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Abstract 

 

In milling, the regenerative instability phenomenon, also known as chatter, may appear and 

can lead to a deterioration of the surface quality and to a non-competitive production. This 

work deals with the problem of monitoring the cutting forces and tool tip vibrations by means 

of state observers. The aim is to model the real system considering the machine tool dynamics 

and the information about the cutting process. The additional information on the cutting 

process is necessary in order to describe the behaviour of the system when it is subject to 

regenerative instability (chatter). Indeed during chatter, the forces and vibrations of the system 

grow till the tool, due to the high vibrations reached, detaches from the workpiece. At this 

point the subsequent detachments and re-enters in cut characterize the system in its unstable 

condition. The addition of the regenerative term leads to a system of delay differential 

equations (DDEs). Then a study of state observers for systems of DDEs is performed and a 

Kalman filter is implemented. 

 

Keywords: chatter; milling process; dynamic model; cutting forces; tool tip vibrations; DDEs; 

state observers; regenerative effect; detachment of the tool. 

 

  



7 
 

Sommario 

 

Il fenomeno di instabilità rigenerativa, noto come chatter, che può verificarsi durante il 

processo di fresatura, contribuisce in modo significativo al peggioramento della qualità 

superficiale e ad una produzione non competitiva. Questo lavoro pone l’attenzione 

sull’identificazione delle condizioni di taglio instabile rigenerativo attraverso gli osservatori 

di stato per la stima delle forze di taglio e delle vibrazioni in punta utensile. Il sistema 

considerato si basa sia sulla dinamica della macchina sia sul processo di taglio. Le 

informazioni circa il processo di taglio sono necessarie al fine di definire il fenomeno 

rigenerativo del sistema in caso di instabilità. Infatti in presenza di chatter, le forze e le 

vibrazioni continuano a crescere fino a quando si verifica il distacco dell’utensile dal pezzo in 

lavorazione. A questo punto il sistema è caratterizzato da successive perdite di contatto e 

ritorni in presa dell’utensile. L’aggiunta del termine rigenerativo alla classica dinamica della 

macchina porta ad un sistema descritto da equazioni differenziali ritardate (DDEs). 

Successivamente uno studio è stato svolto sui metodi di implementazione degli osservatori di 

stato per sistemi descritti da DDEs e confrontato con un filtro di Kalman. 

 

Parole chiave: chatter; processo di fresatura; modello dinamico; forze di taglio; vibrazioni in 

punta utensile; DDEs; osservatori di stato; effetto rigenerativo; distacco dell’utensile. 
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1. Introduction 

 

1.1 Machine tool sector overview 

 

Nowadays the growing demand for high-quality products has characterized a global 

competition among manufacturing companies. For this reason, the research of high-

performance machine tools, which must in any case satisfy contained costs, is required. 

Machine tools builders focus on the production of customized, multitasking, efficient and 

reliable machines and they are projected on the idea of providing technical support to the 

customer, satisfying the principles of preventive and predictive maintenance. Another 

important aspect is the reduction of energy consumption; indeed, the industrial sector uses 

more energy than any other end-user sector, currently consuming about one half of the 

total energy supplied to the world. The goal in this direction is to produce environmentally 

friendly machines, according to the binding obligations on industrialized countries to 

reduce emissions of greenhouse gases as stated by the Kyoto Protocol to the United 

Nations Framework Convention on Climate Change.  

The Italian contribution in the machine tools sector is one of the most important in Europe 

and in the world. 

 

Figure 1.1: Role of Italy in machine tools Europe production (CECIMO 2015) 
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2018 was the year of record for the Italian machine tool, robot and automation industry 

(data UCIMU). Indeed in 2018 the production raised to 6900 million € with an increase of 

the 13.4% compared to 2017. It was the fifth consecutive year of growth and in absolute 

value the new record for the Italian industry of the sector; 2019 maintains the 2018 trend 

especially thanks to export. The result was determined both by the excellent performance 

of deliveries by Italian manufacturers on the internal market, which grew by 21.1%, to 

3270 million €, and by the positive trend in exports, up 7.2%, to 3630 million €. According 

to the UCIMU elaboration on ISTAT data, in the first eight months of the year, the main 

destination countries of the made in Italy sector were: Germany 246 million € (+ 11.6%), 

China 237 million € (+ 7.1%), United States 223 million € (+ 9.5%), Poland 143 million € 

(+ 49.8%) and France 135 million € (-4.6%). In order to maintain the positive trend of 

results, manufacturers must act towards increasingly efficient use of their machines, both 

in terms of the minimization of the downtimes periods and the enhancement of their 

performances. So, the next generation of CNC machine tools need to self-adjusting and 

organizing, by using reliable and effective condition monitoring solutions, in order to have 

smart and productive machine tools without operator intervention in accordance with 

Industry 4.0 principles. Even if advanced sensors are available at quite low cost, 

monitoring solutions still represent a challenge for industries. The main limitation is due 

to the incapability of directly measuring physical quantities strictly related to the process 

in order to control the production, find optimal cutting conditions and have an idea of the 

cutting quality. Hence the sensors are useful devices that allow to measure the process 

variables in machining, such as cutting forces, vibrations, surface finishing, temperature 

etc., but also they can provide information on the machine status for maintenance 

scheduling, for reducing downtimes and raising productivity. 

Among all the machining operations, milling is one of the most important because of the 

high material removal rate and precision obtainable. It can find application in many 

different industrial sectors such as automotive, aerospace, aeronautics, precision 

technology etc., where complex machining are always involved and high quality must be 

ensured. Cutting quality is strongly linked to machine tool dynamics.  
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The main variables that have a direct link to the quality of the obtained surfaces are: 

• Tooltip displacement 

• Tooltip vibration 

• Tool deflection 

• Cutting forces 

  



14 
 

1.2 Cutting forces measurements 

 

In milling, the detection of cutting forces can be very useful for process monitoring and 

controlling. They can provide indications about cutting conditions limits, surface quality 

of the produced parts, tool wear and other process related information in order to increase 

machining performances.  

However, cutting forces measurements are very difficult to obtain because, during cutting, 

the tool is engaged in the workpiece.  

There are basically two methods to measure the cutting forces: 

• Direct measurements 

• Indirect measurements 

In-process cutting forces measurements can be directly carried out by piezoelectric 

dynamometers mounted on the work table and above which the workpiece is fixtured as 

shown in figure 1.2. However, these devices are restricted to the laboratory use because of 

their limited size, setting difficulties and high costs; so, typically, industrial application is 

not widespread, except in some niche aeronautical sector. Moreover, these piezoelectric 

plates depend on the workpiece inertia that can change significantly during machining of 

the piece.  

For these reasons the indirect cutting force measurements are an alternative to the direct 

ones. They are based on the concept of relate the quantity read by the sensor, not located 

in the interested zone of detection, even if very close, to the force that must be studied. In 

particular Spindle Integrated Force Sensors (SIFS) are piezoelectric force sensors placed 

into the stationary spindle housing [1]; the structural dynamic model between the cutting 

forces acting on the tool tip and the measured forces at the spindle housing is identified 

(figure 1.3). A Kalman filter is then designed to filter the influence of structural modes on 

the force measurements. These types of sensors allow to obtain some advantages compared 

to direct measurements: 

• Saving of machine tool space 

• No limited size of the workpiece  

• No sensors exposed to chips and coolant in the cutting area 
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Albrecht and Altintas [2] developed an indirect method for measuring cutting forces from 

the displacements measurements of rotating spindle shaft with capacitance sensors and 

Kalman filtering processing, considering the machine tool dynamics. 

 

Figure 1.2: Dynamometer 

 

Figure 1.3: Spindle Integrated Force Sensor (SIFS) 

Milling with stationary 

dynamometer (Kistler) 
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An interesting alternative to direct and indirect cutting force measurements is the estimate 

through a state observer. State observers are systems that provide estimates of the states of 

a real system from the measurement of input and output. The observer relies on signals 

coming from sensors, such as triaxial accelerometer and inductive displacement sensors, 

that can be easily integrated in a commercial electrospindle, thus ensuring an easy 

industrial diffusion. The advantages related to this approach are: 

• Method based on standard built-in spindle sensors 

• No devices in contact with chips and coolant 

• No modification of the machine tool structure 

In order to introduce the principle of operation of the state observer, let’s consider the 

continuous time system (1.1) in state-space form, where x, u and y are the state, input and 

measurement vectors respectively, while A, B, C and D are the matrices that characterize 

the system.  

 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

                                                                                                                                       (1.1) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 

 

The state observer (1.2) is designed considering the system (1.1) with the introduction of 

a corrective term on the measurement residual. 

 

𝑥̇̂(𝑡) = 𝐴𝑥̂(𝑡) + 𝐵𝑢(𝑡) + 𝐿(𝑦(𝑡) − 𝑦̂(𝑡)) 

                                                                                                                                       (1.2) 

𝑦̂(𝑡) = 𝐶𝑥̂(𝑡) + 𝐷𝑢(𝑡) 

 

where “ ^ ” stands for an estimate quantity and L is the gain matrix. Defining the state 

estimation error as the quantity 𝑒(𝑡) = 𝑥(𝑡) − 𝑥̂(𝑡) and combining the above systems, the 

dynamic equation of the error can be found as  

 𝑒̇(𝑡) = (𝐴 − 𝐿𝐶)𝑒(𝑡)                                                          (1.3) 
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In order to have a reliable estimation, matrix 𝐿 should be set to stabilize (𝐴 − 𝐿𝐶); 

changing the gains it is possible to rely more on the system (low 𝐿, so low residual 

correction) or on the measurements (high 𝐿, so high residual correction). 

One of the most widespread state observers is the Kalman filter. It provides an optimal 

state estimation for linear systems under the hypothesis of gaussian noise. Optimal 

estimation means that the use of the Kalman filter allows to obtain gains for matrix 𝐿 that 

minimize the state covariance matrix.  
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1.3 Regenerative Chatter and Stability Lobes Diagram 

 

The growing demand for high quality mechanical components leads to search for stable 

machining processes in which the related vibrations are increasingly limited. Indeed, in a 

generic cutting process it is possible to observe three types of vibrations: 

• Free vibrations 

• Forced vibrations 

• Self-excited vibrations 

Free vibrations are due to a disturbance that perturbs the dynamical system from its 

equilibrium state and they are damped over time with an oscillatory motion.  

In case of a continuous perturbation that changes over time, the excited structure vibrates 

according to its frequency response function, causing the so-called forced vibrations. 

Finally, the self-excited vibrations occur when, from the interaction between workpiece 

and tool during the cutting process, there is extraction of energy which is stored inside the 

structure. 

The last two types of vibrations may lead to an excessive amplitude of vibration that 

causes the instability of the process. Indeed, for the case of forced vibration could happen 

that a component of the force excites the structure in correspondence of a resonance 

frequency, that implies very high oscillations. Instead the energy stored inside the 

structure due to the self-excited vibrations, theoretically, causes vibrations with indefinite 

amplitudes; this phenomenon is the most important one in the study of the dynamic 

instability during machining and it is known as Chatter. Under these machining conditions 

the surface quality of the piece is degraded as can be seen in figure 1.4. 

 

Figure 1.4: Stable vs. Unstable machined surfaces 
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 Figure 1.5 shows schematically what is explained above. 

 

 

Figure 1.5: Vibrations scheme 

 

Of particular interest is the study of the chatter phenomenon in order to prevent unstable 

machining conditions. Working in unstable conditions has the following implications: 

• High tool wear that could lead to tool breakage 

• Damage to spindle bearings 

• Poor dimensional accuracy and surface finish of the piece 

• High noises (annoying sound) due to high vibrations 

• High costs related to material scraps, reworks if the piece is recoverable, etc. 

 In the present thesis the term chatter identifies the regenerative one, that is the principal 

among other variants as mode coupling, friction etc. Regenerative chatter occurs when 

the oscillation of the depth of cut in one pass of the tool leaves waves on the machined 

surface (called mark or track) that are regenerated in the subsequent passes of cut. This 

oscillatory motion generates a modulation of the chip thickness (and therefore of cutting 

forces) that causes an indefinite increase of the amplitude of vibrations; in reality, after a 

certain value of amplitude, the loss-of-contact between tool and workpiece verifies, 

determining a sort of limit cycle characterized by subsequent engagements and loss-of-

contacts. 
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In milling the tool has multiple cutting edges and rotates; this means that the cutting forces 

are intermittent and time-variant quantities. In reason of that the system is described by 

periodic Delay Differential Equations (DDE) which are of fundamental importance in the 

study of the stability of the process. Various theories have been developed over the years 

for the study of the DDEs. A very important contribution was provided in 1995 by Altintas 

and Budak [3]; it is a method for the analytical prediction of stability lobes in milling that 

requires transfer functions of the structure at the cutter-workpiece contact zone, static 

cutting force coefficients, radial immersion and the number of teeth on the cutter. Time 

varying dynamic cutting force coefficients are approximated by their Fourier series 

components, arrested at zero order (Zeroth Order Approach, ZOA), and the chatter free 

axial depth of cuts and spindle speeds are computed directly from the proposed set of 

linear analytic expressions. This methodology allows to obtain the Stability Lobes 

Diagram (SLD), which is a diagram showing on the abscissas axis the spindle speed and 

on the ordinates axis the axial depth of cut as in figure 1.6, with a good accuracy in case 

of tools with high number of teeth and for high radial depth of cut, so that the variation of 

the forces involved in the process is low. 

 

 

Figure 1.6: Stability Lobes Diagram (SLD) 

 

The above diagram is very useful in order to have a machining process under stable 

conditions; indeed, by tuning in a proper way the depth of cut and spindle speed 
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parameters by avoiding the unstable region, high quality surface of the piece can be 

achieved. Moreover, these two parameters are strictly related to productivity and 

efficiency; to reduce the machining time, according to the SLD, it is possible to select the 

maximum allowable depth of cut and spindle speed.   
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1.4 Purpose of the thesis 

 

The importance of monitoring the milling process by the estimation of the cutting forces 

and tool tip vibrations is due to the growing need in the industrial sector to ensure high 

quality of the pieces produced, to avoid the breaking of the tools and/or the inserts and to 

work as much as possible in stable conditions. 

The purpose of this thesis is the modelling of the behaviour of the real plant when it is 

subject to regenerative chatter and the search for implementation methods of a state 

observer able to estimate cutting forces and tool tip vibrations in milling machining.  

Indeed, some cutting force observers have been developed, based on Kalman filter theory, 

but they are not suitable for working under unstable cutting conditions. One specific 

reference is the paper of Albertelli et al. [4] that treats about the implementation of a 

Kalman filter based on the machine dynamic only, to estimate cutting forces and tool tip 

vibrations. It is shown that the methodology implemented works very well only under 

stable cutting conditions. For the case of unstable cut, instead, the results are no longer 

satisfactory; the impossibility to estimate the quantities of interest is due to the not 

modelled process mechanics. Indeed, process mechanics and machine dynamics, due to 

the regenerative delay, are mutually coupled, while the implemented observer refers to a 

dynamical system excited by exogenous cutting forces. 

Hence, in order to design an observer that operates even in case of regenerative chatter, 

in the present discussion the model of the system considers the combination of machine 

tool dynamics and cutting process. Basically, the process modelling consists in defining 

the cutting forces as a function of the chip thickness, which depends on the nominal and 

regenerative contributions. The regenerative one is the most significant in case of chatter 

and it is expressed in function of the actual and delayed tool tip displacements, therefore 

it follows that the dynamic model is described by periodic DDEs.  

An important contribution in the description of the process mechanics during unstable 

cutting is provided in this thesis. It consists in the modelling of the detachment 

phenomenon that occurs between tool and workpiece when high amplitudes of vibrations 

are reached. This point is an improvement of a previous thesis done by Marzatico [5], in 

which the detachment of the tool from the workpiece has not been modeled.  
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The modelled plant turns out to be a hybrid system, namely a system characterized by two 

modes that are alternatively involved when subject to unstable machining: they 

correspond to the detachment and engagement conditions as better explained in the next 

parts. A suitable state estimator for this kind of systems could be a switching observer, 

that allows to estimate the state of the system in the different modes. 

The steps of figure 1.7 describes in a schematic way what explained above. 

 

 

Figure 1.7: Evolution of the thesis 
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1.5 State observers for state delay systems, state of the art 

 

Different approaches are available in literature for design of observers in time delay 

systems: 

• Spectral decomposition-based  

• Prediction-based 

• Lyapunov-based 

• Continuous pole placement 

• Lambert W function-based 

However, very few physical applications are present. 

Spectral decomposition approaches (infinitesimal generator IG and solution operator SO) 

are based on the transformation of a finite space problem of DDEs in an infinite dimension 

problem of abstract ODEs. These approaches allow the introduction of multiple and 

dependent delays, although the computation of the eigenvalues is a limiting operation. 

With Finite Spectral Assignment FSA (prediction-based) it is possible to transform an 

infinite dimension delayed system in an equivalent finite dimension one and to design a 

linear controller based on ODEs. Jankovic [6] applied the method to design an observer 

for an air supply system in a diesel engine with an exhaust gas recirculation valve (EGR) 

and a turbo compressor with a variable geometry turbine (VGT). The model is 

characterized by a time delay equal to the interval from the air intake into the cylinder to 

the exhaust of the combusted mixture.  

Lyapunov-based approaches refer to Linear Matrix Inequality (LMI) or Algebraic Riccati 

Equation (ARE) [7] solutions for finding the observer gains. Particularly the LMI solution 

ensures the stability and robustness of the designed system, suitable to be described by 

switching observers [8]. 

Continuous pole placing is based on a numerical algorithm [9] that modifies the gain 

matrix when an unstable eigenvalue is found; consequently the eigenvalues change and 

the process iterates. 

Lambert W function approach is an algorithm able to perform eigenvalue placement at 

desired locations on delayed systems to ensure stability and desired performances with 

some limitations [10].  
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2. Plant - machine and milling dynamics modelling 

 

2.1 Dynamic milling model 

 

The dynamic milling model is explained considering the milling cutters to have two 

orthogonal degrees of freedom in directions X and Y according to figure 2.1. The resulting 

dynamical system is described by two decoupled differential equations as a combination 

of mass (m), damping (c) and spring (k) elements: 

  

𝑚𝑥𝑥̈ + 𝑐𝑥𝑥̇ + 𝑘𝑥𝑥 = 𝐹𝑥  

                                                 𝑚𝑦𝑦̈ + 𝑐𝑦𝑦̇ + 𝑘𝑦𝑦 = 𝐹𝑦                                                     (2.1) 

 

Rearranging the terms: 

 

{
𝑥̈
𝑦̈
} + [

2𝜉𝜔𝑥 0
0 2𝜉𝜔𝑦

] {
𝑥̇
𝑦̇
} + [

𝜔𝑥
2 0

0 𝜔𝑦
2] {

𝑥
𝑦} = [

𝐹𝑥̅

𝐹𝑦̅
]                                                                  (2.2) 

where  𝜉 =
𝑐

2𝜔𝑚
 is the damping ratio, 𝜔 = √

𝑘

𝑚
 is the natural frequency and 𝐹̅ =

𝐹

𝑚
 is the 

cutting force, all in the considered directions.  

The cutter is assumed to have N number of teeth with zero helix angle. The cutting forces 

excite the structure in X and Y directions, causing x and y dynamic displacements 

respectively. The total force in the considered direction is the sum of the single forces 

acting on each tooth. The dynamic displacements are related to rotating tooth number (j) 

in the radial or chip thickness direction with coordinate transformation 

 𝑣𝑗 = −𝑥 𝑠𝑖𝑛𝜑𝑗 − 𝑦 𝑐𝑜𝑠𝜑𝑗 , where 𝜑𝑗 is the instantaneous angular immersion of tooth j 

and defined as 𝜑𝑗(𝑡) = (
2𝜋Ω

60
) 𝑡 + 𝑗

2𝜋

𝑁
 , where 𝑡 denotes the dependence with time and Ω 

is the spindle speed in [rpm].  

For the sake of simplicity in the following sections the dependence on time is not reported, 

but obviously 𝜑𝑗 = 𝜑𝑗(𝑡). 
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Figure 2.1: Dynamic milling model (2 d.o.f.) 
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2.2 Chip thickness and cutting forces 

 

The chip thickness consists of two contributions: a static part, which is due to rigid motion 

of the tool, and a dynamic one caused by the vibrations of the tool at the present and 

previous tooth periods. 

ℎ(𝜑𝑗) = [𝑠𝑡 sin𝜑𝑗 + (𝑣𝑗,0 − 𝑣𝑗)]𝑔(𝜑𝑗)                                                                                 (2.3) 

where 𝑠𝑡 is the feed rate per tooth and 𝑣𝑗,0, 𝑣𝑗  are the tool tip dynamic displacements at the 

previous and actual tooth periods, respectively. 𝑔(𝜑𝑗) is a unit step function which 

determines whether the tooth is engaged in the workpiece, i.e.: 

𝑔(𝜑𝑗) = 1   𝜑𝑖𝑛 < 𝜑𝑗 < 𝜑𝑜𝑢𝑡 

                                        𝑔(𝜑𝑗) = 0   𝜑𝑗 > 𝜑𝑜𝑢𝑡 𝑜𝑟 𝜑𝑗 < 𝜑𝑖𝑛  
       

(2.4) 

where 𝜑𝑖𝑛 and 𝜑𝑜𝑢𝑡 represent the starting and exit immersion angles of the cutter.  

Considering the expression of 𝑣𝑗  and substituting it in equation 2.3, the chip thickness 

becomes: 

ℎ(𝜑𝑗) = [𝑠𝑡 sin𝜑𝑗 + Δ𝑥 𝑠𝑖𝑛𝜑𝑗 + Δ𝑦 𝑐𝑜𝑠𝜑𝑗]𝑔(𝜑𝑗)                                                               (2.5) 

where Δ𝑥 = 𝑥(𝑡) − 𝑥(𝑡 − 𝜏) and Δ𝑦 = 𝑦(𝑡) − 𝑦(𝑡 − 𝜏) are the differences between the 

actual and delayed positions of the tooth passes along x and y directions respectively, with 

𝜏 that represents the delay between two subsequent teeth passes. 

 

 

Figure 2.2: Chip thickness contributions 
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Then the tangential 𝐹𝑡,𝑗 and radial 𝐹𝑟,𝑗 cutting forces acting on the j-th tooth are: 

                                                 𝐹𝑡,𝑗 = 𝐾𝑡𝑎ℎ(𝜑𝑗) 

                                               𝐹𝑟,𝑗 = 𝑘𝑟𝐹𝑡,𝑗                                                                          (2.6) 

where 𝐾𝑡 and 𝑘𝑟 are constant cutting coefficients, identified performing several cutting 

tests on the machine tool described in section 2.3 changing the feed per tooth and the 

cutting velocity, and 𝑎 is the axial depth of cut. 

Projecting the cutting forces in the X and Y directions according to figure 2.1: 

𝐹𝑥,𝑗 = −𝐹𝑡,𝑗 𝑐𝑜𝑠𝜑𝑗 − 𝐹𝑟,𝑗  𝑠𝑖𝑛𝜑𝑗 

                                                      𝐹𝑦,𝑗 = +𝐹𝑡,𝑗 𝑠𝑖𝑛𝜑𝑗 − 𝐹𝑟,𝑗 𝑐𝑜𝑠𝜑𝑗                                          (2.7) 

Finally, the total forces acting on the tool are the sum of the cutting forces of equations 

2.7: 

                                           𝐹𝑥 = ∑ 𝐹𝑥,𝑗
𝑁−1
𝑗=0   

                                           𝐹𝑦 = ∑ 𝐹𝑦,𝑗
𝑁−1
𝑗=0                                                                      (2.8) 

Hence, due to the delayed terms of the chip thickness expression, the dynamical system is 

now described by time varying delay differential equations. 

Differently from the paper of Altintas and Budak [3], the cutting forces are here treated 

without find the matrix of the time varying directional dynamic milling force coefficients 

[
𝛼𝑥𝑥 𝛼𝑥𝑦

𝛼𝑦𝑥 𝛼𝑦𝑦
], further approximated with constant coefficients derived from the application 

of the Zero-Order Approximation solution, because the aim of this thesis is to describe the 

detachment of the tool from the workpiece, which verifies during chatter occurrence due 

to high vibrations. For this reason, in order to impose the condition of the loss-of-contact 

of the tool from the workpiece, the complete expression of the chip thickness is required; 

as soon as the chip thickness assumes a negative value, namely the regenerative (dynamic) 

part becomes greater than the nominal (static) one, it is set equal to zero so that also the 

cutting forces vanish.     
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2.3 Machine tool dynamic model 

 

The machine tool dynamic model was obtained through an experimental modal analysis 

identification on the Mandelli M5 machine present at MUSP lab in Piacenza as stated in 

[4]. 

The goal of the experimental modal analysis is to obtain the Frequency Response Function 

(FRF) and the vibration modes of the system. The experimental session consists of the 

measure of both the force applied to the tool and the tool tip vibration amplitude. The 

machine is excited with force pulses applied at the tool tip using different sensorized 

hammers in order to cover a wide frequency range of excitation, up to 1500 Hz, ensuring 

to obtain a reliable model. 

The schematics of the impact test are highlighted in figure 2.3 for a better understanding 

of the procedure. 

 

Figure 2.3: Machine tool model identification 

 

The test was carried out considering the following tool, whose parameters are used in the 

thesis: 

• Diameter (D): 80 mm 

• Number of teeth (N): 4 

• Length (L): 310 mm 
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For both X and Y machine tool directions, with a sensorized hammer and multiple sensors 

according to figure 2.4, the following quantities are defined: 

• Tool tip force 𝐹𝑐 (excitation input) 

• Tool vibration at points 1 and 2 

• Spindle housing vibration  

• Relative radial displacement between spindle shaft and spindle housing 

 

 

Figure 2.4: Sensors used during the experimental modal analysis 

 

The measured experimental FRFs along both X and Y directions are depicted in figure 2.5. 

Moreover, the identified FRFs at point 1 (tool tip) are superimposed in the same figure.  

In table 2.1, instead, are listed the identified eigenmodes, namely the vibration modes of 

the structure. As can be seen the total number of identified eigenmodes is 𝑛 = 32, 21 for 

X direction and 11 for Y direction. 

In figure 2.5 it is possible to observe that the low frequency eigenmodes are mainly 

referred to the machine structure and spindle headstock, while the medium-high frequency 

eigenmodes are mainly related to the spindle-tool dynamics.  
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Figure 2.5: Experimental FRFs for X and Y directions and the fitted tool tip dynamic compliances      

(identified ID) 

 

 

X direction X direction Y direction 

Mode 𝜔𝑗/2𝜋 

[Hz] 

𝜁𝑗  Mode 𝜔𝑗/2𝜋 

[Hz] 

𝜁𝑗  Mode 𝜔𝑗/2𝜋 

[Hz] 

𝜁𝑗  

1 28.0 0.069 12 288.0 0.033 1 64.2 0.069 

2 48.8 0.006 13 329.7 0.097 2 84.7 0.142 

3 54.2 0.008 14 357.8 0.019 3 138.0 0.131 

4 72.6 0.027 15 381.9 0.003 4 211.1 0.129 

5 78.5 0.013 16 433.0 0.025 5 247.6 0.030 

6 86.5 0.035 17 568.2 0.088 6 265.6 0.012 

7 116.2 0.015 18 600.8 0.018 7 299.1 0.100 

8 179.7 0.025 19 662.9 0.028 8 430.6 0.088 

9 214.9 0.054 20 769.6 0.087 9 571.4 0.077 

10 245.8 0.032 21 1288.0 0.023 10 960.7 0.031 

11 268.9 0.031    11 1214.0 0.026 
Table 2.1: Identified eigenmodes for X and Y directions 
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A high number of vibration modes allows to have a reliable model that can exploit the 

effect of chatter, which usually verifies in correspondence of high frequencies. 

The model obtained by the experimental modal analysis is described by the equations 2.9 

and 2.10, that describe the system dynamics and the relationship between the model 

coordinates and the output respectively. 

                                                     [𝑴𝑠2 + 𝑹𝒅𝑠 + 𝑲𝒔]𝑝(𝑠) = 𝐹(𝑠)                                         (2.9) 

                                                     𝑦(𝑠) = 𝒈𝑝(𝑠)                                                                     (2.10) 

where 𝑴, 𝑹𝒅, 𝑲𝒔 are mass, damping and stiffness matrices, respectively, 𝑝(𝑠) is the model 

coordinates vector, 𝐹(𝑠) is vector of the input forces applied at the tool tip (point 1, fig. 

2.4), 𝑦(𝑠) is the system output vector that contains the quantities measured by the sensors 

and 𝒈 is the output shape matrix. 

Performing a modal transformation on the model coordinates, it is possible to get the 

system modal coordinates 𝑞(𝑠): 

                                                     𝑝(𝑠) = 𝚽𝑞(𝑠)                                                                   (2.11) 

where 𝚽 is the matrix of the eigenvectors. 

The equations 2.9 and 2.10 are then substituted by: 

                                                     [𝑰𝑠2 + 𝚪𝑠 + 𝛀2]𝑞(𝑠) = 𝚽𝑇𝐹(𝑠)                                    (2.12) 

                                                     𝑦(𝑠) = 𝒈𝚽q(s) = 𝑪′𝑞(𝑠)                                                  (2.13) 

where: 

 

𝚪(2𝑛𝑥2𝑛) =

[
 
 
 
 
Γ1 0 0 0 0
0 0 0 0 0
0 0 Γ𝑗  0 0

0 0 0 0 0
0 0 0 0 Γ𝑛]

 
 
 
 

=

[
 
 
 
 
 

2𝜉
1
𝜔1    0            0          0           0     

 0             0            0          0          0      

  0             0     2𝜉
1
𝜔1       0          0       

    0             0            0          0         0         

       0            0           0           0    2𝜉
1
𝜔1        ]

 
 
 
 
 

   

𝛀2
(2𝑛𝑥2𝑛) =

[
 
 
 
 
 

𝜔1
2   0   0  0   0

   0     0   0    0  0

 0    0  𝜔𝑗
2  0  0

    0    0   0    0  0

     0   0   0   0  𝜔𝑛
2]
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2.4 State Space formulation 

 

Previous works in this field were based on time models characterized by physical 

behaviour, namely models that considered the actual and previous positions of each insert 

of the tool in order to describe the regenerative phenomenon.  

However, these system models were far from the typical representation of those used for 

developing state observers, thus a new matrix-based representation of the system, that is 

most suitable for the state observer implementation, was carried out. This matrix-based 

representation used in the following is known as state space formulation. 

The system 2.12 – 2.13 is converted in state space form in order to design the state 

observer.   

                                               𝒙̇(𝑡) = [𝐴]𝒙(𝑡) + [𝐵]𝒖(𝑡) 

                                               𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)                                                 (2.14) 

where the matrices A, B, C and D are the same of the article of Albertelli et al. [4], that is 

the starting point of this research. As already mentioned, this article treats about the 

development of an observer based on Kalman’s theory capable of estimating the in-process 

cutting forces and tool tip vibrations, properly combining signals from several built-in 

spindle sensors. The methodology, tested on several stable milling operations, exhibits 

some limitations in case of unstable cutting. Indeed, in such conditions an accurate 

estimation of the forces and vibrations is no longer possible, probably since cutting process 

mechanics and machine dynamics, due to the delay (so called regenerative effect), are 

mutually coupled, while the observer refers to a dynamic mechanical system excited by 

exogenous cutting forces. These limitations will be bypassed in the following treatment by 

developing a milling process-based model that takes into consideration the dynamical 

coupling between the machine and the process. 

Figure 2.6 summarizes the aim of the thesis in a useful way, namely the passage from the 

system based on machine dynamic only (Albertelli et al.) to that which considers also the 

cutting process.  
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Figure 2.6: Approach description 

 

The real plant model follows the scheme of figure 2.7, where the complex machine 

dynamics (two main directions X and Y) and the process-machine mutual interaction due 

to the regenerative phenomenon are depicted. 

 

 

Figure 2.7: Milling dynamics and plant description 
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According to figure 2.7, the state space formulation 2.14 can be rearranged as in 2.15. 

 

𝒙̇(𝑡) = [𝐴]𝒙(𝑡) + [𝐵]𝒖(𝑡) 

                                                  𝒚𝟏(𝑡) = [𝐶1]𝒙(𝑡) 

                                                  𝒚𝟐(𝑡) = [𝐶2]𝒙(𝑡)                                                  (2.15) 

 

where 𝒙 are the states of the system (machine and milling process), 𝒖 the system input 

vector (cutting forces), A is the state matrix of the machine dynamics and B its related 

input matrix. The output vector 𝒚 of system 2.14 is here split into two terms: 𝒚𝟏 is the tool 

tip position (not measurable), while 𝒚𝟐 is a vector containing all the available 

measurements from the installed sensors (the spindle shaft-housing relative displacements 

and the housing accelerations sensors). 𝐶1 and 𝐶2 are the corresponding output matrices. 

In the considered reference case, the sensors installed in the spindle can measure both 

acceleration 𝒂 and vibrations 𝒅.  

 

𝒚𝟏(𝑡) = {
𝑥(𝑡)
𝑦(𝑡)

} 𝒚𝟐(𝑡) = {
𝒂(𝑡)
𝒅(𝑡)

} + 𝒏𝒐𝒊𝒔𝒆 (2.16) 
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2.5 Definition of the input vector u(t) and detachment phenomenon 

 

The regenerative contribution is involved in the definition of the 𝒖 vector, i.e. the vector 

of the cutting forces. 

With reference to equations 2.6 and 2.7, the input vector 𝒖 of the system 2.15 can be 

characterized as follows: 

𝒖(𝑡) = {
𝐹𝑥

𝐹𝑦
} = {

∑ 𝐹𝑥,𝑗
𝑁−1
𝑗=0

∑ 𝐹𝑦,𝑗
𝑁−1
𝑗=0

} = [
∑ −𝐹𝑡,𝑗  𝑐𝑜𝑠𝜑𝑗−𝐹𝑟,𝑗 𝑠𝑖𝑛𝜑𝑗

𝑁−1
𝑗=0

∑ 𝐹𝑡,𝑗 𝑠𝑖𝑛𝜑𝑗−𝐹𝑟,𝑗 𝑐𝑜𝑠𝜑𝑗
𝑁−1
𝑗=0

]                            (2.17) 

 

𝐹𝑡𝑗 = 𝐾𝑡𝑎ℎ(𝜑𝑗) and 𝐹𝑟𝑗 = 𝑘𝑟𝐹𝑡𝑗  are the tangential and radial forces acting on the jth tooth 

respectively, as already defined in section 2.2. 

Substituting 𝐹𝑡𝑗 and 𝐹𝑟𝑗 expressions in equation 2.17 gives: 

𝒖(𝑡) = ∑ 𝐾𝑡𝑎ℎ(𝜑𝑗) [
−𝑐𝑜𝑠𝜑𝑗−𝑘𝑟 𝑠𝑖𝑛𝜑𝑗

𝑠𝑖𝑛𝜑𝑗−𝑘𝑟 𝑐𝑜𝑠𝜑𝑗
]𝑁−1

𝑗=0                                                         (2.18) 

 

For the sake of comprehension, some contents of section 2.2 will be briefly reported again.  

The chip thickness ℎ(𝜑𝑗) consists of two contributions: a nominal (static) component due 

to the rigid motion of the tool and a regenerative (dynamic) one due to the tool tip 

vibrations. 

ℎ0(𝜑𝑗) = 𝑠𝑡 𝑠𝑖𝑛𝜑𝑗 nominal chip thickness 

ℎ𝑟(𝜑𝑗) = 𝛥𝑥 𝑠𝑖𝑛𝜑𝑗 + 𝛥𝑦 𝑐𝑜𝑠𝜑𝑗 regenerative chip thickness 

Thus, the expression of the chip thickness for the jth tooth results: 

ℎ(𝜑𝑗) = 𝑔(𝜑𝑗)[𝑠𝑡 𝑠𝑖𝑛(𝜑𝑗) + (𝑥(𝑡) − 𝑥(𝑡 − 𝜏)) 𝑠𝑖𝑛(𝜑𝑗) + (𝑦(𝑡) − 𝑦(𝑡 − 𝜏))𝑐𝑜𝑠(𝜑𝑗)] 

where 𝑔(𝜑𝑗) is a unit step function as stated in equation 2.4. 

From an expanded point of view, the chip thickness can be depicted as: 

𝒉(𝑡) = [

𝑔(𝜑1) 0 0

0 𝑔(𝜑𝑗) 0

0 0 𝑔(𝜑𝑁)

] {𝑠𝑡 [

𝑠𝑖𝑛(𝜑1)

𝑠𝑖𝑛(𝜑𝑗)

𝑠𝑖𝑛(𝜑𝑁)

] + [

𝑠𝑖𝑛(𝜑1) 𝑐𝑜𝑠(𝜑1)

𝑠𝑖𝑛(𝜑𝑗) 𝑐𝑜𝑠(𝜑𝑗)

𝑠𝑖𝑛(𝜑𝑁) 𝑐𝑜𝑠(𝜑𝑁)

] [[𝐶1][𝒙(𝑡) − 𝒙(𝑡 − 𝜏)]]} 

(2.19) 
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For the sake of simplicity, equation 2.19 can be identified with the following notation: 

 𝒉(𝑡) = [𝑮(𝑡)]{𝑯(𝑡)}                                                                                                   (2.20) 

 

where [𝑮(𝑡)] ∈  ℝ𝑛𝑥𝑛  | ∀𝑖, 𝑗 ∈  {1,2, . . . , 𝑛}, 𝑖 ≠ 𝑗 ∶  𝑔𝑖𝑗 = 0 and {𝑯(𝑡)}  ∈  ℝ𝑛𝑥1 

 

At this point, in order to describe the real behaviour of the plant when subject to chatter, 

two conditions must be imposed on 𝑮 and 𝒉. 

• [𝑮(𝑡)] | ∀𝑖, 𝑗 ∈  {1,2,… , 𝑛}, 𝑖 = 𝑗 ∶  𝑔𝑖𝑗 = 1 ⟺ 𝜑𝑖𝑛 < 𝜑𝑗 < 𝜑𝑜𝑢𝑡  ∧  

                                     𝑔𝑖𝑗 = 0 ⟺ 𝜑𝑗 < 𝜑𝑖𝑛  ∨  𝜑𝑗 > 𝜑𝑜𝑢𝑡 

 

Subsequently, a condition must be imposed also on 𝒉(𝑡) in order to model the unstable 

cutting as a result of chatter. Under this machining mechanism, both cutting forces and 

vibrations continue to grow until the tool jumps out of the cut. The consequence of that is 

the vanishing of the cutting forces and a free vibration till the tool re-enters the cut. During 

the loss-of-contact between the tool and the workpiece, the dynamic chip thickness, that is 

determined by the displacements of the tool at the actual time and a previous one due to 

the time delay, is negative: indeed the actual tooth that should be engaged does not cut or 

it cuts a part of material inferior to that cut in the previous pass. Therefore, the negative 

value of the chip thickness will be set to zero, so that the cutting forces, which depend on 

it, will vanish too 

• 𝒉(𝑡) | ∀𝑖 ∈  {1,2, … , 𝑛}, ℎ𝑖 < 0 ⇒  ℎ𝑖 = 0 

 

Hence the input vector 𝒖(𝑡) expanded assumes the form: 

 𝑼(𝑡) = [
𝐹𝑥1 𝐹𝑥𝑗 𝐹𝑥𝑁

𝐹𝑦1 𝐹𝑦𝑗 𝐹𝑦𝑁
] =

𝐾𝑡𝑎 [
−𝑐𝑜𝑠𝜑1 − 𝑘𝑟  𝑠𝑖𝑛𝜑1 −𝑐𝑜𝑠𝜑𝑗 − 𝑘𝑟 𝑠𝑖𝑛𝜑𝑗 −𝑐𝑜𝑠𝜑𝑁 − 𝑘𝑟 𝑠𝑖𝑛𝜑𝑁

𝑠𝑖𝑛𝜑1 − 𝑘𝑟 𝑐𝑜𝑠𝜑1 𝑠𝑖𝑛𝜑𝑗 − 𝑘𝑟 𝑐𝑜𝑠𝜑𝑗 𝑠𝑖𝑛𝜑𝑁 − 𝑘𝑟 𝑐𝑜𝑠𝜑𝑁
] [

ℎ(𝜑1) 0 0

0 ℎ(𝜑𝑗) 0

0 0 ℎ(𝜑𝑁)

] 

(2.21) 
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Finally the input vector is computed as:  𝒖(𝑡) = ∑ {
𝐹𝑥𝑗

𝐹𝑦𝑗
} = ∑ {

𝑟𝑜𝑤1(𝑼(𝑡))

𝑟𝑜𝑤2(𝑼(𝑡))
}𝑁

𝑗=0
𝑁
𝑗=0    (2.22)  

 

The description of the detachment of the tool from the workpiece in case of regenerative 

chatter is an improvement of the plant model implemented in [5] that considers as 

hypothesis no tool detachment; therefore, in that model, when the regenerative effect starts 

to affect the system, the forces and the tool tip displacements diverge to infinity.  

Figures 2.8 and 2.9 describe the cutting forces trends of the plant modelled without tool 

detachment and the one that considers it, respectively.   

 

 

Figure 2.8: Cutting forces with regenerative chatter and without tool detachment 
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Figure 2.9: Cutting forces with regenerative chatter and with tool detachment 

 

Figure 2.10 clearly shows the differences between the model that doesn’t consider the 

detachment of the tool (blue trends) and the one that considers it (red trends). 

 

 

Figure 2.10: Overlap of cutting forces with regenerative chatter with and without tool detachment 
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2.6 Plant results 

 

This section presents the evolution of the cutting forces and tool tip vibrations in the case 

of both stable and unstable milling machining. 

The configuration adopted for both the cases is characterized by the parameters listed in 

table 2.2. 

Parameter Symbol Value 

Tool diameter D 80 mm 

Number of teeth N 4 [-] 

Entrance angle 𝜑𝑖𝑛 0° 

Exit angle 𝜑𝑜𝑢𝑡 120° 

Spindle speed Ω 600 rpm 

Feed rate per tooth 𝑠𝑡 0.2 
𝑚𝑚

𝑡𝑜𝑜𝑡ℎ
 

Tangential cutting coeff. 𝐾𝑡 1800 
𝑁

𝑚𝑚2 

Radial non dim. ratio 𝑘𝑟 0.33 [-] 

Axial depth of cut 𝑎 3 mm (stable)  

6 mm (unstable) 
Table 2.2: Tool and cutting parameters 

 

 

Figure 2.11: Milling machining with 75% radial immersion 
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2.6.1 Stable cut 

 

The stable cut is achieved by selecting an axial depth of cut equal to 3mm. 

Cutting force X direction. 

 

Figure 2.12: Cutting force X direction (stable cut) 

 

Cutting force Y direction. 

 

Figure 2.13: Cutting force Y direction (stable cut) 
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Tool tip vibration X direction. 

 

Figure 2.14: Tool tip vibration X direction (stable cut) 

 

 

Tool tip vibration Y direction. 

 

Figure 2.15: Tool tip vibration Y direction (stable cut) 

 

 



43 
 

2.6.2 Unstable cut 

 

The unstable cut is achieved by selecting an axial depth of cut equal to 6mm. In this 

condition the chatter phenomenon with the detachment of the tool is involved. 

Cutting force X direction. 

 

Figure 2.16: Cutting force X direction (unstable cut – detachment) 

Cutting force Y direction. 

  

Figure 2.17: Cutting force Y direction (unstable cut – detachment) 
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Tool tip vibration X direction. 

 

Figure 2.18: Tool tip vibration X direction (unstable cut – detachment) 

 

 

Tool tip vibration Y direction. 

 

Figure 2.19: Tool tip vibration Y direction (unstable cut – detachment) 
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3. State observers 

 

The aim of this chapter is to explain the different suitable observers to estimate the cutting 

forces and tool tip vibrations for the plant under examination. 

Particularly a Kalman filter and a state observer for Hybrid System will be considered. 

 

3.1 State observer implementation 

 

In order to perform both input (cutting forces) and state (tooltip displacements) estimation, 

the system is expanded considering the input as an additional state. The expanded system 

state vector 𝒙𝒆(𝑡) assumes the form: 

                                                            𝒙𝒆(𝑡) = {
𝒙(𝑡)
𝑭(𝑡)

}                                                               (3.1) 

Furthermore, the process noise 𝑤 and the noise on the measurements 𝒛1, 𝒛2 are introduced. 

The expression for the expanded system results: 

𝒙𝒆̇(𝑡) = [𝐴𝑒]𝒙𝒆(𝑡) + [𝑇]𝑤 

                                                        𝒚𝟏(𝑡) = [[𝐶1] [0]]𝒙𝒆(𝑡) + 𝒛1 

                                                  𝒚𝟐(𝑡) = [[𝐶2] [0]]𝒙𝒆(𝑡) + 𝒛2                                       (3.2) 

where: 

 [𝐴𝑒] = [
[𝐴]   [𝐵]

[0]    [0]
] and [𝑇] is the system noise matrix. 

 

According to the theory of the state observer, the estimation of the states of the system is 

updated thanks to the available measurements 𝒚𝟐. More specifically, the updating term 

(𝒚𝟐(𝑡) − 𝒚𝟐̂(𝑡)) is weighted by the gain matrix [L]. 
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3.2 Kalman filter 

 

A Kalman based observer is an optimal model-based state estimator that is able to estimate 

the state vector as well as some other non-easily measurable quantities exploiting real-time 

data coming from the plant, i.e. machine, as stated in [4]. The Kalman filter considers only 

the machine dynamics and it has no information on the cutting process.  

𝒙𝒆̇̂(𝑡) = [𝐴𝑒]𝒙𝒆̂(𝑡) + [𝐿](𝒚𝟐(𝑡) − 𝒚𝟐̂(𝑡)) 

𝒚𝟏̂(𝑡) = [[𝐶1] [0]]𝒙𝒆̂(𝑡) 

                                                    𝒚𝟐̂(𝑡) = [[𝐶2] [0]]𝒙𝒆̂(𝑡)                                             (3.3) 

 

The Kalman gain matrix [𝐿] is determined by minimization of the error covariance matrix 

P, obtained by solving the Riccati equation. The tuning procedure of the [𝐿] is done by 

assigning appropriate quantities to process noise (covariance matrix Q) and measurement 

noise (covariance matrix R).  

Especially in case of instability, when the regenerative effect has an important weight, the 

gain can allow to compensate the loss of information from the cutting process. However, 

the gain tuning must deal with the noises that of course change between the stable and 

unstable cutting conditions. So may happen that a gain suitable for the good estimation of 

a stable process, could be not suitable if the process becomes unstable.  

In the following subsections the performances of the Kalman filter are reported according 

to various noises that could affect the measurements during the simulations. 
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3.2.1 Kalman filter - low noises  

 

In this subsection it is supposed that the system is affected by low noises on the 

measurements sensors during the simulation. The performances of the Kalman filter are 

tested by tuning the parameter Q. The estimate is the red trend, the plant the blue one.  

• 𝑄 = 1𝑒17 – Stable cut  

Fx  

Fy  

   x  

   y  

Figure 3.1: Kalman filter – stable cut – Q=1e17 – low noises 
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• 𝑄 = 1𝑒17 – Unstable cut 

 

Fx  

Fy  

   x  

   y  

Figure 3.2: Kalman filter – unstable cut – Q=1e17 – low noises 
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• 𝑄 = 1𝑒21 – Stable cut  

 

Fx  

Fy  

   x  

   y  

Figure 3.3: Kalman filter – stable cut – Q=1e21 – low noises 
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• 𝑄 = 1𝑒21 – Unstable cut 

 

Fx  

Fy  

   x  

   y  

Figure 3.4: Kalman filter – unstable cut – Q=1e21 – low noises 
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The figures 3.1 to 3.4 show the behaviours of the cutting forces and tool tip displacements 

in stable and unstable conditions according to the Q parameter.  

All the figures represent in order: 

• the cutting force along X direction (Fx),  

• the cutting force along Y direction (Fy),  

• the tool tip displacement along X direction (x), 

• the tool tip displacement along Y direction (y). 

As can be seen, the performance of the Kalman filter increases if Q is set to 𝑄 = 1𝑒21 

both for the stable and unstable cut, even if the estimate under stable conditions gives quite 

similar results also using 𝑄 = 1𝑒17. However, this case is far from the real cutting 

conditions, since the simulation has been carried out considering low noises. 

In Y direction, the estimation seems to be a little less accurate compared to the X direction; 

this may be due to the configuration of 75% radial immersion of the end mill. 
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3.2.2 Kalman filter - high noises  

 

By increasing the noises for a more realistic simulation and using the same values of the 

previous subsection for the tuning parameter Q, the following results can be appreciated. 

• 𝑄 = 1𝑒17 – Stable cut  

Fx  

Fy  

   x  

   y  

Figure 3.5: Kalman filter – stable cut – Q=1e17 – high noises 
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• 𝑄 = 1𝑒17 – Unstable cut  

 

Fx  

Fy  

   x  

   y  

Figure 3.6: Kalman filter – unstable cut – Q=1e17 – high noises 
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• 𝑄 = 1𝑒21 – Stable cut  

 

Fx  

Fy  

   x  

   y  

Figure 3.7: Kalman filter – stable cut – Q=1e21 – high noises 
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• 𝑄 = 1𝑒21 – Unstable cut  

 

Fx  

Fy  

   x  

   y  

Figure 3.8: Kalman filter – unstable cut – Q=1e21 – high noises 
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As before, figures 3.5 to 3.8 follows the order: 

• cutting force along X direction (Fx),  

• cutting force along Y direction (Fy),  

• tool tip displacement along X direction (x), 

• tool tip displacement along Y direction (y). 

In this case the same considerations made for 𝑄 = 1𝑒17 in the Kalman with low noises 

are still valid, namely it estimates quite well in stable cut, but it underestimates for unstable 

cut. By increasing the noises and tuning 𝑄 = 1𝑒21 causes an improvement of the estimate 

of unstable cut, but a worsening of the performances of the stable cut. Therefore, with high 

simulation noises on the measurements, increasing Q allows to good estimate under 

unstable cutting conditions, but loses the accuracy of the estimate in stable conditions.   

In conclusion, the Kalman filter can achieve good performance with low noises by 

increasing Q, but if the noises increase (more realistic behaviour), increasing Q gives a 

good estimate only for the unstable cut, losing the precision for the stable cut. 

In order to design a more robust observer that can bypass the limitations of the Kalman 

filter, the following section provides theoretical support for a future development of a state 

observer.  
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3.3 Switching observer for Hybrid System 

 

3.3.1 Hybrid System overview  

 

The plant described in section 2 is a hybrid system, which consists of two subsystems that 

switch according to a condition that depends on the chip thickness value. These two 

subsystems are alternatively involved under unstable machining and correspond to: 

• Detachment condition: loss-of-contact between the tool and the workpiece. 

• Engagement condition: tool and workpiece in contact.  

When the detachment condition occurs, the cutting forces vanish (input vector u(t) 

becomes null) until the tool re-enters in cut. Then, in the engagement condition, the cutting 

forces recur (and so the input vector u(t)) till the next detachment caused by the too high 

vibration amplitude reached. In the engagement condition the system has memory of the 

previous state and it is described by DDEs.  

The two subsystems, in state space representation, are: 

• Detachment condition: no force acting on the system 

                                                        𝒙̇(𝑡) = [𝐴]𝒙(𝑡) 

                                                  𝒚𝟏(𝑡) = [𝐶1]𝒙(𝑡) 

                                                  𝒚𝟐(𝑡) = [𝐶2]𝒙(𝑡)                                                         (3.4) 

 

• Engagement condition: force acting on the system. 

𝒙̇(𝑡) = [𝐴]𝒙(𝑡) + [𝐵]𝒖(𝑡) 

                                                  𝒚𝟏(𝑡) = [𝐶1]𝒙(𝑡) 

                                                  𝒚𝟐(𝑡) = [𝐶2]𝒙(𝑡)                                                         (3.5) 

Since 𝒖(𝑡) is the input vector affected by the delayed terms coming from the description 

of the regenerative effect, it assumes the following form: 

                  𝒖(𝑡) = 𝒖𝑛𝑜𝑚 + 𝒖𝑟𝑒𝑔 = 𝑭𝟎(𝑡) + [𝐴𝑟𝑒𝑔][𝐶1](𝒙(𝑡) − 𝒙(𝑡 − 𝜏))                  (3.6) 
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where [𝐴𝑟𝑒𝑔] is a periodic matrix that allows coupling the machine dynamics and the 

cutting process, according to the tool-workpiece engagement conditions. 

So, by substituting the expression 3.6 into 3.5, the engagement condition becomes: 

• Engagement condition: 

𝒙̇(𝑡) = [𝐴𝑝(𝑡)]𝒙(𝑡) + [𝐴𝜏(𝑡)]𝒙(𝑡 − 𝜏) + [𝐵]𝑭𝟎(𝑡) 

                                                  𝒚𝟏(𝑡) = [𝐶1]𝒙(𝑡) 

                                                  𝒚𝟐(𝑡) = [𝐶2]𝒙(𝑡)                                                         (3.7) 

 

The switching between the two situations occurs based on a verification of a condition that 

considers the vibration amplitude. Considering the real plant, it is not easy to know when 

the switching occurs. 

The interaction between the two systems can be seen in figure 3.9 in a simple schematic 

way.  

 

Figure 3.9: Interaction Engagement – Detachment conditions 

 

A suitable observer for this kind of systems is a switching observer that allows to pass 

from the different modes of the system by means of a switching law. 
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3.3.2 Switching observer 

 

A switching estimator is used when a system switches to a new configuration, 

characterized by a different behaviour as stated in [8]. According to the presented plant, a 

switching observer may be considered as the estimator that is able to better estimate the 

states of the system. 

The goal is still to estimate the tool tip displacements and the cutting forces in a milling 

process.  

By reducing the two subsystems 3.4 and 3.5 to a compact form and neglecting the 

contribution of the delayed term for an initial simplification, the system is described as 

follows: 

𝒙̇(𝑡) = [𝐴𝜎(𝑡)]𝒙(𝑡) + [𝐵𝜎(𝑡)]𝒖(𝑡) 

                                            𝒚𝟐(𝑡) = [𝐶𝜎(𝑡)]𝒙(𝑡)                                                             (3.8) 

 

where the matrices [𝐴𝜎(𝑡)], [𝐵𝜎(𝑡)], [𝐶𝜎(𝑡)] consider the definition of the two modes of the 

system, i.e. detachment and engagement conditions. 

The index 𝜎(𝑡): [0 +∞]→{1,2} corresponds to the function that allows the switching 

between the two configurations. 

A switching observer for 3.8 is: 

                        𝒙̇(𝑡) = [𝐴𝜎(𝑡)]𝒙̂(𝑡) + [𝐵𝜎(𝑡)]𝒖(𝑡) + [𝐿𝜎(𝑡)](𝒚𝟐(𝑡) − [𝐶𝜎(𝑡)]𝒙̂(𝑡))        (3.9) 

 

where [𝐿𝜎(𝑡)] is the observer gain matrix. 

In order to find the gains, the problem is reduced to the fulfilment of Lyapunov 

inequalities. Indeed, a Lyapunov function is searched to ensure stability so that the 

estimation error converges to zero. 

The problem is to find the 𝐿𝑖 of [𝐿𝜎(𝑡)], 𝑖 = 1,2 , such that there exists a symmetric positive 

definite matrix 𝑃 solving the Lyapunov inequalities: 

                                          (𝐴𝑖 − 𝐿𝑖𝐶𝑖)
𝑇𝑃 + 𝑃(𝐴𝑖 − 𝐿𝑖𝐶𝑖) < 0 , 𝑖 = 1,2                       (3.10) 
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The problem 3.10 is difficult as it involves the combined selection of 𝑃 and 𝐿𝑖. However, 

it can be reduced to a simpler form based on the Linear Matrix Inequality (LMI) method. 

Hence the problem 3.10 can be solved by means of the LMI formulation 3.11: 

 

                                           𝐴𝑖
𝑇𝑃 − 𝐶𝑖

𝑇𝑌𝑖
𝑇 + 𝑃𝐴𝑖 − 𝑌𝑖𝐶𝑖 < 0                                       (3.11) 

 

where the variables to find are 𝑃 and 𝑌𝑖, so that 𝑃 = 𝑃𝑇 > 0 and 𝑌𝑖 is necessary to find the 

gains 𝐿𝑖 as follows: 

                                                         𝐿𝑖 = 𝑃−1𝑌𝑖                                                          (3.12) 

 

Once solved the problem 3.11, it is possible to minimize the upper bound of the quadratic 

cost function of the estimator error, in order to achieve an optimal design of switching 

observer. Consequently, the gains of the observer can be selected such that this bound is 

minimized. Practically, the problem of minimizing the upper bound to the estimation error 

is reduced to the minimization of the maximum eigenvalue of 𝑃: 𝜆𝐼 > 𝑃. 

Therefore the LMI formulation appears as: 

𝑆 = 𝑆𝑇 > 0 

𝑃 = 𝑃𝑇 > 0 

𝜆𝐼 − 𝑃 > 0 

                                    𝐴𝑖
𝑇𝑃 − 𝐶𝑖

𝑇𝑌𝑖
𝑇 + 𝑃𝐴𝑖 − 𝑌𝑖𝐶𝑖 + 𝑆 < 0 , 𝑖 = 1,2                       (3.13) 

 

And the observer gains are obtained as in 3.12, i.e. 𝐿𝑖 = 𝑃−1𝑌𝑖 . 
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Since the aim of this work is to estimate the cutting forces and the tool tip vibrations, the 

states of the system must be expanded as in 3.1, obtaining the expanded system 3.2.             

For the hybrid system case there will be two matrices [𝐴𝑒] corresponding to the two 

conditions (detachment and engagement): 

 

[𝐴𝑒]𝑑𝑒𝑡𝑎𝑐ℎ𝑚𝑒𝑛𝑡 = [
[𝐴]   [0]
[0]    [0]

] 

                                                [𝐴𝑒]𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 = [
[𝐴]   [𝐵]

[0]    [0]
]                                       (3.14) 

 

Thus, the switching observer assumes the form: 

 

                                  𝒙𝒆̇̂(𝑡) = [𝐴𝜎(𝑡),𝑒]𝒙𝒆̂(𝑡) + [𝐿𝜎(𝑡)](𝒚𝟐(𝑡) − 𝒚𝟐̂(𝑡))                     (3.15) 

 

where the matrix [𝐴𝜎(𝑡),𝑒] is the expanded matrix that considers the definitions 3.14. 

Since the delayed states describing the regeneration phenomenon are involved in the input 

vector 𝒖(𝑡), which must also be estimated, the expanded form is not affected by the 

previous states of the system. However, this modelling can be a first attempt to simplify 

the system. The process-based contribution, i.e. the dependence of the system on its 

delayed states, can be introduced in the observer design as the information extracted from 

the plant and necessary to impose the condition on the switching between the detachment 

condition and the engagement one. 

Summing up, the simplifications for a first implementation of the switching observer 

consist in neglecting the delayed terms, related to the input vector and which are 

responsible to the dynamic behaviour change of the machine tool under unstable cutting 

conditions, and in extracting the information about the system mode (detachment / 

engagement) from the plant in order to manage the switching between the two subsystems.  

Further robust observer design should count the influence of the delayed term on the state 

matrix of the machine dynamics ([𝐴]) and the possibility to develop and observer able to 

estimate even the switching between the system mode (detachment / engagement).  
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4. Conclusions and future works 

 

The present work began with the study of the cutting process in milling with particular 

attention in the description of the regenerative instability, known as chatter. 

The real plant has been modelled considering the complexity of the milling process. 

Indeed, the cutting forces depend on the actual and delayed positions of the tooth passages, 

leading to a system described by delay differential equations. The chatter phenomenon has 

been represented by accounting the detachment phenomenon that verifies between the tool 

and the workpiece when high vibration amplitudes are reached.  

The resulting plant is a hybrid system characterized by two modes which are alternatively 

involved under unstable machining: detachment and engagement conditions. 

In order to estimate the cutting forces and the tool tip vibrations a Kalman filter has been 

implemented in an expanded version. It is based on machine dynamics only, without 

information from the cutting process. Therefore, it has been observed that the estimation 

is good under stable conditions, but it worsens with an unstable cut. 

Hence a study for state observer in case of delayed system has been carried out and the 

information about the cutting process, as well as the machine dynamics, considered. 

However, the works found in literature provide methods theoretically valid for this kind 

of problem, but very few of them are tested in real applications. An introduction to an 

observer for hybrid system, that could be suitable to estimate the cutting forces and the 

tool tip vibrations for the presented plant, has been shown. It is known as switching 

observer and it is based on the fulfilment of Lyapunov inequalities by means of Linear 

Matrix Inequalities (LMI) to find its gains, related to the two modes of the hybrid system, 

i.e. detachment and engagement. A simplified version has been proposed and future works 

may try to implement and test it. 

Future works could also deal with the implementation of observers that don’t require the 

knowledge of the process parameters as depth of cut, feed per tooth, cutting coefficients, 

engagement angles, number of teeth etc., but that are able to provide that information 

during the processing of the workpiece. Indeed, the need of the process parameters limits 

the use of the observer according to the tool considered during the acquisition of the data 

from the experimental modal analysis. Since the experimental modal analysis is a time-
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consuming activity, by an industrial point of view it is feasible if applied to a limited 

number of tools, which perform some critical milling operations for which it is useful to 

monitor the cutting forces and tool tip vibrations. A further step could be the real time 

evaluation of the surface quality of the workpiece based on the estimated cutting forces 

and tool tip vibrations.  
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