score results presented Table 12, it can be observed that 

the maximum value is the starting one with 0.903 and the lowest is 0.574. From, it can 

also be seen that the mean value to be expected is 0.737 and standard deviation of 

0.098. 

The consistent descending of the value depicted in Figure 5.14, infers that no re-

initialization has been voted by the voting scheme. 
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Figure 5.14 AC tracking quality in experiment 2 

There are no clearly visible defects of the AC throughout the tracking process, except 

for minor transformation difficulties because of the oval geometry of the object in the 

form of drift that (see Figure 5.15) have occurred from the minor interferences 

between surgical tool and AC and the lighting changes cause by the tool. From this 

data it can be concluded that during this experiment, the method proposed has 

successfully tracked the AC and when compared to the provided GT the Jaccard 

similarity score has a mean value of 0.737. 

 

Figure 5.15 Occurrence of drift in experiment 2 
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Number of active trackers 

Even in such stable environment where the phantom kidney is almost completely 

static, even minor tissue manipulations with the surgical tool can be critical for 

accurate tracking if they are not accounted for. Tissue manipulation can cause loss of 

trackers, but also the interference of the tool tip inside of the AC area will directly cover 

sub-areas filled with trackers causing them to be lost. In Figure 5.16, the number of 

active trackers for LK method are shown at all times. 

 

Figure 5.16 Number of active trackers in experiment 2 

 

In this scenario, the number of trackers falls only to 93% of the initialized tracker. 

Drops of active trackers can be easily correlated to sudden movements which cause 

an abrupt reflection or projection changes. Since until the end of the dataset, no more 

than 7% of trackers are lost the re-initialization voting scheme never votes for a re-

initialization.  

Table 13 Number of active trackers in experiment 2 

The initial drawing of AC is always considered as the correct AC definition,  so Jaccard 

score to that AC definition is set always set as 1 to initialization AC polygon. According 

 Mean Standard deviation Minimum Maximum 

No. of active trackers 170.480 3.804 161 173 
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to what was previously stated, re-initialization in this scenario never happens and 

Jaccard score for the AC definition remains 1 during the entire video. 

Program execution speed 

In this experiment, as shown in Table 14 ,the computational speed had an average 

value 75.078 Hz, with standard deviation of 6.801 Hz, with a minimum of 7.662 Hz 

and maximum of 93.504 Hz. 

Table 14 Program execution speed in experiment 2 

 Mean Standard deviation Minimum Maximum 

Program execution speed [Hz] 75.078 6.801 7.662 93.504 

 These numbers lead to the conclusion that real-time application in this scenario is 

plausible. The average computational speed on the desktop computer for this 

experiment of 75.078 Hz is several times more than the minimum required for real-

time image processing which is 25 Hz. 

 

Figure 5.17 Program execution speed in experiment 2 

 

Since there has been no re-initialization occurrence in this experiment, there are no 

metrics regarding re-initialization.  
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5.3.3 Result analysis of experiment 3 

The previous two experiments covered motion and minor partial occlusion. In this 

experiment total occlusion will be introduced such that re-initialization is forced to 

assess the behavior of the method when the tissue is not present in the field of view 

and how well does it localize and describe it after reappearing. 

The kidney setup is the same as in experiment 2, where to the kidney phantom with 

tumor, urethra, renal vein and renal artery are attached, while the renal vein is 

attached to the inferior vena cava. In this experiment, the inferior vena cava will be 

the organ to be protected by AC (biggest tubal structure located in the lower left 

corner). Same as in Experiment 2, this kidney phantom setup is static. A big object 

(human hand) will interfere with the camera’s scope of view to induce total occlusion. 

Because of the fast movement, automatic contrast adjustment and autofocus from the 

camera, additional darkening of the camera output will appear. In this video sequence 

there is no physical contact and  manipulation of any part of the kidney phantom setup. 

 

Figure 5.18 Sample frame from experiment 3 

 

This dataset has a resolution of 1840 x 1044 pixels and is 46 seconds long at 25 Hz, 

which amounts to a total of 1150 frames. The selected AC encircles a region from the 

artificial inferior vena cava. In order to create a longer video sequence to test the 
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behavior when it is supposed to track for a longer period of time, at randomly chosen 

times the hand will either partially or totally cover the camera’s scope of view. The 

reason for this is to assess the ability of the algorithm to learn online and rediscover 

the AC region being tracked after being entirely out of the scope of view. 

In this experiment, the tracked AC is not always visible so the table concerning AC 

visibility is shown in Table 15. 

Table 15 AC visibility coverage in Experiment 3 

SAV PO TO OFV 

79.2% 3.3% 17.5% 0% 

 

The environment that is provided in this experiment covers a very usual occurrence 

in real world surgeries which is having surgical tools interfering in the field of view of 

the camera, thus removing visibility from the algorithm. In such interference, even 

being close to the tracked AC may cause problems due to the addition of shade and 

directly changing the overall lighting.  

Precision, Recall, Accuracy and F1 Score 

Precision, recall, accuracy and F1 Score will be calculated and compared in order to 

have some sense of precision, repeatability and false detection. These values, as 

previously stated, were calculated by using several thresholds for considering 

something as True Positive, with respect to the current ground truth (Chapter ). 

Ground truth is defined at each 50 frames, which for this video results with 23 labeled 

frames from which the following calculations are acquired. 

 

Table 16 Statistical results for Experiment 3 

Threshold Precision Recall Accuracy 
F1 

Score 

False 

Positive 

False 

Negative 

True 

Positive 

0.3 1 1 1 1 0 0 21 

0.5 1 1 1 1 0 0 20 

0.7 1 1 1 1 0 0 17 

0.8 1 1 1 1 0 0 10 
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The results presented in Table 16 are yet again ‘perfect’. This results is not true, and 

is a consequence of the 50 frames interframe step for labeling ground truth. The 

occurrence of false positive was not documented by the statistical methods and 

therefore will not be considered in these calculations. However, it is necessary to 

mention that it has happened even though it was not registered. Having a false 

positive means that the AC was detected by the method, even though it was not visible 

and the ground truth at that moment was None (empty). These scores are very high 

but must be taken with caution because there is always a possibility for something to 

have happened between the labeling timestamps distanced 50 frames between two 

consecutive test points. Moreover, 50 frames add up to 2 seconds which is not a big 

timespan in a real surgery that may last in terms of hours. 

These results only take into account if a detection has happened and if it is correct, in 

a very ‘binary’ manner. However, it gives no information on how the tracked AC 

compares to the GT. 

 

Tracked AC quality performance 

In Table 17 it can be seen how the tracked AC differs from the GT. For this purpose, 

Jaccard similarity score (JSS) is used again to determine how much do the sets differ. 

It can also be observed that the maximum value is 1.0 and the lowest is 0.0. In addition, 

the mean value has value of 0.711 and standard deviation of 0.225. 

Table 17 AC tracking quality in experiment 3 

 Mean Standard deviation Minimum Maximum 

AC quality JSS 0.711 0.225 0 1 

A Jaccard score of 0 means either an empty set (no AC or GT) or AC and GT have no 

common element (completely wrong estimation). 
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Figure 5.19 AC tracking quality in experiment 3 

 

But these numbers are not to be taken directly as truth, because one data point is due 

to either wrong detection, false positive or false negative and gives no significant 

information on the quality of AC tracking. Aside from this 0 score value, there are also 

two additional low points. One of them has recovered fast to a high score value of 

0.74 (from data point at step 6 to step 7), while the second one (data point at step 19) 

is followed by a ‘perfect’ recovery which leads to the conclusion that there has been 

a failure to detect and is most likely to have been a long lasting occlusion. 

If these three points are neglected by the assumption that at these times failure to 

track has occurred or is anticipated to occur, the mean value rises to 0.753 with 

standard deviation of 0.11. 

Another very important aspect of this method is self-learning and optimizing. In other 

words, once a wrong re-definition has happened it should be able to correct itself and 

to reposition the AC correctly. 

By adding additional ground truth instances a posterior in order to specifically catch 

these instances, this method provides a reaction time of at most 7 frames  and at least 
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1 frame according to this experiment. This means that if a wrong redefinition of the 

AC has occurred, the algorithm is most likely correct itself and move the AC definition 

back to the proper within 7 sequential frames, assuming the tracked region is visible. 

Number of active trackers 

The environment that is provided in this experiment covers a very usual occurrence 

in real world surgeries which is having surgical tools interfering in the field of view of 

the camera, thus removing visibility from the scope of view. In such interference, even 

being close to the tracked AC may cause problems due to the addition of shade and 

directly changing the overall lighting. These are the main reasons for great loss of 

trackers from LK tracking algorithm. In Figure 5.20, the number of active trackers for LK 

method are shown at all times.  

Table 18 Number of active trackers in experiment 3 

Unlike the previous experiments, here the number of active trackers is not always 

decreasing. Re-initialization happens when they drop below the threshold defined as 

80% of the number of initialized LK trackers, which reactivates a new set of trackers. 

Sudden drops of large magnitude can be identified as total occlusions of the AC area 

being tracked. They are always followed with sudden jumps to a higher value of active 

trackers which is caused by re-initialization. 

 

 

 Mean Standard deviation Minimum Maximum 

No. of active trackers 789.285 261.465 20.0 1158.0 
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Figure 5.20 Number of active trackers in experiment 3 

 

 

Program execution speed 

In this experiment, as shown in Table 19 Program execution speed in experiment 

3,the computational speed had an average value 27.830 Hz, with standard deviation 

of 3.374 Hz, with a minimum of 0.594 Hz and maximum of 44.649 Hz. These numbers 

lead to the conclusion that real-time application in this scenario is plausible. The 

average computational speed on the desktop computer for this experiment of 27.830 

Hz is more than the minimum required for real-time image processing which is 25 Hz. 

 

Table 19 Program execution speed in experiment 3 

 Mean Standard deviation Minimum Maximum 

Program execution speed [Hz] 27.830 3.374 0.594 44.649 
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Figure 5.21 Program execution speed in experiment 3 

 

 

Unlike the previous two experiments, in this experiment there are total occlusions 

registered during runtime. Because of this two more aspects need to be inspected, 

Reliability index and length of tracking between re-initializations. 

 

 

Reliability index 

When re-initialization happens, localization and AC redefinition techniques are applied 

as described in Chapter 4.5. In order to determine if they are reliable or not, the 

assumption made in Chapter 4.5 is yet again considered and it states that a well-

posed redefinition of AC will be only mildly affected by binary erosion once it is applied. 

The metric used for this is yet again Jaccard similarity score. 
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Figure 5.22 Reliability index in experiment 3 

 

The changing value in this figure, which was previously always 1, shows how ‘good’ 

are the re-definition and refining.  The mean value is 0.866, as presented in Table 20 

Reliability index in experiment 3, and standard deviation is 0.051. Having a mean of 0.865 

score value shown that the proposed method in this thesis tackles the problem of 

redefinition successfully by having an average similarity score of 0.865 from the 

possible maximum 1. 

Table 20 Reliability index in experiment 3 

 Mean Standard deviation Minimum Maximum 

Reliability index 0.866 0.051 0.73 1.0 

 

 

 

Length of tracking phases 

Another difference between this experiment and the previous two is that tracking 

occurs continuously without failure in those experiments. Here, it is also important to 

assess how well does it accompany the concept of long-term tracking. 
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In Figure 5.23 all tracking phases are shown with the length of each of them. There are 

two maximums of 342 and 338 frames length of tracking, which adds up to 13.68 s of 

tracking without re-initialization per tracking phase.  

 

 

Figure 5.23 Length of tracking phases in experiment 3 

 

The mean value of all tracking phases is 14.015 frames (see Table 21), while the 

lowest value is 1, when there is no tracking but rather only attempts to re-initialize. 

Accordingly, the sequential values of 1 are associated to total occlusion. 

Table 21 Length of tracking phases in experiment 3 

 Mean Standard deviation Minimum Maximum 

Tracking lengths [frames] 14.015 45.960 1.0 342.0 

Corrected tracking lengths [frames] 40.045 3.296 3.0 342.0 

 

If all instances where the value of tracking length phase is below three are discarded, 

a graph will be acquired representing all phases where there has been effective 



 

134 

tracking of at least 3 sequential frames, as shown in Figure 5.24. This data where only 

effective tracking of more than three consecutive frames is considered will be call 

‘corrected’. The mean value will rise to 40.045 frames sequential frames of tracking 

with a lowered standard deviation to 3.296 frames (see Table 21) 

 

Figure 5.24 'Corrected' length of tracking phases in experiment 3 

 

 

 

 

Visual defects  

 

During this experiment, several visual occurrences were noticed which cannot be 

inferred from the statistical data, such as: 

- Overestimation at re-initialization (Figure 5.25 (d)) 

- Wrong re-initialization (Figure 5.25 (c)) 

- Bad re-initialization (Figure 5.25 (b)) 

- Correction after bad - reinitialization 
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Figure 5.25 (a)GT definition; (b) bad re-initialization; (c) wrong re-initialization; (d) 
overestimation 

 

 

5.3.4 Result analysis of experiment 4 

This fourth and last experiment from this group of experiments on the kidney phantom 

focuses on deformation. The video sequence starts with the object deformed (Figure 

5.26, upper picture), and after a while the pressure is released resulting in the object 

going back to its normal form phantom focuses on deformation. The video sequence 

starts with the object deformed (Figure 5.26, lower picture). In addition to this, there 

is rotation occurring. The kidney phantom is positioned at a relatively close distance 

from the camera. The deformation is severe, and the object regains its primary form 

with a very fast and abrupt movement. This will cause loss of majority of active 

trackers. This is to be expected, and the goal of this experiment is to assess how 

reliable is this method in redefining the AC when it is under a great deformation. 
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Figure 5.26 Upper: deformed model; Lower: recovered model 

 

The previous experiments covered motion, minor partial occlusion and total occlusion. 

In this experiment deformation will be introduced, such that tracking and re-

initialization are forced to try and track change, movement and loss of feature points 

in order to assess the behavior of the method when the tissue loses its primary form 

and how well does it localize and describe it after deforming. The kidney setup is the 

same as in experiment 1, where to the kidney phantom with tumor is the only 

component of the experimental test setup. In this experiment, a randomly chosen 

region from the kidney surface will be the region to be protected by AC . Same as in 

Experiment 2, this kidney phantom setup is almost completely static. A manipulating 

device (human hand) will apply force to the sides of the kidney phantom to induce 

deformation and partial occlusion. Because of the fast and abrupt movement, 

automatic contrast adjustment and autofocus from the camera will create additional 

darkening of the output. 

This dataset has a resolution of 1840 x 1044 pixels and is 20 seconds long at 25 Hz, 

which amounts to a total of 500 frames. The selected AC encircles a region from the 
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artificial kidney model. In order to create a better video sequence to test the behavior 

when it is supposed to track for a longer period of time but with big magnitudes of 

deformation, at randomly chosen times the hand will partially change the overall 

shape of the kidney phantom. The reason for this is to assess the ability of the 

algorithm to learn online, track in a dynamic environment and rediscover the AC region 

being tracked after being occluded and deformed. 

 

In this experiment, the tracked AC is not always completely visible so the table 

concerning AC visibility is shown in Table 22. 

Table 22 AC visibility coverage in Experiment 4 

SAV PO TO OFV 

93% 7% 0% 0% 

 

 

The environment that is provided in this experiment covers a very usual occurrence 

in real world surgeries which is having surgical tools manipulating the tissue and 

changing its shape regardless of rotation and translation, thus removing visibility from 

the algorithm. 

 

 

Precision, Recall, Accuracy and F1 Score 

 

Precision, recall, accuracy and F1 Score will be calculated and compared in order to 

have some sense of precision, repeatability and false detection, These values, as 

previously stated, were calculated by using several thresholds for considering 

something as True Positive, with respect to the current ground truth (Chapter 5.2.4 

Precision, Recall and Accuracy). Ground truth is defined at each 50 frames, which for 

this video results with 10 labeled frames from which the following calculations are 

acquired. 
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Table 23 Statistical results for experiment 4 

Threshold Precision Recall Accuracy 
F1 

Score 

False 

Positive 

False 

Negative 

True 

Positive 

0.3 1 1 1 1 0 0 10 

0.5 1 1 1 1 0 0 10 

0.7 1 1 1 1 0 0 3 

0.8 1 1 1 1 0 0 1 

 

The acquired values of the results are all equal to 1, as in the first two experiments, 

which leads to the conclusion that the detection algorithm well. There is no surprise 

about these results because the AC is always visible and easily localized, even when 

deformed. There are short spans of sequences in this video which have very high 

dynamic, but the results regarding Precision and Recall are not affected by this. As 

seen in the Table 23 Statistical results for experiment 4, no false positive estimation has 

occurred even with the strictest threshold of 0.8.  

These results only take into account if a detection has happened and if it is correct, in 

a very ‘binary’ manner. However, it gives no information on how the tracked AC 

compares to the GT. 

 

Tracked AC quality performance 

In Table 24 it can be observed how the tracked AC differs from the GT. For this 

purpose, Jaccard similarity score (JSS) is used again to determine how much do the 

sets differ. It can also be observed that the maximum value is the starting one with 

0.887 and the lowest is 0.603 with a  mean value of 0.683 and standard deviation of 

0.078. 

Table 24 AC tracking quality in experiment 4 

 Mean Standard deviation Minimum Maximum 

AC quality JSS 0.683 0.078 0.603 0.887 
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Figure 5.27 AC tracking quality in experiment 4 

 

From Jaccard similarity score graph pictured in Figure 5.27,it can be observed that the 

maximum value is the starting one with 0.887 and the lowest is 0.603. This can be 

considered a fairly wide range of 0.284 score value, considering a mean value of 

0.683 and standard deviation of 0.078. Between GT label steps 3 and 5 a great 

recovery can be seen which is the adaptive algorithm finding new similarities to the 

models from the buffer. This is one of the most critical measures for this experiment 

as it is visually difficult to identify several parts of the AC area. These clearly visible 

defects of the AC throughout the tracking and re-initialization process, and they are 

directly affected by two reasons: 

-    Lack of texture in the kidney phantom 

-    Big and fast deformation is applied 

Once the deformation has been applied, or most trackers are lost, re-initialization 

procedure starts. It always locates it AC well but does not always expand properly to 

describe it better and refine this redefinition. Lack of texture makes a problem for 

Morphological Chan Vese algorithm which requires color and morphological 

differences in order to minimize the energy equation. Nevertheless, a mean value of 

0.683 is still good result having in mind that it means 68.3% of the sets have matched. 
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Number of active trackers 

The environment that is provided in this experiment covers a very usual occurrence 

in real world surgeries which is having surgical tools interfering in the field of view of 

the camera, thus removing visibility from the algorithm. In such interference, even 

being close to the tracked AC may cause problems due to the addition of shade and 

directly changing the overall lighting. These are the main reasons for great loss of 

trackers from LK tracking algorithm. In Figure 5.28 , the number of active trackers for 

LK method are shown at all times.  

Table 25 Number of active trackers in experiment 4 

 

Like the previous experiment, here the number of active trackers is not always 

decreasing. Re-initialization happens when they drop below the threshold defined as 

80% of the number of initialized LK trackers, which reactivates a new set of trackers. 

It is easily noticeable when does re-initialization happens, as it is the only way to have 

an increase in the number of active trackers. The mean average of active trackers 

and standard deviation are presented in Table 25 Number of active trackers in experiment 4. 

 

Figure 5.28 Number of active trackers in experiment 4 

 Mean Standard deviation Minimum Maximum 

No. of active trackers 567.699 125.059 195 869 
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Program execution speed 

In this experiment, as shown in Table 26 Program execution speed in experiment 4, the 

computational speed had an average value 36.739 Hz, with standard deviation of 

3.388 Hz, with a minimum of 0.655 Hz and maximum of 43.964 Hz.  

Table 26 Program execution speed in experiment 4 

 Mean Standard deviation Minimum Maximum 

Program execution speed [Hz] 36.739 3.388 0.655 43.964 

 

These numbers lead to the conclusion that real-time application in this scenario is 

plausible. The average computational speed on the desktop computer for this 

experiment of 36.739 Hz is more than the minimum required for real-time image 

processing which is 25 Hz. 

 

 

Figure 5.29 Program execution speed in experiment 4 
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Reliability index 

When re-initialization happens, localization and AC redefinition techniques are applied 

as described in the previous chapter. In order to determine if they are reliable or not, 

the assumption mentioned in the previous chapter is yet again considered.  It states 

that a well-posed redefinition of AC will not change much after binary erosion is 

applied. The metric used for this is yet again Jaccard similarity score. 

 

Figure 5.30 Reliability index of experiment 4 

From Figure 5.30 Reliability index of experiment 4 it can be concluded that many 

tracking failures have happened, causing as many re-initializations. The instability 

caused by the same reasons discussed in the AC tracking quality segment forces 

many reinitializations in a short time span. According to Table 27 Reliability index of 

experiment 4, a mean of 0.887 from the possible maximum 1 score value is achieved 

which shows that the proposed method in this thesis tackles the problem of 

redefinition successfully. 

 Table 27 Reliability index of experiment 4 

 Mean Standard deviation Minimum Maximum 

Reliability index 0.887 0.051 0.84 1.0 
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Length of tracking phases 

Similar to the previous experiment, this one also covers re-initializations. With this, 

the period between successful re-initializations is a period called tracking phase. The 

length of these phases can give insight on how long it can track an AC definition when 

visible. This tracking should include deformations which is the goal of this experiment. 

 

Figure 5.31 Length of tracking phases in experiment 4 

In Figure 5.31 all tracking phases are shown with the length of each of them. There is 

one maximum of 219 frames length of tracking, which adds up to 8.76 s of tracking 

without re-initialization. The mean value of all tracking phases is 8.64 frames (See 

Table 28 Length of tracking phases in experiment 4), while the lowest value is 1, when there 

is no tracking but rather only attempts to re-initialize. Accordingly, the sequential 

values of 1 are associated to total occlusion. 

 

Table 28 Length of tracking phases in experiment 4 

 Mean Standard deviation Minimum Maximum 

Tracking length [frames] 8.64 28.300 1.0 219.0 

Corrected tracking length [frames] 37.28 52.678 3.0 219.0 
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If all instances where the value of tracking length phase is below three are discarded, 

a graph will be acquired representing all phases where there has been effective 

tracking of at least 3 sequential frames, as shown in Figure 5.32. The mean value will 

rise to 40.045 sequential frames of tracking. 

 

Figure 5.32 'Corrected' length of tracking phases in experiment 4 

 

 

 

Visual defects  

 

During this experiment, several visual occurrences were noticed which cannot be 

inferred from the statistical data, such as: 

- Underestimation when AC is re-initialized 

- Complete loss of visibility in parts of AC area definition 
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5.4. Validation of the method in real surgical environment 

All previous experiments were in a controlled environment in order to examine 

behaviors from several aspects. However, this last experiment is a real world 

situation. A relatively long video sequence of 4 minutes is used, which is an in vivo 

recording from a pancreatectomy conveyed using da Vinci Surgical system. The video 

is approximately 4 minutes long. 

Out of the TrackVes dataset, only this video was chosen for testing because it is the 

only in vivo video with full results presented in the paper of Penza et al. [25].  

Compared to the previous tests, in this sequence there is no dark background, no 

static organs and no deterministic organ motion or tool manipulation. In such test, 

there will be many organs showing similar texture, geometry and size, and a very 

dynamic camera field of view. Camera movement is to be expected in 3D space (left, 

right, inwards and outwards with respect to the field of view in focus) and rotation 

(change in projection). Furthermore, one or two surgical tools are always used to 

manipulate the tissue. Depending on the tool, there may be ocular changes such as 

smoke from electrocautery. In addition, tools are very likely to appear between the 

camera (endoscope) and the organ. Movement of the endoscope also will create 

lighting changes and may increase or decrease lighting and reflections. The 

endoscope has a very small point lighting which never achieves to provide a 

homogeneous dispersion of light in the field of view. 

 

Figure 5.33 Sample frame of experiment 5 
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This experiment will provide assessment of the proposed method of this thesis in a 

real world surgical application and it will assess many different situations that were or 

were not covered in the previous experiments such as: 

-    Minor and major deformations 

-    Partial occlusion 

-    Total occlusion 

-    Out of field of view 

-    Partial and total occlusion caused by surgical tool 

-    Fast paced element in scope of view 

-    Big motion changes 

-    Severe lighting changes caused by endoscope lighting 

-   Inward and outward motion of the endoscope with respect to the tissue being 

operated 

This video sequence has long periods where the AC area is out of field of view. For 

this reason, the parts where the AC is out of view for more than 20 seconds have 

been cut out in order to condensate relative information in the results that are to be 

presented. During these cut out segments it was made sure that there is no 

occurrence of false positives. Having a long sequence of True Negatives will only 

cause the significant results regarding tracking and re-initialization to lose on 

statistical value. 

This dataset has a resolution of 1280 x 718 pixels and is 4 minutes long at 25 Hz, 

which amounts to a total of 6000 frames. The selected AC encircles a region from an 

artery, as can be seen in Figure 5.34. 
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Figure 5.34 AC selection around artery 

In this experiment, the tracked AC is not always visible so the table concerning AC 

visibility is shown in Table 29. 

Table 29 AC visibility coverage in Experiment 5 

SAV PO TO OFV 

15.30% 38.76% 16.11% 29.83% 

As noted previously, this video sequence has been separated in parts. Three of which 

are evaluated and will be used in the experiment results, and three parts where the 

AC area is either totally occluded or out of field of view. 

Table 30 Time-wise classification of video sub-sequences in Experiment 5 

Timespan Length Evaluated or Overlooked 

0 m 0 s – 0 m 22 s 22 s Evaluated 

0 m 22 s – 0 m 44 s 22 s Overlooked 

0 m 44 s – 1 m 17 s 33 s Evaluated 

1 m 17 s – 2 m 48 s 1 m 31 s Overlooked 

2 m 48 s – 4 m 0 s 1 m 22 s Evaluated 

Total 4 m 2 m 07 s evaluated out of 4 m 
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The overlooked parts do not affect the outcome regarding length of tracking, precision, 

recall, F score or Jaccard similarity scores. In order to provide clearer results, rather 

than different sub-chapters for each cut sequence of this video, they were 

concatenated, and the tests were done on a new video sequence which does not 

include long parts with AC out of field of view. 

 

Precision, Recall, Accuracy and F1 Score 

Precision, recall, accuracy and F1 Score will be calculated and compared in order to 

have some sense of precision, repeatability and false detection, These values, as 

previously stated, were calculated by using several thresholds for considering 

something as True Positive, with respect to the current ground truth (Chapter 5.2.4 

Precision, Recall and Accuracy). Ground truth is defined at each 50 frames, which for 

this video results with 61 labeled frames from which the following calculations are 

acquired. 

 

Table 31 Statistical results for Experiment 4 

Threshold Precision Recall Accuracy 
F1 

Score 

False 

Positive 

False 

Negative 

True 

Positive 

0.3 0.948 0.840 0.833 0.891 2 7 37 

0.5 0.937 0.810 0.808 0.869 2 7 30 

0.7 0.904 0.730 0.750 0.808 2 7 19 

0.8 0.857 0.631 0.689 0.727 2 7 12 

These results are not to be directly compared with the ones from previous 

experiments, because they were conducted in controlled environments. The high 

dynamics and mixture of noises in this experiment prohibits having such high and 

‘perfect’ results. 

These results only consider if a detection has happened and if it correct, in a very 

‘binary’ manner. However, it gives no information on how the tracked AC compares 

to the GT. The derived Precision value is completely dependent on the chosen 

threshold coefficient. Using the lowest value, which is 0.3, provides very high scores 

for all three measures (Precision, Recall and F1 Score). 
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While using the highest and most realistic threshold for real world application, which 

is 0.8,  provides somewhat lower results as presented in Table 31. FN and FP do not 

depend on this threshold, so the values of the metrics depend only on the threshold 

of TP here. 

These are still comparable to the ones from previous experiments, even though the 

complexity and extensive outside effects give constant stress on the calculations on 

each new frame. This is another validation for the proposed method, and how precise 

and repeatable it is. 

 

 

Tracked AC quality performance 

In  Figure 5.35 it can be seen how the tracked AC differs from the GT. For this purpose, 

Jaccard similarity score (JSS) is used again to determine how much do the sets differ. 

It can also be observed that the maximum value is 1.0 and the lowest is 0.0.  

Table 32 AC tracking quality in experiment 5 

 Mean Standard deviation Minimum Maximum 

AC quality JSS 0.458 0.357 0.0 1.0 
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Figure 5.35 AC tracking quality in experiment 5 

Scores range from 1 (perfect) to 0 (no common element), with a mean value of 0.458. 

This is affected largely by False Positive occurrences, because ones it appears it will 

be tracked by the algorithm until the re-initialization scheme decides to look for the 

correct AC again. The FP will still be tracked, even though the correct AC has become 

visible. The two largest portions, lasting 4 labeling time stamps each, with Jaccard 

score of 0 are due to FP being tracked even though the correct AC area is visible. 

Number of active trackers 

The environment provided in this experiment, covers every type of occurrence that is 

plausible to happen in a real-world surgery, such as partial and total occlusion, 

projection change, lighting change, fast dynamics, minor and major tissue 

deformations. These are the main reasons for great loss of trackers from LK tracking 

algorithm. In Table 33 , the number of active trackers for LK method are shown at all 

times.  

Table 33 Number of trackers in experiment 5 

 Mean Standard deviation Minimum Maximum 

No. of active trackers 222.691 131.732 66.0 707.0 
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Similar to previous experiments with occlusions, here the number of active trackers is 

not always decreasing. Re-initialization happens when they drop below the threshold 

defined as 80% of the number of initialized LK trackers, which reactivates a new set 

of trackers. 

 

 

Figure 5.36 Number of active trackers in experiment 5 

 

The evident lowering of the range of active trackers is due to the tracked tissue moving 

to the background or zooming out. By it becoming smaller, the AC area becomes 

smaller which eventually means a smaller number of active trackers used. 

 

 

Program execution speed 

The  workstation used provided an average of 51 Hz, presented in Table 34 ,with 

standard deviation of 8.543 Hz. The live video stream in a real-world surgical robot is 

at 25 Hz, or 0.04 s per frame sent. By looking at the average computational speeds, 
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the method provides performance which allows a computational cycle to be done in 

0.0196 s which is 0.0204 s before the next video frame arrives, thus making real-time 

implementation possible. However, there are several framerate low points which are 

directly connected to re-initialization process, as they happen due to that procedure. 

This low value (minimum of 0.642 Hz) is in a sense the bottleneck of this algorithm, 

as it will cause loss of intermediate frames. 

Table 34 Program execution speed in experiment 5 

 Mean Standard deviation Minimum Maximum 

Program execution speed [Hz] 51.276 8.543 0.642 71.034 

These numbers lead to the conclusion that real-time application in this scenario is 

plausible.  

 

Figure 5.37 Program execution speed in experiment 5 

 

 

Reliability index 

When re-initialization happens, localization and AC redefinition techniques are applied 

as described in the previous chapter. In order to determine if they are reliable or not, 

the assumption mentioned in the previous chapter is yet again considered.  It states 
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that a well-posed redefinition of AC will not change much after binary erosion is 

applied. The metric used for this is yet again Jaccard similarity score. 

 

Figure 5.38 Reliability index in experiment 5 

 

The mean value of this reliability index , which is Jaccard similarity score and is 

presented in Table 35, is 0.79 and the lowest achieved value is 0.41, while the 

standard deviation was at 0.13. These values verify that the proposed method for 

redefining the AC are working well and provide a steady and stable output for AC 

redefinition. 

Table 35 Reliability index in experiment 5 

 Mean Standard deviation Minimum Maximum 

Reliability index 0.790 0.131 0.41 1.0 

 

 

Length of tracking phases 

In Figure 5.39 all tracking phases are shown with the length of each of them. There is 

one dominant maximum with 450 frames length of tracking, which adds up to 18.08 s 

of tracking without re-initialization. The mean value of all tracking phases is 
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6.302frames (See Table 36), while the lowest value is 1, when there is no tracking but 

rather only attempts to re-initialize. Accordingly, the sequential values of 1 are 

associated to occlusion. 

 

 

Figure 5.39 Length of tracking phases in experiment 5 

 

Similar to the previous experiment, this one also covers re-initializations. With this, 

the period between successful re-initializations is a period called tracking phase. The 

length of these phases can give insight on how long it can track an AC definition when 

visible.  

Table 36 Length of tracking phases in experiment 5 

 Mean Standard deviation Minimum Maximum 

Tracking length [frames] 6.302 28.020 1 452 

Effective tracking lengths [frames] 58.18 74.316 3 452 

 

If all instances where the value of tracking length phase is below three are 

discarded, a graph will be acquired representing all phases where there has 
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been effective tracking of at least 3 sequential frames, as shown in Figure 5.40. 

The mean value will rise to 58.18 sequential frames of tracking. 

 

Figure 5.40 'Corrected' length of tracking phases in experiment 5 
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Chapter 6 Chapter 6                                              
Conclusions and discussion 

 

In this thesis work, the development and implementation of real-time intra-operative 

tracking method of soft tissue during RAS is considered. The main challenges in 

computer vision for surgical robots were identified, addressed and broadly analyzed. 

After the base of the framework was proposed, several surveys were conveyed to find 

the most appropriate algorithm. 

The main challenge was to create a small yet effective procedure that does not require 

pre-operative training. Unlike neural networks, which must be trained prior to 

application, such training phase cannot be applied to surgery as there is a patient that 

needs to be operated and it is not possible to train a network at that moment. 

An extensive survey of feature detectors and descriptors was done prior to choosing 

KAZE as the detector of choice. The proposed method required several characteristic 

models upon which matching is done and series of different methods are applied to 

first localize, then provide an initial estimate of the AC description, and lastly to finalize 

the description using active contour snake and some binary filters. A specific law was 

developed to update the model Buffer in order to have a good model gallery from 

which re-initialization will happen. Morphological active contours were used in order 

take into account multiple aspects of the image they are applied on, and not only 

colors. The environment that is captured by the endoscope is a mixture of repeating 

colors and textures, and most importantly it difficult to for the computer to distinguish 

a salient object from the background. This lead to stability issues for Morphological 

snakes, and the answer to this final and critical step in terms of redefinition of AC was 

using HSV color space, in particular the Hue channel. The features were put through 
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several tests for repeatability and consistency, where KAZE showed itself as the most 

reliable for this use. A novel approach of using edge detection mask for feature 

tracking is proposed, which allowed for significantly longer tracking sequences without 

the need for re-initialization of the AC. This approach, however, has the drawback of 

introducing drift effect where texture is lacking.  

The choice of filters in the preprocessing phase was done to preserve and enhance 

edge definitions in order to increase texture where it was hard to be found. This 

approach proved itself to be highly effective. 

As discussed previously, the priority in this thesis is providing an algorithm that would 

track AC area as long as it can and for when tracking failure happens, a fallback 

method was developed to redefine the AC.  

The proposed framework provides the surgeon with several reliability indexes to 

assure the surgeon that the AC is being tracked successfully and how trustworthy it 

currently is, but also when the surgeon either needs to be more cautious because of 

bad AC tracking, or to manually request AC redefinition. This idea was discussed with 

the consultant surgeon and was regarded as very helpful and useful in a real-world 

surgery. The model buffer update scheme is one point where a lot of improvement 

can be done, in order to make sure that the models stored are always models only of 

the considered tissue and that they provide enough information for reliable and well-

posed re-definition. 

An experimental campaign was conveyed to create adaptive parameter definitions, 

which do not change much between processes, but these small modifications create 

a domino effect of failures if not chosen correctly. 

The experiments were classified in two groups, which leads to a broader set of 

conclusions to be taken from them. 
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Table 37 Summary of experimental results [mean value (standard deviation)] 

 
Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 

Total 

Averages 

Calculations per 

Second [Hz] 

73.5 

(5.93) 

75.08 

(6.81) 

27.83 

(3.37) 

36.7 

(3.38) 

51.27 

(8.54) 
52.876 

Jaccard Similarity 

Score  
1 (0) 1 (0) 

0.866 

(0.05) 

0.887 

(0.051) 

0.79 

(0.13) 
0.9086 

Jaccard Similarity 

Score for AC 

tracking quality 

0.78 

(0.42) 

0.73 

(0.09) 

0.711 

(0.22) 

0.68 

(0.078) 

0.458 

(0.36) 
0.67176 

Tracking time 

[frames] 
// // 31.37 34.2 51.2 38.93 

No. of active trackers 209.8 

(3.16) 

170.48 

(3.8) 

789.285 

(261.46) 

567.7 

(125.06) 

222.691 

(131.74) 
// 

 

Regarding the final results provided in Table 37, it can be easily seen that an average 

computational speed of 52.876 Hz is achieved, while securing AC tracking quality with 

average of 67% similarity to hand drawn ground truth.  

According to the total average, the reliability index of the AC redetection is very high, 

by estimating an average score of  0.9086 out of 1. Average tracking time through 

all experiments (excluding experiments 1 and 2, where there is no re-initialization 

and AC is tracked through the entire video) is 38.93 frames. There are long tracking 

instances in each dataset applied reaching 400 frames (16.2 seconds) of 

uninterrupted tracking. Furthermore, in Appendix A                                                 

Comparison of experimental results, a summary of comparisons between 

experiments with respect to a particular measure can be found.  

Experiment 5, from the TrackVes dataset, was used in order to compare results to the 

work of Penza et al. [25] , where the high tracking performance Precision (0.85), 

Recall (0.6) and F1 Score (0.6) values have been calculated and will be considered 

as reference for assessing the proposed method from this thesis. By using the most 

strict TP threshold of 0.7, a Precision value of 0.846 is acquired, a Recall value of 

0.61 and F1-Score of 0.71. In addition, real-time execution was maintained at average 

of 48.5 Hz. 
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Chapter 7 Chapter 7                                                    
Open problems and future developments 

Several issues have risen during the work on this thesis. The primary one is the risk 

of falsely localizing the considered soft tissue, which may cause injuries and blood 

loss in the OR. The two most promising approaches to improve this performance are: 

- by using forward kinematics and knowledge of the movement of each joint 

from the endoscope’s robotic arm. The protected tissue is always in a 

globally static position, which leads to the possibility to use the link 

transformations[41] and with this to approximate the position of the AC area 

with respect to the scope of view. Once the localization problem is solved in 

a more ‘hardware’ approach, it leaves a lot of space to develop more 

advanced re-definition algorithms and deformation estimating ones. 

- By  using Infrared emitting  markers to mark several points on an organ or 

region to be tracked. There will be no need of recognition, but it will be a 

problem of finding an appropriate mathematical description of the change 

that has happened. This, however, requires a second camera that can 

record only infrared light emitted from the markers. It has been implemented 

with great results by [17]. The only drawback is that if only a few of these 

markers are not visible, the procedure fails. 

A combination of these two approaches is also a possibility, which will do most of the 

work regarding tracking, occlusion detection and deformation estimation without any 

high-level algorithms, and will also reduce computational load. 

Regarding this thesis work, an algorithm for adaptive histogram thresholding was 

developed to segment out surgical tools from the frame. This algorithm gave 

promising results, but it was not included in the final version of this thesis due to the 
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fact that it was possible to keep the surgical tools from being mistaken for AC 

reinitialization only by filtering out some parts of it. However, such segmentation 

algorithm for surgical tools will be of great help for filtering tools out of the tracking 

problem. 

Further work must be also devoted to the following issues. The camera, though 

stereo, is a device that is easily affected by noise and can have reduced performance 

even with small disturbances. Another issue which must be mentioned is 

computational load. Any AC tracking algorithm must be precise, robust and must be 

able to have computational speed of above 25 Hz in order to avoid latency. It is usually 

a trade-off between quality and quantity, and in this case of AC tracking it is usual for 

proposed methods to have acceptable tracking performance but subpar computation 

times which makes them not suitable for real-time implementation in RAS. This trade 

off will be further investigated. 
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Chapter 8 Appendix A                                                 
Comparison of experimental results 

 

 

 

 

By using error bars (mean value and standard deviation), the results of all experiments 

will be compared with respect to the type of test. 
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Program execution speed 

 

Figure 8.1 Error bar chart of program execution speed 

Reliability index 

 

Figure 8.2 Error bar chart of reliability index 
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Number of active trackers 

 

Figure 8.3 Error bar chart for number of active trackers 

Length of tracking phase 

 

Figure 8.4 Error bar chart for length of tracking 
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Corrected length of tracking phase 

 

Figure 8.5 Error bar chart for corrected length of tracking 


