
School of Industrial and Information Engineering
Department of Electronics, Information and Bioengineering

Master of Science Degree in Computer Science and Engineering

3D Reconstruction and Segmentation for
Vineyard Plant Phenotyping

Supervisor: Prof. Matteo Matteucci
Co–Supervisor: Eng. Andrea Romanoni
Co–Supervisor: Eng. Giulio Fontana

Master Thesis by:
Riccardo Bertoglio, matricola 875635

Academic Year 2018-2019

To the mankind.

Abstract

Plant phenotyping is the measurement of the observable plant characteristics that result
from the interaction of genotype and environment, such as stalk width, leaf area, leaf
angle, and color. Plant phenotyping information is relevant for farmers to support their
decision-making process. Thus, they can distribute a precise fine-tuned quantity of inputs
(such as water, fertilizers, pesticides) and enhance crop performance. Nowadays, plant
phenotyping is performed manually by skilled scientists or breeders; this procedure is
laborious, expensive, and time-consuming. Automatic plant phenotyping systems aim at
overcoming the limitations of current manual methods allowing rapid, non-destructive,
accurate, and high-throughput measurements. One of the major flaws in the current
methodologies is the incapability to collect, reliably, and in situ, large-scale phenotyping
measurements. In addition to the management of a huge quantity of phenotyping data,
new modeling techniques, advanced analysis tools, and prediction models are necessary to
turn automatic phenotyping into a real-world reality.

In this thesis, we developed a system able to scan entire crop rows and to automatically
recognize single plants. We designed a structure equipped with a set of sensors that can be
mounted on different platforms like an autonomous robot or a tractor. The system is able
to localize itself thanks to a sensors fusion approach of the GPS and cameras information.
The localization could work even in the total absence of the GPS signal. Moreover, we
designed a reconstruction software component to retrieve the tridimensional model of a
crop row. The reconstruction process exploits the localization information from the sensor
fusion approach. Laser scans and camera images are assembled to form tridimensional
models. Finally, we devised a segmentation algorithm to isolate single plants from the
produced reconstruction.

I

Sommario

La fenotipizzazione delle piante è la misurazione delle caratteristiche osservabili che risul-
tano dall’interazione del genotipo con l’ambiente, quali la larghezza degli steli, l’area e
l’angolo delle foglie, e il colore. L’informazione del fenotipo è utile come supporto al pro-
cesso decisionale degli agricoltori. Infatti, grazie a queste informazioni, possono spargere
una precisa e calibrata quantità di risorse (come acqua, fertilizzanti, pesticidi) e aumentare
così le prestazioni del raccolto. Oggigiorno, la fenotipizzazione delle piante è eseguita a
mano da coltivatori o scienziati esperti; la procedura è molto laboriosa, costosa, e richiede
molto tempo. I sistemi automatici di fenotipizzazione mirano a superare le limitazioni
degli attuali metodi manuali permettendo di effettuare misure in maniera rapida, non
distruttiva, accurata, e con un alto volume di produzione. Uno dei maggiori difetti dei
metodi attuali è l’incapacità di effettuare misurazioni affidabili di coltivazioni su larga
scala. Oltre alla gestione di una enorme quantità di dati, è necessario sviluppare nuove
tecniche di modellazione, nuovi avanzati strumenti di analisi, e nuovi modelli di predizione
per trasformare la fenotipizzazione automatica in realtà.

In questa tesi abbiamo sviluppato un sistema capace di scansionare intere file di colture
e di riconoscere automaticamente le singole piante che ne fanno parte. Abbiamo progetta-
to una struttura con un insieme di sensori che può essere montato su diverse piattaforme,
come un robot autonomo o un trattore. Il sistema che abbiamo sviluppato è in grado di
localizzarsi grazie alla fusione delle informazioni provenienti da sensori quali il GPS e le
fotocamere. La localizzazione può anche funzionare nella totale assenza del segnale GPS.
Inoltre, abbiamo progettato un componente software in grado di restituire un modello tri-
dimensionale di un filare di una coltura. Il processo di ricostruzione sfrutta le informazioni
di localizzazione dall’approccio di fusione precedentemente descritto. Le scansioni prove-
nienti da un sensore laser e le immagini delle fotocamere sono assemblate per formare un
modello tridimensionale. Infine, abbiamo sviluppato un algoritmo per isolare le singole
piante dalla ricostruzione precedentemente ottenuta.

III

Ringraziamenti

Inizio ringraziando la mia famiglia, i genitori e i nonni, per avermi sempre sostenuto e
assecondato nelle mie scelte. Li ringrazio per avermi dato il sostentamento economico
affinché potessi portare a compimento gli studi. Inoltre, mi hanno sempre messo nella
condizione di vivere una vita agiata, con una libertà economica che mi ha permesso di
dar sfogo alla mia inesauribile curiosità. Questa libertà si è materializzata in molteplici
passioni e interessi che spaziano tra gli ambiti scientifico, culinario, artistico e sportivo.
Un grazie di cuore.

Ringrazio gli amici più stretti. In particolare Brian, Gianbattista e Giulia, per essermi
stati sempre vicini, nei momenti felici e in quelli più difficili, per avermi accettato per
quello che sono, con sincerità. Un valore che ritengo essenziale in qualsiasi rapporto
interpersonale. Ringrazio gli amici del paese con cui ho condiviso tanti bei momenti a
partire dalla mia infanzia fino a oggi. Ringrazio gli amici dell’università e, in particolare,
Emiliano che si è dimostrato una persona di grande umanità e sensibilità. Infine, un
vivo ringraziamento va a i miei ex coinquilini, Andrea e Filippo (da me soprannominato
Cilippolo), con cui ho avuto il piacere di stringere un solido rapporto di amicizia durante
la convivenza. Grazie per aver assecondato le mie stranezze e bizzarrie.

Ringrazio il mio relatore Matteo per avermi condotto nel percorso di tesi. È un viaggio
tortuoso in cui è essenziale essere affiancati da una guida esperta che tracci la strada da
seguire. Esprimo inoltre la mia gratitudine per aver creduto in me e per avermi avvicinato
alla realizzazione del mio sogno di entrare al dottorato. Comunque andrà, grazie per il
supporto. Ringrazio Giulio per essersi sempre mostrato disponibile quando avevo bisogno
di aiuto. Grazie anche alla sua notevole esperienza, ha sempre saputo darmi consigli utili
e indicazioni precise. Ringrazio per ultimo, ma non per importanza, Andrea, per essere
stato altresì una figura importante per lo sviluppo del mio lavoro di tesi. Si è rivelato una
preziosa fonte di luce nei momenti bui.

Ringrazio il Politecnico di Milano per avermi dato solide competenze ed un’eccellente
istruzione che mi permettono di essere competitivo nel mondo del lavoro. Parallelamente
a questo, è stato di immenso aiuto nella crescita personale, dandomi gli strumenti per
sviluppare il pensiero critico, tanto importante quanto le conoscenze ingegneristiche. Il
pensiero critico ritengo sia una competenza di vitale importanza nella quotidianità attuale,
in cui siamo subissati di informazioni che, potenzialmente, possono essere false e avere
conseguenze dannose per la singola persona e per la società intera. Inoltre, grazie alle
associazioni, agli eventi, alle conferenze e ai corsi extracurricolari, mi ha permesso di
lanciare lo sguardo oltre i confini dello studio. Mi ha dato spunti, nuove idee e la possibilità
di svagarmi tra un esame e l’altro. Infine, sono felice che questa università veda la diversità
come una ricchezza, sostenendo cause che vanno dai diritti civili, per esempio concedendo

V

il patrocinio al Gay Pride di Milano, fino al processo di internazionalizzazione, attraverso
l’insegnamento in lingua inglese. Si tratta di un valore aggiunto che mi fa affermare con
convinzione di essere orgoglioso di aver studiato al Politecnico di Milano.

Se è vero che una persona è sagomata dalle persone di cui si circonda e dall’ambiente
in cui vive, allora devo ringraziare anche la città di Milano. C’è chi dice che Milano sia
una città grigia e i suoi abitanti siano persone fredde. Non è così. Milano è una città
che mostra le sue bellezze solo a chi le sa cercare. È la città delle persone curiose, delle
persone di mentalità aperta, delle persone che abbracciano le novità e i cambiamenti, delle
persone intraprendenti. È una città su misura per i giovani, dinamica e ricca di sfide. È
una città che dà grandi opportunità a chi le sa cogliere. Con i suoi musei, ristoranti di ogni
nazionalità, persone da ogni parte del mondo, le community di appassionati, gli eventi di
divulgazione scientifica, le mostre di design, le installazioni di arte moderna, i suoi parchi,
i teatri, è una città che ti permette di sognare in grande. Milano non è grigia, è color
arcobaleno.

In questo sommario di vita non posso non ricordare Gianluca che, nel bene e nel male,
ha lasciato un segno indelebile nei miei ricordi. È addirittura riuscito a condizionarmi,
in maniera decisiva, nella scelta di importanti progetti riguardanti la mia futura carrie-
ra lavorativa. A questo proposito, voglio ricordare ed esprimere la mia gratitudine nei
confronti dei suoi amici, Stefano e Matteo.

La famiglia, gli amici, i professori, l’università, la città, in questi anni mi hanno
plasmato e hanno dato forma alla persona che sono ora.

Grazie a tutti.

Riccardo

Contents

1 Introduction 1

2 State Of The Art 3
2.1 Motivations . 3
2.2 Taxonomy . 4

2.2.1 Phenotyping Pipeline . 4
2.2.2 Data Collection classification . 5
2.2.3 Data Processing classification . 7

2.3 Literature Review . 8
2.3.1 Unmanned Ground Vehicles . 12
2.3.2 Tractor-based Systems . 14
2.3.3 Gantry-based Systems . 17
2.3.4 Hand-pulled Systems . 19

2.4 Gap Analysis . 19

3 Background 23
3.1 Robot Operating System (ROS) . 23

3.1.1 tf Package . 26
3.2 Simultaneous Localization and Mapping (SLAM) 28

3.2.1 Visual and Laser Odometry . 28
3.2.2 robot_localization Package . 29
3.2.3 rtabmap_ros Package . 30

3.3 Point Clouds . 31
3.3.1 The Point Cloud Library (PCL) . 32

4 Hardware Architecture 37
4.1 Sensors . 37

4.1.1 Comparison . 46
4.2 Platform Construction and Calibration . 47
4.3 Setups . 50

5 Software Architecture 55
5.1 General View . 55
5.2 Reconstruction . 56

5.2.1 Odometry . 56
5.2.2 Visual Reconstruction . 62

VII

5.2.3 LiDAR Reconstruction . 64
5.3 Segmentation . 65

6 Experimental Results And Discussion 75
6.1 Experiments Field . 75
6.2 Odometry Evaluation . 78
6.3 Reconstruction Evaluation . 85
6.4 Segmentation Algorithm Evaluation . 88

7 Conclusions And Future Work 97
7.1 Conclusions . 97
7.2 Future Work . 98

7.2.1 Short-Term Work . 98
7.2.2 Long-Term Vision . 99

References 101

A Sensors Technical Specifications And Settings 107

List of Figures

2.1 Phenotyping cycle . 5
2.2 Qiu et al. UGV . 12
2.3 Qiu et al. single plant segmentation . 13
2.4 Vinobot UGV . 13
2.5 Vinobot plants reconstruction . 14
2.6 The Robotanist UGV . 14
2.7 The Robotanist plants reconstruction . 15
2.8 Barker et al. tractor-based system . 15
2.9 Deery et al. Phenomobile tractor-based system 16
2.10 Deery et al. tractor-based system 3D reconstruction 16
2.11 BreedVision tractor-based system . 17
2.12 Field Scanalyzer gantry-based system . 18
2.13 Field Scanalyzer gantry-based system experimental data 18
2.14 LeasyScan gantry-based system . 19
2.15 LeasyScan gantry-based system collected data 20
2.16 Hand-pulled system . 20

3.1 The ROS topic mechanism . 25
3.2 tf frames . 26
3.3 tf package laser example . 27
3.4 tf package tree example . 27
3.5 tf tree example . 28
3.6 RGB Point clouds example . 32
3.7 Point cloud rabbit example . 32

4.1 ZED Camera . 38
4.2 Stereo triangulation principle . 38
4.3 ZED Camera point cloud example . 39
4.4 Kinect One (v2) . 39
4.5 Time-Of-Flight principle . 39
4.6 Kinect calibration . 40
4.7 Kinect One (v2) indoor point cloud example 40
4.8 Kinect One (v2) outdoor point cloud example 41
4.9 XtionPRO live . 41
4.10 Structured-light principle . 42
4.11 XtionPro point cloud examples . 42

IX

4.12 Intel RealSense D435(i) Camera . 42
4.13 Intel RealSense D435 point cloud example 43
4.14 Sick LMS100-1000 2D LiDAR . 43
4.15 LiDAR Principle . 44
4.16 Sick LD-MRS400001S01 3D LiDAR . 44
4.17 STMicroelectronics Nucleo-144 and X-NUCLEO-IKS01A1 boards 45
4.18 Trimble 5700 GPS receiver . 45
4.19 Platform components . 49
4.20 Cart supporting platform . 49
4.21 Sensors data and power connections diagram 50
4.22 Platform front and base_link position . 51
4.23 Sensors first setup . 52
4.24 Sensors second setup . 53
4.25 Sensors final setup . 53

5.1 Software Architecture components diagram 55
5.2 Odometry ROS nodes graph . 58
5.3 RGB-D rtabmap odometry node . 59
5.4 LiDAR rtabmap odometry node . 61
5.5 tf tree of our system . 63
5.6 rtabmap ROS node . 64
5.7 laser_scan_assembler ROS node . 65
5.8 Segmentation algorithm block diagram . 66
5.9 Segmentation Algorithm: cloud point cloud 69
5.10 Segmentation Algorithm: cloud_transformed point cloud 69
5.11 Segmentation Algorithm: central trace filtering 70
5.12 Segmentation Algorithm: cloud_filtered point cloud 70
5.13 Segmentation Algorithm: cloud_filtered2 point cloud 71
5.14 Segmentation Algorithm: trunks_filtered point cloud 71
5.15 Segmentation Algorithm: trunks clusters . 71
5.16 Segmentation Algorithm: cloud_projected point cloud 72
5.17 Segmentation Algorithm: centroids_projected point cloud 72
5.18 Segmentation Algorithm: circles clusters . 72
5.19 Segmentation Algorithm: cloud_filtered3 point cloud 73
5.20 Segmentation Algorithm: plants clusters . 73
5.21 Segmentation Algorithm: plants clusters with bounding boxes 74

6.1 Outdoor experiments . 76
6.2 Bushes Visual Reconstruction . 76
6.3 Hedge Visual Reconstruction . 76
6.4 Vineyard picture in September . 77
6.5 Vineyard picture in March . 77
6.6 D435 Visual Odometry experimental odometry 80
6.7 D435 Visual Odometry experimental LiDAR point cloud 80
6.8 D435 Visual Odometry experimental colored point cloud 81
6.9 D435 and IMU fusion experimental odometry 82

6.10 D435 and IMU fusion experimental LiDAR point cloud 82
6.11 D435 and IMU fusion experimental colored point cloud 83
6.12 LD-MRS experimental LiDAR Odometry 84
6.13 LD-MRS LiDAR Odometry experimental LiDAR point cloud 85
6.14 LD-MRS LiDAR Odometry experimental colored point cloud 85
6.15 LD-MRS LiDAR Odometry broken . 86
6.16 D435 and GPS fusion experimental odometry 86
6.17 D435 and GPS fusion experimental LiDAR point cloud 87
6.18 D435 and GPS fusion experimental colored point cloud 87
6.19 A colored Visual Reconstruction of an entire vineyard row side 88
6.20 A close view to a LiDAR point cloud . 89
6.22 Segmentation Algorithm: an incorrectly placed bounding box 92
6.23 D435 Visual Odometry segmented LiDAR point cloud 93
6.24 D435 and IMU fusion odometry segmented LiDAR point cloud 94
6.25 LD-MRS LiDAR odometry segmented LiDAR point cloud 94
6.26 D435 and GPS fusion odometry segmented LiDAR point cloud 95

List of Tables

2.1 Phenotyping platforms classification . 8
2.2 Automatic Plant Phenotyping studies . 11

4.1 Qualitative comparison of 3D imaging sensors 48

6.1 A general confusion matrix . 92
6.2 D435 Visual Odometry confusion matrix . 92
6.3 D435 and IMU fusion odometry confusion matrix 93
6.4 LD-MRS LiDAR Odometry confusion matrix 93
6.5 D435 and GPS fusion odometry confusion matrix 93

A.1 ZED Camera technical specifications . 107
A.2 Kinect One technical specifications . 108
A.3 XtionPRO Live technical specifications . 108
A.4 Intel RealSense D435(i) Camera technical specifications 109
A.5 Sick LMS100-1000 2D LiDAR technical specifications 110
A.6 Sick LD-MRS400001S01 3D LiDAR technical specifications 111
A.7 Trimble 5700 GPS Receiver technical specifications 112
A.8 X-NUCLEO-IKS01A1 technical specifications 112

XIII

Chapter 1

Introduction

The phenotyping task consists of measuring the observable plant characteristics that result
from the interaction of genotype and environment. Researchers want to assess character-
istics such as stalk width, leaf area, leaf angle, and color. Further, plant phenotyping
information is relevant for farmers to support the decision-making process. Thus, they
can distribute a precise fine-tuned quantity of inputs (such as water, fertilizers, pesti-
cides) and enhance crop performance. However, nowadays, plant phenotyping is per-
formed manually by skilled scientists or breeders; this procedure is laborious, expensive,
and time-consuming.

This work aims at giving a contribution to the field of automatic plant phenotyping, a
branch of the broader Precision Agriculture research field. Automatic plant phenotyping
systems aim at overcoming the limitations of current manual methods, by measuring the
morphometric and physiological parameters of plants in a rapid, non-destructive, accurate,
and high-throughput manner. Even if considerable work has been done, we are still at
the beginning of the journey toward a robust and standard phenotyping methodology [1].
One of the major flaws in the current methodologies is the incapability to collect, reliably,
and in situ, large-scale phenotyping measurements. In addition to the management of
huge quantity of phenotyping data, new modeling techniques, advanced analysis tools,
and prediction models are necessary to turn automatic phenotyping into a real-world
reality [2].

With these concepts in mind, we propose the new paradigm of Plant Digital Twin,
that is, the computerized counterpart of a real plant. The idea is to build a tridimensional
model of an entire crop and distinguish single plants. This framework enables growth
analysis of individual plants and localized treatments. This thesis lays the foundations
for this new kind of paradigm by proposing a system able to scan entire crop rows and to
recognize single plants.

We designed a platform equipped with a set of sensors that can be mounted on differ-
ent vehicles like an autonomous robot or a tractor. We chose the following minimal set of
sensors able to provide a good trade-off among amount of data, cost, power-consumption
and richness of information: a 2D LiDAR, two RGB-D cameras, a GPS, an Inertial Mea-
surement Unit (IMU). The system is able to localize itself by fusing the GPS, the IMU
and the cameras data. The localization approach could work even in the total absence of

2 CHAPTER 1. INTRODUCTION

GPS information, thus relying only on camera images with a Visual Odometry algorithm.
Moreover, we designed a reconstruction software component that has the purpose of

retrieving the tridimensional model of a scanned subject. The reconstruction process
exploits the localization information from the sensor fusion approach. LiDAR laser scans
are merged into a single point cloud one after the other knowing the relative transformation
of the sensor origin to the base position of the robot. The cameras color and depth images
are registered one to the other into a final point cloud by a graph-based Simultaneous
Localization And Mapping (SLAM) approach.

Finally, we devised a segmentation algorithm to isolate single plants from the tridimen-
sional reconstruction. The algorithm segments plants by purely geometric considerations
exploiting clustering algorithms. We tested our method on data collected at a botanical
garden in Milan. We focused our attention on the reconstruction and segmentation of a
double-sided vineyard row. By visual inspection, we can state that the reconstructions
accurately represent the scanned subjects in terms of shape, colors, and scale. Moreover,
the segmentation approach correctly segmented most of the plants.

The thesis is structured as in the following:

• Chapter 2 provides a review of the literature proposing a new classification taxon-
omy. Moreover, it explains the research motivations in the field of automatic plant
phenotyping and highlights the lacks of the state-of-the-art methods

• Chapter 3 gives the necessary background notions to non-expert readers about all
the technologies and the theoretical concepts exploited in this work

• Chapter 4 explains the hardware architecture of the developed phenotyping plat-
form. Moreover, it provides an evaluation and comparison of different sensors and
technologies for 3D imaging

• Chapter 5 describes the software architecture explaining the three main components,
that is, Data Collection, Reconstruction, and Segmentation

• Chapter 6 shows experimental results obtained from outdoor tests performed at a
botanical garden. They are discussed and compared various odometry approaches
and the segmentation algorithm

• Chapter 7 makes the conclusions and state some short-term work as a consequence
of this work. Moreover, it provides the reader with a long-term vision about future
innovations in the field of automatic plant phenotyping

• Appendix A collects tables with the technical details of the tested sensors

Chapter 2

State Of The Art

In this Chapter, we present the state of the art of automatic plant phenotyping. In Section
2.1, we explain the motivations that push us to research on this topic. In Section 2.2, we
propose a new taxonomy categorizing all the possible approaches seen in the literature.
In Section 2.3, we review a selection of studies explaining papers inclusion and exclusion
criteria. Finally, in Section 2.4, we illustrate and discuss the main lacks of the approaches
proposed in the literature.

2.1 Motivations

The Food and Agriculture Organization (FAO) of the United Nations stated that, by 2050,
world food demand would be 70% higher. To satisfy the increase of food demand, "ninety
percent of the growth in crop production globally [...] is expected to come from higher
yields and increased cropping intensity" [3]. To reach this goal, breeders and biologists,
demand phenotyping data to improve crop performance. Biologists need to develop new
high-yielding genotypes of crops adapted to our future climate [1]. In doing this, they
necessitate an experimental confirmation by measuring the observable plant characteristics
that result from the interaction of genotype and environment. This measurement process
is called plant phenotyping. Moreover, farmers can exploit phenotyping information as
the input of a Decision Support System (DSS) [4] adopting technologies like variable-rate
spraying of water, nutrients, and pesticides.

Nowadays, plant phenotyping has to be performed manually by skilled scientists or
breeders; this procedure is laborious, expensive, and time-consuming. Thus, research in
the field of automatic plant phenotyping systems has begun to go beyond the limitations
of current manual methods. Automatic plant phenotyping should allow the measurement
of the morphometric and physiological parameters [5] of plants in a rapid, non-destructive,
accurate, and high-throughput manner. Morphometric parameters are like plant height,
stem diameter, leaf area, leaf angle, stalk length, and in-plant space. Physiological param-
eters are like chlorophyll, photosynthetic rate, water stress, biomass, salt resistance, and
leaf water content [6].

Even if considerable work has been done in the field of plant phenotyping, we are
still at the beginning of the journey toward a phenotyping methodology that can keep

4 CHAPTER 2. STATE OF THE ART

pace with the demand. This deficiency has been vastly highlighted in the literature under
the name of Phenotyping Bottleneck [1]. Since [1], the entirety of studies have cited and
discussed the Phenotyping Bottleneck. This problem has been recognized as caused by
the lack of systems that can collect data in situ on a large scale. Moreover, we need to
find a way to manage the huge quantity of phenotyping data that will be produced. New
modeling techniques and data management approaches should be investigated. Finally,
new advanced analysis tools and prediction models, beyond even the usual statistical tools,
are necessary [2], [6].

2.2 Taxonomy

The literature in the field of automatic plant phenotyping is vast and heterogeneous.
Current systems exploit a variety of sensors and platforms, giving birth to a broad tax-
onomy. However, it does not exists a complete and standard classification of the various
approaches. Therefore, we propose a new one. We explain the rationale behind our tax-
onomy with the hope that it will be widely adopted by the scientific community.

Plant phenotyping studies can be classified along different orthogonal dimensions. Be-
fore the taxonomy, we describe the general pipeline common to most phenotyping systems,
as each step of the process has its independent taxonomy. Some works addressed all the
stages of the pipeline, while others investigated just some of them.

2.2.1 Phenotyping Pipeline

The initial step of the pipeline (see Figure 2.1) is Data Collection, where the system
collects data by its sensors. Some of the most relevant tasks of this phase are the choices
of sensors and their positioning [5]; supporting platform; localization and navigation algo-
rithms; data storage (hardware and software) methodologies.

The successive step of the pipeline is Model Construction. In this phase, the raw
collected sensors data are processed to produce a model that can be successively adopted
in the next steps. This stage is necessary whenever the data coming directly from the
sensors are meaningless as they are. For example, data coming from 2D lidars mounted
in push-broom fashion (laser plane is perpendicular to the ground) do not give any rele-
vant information if they are not assembled exploiting sensor poses information. Indeed,
without knowing the positions of the sensors over time, laser scans can just be assembled
piling them up one onto the other. Thus, the obtained data will not provide any use-
ful information. Typical technologies used in this stage are algorithms from the fields of
Computer Vision, 3D Reconstruction, Robotics, and Machine Learning. A model could
be, for example, a point cloud representing the scanned plants.

The next step of the pipeline is Data Processing. In this phase, the information
coming from the previous stage is processed to calculate phenotyping information like
architectural traits, physiological traits, and diseases or pests presence. This stage exploits
Data Mining and Machine learning algorithms, Statistics, and Agricultural models [7]. For
example, a Data Processing task is to compute the height of plants or the leaves angles
from the plants point cloud model.

The last step of the pipeline is called Data Analysis. In this phase, the user of the

2.2. TAXONOMY 5

phenotyping system exploits the information provided by the previous stage. Biologists
can use this information as feedback to their experimental activities while breeders can
make a crop breeding selection. If the phenotyping information is exploited for successive
plantations, the phenotyping pipeline becomes a phenotyping cycle.

Figure 2.1: Graphical representation of the phenotyping pipeline/cycle.

In the following, we propose a new classification of the literature. We first explain
the richest taxonomy related to the Data Collection phase, then the one related to the
Data Processing phase. The other stages do not produce any relevant classification to be
presented here.

2.2.2 Data Collection classification

Schematic representation of the classification.

• Operating Environment

– outdoor

– indoor

• Motion State

– static

– moving

∗ Autonomy Level
· autonomous
· semi-autonomous
· human-operated

6 CHAPTER 2. STATE OF THE ART

• Ground Contact

– ground

– aerial

• Platform

– Environmental Sensors Networks

– Unmanned Ground Vehicles (UGVs)

– Hand-pulled Systems

– Tractor-based Systems

– Phenotyping Towers

– Gantry-based Systems

– Unmanned Aerial Vehicles (UAVs)

– Blimps & Balloons

– Satellite Imaging

• Sensor Technology

– RGB Cameras (monocular or stereo)

– RGB-D Sensors

– TOF Sensors

– Structured-light Sensors

– 2D/3D LiDARs

– 3D Laser Scanners

– Light Curtains (LC)

– Thermal Cameras

– Fluorescence Cameras

– Spectral Cameras

– Normalized Difference Vegetation Index (NDVI) Sensors

– Other Sensors

The first aspect of the Data Collection classification is the Operating Environment.
Approaches can be divided as operating outdoor or indoor. Outdoor environments are
crops fields, while indoor environments are laboratories and greenhouses. Here we only
consider outdoor phenotyping systems as indoor experiments cannot generalize well for
outdoor natural environments [8]. Outdoor phenotyping allows scientists to perform large
scale studies and to measure variables difficult to test in indoor settings, like pest and
disease tolerance and the effects of varying soil conditions.

Another classification dimension is the system Motion State, that is, whether the
system is static or is moving. A system is static or moving, whether it is still or not during
the acquisition process.

2.2. TAXONOMY 7

A moving system can be further classified based on its Autonomy Level. Indeed,
the system could be autonomous, semi-autonomous, or human-operated. The idea of this
classification is to evaluate the effort needed to realize the navigation approach. The au-
tonomous systems require the most effort to be realized, and the human-operated ones,
almost no effort. The effort is intuitively described by the time the navigation algo-
rithm needs to be implemented, by the complexity of the task, and by the complexity
of the adopted technologies and algorithms. An autonomous system can perform a com-
plete acquisition of the designated area with no human intervention along the process.
A semi-autonomous system requires repeated human intervention during the data collec-
tion process. The system can autonomously move until it reaches a point where it waits
for human intervention. After human action, the system autonomously reaches the next
waiting point and so on till the end of the operation. A human-operated system requires
continuous human intervention during the acquisition process.

The next dimension is the one that classifies the approaches based on the Ground
Contact, that is, ground or aerial systems. Ground systems are whatever platform that
is sustained in some way by the ground while aerial systems are platforms sustained only
by the air, continuously or just during operations.

Another possible classification dimension is thePlatform, that is, the kind of structure
or machine on which the sensors are attached. The platform gives to the sensors the
necessary connectivity, the power, support onto which fix them, all the hardware and
software needed for data collection, and an adequate motion if it is required. The platforms
are: Environmental Sensors Networks, Unmanned Ground Vehicles (UGVs), Hand-pulled
Systems, Tractor-based Systems, Phenotyping Towers, Gantry-based Systems, Unmanned
Aerial Vehicles (UAVs), Blimps & Balloons, Satellite Imaging.

The last classification dimension is the Sensor Technology used for phenotyping
purposes. Sensors could be of different kinds: RGB Cameras (monocular or stereo),
RGB-D Sensors, TOF Sensors, Structured-light Sensors, 2D/3D LiDARs, 3D Laser Scan-
ners, Light Curtains (LC), Thermal Cameras, Fluorescence Cameras, Spectral Cameras,
Normalized Difference Vegetation Index (NDVI) Sensors. Other sensors: Laser Distance
Sensor (LDS), Ultrasonic Sensors, Electromagnetic Induction (EMI), Ground Penetrating
Radar (GPR), Electrical Resistance Tomography (ERT), Thermometers, Humidity Sen-
sors.

A strong connection is present within the presented classification. Indeed, each kind of
platform can be classified along the Operating Environment, Motion State, and Ground
Contact dimensions. In Table 2.1, we classify each platform along the cited dimensions.
For moving systems, if all autonomy levels are possible, we indicate them just as "moving".
Otherwise, the level of autonomy is specified. Satellite Imaging has been classified as au-
tonomous moving systems. Although the effort required to make a satellite autonomous is
very high, users buy this service from providers. In this case, the effort is more economical
than human work.

2.2.3 Data Processing classification

Data Processing classification has only one relevant dimension, theModel Scope, that is,
the ability to build a model at the level of each single plant or of groups of plants. Having

8 CHAPTER 2. STATE OF THE ART

Platform Operating
Environment

Motion
State

Ground
Contact

Environmental Sensors Networks indoor & outdoor static ground

Unmanned Ground Vehicles indoor & outdoor moving ground

Hand-pulled Systems indoor & outdoor human-
operated ground

Tractor-based Systems indoor & outdoor human-
operated ground

Phenotyping Towers indoor & outdoor static ground

Gantry-based Systems indoor & outdoor moving ground

Unmanned Aerial Vehicles outdoor moving aerial

Blimps & Balloons outdoor human-
operated aerial

Satellite Imaging outdoor autonomous aerial

Table 2.1: Phenotyping platforms classification. For moving systems, if all autonomy levels are possible,
we indicate them just as "moving". Otherwise, the level of autonomy is specified.

data at the level of each single plants means that the model can isolate single plants and
can associate to them a unique identifier so to track them over time. Data processing
strategies that retrieve data related to groups of plants can not distinguish every single
plant.

2.3 Literature Review

In this Section, we present a review of the literature of automatic plant phenotyping. In
this introduction, we explain papers inclusion and exclusion criteria.

We only include paper related to outdoor systems as indoor experiments can not gen-
eralize well for outdoor settings, and there is a lack of outdoor systems due to the more
challenging environment in which they are operating [8].

Moreover, we only include studies of moving systems as vehicles, by approaching closer

2.3. LITERATURE REVIEW 9

to the scanned subjects, can retrieve data with a finer resolution. Indeed, static systems
like Phenotyping Towers collect data with larger distance from plants.

For the same reason, we also exclude aerial systems as they have a reduced spatial res-
olution compared to ground systems. Nonetheless, a promising class of aerial platforms is
that of Unmanned Aerial Vehicles (UAVs). A comparison [9] between UAVs and Unmanned
Ground Vehicles (UGVs) demonstrated a similar accuracy on plants height measurements
obtained both from aerial reconstructions and ground LiDAR measurements. However,
the low load capacity and power autonomy of UAVs, and the strict airspace regulations
are an obstacle to UAV phenotyping. Still, future improvements of current technologies
could bring UAVs performance comparable to the one of UGVs. See [10] for a review of
UAV systems for phenotyping applications.

We do not use the autonomy level, the sensor technology or the model scope as criteria
to select studies because all categories of systems of these classifications are relevant for
our purposes.

In summary, we only selected studies of outdoor ground moving systems with no other
constraints. For ease of comparison, the review is presented through subsections that
collect studies with the same type of platform. The kinds of platforms that respect the
inclusion criteria explained above are Unmanned Ground Vehicles, tractor-based systems,
gantry-based systems, and hand-pulled systems.

In Table 2.2, we list all the works that have been investigated by us to study the
automatic plant phenotyping field. Then, in the following, we present the most relevant
studies for each platform category.

10 CHAPTER 2. STATE OF THE ART

A
ut
ho

rs
,Y

ea
r,

R
ef
er
en

ce
Pl
at
fo
rm

Ph
en

ot
yp

in
g
Se

ns
or
s

Ph
en

ot
yp

in
g
Pa

ra
m
et
er
s

Q
iu

et
al
.,
20

19
,[
11

]
U
nm

an
ne

d
G
ro
un

d
Ve

hi
cl
e

3D
Li
D
A
R

(6
4
pl
an

es
)

R
ow

sp
ac
in
g,

Pl
an

t
he

ig
ht

Sh
afi

ek
ha

ni
et

al
.,
20

17
,

[1
2]

U
nm

an
ne

d
G
ro
un

d
Ve

hi
cl
e

R
G
B

st
er
eo

ca
m
er
a,

Te
m
pe

ra
tu
re

se
ns
or
,
H
u-

m
id
ity

se
ns
or
,L

ig
ht

in
te
ns
ity

se
ns
or

Pl
an

t
he

ig
ht
,
LA

I,
En

vi
ro
nm

en
ta
l

da
ta

M
ue

lle
r-
Si
m

et
al
.,

20
17

,[
8]

U
nm

an
ne

d
G
ro
un

d
Ve

hi
cl
e

2D
Li
D
A
R
,C

us
to
m

st
er
eo

ca
m
er
a,

R
G
B
ca
m
er
a

N
on

e

K
ic
he

re
r

et
al
.,

20
15

,
[1
3]

U
nm

an
ne

d
G
ro
un

d
Ve

hi
cl
e

M
on

oc
hr
om

ec
am

er
a,

R
G
B
ca
m
er
a,

N
IR

ca
m
er
a

V
in
e
be

rr
y
siz

e
an

d
co
lo
r

H
er
zo
g
et

al
.,
20

14
,[
14

]
U
nm

an
ne

d
G
ro
un

d
Ve

hi
cl
e

R
G
B

ca
m
er
a,

M
on

oc
hr
om

e
ca
m
er
a

V
in
e

bu
d

bu
rs
t

de
te
ct
io
n,

V
in
e

be
rr
y
siz

e

B
ar
ke
r
et

al
.,
20

16
,[
15

]
Tr

ac
to
r-
ba

se
d

Sy
s-

te
m

Sp
ec
tr
al

re
fle

ct
an

ce
se
ns
or
s
(G

re
en

Se
ek
er

an
d

C
ro
p
C
irc

le
),
U
ltr

as
on

ic
se
ns
or
,I
R
se
ns
or
,L

as
er

di
st
an

ce
se
ns
or

N
D
V
I,
En

vi
ro
nm

en
ta
ld

at
a

D
ee
ry

et
al
.,
20

14
,[
16

]
Tr

ac
to
r-
ba

se
d

Sy
s-

te
m

2D
Li
D
A
R
,R

G
B
ca
m
er
a,

H
yp

er
sp
ec
tr
al

se
ns
or
,

T
he

rm
al

ca
m
er
a

Pl
an

th
ei
gh

t,
B
io
m
as
s(

th
ro
ug

h
Le

af
ar
ea

an
d
vo
lu
m
e)
,N

D
V
I,
PR

I

A
nd

ra
de

-S
an

ch
ez

et
al
.,

20
14

,[
17

]
Tr

ac
to
r-
ba

se
d

Sy
s-

te
m

So
na

r
pr
ox
im

ity
se
ns
or
,I

R
se
ns
or
,S

pe
ct
ra
lr

e-
fle

ct
an

ce
se
ns
or

(C
ro
p
C
irc

le
)

Pl
an

t
he

ig
ht
,

Pl
an

t
te
m
pe

ra
tu
re
,

N
D
V
I

Sa
nz

et
al
.,
20

13
,[
18

]
Tr

ac
to
r-
ba

se
d

Sy
s-

te
m

2D
Li
D
A
R

Pl
an

t
vo
lu
m
e,

Le
af

A
re
a,

LA
D

2.3. LITERATURE REVIEW 11

B
us
em

ey
er

et
al
.,
20

13
,

[1
9]

Tr
ac
to
r-
ba

se
d

Sy
s-

te
m

T
im

e-
of
-F
lig

ht
(T

oF
)

ca
m
er
a,

R
G
B

ca
m
er
a,

La
se
r

di
st
an

ce
se
ns
or
s

(L
D
S)
,
H
yp

er
sp
ec
tr
al

ca
m
er
a,

Li
gh

t
cu

rt
ai
n

Pl
an

t
he

ig
ht

Su
ie

t
al
.,
20

13
,[
20

]
Tr

ac
to
r-
ba

se
d

Sy
s-

te
m

U
ltr

as
on

ic
se
ns
or

Pl
an

t
he

ig
ht

C
om

ar
et

al
.,
20

12
,[
21

]
Tr

ac
to
r-
ba

se
d

Sy
s-

te
m

H
yp

er
sp
ec
tr
al

ca
m
er
a,

R
G
B
ca
m
er
a,

So
la
rr

ad
i-

at
io
n
se
ns
or

G
re
en

fr
ac
tio

n,
C
an

op
y
ad

ju
st
ed

ra
-

tio
in
de

x
2
(M

C
A
R
I2
),

M
ER

IS
te
r-

re
st
ria

lc
hl
or
op

hy
ll
in
de

x
(M

T
C
I)

Ll
or
en

s
et

al
.,
20

11
,[
22

]
Tr

ac
to
r-
ba

se
d

Sy
s-

te
m

2D
Li
D
A
R

C
an

op
y
de

ns
ity

,L
A
I

V
irl
et

et
al
.,
20

17
,[
7]

G
an

tr
y-
ba

se
d

sy
s-

te
m
s

R
G
B

ca
m
er
a,

3D
La

se
r
sc
an

ne
r,

T
he

rm
al

ca
m
-

er
a,

H
yp

er
sp
ec
tr
al

ca
m
er
a,

N
D
V
I
se
ns
or
,F

lu
o-

re
sc
en

ce
ca
m
er
a

C
an

op
y
co
ve
r,

Pl
an

t
he

ig
ht
,N

D
V
I,

C
hl
or
op

hy
ll

Va
de

z
et

al
.,
20

15
,[
23

]
G
an

tr
y-
ba

se
d

sy
s-

te
m
s

3D
im

ag
in
g

sc
an

ne
r

(P
la
nt
Ey

e
F3

00
fr
om

Ph
en

os
pe

x)
,A

na
ly
tic

al
sc
al
es
,R

el
at
iv
e
hu

m
id
-

ity
se
ns
or
,
Te

m
pe

ra
tu
re

se
ns
or
,
Li
gh

t
se
ns
or
,

W
in
d
se
ns
or
,R

ai
n
ga

ug
e

Le
af

ar
ea
,P

la
nt

tr
an

sp
ira

tio
n

W
hi
te

et
al
.,
20

13
,[
24

]
H
an

d-
pu

lle
d
Sy

st
em

M
on

oc
hr
om

e
ca
m
er
a,

U
ltr

as
on

ic
se
ns
or
,

IR
th
er
m
om

et
er
,R

ad
io
m
et
er
s

N
on

e

Ta
bl
e
2.
2:

Au
to
m
at
ic
Pl
an
tP

he
no

ty
pi
ng

st
ud

ies
.
Th

e
"P

he
no

ty
pi
ng

Se
ns
or
s"

co
lu
m
n
lis
ts

th
e
se
ns
or
su

se
d
on

ly
fo
rp

he
no

ty
pi
ng

pu
rp
os
es
.
Se

ns
or
sf
or

lo
ca
liz
at
io
n

or
ot
he
r
pu

rp
os
es

ar
e
no

t
lis
te
d.

Th
e
"P

he
no

ty
pi
ng

Pa
ra
m
et
er
s"

co
lu
m
n
lis
ts

th
e
ph

en
ot
yp
in
g
pa
ra
m
et
er
s
th
at

ha
ve

eff
ec
tiv

ely
be
en

es
tim

at
ed

by
ex
pe
rim

en
ta
l

ac
tiv

iti
es
.
Ac

ro
ny
m
s:

N
D
VI

=
N
or
m
al
ize

d
D
iff
er
en
ce

Ve
ge
ta
tio

n
In
de
x;

PR
I
=

Ph
ot
oc
he
m
ica

lR
efl
ec
ta
nc
e
In
de
x;

LA
I
=

Le
af

Ar
ea

In
de
x;

LA
D

=
Le
af

Ar
ea

D
en
sit
y;

N
IR

=
N
ea
rI
nf
ra
re
d
Ra

di
at
io
n.

12 CHAPTER 2. STATE OF THE ART

2.3.1 Unmanned Ground Vehicles

Unmanned Ground Vehicles (UGV) are platforms that wander the crops to collect data.
They are called unmanned because they operate without an onboard human presence.
They can carry a heavy payload of sensors, but they can cause soil compaction. Indeed,
disturbance of soil structure through compaction can weaken plants health [25]. UGVs
can be both autonomous, semi-autonomous, or even human-(tele)operated. Autonomous
UGVs are a very promising category of platforms as they can collect data regularly and
frequently.

In [11], the authors developed a field-based high-throughput phenotyping solution for
maize, using a 3D LiDAR placed on a mobile robot platform (Figure 2.2). They proposed
a solution to measure row spacing and single plants height from the LiDAR reconstruction.
Indeed, they designed a single plant detection algorithm based on points density (Figure
2.3). However, they did not provide the confusion matrix of the segmentation algorithm to
demonstrate its accuracy. Moreover, their single plant detection approach is not general
enough to be adapted to other crop species, like the vineyard. Furthermore, they used
a very expensive 3D 64 planes Velodyne sensor, thus hindering the spreading of such a
system. Finally, they conducted experimental tests moving the robot on a cement floor.
However, these controllable floor conditions cannot be assumed for real farming crops.

Figure 2.2: Qiu et al. developed UGV with the Velodyne HDL64E-S3 LiDAR sensor. (Image source [11])

In [12], the authors developed a semi-autonomous ground vehicle called Vinobot (Fig-
ure 2.4) capable of scanning crop rows at the level of every single plant. They also made
a phenotyping tower providing data of groups of plants. Throughout the vehicle, they
performed 3D reconstructions of single plants with a stereo camera. Moreover, they col-
lected environment data like temperature, humidity, and light intensity. The robot is
semi-autonomous as it requires human intervention to align it with a row, then is able to
scan the entire row autonomously. However, the single plant recognition has been done by
RFID tags placed on every single plant, thus requiring extensive human labor. Moreover,
the scanning process needs the robot to stop at every single plant and move the camera

2.3. LITERATURE REVIEW 13

Figure 2.3: Qiu et al. single plant detection. The detected single plant cloud is in red and marked out
with a green bounding box. (Image source [11])

to pre-defined positions. This scanning approach is a significant limitation that hinders
high-throughput phenotyping.

Figure 2.4: Hardware components of Vinobot. (Image source [12])

In [8], the authors developed an autonomous ground vehicle called The Robotanist
(Figure 2.6) capable of collecting phenotyping data with passive and contact-based sen-
sors. Employing a 2D LiDAR in push-broom configuration, they performed 3D recon-
structions of an entire field. However, they did not provide any quantitative evaluation of
phenotyping parameters, and they did not perform single plant segmentation. Moreover,
the navigation approach only relies on an RTK-GPS (plus an AHRS sensor) that is not
a reliable source of information. The authors stated: "[...] as the season progresses and
the sorghum grows taller than the GPS antenna, that capability will be lost.". Moreover,
during field validation, the robot has been primarily teleoperated.

14 CHAPTER 2. STATE OF THE ART

23 DAP 36 DAP 39 DAP 45 DAP

Figure 2.5: Typical examples of 3D reconstructed plants at four different DAP (days after planting)
using stereo images collected by the Vinobot. (Image source [12])

Figure 2.6: The Robotanist in sorghum breeding plots. (Image source [8])

2.3.2 Tractor-based Systems

Tractor-based systems are ground human-operated systems. Agricultural tractors can be
equipped with a variety of sensors as they can carry a heavy payload. As tractors weight
more than UGVs, they make the soil compaction problem more severe. Moreover, they
have the disadvantage of requiring a human presence on board. Since farmers drive their
tractors through the field for crop works, it is still interesting to mount sensors on them
to collect data while they are performing other operations in the field. The disadvantage
is to have sporadic data over time.

In [15], the authors equipped a tractor (Figure 2.8) with phenotyping sensors, and

2.3. LITERATURE REVIEW 15

Figure 2.7: Data from planar laser scanners in push-broom configurations collected in a Sorghum bicolor
breeding plot. (Image source [8])

they measured parameters like canopy temperature, crop height, and canopy spectral
reflectance. They reached a maximum speed of 0.89 m/s with a sensors sampling rate
of 10 Hz. They mainly investigated how ambient light and temperature conditions affect
sensor measures. They found a statistically significant effect of ambient light intensity and
temperature on readings from the GreenSeekers, the Crop Circles, the ultrasonic sensor,
the laser distance sensor, and the IRT. Especially for this latter sensor they recommended
a correction method using ground truth measurement.

Figure 2.8: The tractor-based system developed by Barker et al. (Image source [15])

In [16], the authors proposed a review to evaluate the role of proximal remote sensing

16 CHAPTER 2. STATE OF THE ART

buggies for field-based phenotyping. These systems are called "proximal" because the
distance from the instruments to the crop surface is much shorter than in aerial or satellite
remote sensing [24]. The word "buggy" stands for "moving vehicle". In particular, they
analyzed the advantages and disadvantages of each type of platform and sensor technology.

Moreover, they investigated a tractor-based system (Figure 2.9) that can traverse ∼ 1.8
m width plots at a typical operating speed of 1 m/s. They did not state how they did
localization, but it is reasonable to think that they fused the RTK-GPS (∼ 2 cm resolution)
information with the one from wheel encoders (∼ 1 mm resolution). However, especially in
natural environments, wheel odometry could give poor accuracy due to wheels slipping on
wet terrain. Moreover, ground hollows introduce errors in wheel odometry as it assumes
planar movements.

Furthermore, they performed 3D reconstructions both by stereo RGB images and
LiDAR sensors (see Figure 2.10). They also showed how the red light of the LiDAR could
be used to discriminate between plants and soil based on the laser reflectance. Finally,
they proposed to count plants from the higher spikes of the laser reconstruction. However,
this method for counting plants can be used just for some specific plants species. Indeed,
not all plant species have spikes, like the vine.

Figure 2.9: The Phenomobile tractor-based system investigated by Deery et al. (Image source [16])

Figure 2.10: Point cloud calculated from the LiDAR. (Image source [16])

In [19], the authors developed a cart called BreedVision equipped with sensors pulled
by a tractor (Figure 2.11). The trailer has a track width of 1.25m, and it has been designed
for phenotyping of small grain cereals up to a plant height of 1.6m. Moreover, the trailer

2.3. LITERATURE REVIEW 17

has been shaded with a black canvas to avoid exposure to direct solar irradiation. During
measurements, the platform was pulled by a tractor with a constant speed of 0.5 m/s.

The authors also proposed hardware and software architectures for data collection and
processing. In particular, the data collection system is an industrial PC which incorporates
a MySQL database server for data storage. Except for the integration of USB interface
sensors, a gigabit ethernet has been chosen as the primary communication bus. Since sen-
sors have different communication interfaces, each one is connected to its microcontroller.
As for data processing, they developed a software pipeline that exploits modules reuse
for two different tasks, that is, phenotyping traits calibration and traits determination
procedures.

Finally, they statistically evaluated the repeatability of the measurements and the
accuracy of the plant height parameter. However, due to the trailer structure physical
constraints, this system can only be used with specific farming settings and plant species.
Indeed, this kind of platform is hardly adaptable for vineyard phenotyping.

Figure 2.11: BreedVision sensor platform during outdoor measurements in the field. (Image source [19])

2.3.3 Gantry-based Systems

Gantry-based systems are ground systems that are usually autonomous or semi-autonomous.
These are the systems that can carry the most massive payload of sensors. Moreover, they
do not cause soil compaction as these systems need the installation of rails on which the
gantry can move. However, these structures are cumbersome and very expensive. Even if
they can cover large plots of plants, one need multiple of these systems to cover an entire
field, thus resulting in several construction jobs in the field. Moreover, these structures
reduce arable land.

In [7], the authors developed a gantry-based system (Figure 2.15) that can support a
hefty payload of sensors till 500kg. Systems like this, in principle, can localize themselves
with high accuracy. The authors proposed a method to evaluate the positioning preci-
sion of the gantry with cameras and barcodes. As for plant phenotyping, they performed
different statistical analysis on parameters like canopy coverage, plants height, NDVI in-
dex, chlorophyll fluorescence, and ground and maximum fluorescence (Figure 2.13). An
additional disadvantage is the required human intervention before each run as the hy-
perspectral imagers require an initial scan on a standard reflectance panel for exposure
calibration.

In [23], the authors developed a gantry-based system that can perform 3D imaging

18 CHAPTER 2. STATE OF THE ART

Figure 2.12: The Field Scanalyzer gantry-based system developed by Virlet et al. (Image source [7])

26

25

24

23

22

21

20

× 10°4

2.0

1.0

0

(a)

(c)

(d) (e)

(b)

Figure 2.13: (a) RGB image taken from a canopy using the visible camera at 2.5 m above the canopy;
(b) thermal infrared image (heat scale in ◦C) taken at 2 m above canopy; (c) 3D image of wheat canopy
take at 3 m above canopy; (d) false colour coded reflectance image at 800 nm taken at 2.5 m above
canopy, and (e) false-colour coded fluorescence image (arbitrary units) taken at 0.7 m above canopy.
(Image source [7])

combined with lysimetric capacity, to assess canopy traits affecting water use (leaf area,
leaf area index, transpiration). They succeeded to develop a high-throughput system that
can scan each experimental unit (sector) at least 12 times a day, creating the opportunity
of measuring leaf movements and their possible importance for plant water use. Lysimetry

2.4. GAP ANALYSIS 19

was performed via gravimetric measurement of plant transpiration with analytical scales.
They also exploited environmental sensors to monitor relative humidity (RH%) and tem-
perature (T◦C), integrating values every 30 min, one light sensor, one wind sensor, and
one rain gauge. Moreover, they developed a web-based interface to inspect phenotyping
data.

Figure 2.14: The LeasyScan gantry-based system developed by Vadez et al. (Image source [23])

2.3.4 Hand-pulled Systems

Hand-pulled systems are ground human-operated platforms that are lightweight than
tractor-based systems, but they can still carry a considerable payload of sensors. Due
to the less weight, the soil compaction problem is less severe. Moreover, utilizing less
thick tires, they can pass through more dense crops and are less susceptible to damage the
crops. However, as they require constant human action, they are not suitable for frequent
data collection.

In [24], the authors proposed a cart made with two bicycles frames (Figure 2.16). They
mounted two monochrome cameras and three infrared thermometers. With two instrument
support arms, their systems weighed 40kg. During tests, they reached an average speed of
approximately 0.36 m/s. The study was focused on the building process of the structure,
and they provided a qualitative comparison of hand-held, cart, and tractor-based systems.
They did not provide any data analysis methodology neither they presented any collected
data.

2.4 Gap Analysis

The analysis of the literature showed the advantages of adopting autonomous Unmanned
Ground Vehicles. These systems do not require human intervention like tractors or carts,
and they can freely move in every kind of field without limited maneuverability. They
are more lightweight than tractors causing less soil compaction. They do not require

20 CHAPTER 2. STATE OF THE ART

Figure 2.15: An example of LeasyScan gantry-based system collected data. (A–C) Set of environ-
mental sensors: (A) temperature, relative humidity, (B) solar radiation, wind speed, (C) rainfall. (D)
Information on plant parameters in time visualized through web-based software interface (Hortcontrol).
Environmental data visualized in Hortcontrol, e.g., (E) wind. (F, G) 3D-point clouds accessed from
Hortcontrol, at the LeasyScan platform. The Hortcontrol allows the basic data operations and quality
control (e.g., data obtained during the windy part of the day (F) are of less quality compared to data
obtained during windless part of the day (G) and are filtered for further analysis. (Image source [23])

Figure 2.16: View of the proximal sensing cart in a field of camelina. (Image source [24])

installation of bulky, cumbersome and expensive structures like gantries and they can still
carry a fair sensor payload.

However, there is the need to understand what is the minimal and less expensive set

2.4. GAP ANALYSIS 21

of sensors that can still provide useful phenotyping information and accurate localization.
Moreover, effort should also be put to understand how sensors’ positioning influences
successive data processing and analysis procedures.

Moreover, more sophisticated localization methods should be investigated. The en-
tirety of approaches exploits the GPS as principal localization information. Nonetheless,
the GPS is an unreliable source of data as the signal is susceptible to environmental con-
ditions and shadows of satellites from natural obstacles such as plants. The localization
approach should neither be based on laborious and time-consuming works of manually tag-
ging single plants. It should instead exploit other sensors information beyond the GPS.
For example, visual information from cameras images or laser scans from LiDAR sensors.
Thus, alternative localization algorithms should be investigated. Moreover, the position
of single plants could be used as a reference for navigation purposes.

Finally, single plants segmentation is an essential characteristic that phenotyping sys-
tems should have. Recognizing single plants will help not just the navigation approach
but will also allow tracking the plants’ growth over time. To the best of our knowledge,
no study has still proposed a Data Processing approach to distinguish single plants from
a vineyard reconstruction. By such a new approach, it will be possible to assign a unique
identifier to every single plant and recognize them in subsequent data collection with-
out human intervention. This framework leads to the concept mentioned above of Plant
Digital Twin.

Chapter 3

Background

In this Chapter, we give the reader an overview of the major frameworks, tools, and
algorithms utilized in this thesis. In Section 3.1, we describe the Robot Operating System
(ROS) and its core concepts with a focus on some relevant packages. In Section 3.2, we
explain a typical robotics problem called Simultaneous Localization and Mapping (SLAM).
Finally, in Section 3.3, we present the Point Cloud Library (PCL), a widespread library
to process point clouds, a common data structure to represent 3D reconstructions.

3.1 Robot Operating System (ROS)

The Robot Operating System is an open-source set of frameworks for programming a
robot. It is a collection of tools, libraries, and conventions for easy development of robot
software. Since for single individuals the complexity of programming an entire robot stack
is high, the ROS project aims at the collaboration of teams specialized in specific areas
of knowledge. Common research areas are mapping, obstacle avoidance, localization, and
others. From ROS Wiki:

It provides the services you would expect from an operating system, including
hardware abstraction, low-level device control, implementation of commonly-
used functionality, message-passing between processes, and package manage-
ment. It also provides tools and libraries for obtaining, building, writing, and
running code across multiple computers.1

In the following, we explain the main ROS components and terminology.

Packages All ROS code is organized in packages. A package contains all the files that
serve for a specific purpose. For example, a package could be a driver for interfacing with
a sensor or a piece of software for robot localization. Packages are the most atomic unit
of build and the unit of release. This means that a package is the smallest individual
thing you can build in ROS and it is the way software is bundled for release (meaning, for
example, there is one Debian package for each ROS package), respectively.

1http://wiki.ros.org/ROS/Introduction

http://wiki.ros.org/ROS/Introduction

24 CHAPTER 3. BACKGROUND

ROS packages tend to follow a common structure. Here are some of the directories
and files you may notice.

• include/package_name: C++ include headers

• msg/: Folder containing Message (msg) types descriptions. There are two parts to a
.msg file: fields and constants. Fields are the data that is sent inside of the message.
Constants define useful values that can be used to interpret those fields (e.g. enum-
like constants for an integer value). Message types are referred to using package
resource names. For example, the file geometry_msgs/msg/Twist.msg is commonly
referred to as geometry_msgs/Twist2

• src/package_name/: Source files, especially Python source that are exported to
other packages

• srv/: Folder containing Service (srv) types descriptions

• scripts/: executable scripts

• CMakeLists.txt: CMake build file

• package.xml: an XML file that must be included with any catkin-compliant pack-
age’s root folder. This file defines properties about the package such as the package
name, version numbers, authors, maintainers, and dependencies on other catkin
packages3

• CHANGELOG.rst: Many packages will define a changelog which can be automatically
injected into binary packaging and into the wiki page for the package

The Master Now we shift the focus from the organization of code to its execution. The
ROS software architecture is compliant with the publisher-subscriber framework. The
idea is to create a direct connection between processes so to exchange messages. The
ROS Master process serves as a well-known entry point for naming and registration. To
better understand the concept of Master, we propose the typical example of publisher and
subscriber processes (see Figure 3.1). A publisher is a process that exhibits a stream of
data with a unique name. Moreover, it communicates this name to the Master. Another
process, the subscriber, can declare the intention to receive data from a stream with the
same name. The ROS Master sends to the latter process the couple "IP:Port" in order to
create a direct connection between publisher and subscriber.

Nodes Node is the name for ROS processes. The publisher and subscriber processes
cited in the previous chapter are nodes. Nodes work together forming a graph structure.
All running nodes have a (Graph Resource) Name that uniquely identifies them within
the ROS computation graph. The ROS naming convention has a hierarchical structure
of namespaces as it allows encapsulating names of resources (like nodes and topics). For
example, the node /wg/node1 has the namespace /wg.

2http://wiki.ros.org/msg
3http://wiki.ros.org/catkin/package.xml

http://wiki.ros.org/msg
http://wiki.ros.org/catkin/package.xml

3.1. ROBOT OPERATING SYSTEM (ROS) 25

Figure 3.1: Here we see an example of a typical ROS nodes communication via topic. Starting from a),
the nodeA inform the Master that it is publishing a topic called "topic_name" and of type topic_type.
In b), we see another node called nodeB that asks the Master the network information to subscribe to
a topic named "topic_name". Then, in c), the Master sends to nodeB the information required and
finally, in d), the two nodes can communicate directly.

Topics Topics4 are the way through which ROS nodes exchange messages. A topic is a
unidirectional, asynchronous, strongly typed, named communication channel. Topics are
characterized by the anonymity of the publisher/subscriber nodes. In general, nodes are
not aware of who they are communicating with. Thus, a publisher node writes its data
to a topic with a specific name related to a message type. Instead, a publisher node read
data from a topic that has the name related to the message type the node is interested
in. For example, an IMU filter node publishes messages on the /imu/data topic. Topics
follow the same naming convention for nodes having a unique Graph Resource Name.

Messages Messages are the information exchanged by nodes via topic communication
channels. They are a specific data structure based on a set of built-in types.

Launch files Launch files are XML to launch conveniently multiple nodes with a sin-
gle command. Moreover, one can do the necessary name remappings, set parameters,
and include other launch files. When a launch file is run, the Master node is started
automatically.

Bags A bag is a file format for storing ROS message data. Bags can be replayed offline
acting as a publisher without any difference from the online topics.

4http://wiki.ros.org/Topics

http://wiki.ros.org/Topics

26 CHAPTER 3. BACKGROUND

3.1.1 tf Package

The tf package serves for managing the coordinate frames of the robot. A robot has
typically various 3D coordinate frames attached to its body (Figure 3.2).

Figure 3.2: A robot with multiple tf frames for components like head, hands, etc. (Image source [26])

Each sensor and actuator is characterized by a frame. The tf package keep track of the
transformations (tf stands for "transformation") between the various coordinate frames.
Notice that, as the robot moves, some transformations could change values. This task is
critical since all the information coming from the robot should be related to a common
reference frame. For example, if a robot has two LiDAR sensors, how can we combine the
information coming from them if we do not know their positions relative to, let us say, a
world coordinate frame?

An important thing to highlight is the structure used to organize transformations, from
the ROS Wiki:

tf maintains the relationship between coordinate frames in a tree structure
buffered in time, and lets the user transform points, vectors, etc. between
any two coordinate frames at any desired point in time.5

To better understand the concept of the transformations, let us present a real-world
problem. We have a mobile robot base with a laser sensor mounted on the top of it. The
laser sensor gives us the distance between the laser origin and the obstacle in front of it.
However, we would like to know the distance between the robot front and the obstacle in
order to avoid it. This setting is depicted in Figure 3.3.

5http://wiki.ros.org/tf
6http://wiki.ros.org/navigation/Tutorials/RobotSetup/TF

http://wiki.ros.org/tf
http://wiki.ros.org/navigation/Tutorials/RobotSetup/TF

3.1. ROBOT OPERATING SYSTEM (ROS) 27

Figure 3.3: At the left you see the position of the base_laser and the base_link; in the center you
see the translation between the two mentioned points; at the right you see the distance computed by
the laser, and the problem is to know the distance from the center of the robot and the obstacle.6

There you can see the laser sensor center, the base_laser, and the robot base center,
the base_link. With the robot dimensions, knowing the distance from the robot front or
center to an obstacle is the same. The center of the robot is a convenient point to which
relate all the transformations. To insert a transformation in the tf tree, we need to know
the rotation and translation between the two elements. We imagine the robot coordinate
frame as a right-handed reference system with the x-axis pointing to the front of the robot
and the z-axis pointing upward.

In this case, the laser sensors origin is perfectly aligned with that of the robot base,
so the rotation is the identity. As for the translation, the sensor origin is 10 cm (0.10 m)
forward along x-axis relative to the robot center, and 20 cm (0.20 m) upward along z-axis
relative to the same robot center. This is the transformation to add in the tf tree, as in
Figure 3.4. In this way, we can know the distance from the robot center to the obstacle.
The above-explained transformation is called "static" because it remains the same during
the robot operations. If the transformation were between the robot center and a robotic
arm, it would have been "dynamic".

Figure 3.4: The laser sensors measured distance is translated to the distance between the robot center
and the obstacle via the tf tree7

A typical tf tree contains at least other two relevant coordinate frames, that is, the
map and the odom frames. In Figure 3.5 you can see an example of a general tf tree.
The frames names and semantic meanings adhere to the ROS conventions that can be
found at this link https://www.ros.org/reps/rep-0105.html. The odom frame has to
be connected by a transformation to the aforementioned base_link frame and it embeds
the robot odometry source such as wheel odometry, visual odometry or others. The robot
position relative to this frame can drift over time without any bound, so the odom frame

7http://wiki.ros.org/navigation/Tutorials/RobotSetup/TF

https://www.ros.org/reps/rep-0105.html
http://wiki.ros.org/navigation/Tutorials/RobotSetup/TF

28 CHAPTER 3. BACKGROUND

is useless as a long-term global reference. The robot pose in the odom frame is guaranteed
to be continuous, that is, it does not have discrete jumps.

Instead, the robot pose in the map frame should not significantly drift over time so it
can be used as a long-term global reference. However, the map frame it is not continuous,
so discrete jumps in position estimators make it a poor reference frame for local sensing
and acting.

The last reference frame is the earth frame, and it is used when multiple robots with
different map reference frames need to interact. Otherwise the earth frame it is not used.

Figure 3.5: An example of a complete ROS tf tree. Since the earth frame is present, this tree could
be of a robot that interacts with robots that have a different map frames. The tree structure after
base_link tree is usually more complex and richer of sensors and actuators frames.

3.2 Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) is one of the most common problems
faced by the robotics community. As the name suggests, the task consists in knowing
the robot position in an unknown environment while building a map of the surrounding.
The problem is not trivial because the robot, to know its location, needs to know how
the surrounding environment is structured, that is, it needs to have a map. On the other
hand, to build a map of the environment, the robot needs to know where it is.

Even if it appears to be a chicken-and-egg problem, several approximate solutions have
been proposed in literature since the early 1990s. The problem is made difficult by the
fact that sensors give imprecise measurements. The noise affecting sensors data introduces
errors in the estimation of both the robot position and the map landmarks location. Some
of the most common solutions include methods like the particle filter, extended Kalman
filter, and graph-based SLAM.

3.2.1 Visual and Laser Odometry

An essential component of all SLAM algorithms is the odometry. Odometry is a typical
robotics task. It consists of computing the change in position of the robot over time,
relative to a starting position. Traditionally, odometry has been computed in many ways.
One of the most common forms is wheel odometry.

Wheel odometry is calculated by integration of velocity measurements over time. The
velocity information is given by sensors, called encoders, applied to the shafts of the wheel
motors. In recent years other forms of odometry have been researched to overcome the
errors introduced by velocity integration. One common approach is Visual Odometry
(VO).

Visual Odometry (VO) works similarly to wheel odometry by incrementally estimating
the robot pose through the examination of the changes that motion induces on the images
of its onboard cameras. For VO to work effectively, there should be sufficient illumination

3.2. SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM) 29

and a static scene with enough texture to allow the apparent motion to be computed.
Furthermore, consecutive frames should be captured by ensuring that they have sufficient
scene overlap.

The advantage of VO compared to wheel odometry is that VO is not affected by wheel
slip in uneven terrain or other adverse conditions. It has been demonstrated that compared
to wheel odometry, VO provides more accurate trajectory estimates, with relative position
error ranging from 0.1 to 2%. This capability makes VO an interesting supplement to
wheel odometry and, additionally, to other navigation systems such as global positioning
system (GPS), inertial measurement units (IMUs), and laser odometry. In GPS-denied
environments, such as under-water and aerial, VO has utmost importance. [27]

Another alternative to wheel odometry, similar to VO, is laser (or LiDAR) odometry.
Laser odometry estimates the motion of a vehicle by scan-matching of consecutive laser
scans. To perform this matching is usually adopted an algorithm called ICP (Iterative
Closest Point). ICP takes two successive laser scans and finds the transformation to align
one to another; this transformation is precisely the change of position of the robot between
that two sensors measurements.

rtabmap is a ROS wrapper of the RTAB-MAP SLAM library. Beyond a SLAM node,
it provides other two nodes, namely rgbd_odometry (or stereo_odometry depending on
the input camera) and icp_odometry to compute visual and laser odometry respectively.
A detailed explanation of these two nodes can be found in Subsection 5.2.1.

3.2.2 robot_localization Package

robot_localization is a ROS package for fusing different sources of odometry or other
motion information, such the one from an Inertial Measurement Unit (IMU), in order to
have have a new odometry with increased accuracy. From the ROS Wiki:

robot_localization is a collection of state estimation nodes, each of which
is an implementation of a nonlinear state estimator for robots moving in 3D
space. It contains two state estimation nodes, ekf_localization_node and
ukf_localization_node. In addition, robot_localization provides navsat_-
transform_node, which aids in the integration of GPS data.8

The state to which this definition refers is a 15-dimensional tuple that describes the
motion state of the vehicle:

(X,Y, Z, roll, pitch, yaw, Ẋ, Ẏ , Ż, ˙roll, ˙pitch, ˙yaw, Ẍ, Ÿ , Z̈)

The X,Y, Z components are the position of the robot reference frame origin in the 3D
space. The roll, pitch, yaw are the components that describe the orientation of the robot
reference frame. Then we have the linear and angular velocities and the linear acceleration
of the robot, respectively.

The package is the implementation of a Kalman Filter. The Kalman Filter is an
algorithm that outputs a state estimation by weighting the different inputs based on
their uncertainty. The inputs are the various inaccurate sensors measurements and the

8http://docs.ros.org/melodic/api/robot_localization/html/index.html

http://docs.ros.org/melodic/api/robot_localization/html/index.html

30 CHAPTER 3. BACKGROUND

estimate from a prediction model. However, the filter works properly when all errors are
Gaussian. Extensions and generalizations to the method have also been developed, such
as the Extended Kalman filter and the Unscented Kalman filter, which work on nonlinear
systems. These are precisely the algorithms implemented by the robot_localization
nodes. For more information on technical details, refer to [28].

Additionally to Kalman Filter nodes, the package provides the navsat_transform_-
node. This node allows the integration of GPS data in the localization algorithm of
the system. Raw GPS data is provided with a format difficult to be directly integrated
into the coordinate frame to which the robot is referring. This node translates the GPS
coordinates into a position relative to the robot world frame. In this way, the information
is immediately available for usage, for example, as the input of a Kalman Filter.

3.2.3 rtabmap_ros Package

The rtabmap_ros package is a wrapper for the RTAB-Map library [29]. RTAB-Map is an
open-source LiDAR and visual Simultaneous Localization and Mapping (SLAM) library
for large-scale and long-term online operation. Let us break down word by word this
definition.

LiDAR and Visual As previously said, to know their pose, robots need to perform
measures of the environment with their sensors. SLAM is a general theoretical problem
that has been studied without imposing a particular kind of sensor. The first applications
of SLAM have been made with laser sensors as they are among the most accurate and
require less post-processing computation than other data, like images. Successively, along
with the advances in Computer Vision and camera sensors, visual-based SLAM has started
to become popular.

SLAM approaches are generally visual-based or lidar-based only, and are
benchmarked often on datasets having only a camera or a lidar, but not both,
making difficult to have a meaningful comparison between them. [...] RTAB-
Map can be used to implement either a visual SLAM approach, a lidar SLAM
approach or a mix of both, which makes it possible to compare different sensor
configurations on a real robot. [29]

(Graph-Based) SLAM We have already described the SLAM problem, but in partic-
ular, RTAB-Map is a graph-based SLAM approach. Graph-Based SLAM approaches are
based on the optimization of graphs that represent the map of the environment. Each
node of the graph represents a robot pose. Each edge between two nodes encodes a sensor
measurement that constrains the connected poses.

Obviously, such constraints can be contradictory since observations are al-
ways affected by noise. Once such a graph is constructed, the crucial problem
is to find a configuration of the nodes that is maximally consistent with the
measurements. This involves solving a large error minimization problem. [30]

3.3. POINT CLOUDS 31

Large-scale and long-term online operation Due to the high computational com-
plexity of the optimization problem for graph-based SLAM approaches, only relatively re-
cently this approach became popular thanks to the advances of linear algebra techniques.
Still, these algorithms tend to explode in memory consumption and computational load
as time passes by, and the graph increases in the number of nodes. RTAB-Map tries to
overcome this problem with a smart memory management strategy.

When performance degrades under a threshold, some nodes are moved from the Work-
ing Memory (WM) to a storage memory (Long Term Memory - LTM). They use some
heuristics to decide when a node should be put in the LTM. The nodes stored in the LTM
are moved back to the WM when happening some particular events that involve neighbor-
hood nodes of the one stored. In this way, both computational time and memory usage
are kept under thresholds. These thresholds are set to allow the system to continue to
work in real-time. This means that the graph optimization processing time will not affect
the consumption frequency of incoming sensors data. Moreover, one can perform online
SLAM even in large environments where other SLAM algorithms will quickly run out of
memory. This is one of the most innovative features of RTAB-Map.

3.3 Point Clouds

Environment perception is an essential characteristic of a robot. It serves for different
purposes, such as obstacle avoidance, mapping, and localization. Laser sensors are an
excellent way to describe the world because they measure distances with high accuracy.
Moreover, they can be exploited to build a 3D model of the environment. These such mod-
els contain rich information that allows to carry out complex tasks compared to simpler
models.

For example, in the case of obstacle avoidance, a table could not be seen by a 2D laser,
placed at low height in front of a robot, with a restricted Field Of View. Conversely, it will
be certainly perceived with a sensor that gives a 3D perception of the environment. Laser
sensors costs from thousands to tens or hundreds of thousands of euros. However, with the
advent of cheap 3D imaging sensors like RGB-D cameras, they are rapidly diffusing in the
robotics community. 3D reconstructions can be supported by a variety of data structures
such as point clouds, voxels grids, meshes, and surfel-based map representation. Point
clouds are one of the most common structures used.

A point cloud is a data structure used to represent a collection of multi-dimensional
points and is commonly used to represent three-dimensional data. In a 3D point cloud, the
points usually represent the X, Y, and Z geometric coordinates of an underlying sampled
surface. When color information is present (see figure 3.6), the point cloud becomes 4D.9

The points could be sampled from a real scene using sensors like LiDARs, stereo
cameras, 3D cameras like the Kinect or Intel RealSense RGB-D cameras. Otherwise, the
points can be synthetically created using Computer Graphics tools. In figure 3.7, you can
see the point cloud of a rabbit.

9http://pointclouds.org/about/
10http://pointclouds.org/about/
11https://www.codeproject.com/Articles/839389/Fast-Point-Cloud-Viewer-with-Csharp-and-

OpenGL

http://pointclouds.org/about/
http://pointclouds.org/about/
https://www.codeproject.com/Articles/839389/Fast-Point-Cloud-Viewer-with-Csharp-and-OpenGL
https://www.codeproject.com/Articles/839389/Fast-Point-Cloud-Viewer-with-Csharp-and-OpenGL

32 CHAPTER 3. BACKGROUND

Figure 3.6: RGB Point clouds of common use objects. (Image source10)

Figure 3.7: Point cloud of a rabbit. (Image source11)

3.3.1 The Point Cloud Library (PCL)

Point clouds are usually composed of hundreds or thousands or even millions of points, de-
pending on the scale of the scanned environment and the sensors technical characteristics.
Such a huge quantity of data needs efficient algorithms to be handled.

The Point Cloud Library (or PCL) is a large scale, open project [31] for 2D/3D image
and point cloud processing. The PCL framework contains numerous state-of-the-art algo-
rithms, including filtering, feature estimation, surface reconstruction, registration, model
fitting, and segmentation. These algorithms can be used, for example, to filter outliers
from noisy data, stitch 3D point clouds together, segment relevant parts of a scene, ex-
tract keypoints and compute descriptors to recognize objects in the world based on their
geometric appearance, and create surfaces from point clouds and visualize them; to name
a few.12

Each set of algorithms to accomplish a particular function, such as segmentation, are
derived from the same base classes. This entails that all processing tasks follow a common
pipeline. If you are going to look at some PCL code, you will see this pattern repeated
for every single task. The basic interface for such a processing pipeline in PCL is [31]:

12http://pointclouds.org/about/

http://pointclouds.org/about/

3.3. POINT CLOUDS 33

• create the processing object (e.g., filter, feature estimator, segmentation)

• use setInputCloud to pass the input point cloud dataset to the processing module

• set some parameters

• call compute (or filter, segment, etc) to get the output

Moreover, PCL easily integrates with ROS. To efficiently process the extremely large
point clouds, a core characteristic of PCL is the Perception Processing Graphs (PPG). As
the typical ROS nodes graph structure, the PPG structure is characterized by nodes that
perform single tasks such as normal estimation, segmentation, etc. Each node is executed
in ROS as nodelet. Nodelets are an alternative computational unit to ROS nodes that use
pointers passing instead of serialization/deserialization of messages over a network. In the
case of a large quantity of data as for point clouds, nodelets are made necessary. In the
following, we explain some relevant PCL library algorithms that are used in this work.

RANSAC RANSAC is the abbreviation of RANdom SAmple Consensus. It is an it-
erative method that is used to estimate parameters of a mathematical model from a set
of data containing outliers. The algorithm takes as input the kind of model you expect
to find in the data, for example, a plane. The assumption is that part of the data are
inliers, and the rest are outliers. The goal is to find the part of the data that best rep-
resents the input model. The algorithm uses some threshold parameters given as input
to discriminate between inliers and outliers. If the model is a plane are considered only
as hypothetical inliers the 3D points within a certain distance along the perpendicular
direction the considered plane.

RANSAC achieves its goal by iteratively selecting a random subset of the original data.
These data are hypothetical inliers, and this hypothesis is then tested as follows:

1. A model is fitted to the hypothetical inliers, i.e., all free parameters of the model
are reconstructed from the inliers

2. All other data are then tested against the fitted model and, if a point fits well to the
estimated model, also considered as a hypothetical inlier

3. The estimated model is reasonably good if sufficiently many points have been clas-
sified as hypothetical inliers

4. The model is reestimated from all hypothetical inliers because it has only been
estimated from the initial set of hypothetical inliers

5. Finally, the model is evaluated by estimating the error of the inliers relative to the
model

This procedure is repeated a fixed number of times, each time producing either a model
which is rejected because too few points are classified as inliers or a refined model together
with a corresponding error measure. In the latter case, we keep the refined model if its
error is lower than the last saved model.13

13http://pointclouds.org/documentation/tutorials/random_sample_consensus.php

http://pointclouds.org/documentation/tutorials/random_sample_consensus.php

34 CHAPTER 3. BACKGROUND

An advantage of RANSAC is the ability to estimate robust models even in the presence
of many outliers. The disadvantage is the computational effort required. Indeed, the model
gets more accurate as more iterations are performed. Moreover, the confidence parameters
provided as input are problem-specific. A characteristic of RANSAC is that it can only
find one model in the data. If multiple models are present, it may fail to find either one.

Euclidean Cluster Extraction Euclidean Cluster Extraction [32] is a clustering algo-
rithm, that is, an algorithm that aims at grouping a set of data in such a way that the
elements part of a group are more similar to each other than to the elements belonging to
other groups. There are various algorithms to solve this problem; examples are Euclidean
Cluster Extraction and Kmeans.

Clustering on point clouds is generally performed to isolate single objects or parts of
them. For example, in the case of a vineyard point cloud, we would like to isolate single vine
plants. As the name suggests, Euclidean Cluster Extraction uses the Euclidean distance
between points. The idea is to group points if they are close to each other within a certain
radius threshold. The pseudo-code of the algorithm is the following:

1. create a Kd-tree representation for the input point cloud dataset P
2. set up an empty list of clusters C, and a queue of the points that need to be checked

Q;
3. then for every point pi ∈ P, perform the following steps:

• add pi to the current queue Q
• for every point pi ∈ Q do:

– search for the set P k
i of point neighbors of pi in a sphere with radius r < dth

– for every neighbor pk
i ∈ P k

i , check if the point has already been processed,
and if not add it to Q

• when the list of all points in Q has been processed, add Q to the list of clusters
C, and reset Q to an empty list

4. the algorithm terminates when all points pi ∈ P have been processed and are now
part of the list of point clusters C

K-means K-means [33] is another clustering algorithm. In particular, K-means aims to
partition n elements into a fixed number k of groups (or clusters). It assigns a point to the
cluster whose centroids is the nearest. The centroid is the point at the geometric center
of a cluster and has not necessarily to be an element of the cluster.

The algorithm is usually implemented iteratively. The input of the algorithm are the
elements to cluster and a vector of initial centroids (the number k is derived from the
size of the centroids vector). The initialization procedures for centroids are various, from
random initialization to some heuristics or exploiting previous knowledge.

Algorithm 1, shows the pseudo-code of K-means applied on point clouds.

3.3. POINT CLOUDS 35

Algorithm 1: k-means on point clouds
input : A point cloud X of n points such that xi ∈ X; the vector of initial

centroids M of size k such that µj ∈M
output: A partition of the input point cloud X in k clusters

/* clusters initialization */
for i← 0 to n do

ClusterIndex(xi) ←− i mod k;
end
/* iterate till convergence */
while not_converged do

not_converged←− false;
/* iterate over all points */
for i← 0 to n do

min←− Distance(Centroid(ClusterIndex(xi)), xi);
/* iterate over all clusters */
for j ← 0 to k do

d←− Distance(µj, xi);
if d < min then

min←− d;
ClusterIndex(xi) ←− j;
not_converged←− true;

end
end

end
/* compute centroid of each cluster */
for j ← 0 to k do

for i ∈ ClusterIndices(j) do
µj ← µj + xi;

end
µj ← µj/ Size(ClusterIndices(j));

end
end

Chapter 4

Hardware Architecture

In this Chapter, we explain the rationale behind our hardware architecture. In Section 4.1,
we make a list of a set of sensors that we investigated for phenotyping applications. We
describe their characteristics and functioning principles, and we explain how we selected
the best subset of them. In Section 4.2, we explain how the sensors supporting platform
has been built and calibrated. Finally, in Section 4.3, we list the multiple setups of sensors
that we investigated during outdoor field experiments.

4.1 Sensors

In this Section, we make a list of sensors that can be exploited to do plant phenotyping,
as suggested in [5]. Starting from the literature, we investigated a set of devices to un-
derstand their advantages and disadvantages. The devices taken into consideration are
representatives of the main state-of-the-art 3D imaging techniques. These technologies
are laser scanning, stereo vision, Time-Of-Flight, and structured light. We tested each of
the following listed sensors, both indoor and outdoor. The indoor scene was our lab while
the outdoor scene was a group of plants in a park of our university.

Moreover, we operated the sensors under stress conditions like in bright light and even
direct sunlight. To perform the experiments, we recorded raw data in ROS bag files (see
Section 3.1). We then replayed back the bags, and we qualitatively evaluated the output
point clouds and depth images. Finally, we drew conclusions also taking into consideration
the technical specifications. Once we came up with a final set of sensors, we mounted them
on a platform to further investigating their localization and reconstruction capabilities.

ZED Camera The ZED camera (see Figure 4.1) is a stereo camera, that is, a sensor
that retrieves depth information by the stereo triangulation (see Figure 4.2) of two images
coming from two different image sensors. The idea is to simulate the human binocular vi-
sion, and therefore to reconstruct three-dimensional images. The ZED camera is equipped
with two RGB cameras, and it computes 6-DoF positional tracking via real-time depth-
based visual odometry and SLAM. The camera needs to be used with a GPU; therefore,
we employed the Nvidia Jetson TX2 GPU together with Ubuntu 16.04. We recorded bags
with different settings of quality and frame rate. In Figure 4.3, it is showed the output

38 CHAPTER 4. HARDWARE ARCHITECTURE

point cloud, and the respective RGB left camera image of a scene recorded in our lab.
Notice how wavy and noisy is the point cloud as seen from the ROS visualization (rviz)
software.

Figure 4.1: ZED Camera. (Image source1)

Figure 4.2: This Figure explains the principle of stereo triangulation. The two images with overlapped
views are matched to find points correspondences. y1 and y2 are a couple of matched points. The
3D point x is detected by the intersection of two lines passing through the images points and their
respective camera focal points. (Image source2)

Kinect One (v2) Kinect One (or Kinect v2) (see Figure 4.4) is a motion-sensing input
device that was produced by Microsoft for Xbox One video game console. It is equipped
with an RGB camera, an IR (infrared) camera, and three IR projectors. This new Kinect
version has greater accuracy with three times the fidelity over its predecessor. Moreover, it
can track without visible light with the help of its projectors. It provides depth information
exploiting a Time-Of-Flight (TOF) technology (see Figure 4.5). The TOF principle is the
following: knowing the speed of light, the distance to be measured is proportional to the
time the projectors’ light takes to travel from the emitter to the obstacle and then back
to the IR sensor.

To have more accurate depth information, we calibrated the Kinect following the proce-
dure described here

1https://www.stereolabs.com/zed/
2https://en.wikipedia.org/wiki/Triangulation_(computer_vision)
3https://www.stemmer-imaging.com/en/knowledge-base/cameras-3d-time-of-flight-cameras/

https://www.stereolabs.com/zed/
https://en.wikipedia.org/wiki/Triangulation_(computer_vision)
https://www.stemmer-imaging.com/en/knowledge-base/cameras-3d-time-of-flight-cameras/

4.1. SENSORS 39

Figure 4.3: Our lab point cloud from the ZED camera seen on the rviz software. In the bottom-left,
you can see the left RGB camera image.

Figure 4.4: Kinect One (v2).

Figure 4.5: This Figure explains the principle of Time-Of-Flight. The camera projects a modulated
light toward the object to measure. The sensor transforms the detected light into an electric signal, and
the distance is computed by the phase shift between the emitted and reflected light. (Image source3)

https://github.com/code-iai/iai_kinect2/tree/master/kinect2_calibration.
We repeatedly acquired images of a calibration checkerboard from different perspectives
and distances. We gave all the images as input to the calibration algorithm that gave us
the calibration matrices. In Figure 4.6, it is shown the difference before and after calibra-
tion. Figure 4.7, shows again the lab point cloud captured with the Kinect. Notice the

https://github.com/code-iai/iai_kinect2/tree/master/kinect2_calibration

40 CHAPTER 4. HARDWARE ARCHITECTURE

fidelity of shapes to the real scene. Instead, in Figure 4.8, is visualized the point cloud of
an outdoor scene with a bunch of trees.

(a) Before: note the double borders at the edges
of the objects.

(b) After: note how the color is now correctly
applied on the depth data.

Figure 4.6: Difference between before and after Kinect calibration. The images represent the color
image superimposed to the depth image.

In [34], the authors analyzed the Kinect One sensor to understand its suitability for
close-range 3D modeling. Moreover, they made a comparison evaluation with its prede-
cessor and as an alternative to photogrammetry methods.

Kinect v2 showed to be superior compared to its predecessor due to the newer depth
technology. The comparison with photogrammetry methods tends to confirm the higher
efficiency of image-based reconstruction methods when accurate 3D models are required,
regardless of the object size. However, a satisfactory accuracy of 1 cm was reached by
Kinect v2 in experimental reconstruction tests. They also investigated Kinect pre-heating
time and calibration methods. Indeed, as reported in many contributions dealing with
RGB-D cameras, a pre-heating time has to be considered to obtain constant measurements.
It has been estimated that almost 30 minutes is needed with the Kinect v2 sensor.

In [35], they found similar results concerning the reconstruction accuracy.

Figure 4.7: On the right, the point cloud captured by Kinect One of the previously showed lab scene.
On the left the relative depth image.

XtionPRO Live XtionPRO live (see Figure 4.9) is a motion-sensing device produced
by Asus for gaming applications. It is similar to the Kinect v1 device as they both are

4.1. SENSORS 41

Figure 4.8: On the left a real outdoor scene as captured by the Kinect RGB camera. On the right, the
relative computed point cloud.

structured-light cameras. It is equipped with an RGB camera, an IR sensor, and an
IR structured-light source. Structured-light works by projecting a known pattern on the
subject to measure. The distortion of the projected pattern is correlated to the distance
of the subject (see Figure 4.10). In [36], the authors present various structured-light
techniques and applications. In Figure 4.11, it is shown the already mentioned lab scene
as captured by the XtionPro sensor. In [37], the authors showed the potential of low-cost
3D cameras (XtionPro Live and Kinect v1) for the measurement of plant woody structure.

Figure 4.9: XtionPRO live.

Intel RealSense D435(i) Camera The Intel RealSense D435 (see Figure 4.12) is an
RGB-D (the D stands for Depth) camera. It is a device that, similarly to the Kinect and
the Xtion, provides color and depth information. It is equipped with an IR stereo camera
(two IR sensors), an IR projector, and an RGB camera. The model D435i additionally
provides 6-DoF position information via the internal IMU.

The RealSense D4XX cameras series depth principle is stereo triangulation as the one
of ZED camera. However, in this case, two IR images are used in place of RGB ones.
The infrared projector projects non-visible static IR pattern to improve depth accuracy in
scenes with low texture. The left and right sensors capture the scene and send images data
to the depth imaging processor, which calculates depth values for each pixel in the image
by correlating points on the left image to the right image. The feature enhancement
caused by the IR projector leads to a higher depth accuracy than simple stereo vision.
In Figure 4.13, it is shown the already mentioned outdoor scene captured by the D435
camera.

4https://imgbin.com/png/wjRvyKrG/kinect-structured-light-3d-scanner-structured-light-
camera-png

https://imgbin.com/png/wjRvyKrG/kinect-structured-light-3d-scanner-structured-light-camera-png
https://imgbin.com/png/wjRvyKrG/kinect-structured-light-3d-scanner-structured-light-camera-png

42 CHAPTER 4. HARDWARE ARCHITECTURE

Figure 4.10: The structured-light principle allows the computation of depth information via an IR
camera and an IR light source. The principle is similar to stereo vision with the difference that a light
emitter replaces a camera. The IR source, on the left, projects a vertical lines pattern on the subject to
measure. The undulated object reflects a distorted line that is captured by an IR camera, on the right.
Then, if the physical relation between the camera and the projector is known, the depth of a point can
be calculated via triangulation. (Image source4)

Figure 4.11: On the left the lab scene as captured by the XtionPro camera. On the right, the relative
computed point cloud.

Figure 4.12: Intel RealSense D435(i) Camera.

Sick LMS100-1000 2D LiDAR The Sick LMS100 (see Figure 4.14) is a 2D laser
sensor, that is, a device with a single scanning plane. The laser sensors retrieve with

4.1. SENSORS 43

Figure 4.13: On the left, the outdoor scene RGB image as captured by D435 camera. On the right, the
relative computed point cloud. Note the higher level of detail compared to the Kinect outdoor point
cloud.

high accuracy distance information of the subjects intersecting the scanning plane. The
principle is very similar to Time-Of-Flight. The distance is calculated as proportional to
the time the laser beam needs to return after being emitted and reflected by an obstacle
(see Figure 4.15).

Moreover, LiDAR sensors measure the intensity of the reflected beam giving additional
information that can be exploited in the post-processing pipeline. The intensity is based,
in part, on the reflectivity of the object struck by the laser pulse. In [38], the authors show
the potential of laser and ultrasonic sensors for measuring phenotyping data of vineyard
trees. The obtained results indicated that an ultrasonic sensor is an appropriate tool
to determine the average canopy characteristics, while a LIDAR sensor provides more
accuracy and detailed information about the canopy.

Figure 4.14: Sick LMS100-1000 2D LiDAR.

5https://www.elprocus.com/lidar-light-detection-and-ranging-working-application/

https://www.elprocus.com/lidar-light-detection-and-ranging-working-application/

44 CHAPTER 4. HARDWARE ARCHITECTURE

Figure 4.15: This Figure explains the principle behind LiDAR sensors. A laser beam is emitted by a
rotating mirror toward the subject to measure. The rotating mirror captures the light reflected by the
subject and directs it toward a photodiode sensor that transforms the light pulse to an electric signal.
The distance is proportional to the time the light needs to travel from the emitter and return to the
target. (Image source5)

Sick LD-MRS400001S01 3D LiDAR The Sick LD-MRS (see Figure 4.16) is a 3D
LiDAR. Unlike the LMS100 model, it scans along four different planes. Moreover, it gives
the possibility to use just two layers with the advantage of an increased angular Field Of
View.

Figure 4.16: Sick LD-MRS400001S01 3D LiDAR.

Other sensors We also have taken into consideration the STM32F746 Nucleo-144 board
with on top an X-NUCLEO-IKS01A1 multi-sensors board that provides IMU and mag-
netometer data (see Figure 4.17). Finally, for absolute earth-referenced positioning infor-
mation, we considered a Trimble 5700 GPS receiver (see Figure 4.18) with its external
antenna.

4.1. SENSORS 45

(a) STM32F746 Nucleo-144 board. (b) X-NUCLEO-IKS01A1
multi-sensors board.

Figure 4.17: STMicroelectronics Nucleo-144 and X-NUCLEO-IKS01A1 boards.

Figure 4.18: Trimble 5700 GPS receiver.

46 CHAPTER 4. HARDWARE ARCHITECTURE

4.1.1 Comparison

Here we make a comparison between the sensors for 3D imaging taking into account their
final application, that is, outdoor plant phenotyping. The following considerations come
from the investigation of the literature and the inspection of sensors technical specifications
and of the already mentioned recorded data in indoor and outdoor environments. The
complete and schematic comparison is represented in Table 4.1.

The most critical parameter is the depth range. Depth range is the distance interval
in which the sensor can provide measurements of the scanned subject. The lower limit
of the range is critical for us as we are investigating proximal sensing platforms. Thus, if
the low range is too far from the sensor origin, close plant scanning cannot be performed.
All the sensors perform well as exception of the Xtion that has a too far low limit range
(0.8 m) for most phenotyping applications. The D435 has the smallest and remarkable
low limit range of about 0.1 m. The upper limit range is not a problem since it is at least
in the order of meters for all sensors.

Bright-light performance is either a crucial parameter since data collection is usually
performed during day hours. Indeed, devices that employ IR information are sensitive
to sunlight. Structured-light technology has interference issues in outdoor environments.
Low-cost versions of structured-light cameras such as the XtionPro have low resolution
and are highly sensitive to outdoor lighting [39]. The problem of lack of performance under
sunlight is present even in Time-of-Flight (ToF) cameras. Some of the ToF cameras have an
on-board background illumination rejection circuitry, but with varying performance under
sunlight depending on the operating range and the power of NIR (Near Infrared Radiation)
emitters [39]. In [40], the authors showed that the Microsoft Kinect v2 performed worse on
depth measurements quality at higher light intensities compared to the Intel D435 camera.
As for stereo cameras, even if they are less sensitive to sunlight than ToF cameras, direct
sunlight and shadows in a sunny day affect strongly their depth image generation [41], [39].
Instead, LiDAR sensors are very little susceptible to sunlight, and they generally perform
well in outdoor environments [42]. Thus, we gave to the XtionPro and the Kinect v2 the
worst bright-light performance. Moreover, we placed the D435 and the ZED cameras at a
medium quality level, and the LiDAR sensors at the highest quality level.

In low-light condition, the ZED stereo camera and the D435 camera perform the worst
since their sensors exploit ambient illumination. Instead, other sensors are advantaged by
an active depth sensor technology that works independently of visible light. However, phe-
notyping measurements are supposed to be performed during day hours. Further research
should be done to understand the consequences of evening/night hours measurements.

As for depth accuracy, the LiDARs perform the best compared to all other sensors [42].
Depth accuracy of stereo cameras varies with the type of algorithm used for correspon-
dences matching, and the performance is adversely affected by the lack of surface texture
on the object. In [39], they concluded that even if stereo cameras should be advantaged
of accurate stereo matching algorithms with an efficient implementation over specialized
hardware, they still can not be comparable to ToF cameras. Thus, we assigned to the
ZED camera the lowest depth accuracy. Although the D435 is a stereo camera, it has a
good accuracy because of the IR images increased in features by the IR projector. These
extra features to track ease the stereo matching task. In [40], the authors demonstrated

4.2. PLATFORM CONSTRUCTION AND CALIBRATION 47

that the Intel D435 performed better than Microsoft Kinect v2 in different depth accuracy
tests. However, after visual inspection of outdoor reconstructions, we experienced that the
Kinect v2, the XtionPro and the D435 camera have the same depth accuracy level.

As we are oriented toward the best effective but cheap subset of sensors is interesting
to take into consideration the economic aspect. We list the sensors ordering them by
increasing price: RealSense D435, Kinect v2, XtionPro live, ZED camera, LMS100, LD-
MRS. The LiDARs cost thousands of euros while the other sensors cost hundreds of euros.

Finally, it would be better to have a compact and lightweight suite of sensors. The
most compact and lightweight sensor is the D435. Instead, the LiDARs are heavy sensors.
Unexpectedly, the heaviest and biggest sensor is the Kinect v2.

Concluding, the XtionPro live is the first sensor to be excluded as it performed the
worst in the most critical parameters. In addition to the previous considerations, it also has
the narrowest Field Of view. This outcome was predictable as the Xtion is an older device
relative to the other cameras. The ZED camera is also excluded as the stereo technology
entails a lower depth accuracy, and an imprecise model leads to errors in the phenotyping
measurements. Finally, the Kinect v2 is excluded favoring the RealSense D435 since the
latter is purposely designed both for indoor and outdoor environments, thus having better
bright-light performance. Moreover, the D435 is more lightweight, smaller, and cheaper.

As a result of this comparison, we decided to mount the D435 camera and both the
LiDAR sensors as they have an unattainable high depth accuracy. The future aim is to
find a way to merge the accurate LiDAR data with the color information from the D435
cameras.

4.2 Platform Construction and Calibration

The platform (see Figure 4.19) is constituted of a four pneumatic wheels garden trolley
— the trolley (see Figure 4.20) steers by its front two wheels connected to the handle by
an axle. The platform is thought to be manually pulled by the handle. It has a declared
load capacity of 250kg. It supports a movable wood box structure, and on top of that,
it is placed a movable aluminum chassis supporting the sensors. The chassis is build by
modular itemR© aluminum profiles.

The computational system is constituted by an Nvidia Jetson TX2 GPU that allows
keeping pace to the broad data stream produced by the camera. The Nvidia GPU is
accessed via Ubuntu Remmina Remote Desktop through a client notebook PC. To provide
the necessary data connections, we mounted the Netgear GS108 1 Gbit switch and a USB
3.0 Hub. The power is provided by two 12V lead-acid batteries connected in parallel. As
the Nvidia GPU and the PC require 19V power supply, we mounted the DCDC-USB-200
Mini-Box DC-DC converter. In Figure 4.21, you can see the diagram representing data
and power connections.

Calibration The calibration is the process through which the transformations among
sensors are assessed. These transformations are precisely those concerning the tf tree
as explained in Subsection 3.1.1. Moreover, in that same Subsection, is explained why
the transformations are necessary to exploit sensors data. We manually calibrated our
sensors with rulers. For our purposes, this method has been sufficiently accurate for the

48 CHAPTER 4. HARDWARE ARCHITECTURE

ZED
C
am

era
K
inect

O
ne

X
tionPro

live
R
ealSense

D
435

LM
S100

LD
-M

R
S

D
epth

R
ange

G
ood

G
ood

B
ad

low
er

lim
it

G
ood

G
ood

G
ood

B
right-light

Perform
ance

M
edium

W
eak

W
eak

M
edium

G
ood

G
ood

Field
O
fV

iew
W

ide
W

ide
N
arrow

W
ide

W
ide

angle
N
arrow

angle

D
epth

A
ccuracy

Low
M
edium

M
edium

M
edium

H
igh

H
igh

C
ost

M
edium

Low
Low

Low
H
igh

H
igh

Low
-light

Perform
ance

W
eak

G
ood

G
ood

W
eak

G
ood

G
ood

W
eight

Low
H
igh

M
edium

Low
H
igh

H
igh

Size
M
edium

Large
M
edium

Sm
all

Large
Large

Table
4.1:

A
qualitative

com
parison

of3D
im

aging
sensors

for
plant

phenotyping.
The

evaluation
param

eters
are

listed
by

decreasing
im

portance;m
eaning

that
param

eters
at

upper
levels

count
the

m
ost

for
considerations

about
their

inclusion
in

a
phenotyping

sensor
suite.

D
epth

Range
is
the

m
ost

im
portant

because
a

sensorwith
a
too

farlowerlim
itcannotbe

used
in

m
ostfarm

settings.
Bright-lightperform

ance
isnecessary

to
be

high
asthese

sensorsare
thoughtto

be
used

for
outdoorphenotyping

applications.
Field

O
fView

is
eithera

criticalparam
eteras

a
restricted

FO
V,worsen

by
short

scanning
distances,can

lim
it
the

phenotyping
to

sections
ofthe

plants.
Low-light

perform
ance

is
not

so
im

portant
as

m
easurem

ent
processes

are
assum

ed
to

be
done

during
day

hours.

4.2. PLATFORM CONSTRUCTION AND CALIBRATION 49

Aluminum chassis

Wood box

Garden trolley

Figure 4.19: Platform components.

Figure 4.20: Cart supporting platform.

following reasons. The IMU does not need to be calibrated with high accuracy since we
are just using the magnetometer for the ROS navsat_node that needs only to know the
orientation relative to an earth reference when the robot starts operations. The LiDAR
does not need an accurate calibration as we did not merge its data with those from the
cameras. So, the LiDAR reconstruction is misaligned with that of the cameras with a
certain degree of error. In the future, we expect to use more sophisticated methods to
have these point clouds aligned. In our case, the task is complicated by the fact that the
camera gives 3D data while the 2D LiDAR gives planar information. Moreover, they do
not have overlapping FOV.

Since the chassis is symmetric, the sensors have been mounted in specific positions to
ease the calibration task. We imposed a base_link point at a symmetric position along
the y-axis of the robot (see Figure 4.22). Then, thanks to the regular shapes and 90
degrees angles of the chassis components, we easily measured the distances with a ruler.

50 CHAPTER 4. HARDWARE ARCHITECTURE

Figure 4.21: Sensors data and power connections diagram.

For each sensor, we measured the distances along x,y,z axes between the base_link point
and a special point on the sensor chassis. The special point could be, for example, a corner
point. Then, the distance from this special point and the sensor origin is given by the
sensor datasheet. As for the rotations, we made their calculation easy as we placed sensors
faces parallel to robot reference system axes. After the measuring process, all translations
and rotations are added as transformations in the ROS tf tree.

4.3 Setups

During all the thesis’ experimental phase, we modified our sensor setup multiple times
as the result of the feedbacks obtained during the experiments. The platform has gone
through three main revisions, and we are going to explain them in the following.

First setup In the first setup (see Figure 4.23), we mounted the 2D and the 3D LiDARs,
the RealSense D435, the IMU, and the GPS. The D435 camera was mounted laterally
with the aim to scan the vine leaves and to be used as a source for the visual odometry
algorithm. However, with its limited FOV, the camera is not able to see the bottom part
of the plants, that is, the trunks.

The two LiDARs were placed with scanning planes parallel to the ground in order to
compute ICP/laser odometry (see Subsection 3.2.1). We also had in mind to understand

4.3. SETUPS 51

(a) Platform front side with the final sen-
sors configuration.

(b) A close view at the base_link point.
The x-axis points toward the reader as the
coordinate system is right-handed.

Figure 4.22: Platform front and base_link position.

which sensor was better suited for this application. In indoor environments, ICP odometry
demonstrated to be an accurate mean of localization. In outdoor experiments, it has
lower accuracy due to the less structured environment. Moreover, it was more subject to
odometry losses.

Both indoor and outdoor, laser odometry has been frequently misled (causing heavy
drifts) by fast rotations and uneven terrain. The 3D LiDAR was thought to provide more
accurate odometry because of the richest information relative to the 2D one. Instead,
odometry with 3D four planes LiDAR was more prone to errors. Likely, the four planes
laser does not give enough information to balance the ICP computational errors of the
additional degree of freedom. For these reasons, we decided to avoid laser odometry and
stick to visual odometry.

Second setup In the second setup (see Figure 4.24), we mounted the same sensors of
the first setup with the additional D435i camera. The camera D435 remained in the same
position and with the same aim. The D435i was placed in a symmetric opposite position
to the D435 to scan the other side of the vineyard.

The 2D LiDAR changed both position and purpose. We mounted it at the cart front
with the laser plane vertical to the ground. The goal was of scanning the plants from
the ground to the top leaves. With this configuration, the spatial resolution of the scans
depends on the sensor frequency and the robot moving speed. At 50 Hz and speed of
1 m/s, the resolution (along the moving direction) is of 2 cm.

The 3D LiDAR was still placed horizontal relative to the ground but at a lower height
so to detect the trunks. Then, in the post-processing phase, the trunks and poles would
be easily found as they are peak points separated by valleys of empty intra-trunks space.
However, since the 3D LiDAR has multiple laser planes, as the robot moves, the same area

52 CHAPTER 4. HARDWARE ARCHITECTURE

GPS

LMS100

D435

LD-MRS

IMU

Figure 4.23: Sensors first setup.

is scanned numerous times. Thus, if raw scans would be merged based on odometry infor-
mation, they will result in many overlapped scans. Indeed, to get meaningful information,
the scans should post-processed and matched via, for example, ICP registration.

This extra computational load is not necessary in the case of 2D scans since they are
assembled just with odometry information. After visual inspection of the collected data,
we noted that the assembled point cloud of 2D scans was of high accuracy and fidelity.
For this reason, we decided to give up with the 3D sensor, thus avoiding extra processing
load.

Final setup In the third and final setup (see Figure 4.25), we maintained all the previous
sensors but the 3D LiDAR. We repositioned the cameras closer to the center of the robot
so to gain more view on the plants. This setup is the final configuration: a compact,
lightweight, and relatively cheap suite of sensors for phenotyping. The 2D LiDAR is the
component that most take part in the total weight and cost of the sensor suite. In the
future, cheaper and tinier 2D LiDAR sensors should be inspected.

4.3. SETUPS 53

GPS

D435
D435i

LD-MSR

IMU

LMS100

Figure 4.24: Sensors second setup.

GPS

D435
D435i
IMU

LMS100

Figure 4.25: Sensors final setup.

Chapter 5

Software Architecture

In this Chapter, we provide in Section 5.1 a general view of the software architecture and
its components that will be explained in the following sections. In Section 5.2, we describe
the structure of the Reconstruction component responsible for building a 3D model of
plants from the sensor data. The Reconstruction component is further divided into three
subcomponents: the Odometry, the LiDAR Reconstruction, and the Visual Reconstruc-
tion. Finally, in Section 5.3, we explain the segmentation algorithm that isolates single
plants from a point cloud.

The repository containing all the code, the user manual, and the installation instruc-
tions can be found at https://github.com/ricber/Plant-Phenotyper.git.

5.1 General View

From a high-level view, the software architecture can be seen as composed of three ele-
ments: the Data Collection, the Reconstruction, and the Segmentation (see Figure 5.1).

Figure 5.1: Software Architecture components diagram. The same colors will be used in the following
diagrams to distinguish between the different subcomponents.

https://github.com/ricber/Plant-Phenotyper.git

56 CHAPTER 5. SOFTWARE ARCHITECTURE

The Data Collection is constituted of all the code for interfacing with the sensors and
to record data. This component will not be treated here as it just contains standard
ROS code for recording and managing bag files, commonly used ROS drivers, and sensor-
specific drivers. They are "plug-and-play" nodes and do not require to go deep in technical
details. Documentation of these ROS packages can be easily found on the internet, for fur-
ther information refer to our GitHub repository at https://github.com/ricber/Plant-
Phenotyper.git.

The Reconstruction component is, in turn, composed of three subcomponents: Odom-
etry, LiDAR Reconstruction, and Visual Reconstruction. The Odometry is the component
characterized by all the code for localization purposes. Laser Reconstruction is the com-
ponent that builds a tridimensional model with laser data. The Visual Reconstruction
does the same but with camera images, thus resulting in a colored tridimensional model.

Finally, the Segmentation component has the purpose of processing the tridimensional
laser model to isolate single plants. Reconstruction component has been written in C++
and XML via the ROS framework. The Segmentation component has been written in
C++ via the PCL library.

5.2 Reconstruction

The Reconstruction component is composed of three subcomponents: Odometry, LiDAR
Reconstruction, and Visual Reconstruction. In this Section, we explain in detail the char-
acteristics of these three subcomponents and their interactions with the Data Collection
and Segmentation components.

A key concept to highlight here is the choice of how we make corrections to the odom-
etry. The local odometry is subject to accumulate drift that must be corrected by a
global odometry source. The concept of Loop Closure (will be better explained in Subsec-
tion 5.2.2) is a fundamental characteristic of every SLAM algorithm that serves precisely
for the scope of being a global reference for corrections. However, in agricultural settings,
we can not assume to have loop closures. A loop closure happens when a robot returns to
an already visited location, thus creating a loop in the graph of a SLAM algorithm.

A vehicle traversing row by row a crop field, will difficulty have a repeated view of
the same scene, thus making loop closure detection useless [43]. Moreover, rows can be
extremely long, sometimes spanning a thousand meters or more. Thus the accumulated
drift would be so heavy making the correction task very hard. For these reasons, we decided
to deactivate the loop closure detection of the rtabmap algorithm and relying on the GPS
as a global reference. Therefore, the rtabmap ROS node is used to build a colored 3D
reconstruction based on an external source of odometry obtained fusing different sensors.
In Subsection 5.2.1, we explain how we did the sensor fusion.

5.2.1 Odometry

The Odometry is responsible for computing the change in position of the robot over
time relative to its starting position. This component can exploit different sensor inputs
selecting them via a parameter. The possible sensors are visual or LiDAR sensors, IMU,
and GPS. Various combinations of these three categories are possible. One between Visual

https://github.com/ricber/Plant-Phenotyper.git
https://github.com/ricber/Plant-Phenotyper.git

5.2. RECONSTRUCTION 57

or LiDAR sensors is mandatory. Then it is possible to add the IMU or the GPS, or both.
The possible combinations can be listed with strings of the form: (Visual Odometry|LiDAR
Odometry)[_IMU][_GPS].

In the following, we explain the ROS graph architecture in the case of a complete set
of sensors, that is, (Visual Odometry|Lidar Odometry)_IMU_GPS. In Figure 5.2 is de-
picted the Odometry ROS graph where ellipses graphically represent nodes, and rectangles
represent topics. The nomenclature is the same used in the code, but convenience names
are added to nodes and written in red font. In the following, we describe the functioning
of each node. Finally, it will be explained the tf tree structure since it is widely affected
by Odometry updates.

Visual Odometry The concept of Visual Odometry (VO) has already been explained in
Section 3.2. The odometry is computed by the rtabmap nodes rgbd_odometry or stereo_-
odometry. As the name suggests, these nodes are for RGB-D cameras and stereo cameras,
respectively. These nodes take as input the last produced RGB image, the relative depth
image, and the tf tree. In our case, the node takes the images from the D435 camera and
outputs an odometry topic named odom_rgbd. The last produced camera image frame is
the starting point of the following steps (see Figure 5.3):

1. Feature Detection: features are salient points of an image that can also be recog-
nized if the same scene is captured from a different perspective. Such points are
like corners. The algorithm used for feature detection is Good Features To Track
(GFTT) [44]. As we want to match two images with an overlapped view, the fea-
tures need a descriptor that allows to identify them. The descriptor used by this
node is BRIEF. Moreover, for RGB-D images, the depth image is used as a mask
for GFTT to avoid extracting features with invalid depth. For stereo images, stereo
correspondences are computed by optical flow to determine the depth of the detected
features. The extracted features of the input image with their descriptors are passed
to the next stage.

2. Feature Matching: features from the preceding stage are matched to the last Key
Frame (F2F) or the Feature Map (F2M). The Feature Map contains 3D features
from last Key Frames. How features become part of a Key Frame will be explained
later. All the matched couples of features are passed to the next stage.

3. Motion Estimation: knowing the 3D positions of the last Key Frame or Feature Map
features, it is possible to estimate the motion of the camera through the current frame
matched features. The current features can be coupled with their respective 3D
points by assuming that the environment is static. With these couples of 3D points
and their respective 2D projected image points, the camera position transformation
is estimated through the Perspective-n-Point (PnP) algorithm. In order to make the
estimation more resilient to outliers, a RANSAC version of PnP is utilized.

4. Motion Prediction: this component computes a prediction of the new camera position
based on a motion model given as input the current velocity. This is used to predict
the position of the Key Frame or Feature Map features in the current frame. This
limits the search window for Feature Matching to provide better matches.

58 CHAPTER 5. SOFTWARE ARCHITECTURE

Figure
5.2:

O
dom

etry
RO

S
nodes

graph.
Colors

are
relative

to
those

used
in

Figure
5.1

5.2. RECONSTRUCTION 59

5. Local Bundle Adjustment: the estimated transformation is refined using local bundle
adjustment [45] on features of all Key Frames in the Feature Map (F2M) or only
those of the last Key Frame (F2F).

6. Pose Update: with the last camera pose and the transformation, the new camera
pose is computed. The velocity is computed and given as input of the Motion
Prediction code. Moreover, an odometry message is published and the tf tree edge
/odom->base_link is updated.

7. Key Frame and Feature Map update: the features coming from the Update Pose
component are used as the update of the Feature Map or Key Frame if the number
of inliers computed during Motion Estimation has fallen under a certain threshold.
For F2F, the Key Frame is just replaced by the current image frame. For F2M, the
Feature Map is updated by adding the unmatched features of the new frame and
updating the position of matched features that were refined by the Local Bundle
Adjustment module.

Figure 5.3: RGB-D rtabmap odometry node.

LiDAR Odometry The concept of Laser Odometry (LO) has already been explained in
Section 3.2. The odometry is computed by the rtabmap node icp_odometry. As the name
suggests, this node uses the ICP algorithm to find the transformation between successive
laser scans. The node takes as input the last produced sensor scan, and the tf tree.
The sensor could be both a 2D LiDAR, thus producing a so-called Laser Scan in ROS
terminology, or a 3D LiDAR, thus producing a so-called Point Cloud message. The sensor
scan is the starting point of the following steps (see Figure 5.4):

1. Point Cloud Filtering: the input point cloud is downsampled, and normals are com-
puted. Downsampling allows to reduce the computational effort, and normals are
used as additional information in the following stage.

60 CHAPTER 5. SOFTWARE ARCHITECTURE

2. ICP Registration: the current point cloud is matched with the ICP algorithm to the
last Key Frame (S2S way) or to the Point Cloud Map (S2M way). The ICP version
(see [46] for an analysis of ICP variants) used by rtabmap exploits normals to ease
the matching task.

3. Motion Prediction: this component gives a hint to the ICP Registration algorithm
about the current position of the robot. The prediction is based on the velocity
computed from a constant velocity motion model, or on an external odometry source
like wheels odometry. In this last case, the pose update is a correction of the eternal
source of odometry.

Using an external initial guess can help estimate the motion in the direction
in which the environment is lacking features. For example, a robot with
a short-range lidar moving in a long corridor in which there are no doors
(i.e., not distinguishable geometry) would only see two parallel lines. If
the robot accelerates or decelerates in the direction of the corridor, ICP
would be able to correct orientation but it would not be able to detect any
changes in velocity in the direction of the corridor. In such case, using
external odometry can help estimate velocity in the direction in which ICP
cannot. [29]

4. Pose Update: after calculating the transform via ICP, the new pose is computed
based on the last robot pose. The tf tree is updated, and an odometry message is
given as output.

5. Key Frame and Point Cloud Map Update: if the ICP correspondence ratio goes
under a fixed threshold, the Key Frame or Feature Map is updated. In the case of
S2S, the current frame becomes the new Key Frame. In the case of S2M, the current
map is subtracted from the new point cloud, then the remaining points are added
to the Point Cloud Map.

GPS node The GPS signal provides absolute positioning information relative to an
earth reference system. Thus, it is used to correct the drift of a local odometry source. As
already explained in Subsection 3.1.1, the local odometry must be continuous while the
long-term one can present discreet jumps. Thus, the GPS signal is perfect for building
the correction odometry transformation map->odom to the local odometry odom->base_-
link. However, GPS data is provided in a format (latitude, longitude) that prevents
direct integration as odometry source. Indeed, a translation from the earth frame to the
robot’s world frame is necessary. The node responsible for this translation is the navsat_-
transform_node of the robot_localization ROS package (see Subsection 3.2.2).

The node takes as input IMU (with magnetometer), odometry, and GPS messages.
The IMU serves to know the orientation relative to the true north. As the magnetic north
is different from the true north of a certain degree of angle, the node gives the possibility
to specify the magnetic declination by a parameter. The odometry must be relative to a
frame placed in the starting position of the robot. In our case, this frame is map. The

5.2. RECONSTRUCTION 61

Figure 5.4: LiDAR rtabmap odometry node.

odometry source serves to know the robot position in case the first GPS message arrives
after the robot has started operations. The odometry is read from the tf tree. The node
output an odometry topic named odometry/gps.

Extended Kalman Filter The Extended Kalman Filter is implemented by nodes from
the robot_localization ROS package (see Subsection 3.2.2). It fuses all input informa-
tion into single output odometry with a Kalman Filter with the aim of state estimation.
It is possible to choose between Extended or Unscented Kalman Filter. Each input should
have its covariance matrix to weight the sensor information properly. Different inputs are
possible: odometry sources (pose and twist messages), twist messages (angular velocity),
pose messages (position and orientation), or IMU messages.

Our architecture contains two EKF nodes: ekf_se_(rgbd|icp)_imu_gps (informally,
Extended Kalman Filter GPS), and ekf_se_(rgbd|icp)_imu (informally, Extended Kal-
man Filter IMU). As we are operating in a planar environment, we set the two_d_mode pa-
rameter to true. The EKF node allows to specify, for each type of input, a 15-dimensional
tuple with boolean values. Each element of the tuple corresponds to an estimated variable
of the robot state (as explained in Subsection 3.2.2). Thus, it is possible to deactivate
some variables setting them to false.

The ekf_se_(rgbd|icp)_imu fuses the Visual or LiDAR Odometry with the IMU
data. The IMU is fused with ˙yaw, ¨yaw, and Ẍ. As the robot is moving on a fairly flat
surface, we do not consider roll, pitch, Z, and their respective velocities and Z acceleration.
Moreover, as our robot is nonholonomic, we exclude also the variables relative to Y .
Instead, the Visual or LiDAR odometry is fused using Ẍ and ¨yaw. The position, that
is, variables X,Y, and Z, is not fused since it would be redundant information as it is
computed from the same source of odometry. Finally, the produced odometry is written

62 CHAPTER 5. SOFTWARE ARCHITECTURE

on the tf tree being the transform odom->base_link.
Instead, the node ekf_se_(rgbd|icp)_imu_gps, informally called Extended Kalman

Filter GPS, fuses the odometry source with the IMU and the GPS. The odometry and the
IMU are fused in the same way as the just described node. The odometry/gps topic from
navsat_transform_node is fused with X and Y variables since the GPS provides absolute
position information. The Z variable is not fused as we assume to move on a planar surface.
Finally, the produced odometry is given in output with the odom_(rgbd|icp)_imu_gps
topic. The rtabmap node, the one responsible for Visual Reconstruction, subscribes to
this topic.

tf tree

The tf tree (see Subsection 3.1.1) incorporates odometry e sensors transforms. Our tf tree
is depicted in Figure 5.5. At the top of the tree, there is the optional utm->map transform.
This transform is calculated by the navsat_transform_node if the broadcast_utm_-
transform parameter is set to true. The transform is helpful if we want the data to be
georeferenced.

Going down the tree, the successive transform is the map->odom. This transform is
published by the EKF GPS node that fuses the Visual or LiDAR odometry with the
IMU and the GPS. In case we do not want to rely on the GPS to compute long-term
odometry, the rtabmap node could replace this transform through loop closure corrections
(see Subsection 5.2.2). Finally, the IMU could be excluded from EKF sensors fusion by a
parameter.

The next transform is the odom->base_link. It is published by the EKF IMU node
that fuses the Visual or LiDAR odometry optionally with the IMU. In case the IMU is
not fused, the broadcaster of the transform is just the (rgbd|icp)_odometry node.

After base_link frame, the tree forks into the various sensors transforms. Differently
from the upper transforms that are dynamic, these last transforms are static. Indeed,
sensors should not change the position relative to the base_link during operation, since
they are rigidly fixed to the chassis.

5.2.2 Visual Reconstruction

The Visual Reconstruction subcomponent builds a 3D colored model of the plants ex-
ploiting camera RGB and depth images. The Visual Reconstruction is performed by the
rtabmap node. Here we describe the general structure of the node. In the following, we
refer to the block diagram of Figure 5.6.

The inputs of the node are camera images, the already mentioned tf tree, a source of
odometry and the laser scans. The camera input is mandatory, with the option to choose
from an RGB-D camera or a stereo one. Instead, the laser input is optional. It is possible
to feed both a LaserScan message from a 2D LiDAR or a PointCloud from a 3D LiDAR.
The odometry could be of whatever kind, like a fusion of different sources of odometry
(e.g., from a robot_localization node).

All the input data are synchronized via the timestamp. The timestamp is a field,
part of the header of every ROS message, that tells the time when the message has been
produced. The synchronized information is passed to the Short Term Memory (STM)

5.2. RECONSTRUCTION 63

Fi
gu

re
5.
5:

tf
tr
ee

of
ou

rs
ys
te
m
.

64 CHAPTER 5. SOFTWARE ARCHITECTURE

Figure 5.6: Block diagram of rtabmap ROS node. [29]

and here, a new graph node is created. Indeed, since rtabmap is a graph-based SLAM
algorithm, the map is represented by a graph with nodes and links. Each node contains
the odometry pose, sensor’s raw data, and additional information useful for next modules
(e.g., visual words for Loop Closure and Proximity Detection, and local occupancy grid
for Global Map Assembling). A link contains a rigid transformation between two nodes.
There are three kinds of links: Neighbor, Loop Closure and Proximity links. Neighbor
links are added in the STM between consecutive nodes with odometry transformation.

The Loop Closure is an essential characteristic of all SLAM algorithms. The Loop
Closure happens when a new node corresponds to an already visited location. Indeed,
each newly created node is checked against the nodes in the Working Memory (WM) to
search for a Loop Closure. In case a match is found, the algorithm adds a link, thus
creating a loop in the graph. If it has passed a long time since the robot last visited the
same location, the odometry has likely accumulated errors. Once a loop closure is found,
the graph is optimized propagating the corrections to all the links.

The Proximity Detection adds links between nodes that should be close to each other.
For example, when the robot traverses back a corridor with a camera that has a lateral
view, a Loop Closure can not be detected since there are no overlapping views of the same
scene. However, Proximity constraints are added.

After graph optimization, the new map is assembled by the Global Map Assembling
module. The global map is assembled with all the local occupancy grids associated with
each node. Voxel grid filtering is done to merge overlapping surfaces. Once the map
is assembled, it is given as output with different possible types to choose: PointCloud,
OctoMap (3D occupancy grid), or 2D Occupancy grid. The correction of graph optimiza-
tion could be optionally reflected on the ROS tf tree. Specifically, on the transform that
corrects the robot position relative to the /map frame. Finally, note that the nodes are
transferring back and forth to the LTM, as explained in Subsection 3.2.3.

In our case, the rtabmap node reads the global odometry from the topic odom_-
(rgbd|icp)_imu_gps as represented in the diagram of Figure 5.2.

5.2.3 LiDAR Reconstruction

The LiDAR reconstruction subcomponent builds a point cloud of the scanned plants via
laser data. It exploits the laser_scan_assembler node of the laser_assembler ROS

5.3. SEGMENTATION 65

package 1, and a ROS node written by us. The node block diagram is showed in Figure 5.7.
The node takes as input laser scans and the tf tree for the odometry information.

The input is processed by the Projector module, which projects the scan into Cartesian
space. The projection is passed to the Transformer module that transforms the scan from
its reference frame (e.g., lms100_link frame), to a fixed reference frame, in our case map.
Then the scan is converted to a PointCloud2 ROS message and put in a rolling buffer of
dimension n. When the service assemble_scans2 is called, all the clouds in the rolling
buffer in a specified interval of time are assembled, and the resulting point cloud is given
as output.

Our ROS node, named assemble_scans_node, calls the assemble_scans2 service
at a certain frequency (0.25 Hz). The received point cloud is converted to a more
convenient type for further processing, that is, from PointCloud2 ROS type to PCL
pcl::PointCloud<pcl::PointXYZI> type. After the conversion, the point cloud is saved
in a .pcd file.

Figure 5.7: Block diagram of laser_scan_assembler ROS node.

5.3 Segmentation

The segmentation component has the purpose of isolating single plants from the entire
point cloud produced by the LiDAR Reconstruction component. The code has been writ-
ten in C++ and based on the PCL library. It is constituted by a pipeline that is graphically
represented in Figure 5.8 and explained step by step in the following. The input point
cloud is showed in Figure 5.9.

1. Affine Transformation (Figure 5.10): the input point cloud named cloud is rotated
and translated via an affine transformation. An affine transformation is any trans-
formation that preserves collinearity (i.e., all points lying on a line initially, still lie
on a line after transformation) and ratios of distances. This first step is made nec-
essary as in the second sensor setup (see Section 4.3), the 3D LiDAR was covering
part of the scanning plane of the 2D LiDAR, placed under it. Therefore, a trace
remained in the central portion of the vineyard row point cloud.

1http://wiki.ros.org/laser_assembler

http://wiki.ros.org/laser_assembler

66 CHAPTER 5. SOFTWARE ARCHITECTURE

Figure 5.8: Segmentation algorithm block diagram. Ellipses represent code modules. Rectangles
represent data structures.

5.3. SEGMENTATION 67

In order to remove it, we filter out all points that have their y coordinate in a specific
range (see Figure 5.11). This filtering is possible because the vineyard row sides can
be seen as parallel planes, and they can be made perpendicular to the y-z plane of a
certain reference system. As the point cloud is referenced to the frame of the robot
starting point, it is transformed in order to be referenced to a convenient reference
system. The x-axis of the new reference system is parallel to the longest dimension
of the vineyard. The z-axis points upward, and the y-axis is placed in the direction
to make the reference system right-handed. The transformation is manually tuned,
but it can be set automatically by fitting planes to the vineyard sides and placing
the conventional reference system with two axes on the middle plane of those two.

2. Filtering (Figure 5.12): the point cloud cloud_transformed is filtered along the
x and y axes to remove the central LiDAR trace, the points before and after the
vineyard row, and the points with low intensity. Finally, statistical outliers removal
is applied.

Our sparse outlier removal is based on the computation of the distribution
of point to neighbors distances in the input dataset. For each point, we
compute the mean distance from it to all its neighbors. By assuming that
the resulted distribution is Gaussian with a mean and a standard deviation,
all points whose mean distances are outside an interval defined by the global
distances mean and standard deviation can be considered as outliers and
trimmed from the dataset.2

3. Ground Removal (Figure 5.13): the ground is removed from the cloud_filtered
point cloud by fitting a plane with RANSAC (see Subsection 3.3.1). We have tuned
the parameter DistanceThreshold, which determines how close a point must be to
the model in order to be considered an inlier. This fixed value is reasonable to stay
the same for different plantations and successive scans if the ground grass is of the
same height.

4. Z Filtering (Figure 5.14): the point cloud cloud_filtered2 is sectioned at certain
heights along the z-axis to isolate trunks and poles. The lower bound of the section
is at the level of the ground. Indeed, lower parts of the plants are usually not covered
by leaves. Lower and upper bounds of the section are manually tuned. These fixed
values should be reasonable even for different plantations.

5. Trunks Clustering (Figure 5.15): the trunks_filtered point cloud is clustered to
isolate single trunks and poles. It is used the Euclidean Cluster Extraction algo-
rithm explained in Subsection 3.3.1. We set the ClusterTolerance parameter to
0.07m, which is the radius threshold dth of the algorithm. The MinClusterSize and
MaxClusterSize parameters specifies the minimum and maximum number of points
that a cluster can have. In our case, we set them to 100 and 10000, respectively.
These numbers depend on the size of trunks and poles, and they could change for
different plantations.

2http://pointclouds.org/documentation/tutorials/statistical_outlier.php

http://pointclouds.org/documentation/tutorials/statistical_outlier.php

68 CHAPTER 5. SOFTWARE ARCHITECTURE

6. Cloud Projection (Figure 5.16): the filtered plants point cloud cloud_filtered2 is
projected on the plane found by RANSAC in the Ground Removal stage.

7. Centroids Computation: the trunks_filtered point cloud together with the
trunks_clusters_indices is used to compute the centroid of each trunk/pole. In
our specific case, the centroid is a point denoting the geometric center of a set of 3D
points represented by their (x, y, z) coordinates.

8. Centroids Projection (Figure 5.17): the centroids point cloud is projected in the
same way as in stage Cloud Projection.

9. Radius Search (Figure 5.18): the goal of this module is to search the cloud_pro-
jected point cloud to find, for each projected centroid, all the points with Euclidean
distance under a certain radius threshold. The points inside a circle which center is
a centroid, are part of a circular cluster. The search is sped up with the help of a
Kd-Tree. The radius has been tuned and fixed at 0.22 m. It depends on the size of
trunks and poles; thus, it could be different for other plantations.

10. Variance Filtering (Figure 5.19): the goal of this module is to compute the variance
of each circular cluster found in the preceding stage, so to filter out poles. Indeed,
poles should have their respective circle with a lower variance compared to those of
trunks. This can be understood thinking about the projections of the plants point
cloud in correspondence of trunks and poles. When projecting a pole, the resulting
planar shape is a small circle. When projecting in correspondence of a trunk, the
upper canopy of the plant leads to a big semi-circular shape. Thus, computing the
variance of points around each centroid, poles should have lower variance and can
be filtered fixing a threshold. We manually tuned the circvar_thr threshold to
0.0115. This threshold is dependent on the size of the poles.

11. K-means Clustering (Figure 5.20): the filtered point cloud cloud_filtered3 is clus-
tered via K-means algorithm (see Subsection 3.3.1) to isolate single plants. The
K-means algorithm takes as input, beyond the point cloud to cluster, the set of ini-
tial centroids centroids_filtered. These centroids are the ones remaining after
eliminating those related to the poles.

12. Bounding Boxes (Figure 5.21): the goal of this module is to surround the clustered
plants with bounding boxes. Bounding boxes are wire framed cubes, that is, cube
structures with empty space inside. The preceding stage gives, as a result, a vector of
plants_clusters_indices to index the points of each clustered plant. Bounding
boxes are placed around plants taking into account the extreme points, for each
cluster, along each direction of the reference frame system.

5.3. SEGMENTATION 69

Figure 5.9: Segmentation Algorithm - Input Point Cloud: cloud point cloud colored based on intensity
channel. Brighter/yellow points have high-intensity; red/darker points have low-intensity.

Figure 5.10: Segmentation Algorithm - Affine Transformation: cloud_transformed in red and the
original cloud in white.

70 CHAPTER 5. SOFTWARE ARCHITECTURE

Figure 5.11: Here we show how the central trace filtering works. After fixing a convenience reference
system that has the y-axis perpendicular to the vineyard row sides, we filter out all points that have
their y coordinate comprised in a certain range. This range is the one between the green dashed lines.

Figure 5.12: Segmentation Algorithm: cloud point cloud.

5.3. SEGMENTATION 71

Figure 5.13: Segmentation Algorithm - Ground Removal: cloud_filtered2 point cloud.

Figure 5.14: Segmentation Algorithm - Z Filtering: trunks_filtered point cloud.

Figure 5.15: Segmentation Algorithm - Trunks Clustering: trunks and poles clusters are shown in
different colors. Nonclustered points are shown in red.

72 CHAPTER 5. SOFTWARE ARCHITECTURE

Figure 5.16: Segmentation Algorithm - Cloud Projection: cloud_projected point cloud.

Figure 5.17: Segmentation Algorithm - Centroids Projection: centroids_projected point cloud.
Points are enlarged in size for ease of visualization.

Figure 5.18: Segmentation Algorithm - Radius Search: circle cluster are represented in different colors.
Nonclustered points are shown in red.

5.3. SEGMENTATION 73

Figure 5.19: Segmentation Algorithm - Variance Filtering: cloud_filtered3 point cloud. Note that
poles have been filtered out.

Figure 5.20: Segmentation Algorithm - K-means Clustering: plants clusters are shown in different
colors.

74 CHAPTER 5. SOFTWARE ARCHITECTURE

Figure 5.21: Segmentation Algorithm - Bounding Boxes: plants clusters with bounding boxes. Points
are enlarged in size for ease of visualization.

Chapter 6

Experimental Results And
Discussion

In this Chapter, we discuss the results of the experimental activity at a botanical gar-
den near our university. In Section 6.1, we describe the experimental field, with a focus
on a vineyard row. In Section 6.2, we present evaluations of the various odometry ap-
proaches proposed in Chapter 5. In Section 6.3, we draw conclusions about the two types
of reconstruction performed by our system, that is, Visual Reconstruction and LiDAR Re-
construction. Finally, in Section 6.4, we evaluate and discuss our Segmentation algorithm.

6.1 Experiments Field

We performed outdoor experiments at the botanical garden "Orto Botanico Città Studi"
located in Milan (45◦28’30.4"N 9◦14’03.8"E). There, we scanned different plant species
with a focus on the vine (Vitis vinifera). Experiments have been performed from March
2019 to June 2019 during morning hours (from 9 am to 12 am). Figure 6.1 shows a picture
of our system manually pulled during data collection. Figures 6.2 and 6.3 show pictures of
some natural environment, with trees and bushes, and their respective 3D colored visual
reconstructions.

Above all, we focused our attention on the vineyard of Figure 6.4. This picture has
been taken in September 2019. The one of Figure 6.5 has been taken at the beginning of
the season in March 2019; there, trunks and poles can be clearly recognized. The vineyard
is a single row composed by two sides. The supporting structure is constituted of wood
poles and metal wires. It is 26 m long, and it has an average width of 2.18 m. Poles have
an average height of 1.87 m. There are 25 poles for each side.

76 CHAPTER 6. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 6.1: A typical session of outdoor data collection.

(a) The picture of the scanned subject. (b) The 3D colored mesh.

Figure 6.2: A visual reconstruction of bushes.

(a) The picture of the scanned subject. (b) The 3D colored mesh.

Figure 6.3: A visual reconstruction of an hedge.

6.1. EXPERIMENTS FIELD 77

Figure 6.4: The vineyard in September.

Figure 6.5: The vineyard in March, at the beginning of the season. It is possible to clearly recognize
poles and trunks.

78 CHAPTER 6. EXPERIMENTAL RESULTS AND DISCUSSION

6.2 Odometry Evaluation

Our system can perform odometry by various combinations of sensors (see Subsection 5.2.1).
To understand which is the best combination, we performed experimental tests evaluating
different subsets of sensors. Thus, we first collected sensors data at the botanical garden,
memorizing them in ROS bag files. Then, we worked offline playing back the recorded
bag files. We played them at a lower frequency than real-time to have the guarantee
the odometry node processed all frames. Then we launched our system with different
odometry settings, and we visually inspected the colored and LiDAR point clouds and the
odometry trajectories.

We purposely did not make any loop closure during experiments. For this reason, we
deactivated loop closure to avoid false positive detections and to speed up the computation.
Our experimental field was too small to generalize the effectiveness of loop closures to real
farming settings. In the future, we expect to bring our system in farming crops to perform
large-scale experiments. Consequently, it will worth trying to understand the feasibility
of loop closure and their effectiveness compared to other alternatives.

In this Section, we also discuss how we modified the default parameters of each ROS
node. We want to point out that all the parameters have been tuned by visual inspection
of the resulting point clouds and odometry trajectories. Obtaining a ground truth for
outdoor settings is hard. The GPS signal is usually employed as ground truth for outdoor
experiments, but in our case, it was not possible as we used the GPS as an odometry
source. Since we did not have any ground truth, the only information we could exploit is
the fact that the vineyard row sides are reasonably straight and parallel. In the following,
we list the various odometry combinations we tried discussing the strength and weakness
points of each approach.

D435 Visual Odometry A possible odometry setting is the one that employes just
the camera data to perform Visual Odometry. The architecture functioning principle
is the following. The rtabmap rgbd_odometry node provides a local odometry source
and writes it on the odom->base_link transform. The global correction written on the
transform map->odom should be in charge of the rtabmap node as result of loop closures.
In this setting, as the loop closure detection is deactivated, we do not have any global
correction. Thus, the transform map->base_link is just the identity.

It is still worth to analyze the data coming from plain visual odometry to understand
its accuracy as a local reference. Indeed, it is not possible to use plain visual odome-
try for large environments because of the accumulated drift. However, for a small-scale
environment like the one we scanned, it is still pretty accurate.

The modified parameters of the node rgbd_odometry are listed in the following:

• Odom/FilteringStrategy set to "Kalman Filtering" to make the odometry smoother.
Indeed, the visual odometry is given as input to a Kalman Filter and weighted with
a motion model

• Odom/ResetCountdown set to 5. This is the number of frames the odometry update
can fail before the odometry reset. The reset causes the odometry to restart from
the latest computed pose

6.2. ODOMETRY EVALUATION 79

• the Odom/Holonomic parameter was leaved with the default value of true. However,
it is worth to explain this choice as our robot is nonholonomic, but it is characterized
by a tricycle kinematic. Due to the cart structure, when the platform is pulled on
uneven outdoor terrains, it produces low-frequency wide oscillations in the y-axis
direction (the direction perpendicular to the one of movement, and parallel to the
ground). Hence, as those oscillations are so pronounced, we can not assume our
robot to be nonholonomic

• the Vis/MaxDepth parameter set to 6 m and Vis/MinDepth set to 0.15 m so to
exclude too far and too close image points that could be affected by significant noise

Even if the visual odometry approach showed good quality (Figure 6.6), it was not free
of problems. Indeed, it got lost repeated times during a single scanning session. For us,
this was not a severe problem as our robot was moving straight constrained by vineyard
row. Thus, the odometry reset did not affect too much the accuracy. The loss of odometry
was caused by a too much low number of inliers after PnP RANSAC estimation or after
Bundle Adjustment.

Further investigation is needed to understand the cause of such a low number of inliers.
A hypothesis is that the loss of odometry is caused by the light changes produced by the
auto exposure. Indeed, it is known that the feature matching task is widely affected
by light variations. In the future, it will be better to disable the auto exposure, or to
auto expose a limited Region Of Interest of the entire image. Another idea, to enhance
the feature matching, thus possibly highering the number of inliers, is to provide to the
odometry node the IR images instead of the RGB ones. This could help the feature
matching task as the D435 camera enriches its IR images employing an IR projector.

Finally, it will be of fundamental importance to investigate how the camera angle
position affects the odometry. At this moment, the cameras are placed parallel to the
scanned subjects. In the future, it will be useful trying to point the cameras more toward
the center of the vineyard row. This will extend their view on the row sides, hence having
more overlapped scenes, and possibly helping the odometry task.

In Figure 6.6 it is showed the odometry trajectory by a blue line. Since there is
not global correction, the trajectory, and in turn the reconstruction, presents a moderate
curvature. However, note the smoothness and continuity of the trajectory. The computed
odometry leads to the assembled LiDAR point cloud of Figure 6.7. The reconstruction
has no holes, and it is coherent with the real vineyard. This is due to the continuity of the
local odometry with the additional smooth of the Kalman Filtering. Still, let note how
wavy is the trace left in the center of the row from the occlusion of the vertical LiDAR.
This is exactly due to the lateral oscillations of the cart. In Figure 6.8 it is possible to see
a section of the reconstructed colored point cloud of a row side.

D435 and IMU fusion Even if the integration of the IMU as an odometry source has
not been our priority, it is still interesting to look at the result of a basic sensor fusion.
As already stated, the IMU is necessary for our systems since the GPS node requires
magnetometer data. So, we tried a fusion with the D435 Visual Odometry and the STM-
NUCLEO IMU. The data collected from the D435i IMU are unavailable since the multiple

80 CHAPTER 6. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 6.6: D435 Visual Odometry experimental odometry.

Figure 6.7: D435 Visual Odometry experimental LiDAR point cloud.

cameras setting created conflict problems. Further investigation is needed to understand
how to integrate multiple D435 cameras in the same system.

We performed the fusion with an Extended Kalman Filter from the ROS package
robot_localization. We had the visual odometry node publishing the local odometry
as in the above case. This time, the global correction was produced by the odometry fusion
coming from the Kalman Filter. The experimental results show just a little improvement
compared to plain Visual Odometry.

In Figure 6.9 it is possible to see that the resulting odometry is smooth a pretty straight.
The LiDAR point cloud showed in Figure 6.10 seems a little better of the preceding one.
Note that the central row trace is less wavy compared to the one of Figure 6.7. An
inspection of the colored point cloud of Figure 6.11 shows a result similar to the preceding
odometry.

The only thing we can add is that the colored reconstruction presents more unmatched

6.2. ODOMETRY EVALUATION 81

Figure 6.8: D435 Visual Odometry experimental colored point cloud.

surfaces, especially the ones of the turf adjacent the vineyard row. Thus, having compa-
rable results to the preceding odometry, we can not draw any conclusion on the usefulness
of the IMU integration. However, it is reasonable to think that the IMU could be of help,
especially with oscillations; thus, further research is needed. Here we list some ideas for a
better IMU integration:

• the IMU needs a sound calibration. The accuracy of the manual measurements is
probably not enough to exploit the IMU information. Thus, automatic calibration
is required. A possibility is to perform camera-IMU calibration via the well-known
Kalibr calibration package1, as described in [47]. Another possibility is to exploit
the IMU embedded in the D435i camera since it comes already calibrated

• the robot_localization requires a proper covariance matrix for each input to work
correctly. However, for this IMU, covariance data was not specified in the datasheet.
In this case, algorithmic ways should be investigated to estimate the IMU covariance
matrix

• it is worth trying purposely designed algorithm for the fusion of visual odometry
and IMU data, like OKVIS [48] or MSCKF [49]

The modified parameters are the same as D435 Visual Odometry, except for the
Odom/FilteringStrategy that has been disabled since the odometry is already filtered
by the robot_localization Kalman Filter.

LiDAR Odometry Another odometry approach we tried is the one with LiDAR data
as input of the rtabmap icp_odometry node (see Subsection 5.2.1). In our case, the node
can take as input the scans from the LMS100 or the LD-MRS LiDAR sensors and outputs

1https://github.com/ethz-asl/kalibr

https://github.com/ethz-asl/kalibr

82 CHAPTER 6. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 6.9: D435 and IMU fusion experimental odometry.

Figure 6.10: D435 and IMU fusion experimental LiDAR point cloud.

an odometry message named odom_icp. The working principle is the one of ICP scan
matching, as explained in Subsection 3.2.1.

Successive scans can be matched if they share overlapping scanned surfaces. Thus, in
case of a LiDAR with single or few scanning planes, it is crucial to have them as parallel
to the ground as possible. In the extreme case of a single vertical plane, ICP odometry
will not give any information on motion along the moving direction. Starting from the
second sensor setup (see Section 4.3), we mounted the LMS100 LiDAR vertically. Here
we provide an evaluation of LiDAR odometry performed with the LD-MRS four planes
sensor. As in the case of plain Visual Odometry, the icp_odometry is used as a local
reference, and no global correction is performed.

From visual inspection of the results, we can state that LiDAR odometry demonstrated

6.2. ODOMETRY EVALUATION 83

Figure 6.11: D435 and IMU fusion experimental colored point cloud.

the worst quality compared to other approaches. In Figure 6.12 it is possible to see a higher
view of the odometry trajectory and the trace left by the LiDAR scans (the blue points).
The odometry is very poor when computed at the beginning of the vineyard row, and gets
a little better when the robot has traversed part of the row. This can be explained looking
at what points are used for ICP matching in those different moments.

At the beginning of the row, the only points perceived are the farthest ones, highlighted
with a red ellipse in the cited Figure. While the robot goes forward, far points do not
change their position; thus, successive scans will be almost identical. This problem is
accentuated by the restricted horizontal angular aperture of the LD-MRS sensor. Then,
as the robot proceeds further in the vineyard, the LiDAR starts to see points on the
lateral sides of the row, that is, the ones highlighted with the green ellipse in the same
cited Figure. After some time, only lateral points will be detected, hence making the ICP
matching more accurate.

In Figure 6.13 it is possible to see that the assembled LiDAR point cloud is of low
quality. The lateral vineyard sides are wavy and crooked. Finally, in Figure 6.14 it is
showed the respective colored point cloud.

The modified parameters are:

• Icp/PointToPlane set to false as we are not in structured human-made environ-
ments with a lot of plane surfaces. Hence, ICP registration is done using Point to
Point (P2P) instead of Point to Plane (P2P) correspondences

• scan_voxel_size set to 0.04 m to enable voxel grid filtering. Voxel grid filter-
ing works by superimposing a cubes grid on a point cloud. The cubes have a
parametrized fixed edge length. Then, all the points that fall in a cubic cell are
merged into a single point. Different merging strategies are possible, such as the
centroid of the points or the center of the cell. This kind of filtering has been en-
abled on the point cloud produced by the LD-MRS sensor to ease the registration

84 CHAPTER 6. EXPERIMENTAL RESULTS AND DISCUSSION

task and to reduce noise that can affect odometry accuracy. From a visual inspec-
tion, this parameter seems fundamental to not make the odometry broke completely.
In fact, in Figure 6.15, it is possible to see the resulting odometry computed without
voxel filtering. However, as usual, we can not draw strong conclusions about the
effect of voxel grid filtering for the lack of a sound statistical analysis

• Icp/CorrespondenceRatio has been lowered from 0.1 to 0.08 for accounting the
increased noise of outdoor environments compared to indoor ones

• Odom/FilteringStrategy, Odom/ResetCountdown, Kp/MaxFeatures, and
Rtabmap/StartNewMapOnLoopClosure parameters have been set as in the Visual
Odometry approach

Figure 6.12: LD-MRS experimental LiDAR Odometry. In red, the farthest points as captured by the
LiDAR sensors at the beginning of the vineyard row. In green, the LiDAR captured points as the robot
proceeds further in the vineyard row.

D435 and GPS fusion The last presented alternative is the one that fuses Visual
Odometry data with GPS. In this case, the Visual Odometry is used as a local reference
and made to write the odom->base_link transform. The odometry fusion is computed
via a Kalman Filter and used as global correction writing it on the transform map->odom.

The global odometry is also given as input to the rtabmap node responsible for the
visual reconstruction. However, since the global odometry can make discreet jumps, the
reconstructed map could result broken. Indeed, as loop closure detection is deactivated,
no graph optimizations will be performed. Nodes are added by the rtabmap node based
on the provided odometry; thus, jumps in the odometry will produce jumps in the graph.
In the future, a more sound strategy for GPS integration should be devised.

The odometry computed with this approach is the best compared to the others. In
Figure 6.16 it is possible to see a smooth and straight odometry trajectory. Figure 6.17
shows the LiDAR point cloud. In this case, the vineyard row is almost perfectly straight

6.3. RECONSTRUCTION EVALUATION 85

Figure 6.13: LD-MRS LiDAR Odometry experimental LiDAR point cloud.

Figure 6.14: LD-MRS LiDAR Odometry experimental colored point cloud.

and does not present the curvature that characterized the other odometry approaches.
Finally, in Figure 6.18 it is showed the colored point cloud.

The parameters are the same as in the case of plain Visual Odometry, except for the
Odom/FilteringStrategy that has been disabled since the odometry is already filtered
by the robot_localization Kalman Filter. As for the GPS navsat_transform_node
we set the magnetic_declination_radians parameter to the magnetic declination of
our experiments field. As for the Kalman Filter node, we set to true the two_d_mode
parameter that makes the filter to assume planar movements.

6.3 Reconstruction Evaluation

Visual Reconstruction The Visual Reconstruction is built by the rtabmap node as
explained in Subsection 5.2.2. The rtabmap node uses the map->base_link transform to
add Neighbor links between successive nodes. Every time a new node is created, its Local
Map is merged with the Global Map, thus forming the generated colored point cloud.

86 CHAPTER 6. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 6.15: LD-MRS LiDAR Odometry broken as computed without voxel filtering.

Figure 6.16: D435 and GPS fusion experimental odometry.

After experimental activity we modified some parameters of the rtabmap node:

• the RGBD/NeighborLinkRefining parameter set to true is crucial for an accurate
Visual Reconstruction in case of an inaccurate odometry. The attentive reader will
have noticed that all the previously showed colored point clouds are pretty similar
to each other. Nevertheless, we have seen that some approaches have resulted in

6.3. RECONSTRUCTION EVALUATION 87

Figure 6.17: D435 and GPS fusion experimental LiDAR point cloud.

Figure 6.18: D435 and GPS fusion experimental colored point cloud.

very poor odometry, like the one with the LD-MRS sensor. Indeed, the LiDAR
point cloud assembled with this latter odometry approach is of really low quality as
can be seen in Figure 6.13. However, the colored point cloud of Figure 6.14 seems
comparable to the one produced by the other approaches. This is possible precisely
thanks to the above-mentioned parameter.

When this parameter is activated, the links added to the SLAM graph are refined.
The external odometry is used just as a guess for a new visual registration between
the current image frame and that of the preceding node. The result will be a newly
refined transform that will be added as a neighbor graph link. In case the odometry
is already accurate, the RGBD/NeighborLinkRefining parameter could be disabled
as it leads to an extra computational load

• publish_tf set to false as we do not want the odometry correction coming from
Loop Closure to be published on the tf tree. The correction is done via the GPS, if
available

88 CHAPTER 6. EXPERIMENTAL RESULTS AND DISCUSSION

• Kp/MaxFeatures set to -1 to disable Loop Closure detection. Indeed, as already
explained in the introduction of Section 5.2, our system performs global odometry
corrections via the GPS

• in case of real-time computation it is possible to set the Rtabmap/TimeThr param-
eter to 200 ms and Rtabmap/MemoryThr parameter to 300 nodes, for activating the
memory-management feature of rtabmap. In our case, these parameters are disabled
since we make an offline processing

• wait_for_transform_duration from 0.1 s (default) to 0.3 s to be less restrictive
on the waiting time for a transform

• as we are processing offline, we increased the Rtabmap/DetectionRate parameter
to 4 Hz without worries about memory usage. This is the rate at which rtabmap
creates new nodes in the SLAM graph

In Figure 6.19 it is shown the colored Visual Reconstruction of an entire vineyard row
side.

Figure 6.19: A colored Visual Reconstruction of an entire vineyard row side.

LiDAR Reconstruction The LiDAR point cloud is assembled by the laser_scan_-
assembler node as already explained in Subsection 5.2.3. The software architecture for
this type of reconstruction is straightforward as it just uses the odometry poses to assemble
single scans into a point cloud. Thus, the quality of the point cloud is directly related to
the odometry approach employed. The LiDAR Reconstruction code does not require any
particular parameter to be set. In Figure 6.20 is shown the same point cloud of Figure 6.17
but with a closer view.

6.4 Segmentation Algorithm Evaluation

In this Section, we evaluate the accuracy of the Segmentation algorithm that has the
purpose of isolating single plants from the vineyard LiDAR reconstruction. Experimental
tests have been performed using data recorded in a scanning session on the 24th May
2019, around 10 am. We have then reconstructed LiDAR point clouds with the different
odometry approaches presented above, and we have run the segmentation algorithm on
them.

The vineyard row is constituted by two sides, that we indicate as left and right, as
seen by someone facing in front of the row at the robot starting position. Both sides have
25 poles each. The left side has 11 plants, while the right side has 19 plants. However,
one plant of the right side does not have any leaf or branch; thus in the following, we will

6.4. SEGMENTATION ALGORITHM EVALUATION 89

Figure 6.20: A close view to the LiDAR point cloud of Figure 6.17.

only consider 18 plants for this side. Here we list, for each kind of odometry, the number
of clusters that have been found by the segmentation algorithm for each side. As it is
possible to see in the corresponding Figures, a cluster can correctly contain a single plant,
a plant and a pole, or parts of plants and poles.

• D435 plain Visual Odometry (Figure 6.23): left side - 17 clsuters; right side - 19
clusters

• D435 and IMU fusion (Figure 6.24): left side - 17 clusters; right side - 22 clusters

• LiDAR Odometry (Figure 6.25): left side - 20 clusters; right side - 23 clusters

• D435 and GPS fusion (Figure 6.26): left side - 17 clusters; right side - 21 clusters

Quantitative Evaluation To quantitatively evaluate the segmentation algorithm, it
should be seen as a binary classification algorithm. Indeed, each element of our dataset
is classified as plant or non-plant (thus, as a pole). However, our dataset is a point cloud;
thus, single elements are not defined. So, our algorithm is in charge not only of the
classification but also of the identification of the single elements. Thus, it should group
a bunch of points and see them as a single element. Once the dataset has been divided
into single elements, it possible to proceed to the classification and tell if those elements
are plants or not. Our algorithm determines single elements by the trunks clustering
procedure. Indeed, each cluster will give birth to a centroid, and by our assumption, a
centroid could only belong to a pole or a plant trunk.

If we see our algorithm as a binary classification, we can compute for each dataset the
confusion matrix. The concept of confusion matrix is represented in Table 6.1. The actual
class is the class of the element as attributed by a human. The predicted class is the
one given by the classification algorithm. As the algorithm is binary, the possible classes

90 CHAPTER 6. EXPERIMENTAL RESULTS AND DISCUSSION

are plant and non-plant. Thus, after the algorithm has classified each element, we can
proceed to count the True Positives, False Positives, False Negatives, and True Negatives.
True Positive is the number of elements that are plants and are correctly predicted as
a plant. False Positive is the number of elements that are non-plant but are incorrectly
classified as a plant. False Negative is the number of elements that are plants but are
incorrectly classified as non-plant. Negative is the number of elements that are non-plant
and are correctly classified as non-plant. However, the confusion matrix presented here is
modified to take into account the peculiarities of our task. Indeed, we define and additional
count called False Positive+. Its meaning is explained below.

Thus, the idea is to compute confusion matrices for the point clouds computed with
each different odometry approach. Figure 6.21 shows a schema of the vineyard where we
manually tagged each element, assigning it to the plant class (PL), or the non-plant class
(NPL). Then, we define some rules for assigning the predicted class:

• if a plant, or part of it, belongs to a bounding box, it is considered a True Positive
(TP). If the plant is only covered in part by a bounding box, each other bounding
box covering the remaining part is considered an additional False Positive (FP+)

• if a pole, or part of it, belongs to a bounding box, it considered a False Positive
(FP). If the pole is only covered in part by a bounding box, each other bounding
box covering the remaining part is considered an additional False Positive (FP+)

• if a pole has been correctly filtered out by the Variance Filtering procedure, it is
considered as True Negative (TN)

• if a plant has been incorrectly filtered out by the variance filtering procedure, it is
considered as False Negative (FN)

• if a bounding box comprises parts of plants or poles, it is considered as an additional
False Positive. Thus we have FP+ = FP + #additional_bounding_boxes

The last rule is highlighted as it makes the confusion matrix computation tricky. In-
deed, as previously said, our algorithm is in charge of determining the elements composing
the dataset. However, it can get wrong by putting bounding boxes in places where they
should not be (see Figure 6.22). For example, inside other bounding boxes or comprising
parts of multiple plants or poles. Thus, these additional bounding boxes are added to
the total number of False Positives giving birth to the FP+ count. Finally, it is still true
that TP + FP + FN + TN = P +N (where P are Positives, and N are Negatives), but
TP +FP+ +FN +TN 6= P +N . Considering the additional False Positives is fundamen-
tal to correctly assessing the quality of the segmentation algorithm as we are expecting
bounding boxes to comprise single and entire plants. If a bounding box comprises parts
of plants or poles, it is a synonym of bad quality.

Moreover, it should be taken into consideration that a bounding box could contain
multiple plants. Following the above rules, all the plants belonging to a bounding box are
considered True Positive. Thus, a single bounding box covering all the plants will maximize
the number of True Positives. Thus, a quality index should inversely proportional weight
the number of True Positives by the number of bounding boxes detected.

6.4. SEGMENTATION ALGORITHM EVALUATION 91

Figure 6.21: Vineyard ground truth.

Finally, classical indices such as True Positive Rate (TP/P), True Negative Rate
(TN/N), Accuracy, etc. can not be computed as they are. Indeed, it is not clear how to
correctly use the FP+ count. Further research is needed.

Tables 6.2, 6.3, 6.4, and 6.5 show the confusion matrices of the point clouds from the
four different odometry approaches.

92 CHAPTER 6. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 6.22: In the Figure are highlighted in green two correctly placed bounding boxes around two
plants. However, an additional bounding box, highlighted in red, is placed in between of the two plants.
This additional bounding box is counted separately as False Positive (FP+).

Actual class

Plant Non-plant

Predicted class
Plant True Positive False Positive(+

#BoundingBoxes)

Non-plant False Negative True Negative

Table 6.1: A general confusion matrix.

Actual class

Plant Non-plant

Predicted class
Plant 26/29 12/21(+1 BBs)

Non-plant 3/29 9/21

Table 6.2: Confusion matrix of the Segmentation algorithm applied to the point cloud from D435 Visual
Odometry.

Parameters Tuning The experimental activity required us to tuned some parameters
for each different point cloud. The parameters have been tuned via a trial-and-error
procedure, and they are listed in the following:

• the angle theta of the rotation of the Affine Transformation. This angle depends
on the robot starting position that differs for every run of odometry. However, the
tuning of this parameter can be automated as explained is Section 5.3

6.4. SEGMENTATION ALGORITHM EVALUATION 93

Actual class

Plant Non-plant

Predicted class
Plant 29/29 13/21(+2 BBs)

Non-plant 0/29 8/21

Table 6.3: Confusion matrix of the Segmentation algorithm applied to the point cloud from D435 and
IMU fusion odometry.

Actual class

Plant Non-plant

Predicted class
Plant 28/29 9/21(+9 BBs)

Non-plant 1/29 12/21

Table 6.4: Confusion matrix of the Segmentation algorithm applied to the point cloud from LD-MRS
LiDAR Odometry.

Actual class

Plant Non-plant

Predicted class
Plant 29/29 7/21(+3 BBs)

Non-plant 0/29 14/21

Table 6.5: Confusion matrix of the Segmentation algorithm applied to the point cloud from D435 and
GPS fusion odometry.

Figure 6.23: D435 Visual Odometry segmented LiDAR point cloud.

94 CHAPTER 6. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 6.24: D435 and IMU fusion odometry segmented LiDAR point cloud.

Figure 6.25: LD-MRS LiDAR odometry segmented LiDAR point cloud.

• also the Z filtering thresholds depend on the robot starting position, thus requiring
to be modified. However, even the tuning of this parameter could be automated.
It suffices to fix the low threshold at the level of the fitted ground plane; then the
upper threshold is just calculated as a fixed amount over the lower threshold

• two Euclidean Clustering parameters need to be tuned: the minimum number of
elements in a set of points to be considered a cluster, and the search radius. These
parameters vary upon the point cloud section resulting from the preceding mentioned
Z filtering

Segmentation Algorithm Conclusions Our segmentation algorithm showed excellent
performance to recognize plants as can be seen by the number of True Positives that is
almost the maximum for all odometry approaches. The higher accuracy has been obtained
with the most accurate sources of odometry, that is, the D435 plain Visual Odometry and
its fusion with the GPS. The segmentation of the left side is less accurate than the right

6.4. SEGMENTATION ALGORITHM EVALUATION 95

Figure 6.26: D435 and GPS fusion odometry segmented LiDAR point cloud.

side. Indeed, the left side has fewer plants than the right side, 11 plants versus 18 plants
(over 25 poles). This means that the poles filtering procedure is not that effective to
remove poles. This is caused by the fact that the assumption of empty space around a
pole does not always hold. Especially in vineyard farmings, it happens that plants climb
along wires, thus covering neighbor poles. However, it is even difficult for a human that
sees the point cloud to understand if, in a specific position, there is a plant, or it is just
another plant extending over a neighbor pole. Moreover, it is not true that all circles
containing poles projections have less variance than one of the plants since there are poles
with big diameter. These considerations are reflected in the low number of True Negatives
of the confusion matrices.

The trunks clustering procedure is the most critical part of the algorithm. The plants’
segmentation accuracy depends on the majority by the accuracy of the trunks clustering.
Our trunks detection algorithm failed in some cases to discriminate between trunks and
poles due to the assumption that each cluster is either a pole or a trunk. Indeed, grass
bushes and plant branches could be seen as an additional cluster, thus, as an additional
centroid. Finally, each vine is planted nearby a pole, and if the plant trunk is sufficiently
distant by the respective pole, they are correctly detected as two clusters. However,
this will lead to two centroids for the K-means algorithm while it should be only one.
These additional centroids will finally randomly cover parts of pants leading to the above-
explained count of additional False Positives (FP+).

For these reasons, it is of fundamental importance to develop a new trunks detection
procedure that exploits semantic information such as the color.

Chapter 7

Conclusions And Future Work

7.1 Conclusions

This work has been motivated by the lack of automatic systems that could isolate single
plants from a tridimensional crop model for phenotyping purposes. Having the model
of a crop at the level of every single plant is of fundamental importance to track the
plant growth and to target localized treatments. We presented the first building block
for an innovative data analysis and modeling framework for the field of automatic plant
phenotyping. The final goal is to plot the phenotyping parameters and analyze their
evolution during a plant entire lifetime. Increasing the granularity of phenotyping data,
from groups of plants to individual plants, will bring new information to be exploited in
phenomics studies.

We started our work investigating the literature to understand what are the typi-
cally measured phenotyping parameters and commonly adopted sensors. Furthermore,
we reviewed the different kinds of platforms that could be exploited for automatic plant
phenotyping. As we did not find a complete and standard classification of the various
approaches, we proposed a new one. We explained the rationale behind our taxonomy
with the hope that the scientific community will widely adopt it.

Then, we gathered a set of cheap, compact, and flexible devices for 3D imaging. We
aimed to discover the minimal and cheapest combination of sensors that can still provide
useful information. Thus, we tested both indoor and outdoor a variety of sensors. Then,
we made a qualitative comparison based on quantitative technical details and experimental
results. Thus, after some refinements, we came up with a flexible sensors suite that can
be easily mounted on any platform, from robots to tractors. Our system enables high-
throughput phenotyping as the only limit is the sensors working frequency.

After sensors evaluation, we put developed a modular software design to which it is pos-
sible to plug in and plug out components easily. Thus, the resulting software architecture
is flexible and quickly expandable and adaptable to different needs. We realized a struc-
ture constituted of three main components: the Data Collection component responsible for
recording data; the Reconstruction component, further divided in three subcomponents
(Odometry, Visual Reconstruction, and LiDAR Reconstruction); and the Segmentation
component.

98 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

The odometry subcomponent has been designed with the possibility to test different
sources of odometry. Thus, we evaluated four odometry approaches in outdoor natural
environments. After visual inspection of experimental results, we declared the Visual
Odometry approaches (the plain one and the fusion with the GPS) as the most accurate.
Surprisingly, we observed the poor quality of laser odometry, although it is usually con-
sidered the most accurate in indoor settings. Likely, the lack of human-made flat surfaces
in outdoor natural environments causes degradation of performance.

The other two subcomponents, namely, the Visual Reconstruction and the LiDAR Re-
construction, are responsible for building colored and laser scans point clouds, respectively.
The Visual Reconstruction module employes a graph-based SLAM algorithm to build the
environment map, while the LiDAR Reconstruction module assembles laser scans based
on odometry poses. Thus, the quality of the LiDAR assembled point clouds directly de-
pends on the odometry accuracy. Indeed, Visual Odometry approaches led to high-fidelity
point clouds. Likewise, the colored point clouds from the Visual Reconstruction module,
accurately represent the plants in term of size, shape, and colors.

Finally, we developed an algorithm that, taken as input a LiDAR point cloud, can
isolate single plants. The algorithm showed good performance to recognize plants, while
it needs improvements on the detection of non-plant elements. The working principle is to
segment plants via K-means clustering algorithm. The clustering algorithm initialization
widely influences the accuracy of the segmentation task. We initialized the algorithm with
trunks locations. Indeed, we developed a trunks detection procedure exploiting geometric
information. Moreover, we devised a strategy to filter out the plants supporting poles.
However, the trunks detection procedure can be misled by the presence of extraneous
elements as grass bushes or plants branches. Indeed, it is too strict assuming that, at
a lower height from the ground, only poles and trunks are present. Thus, we concluded
highlighting the importance of exploiting semantic information.

7.2 Future Work

In this Section, we list the short-term tasks that are the natural consequence of this work
(Subsection 7.2.1). Then, in Subsection 7.2.2, we provide to the reader a long-term vision
about the future of automatic plant phenotyping.

7.2.1 Short-Term Work

• cameras placement could be improved. Orienting the cameras more toward the cen-
ter of the row will likely ease the odometry task, thus resulting in higher accuracy.
Another advantage of this reposition will be the wider view on the vineyard, thus pos-
sibly having a colored reconstruction complete of both canopy and trunks. Finally,
an overlapping view of both cameras would be advantageous for camera-to-camera
calibration

• the STM Nucleo IMU should be calibrated with more sophisticated methods. An
alternative is the camera-IMU calibration method implemented by the Kalibr ROS
package1, as described in [47]. Moreover, a way to estimate the IMU covariance

1https://github.com/ethz-asl/kalibr

https://github.com/ethz-asl/kalibr

7.2. FUTURE WORK 99

matrix should be investigated. Otherwise, the already calibrated IMU embedded in
the D435i camera can be exploited. Finally, it is worth to test purposely designed
algorithms for visual and IMU odometry fusion, like OKVIS [48] or MSCKF [49]

• to merge visual and lidar reconstructions, cameras need to be calibrated with the
2D LiDAR. The task is complicated by non overlapping views. However, in [50], the
authors proposed a method to automatically estimating the relative pose between a
push-broom LIDAR and a camera without the need of an overlapping field of view

• a better integration method for GPS locations in the SLAM graph should be inves-
tigated. It is crucial to find a method to add GPS constraints in such a way the
graph can be optimized, thus avoiding discreet jumps

• the feasibility of loop closure in large-scale natural environments should be assessed.
Loop closures are convenient as they allow the system to be completely independent
of the GPS signal

• it should be investigated the feasibility of using the new Intel RealSense T265 cam-
era2 as the principal source of odometry. Preliminary indoor tests revealed a great
potential of this device

• the accuracy of the various odometry approaches should be estimated using an RTK-
GPS as ground truth

• as for the Segmentation algorithm is of primary relevance to improve the trunks
detection procedure exploiting semantic information like the color

• a more sophisticated algorithm that distinguishes leaves from trunks and branches
could be devised

• a merging strategy of LiDAR and colored point clouds should be studied. In this
way, the advantages of both reconstructions will be exploited. The resulting point
cloud will benefit from the LiDAR reconstruction high accuracy and the additional
information of color and increased density of visual reconstruction

• to allow comparisons with state-of-the-art phenotyping methods is crucial to per-
form a quantitative evaluation of the system. It is fundamental to estimate the
throughput and accuracy of the phenotyping parameters and the segmentation algo-
rithm. Moreover, it should be assessed the odometry quality in large-scale natural
environments

7.2.2 Long-Term Vision

With the advent of Precision Agriculture we are going in the direction of a fourth agri-
cultural revolution. We envision a future where crop works will be entirely automated by
intelligent machines that will carry out all operations, from sowing to harvesting, leading
to more efficient use of resources (like water and nutrients) and contamination reduction
via a fine-tuned spraying of pesticides. One of the requirements for agricultural machines

2https://www.intelrealsense.com/tracking-camera-t265/

https://www.intelrealsense.com/tracking-camera-t265/

100 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

to accomplish in-field localized operations is to have a digital model of each single crop
plant. This framework leads to the idea of Plant Digital Twin, that is, the computerized
counterpart of a real plant.

Autonomous physical agents and smart sensors will collect data aiming at a 3D geo-
referenced model of the entire crop at the level of each single plant. The model will evolve
as more passages throughout the crop will be performed, and it will have, associated with
each single point (or voxel), information such as color, depth, temperature, spectral infor-
mation, and fluorescence. The data will be analyzed to recognize and track single plants
so to monitor them over time. A semantic segmentation will be possible with the joint use
of computer vision and machine learning algorithms, e.g., via [51]. Finally, the variables
that prove to be relevant from phenomics studies [52] will be inferred from the reconstruc-
tion. Having the digitalized representation of a plant, i.e., the Digital Twin, will allow us
to monitor and follow it during its entire life giving birth to a new concept that is the
agricultural counterpart of the Internet of Things, the Internet of Plants. Think about the
potential of a network of plants that share information. What if an infested plant could
alert its neighbors to receive treatments hence blocking a pest diffusion?

I foresee critical challenges for years to come. We need to find a way to manage the
massive quantity of phenotyping data that will be produced. New modeling techniques and
data management approaches should be investigated. Moreover, new advanced analysis
tools and prediction models, even beyond the usual statistical methods, are necessary
[2]. Great effort should be made to understand the socio-economic impact derived from
the adoption of these technologies. The phenotyping data can be used as input for a
data-driven DSS (Decision Support System) supporting farmers in the decision-making
process. With the help of such information, farmers can optimize returns on inputs usage.
For example, a variable-rate application of pesticides and fertilizers can reduce the cost
deriving from the inputs and have a benefit on the environment, limiting harmful runoff
into waterways. Therefore, it is of fundamental importance to investigate the relationships
among the adoption of phenotyping technologies, the economics aspects affecting farms
and the environmental impact consequences [53].

Breakthroughs in automatic plant phenotyping will be possible only with the inter-
action and collaboration with other fields’ experts. Multi-disciplinary teams gathering
together engineers, mathematicians, economists, biologists, and geneticists need to be
formed. The results that will be produced are a crucial step in the fourth agriculture
revolution that will be able to satisfy the increase in food demand.

References

[1] R. T. Furbank and M. Tester, “Phenomics–technologies to relieve the phenotyping
bottleneck,” Trends in plant science, vol. 16, no. 12, pp. 635–644, 2011.

[2] J. L. Araus and J. E. Cairns, “Field high-throughput phenotyping: the new crop
breeding frontier,” Trends in plant science, vol. 19, no. 1, pp. 52–61, 2014.

[3] Food and A. O. of the United Nations, “Global agriculture towards 2050,” 2009.

[4] S. M. Pedersen, S. Fountas, H. Have, and B. Blackmore, “Agricultural robots—system
analysis and economic feasibility,” Precision agriculture, vol. 7, no. 4, pp. 295–308,
2006.

[5] R. Qiu, S. Wei, M. Zhang, H. Li, H. Sun, G. Liu, and M. Li, “Sensors for measuring
plant phenotyping: A review,” International Journal of Agricultural and Biological
Engineering, vol. 11, no. 2, pp. 1–17, 2018.

[6] J. W. White, P. Andrade-Sanchez, M. A. Gore, K. F. Bronson, T. A. Coffelt, M. M.
Conley, K. A. Feldmann, A. N. French, J. T. Heun, D. J. Hunsaker, et al., “Field-based
phenomics for plant genetics research,” Field Crops Research, vol. 133, pp. 101–112,
2012.

[7] N. Virlet, K. Sabermanesh, P. Sadeghi-Tehran, and M. J. Hawkesford, “Field scana-
lyzer: An automated robotic field phenotyping platform for detailed crop monitoring,”
Functional Plant Biology, vol. 44, no. 1, pp. 143–153, 2017.

[8] T. Mueller-Sim, M. Jenkins, J. Abel, and G. Kantor, “The robotanist: a ground-
based agricultural robot for high-throughput crop phenotyping,” in 2017 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 3634–3639, IEEE,
2017.

[9] S. Madec, F. Baret, B. De Solan, S. Thomas, D. Dutartre, S. Jezequel, M. Hem-
merlé, G. Colombeau, and A. Comar, “High-throughput phenotyping of plant height:
comparing unmanned aerial vehicles and ground lidar estimates,” Frontiers in plant
science, vol. 8, p. 2002, 2017.

[10] G. Yang, J. Liu, C. Zhao, Z. Li, Y. Huang, H. Yu, B. Xu, X. Yang, D. Zhu, X. Zhang,
et al., “Unmanned aerial vehicle remote sensing for field-based crop phenotyping:
current status and perspectives,” Frontiers in plant science, vol. 8, p. 1111, 2017.

101

[11] Q. Qiu, N. Sun, Y. Wang, Z. Fan, Z. Meng, B. Li, and Y. Cong, “Field-based high-
throughput phenotyping for maize plant using 3d lidar point cloud generated with a
“phenomobile”,” Frontiers in plant science, vol. 10, p. 554, 2019.

[12] A. Shafiekhani, S. Kadam, F. Fritschi, and G. DeSouza, “Vinobot and vinoculer:
Two robotic platforms for high-throughput field phenotyping,” Sensors, vol. 17, no. 1,
p. 214, 2017.

[13] A. Kicherer, K. Herzog, M. Pflanz, M. Wieland, P. Rüger, S. Kecke, H. Kuhlmann,
and R. Töpfer, “An automated field phenotyping pipeline for application in grapevine
research,” Sensors, vol. 15, no. 3, pp. 4823–4836, 2015.

[14] K. Herzog et al., “Initial steps for high-throughput phenotyping in vineyards,” Aus-
tralian and New Zealand Grapegrower and Winemaker, no. 603, p. 54, 2014.

[15] J. Barker III, N. Zhang, J. Sharon, R. Steeves, X. Wang, Y. Wei, and J. Poland,
“Development of a field-based high-throughput mobile phenotyping platform,” Com-
puters and Electronics in Agriculture, vol. 122, pp. 74–85, 2016.

[16] D. Deery, J. Jimenez-Berni, H. Jones, X. Sirault, and R. Furbank, “Proximal remote
sensing buggies and potential applications for field-based phenotyping,” Agronomy,
vol. 4, no. 3, pp. 349–379, 2014.

[17] P. Andrade-Sanchez, M. A. Gore, J. T. Heun, K. R. Thorp, A. E. Carmo-Silva,
A. N. French, M. E. Salvucci, and J. W. White, “Development and evaluation of a
field-based high-throughput phenotyping platform,” Functional Plant Biology, vol. 41,
no. 1, pp. 68–79, 2014.

[18] R. Sanz, J. Rosell, J. Llorens, E. Gil, and S. Planas, “Relationship between tree row
lidar-volume and leaf area density for fruit orchards and vineyards obtained with a
lidar 3d dynamic measurement system,” Agricultural and forest meteorology, vol. 171,
pp. 153–162, 2013.

[19] L. Busemeyer, D. Mentrup, K. Möller, E. Wunder, K. Alheit, V. Hahn, H. Maurer,
J. Reif, T. Würschum, J. Müller, et al., “Breedvision—a multi-sensor platform for
non-destructive field-based phenotyping in plant breeding,” Sensors, vol. 13, no. 3,
pp. 2830–2847, 2013.

[20] R. Sui, D. K. Fisher, and K. N. Reddy, “Cotton yield assessment using plant height
mapping system,” Journal of Agricultural Science, vol. 5, no. 1, p. 23, 2013.

[21] A. Comar, P. Burger, B. de Solan, F. Baret, F. Daumard, and J.-F. Hanocq, “A semi-
automatic system for high throughput phenotyping wheat cultivars in-field conditions:
description and first results,” Functional Plant Biology, vol. 39, no. 11, pp. 914–924,
2012.

[22] J. Llorens, E. Gil, J. Llop, and M. Queraltó, “Georeferenced lidar 3d vine plantation
map generation,” Sensors, vol. 11, no. 6, pp. 6237–6256, 2011.

102

[23] V. Vadez, J. Kholová, G. Hummel, U. Zhokhavets, S. Gupta, and C. T. Hash,
“Leasyscan: a novel concept combining 3d imaging and lysimetry for high-throughput
phenotyping of traits controlling plant water budget,” Journal of Experimental
Botany, vol. 66, no. 18, pp. 5581–5593, 2015.

[24] J. W. White and M. M. Conley, “A flexible, low-cost cart for proximal sensing,” Crop
Science, vol. 53, no. 4, pp. 1646–1649, 2013.

[25] C. J. Bronick and R. Lal, “Soil structure and management: a review,” Geoderma,
vol. 124, no. 1-2, pp. 3–22, 2005.

[26] T. Foote, “tf: The transform library,” in Technologies for Practical Robot Applications
(TePRA), 2013 IEEE International Conference on, Open-Source Software workshop,
pp. 1–6, April 2013.

[27] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE robotics &
automation magazine, vol. 18, no. 4, pp. 80–92, 2011.

[28] T. Moore and D. Stouch, “A generalized extended kalman filter implementation for
the robot operating system,” in Intelligent autonomous systems 13, pp. 335–348,
Springer, 2016.

[29] M. Labbé and F. Michaud, “Rtab-map as an open-source lidar and visual simultane-
ous localization and mapping library for large-scale and long-term online operation,”
Journal of Field Robotics, vol. 36, no. 2, pp. 416–446, 2019.

[30] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based
slam,” IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4, pp. 31–43,
2010.

[31] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE
International Conference on Robotics and Automation (ICRA), (Shanghai, China),
May 9-13 2011.

[32] R. B. Rusu, “Semantic 3d object maps for everyday manipulation in human living
environments,” KI-Künstliche Intelligenz, vol. 24, no. 4, pp. 345–348, 2010.

[33] J. MacQueen et al., “Some methods for classification and analysis of multivariate ob-
servations,” in Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, vol. 1, pp. 281–297, Oakland, CA, USA, 1967.

[34] E. Lachat, H. Macher, T. Landes, and P. Grussenmeyer, “Assessment and calibra-
tion of a rgb-d camera (kinect v2 sensor) towards a potential use for close-range 3d
modeling,” Remote Sensing, vol. 7, no. 10, pp. 13070–13097, 2015.

[35] A. Corti, S. Giancola, G. Mainetti, and R. Sala, “A metrological characterization
of the kinect v2 time-of-flight camera,” Robotics and Autonomous Systems, vol. 75,
pp. 584–594, 2016.

[36] T. Bell, B. Li, and S. Zhang, “Structured light techniques and applications,” Wiley
Encyclopedia of Electrical and Electronics Engineering, pp. 1–24, 1999.

103

[37] C. Nock, O. Taugourdeau, S. Delagrange, and C. Messier, “Assessing the potential of
low-cost 3d cameras for the rapid measurement of plant woody structure,” Sensors,
vol. 13, no. 12, pp. 16216–16233, 2013.

[38] J. Llorens, E. Gil, J. Llop, et al., “Ultrasonic and lidar sensors for electronic canopy
characterization in vineyards: Advances to improve pesticide application methods,”
Sensors, vol. 11, no. 2, pp. 2177–2194, 2011.

[39] W. Kazmi, S. Foix, G. Alenyà, and H. J. Andersen, “Indoor and outdoor depth imag-
ing of leaves with time-of-flight and stereo vision sensors: Analysis and comparison,”
ISPRS journal of photogrammetry and remote sensing, vol. 88, pp. 128–146, 2014.

[40] A. Vit and G. Shani, “Comparing rgb-d sensors for close range outdoor agricultural
phenotyping,” Sensors, vol. 18, no. 12, p. 4413, 2018.

[41] M. Vázquez-Arellano, H. Griepentrog, D. Reiser, and D. Paraforos, “3-d imaging
systems for agricultural applications—a review,” Sensors, vol. 16, no. 5, p. 618, 2016.

[42] L. Li, Q. Zhang, and D. Huang, “A review of imaging techniques for plant phenotyp-
ing,” Sensors, vol. 14, no. 11, pp. 20078–20111, 2014.

[43] P. Roy, W. Dong, and V. Isler, “Registering reconstructions of the two sides of fruit
tree rows,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1–9, IEEE, 2018.

[44] J. Shi and C. Tomasi, “Good features to track,” tech. rep., Cornell University, 1993.

[45] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “g 2 o: A
general framework for graph optimization,” in 2011 IEEE International Conference
on Robotics and Automation, pp. 3607–3613, IEEE, 2011.

[46] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing icp variants on
real-world data sets,” Autonomous Robots, vol. 34, no. 3, pp. 133–148, 2013.

[47] T. Pire, M. Mujica, J. Civera, and E. Kofman, “The rosario dataset: Multisensor
data for localization and mapping in agricultural environments,” The International
Journal of Robotics Research, vol. 38, no. 6, pp. 633–641, 2019.

[48] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-based
visual–inertial odometry using nonlinear optimization,” The International Journal of
Robotics Research, vol. 34, no. 3, pp. 314–334, 2015.

[49] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar, C. J. Taylor,
and V. Kumar, “Robust stereo visual inertial odometry for fast autonomous flight,”
IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 965–972, 2018.

[50] A. Napier, P. Corke, and P. Newman, “Cross-calibration of push-broom 2d lidars and
cameras in natural scenes,” in 2013 IEEE International Conference on Robotics and
Automation, pp. 3679–3684, IEEE, 2013.

104

[51] F. Visin, M. Ciccone, A. Romero, K. Kastner, K. Cho, Y. Bengio, M. Matteucci,
and A. Courville, “Reseg: A recurrent neural network-based model for semantic seg-
mentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 41–48, 2016.

[52] F. Fiorani and U. Schurr, “Future scenarios for plant phenotyping,” Annual review
of plant biology, vol. 64, pp. 267–291, 2013.

[53] J. Schieffer and C. Dillon, “The economic and environmental impacts of precision
agriculture and interactions with agro-environmental policy,” Precision agriculture,
vol. 16, no. 1, pp. 46–61, 2015.

105

Appendix A

Sensors Technical Specifications
And Settings

In this Appendix we provide tables with the technical specifications of the sensors listed in
Section 4.1. When different values of a parameter are available, we write the one adopted
in the final configuration in bold italic font (e.g., Angular Resolution: 0.25◦, 0.5◦)

ZED Camera

Name Value

Frame Rate 15, 30, 60 fps

Video Resolution 1280x720

Depth Range 0.5 - 20 m

Stereo Baseline 120mm

Motion 6-axis Pose Accuracy Position: +/- 1mm; Orientation: 0.1◦

Field of View 90◦(H) x 60◦(V) x 110◦(D) max

Sensor Resolution 4M pixels per sensor

Shutter Sync Electronic Synchronized Rolling Shutter

Interface USB 3.0

Power USB 5V / 380mA

Dimensions 175 (W) x 30 (H) x 33 (D) mm

Weight 159g

OS Compatibility Windows 7,8,10 and Linux

Table A.1: ZED Camera technical specifications

108 Appendix A. Sensors Technical Specifications And Settings

Kinect One

Name Value

Frame Rate 30 fps

RGB Image Resolution 1920x1280

Depth Image Resolution 512x424

Depth Range 0.5 - 4.5 m

Field of View 70◦(H) x 60◦(V)

Interface USB 3.0

Input Voltage 12V

Dimensions 249 (W) x 66 (H) x 67 (D) mm

Weight 1400g

Operating Environment Indoor

Table A.2: Kinect One technical specifications

XtionPRO Live

Name Value

Frame Rate 30 fps (VGA), 60 fps (QVGA)

RGB Image Resolution 1280x1024 (SXGA)

Depth Image Resolution 320x240 (QVGA), 640x480 (VGA)

Depth Range 0.8 - 3.5 m

Field of View 58◦(H) x 45◦(V) x 70◦(D)

Interface USB 2.0

Input Voltage 5V

Power Consumption < 2.5 W

Dimensions 177.8 (W) x 48.2 (H) x 38.1 (D) mm

Weight 540g

Operating Environment Indoor

Table A.3: XtionPRO Live technical specifications

109

Intel RealSense D435(i) Camera

Name Value

RGB Frame Rate up to 30 fps (30 fps)

Depth Frame Rate up to 90 fps (30 fps)

RGB Image Resolution 1920x1080

Depth Image Resolution 1280x720

Depth Range 0.105 - 10 m

RGB Field of View 69.4◦(H) x 42.5◦(V) x 77◦(D)

Depth Field of View 87◦(H) x 58◦(V) x 95◦(D)

RGB Sensors Technology Global Shutter

Interface USB 3.0

Input Voltage 5V

Dimensions 90 (W) x 25 (H) x 25 (D) mm

Operating Environment Indoor and Oudoor

D435i Additional Feature BMI055 IMU (Inertial Measurement
Unit)

Table A.4: Intel RealSense D435(i) Camera technical specifications

110 Appendix A. Sensors Technical Specifications And Settings

Sick LMS100-1000 2D LiDAR

Name Value

Light Source Infrared (905 nm)

Aperture Angle 270◦

Scanning Frequency 25 Hz, 50 Hz

Angular Resolution 0.25◦, 0.5◦

Working Range 0.5 - 20 m

Fog Correction Yes

Interfaces Ethernet TCP/IP; Serial RS-232; CAN

Input Voltage 10.8 V ... 30 V (12 V)

Power Consumption 8 W

Enclosure Rating IP65

Dimensions 102 (W) x 152 (H) x 105 (D) mm

Weight 1100g

Operating Environment Indoor

Ambient Light Immunity 40000 lx

Table A.5: Sick LMS100-1000 2D LiDAR technical specifications

111

Sick LD-MRS400001S01 3D LiDAR

Name Value

Light Source Infrared (905 nm)

Horizontal Aperture Angle 85◦(4 planes), 110◦(2 planes)

Vertical Aperture Angle 3.2◦

Scanning Frequency 12.5 Hz ... 50 Hz

Angular Resolution 0,125◦, 0.25◦, 0.5◦

Working Range 0.5 - 300 m

Interfaces Ethernet TCP/IP; Serial RS-232; CAN

Input Voltage 9 V ... 27 V (12 V)

Power Consumption 8 W

Enclosure Rating IP69K

Dimensions 165 (W) x 88 (H) x 94 (D) mm

Weight 1000g

Operating Environment Outdoor

Table A.6: Sick LD-MRS400001S01 3D LiDAR technical specifications

112 Appendix A. Sensors Technical Specifications And Settings

Trimble 5700 GPS Receiver

Name Value

Measurement Rate 1 Hz, 2 Hz, 5 Hz

Interfaces Serial RS-232 ; USB (only for data
download)

Input Voltage 10.5 V ... 28 V (12 V)

Power Consumption 5.9 W

Enclosure Rating IP67

Dimensions 135 (W) x 85 (H) x 240 (D) mm (receiver
only)

Weight 1400g (receiver only)

Operating Environment Outdoor

Table A.7: Trimble 5700 GPS Receiver technical specifications

X-NUCLEO-IKS01A1 Multi-Sensor Board

Name Value

IMU LSM6DS0 Acceleration Range ±2/±4/±8 g

IMU LSM6DS0 Angular Range ±245/±500/±2000 dps

Magnetometer LIS3MDL Magnetic Full
Scales ±4/±8/±12/±16 gauss

Table A.8: X-NUCLEO-IKS01A1 technical specifications

	Introduction
	State Of The Art
	Motivations
	Taxonomy
	Phenotyping Pipeline
	Data Collection classification
	Data Processing classification

	Literature Review
	Unmanned Ground Vehicles
	Tractor-based Systems
	Gantry-based Systems
	Hand-pulled Systems

	Gap Analysis

	Background
	Robot Operating System (ROS)
	tf Package

	Simultaneous Localization and Mapping (SLAM)
	Visual and Laser Odometry
	robot_localization Package
	rtabmap_ros Package

	Point Clouds
	The Point Cloud Library (PCL)

	Hardware Architecture
	Sensors
	Comparison

	Platform Construction and Calibration
	Setups

	Software Architecture
	General View
	Reconstruction
	Odometry
	Visual Reconstruction
	LiDAR Reconstruction

	Segmentation

	Experimental Results And Discussion
	Experiments Field
	Odometry Evaluation
	Reconstruction Evaluation
	Segmentation Algorithm Evaluation

	Conclusions And Future Work
	Conclusions
	Future Work
	Short-Term Work
	Long-Term Vision

	References
	Sensors Technical Specifications And Settings

