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Sommario

LEDAcrypt (Low-dEnsity parity-check coDe-bAsed cryptographic system)
è tra i partecipanti al secondo round nel NIST Post-Quantum Contest. L’e-
sistenza di questo concorso sottolinea come vi sia la necessità di identifi-
care nuovi algoritmi di cifratura in grado di resistere alla futura diffusio-
ne di computer quantistici. LEDAcrypt è un crittositema basato su codici
composto da due moduli: LEDAkem (Key Encapsulation Module) e LE-
DApkc (Public-Key Cryptosystem), entrambi costruiti attorno a problemi
NP-Completi.

Questo elaborato si prefigge di studiare la funzione di codifica a peso
costante (Constant Weight Encoding) utilizzata in LEDAcrypt, la quale gio-
ca un ruolo chiave nel crittosistema sviluppato da Niederreteir, sul quale si
basa LEDApkc, e in particolare, di migliorarne l’efficienza attraverso un’a-
nalisi della distribuzione dei vettori originati in relazione al numero di failure
generate.

Secondo obiettivo di questa dissertazione è l’ottimizzazione della codeba-
se di LEDAcrypt al fine di migliorarne le prestazioni generali attraverso una
decisa ottimizzazione degli algoritmi per l’aritmetica polinomiale e l’utilizzo
di istruzioni vettoriali per processori ARM.
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Introduction

Cryptography etymology derives from Greek: kryptos "hidden" plus
graphein "to write" and thus refers to the "art of writing in secret charac-
ters", but its origin traced back to around 4000 years ago within the Egyp-
tian population. Historically, cryptography has always been a fundamental
tool in politics, its use in fact has been predominant in military and diplo-
matic communications. The diffusion of computers has widen its application
from merely government services to the protection of any private data and
communication. Nowadays cryptography is the study of mathematical tech-
niques related to aspects of information security such as confidentiality, data
integrity, entity authentication and non-repudiation.

• Confidentiality is a service used to keep the content of information from
all but those authorized to have it. Possible approaches providing
it range from physical protection to mathematical algorithms which
render data unintelligible.

• Data integrity is a service which addresses the unauthorized alteration
of data, i.e. insertion, deletion, and substitution. To assure data in-
tegrity, one must have the ability to detect data manipulation by unau-
thorized parties.

• Authentication is a service related to identification, which applies to
both entities (entity authentication) and information itself (data origin
authentication).

• Non-repudiation is a service which prevents an entity from denying
previous commitments or actions.

A fundamental goal of cryptography is to adequately address these four
areas in both theory and practice. The main difference between ancient and
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Introduction

modern cryptography is due to the Kerchoff’s Principle: a cryptosystem
should be secure even if everything about the system is publicly known,
except the value of a single parameter (the cryptographic key).

Let Ee : e ∈ K denote the encryption transformation and Dd : d ∈ K

the decryption one, where K is the key space. In a Symmetric key encryp-
tion scheme for each associated (e, d) key pair it is computationally easy to
determine d knowing e and vice versa. In most practical system d = e, thus
c = Ek(p) and p = Dk(c) where p is the plaintext, c is the ciphertext and k

is the key. Until 1976, when Diffie and Hellman introduced the revolutionary
idea of public key cryptography, the only used cryptographic paradigm was
the symmetric cryptography one. In a public key encryption scheme for each
associate (e, d) key pair, given e it is computationally infeasible to determine
the corresponding d. Ee is said to be a trapdoor one-way function (easy to
compute in one direction and computationally hard to invert without the
knowledge of a parameter) with d being the trapdoor information necessary
to compute the inverse function and hence consent decryption. The main ad-
vantage over the previous encryption paradigm is that allows key exchanges
over insecure channels. Each party of the communication owns a secret de-
cryption key sk and a public encryption key pk. Being Alice and Bob the
two parties, if Alice wants to send a message m to Bob she firstly needs to
recover Bob’s public key pkB and then sends the ciphertext c = EpkB (m).
Bob can decipher the received c and obtain the original message by means
of its secret key: m = DskB (c).

The main disadvantage of using a public key system instead of a symmet-
ric one is the computational cost, hence the most used strategy is to leverage
public key cryptosystem only for the protected transmission of a single use
ephemeral key which is shared between the parties which communicates with
symmetric encryption.

Encryption and decryption function are based on computationally hard
problem, such as

• integer factorization problem: given a composite integer n, compute
its factorization

∏
i p

ei
i , ei ≥ 1;

• discrete logarithm extraction in a cyclic group: given (〈g〉, ·) and a =

gx, find x ∈ 0, 1, ..., |g| − 1;

2



• find the shortest vector in a l-dimensional lattice, which is a vector
space with scalar coefficients over Zl or Ql, given a basis for the space
and a definition of distance;

• decoding a general linear code.

These problems fall under the Nondeterministic-Polynomial (NP) complexity
class, which is characterized by problems for which is easy to verify the
correctness of a solution but, given the general problem, it is conjectured that
no polynomial time algorithm running on a deterministic machine is able to
find a solution. In 1997, Shor proved that some NP problems, such as the
integer factorization one on which is based RSA algorithm, could be solved in
polynomial time by a quantum computer. Since Shor’s publication [28], has
indeed arisen the need for new algorithms based on NP-complete problem,
which will gain only a polynomial speedup when approached with a quantum
machine.

This necessity for new algorithms yielded to the NIST Post-Quantum
Contest in which LEDAcrypt (Low-dEnsity parity-check coDe-bAsed cryp-
tographic system) is a second round candidate. LEDAcrypt is the union of
LEDAkem a Key Encapsulation Module and LEDApkc a Public-Key Cryp-
tosystem, which are based on two NP-Complete problems, which are, respec-
tively

• given a generic random linear code decode a codeword, i.e. find the
error vector affecting a codeword;

• given a generic random parity-check matrix decode the syndrome, i.e.
find the unique error vector corresponding to it.

At today state of the art, the fastest known method to solve these is exhaus-
tive search.

The aims of this thesis are to analyse LEDAcrypt constant weight en-
coder, in order to determine how its approximated algorithm affects the
output distribution and to achieve a possible mitigation, which improve
the distribution without increasing the number of failures and to improve
the system performances by leveraging optimized arithmetic algorithms and
vectorized instructions specifically targeting an ARM architecture.

This manuscript is composed of six chapters:
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Introduction

• Chapter 1 Background : contains a introduction on coding theory and
code-based cryptography paradigms, in particular McEliece’s and Nieder-
reiter’s cryptosystem and of course LEDAcrypt. The last section of this
chapter instead covers a brief introduction on vectorized instruction
and a more detailed overview on the ARM NEON extension;

• Chapter 2 State of the Art : its first section describes in details both
the literature exact and approximate approaches to obtain a constant
weight encoding, respectively by Cover and Sendrier. The second half
of the Chapter concerns suggested optimizations from the literature
which are specific for code-based cryptosystems.

• Chapter 3 Effectiveness and Efficiency Analysis of Constant Weight
Encoding : illustrates our proposed approaches to improve the constant
weight encoder output distribution.

• Chapter 4 Efficient Implementation of the LEDAcrypt Cryptosystem:
explains how to enhance LEDAcrypt performances exploiting sub-quadratic
multiple precision multiplication approaches and code vectorization.

• Chapter 5 Experimental Results: reports the experimental results val-
idating our improvements on the constant weight encoding technique
and the performance gains on the LEDAcrypt primitives gained by
exploiting the ARM Neon ISA extensions on a modern ARMv8a plat-
form.

• Chapter 6 Conclusions: summarized the achieved results in the en-
hancement of both the constant weight encoder algorithm and the
overall cyptosytem performances.

4



Chapter 1

Background

A code-based cryptographic system is a public key system exploiting the
problem of decoding a general linear code which is NP-complete as demon-
strated in [4]. Hence, the idea is to encode the message through a random
public matrix, which is an obfuscated version of the code generator matrix. It
follows that the correspondent private key, which allows efficient decryption,
is the information about the code structure.

In 1978, McEliece in [20] presented an innovative public key cryptosys-
tem based on Goppa codes, which never achieved much popularity due to
the large size of the keys needed to obtain even the minimum 80-bit secu-
rity level. Almost a decade later, in 1986, Niederreiter in [24] proposed an
alternative, but security equivalent, public key cryptosystem based on Gen-
eralized Reed-Solomon codes which aimed to reduce the key sizes. In 2001,
Kobara and Imai with [17] produced a significant step to improved the se-
curity of McEliece-based cryptosystems: they were in fact able to provide
semantic security against adaptive chosen-ciphertext attacks while reduc-
ing the data overhead of 1

4 compared with alternative generic conversions
with practical parameters such as the one proposed in [11] and [25]. Nowa-
days code-based cryptography is becoming popular for its believed quantum
computing resistance: since the publication in 1994 of Shor’s factorization
algorithm, which threatens systems based on the Discrete Logarithm Prob-
lem or on the Factorization Problem, the need for new type of cryptoschemes
has indeed arisen. In [28], Shor proposes an innovative quantum algorithm
to solve the factorization problem, whose computational time is polynomial

5



CHAPTER 1. Background

encodersender

e

decoder receiver
c c+ eu u

Figure 1.1: Basic error correcting code scenario. The information u is sent
encoded (c) over a noisy channel which alters the original message thus the
other party receives c+e, where e represents some errors. Despite the bitflips,
the encoded information can still be decoded into the original u by leveraging
its redundancy.

in log(N), where N is the size of the input integer. Shor’s algorithm relies on
the quantum Fourier sampling attacks, which do not apply to the McEliece
cryptosystems, as proven in [8], as long as the underlying q-ary linear code
C(n, k), with qk

2 ≤ n0.2n:

• is "well-scrambled", i.e. it has a generator matrix with rank at least
k − o(

√
n) and

• is "well-permuted", i.e. its automorphism group has minimal degree
of at least Ω(n) and has size at most eo(n).

In conclusion, when facing the problem of decoding a generic linear code,
using a quantum computer would only provide a polynomial speed-up with
respect to the use of a classic computer.

1.1 Basics of Coding Theory

A brief introduction on coding theory is necessary in order to understand
the core logic of primitives building code-based cryptosystems and thus the
implementation details of LEDAcrypt. For this reason this section reviews
a few relevant definitions and concepts.

In coding theory, a binary error correcting code (ECC) is used to de-
tect and correct possible communication errors over a noisy channel, such
as bits flipping, through the addition of some redundancy to the original
information. Said redundancy, being dependent on the original bits, allows
the receiver to recover up to a certain number of faulty bits. In Figure 1.1
is represented the common scenario in which ECC are adopted.

6



1.1. Basics of Coding Theory

The number of asserted bits in a binary vector is defined as the Hamming
weight of the vector wH(·), while the Hamming distance dH(·, ·) between two
vectors is the number of different bits between the two.

A linear code is an error-correcting code for which any linear combina-
tions of codewords c1, c2 is also a codeword c.

The minimum distance of a code is defined as

d(C) = min
∀c1,c2∈C,c1 6=c2

dH(c1, c2), (1.1)

i.e. is the minimum hamming distance chosen among all the distances com-
puted between any possible pairs of different codewords in C. In a linear
code, the minimum distance is equal to the minimum Hamming weight of
a non-zero codeword. In fact, since C is a linear code then 0 ∈ C and
c1 − c2 ∈ C∀c1, c2 ∈ C, it follows that wH(c) = dH(0, c) and dH(c1, c2) =

wH(c1 − c2).
Given a message m, the problem of finding any codeword within a given

Hamming distance from m is defined as bounded-distance decoding problem.
A bounded-distance decoder, given a distance t, is always able to correct up
to t errors in any codeword if dH(C) > 2t+ 1.

A binary code is defined as the mapping between an information word u

of length k (known as code dimension) and a codeword c of size n (known
as code length):

C(n, k) : Fk
2 → Fn

2 , n, k ∈ N, 0 < k < n (1.2)

with r = n− k redundancy symbols.
A binary linear code C(n, k) is a k-dimensional subspace of Fn

2 . It can
be represented by several k × n generator matrix G whose rows form a
basis of C(n, k), among these there is the systematic representation which
is defined as G = [Ik|P] where P is a k × r binary matrix. Being u ∈ Fk

2

the information word to be encoded and c ∈ Fn
2 its codeword representation:

c = uG. The r × n parity check matrix H is defined as a basis of the
orthogonal complement of the code space, thus it spans the dual space of G
and the following property holds G · H = 0k×r. Moreover a vector c is a
codeword of C(n, k) only if the syndrome vector s of x through the parity
check matrix H, which is defined as s = HcT , is null. Being x an incorrect

7



CHAPTER 1. Background

codeword, i.e. x = c+ e with c ∈ C(n, k), the syndrome associated with x

corresponds to the syndrome computed through e:

s = HxT = H(c+ e)T =���HcT +HeT = HeT , (1.3)

HeT =


h0,0 h0,1 · · · h0,n1

h1,0 h1,1 · · · h1,n−1
...

...
. . .

...
hr−1,0 hr−1,1 · · · hr−1,n−1

˙


e0

e1
...

en−1

 = (1.4)

=


h0,0e0 + h0,1e1 + · · ·+ h0,n−1en−1

h1,0e0 + h1,1e1 + · · ·+ h1,n−1en−1
...

hr−1,0e0 + hr−1,1e1 + · · ·+ hr−1,n−1en−1

 =


s0

s1
...

sr−1

 .

It is easy to see from Equation 1.4 that the syndrome vector is the vector
of known terms of a system of equations with coefficients hi,j and unknowns
ei. This property can be exploited to extract the error vector e and recover
the information c. For example, in the list decoding approach the idea is to
compute the syndrome vector for every possible e until the same value of s is
found and then remove the identified errors from x. Clearly the mentioned
approach does not scale well with either the vector length or the number of
errors. A more efficient alternative, considers H as a system of r equations
in the n codeword bits, each one producing a syndrome bit. Consequently,
each asserted bit in the i-th column of H can be seen as the indicator of
which parity-check equations are involving the i-th bit of the codeword, or
in other words, the i-th asserted bit in s implies that the i-th parity check
equation is not satisfied and thus the vector x contains one or more incorrect
bits.

Example 1. In Equation 1.5 the asserted bits in the first column of H

indicate that the first bit of e, e0, is involved in the first and third. These

8



1.1. Basics of Coding Theory

equations are indeed called parity-check equations.

HeT =


1 0 1 0 0

0 1 1 1 0

1 1 0 1 1

˙


e0

e1

e2

e3

e4


=


e0 + e2

e1 + e2 + e3

e0 + e1 + e3 + e4

 (1.5)

For its characteristic, the syndrome is exploited in the so called syndrome
decoding procedure of a codeword which iterates over three steps until a zero-
valued syndrome is reached:

1. compute s,

2. select candidate faulty positions as the ones involved in the highest
amount of parity check equations with non null known term (i.e. cor-
responding to a non-null syndrome bit),

3. flip the candidate incorrect bits and update the value of the syndrome.

For a general system, the number of required iterations is worse than poly-
nomial in the system parameters, for this reason this approach is feasible
only when H is sparse.

A low-density parity-check (LDPC) code C(n, k), defined by Gallager in
[12], is a particular linear code characterized by a sparse parity check matrix
H and thus by the existence of an efficient syndrome decoding procedures
known as Bit-Flipping (BF) algorithms. A BF-decoder, taking advantage of
the sparsity of H, iteratively learns which are the possible incorrect bits of
the codeword and determines which to flip in order to obtain a zero-valued
syndrome vector.

A quasi-cyclic (QC) code is a linear block code C(n, k) having information
word size k = pk0 and codeword size n = pn0, where each cyclic shift of a
codeword by n0 symbols results in another valid codeword. The generator
matrix G of said QC code, composed by p × p circulant block, has the
following form

9



CHAPTER 1. Background

G =


G0,0 G0,1 · · · G0,n0−1

G1,0 G1,1 · · · G1,n0−1
...

...
. . .

...
Gk0−1,0 Gk0−1,1 · · · Gk0−1,n0−1


where each block Gi,j is a p× p circulant matrix, i.e a matrix having the

following form

Gi,j =



g0 g1 g2 · · · gp−1

gp−1 g0 g1 · · · gp−2

gp−2 gp−1 g0 · · · gp−3
...

... · · · . . .
...

g1 g2 g3 · · · g0


.

1.2 McEliece Cryptosystem

In 1978, Robert McEliece proposed the first public key cryptosystem
based on Goppa codes in [20]. The main advantages of this system are
the fast encryption and decryption procedures and of course its quantum
resistance. However to achieve the desired long term security it requires a
large public key. In [5], the public key sizes for the minimum security level
of 80-bit and for the long term one of 256-bit are set respectively around 60
KB and 958 KB. The primitives of the cryptosystem are described next.

Key generation After choosing a code family, the binary linear code
C(n, k) is randomly picked from the set of codes which guarantee an effi-
cient decoding. Such code is able to correct up to t errors by means of a
generator matrix G, which is part of the secret key. The public key instead
contains a matrix aimed at the message encoding. This matrix is computed
as G′ = SGP, where S is a random dense k× k non-singular binary scram-
bling matrix and P is a random n× n permutation matrix. By obfuscating
the generator matrix, it is possible to encrypt a plaintext without revealing
any information about the code structure.

Public key: 〈G′〉
Secret key: 〈G,S,P〉

10
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Encryption Given a plaintext message m, the associated ciphertext is
computed as

c = mG′ + e (1.6)

where e is the random error vector with Hamming weight of t and the same
length as m.

Decryption When receiving a ciphertext c, it can be decomposed into

c = mG′ + e = mGSP+ e (1.7)

and with the secret key knowledge it is possible to compute

c′ = cP−1 = mGS+ eP−1. (1.8)

c′ is a codeword of the chosen code affected by t errors, thus it is possible to
correct it obtaining m′ = mGS and thus m = m′S−1G−1.

1.3 Niederreiter Cryptosystem

In [24], Harald Niederreiter developed a code-based cryptosystem, ex-
ploiting the same trapdoor of the McEliece’s, which used Generalized Reed-
Solomon codes as private code. Generalized Reed-Solomon Codes were af-
terwards proven to make the system vulnerable, which instead remains as
secure as McEliece when both use the same family of codes. Its primitive
are described in the following paragraphs.

Key generation The private key is generated from two secret matrices:

• the r × n parity-check matrix H,

• a random non-singular r × r scrambling matrix S.

From these, the public matrix is computed as H′ = SH, which concides with
the private one without allowing efficient decoding.

Public key: 〈H′〉
Secret key: 〈H,S〉

11
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Encryption Each message m is mapped into one or more n-bit strings e

with weight t, which are encoded through the receiver public key:

x = H′eT = SHeT .

Differently from McEliece’s, Niederreiter encryption is deterministic: while
within McEliece cryptosystem some random errors are added to the encoded
plaintext, in Niederreiter it is the error pattern deterministically generated
from the plaintext to be converted in ciphertext.

Decryption Each received message x is efficiently decoded through the
knowledge of the private key H. The first step is to obtain the corresponding
syndrome

s = S−1x = S−1SHeT = HeT .

from which, by means of a syndrome decoding algorithm, is extracted the
error vector. Reverse mapping from e reveals the message m.

Both Niederreiter and McEliece were built in the original works with
code families which are provided with bounded-distance decoders able to
correct up to t faulty bits, thus when adding exactly t error bits the obtained
decryption failure rate (DFR) is zero.

1.4 LEDAcrypt

LEDAcrypt (Low-dEnsity parity-check coDe-bAsed cryptographic sys-
tem) is a public key system candidate to the second round of the NIST’s
contest for the Post-Quantum Cryptography Standardization. It was born
from the combination of the first round proposals LEDApkc and LEDAkem,
which provide, respectively, a Public-Key Cryptosystem (PKC) and a Key
Encapsulation Module (KEM).

LEDAcrypt relies on a QC-LDPC code C(pn0, p(n0−1)), with r = pn0−
p(n0 − 1) = p redundancy symbols, meaning that

• its generator and parity-check matrices are composed by p×p circulant
sub-matrices, where p is an odd prime integer, thus each of these can be
easily represented as a polynomial of F2[x]/〈xp+1〉 having coefficients
equal to the first row entries;

12
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• its parity-check matrix is sparse and can be efficiently decoded applying
a BF-decoder.

Specifically n0 = {2, 3, 4} and p is a prime number such that ordp(2) = p−1.
Using non-algebraic QC-LDPC codes as private codes, this cryptosystem is
able to overcome the fundamental public key size problem of its predeces-
sors. It should be noted that the QC-LDPC private code cannot be coinci-
dent neither equivalent with the public one, as it was in McEliece proposal,
otherwise an attacker could recover the secret key by exploiting the LDPC
characteristic as illustrated in [23].

1.4.1 LEDAkem

The cryptographic primitives of LEDAcrypt KEM are presented in the
next paragraphs.

Key Generation This process begins with the generation of the private
key, by randomly selecting the asserted bits of the parity check matrix H

and of the transformation matrix Q so that the following properties are
respected:

• H is composed of 1× n0 circulant blocks of p× p elements,

• in order to guarantee the invertibility of each block of H, the weight
of each block dv is fixed and odd,

• Q is composed of n0 × n0 circulant blocks of p× p elements,

• the weights of each row/column of Q circulant blocks define a circulant
matrix, thus each weight is fixed and the permanent of each circulant
matrix is equal to m, which must be odd in order to guarantee the
invertibility of Q. The permanent of a n×n matrix A(ai,j) is defined as∑

σ∈Sn

∏n
i=1 ai,σ(i), where Sn is the symmetric group over the matrix.

These characteristics are fundamental to ensure the non-singularity of the
last block of L, which is obtain as

L = HQ = [L0|L1|...|Ln0−1], (1.9)

13



CHAPTER 1. Background

subsequently

M = L−1n0−1L = [M0|M1|...|Mn0−2|Ip] = [Ml|Ip] (1.10)

from which originates the public key. Since the key dimensioning is a relevant
issue in code based cryptosystems, it is convenient to discard the last identity
block, which does not hold any information. Therefore the public key matrix
is the concatenation of (n0 − 1) p× p blocks circulant matrices:

Ml = [M0|M1|...|Mn0−2]. (1.11)

With regard to the keys storage is sufficient to know the TRNG seed fed to
the DRBG which is used to generate the private matrices H and Q, in order
to recompute the private key matrices, and to represent the dense public key
circulant matrix with its dual polynomial form.

Public key: 〈Ml〉
Secret key: 〈H,Q〉

Encryption Being e a random error binary vector of length n = n0p and
weight t, the plaintext coincides with the random generated secret ks =

KDF(e) to be shared with the other party. The ciphertext, which is its
associated p× 1 syndrome vector s, is computed as

s = [Ml|I]eT , (1.12)

where Ml is the public key of the receiver.

Decryption Inferring the secret error vector from the syndrome is possible
in few steps only through the knowledge of the associated secret key, in fact

s = MeT = L−1n0−1Le
T = L−1n0−1HQeT . (1.13)

The first step is to compute the syndrome associated to the expanded error
vector e′ = eQT

s′ = Ln0−1s = HQeT = He′T . (1.14)
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As a result of the LEDAkem efficient decoding procedure, it is not necessary
to compute or store Q−1 to retrieve e from e’, which in fact is derived directly
by syndrome decoding through H while taking into account the effects of Q.
Finally the shared secret can be simply obtained as ks = KDF(e).

It is possible to observe some decoding failures, in general, since said
decoder is not a bounded-distance one, which instead ensures to correct up
to t errors by construction. Hence, the cryptosystem parameters should
be chosen adequately: the decoding radius of the private code should be
sufficiently larger than wH(e ) ≈ mt, due to the sparsity of Q and e. In
the unfortunate case of a decoding failure, the secret key is derived through
hashing a secret value and the ciphertext. Within this strategy, an attacker
in control of composing messages outside of the proper message space will not
be able to distinguish whether the failure regarded the malformed plaintext
or was due to the intrinsic behaviour of the underlining code, thus he will not
be able to draw any conclusion about the decoding abilities of the QC-LDPC
code.

1.4.2 LEDApkc

The primitives of the cryptosystem, which are based on McEliece’s, are
outlined in the following paragraphs along with the LEDApkc general func-
tioning schemes (Figure 1.2). Since McEliece primitives do not guarantee
semantic security, LEDApkc ones have been modified to incorporate the
γ-conversion scheme proposed by Kobara and Imai, which guarantee IND-
CCA21 as shown in Paragraph Kobara-Imai γ-conversion scheme.

Key generation LEDApkc has the same key generation process of LEDAkem,
which is described in section. 1.4.1.

Public key: 〈Ml〉
Secret key: 〈H,Q〉

Encryption Given any information word u as a 1× p(n0 − 1) binary vec-
tor, the corresponding encrypted message is computed, as in the McEliece
version, as

x = uG′ + e = u[Ik|MT
l ] + e (1.15)

1IND-CCA2: indistinguishability under adaptive chosen ciphertext attack.
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where G′ is the systematic generation matrix derived from the public key and
e is a random 1× pn0 binary error vector with Hamming weight t (denoting
the error correction capability of the code). The use of the systematic form
of the generation matrix results in the original message to be exposed in x

and thus to be easily recoverable for an observer.

Decryption Given an encrypted 1 × pn0 binary vector x and the secret
key 〈H,Q〉, the receiver can compute the binary p × 1 syndrome vector s

associated with the message:

sT = (HQ)xT = (HQ)(uG′ + e)T = (HQ)eT . (1.16)

The computed syndrome s can be seen as the syndrome of the expanded error
vector e′ = eQT through H, allowing to recover the original error vector e

by means of an BF-decoding procedure. From 1.15 and knowing e.

x+ e = u[Ik|Ml
T ] (1.17)

meaning that the information word u is represented by the first k = p(n0−1)

bits of the previous vector.

Kobara-Imai γ-conversion scheme

By applying the Kobara-Imai conversion scheme to the previously de-
scribed McEliece primitives in LEDApkc, the cryptosystem achieves IND-
CCA2 security: the enhanced encryption and decryption algorithms are
outlined in Algorithm 1.4.1 and 1.4.2. The improvement is based on the
obfuscation of the information word before the encrypting procedure.

Within the γ-conversion the plaintext ptx is at first prefixed with a con-
stant bitstring const of size lconst and the value of the plaintext length lptx.
The expanded plaintext is then xored with the output of a DRBG seeded
with a TRNG: the result is a perfectly random obfuscatedPtx ready to be
encoded (lines 1-3). The computed obfuscatedPtx is then split into two
bitstrings (line 5):

• the first p(n0 − 1) bits represent the information word iword to be
encoded through the encryption primitive;
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const || lptx || ptx

ptx

DRBGTRNG

Hash u || leftover

CWE

·G
e

c || leftover

ctx

(a) LedaPKC encryption

c || leftover

ctx

·HQ

e

CWD u || leftover

DRBG

const || lptx || ptx

ptx

(b) LedaPKC decryption

Figure 1.2: Ledapkc encryption and decryption schemes.

• the remaining lobfuscatedPtx−p(n0−1) bits form the leftover bitstring.

In order to obtain IND-CCA2 security a new seed from TRNG has to be used
for each new message, so it also has to be sent to the receiver. Of course the
seed needs to be unrecognisable hence, in line 4, it is zero-padded to reach the
same length of the digest of the hash of the obfuscatedPtx and xored with it.
The obtained obfuscatedSeed is then fed to the constant weight encoder
to produce the error vector e (line 8). The goal of the Constant Weigth
Encoding (CWE) function is to generate a vector of fixed length n within
Hamming weight t, thus to allow the paired decryption process, this function
should be bijective. At last the iword is encrypted as c = iword[Ik|MT

l ]+e

and prefixed to the leftover bitstring (lines 6, 10 and 11).
The resulting enhanced decryption procedure operates in reversed order.
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Algorithm 1.4.1: PKC encryption transformation
Input: ptx: plaintext bit-string, with lptx ≥ 0

pkMcE: QC-LDPC based McEliece public key

Output: ctx ciphertext bit-string

Data: n, k, t: QC-LDPC code parameters. n = pn0 codeword size, k = p(n0 − 1)
information word size, t error correction capability, n0 basic block length of the
code, p circulant block size.
Hash: hash function with digest length in bits lhash

lobfuscatedPtx = max
(
p(n0 − 1),

⌈
lconst+lptx

8

⌉
· 8

)
lconst = lseed
liword = p(n0 − 1)
leword = lhash

1 seed← TRNG() // bit-string with length lseed
2 pad← DRBG(seed) // bit-string with length lobfuscatedPtx
3 obfuscatedPtx← ZeroPadByteAligned(const||lenField||ptx)⊕ pad

4 obfuscatedSeed← ZeroExtendByteAligned(seed, lhash)⊕Hash(obfuscatedPtx)
5 {iword, leftOver} ← Split(obfuscatedPtx, liword, lobfuscatedPtx − liword)
6 u← ToVector(iword) // 1× p(n0 − 1) information word vector
7 repeat
8 {e, encodingOk} ← ConstantWeightEncoder(obfuscatedSeed)
9 until encodingOk = true

10 c← EncryptMcE(u, e, pkMcE) // 1× pn0 codeword
11 ctx← ToBitString(c)||leftover // bit-string with lctx = pn0

12 return ctx

Figure 1.3: Description of the KI-γ encryption function adopted to define
the encryption primitive of LEDAcrypt PKC

First of all the ciphertext ctx is split into leftOver and codeword vector c,
from which the error vector e and the iword are obtained (lines 1-5). Line
4 verifies the success of the decoding operation: in fact, there is a chance
of decryption failure due to the use of a non-bounded distance decoder.
Notwithstanding this, the IND-CCA2 property is maintained by making the
decoding failure happen with negligible probability. Subsequently, the value
of the ephemeral seed is retrieved by xoring the result of the constant weight
decoding of e with the digest of the hashing of the concatenation of the
iword and leftOver bitstrings (line 7). In lines 8-10, the extendedPtx,
which correspond to the concatenation of a constant bitstring, the value of
the plaintext length and the original plaintext, is extracted. Finally, if the
decoded value of the first lconst bits of the extendedPtx is different from the
fixed const than the outcome is discarded, otherwise the ptx is returned.
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Algorithm 1.4.2: PKC decryption transformation
Input: ctx: ciphertext bit-string.

skMcE: PKC private key.

Output: ptx plaintext bit-string

Data: n, k, t: QC-LDPC code parameters. n = pn0 codeword size, k = p(n0 − 1)
information word size, t error correction capability, n0 basic block length of the
code, p circulant block size.
const = 0lseed

Hash: hash function with digest length in bits lhash

1 cword, leftOver← Split(ctx, pn0, lctx − pn0)
2 c← ToVector(cword)
3 {u, e, res} ← DecryptMcE(c, skMcE)
4 if res = true and wt(e) = t then
5 iword← ToBitString(u)
6 obfuscatedSeed← ConstantWeightDecode(e)
7 seed← ZeroTrim(obfuscatedSeed⊕Hash(iword||leftOver), lseed)
8 pad← DRBG(seed)
9 extendedPtx← obfuscatedPtx⊕ pad // extendedPtx should equal

const||lenField||ptx
10 {retrievedConst, ptx} ← ZeroTrimAndSplit(extendedPtx, lconst, llenField)
11 if retrievedConst = const then
12 return ptx

13 return ⊥

Figure 1.4: Description of the KI-γ decryption function adopted to define
the decryption primitive of LEDAcrypt PKC

1.4.3 Efficient Decoding

A noticeable characteristic of LEDAcrypt is its efficiency in decoding in-
formation due to its Q-decoder, which is an improved version of a BitFlipping
decoder arranged specifically for it and presented in [2].

As explained before the BF-decoder is a fixed-point algorithm which
selects the most probable incorrect bits and flips them at each round until
a zero-valued syndrome is obtained. The Q-decoder mechanism, outlined
in Algorithm 1.4.3, is the same as the previously described BF-decoder, but
instead of recovering the expanded error vector e’ it retrieves directly e. This
is possible since the positions of the error to be corrected are not uniformly
distributed, but depend on Q, being e′ = eQT , which is known to the
decoder.

The first is step, as in BF-decoding, is the unsatisfied parity checks com-
putation (lines 5-9). In lines 12-17, the Q-decoder takes into account the
asserted positions of Q and computes the similarity between patterns of bits
in the rows of Q and the unsatisfied parity checks vector. If the estimate is
above a given threshold, which is retrieved from a precomputed table (lines
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Algorithm 1.4.3: Q-decoding
Input: s′: QC-LDPC syndrome, binary vector of size p

Htr: transposed parity-check matrix, represented as an n0 × dv integer matrix
containing the positions in {0, 1, . . . , p− 1} of the set coefficients in the n0 blocks
of HT = [HT

0 | HT
1 | . . . | HT

n0−1]

Qtr: private matrix, represented as an n0 ×m, m =
∑n0−1

i=0 mi integer matrix
containing the positions in {0, . . . , n0p− 1} of the asserted coefficients in QT rows

Output: e: the decoded error vector with size n0p
decodeOk: Boolean value denoting the successful outcome of the decoding action

Data: imax: the maximum number of allowed iterations before reporting a decoding
failure
LutS: piecewise constant function yielding the value of the bit flipping threshold of
similarity, given the syndrome weight. It is represented as an array of (weight,
threshold) pairs for all the boundary values of the piecewise function.

1 iter← 0
2 repeat
3 unsat_pc← [0 | . . . | 0] // array of n0p counters of unsatisfied parity checks
4 currSynd← s′

5 for i = 0 to n0 − 1 do
6 for exp← 0 to p− 1 do
7 for h← 0 to dv − 1 do
8 if getBlockCoefficient(currSynd, (exp+ Htr[i][h]) mod p) = 1 then
9 unsat_pc[i · p+ exp]← unsat_pc[i · p+ exp] + 1

10 w← max({w | (w, th) ∈ LutS ∧ w < weight(currSynd)})
11 th← th | (w, th) ∈ LutS

12 for i← 0 to n0 − 1 do
13 for exp← 0 to p− 1 do
14 similarity← 0
15 for k← 0 to m− 1 do

// qrow contains the positions of the ones of a row of Q
rotated intra-block by exp

16 qrow[k]← Qtr[i][k]− (Htr[i][k] mod p) + ((exp+ Qtr[i][k]) mod p)
17 similarity← similarity+ unsat_pc[qrow[k]]
18 if similarity ≥ th then
19 e[i · p+ j]← e[i · p+ j]⊕ 1
20 for k← 0 to m− 1 do
21 for h← 0 to dv − 1 do
22 idx← (Htr[qrow[k]/p][h] + (qrow[k] mod p)) mod p
23 s′[idx]← s′[idx]⊕ 1

24 iter← iter+ 1

25 until s′ 6= 0 and iter < imax

26 if s′ = 0 then
27 return e, true
28 return e, false

10 and 11), then both e and its related syndrome s are updated accordingly
(lines 18-24) and the algorithm proceeds with the next iteration.

Notice that it is possible to leverage the sparsity of the matrices and thus
store only the position of the asserted bits, reducing significantly the storage
requirements.

A further optimization can be achieved by parallelizing parts of this se-
quential version. This is feasible since the instructions inside the Q-Decoder
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loops are independent from each other and only dependent on the loop in-
dexes, which are fixed by the system. A straightforward way to accomplish
so is by means of vector instructions, which are capable of performing the
same operation over multiple elements.

1.5 Vector Architectures

Vector architectures are able to operate over multiple data at the same
time, that is why, following Flynn’s taxonomy described in [10], they are
also called SIMD (Single Instruction stream, Multiple Data stream) archi-
tectures. SIMD computers exploit data-level parallelism by applying the
same operation to multiple items of data in parallel: each processor has its
own data memory, but there are only a single instruction memory and a
control processor, which fetches and dispatches instructions. SIMD instruc-
tions strength consists in the convenience of programming in a sequential
way, while achieving parallel speed-up. Obviously, in order to work prop-
erly these architectures have specifically designed components, such as vector
register, vector functional units and vector load and store units. This type
of architecture retrieves data from memory, stores it in vector registers, per-
forms the same operation on every element leveraging its vector functional
units, and saves the results back into memory: in this way it increases the
number of instruction per clock cycle.

Nowadays most of computation, especially scientific operations and image
or sound processing ones, takes advantage of the so called SIMD Extensions.
Differently from earlier vector architectures, SIMD extended processors are
capable of operate on sub-parts of a vector element. In particular, Arm Neon
technology is a SIMD architecture extension for the ARM Cortex-A series
and Cortex-R52 processors.

1.5.1 ARM Neon

Usually microprocessor instructions process data by

• Single Instruction Single Data: each operation specifies the single data
source to process and hence processing multiple data items requires
multiple instructions
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(c) Data storage convention in memory

Figure 1.5: ARM register and memory conventions.

• Single Instruction Multiple Data

– vector mode: an operation can specify that the same process-
ing occurs for multiple data sources, in ARM terminology this is
called Vector Floating Point Extension and has been deprecated
and replaced with Neon technology

– packed data mode: an operation can specify that the same pro-
cessing occurs for multiple data fields stored in one large register,
thus a single instruction operates on all data values in the large
register at the same time, in ARM terminology this is called Ad-
vanced SIMD technology or Neon technology.

Neon registers are considered as vector of elements of the same data type
allowing to perform the same operation on every lane of the vector at the
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same time, thus there cannot be a carry or overflow from one lane to another.
In particular, as shown in Figure 1.5, Neon instructions allow up to:

• 16x8-bit, 8x16-bit, 4x32-bit, 2x64-bit integer operations

• 8x16-bit, 4x32-bit, 2x64-bit floating-point operations.

In fact, in the Neon extension, the data is organized into very long registers
which are composed of elements of 8, 16, 32 or 64 bits. It is possible to
operate over 2 different kind of long registers, 64 bit D register and 128 bit
Q register, which alias each other: D1 corresponds to the higher half of Q0
while D0 corresponds to its lower half, as represented in Figure 1.5. For this
reason, each Neon unit register file can be seen as 16 128-bit Q (quadword)
or 32 64-bit D (doubleword) registers.

A convenient way to leverage these vectorize processors is by means of the
so called Neon intrinsics: function calls which are replaced by the compiler
with the appropriate sequence of Neon assembly instructions. Their strength
lies in offering as much control as writing assembly language, but leaving the
allocation of registers to the compiler. The header file needed to use these
functions with the GCC and LLVM compiler suites is arm_neon.h.

Neon vector data types, which are summarized in Table 1.1, are named
according to the <type><Block Size>x<Lanes Number>_t pattern, for ex-
ample int32x4_t describe a vector of four 32-bit element of type int. Some
Neon instructions support the polynomial (poly_t) type, which represents a
binary polynomial in x of the form bn−1x

n−1+ · · ·+ b1x+ b0 where bk is k-th
bit of the value. The same kind of nomenclature is applied to intrinsics in-
struction, which follow the pattern <opname><flag>_<Scalar Type><Block

Size> (possible options are illustrated in Table 1.2), for example vaddq_-

u64 is an add operation over two 64x2 vector of unsigned type (the q flag
indicates a Q register hence 128-bit operand).

Below are explained the intrinsic functions employed in this thesis code-
base, conveniently divided per instruction class.

Data movement between registers

uint64x2_t vdupq_n_u64(uint64_t value): This instruction duplicates the
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Table 1.1: This table illustrates the possible Neon vector data types which
are defined following the pattern <type><Block Size>x<Lane Number>_t.
For example poly64x2_t contains a polynomial variable of size 128 bit split
in two 64 bit chunks.

Type Size Block Size × Lanes Number

poly, int, uint, float
64 bits 64x1, 32x2, 16x4, 8x8
128 bits 64x2, 32x4, 16x8, 8x16

Table 1.2: This table illustrates the possible Neon vector operation flags
and types which are defined following the pattern <opname><flag>_<Scalar
Type><Block Size>. For example, veorq_s16 performs a xor operation over
two vectors of length 128 bits working in parallel on 8 lanes of 16 bit integer
value, while veor_s16 performs the same operation but on 4 16-bit integer
lanes.

Flag Scalar Type Block Size

q iff 128-bit p (poly), s (int), u (uint), f (float) 8,16,32,64

specified value into each element of a vector, and writes the result to the des-
tination SIMD&FP register.

uint64x2_t vcombine_u64 (uint64x1_t low, uint64x1_t high): This in-
struction joins two smaller vectors into a single larger vector.

uint64_t vgetq_lane_u64 (uint64x2_t v, const int lane): This instruc-
tion reads the unsigned integer, in the specific lane of the source vector reg-
ister and writes the result to the destination general-purpose register.

uint64x2_t vcgeq_u64 (uint64x2_t a, uint64x2_t b): This instruction
compares each vector element in the first source vector register with the cor-
responding vector element in the second source vector register and if the first
unsigned integer value is greater than or equal to the second unsigned integer
value sets every bit of the corresponding vector element in the destination
vector register to one, otherwise sets every bit of the corresponding vector
element in the destination vector register to zero.

uint64x2_t vsetq_lane_u64 (uint64_t a, uint64x2_t v, const int lane):
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This instruction copies the vector element of the source vector register to the
specified vector element of the destination vector register.

uint64x1_t vget_high_u64 (uint64x2_t a): This instruction duplicates
the higher part of a vector register, and writes it to the destination vector
register.

uint64x1_t vget_low_u64 (uint64x2_t a): This instruction duplicates the
lower part of a vector register, and writes it to the destination vector register.

Vector Arithmetic

uint64x2_t vaddq_u64 (uint64x2_t a, uint64x2_t b): This instruction
adds corresponding 64-bits elements in the two source vector registers, places
the results into a vector, and writes the vector to the destination vector reg-
ister.

uint64x2_t vandq_u64 (uint64x2_t a, uint64x2_t b): This instruction
performs a bitwise AND between the two source vector registers, and writes
the result to the destination vector register.

uint64x2_t vorrq_u64 (uint64x2_t a, uint64x2_t b): This instruction
performs a bitwise OR operation between the two source vector registers, and
places the result in the destination vector register.

uint64x2_t veorq_u64 (uint64x2_t a, uint64x2_t b): This instruction
performs a bitwise Exclusive OR operation between the two source vector
registers, and places the result in the destination vector register.

poly128_t vmull_p64 (poly64_t a, poly64_t b) : This instruction mul-
tiplies corresponding elements in the lower half of the polynomials in the two
source vector registers, places the results in a vector, and writes the vector
to the destination vector register. The destination vector elements are twice
as long as the elements that are multiplied.
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poly128_t vmull_high_p64 (poly64x2_t a, poly64x2_t b): Same as pre-
vious one but for lower halves.

Memory Load and Store

uint64x2_t vld1q_u64 (uint64_t const * ptr): This instruction loads
multiple single-element from memory and writes the result to one vector
registers.

void vst1q_u64 (uint64_t * ptr, uint64x2_t val): This instruction stores
elements to memory from one vector register.

Shift

uint64x2_t vshrq_n_u64 (uint64x2_t a, const int n): This instruction
reads each vector element in the source vector register, right shifts each re-
sult by an immediate value, writes the final result to a vector, and writes the
vector to the destination vector register. All the values in this instruction
are unsigned integer values. The results are truncated.

uint64x2_t vshlq_n_u64 (uint64x2_t a, const int n): Same as previ-
ous one but shifts left.

Permute

uint64x2_t vextq_u64(uint64x2_t a, uint64x2_t b, const int n): This
instruction extracts the lowest vector elements from the second source vector
register and the highest vector elements from the first source vector register,
concatenates the results into a vector, and writes the vector to the desti-
nation vector register vector. The index value specifies the lowest vector
element to extract from the first source register, and consecutive elements
are extracted from the first, then second, source registers until the destina-
tion vector is filled.

uint64x2_t vzip1q_u64 (uint64x2_t a, uint64x2_t b): This instruction
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3 2 1 0 3 2 1 0 1 0 3 2

(a) vextq_u32(A,B,2)

3 2 1 0 3 2 1 0 3 3 2 2

(b) vzip1q_u32(A, B)

3 2 1 0 3 2 1 0 1 1 0 0

(c) vzip2q_u32(A, B)

3 2 1 0 3 2 1 0 3 3 1 1

(d) vtrn1q_u32(A, B)

3 2 1 0 3 2 1 0 2 2 0 0

(e) vtrn1q_u32(A, B)

Figure 1.6: Permute Instructions over vectors of four 32-bit elements.

reads adjacent vector elements from the upper half of two source vector regis-
ters as pairs, interleaves the pairs and places them into a vector, and writes
the vector to the destination vector register. The first pair from the first
source register is placed into the two lowest vector elements, with subse-
quent pairs taken alternately from each source register.

uint64x2_t vzip2q_u64 (uint64x2_t a, uint64x2_t b): Same as previ-
ous one but for lower halves.

uint64x2_t vuzp1q_u64 (uint64x2_t a, uint64x2_t b): This instruction
reads corresponding even-numbered vector elements from the two source vec-
tor registers, starting at zero, places the result from the first source register
into consecutive elements in the lower half of a vector, and the result from
the second source register into consecutive elements in the upper half of a
vector, and writes the vector to the destination vector register.

uint64x2_t vuzp2q_u64 (uint64x2_t a, uint64x2_t b): Same as previ-
ous one but for odd-numbered vector elements.
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uint64x2_t vtrn1q_u64 (uint64x2_t a, uint64x2_t b): This instruction
reads corresponding even-numbered vector elements from the two source vec-
tor registers, starting at zero, places each result into consecutive elements of
a vector, and writes the vector to the destination vector register. Vector ele-
ments from the first source register are placed into even-numbered elements
of the destination vector, starting at zero, while vector elements from the
second source register are placed into odd-numbered elements of the desti-
nation vector.

uint64x2_t vtrn2q_u64 (uint64x2_t a, b): Same as previous one for
odd-numbered vector elements.
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Chapter 2

State of the Art

The first half of this chapter explains the details of the constant weight
encoding problem and the different known strategies to approach it: from
the exact but inefficient solution given by means of combinatorial number
systems moving towards improved strategies such as the one implemented
in LEDAcrypt. Relevant works have been done by Sendrier, which in [27]
proposes an approximated but highly efficient solution and then by Heyse
who, in [14], takes advantage of Sendrier’s idea to obtain a constant weight
encoder implementation which is feasible for a microcontroller.

The second half concerns the optimizations which can be apply specifi-
cally to the implementation of code-based cryptosystems employing low den-
sity parity check codes, as mainly suggested by the work [9] of Gueron and
Drucker.

2.1 Constant Weight Encoding Techniques

The constant weight encoding problem concerns the conversion of an ar-
bitrary binary string s into another binary string e characterized by length n

and weight t, which in the LEDAcrypt case represent respectively the code
length and the code error correction capacity. In other words, a constant
weight encoder (CWE) is responsible for the generation of a bijective map-
ping from random binary strings to the set of weight t, n bit long strings,
which can be thought of as elements of the set of

(
n
t

)
combinations.

While in the source coding domain the challenge is how to obtain high
computational efficiency, in the applied cryptography field a fundamental
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aspect to consider is also how the constant weight strings are distributed:
since the bijective property should hold for the desired encoding, the output
value distribution must match the input one, which is a uniform distribution
over all the possible input binary strings. Hence, using the CWE algorithm
for cryptographic purposes, it is critical to be able to produce a uniform
distribution of the asserted bits over the output strings. Therefore, the main
characteristics that the CWE should have are:

• efficient direct and inverse computations,

• uniform distributions of the t ones over all the n positions,

• low failure rate (ideally zero).

How to efficiently perform constant weight encoding is a problem of sig-
nificant interest in the field of syndrome-based cryptosystems.

Considering s as the binary representation of a positive integer number,
the straightforward approach is to create a mapping between the input and
combinatorial number systems. Such conversion requires a computational
effort almost equivalent to the computation of

(
n
t

)
, which severely impacts

LEDAcrypt performance when calculated with its designated n and t. A sec-
ond encoding technique trades off precision with performance by exploiting
the Golomb’s compression strategy. Both procedures are illustrated next.

2.1.1 Combinatorial Number System

The exact solution to the constant weight issue, proposed by Cover in [7],
is combinatorial and consists in indexing each element of Wn,t, which is the
set of binary words of length n and weight t, with an integer in the interval
[0,
(
n
t

)
− 1]. In other words, within this approach each binary input string

s, interpreted as its natural binary encoding i, defines a unique combination
of binomial coefficients (c0, c1, ..., ct−1). Thus for every input exists a unique
sequence of coefficients where each integer ci indicates the position of one
asserted bit out of t in the fixed weight output string within a little-endian
convention. Distinct numbers correspond to distinct combinations which
are produced in lexicographic order: the mapping from an integer i to its
associated combination (c0, c1, ..., ct−1) is defined as ranking, while its inverse
procedure, i =

(
c0
1

)
+
(
c1
2

)
+ · · · +

(
ct−1

t

)
, is called unranking, since the rank
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Algorithm 2.1.1: ExactConstantWeightEncode(s)
Input: s: bitstring to be encoded, ToInteger(s) <

(n
t

)
Output: e output constant weight vector of length n0p and weight t

Data: n = n0p: length of the constant weight output word,
t: weight of the output word,
c: vector storing the extracted coefficients

1 v ← ToInteger(s)
2 if v = 0 then
3 for i← 0 to t− 1 do
4 ci ← i
5 return IdxSeqToConstantWeightWord(c)
6 if v = 1 then
7 for i← 0 to t− 2 do
8 ci ← i
9 ct−1 ← t

10 return IdxSeqToConstantWeightWord(c)
11 b← 1 // b accumulates the binomial value, starts at

(t
t

)
12 k ← t− 1
13 while b < v do

// Estimate the largest binomial-choose-t smaller than v
14 k ← k + 1

15 b← b× k+1
k+1−t

// b is updated to
(b+1

t

)
16 ct−1 ← k
17 i← t

18 b← b× k+1−t
k+1

// roll back b to the largest
(b
t

)
smaller than v

19 v ← v − b
20 if v 6= 0 then
21 i← i− 1
22 while i > 0 do
23 b← b× i+1

k+1−(i+1)
// b is updated from

(b
k

)
to

( b
k−1

)
24 while b > v do
25 b← b× k−i

k
// b updated from

(k
i

)
to

(k−1
i

)
26 k ← k − 1

27 v ← v − b
28 ci−1 ← k
29 i← i− 1
30 if v = 0 then
31 break

32 while i > 0 do
33 ci−1 ← i− 1
34 i← i− 1

35 return IdxSeqToConstantWeightWord(c)
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of a combination corresponds to the index i which uniquely identifies it in
the set Wn,t.

Given a positive integer, the procedure outlined in Algorithm 2.1.1 de-
termines which permutation is the one associated with the input over the
lexicographically ordered set of all the possible

(
n
k

)
ones. The algorithm

starts by searching for the highest binomial coefficient ct−1 which represents
the position of the last 1 in the output string, proceeds by iteratively iden-
tifying the other t − 1 coefficients and finally generates a binary string of
length n with t ones in the positions indicated by each coefficient. The
detailed procedure is explained next.

The first step consists in considering the input bitstring s as the natural
binary representation of an integer value v from which the unique combina-
tions of t asserted bits will be generated. Since combinations are generated in
lexicographic order, in lines 1-10 a value v equals to 0 or 1 is directly associ-
ated respectively with (0, 1, ..., t−2, t−1) and (0, 1, ..., t−2, t) combinations,
which are in fact the first combinations in the ordered set. For input inte-
ger v greater than one, the computation of the corresponding combination
starts from the estimation of the largest binomial b such that b ≤ v (lines
11-15). This is achieved by exploiting the following incremental relations:(

n
k+1

)
=
(
n
k

)n+1−(k+1)
k+1 ,

(
n+1
k

)
=
(
n
k

)
n+1

n+1−k . In the correlated parameter k,
updated at each iteration, is accumulated the value of the first coefficient
ct−1 which represent the farthest one position (lines 14 and 16). If b 6= v,
the algorithm continues to search for the next coefficients through sequential
updates of b and k, until the closest binomial to the decreased value of v

is found (lines 17-29). Specifically, in lines 24-26 the binomial is decreased
from b to

(
k
i

)
to
(
k−1
i

)
until the next coefficient ci−1 is derived. When found,

the v value is decreased again by b and the number of remaining coefficients
i decremented (lines 26-29). This process is iterated until i or v are null. Fi-
nally, the missing i coefficients are selected starting from i− 1 in descendent
order. The obtained coefficients represent the t positions of the asserted bits
of the generated constant weight bitstring e.

The inverse procedure, given the coefficients combination (ct, ..., c2, c1),
consists in the computation of the associated rank i =

(
c0
1

)
+
(
c1
2

)
+· · ·+

(
ct−1

t

)
and in its following conversion into the natural binary representation.

Although being an optimal source coding technique, this strategy has a
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quadratic complexity in the input length, which is log2
(
n
t

)
. For this reason, as

said earlier, this solution has a negative impact on LEDAcrypt performances
for which n is in the range of ten of thousands and t in the hundreds range.

2.1.2 Golomb Coding

In [27], Sendrier presents a new algorithm for encoding information in
words with fixed length and weight which has linear complexity in log2

(
n
t

)
,

which is the input length. This is obtained through a variable length encod-
ing at the cost of a small loss of (information theoretic) efficiency.

The idea is to consider the arbitrary binary input string as the result of
a very efficient run length encoding of a sequence of integers. In particular,
it is thought as encoded with Golomb’s method which is known for its very
high efficiency. For this reason a large number of arbitrary binary strings
can be considered as valid Golomb encoded strings.

A run length encoding algorithm achieves a lossless data compression by
simply concatenating the efficient encodings of the lengths of the different
symbols runs, of course longer the lengths higher the compression. For exam-
ple, the string AAAAAAAABBBAAABBBBBBBBBBBBBBA, given that it is composed
of A and B symbols, will be encoded into 8A3B3A14B1A, allowing to store only
11 symbols instead of 29.

The output of the constant weight encoding, which is assumed as the
input of the decoding method by Golomb, is a binary string characterized
by the fact that a symbol is far more frequent than the other and thus it
is encoded as the sequence of the lengths of the runs of the most common
symbol. In particular, given the characteristics of the error vectors, the
0 symbol is by far more common than 1. Denote with p the probability
Pr(x = 0) where x is the random variable modelling the values of the bit
string and with l the length of a run of zeroes. The probability of a run of
length l is pl(p− 1), i.e. the random variable modelling the bit values of the
string at hand is modelled as a geometric distribution. The idea is to encode
the length of these runs as the multiple of a value d, which depends on the
symbols distribution. With the aim of achieving the best compression, by
encoding as much information as possible in the minimum number of bits,
it is fundamental to choose a proper value for the d parameter. For this
reason, d can be approximated to the integer rounding of the median of
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the distribution of the zero runlengths. If we consider the input string as a
sequence of samples from a Bernoulli process where the random variable x

represents the value of each bit in the input sequence, e.g. x = 0 being a
successful event and x = 1 the unsuccessful one, and set P (x = 0) = p, then
d should verify the following inequality:

pd + pd+1 ≤ 1 < pd−1 + pd.

Given an estimate for the value of d, the second step of Golomb’s algo-
rithm divides the length of each run of 0s by d, obtaining a quotient q and a
remainder r. In order to best compress the information, every run is encoded
as the concatenation of the unary representation of q (which will require a
few bits if d is a good estimate) and the truncated binary representation of
r, which is the densest, prefix-free encoding for r. It has been arbitrarily
chosen to encode the quotient with a sequence of 1 symbols terminated by a
single 0 bit which is used as a separator between the two values of q and r.
Note that the alternative convention, i.e. employ a sequence of zeroes with
a 1 stopbit, is also a valid one. The value of r is instead encoded with the
so-called truncated binary encoding which is a prefix-free encoding, meaning
that there is not a whole output sequence which is a prefix of any other one.
Given an integer x to be encoded such that 0 ≤ x < n, where n is the size of
the source alphabet, let k be blog2 nc (i.e. 2k < n < 2k+1) and u = 2k+1−n:

• if x < u then x is encoded in its natural binary encoding using k bits;

• else if x ≥ u then x is encoded as the natural binary encoding of x+u

using k + 1 bits.

So truncated binary encoded words will have length of k or k+1 bits (variable
length encoding) based on the starting value. An example of how each
element can be represented when n = 5 can be found in Table 2.1a.

The optimal value for d, that is the one which guarantee the maximum
compression and thus which allow achieving the highest efficiency, can be
determined only by means of an exhaustive search on every possible d value
for each possible run length, which is a highly computational demanding
process. As stated in Golomb’s paper, choosing d such that pd ≈ 1

2 holds,
where pd is the probability for any string of zeros to have length greater

34



2.1. Constant Weight Encoding Techniques

decimal natural truncated
value binary binary

0 0 00
1 1 01
2 10 10
3 11 110
4 100 111

(a)

4 →1113 →110

0 1
2 →10

0 1

1 →010 →00

0 1

0 1

(b)

Figure 2.1: The left table shows how each element is represented in standard
and truncated binary form, when the source alphabet is {0, 1, 2, 3, 4} and
the associated parameter are n = 5, k = 2, and u = 22+1 − 5 = 3. The right
tree highlight the prefix-free property of the same code.

or equal to d, allows to achieve the string compression within a very little
penalty with respect to the optimal d choice. Hence, within this choice of
d = b− 1

log2(p)
c, a run of length l = d + n is only half as likely as a run of

length l = n:

Pr(l = n) = pn(1− p)

Pr(l = d+ n) = pd+n(1− p) = 1
2p

n(1− p)

Pr(l = d+ n) = 1
2 Pr(l = n)

Thus it follows that the dense encoding for the d+ n run is expected to
be just one bit longer than the codeword for runlength d.

For the sake of clarity, the following lines outline the steps of the encoding
procedure of a single run with a running example.

1. First it is necessary to estimate d, a parameter representing the 0’s
density in the string;

2. then each length l of 0s is divided by d, obtaining a quotient q and a
remainder r;

3. finally the encoding is the concatenation of the unary representation
of q, a single 0 digit and the truncated binary representation of r.

Example 2. Given the bitstring 0000000000010000000 to be encoded with
d = 6, n = 11, each run produces the following values:

• q1 =
l
d = 11

6 = 1 with r1 = 5
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• q2 =
l
d = 7

6 = 1 with r2 = 1.

The parameter for the truncated binary representation are k = blog2(d)c = 2

and u = 2k+1−d = 2, being r1 > u it is encoded as the binary representation
of r1 + u = 7. Thus, the final Golomb encoded string is the concatenation of
the encoding of q1, r1 10111 and the encoding of q2, r2 1001, thus 101111001.

In [27] Sendrier exploits Golomb’s efficient compression method which allows
him to achieve a constant weight encoding using the minimum number of
bits possible. We now describe the approach to the estimation of d proposed
by Sendrier. The probability of a run of zeroes of length l, 0 ≤ l ≤ n− t− 1,

of appearing in the CW string is equal to Pl =

(n−l−1
t−1

)(n
t

) since there are
(
n
t

)
possible constant weight strings and only

(
n−l−1
t−1

)
ways to place the remaining

t − 1 ones in the places left free by the l-long run of zeroes. Therefore
the probability of l exceeding the set threshold d is then Pr(l > d) = 1 −∑d−1

l=0 Pl =
(n−d

t

)(n
t

) . Sendrier states that choosing Pr(l > d) ≈ 1
2 maximizes the

amount of dense strings which given a length can be encoded into constant
weight ones. The ideal minimum length of a compressed sequence requires
the bits for the truncated binary representation of r plus zero or one bit for
the unary representation q: this means that d should be set in a way that
either every runlength is smaller than d itself, thus requiring zero bit for q,
or not larger than 2d, thus requiring exactly one bit for q. In other words,
on average the length of the runs should be half of the time shorter than d

and the remaining half just a bit longer.
Since encoding a run-length l = q · d + r will generate a string of length
blog2(d)c+1+ q bits if r ≤ 2b − d, otherwise dlog2(d)e+1+ q, the expected
length of an encoded generic run-length l as a function of d is

E[L(d)] =
bl/dc∑
q=0

(
(2b−d)−1∑

r=0

(blog2(d)c+ 1 + q) Pr(l = q · d+ r)+

d−1∑
r=(2b−d)

(blog2(d)c+ 2 + q) Pr(l = q · d+ r)

)
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=

bl/dc∑
q=0

(
(blog2(d)c+ 1 + q)

(2b−d)−1∑
r=0

Pr(l = q · d+ r)+

(blog2(d)c+ 2 + q)

d−1−(2b−d)∑
x=0

Pr(l = q · d+ (2b − d) + x)

)

which can be simplified in the equivalent form

E[L(d)] = blog2(d)c+1+q+0·
bl/dc∑
q=0

Pr(l ≤ q·d+(2b−d))+1·
bl/dc∑
q=0

Pr(l > q·d+(2b−d))

= blog2(d)c+ 1 + q +

bl/dc∑
q=0

Pr(l > q · d+ (2b − d))

since the first blog2(d)c+1+ q bits will always be present and the additional
last bit depends on the value of l. Assuming Pr(l > q · d + (2b − d)) ≈
1
2 , the previous equation can be further reduce to E[L(d)] ≈ log2(d) +

1
1−Pr(l>qd+(2b−d)) , which is minimized by

d =
n

2t ln(2)
, (2.1)

as stated in Sendrier’s publication [27]. This choice of the parameter reaches
an encoding efficiency greater than 98% which is measured as the entropy of
the constant weight string, considered as an uniform pick over

(
n
t

)
, divided

by the average length of the dense encoding E[L(d)].

To measure the efficiency of the encoding, we consider the quantity η

obtained dividing the length of the dense string by the entropy of the source
of CW strings endowed with a random distribution over all the possible CW
strings themselves: picking d = n

2t ln(2) results in η ≥ 98%.

In order to simplify the compression and decompression procedures, it
is possible to choose d as the closest power of two to n

2t ln(2) , i.e. d =

2
dlog2 n

2t ln(2)
e or d = 2

blog2 n
2t ln(2)

c. Notwithstanding this approximation the
efficiency achievement is substantially unaltered (η ≥ 98%).
The computation of the d parameter can be performed just once at the be-
ginning of the algorithm or can be re-estimated after the encoding of each
run and thus adapted to the remaining coverable length and weight of the

37



CHAPTER 2. State of the Art

Algorithm 2.1.2: ApproximateConstantWeightEncode(s)
Input: s: encoded bitstring of length l

Output: v: constant weight vector of length n0p and weight t

Data: x: vector containing the positions of the set bits,
dist: vector containing the lengths of zero runs among set bits,
d: density of zeros in s,
q: value of unary-encoded quotient,
r: value of truncated binary encoded remainder.

1 for i← 0 to t− 1 do
2 (q, c)← ExtractNextQ(s, c) // Counts the number of 1-bit until a 0-bit is

found or c = l; if there are not enough unread bits left in s, pads it
with 0-bits

3 (r, c)← ExtractNextRPadded(s, c) // Converts next u or u− 1 bits from
truncated binary representation to the integer value r; if there are
not enough unread bits left in s, pads it with 0-bits

4 dist[i]← q · d+ r

5 if c < l then
6 return ExcessInputFailure
7 x[0]← dist[0]
8 for j ← 1 to t− 1 do
9 x[j]← x[j − 1] + dist[j] + 1

10 if x[j] ≥ n0p then
11 return OutBoundFailure
12 return v← SetCoefficients(x)

output. When choosing an adaptive computation of d, which makes sense
only in case the run lengths are dependent one on another (as it is the case
when they are part of a constant-length, constant-weight string), Sendrier
suggests to set the new d equal to the largest power of two lesser of equal to
λn

t where λ is a value representing the transformation coefficient between the
natural and the base two logarithms. Depending on n and t, λ needs to be
tuned, by trying different approximation, and according to Sendrier is best
when between 0.6 and 0.7. Practical examples of high efficiency encodings,
η ≥ 99%, are given with λ = 0.67.

LEDAcrypt implementation of the CWE exploits Golomb’s decoding pro-
cedure to construct the t-weighted string of length n0p from the input bistring
s. In Algorithm 2.1.2 it is possible to identify the three main parts which
are iterated for each of the t encoded runlength: 1. extract the unary value
of the quotient q and convert it in its integer value (line 4); 2. extract and
decode the value of the remainder r (line 5); 3. compute the position of the
1 bit which ends the 0-run (lines 6).

As previously explained achieving an exact mapping between arbitrary
binary string and constant weight ones significantly increases the execution
time required by the function. Hence Algorithm 2.1.2 trades off precision
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Algorithm 2.1.3: ApproximateConstantWeightDecode(v)
Input: v: constant weight vector of length n0p and weight t.

Output: s: encoded bitstring.

Data: dist: vector containing the lengths of zero runs among set bits,
d: density of zeros in s,
q: value of the quotient,
r: value of the remainder.

1 dist← ExtractRuns(v) // Returns a vector of t 0-runlegths
2 for i← 0 to t− 1 do
3 q ← dist[i]

d

4 s←WriteUnary(s, q) // WriteUnary(B,x) appends the unary
representation of x to the bitstring B

5 s←Write(s, 0) // Write(B,b) appends the bit b to the bitstring B

6 r ← dist[i] mod d
7 s←WriteTruncatedBinary(s, r) // WriteTruncatedBinary(B,x) appends

the truncated binary representation of x to the bitstring B

8 return s

with efficiency: not all the string received in input by the CWE can be seen
as Golomb encoded and thus the process of CWE (which correspond of a
Golomb decoding) might fail. The actual algorithm can fail for two different
reasons: the approximated value of the d parameter cause the algorithm
failure by decoding a length which would place a set bit out of the fixed
length, constant weight string, LengthOutOfBounds, or a prefix of the input
string can be decoded as t run lengths already, thus leaving some of the
input bits of the dense string out of the information encoded in the constant
weight one, InsufficientInfoEncoded. These are issues not solvable within
the CWE function, hence the cryptosystem only solution is to restart the
encryption process in order to obtain a new random seed and thus a new
CWE input value (see Algorithm 1.4.1 for further details).

Algorithm 2.1.3 reports the Constant Weight decoding procedure which
recovers the dense binary string starting from a constant weight one. The
algorithm retrieves the length of the t 0-runs and store them in the dist vec-
tor. Each of these is then Golomb-encoded into the corresponding quotient
and remainder representations and appended to the output bitstring s.

Note that in both the description of Algorithm 2.1.2 and 2.1.3 the d

parameter is estimated only once before the algorithm is run. In the CWE
procedure is possible to adopt an adaptive d solution in which the estimate of
d is recomputed before each iteration relying on the number of ones left to be
placed ones and the remaining available positions pos in the constant weight
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string. Obviously, in this case, the same estimates of d have to be adopted
also in the CWD algorithm: at the beginning of each i-th iteration d is
recomputed based on pos and ones and at the end of the same iteration both
these value should be updated as pos = pos−dist[i]+1 and ones = ones−1.

In Chapter 3 we will propose a method to quantify the extent of the CWE
failures both in terms of output uniformity and failure rate, and delineate
possible mitigation strategies.

2.2 Low-Reiter

This section describes an implementation of the CWE algorithm which
aims at further optimizations in order to run on a constrained device.

In [14], Heyse investigates the efficient implementation of the Nieder-
reiter scheme on very constrained micro controllers and compares it with
alternative public key schemes, such as RSA and ECC. The chosen micro
controller is an 8-bit AVR ATxMega256, which is suitable for many embed-
ded system applications. This particular choice is feasible since operations
on binary codes do not require computationally expensive multi-precision
integer arithmetic as in cryptosystems based on the discrete logarithm or
the factorization problems.

On the other hand, it has to be taken into account that the main downside
of code-based cryptography is the large keys size, which of course becomes a
significant problem when working with limited memory as in the chosen mi-
cro controller. In fact, the parameters chosen for Low-Reiter implementation
(Goppa code with m = 11, n = 2048, k ≥ 1751, t = 27), which guarantee the
same security level of an 80 bit key size in a symmetric cipher, generate a key
size of 374 kB, which is too large to be efficiently stored inside the chosen
hardware. In addition it is necessary to use secure on-chip key memories,
whose cost increase with the number of bits to shield, to guarantee the secret
key protection. By doing so, the key would be revealed only in case of an
invasive attack on the chip itself.

To mitigate these issues, as explained in section 1.3, Niederreiter’s scheme
disguises the structure of the code by mean of an obfuscating matrix S which
is multiplied by the public parity check matrix H. A convenient solution is to
use a PRNG to generate S at runtime and proceed to store only the PRNG

40



2.2. Low-Reiter

Algorithm 2.2.1: Bin2CW(n, t, δ, B)
Input: n, t: code parameters,

δ: i-th distance (0 in first call),
B: binary stream.

Output: t-tuple of Integers.

1 if t = 0 then
2 return
3 else if n ≤ t then
4 return δ, Bin2CW(n− 1, t− 1, 0, B)
5 else
6 d← BestD(n, t)
7 if Read(B, 1) = 1 then

// Read(B, i) reads the next i bits from B as integer
8 return Bin2CW(n− d, t, δ + d, B)
9 else

10 i← decodeFd(d, B) // decodeFd(d, B) decodes from truncated binary
11 return δ + i,Bin2CW(n− i, t− 1, 0, B)

Algorithm 2.2.2: Bin2CWSmall(n, t, B)
Input: n, t: code parameters,

B: binary stream.

Output: x: vector of distances between ones, which are also the length of the 0 runs.

Data: utab: precomputed table containing for each pair of indexes the associated u value.

1 for i← t− 1 to 0 do
2 x[i]← 0
3 if n ≤ i then
4 n← n− 1
5 else
6 u← utab[n− (n mod 25)][i]
7 d← 2u

8 while Read(B, 1) = 1 do
// Read(B, i) reads the next i bits from B as integer

9 n← n− d
10 x[i]← x[i] + d

11 r ← Read(B, u)
12 x[i]← x[i] + r
13 n← n− r

seed and H in the flash memory of the AVR.

Using a Niederreiter cryptosystem, it is necessary to find a way to encode
an arbitrary input string into the error vector, i.e. to perform a constant
weight encoding. Heyse starts from Sendrier’s approach (see Algorithm 2.2.1)
proposed in [27] and improves it to speed up the encoding. Although its
recursivity could hide it, this algorithm, essentially reads, from the Golomb
encoded bitstring B, the unary representation of the quotient (lines 7-8),
the truncated binary value of the remainder (lines 9-11) and compute the
distance of the just selected bit from the previous one. The procedure BestD

estimates the d parameter following the methods described in Section 2.1.2.
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This process continues until all asserted bits have been selected or until the
number of remaining 1s is greater than the available bits in the n-length
output string (lines 1-4).

Heyse is the first to approach the constant weight encoding problem with
the aim of obtaining an efficient implementation for constrained devices. His
improved algorithm is outlined in Algorithm 2.2.2. In order to simplify and
speedup the computation of the d parameter, which contains a logarithm
and a division (see Equation 2.1), he approximates the value of d itself with
the closest power of two, u = blog2(d)e, which is memorized in the lookup
table utab (lines 6 and 7). To precompute said table, Heyes run the original
algorithm multiple times with random input strings and detected the most
likely behaviour of n and t during the recursion and the minimal amount of
bits that can be encoded in the error vector of length n. The table, which
is indexed by the concatenation of the upper seven bits of n and all five
bits of t, contains 4096 elements representing different values of u. This
allows to compute d = 2u online (line 6), thus trading off computation time
and memory space. It is possible to ignore the lower five bits of n since
these bits are significant for the computation of the d parameter only in the
case of small t and large n which happened rarely in the initial observation
of the parameter distributions. In this way the table size is reduced to
only 4KiB. Hence, Heyse’s approach further approximates the encoding by
working within a subsampling of Sendrier’s original function. In lines 8-10,
the value of the quotient, which is in unary representation, is computed and
stored in δ as quotient · d. In line 11, the DecodeFd procedure, which
recovers the remainder part of the encoded distance, has been substituted
with a simpler Read of exactly u bits, which is the expected length of the
remainder. The final position of the asserted bit is given by the addition of
r to the previously computed δ.

By adopting the previously explained CWE strategy to simplify the com-
putation and storing already precomputed matrices and lookup tables, Heyse
has been able to implement a Niederreiter cryptosystem on a AVR microcon-
troller. Furthermore, its performances outperforms comparable implemen-
tations of single core ECC cryptosystems in terms of data throughput.
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2.3 Software Optimization

In [9], Drucker and Gueron list possible software optimizations on QC-
MDPC cryptographic primitives and methods for side channel protection of
the implementations. The considered attackers are traffic analysis eavesdrop-
pers and spy program adversaries, both obtaining information with absolute
accuracy. This means that the produced code should have a constant time
implementation, i.e. the execution time of different steps, the timing and the
memory access patterns should not reveal any secret information. By exploit-
ing vectorized processor architectures they accomplish so and also obtained
an improved algorithm with reference to the alternative open source libraries.
A QC-MDPC code-based cryptosystem has four fundamental primitives: a
constrained pseudorandom bits stream generator, an hash function, a poly-
nomial arithmetic and a decoding algorithm. In the following paragraphs it
will be explained how each of these can be improved.

Constrained Pseudorandom Bitstream Generator The authors sug-
gest to resort to AES-CTR-PRF, which uses the block cipher AES-256: a
256 bit seed is used as the cipher key and CTR mode is exploited to populate
an array of bytes, of given length, with pseudorandom values. This choice is
very efficient on modern processors which have dedicated AES instructions,
especially when computations can be pipelined and parallelized.

Generating a pseudorandom bitstream with a predefined weight w is
essentially the same as generating w positions of asserted bits in the output,
each one with value between 0 and the length l of the produced bitstring.
This means that positions exceeding l will be simply discarded: notice that
accepting any value by reducing it modulo l will not result in a uniform
random distribution, since smaller values will be more frequent.

Using this method, the expected number of samples needed to fill w

positions is 2w, being the rejection probability p = 1 − l
2dlog2(l)e

< 1
2 . Note

that starting from a zero valued string, flipping the bits in the relevant
positions is not secure against someone observing the memory access pattern.
A solution to this issue is outlined in Algorithm 2.3.1, where every bit is
rewritten but only the selected ones flipped.
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Algorithm 2.3.1: ApplyWlist(wlist)
Input: wlist: list of w positions ∈ [0, l − 1] of the asserted bits.
Output: a: vector of length l and weight w.

1 a← 0
2 for i← 0 to len− 1 do
3 for j ← 0 to w do
4 a[i]← a[i] or isEqual(i,wlist[j])

5 return a

Efficient Hashing In code-based cryptosystems hash functions are used
to compress a random bitstring into a fixed length one such as seeds or secret
keys. The suggested strategy consists in converting a serial hash function
h, with digest length of ld bytes working on hbs bytes each time, into a
parallelizable process. h receives an array of la bytes as input which is split
into s contiguous disjoint slices of length ls and eventually in a remainder y.
The length of each slice is computed as ls = αhbs + srem, where srem is the
pre padding length and α = b b

la
s
−sremc
hbs

c. Then the s slices can be hashed
through h in parallel obtaining

x[j] = h(slices[j]) with j = 0, ..., s− 1

and finally the output is

h(y||x[s− 1]||x[s− 2]|| · · · ||x[0]). (2.2)

Polynomial Arithmetic Today general-purpose processors are equipped
with a carry-less multiplication instruction which allows multiplication be-
tween two binary polynomials. For example, ARM processors equipped with
advanced SIMD vector instruction can leverage the PMULL instruction which
performs polynomial multiplications between the higher or lower halves of
two 128-bit registers.

For particular high degree polynomials, as the one used in QC-MDPC
code-based cryptosystems, the authors suggest exploiting the Karatsuba
multiplication which computes products by working on halves of the original
factors and thus recursively performing a sequence of smaller multiplication
and addition.

Within the Karatsuba-Ofman multiplication [16], given 2l-bits integer
x = x12

l + x0 and y = y12
l + y0, x · y can be computed by performing

44



2.3. Software Optimization
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Figure 2.2: Execution of the vertical variant of a 4× 4 schoolbook multipli-
cation.

three multiplications of l-bit integers instead of one multiplication with 2l-
bit integers:

x·y = (x12
l+x0)(y12

l+y0) = x1y12
2l+[(x0+x1)(y0+y1)−x1y1−x0y0]2

l+x0y0

For very large values of l, the cost of performing several additions and sub-
tractions is lower than the cost of performing a multiplication. Obviously,
the final step of this recursive algorithm performs schoolbook multiplications
and below a certain input size it remains the best choice.

Drucker and Gueron chose to exploit the formula proposed by Karat-
suba recursively, up to the point where the operands are constituted by two
architectural digits, and then use the vertical variant of the schoolbook mul-
tiplication, which is carried out in Figure 2.2, as last step.

Denote with p = pr−1pr−2 · · · p0, where pi is the bit in position i of p,
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Algorithm 2.3.2: BitFlip(x,H)
Input: H ∈ Fr×n

2 : parity check matrix,
x ∈ Fn

2 : codeword to be corrected.
Output: e ∈ Fn

2 : error vector.
Data: τ : unsatisfied parity check threshold value,

max: maximal number of iterations.
1 itr ← 0, e← 0

2 s← HxT

3 while s 6= 0 and itr < max do
4 for i← 0 to n− 1 do
5 upc[i]← CountUPC(s,wlist)
6 if upc[i] > τ then
7 e[i]← e[i]⊕ 1

8 itr ← itr + 1

9 s← H(x+ e)T

10 if itr = max then
11 return Failure

12 return e

the bitstring representing the polynomial p(x) = pr−1x
r−1 + pr−2x

r−2 +

· · · + p1x + p0. Let p1,p2 be two polynomial of degree r − 1 padded into
q = d r−164 e 64-bit containers, such that p[q − 1] = 0 · · · 0︸ ︷︷ ︸

64−δ

pr−1pr−2 · · · pr−δ,

with δ = r mod 64, and p[0] = p63p62 · · · p1p0.
For each value of k ∈ [0, q − 1] it is possible to compute in parallel the

intermediate values of p3[2k + 1 : 2k], due to their reciprocal independence,
as

p3[2k + 1 : 2k] =
∑

i+j=2k p1[i]× p2[j] 0 ≤ i, j, k ≤ q − 1

and then for k = 0, ..., q − 2,

p3[2k + 2 : 2k + 1] = p3[2k + 2 : 2k + 1] +
∑

i+j=2k+1

p1[i]× p2[j].

The other fundamental operation is the reduction modulo xr+1 in F2 of
a polynomial p ∈ F2[x] of degree r′, r ≤ r′ ≤ 2r. Exploiting modern SIMD
processors this can be vectorized when computed as

p[r − 1 : 0] = p[r − 1 : 0]⊕ p[r′ : r].

Efficient Decoding In code-based cryptosystems the decoding algorithm
is responsible for the extraction of the error vector e ∈ Fn

2 from the syndrome
s = HxT , where H ∈ Fr×n

2 is the parity check matrix and x ∈ Fn
2 the input

vector. The commonly chosen decoding algorithm is the so called BitFlip
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Algorithm 2.3.3: CountUPC(s,wlist)
Input: s ∈ Fr

2: syndrome vector,
wlist: list of w asserted bits positions of a column of H.

Output: upc: array of r bytes.
1 upc← 0
2 for i← 0 to r do
3 for j ← 0 to w − 1 do
4 y← RotL(~s, wlist[j]) // RotL(B, i) performs a leftwise cyclic rotation

of B by i bits
5 upc[i]← upc[i] + y[i]

6 return upc

algorithm (Algorithm 2.3.2) which can be described by three main steps:

1. calculate the number of the n unsatisfied parity-checks upci (line 5);

2. if upci ≥ τ , for some threshold τ , flip the i-th bit of the error vector
e (lines 6-7);

3. add e to x and recompute s (line 9).

These should be repeated until s equals zero or in alternative for a chosen
maximum number of iterations, which if reached causes the algorithm to
stop, returning a decoding failure error. The specific choice of the threshold
value τ leads to different Decoding Failure Rate (DFR): common options are
setting it equal to a constant as in [12], to the maximum upci as in [15] or
a small value below it as in [22].

As highlighted in [30], which compares several decoders that do not re-
quired polynomial multiplications, in order to update the syndrome two al-
ternatives approaches are available: the out-of-place decoding, which per-
forms BitFlipping by finding and updating all potential error bits in e, i.e.
those for which upcj > τ , and then updating the syndrome as s = s+ hj

for all the affected bits, where hj is the j-th column of H, or the in-place de-
coding, which updates the syndrome after each error bit is selected. Drucker
and Gueron chose the out of place decoding approach.

The first step of the decoding implementation is outlined in its sequential
version in Algorithm 2.3.3 and in its parallelized one in Algorithm 2.3.4. The
latter receives as input a list wlist representing the w asserted bits of the j-th
column hj of H and s̃ a redundant representation of s expanding each bit of
the syndrome into a byte, to allow the accumulation of up to 254 additions
in the same syndrome (w < 254 always true for QC-MDPC cryptosystems).
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Algorithm 2.3.4: CountUPCParallel(~s,wlist)
Input: s̃: redundant representations of the r bits syndrome s,

wlist: list of w asserted bits positions of a column of H.
Output: upc: array of r bytes.

1 upc← 0
2 for i← 0 to r by M do
3 for j ← 0 to w − 1 do
4 y← RotL(s̃×2,wlist[j]) // RotL(B, i) performs a leftwise cyclic

rotation of B by i bits
5 upc[i : i+M ]← upc[i : i+M ] + y[i : i+M ]

6 return upc

1
0
1

s

=
1 0 1 0 0
0 1 1 1 0
1 1 0 1 1

H

1
0
0
0
0
eT

upc0 = 1 + 0 + 1 = 2

upc1 = 0 + 0 + 1 = 1

upc2 = 1 + 0 + 0 = 1

upc3 = 0 + 0 + 1 = 1

upc4 = 0 + 0 + 1 = 1

(a) Horizontal Summation

1
0
1

s

=
1 0 1 0 0
0 1 1 1 0
1 1 0 1 1

H

1
0
0
0
0
eT

upc0 = 1 + 0 + 1 = 2

upc1 = 0 + 0 + 1 = 1

upc2 = 1 + 0 + 0 = 1

upc3 = 0 + 0 + 1 = 1

upc4 = 0 + 0 + 1 = 1

(b) Vertical Summation

Figure 2.3: Example of vertical vs horizontal upc computation methods.

Let a = ar−1ar−2...a0 be a string of bits: the redundant representation of a
is the array ã, of r bytes, where ã[i] = 01 if ai = 1 and ã[i] = 00 otherwise,
0 ≤ i ≤ r − 1. In addition, to to speed up the rotation part in line 4, it is
convenient to duplicate the vector in memory, ~s×2 = ~s||~s, this will in fact
avoid any wraparound issue.

The sum of all upci is performed vertically, i.e. for each i separately as
shown in Figure 2.3b, to guarantee higher efficiency (lines 3-5). In fact, being
m the number of bytes which can be stored in the processor’s wide-registers,
when r > m the syndrome s̃ is too large to fit in these, and performing
an horizontal summation, i.e. every i in parallel as shown in 2.3a, would
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Algorithm 2.3.5: CountUPCConstWeight(s̃×2,wlist,b)
Input: s̃×2: redundant representations of the r bits syndrome s,

w′
list: list of w asserted bits positions of a column of H,

b: flag list of length w + w′.
Output: upc: array of r bytes.

1 upc← 0
2 for i← 0 to r by M do
3 for j ← 0 to w − 1 do
4 bm ← Extend(b[w′

list[j]) // Extend(x) duplicates the single x-bit value
to every bit of an M bits word.

5 y← RotL(s̃×2,wlist[j]) // RotL(B, i) performs a leftwise cyclic
rotation of B by i bits

6 z ← y[i : i+M ] and bM
7 upc[i : i+M ]← upc[i : i+M ] + z

8 return upc

required to read, accumalte and store intermediate results in some memory
location for each of the w iteration. More precisely, an horizontal approach
would require 2r memory reads plus r memory writes, thus a total of 3r

memory operations, for each iteration. A vertical summation, instead, would
accumulate the intermediate steps inside the registers and store them only
in the end of each of the d r

me iterations, resulting in w×m memory read and
m memory writes for each iteration and thus a total of 2w+m×d r

me ≈ 2wr
m

memory operations. In the particular case of QC-MDPC, the gap between
the two strategies is even wider due to the fact that 2r+m usually do not fit in
the first level cache of the processor. Hence, adopting per bit approach allows
leveraging modern CPU vector instructions which will operate in parallel on
b r
mc chunks and then handle the tail of b r

mc ×m bytes separately. To avoid
handling the tail, it is convenient to left-pad s̃×2 with m− (b r

mc ×m) bytes
and working on this longer array.

A second optimization which trade-off the number of iterations with DFR
considers wlist with reduced weights. In other word, the algorithm cycles
through only w − α values of wlist which are randomly chosen every time.
This solution speeds up the algorithm by a factor of w

w−α but increases the
DFR.

The last thing to consider for the decoding algorithm, which handles se-
cret values and intermediate results, is the protection against side-channel
attacks. To tackle this issue and prevent any information leakage is necessary
to produce a constant time implementation. The authors’ solution is illus-
trated in Algorithm 2.3.5. The first step is to choose uniformely at random
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Table 2.1: Suggested w and w′ values for different security level λ

λ w w’

128
137 124
155 111
161 108

96 99 98

64 67 65

w′ < r−w positions in h0 where the bits are not set (fake positions). The new
w′list vector will contain both position of the original w asserted bits and the
w′ fake ones, thus its length will be of w+w′, while the associated vector b,
indicates the non-fake bits positions in h0: b[i] =h0[w

′
list[i]], i = 0, ..., w+w′.

Provided that b remains confidential, w′list, unlike wlist, does not have to
be a secret. Thus it is possible to choose w′ such as

(
w′+w
w

)
> 22λ where λ

is the chosen security bit-level (suggested values can be found in Table 2.1).
With this approach a secure implementation needs to protect only opera-
tions which involve b. Being |b| << r, this secured implementation remains
efficient: it is possible to keep in memory only the compact representation
w′list and perform only |b| iterations. Thus the final cost will be of |b| × r

memory accesses.
The straightforward approach for the third step execution recalculates

the syndrome s of a C(n0r, r) code by means of n0 polynomial multiplications
(modulo xr + 1) plus n0 − 1 additions in Fn

2 . As said before, in order to
avoid multiplications, it is possible to either add all the column hj of H

that correspond to error bits, or add all the columns while masking out the
"unnecessary" one, to execute in constant time.

The authors have found that the latter strategy introduces significant
overheads and thus it is best to adopt the straightforward implementation
which consists in the syndrome recalculation by means of n0 polynomial
multiplications (modulo xr+1) among H and x elements plus n0−1 additions
in Fn

2 .
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Chapter 3

Effectiveness and Efficiency
Analysis of Constant Weight
Encoding

As described in Chapter 2, the constant weight encoder is a bijective func-
tion between arbitrary binary strings and strings of fixed length and weight.
Due to its approximated implementation, LEDAcrypt constant weight en-
coder output distribution could be skewed, thus this chapter discusses this
specific issue and considers possible mitigations.

3.1 LEDAcrypt Constant Weight Encoder

The implementation of the LEDAcrypt constant weight encoder which
is based on Golomb’s runlength encoding achieves fast computation at the
price of a small amount of failures.

This procedure, briefly discussed in Section 2.1.2 and reported in greater
details in Algorithm 3.1.1, in fact fails when the selected positions of the
asserted bits in the decompressed string exceed the length of the output
vector v, i.e. if the sum of the length of the t generated runs of zeroes plus
t is greater than n0p (LengthOutOfBounds). Further failure situations arise
when leveraging this algorithm inside a cryptosystem. In fact, within this
in mind, it is critical for the function to be able to guarantee the encoding
of a chosen amount of information, i.e. a number of bits l represented by
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the input string s, into the constant weight vector. There are two different
reason for this requirement not to be met

• InsufficientInfoEncoded: the t 1s positions are generated before
reading all the information carried by s, i.e. a prefix of s is a valid
encoding for t runs of zeroes.

• LackOfEncodableInput: the decompression process applied to the whole
input string is not able to generate exactly t runs.

The LengthOutOfBounds failure is not improvable and neither is the
InsufficientInfoEncoded one since the whole information has to be en-
coded and not just the first bits. However, there is a simple remedy, exploited
in Algorithm 3.1.1, for the third failure situation (LackOfEncodableInput)
which extends the input string with the amount of bits needed to complete
the encoding process. In this way, when the whole input has been read, any
following reads will return a zero-valued bitstring.

Algorithm Details Line 1 of Algorithm 3.1.1 sets the initial values of the
variables ones, which will represent the number of ones still to be placed
during the computation, and pos, keeping track of the remaining available
positions in the constant weight vector as the 0-runlengths are generated,
respectively to t and n0p.

In line 3, the EstimateD procedure returns the estimated d value which,
as specified in Section 2.1.2, can be fixed or adaptively changed based on the
updated values of ones and pos. Note that, if a non-adaptive estimation
technique is employed to determine the value of d, the minimum length of
an arbitrary bit string in input to the CWE which can be decoded as t runs
can be obtained as follows: zero bits for the unary quotient representation,
a single 0-bit which behaves as stop bit for the quotient and blog2(d)c bits
necessary to represent the remainder in truncated binary, thus obtaining
l = (1+ blog2(d)c) · t. In other words, l is the minimum number of input bits
required by the constant weight encoding whenever it’s employing a fixed d
estimate.

Lines 6-17, regard the proper Golomb decompression of each i-th 1 posi-
tion through the decoding of the quotient q and the remainder r values. In
particular, in lines 6-8 the unary representation of q is extracted by reading
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Algorithm 3.1.1: ApproximateConstantWeightEncode(s)
Input: s encoded bitstring of length l.

Output: v constant weight vector of length n0p and weight t.

Data: x: vector containing ones position,
dist: vector containing the positions of the set bits,
d: density of zeros in s,
u: bits to encode d,
q: integer value of the quotient,
r: integer value of the remainder,
f: read fragments of s,
c: cursor (number of bits read from s).

1 i← 0, c← 0, ones← t, pos← n0p
2 for i← 0 to t− 1 do
3 (d, u)← EstimateD(pos, ones)
4 q ← 0, f← 1
5 // reading the unary encoded q
6 while f = 1 do
7 (f, c)← ReadPadZero(s, c, 1) // ReadPadZero after reading whole s

pads with 0
8 q ← q + f

9 if u > 0 then
10 (f, c)← ReadPadZero(s, c, u− 1)
11 if BinToInt(f) ≥ 2u − d then
12 (y, c)← ReadPadZero(s, c, 1)
13 r ← 2 ·BinToInt(f) + y − (2u − d)

14 else
15 r ← BinToInt(f)
16 else
17 r ← 0
18 dist[i]← q · d+ r
19 pos← pos− (dist[i] + 1)
20 ones← ones− 1
21 if pos < ones then
22 return LengthOutOfBounds
23 if c < l then
24 return InsufficientInfoEncoded
25 x[0]← dist[0]
26 // Converting run length into set bit positions
27 for j ← 1 to t− 1 do
28 x[j]← x[j − 1] + dist[j] + 1
29 return v← SetCoefficients(x)

the input string s one bit at once until a 0 is found. In lines 9-17, the decoder
reads the first u − 1 bits of the remainder retrieving g: if its integer value
is greater or equal than 2u − d then it is necessary to read the additional
last bit and compute r otherwise r is set to the integer value represented by
the binary string g. The function ReadPadZero, exploited to obtain the
values of q and r, concatenates additional 0 bits to the actual input bitstring
when is employed to read out of the bounds of the input bitstring itself. In
this way it possible to avoid a LackOfEncodableInput failure.

Then the integer value of q · d+ r, is stored in dist[i] which is the vector
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of distances between 1s, i.e. the lengths of the 0 runs.

Lines 21 and 22, check the occurrence of a LengthOutOfBounds failure
which arises if there are more 1-bit left to be set than available positions in
the output vector. Lines 23 and 24 instead address the InsufficientInfo-

Encoded issue by verifying that the whole input bitstring has been taken
into account in the output generation process. Finally, the variables pos and
ones variables, are updated by subtracting the size of the decoded run to the
former and by decrementing the latter (lines 18-20). The last step regards
the conversion of the vector dist into the constant weight vector v of weight
t and length n0p (lines 25-29).

3.1.1 Tackling Output Uniformity and Failures

There are basically two features that are linked with the LackOfEncodable-
Input and that indeed can be adjusted to mitigate this issue: the value of
the d parameter and the padding strategy.

In the LEDAcrypt implementation of the CWE, d is estimated, as sug-
gested by Equation 2.1, based on the length n and weight t of the constant
weight string, thus

d =
n− (t− 1)

2t log(2)
. (3.1)

In the fixed_d version of the algorithm, this value, which is computed com-
puted only once, is used as a constant during the whole computation. As said
earlier, choosing this approach allow to know the exact minimum number of
input bits required by the constant weight encoding, l = (1 + blog2(d)c) · t,
and thus to set the input string accordingly. There exists other approaches
capable of achieving a better compression by tuning the d value based on the
remaining coverable length and weight of the output after selecting each set
bit. This is possible since the positions of the asserted bits are dependent one
from the other. In particular, in the adaptive_d method d is recomputed
before encoding each run as d = pos−(ones−1)

2pos log(2) where pos variable counts the
number of available positions in the constant weight string and ones keeps
track of the left to be set 1 bit; while in the similar min_adaptive_d version
its value is computed as d = min{n−(t−1)

2t log(2) ,
n−t−1

l } in the first call, where l is
the minimum length of the input string to be encoded, and as the adaptive
case in the following ones. The amount n−t−1

l tunes the minimum value of
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dist5dist4dist3dist2dist1dist0

(a) Input bitstring s

q

(b)

0q

(c)

rr0q
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Figure 3.1: Example of s which need some padding to generate the associate
output for t = 6 (3.1a) and of different ways in which the last encoded
sequence could terminate (3.1b, 3.1c, 3.1d).

d based on the input length l, decreasing in this way the number of failures
compared to a fully adaptive one. Both these adaptive techniques guarantee
an higher efficiency of the CWD, i.e. a better compression of CW strings
into binary ones, with respect to the fixed one. On the other hand, in these
situations the minimum length of the input string could be shorter than the
one computed for the fixed case. In fact, the recomputation of the parameter
could lead to a smaller values of d, and hence of log2(d), causing an incre-
ment in the number of InsufficientInfoEncoded failures. In the outlined
algorithms the said d computation is performed by the EstimateD function.

While the choice of d is fundamental to maximize the number of arbi-
trary strings which can be encoded into constant weight ones, the value of
the padding is responsible for both the conclusion of the last "in reading"
encoded run and for the entire value of the runs still to be set after the
whole input has been read. Consider the example illustrated in Figure 3.1
where t = 6, in this case after reading the whole string s only four runlength
have been generated, therefore the last two need to be obtained through
some kind of padding. Accordingly, the value of dist4 needs to be padded
using different approach based on the truncation point (represented in 3.1b,
3.1c and 3.1d) while dist5 value can be simply decoded from a randomly
generated padding.

A further issue to consider, when selecting the padding approach, is the
randomness of the output distribution which will be generated. In fact,
since the CWE function input space is uniformly distributed, its output
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space should also be uniformly distributed. Moreover, studying how the ones
distribute over the positions allows us to choose the most suitable sizing for
the system parameters, resulting in less failures thus gaining efficiency.

For this reason, the following paragraphs propose three different padding
approaches for the CWE function:

1. pad with zeroes,

2. pad with arbitrary random bits,

3. pad with constrained random bits.

All the above mentioned strategies can be paired with any d computation
choice with the purpose of selecting the best pair for the cryptosystem. In
addition, to improve the efficiency of the algorithm, the last two strategies
directly select at random the set bit position instead of decoding it from
an arbitrary generated padding when dealing with non-truncated run length
encoding (dist5 of the previous example).

Zero Padding With this approach, which is the one adopted in the round
1 submission codebase of LEDApkc CWE (Algorithm 3.1.1), when the whole
input has been read: any following reads on it returns a zero-valued bitstring.
In this way, the missing runs that are generated through padding will all have
null length. In fact, each length will be represented by a sequence of zeroes:
the first bit will act as quotient stop-bit, hence setting q = 0, then the
decoding will proceed to read the following log2(d) null bits representing the
remainder, thus the computed length of the run will be q+d·r = 0+d·0 = 0.
This is the most conservative approach with the aim of avoiding a possible
LengthOutOfBounds due to the padding strategy. It is expected that padding
with zeroes will generate some skew in the distribution of the ones of the
constant weight string.

Random Padding This solution attempts to improve the output distri-
bution by incorporating some randomness into the padding step. Instead of
just padding with 0 bits, the simpler way to introduce some arbitrariness is
to pad the input string within an arbitrary number of random bits, gener-
ated from a DBRG seeded with a TRNG, and proceed with the decoding as

56



3.1. LEDAcrypt Constant Weight Encoder

Algorithm 3.1.2: BinaryToConstantWeightSmartRnd(s)
Input: s: encoded bitstring of length l.

Output: v: constant weight vector of length n0p and weight t.

Data: x: vector containing ones position,
dist: vector containing intra-ones distances,
d: density of zeros in s,
u: bits to represent d,
q: value of unary-encoded quotient,
r: value of truncated binary encoded remainder,
f: read fragment,
c: cursor (number of bits read from s. )

1 i← 0, c← 0, ones← t, pos← n0p
2 for i← 0 to t− 1 do
3 (d, u)← EstimateDU(pos, ones)
4 q ← 0, f← 1
5 // reading the unary encoded q
6 while f = 1 do
7 if c+ 1 ≤ l then
8 (f, c)← BitstreamRead(s, 1) // BitstreamRead(s, i) reads exactly i

bits from s and returns them while updating the cursor c to c+ i
9 q ← q + f

10 else
11 return CompleteRandomQuotient(pos, ones,dist, i, q)
12 if u > 0 then
13 if c+ u− 1 ≤ l then
14 (f, c)← BitstreamRead(s, u− 1)
15 if BinToInt(f) ≥ 2u − d then
16 if c+ 1 ≤ l then
17 (y, c)← BitstreamRead(s, 1)
18 r ← 2 ·BinToInt(f) + y − (2u − d)

19 else
20 return CompleteRemainderLastBit(pos, ones,dist, q, f)
21 else
22 return CompleteRemainderPrefix(pos, ones,dist, s, c, q)
23 else
24 r ← 0
25 dist[i]← q · d+ r
26 pos← pos− (dist[i] + 1)
27 ones← ones− 1
28 if pos < ones then
29 return LengthOutOfBounds
30 if c < l then
31 return InsufficientInfoEncoded
32 return RndAndUpd(pos, ones,dist)

usual until all t bit are set. Note that this does not provide an impairment to
the decoding of the input string from the constant weight one, as the entire
information of the input is present in the constant weight output string.

Constrained Random Padding The last proposed method, outlined in
Algorithm 3.1.2, is an additional improvement of the previous one, based on
a "smart" randomization of the padding bits which aims at decreasing the
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number of LengthOutOfBounds failures. This time, as soon as all the l bits
of s are read:

1. the decoded value of the truncated run length sequence (dist4 in Figure
3.1a) is randomly chosen only between the positions which are compat-
ible with the last bits read while guaranteeing a successful procedure
conclusion,

2. the positions of the remaining bits to be asserted (dist5 in Figure 3.1a)
are randomly chosen among the available positions.

For readability reasons, the CWE code which deals with the padding
strategy has been divided into four different sub-functions:

• CompleteRandomQuotient, which considers the case when the
string terminates while reading the unary encoded quotient q (Algo-
rithm 3.1.4);

• CompleteRemainderPrefix, which considers the case when the
string terminates while reading the first u bits of the remainder (Algo-
rithm 3.1.5);

• CompleteRemainderLastBit, which considers the case when the
string terminates during the determination of the last bit of the re-
mainder (Algorithm 3.1.6),

• RndAndUpd, which directly generates the position of the missing
asserted bits of the constant weight string, if any, and converts the
vector of distances into the final CW vector v (Algorithm 3.1.3).

It is convenient to start from the explanation of the latter procedure since
it is called at the end of all the others.

The function RndAndUpd, outlined in Algorithm 3.1.3, arbitrarily se-
lects the position of the remaining set bits into the output vector and returns
the CW vector. At first, lines 1 and 2 check the value of pos and ones for an
eventual LengthOutOfBounds failure. Then, having verified that there
are enough positions available, if there are still bits to be set. Each 1 position
is randomly chosen between the available positions (lines 3-12). In the final
step, lines 13-17, the distances between 1s obtained before the padding stage
are converted to asserted bits in the output vector v which is then returned.
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Algorithm 3.1.3: RndAndUpd(pos, ones,dist)
Input: pos: remaining available positions,

ones: ones to place,
dist: vector containing intra-ones distances.

Output: v: constant weight vector of length n0p and weight t.
Data: x: vector containing ones position,

o: number of randomly placed ones,
dup: checks if the generated value is already present in x.

1 if pos < ones then
2 return LengthOutOfBounds
3 i = t− ones, o← 0
4 while o < ones do
5 p← Rand(pos, n0p · t)
6 dup← 0
7 for j ← 0 to o− 1 do
8 if x[i+ j] = p then
9 dup = 1

10 if dup = 0 then
11 x[i+ o] = p
12 o← o+ 1

13 // Converting run length into set bit positions
14 x[0]← dist[0]
15 for j ← 1 to i− 1 do
16 x[j]← x[j − 1] + dist[j] + 1
17 return v← SetCoefficients(x)

Algorithm 3.1.4: CompleteRandomQuotient(pos, ones,dist, q)
Input: pos: remaining available positions,

ones: ones to place,
dist: vector containing intra-ones distances,
q: partially read quotient.

Data: r: value of truncated binary encoded remainder,
dist: vector containing intra-ones distances,
d: density of zeros in s,
t: weight of the constant weight output vector.

1 v ← q · d
2 a← pos− v − (ones− 1)
3 if a < 0 then
4 return OutBoundFailure
5 else if a > 0 then
6 v ← v + Rand(a)
7 dist[t− ones]← v
8 pos← pos− (dist[t− ones] + 1)
9 ones← ones− 1

10 return RandAndUpd(pos, ones,dist)

The CompleteRandomQuotient procedure handles the situation rep-
resented in Figure 3.1b. It computes the length of the new run of 0s as a ran-
dom integer picked from the interval between the already read value v = q ·d
and the remaining positions, which are computed as a = pos−v−(ones−1).
In this way the computation takes into account also the still to be placed 1

bits of the CW output in order to prevent an LengthOutOfBounds failure,
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Algorithm 3.1.5: CompleteRemainderPrefix(pos, ones,dist, s, c, q)
Input: pos: remaining available positions,

ones: ones to place,
dist: vector containing intra-ones distances,
s: encoded bitstring of length l,
c: cursor (number of bits read from s)
q: unary quotient value.

Data: b: remaining readable bits in s,
r: value of the remainder,
th: truncated binary representation offset,
d: density of zeros in s,
u: bits to encode d,
rem: table of possible remainders to choose from,
t: weight of the constant weight output vector,
f: read fragment.

1 b← l − c
2 if b then
3 f← BitstreamRead(s, b)
4 r ← BinToInt(f)
5 th ← 2u − d
6 j ← 0
7 for i← 0 to d− 1 do
8 if (i < th and br = i

2u−1−b c) or
9 (i ≥ th and br = i

2u−b c) then
10 rem[j]← i
11 j ← j + 1

12 if j = 0 then
13 return OutBoundFailure
14 dist[t− ones]← rem[Rand(j)] + q · d
15 else

// b = 0
16 dist[t− ones]← Rand(d) + q · d
17 pos← pos− (dist[t− ones] + 1)
18 ones← ones− 1
19 return RandAndUpd(pos, ones,dist)

which can happen if the last read bits of s already generated an integer value
v greater than a. Then it decrements the value of pos and one and calls the
RndAndUpd function which will proceed to randomly set the leftover ones
and generated the constant weight output vector.
The last procedures, CompleteRemainderPrefix and CompleteRe-

mainderLastBit handle the situations represented in Figures 3.1c and
3.1d. Given the implementation of Algorithm 3.1.2, CompleteRemain-

derLastBit function is called when the check on having at least u bits
available to be read fails. For this reason, the called function starts by com-
puting the actually remaining readable bits b (line 1). If any, it reads them
and computes a table rem which contains the integers associated with the
truncated binary representations starting with the given b bits (lines 2-11).
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Algorithm 3.1.6: CompleteRemainderLastBit(pos, ones,dist, q, r)
Input: pos: remaining available positions,

ones: ones to place,
dist: vector containing intra-ones distances,
q: decompressed quotient,
g: read truncated binary representation of the remainder.

Data: d: density of zeros in s,
u: bits to encode d,
t: weight of the constant weight output vector.

1 r ← 2 ·BinToInt(g) + Rand(2)− (2u − d)
2 dist[t− ones]← r + q · d
3 pos← pos− (dist[t− ones] + 1)
4 ones← ones− 1
5 return RandAndUpd(pos, ones,dist)

Then, at line 14, the remainder value is randomly extracted from the values
of rem. Note that if the b read bits cannot be extended into a truncated
binary representation corresponding to an admissible value, the algorithm
returns a decoding failure (lines 12-13). Lines 15 and 16 address the even-
tuality of the last bits of s being just enough to extract the whole quotient
part plus the additional 0 bit separator, i.e. b = 0, in this case the remain-
der value can be simply set to any integer smaller than d. The last lines,
17-19, compute the new distance from the last positioned 1 bit, decrement
the remaining number of ones to place and the remaining available positions
and call RndAndUpd.

The last padding function, CompleteRemainderLastBit, has to ran-
domly generate only the last bit, thus the procedure simply computes the
integer value of r and add zero or one to it. Then, as in the previous func-
tions, the parameters are updated and the RndAndUpd procedure called.

Note that only CompleteRandomQuotient function picks the new
position in order to guarantee a successful encoding, CompleteRemainder-

Prefix in fact selects the new asserted bit position only based on the last
read bits while CompleteRemainderLastBit is essentially a coin toss
over the last bit value. This choice is due to the fact that "forcing" the
encoding in every situation leads to an accumulation of asserted bits in the
last bits of the output string thus worsening the distribution.
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Chapter 4

Efficient Implementation of the
LEDAcrypt Cryptosystem

This chapter focuses on LEDAcrypt performance improvements, which
leverage both sub-quadratic multiple precision multiplication approaches and
code vectorization specifically optimized for the target architecture, which is
ARMv8a in this case.

4.1 Code Optimization

By Amdahls Law, the speed up given from the improvement of a part
of an algorithm is limited to the fraction of time in which that part takes
place. In other words, the idea behind the optimization process is to first
make the common case fast. Thus, being the functions that are called the
most through the whole codebase, the first thing to optimize by means of
vector instructions are of course the addition and shifting operations. In fact,
these improved functions will be then leveraged by any other more complex
function.

A common optimization technique is loop unrolling : loops can be unrolled
by a factor f , meaning that the same instruction is performed over f data
items at each iteration, reducing the number of iterations by 1

f .

As explained in 1.5, the most expensive instruction are loads and stores
which require an exchange of data with the memory and for this reason
they need more time to fetch data from it, than operations working over
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Algorithm 4.1.1: Right to left shift and add multiplication in F2m

Input: a,b binary polynomials of degree at most m− 1
Output: c = ab binary polynomial of degree at most 2m− 2
Data:

1 if a0 = 1 then
2 c← b
3 else
4 c← 0
5 for i← 0 to m− 1 do
6 b← b� 1
7 if ai = 1 then
8 c← c⊕ b

9 return c

data which is already stored in registers. For this reason it is fundamental
to reduce as much as possible this kind of instructions by loading the data
when needed and storing it only at the end of the computation, which is
exactly what is pursued in the shown algorithms.

Dealing with performances, another thing to consider while working with
arbitrary length numbers is that some arithmetic operations, especially mul-
tiplication, can require a significant amount of time. When thinking of a
multiplication, the common algorithm is the schoolbook multiplication, rep-
resented in Algorithm 4.1.1, which can be though as a shift-and-add oper-
ation when working over binary fields. Of course exist better alternatives
which are based on the "divide et impera" principle, i.e. the factors are de-
composed into smaller parts which are then multiplied and added, achieving
in this way a significant speed up. In particular, the schoolbook multipli-
cation has quadratic complexity over the number of bits of the input, while
the other approaches complexity is smaller than O(n2).

The algorithm proposed in [16] by Karatsuba exploits this approach:
given two 2l-bits integers x = x12

l + x0 and y = y12
l + y0, xy can be com-

puted by performing three multiplications of l-bit integers instead of one
multiplication with 2l-bit integers

x·y = (x12
l+x0)(y12

l+y0) = x1y12
2l+((x0 + x1)(y0 + y1)− x1y1 − x0y0) 2

l+x0y0.

Example 3. For example, the multiplication between 1234 = 12 · 102 + 34

and 5678 = 56 · 102 + 78 can be computed as:

x = 12 · 56 = 672 (4.1)
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Algorithm 4.1.2: Karatsuba(a,b, n)
Input: a,b binary polynomials of degree at most n− 1
Output: Binary polynomial of degree at most 2n− 2
Data: th: threshold under which is more convenient a schoolbook multiplication

1 if n ≤ th then
2 SchoolbookMul(a,b)
3 return
4 if n mod 2 = 0 then
5 p← Karatsuba(a[n− 1 : n

2
],b[n− 1 : n

2
], n

2
)

6 s← Karatsuba(a[n− 1 : n
2
]⊕ a[n

2
− 1 : 0],b[n− 1 : n

2
]⊕ b[n

2
− 1 : 0], n

2
)

7 t← Karatsuba(a[n
2
− 1 : 0],b[n

2
− 1 : 0], n

2
)

8 return p� n⊕ (s⊕ p⊕ t)� n
2
⊕ t

9 else
10 p← Karatsuba(a[n− 1 : dn

2
e],b[n− 1 : dn

2
e], bn

2
c − 1)

11 s← Karatsuba(a[n− 1 : dn
2
e]⊕ a[bn

2
c : 0],b[n− 1 : dn

2
e]⊕ b[bn

2
c : 0], dn

2
e)

12 t← Karatsuba(a[bn
2
c : 0],b[bn

2
c : 0], dn

2
e)

13 return p� (2dn
2
e)⊕ (s⊕ p⊕ t)� dn

2
e ⊕ t

y = 34 · 78 = 2652 (4.2)

z = (12 + 34)(56 + 78)− x− y = 2840 (4.3)

x · 102·2 + y + z · 102 = 7006652 = 1234 · 5678. (4.4)

This approach can indeed be easily applied also to polynomials, as shown
in Algorithm 4.1.2, if we consider each bit as a polynomial coefficient. In
particular, a the byte 00001111 = 0x0F represents the polynomial a = x3 +

x2+x+1 written in Big Endian format, i.e. the leftmost bit a[3] is the most
significant one while a[0] is the least significant one. With this representation
of binary polynomials, every add operation become a a Boolean eXclusive-
OR (xor) one while multiplication and division by x become shift operations.

An additional speed up can be achieved by leveraging Toom-k algorithms,
first proposed in [19], where k is the number of parts in which each source
operand is divided. Karatsuba multiplication can be seen as an implementa-
tion of a Toom-2 algorithm. Toom-k complexity is O(c(k)nlog(2k−1)/log(k)),
where c(k) depends on the number and cost of simpler operations such as
addition and shifting. Each Toom-k algorithm requires the polynomial eval-
uation of the two operands and a polynomial interpolation problem, with
base points not specified a priori, giving rise to many possible Toom-k al-
gorithms, even for a fixed size of the operands. Thus the exact sequence of
smaller multiplication, addition and shifting operation determines the real
efficiency of the algorithm. Algorithm 4.1.3 outlines a highly efficient Toom-3
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Algorithm 4.1.3: Toom3(a,b, n)
Input: u,v binary polynomials of degree at most n− 1
Output: Binary polynomial of degree at most 2n− 2
Data: th: threshold under which is more convenient a schoolbook multiplication

1 if n ≤ th then
2 SchoolbookMul(a,b)
3 return
4 l = dn

3
e

5 u2 ← u[n− 1 : 2l], u1 ← u[2l − 1 : l], u0 ← u[l − 1 : 0]
6 v2 ← v[n− 1 : 2l], v1 ← v[2l − 1 : l], v0 ← v[l− 1 : 0]
7 w3 ← u2 ⊕ u1 ⊕ u0

8 w2 ← v2 ⊕ v1 ⊕ v0
9 w1 ← Toom3(w3, w2, l)

10 w0 ← u2 · x2 ⊕ u1 · x
11 w4 ← v2 · x2 ⊕ v1 · x
12 w3 ← w3 ⊕ w0

13 w2 ← w2 ⊕ w4

14 w0 ← w0 ⊕ u0

15 w4 ← w4 ⊕ v0
16 w3 ← Toom3(w3, w2, l)
17 w2 ← Toom3(w0, w4, l)
18 w4 ← Toom3(u2, v2, l)
19 w0 ← Toom3(u0, v0, l)
20 w3 ← w3 ⊕ w2

21 w2 ←
w2⊕w0

x
⊕w3⊕w4·(x3+1)

x+1

22 w1 ← w1 ⊕ w0

23 w3 ← (w3⊕w1)
x·(x+1)

24 w1 ← w1 ⊕ w4 ⊕ w2

25 w2 ← w2 ⊕ w3

26 w[5l − 1 : 4l]← w4,w[4l − 1 : 3l]← w3

27 w[3l − 1 : 2l]← w2,w[2l − 1 : l]← w1

28 w[l − 1 : 0]← w0

29 return w

Algorithm 4.1.4: Sum(a,b, n)
Input: a,b: binary polynomials of degree at most n
Output: c: binary polynomial of degree n
Data: lword: machine word bit size

1 for i← 0 to n− lword by lword do
2 c[lword + i : i]← a[lword + i : i]⊕ b[lword + i : i]
3 r ← n mod lword

4 if r 6= 0 then
5 c[n : n− r]← a[n : n− r]⊕ b[n : n− r]
6 return c

implementation proposed by Bodrato in [6].

Each single operation within these algorithms can be vectorized as shown
in Algorithm 4.1.4 which outlined a vectorized sum. The Karatsuba and
Toom-3 recursion limits, i.e. the minimum number of required architectural
words, are chosen empirically to minimize the multiplications running times,
specifically for each possible size of the operands.
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64-bit 64-bit 64-bit 64-bit 64-bit 64-bit 64-bit 64-bit

Figure 4.1: Syndrome extension to facilitate 128-bit vector extraction. The
original input spriv, represented in cyan, is copied in scurr extended with the
blue lined 128-bit piece.

As a final optimization, we explicitly employed the optimal Karatsuba
expansions of all the multiplications with a number of input limbs between
1 and 9 reported in Su and Fan work on the optimal Karatsuba expansions
for binary polynomial multiplication [29].

4.2 Decoder Optimization through SIMD instruc-

tions

The decoder, which extracts the errors from a compressed arbitrary bit-
string, is a critical part of code-based cryptosystems. Here are outlined the
original sequential algorithm and the improved vectorized one.

It’s easy to see from Algorithm 4.2.1 that there is plenty of room for
vectorization. In sequence, it is possible to improve the first part, where
the unsatisfied parity checks are computed (lines 3-10), the correlation com-
putation (lines 11-23) and also the bitflips on the syndrome (lines 24-31).
For ease of reading, the three optimizations have been split into different
algorithms.

The NEON intrinsics instructions, which are capable of working on 128-
bit at the time, have been used to parallelize said parts. Notice that in order
to avoid interrupting the execution with wrap around issues, it is convenient
to prepend to the leftmost bits the rightmost ones, as shown in Figure 4.1,
since the chosen code is cyclic: the position of the bits on the syndrome is
computed modulo n0p and thus the positions exceeding the left bound of
syndrome correspond to the rightmost ones.

Regarding the unsatisfied parity checks computation, it can be chosen to
iterate either through the n0p bits of the syndrome or through the dv and m

indexes of the H and Q matrices. The chosen strategy, illustrated by Al-
gorithm 4.2.2 which vectorize lines 5-10 of Algorithm 4.2.1, is the first one,
since this will produce adjacent memory reads and writes, leveraging the lo-
cality principle. On the contrary, the latter approach, will produce scattered
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Algorithm 4.2.1: QDecoder
Input: out: n0 binary polynomials of errors,

Htr: transpose parity-check matrix, represented as n0 × dv integer matrix
containing the positions in {0, 1, ...p− 1} of the set coefficients in the n0 blocks of
H = [HT

0 |HT
1 | · · · |HT

n0−1],
Qtr: private matrix, represented as an n0 ×m, m =

∑n0−1
i=0 mi integer matrix

containing the positions in {0, . . . , n0p−1} of the asserted coefficients in QT rows,
spriv : already computed syndrome

Output: out: n0 binary polynomials of errors
Data: itmax: maximum number of iterations,

Wbw: n0 × n0 matrix representing the block weights of the Q matrix,
bitQ, blkQ: vectors of length m num: number of 64-bit word containing spriv

1 iteration← 0
2 repeat
3 scurr ← spriv
4 upc← 0
5 for i← 0 to n0 − 1 do
6 for valueIdx← 0 to p− 1 do
7 for h← 0 to dv − 1 do
8 tmp← Htr[i, h] + valueIdx) mod p
9 if gf2xGetCoeff(scurr, tmp) then

10 upc[i · p+ valueIdx]← upc[i · p+ valueIdx] + 1

11 for i← 0 to n0 − 1 do
12 for j ← 0 to p− 1 do
13 idxQ ← 0, endQ ← 0, corr ← 0
14 for blockIdx← 0 to n0 − 1 do
15 endQ ← endQ +Wbw[blockIdx][i]
16 while idxQ ≤ endQ do
17 tmp← Qtr[i][idxQ] + j
18 if tmp ≥ p then
19 tmp← tmp− p
20 bitQ[idxQ]← tmp
21 blkQ[idxQ]← blockIdx
22 corr ← corr + upc[tmp+ blockIdx · p]
23 idxQ ← idxQ + 1

24 if corr ≥ thresholds[iteration] then
25 gf2xToggleCoeff(out[i], j)
26 for v ← 0 to m− 1 do
27 for h← 0 to dv − 1 do
28 posToF lips = Htr[blkQ[v]][h] + bitQ[v])
29 if posToF lips ≥ p then
30 posToF lips ← posToF lips − p
31 gf2xToggleCoeff(spriv , posToF lips)

32 iteration← iteration+ 1
33 check ← 0

34 until iteration ≥ itmax and spriv 6= 0
35 if spriv = 0 then
36 return True, out
37 else
38 return False, out

memory requests, increasing the latency of the algorithm. Differently from
the approach of Drucker and Gueron in [9], this one adopts an "horizontal
summation" method (see Figure 2.3 over 128 upcs at once: i.e. the value of
several upcs is kept into registers until their computation is terminated.
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Algorithm 4.2.2: UpcVect()
Data: lword: bits in chosen machine word,

Htr: transpose parity-check matrix, represented as n0 × dv integer matrix
containing the positions in {0, 1, ...p− 1} of the set coefficients in the n0 blocks of
H = [HT

0 |HT
1 | · · · |HT

n0−1],
upcM : vector of length 8lword representing a 16× 8 matrix of unsatisfied parity
checks,
GetVectorBoundless(s, i): extracts exactly lword bits from s starting from i-th
bit position.

1 mask = 0x01 · · · 010101
2 for i← 0 to n0 − 1 do
3 valueIdx← 0
4 while valueIdx < p do
5 for x← 0 to 7lword by lword do
6 upcM [x+ lword − 1 : x]← 0
7 for h← 0 to dv − 1 do
8 basePos← Htr[i, h] + valueIdx
9 packedSynBits← GetVectorBoundless(scurr, basePos)

10 for x← 0 to 7lword by lword do
11 upcM [x+ lword − 1 : x]←

upcM [x+ lword − 1 : x]⊕ (packedSynBits&mask)
12 packedSynBits = packedSynBits� 1

13 upcM ← Transpose8× LWord(upcM )
14 for x← 0 to 7lword by lword do
15 upc[valueIdx+ x+ lword − 1 : valueIdx+ x]← upcM [x+ lword − 1 : x]
16 valueIdx← valueIdx+ lword

The vectorize algorithm fetches lword = 128 packed bits from each posi-
tion indicated in Htr, which contains the asserted bit position of HT , and
adds them to the 128 upc counters in the 16 × 8 matrix upcM (lines 2-
12). For every asserted bit of the parity check matrix H, the correspon-
dent bit of the syndrome is identified by the variable basePos and lever-
age by the GetbitVectorBoundless function to extract a 128-bit vector
packedSynBits from the syndrome, with basePos bit in the least significant
position (Figure 4.2a). Note that process exploits the sparsity and quasi-
cyclic properties of H by iterating only over the positions specified in Htr.
Then, in lines 10-12 is performed the computation of the upcs by means of the
bitstring mask mask which is applied to the packedSynBits bits: the right-
most bit of each byte of packedSynBits, which is shifted at each iteration,
is extracted and added to the associated upc, i.e. upc0, upc8, upc16 · · ·upc56
at the beginning and then upc0+x, upc8+x, upc16+x · · ·upc56+x after x shift
(see Figure 4.2b, thus incrementing 16 upc at once. In this way is possible
to linked the asserted bits packedSynBits with H coefficients and thus to
compute the unsatisfied parity checks. After the computation, the 128 upc

need to be stored in proper order in the upc vector: it is thus necessary
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to transpose the upcM and linearise it by rows, as illustrated in 4.2c (lines
26-34).Obviously, a specific intrinsic function which performs the 8× lword/8

transposition does not exist, thus this specific operation is achieved leverag-
ing zip, unzip and transpose intrinsics as shown in the Appendix A.

The second optimization concerns the computation of the correlation
values (lines 11-23 of Algorithm 4.2.1). The best speed-up, leveraging NEON
intrinsics, can be achieved through Algorithm 4.2.3 within lword = 128 and
vecBlocks = 4. Since a single correlation value is the sum of m "block
circulant positioned" values of upcs, in line 5 the proper position tmp is
computed and, in lines 6-8, for each tmp value vecBlocks· lword

8 = 4· 1288 = 64

consecutive upc correlations are considered and stored in the correlations
vector c.

The last part of the original algorithm, which regards the commit on the

70



4.2. Decoder Optimization through SIMD instructions

Algorithm 4.2.3: CorrelationVec
Data: lword: bits in chosen machine word,

c: vector of computed correlations,
vecBlocks: number of lword bits block within c,
Qtr: private matrix, represented as an n0 ×m, m =

∑n0−1
i=0 mi integer matrix

containing the positions in {0, . . . , n0p− 1} of the asserted coefficients in QT rows,
m: permanent of each circulant matrix defined from the weights of each
row/column of Q circulant blocks.

1 for j ← 0 to p− 1 by lword/8 · vecBlocks do
2 for k ← lword to lword · vecBlocks by lword do
3 c[k − 1 : k − lword]← 0
4 for idxQ ← 0 to m− 1 do
5 tmp← Qtr[i][idxQ] + j
6 index← p · qBlockOffsets[idxQ] + tmp
7 for k ← 0 to lword(vecBlocks− 1) by lword do
8 c[k + lword − 1 : k]←

upc[index+ k + lword − 1 : index+ k]⊕ c[k + lword − 1 : k]

9 return c

≥ τ< τ< τ< τ≥ τ≥ τ≥ τ< τ

(a) upc correlations vector

0xff0x000x000x000xff0xff0xff0x00

(b) Logical vector

· · · · · · · · · · · · · · · · · · · · · 10001110

(c) Commit vector

Figure 4.2: Vectorize commit of bitflips.

syndrome s and on the out bitstring, can be vectorized by extracting the last
bit from each byte in the c into the designated position and flip 128-bit word
at the time, as shown in Figure 4.2. Each byte of Figure 4.2a contains the
correlation value of a upc, if this value is greater then τ the corresponding
syndrome bit has to be flipped. The vector in Figure 4.2b is thus used as
a selector of upc yielding bitflips. For each byte of the logical vector a bit
is extracted and copied into the rightmost unset bit of the commit vector
represented in Figure 4.2c. In this way, instead of flipping one bit at the
time it is possible to performs multiple bitflips at once by adding the full
commit vector to the syndrome one. This method has revealed itself to not
be suitable in this specific case, in fact when working with 128-bit words
this approach generates more accesses to memory than the actual bitflips to
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perform. This happens since the number of bitflips to perform is low and
their position sparse. In particular, if on average there is less than one bit
to be flipped per single architectural word

t
n0p
lword

=
t · lword

n0p
< 1, (4.5)

it is more convenient to perform a load-flip-store instruction sequence for
every single bitflip Using an Intel processor instead, with instruction over
256 or even 512 bits may allow to gain a speedup from the vectorization of
this last part of the decoder.
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Chapter 5

Experimental Results

In this Chapter are gathered the results regarding the ones distribution
analysis and the cryptosystem vectorized implementation benchmarks. The
relevant data are displayed by means of tables and graphs.

The CWE analysis develops within three parts: benchmark suite choice,
analysis of the length of the dense bitstrings and analysis of the CWE outputs
distributions associated with the amount of failures.

The cryptosystem optimization section compares the performances of the
reference implementation with the ones achieved by the vectorized implemen-
tation for each LEDAcrypt version: KEM, KEM-LT and PKC.

5.1 Constant Weight Encoder

This section focuses on the evaluation of the goodness of the CWE pro-
posed alternatives compared to the LEDApkc round 1 implementation. In
particular, we observed the efficiency of the CWE over CW vectors with a
variable number of asserted bits compared over the same set of input strings.

5.1.1 Benchmark Suite

The observations have been performed over smaller n and t parameters
than the real ones of LEDAcrypt, since the adoption of the exact same val-
ues is computationally infeasible. The four pairs of parameters, which are
outlined in Table 5.1, have been chosen in increasing length n and decreas-
ing density n

t of the CW vector, maintaining a CWE target of about 230
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Figure 5.1: The first table outlines the parameters used during the CWE
analysis with their densities and the associate dense string length able to
successfully generated a vector of length n and weight t. The second one
shows the parameters of the first round implementation of LEDApkc for
different security x levels.

n t n
t minl maxl dlog2

(
n
t

)
e

(bits) (bits) (bits) (bits)

30 15 0.5 15 30 28
100 6 0.06 18 35 31
746 4 0.005 16 37 34
1000 3 0.003 15 30 28

(b) LEDApkc

SL n t n/t
(bits) (bits)

1
30026 143 0.005
28929 90 0.003
33868 72 0.002

3
49070 208 0.004
53481 129 0.002
58868 104 0.002

5
75238 272 0.004
85431 172 0.002
91412 135 0.001

CW vectors, i.e. log2
(
n
t

)
≈ 230. This amount in fact allows a good trade

off between the amount of computation time required and the number of
considered vectors which is large enough to trust the derived statistics.

5.1.2 Acceptable Input Lengths for CWE

The first phase of the analysis focuses on the determination of the ac-
ceptable input length for every pair of n and t and for every approach for
the d estimation.

When dealing with a fixed_d approach the minimum length of the input

74



5.1. Constant Weight Encoder

14 16 18 20 22 24 26 28 30

100

102

104

106

108

l

O
cc

ur
re

nc
es

n = 30

fixed_d
adaptive_d

18 20 22 24 26 28 30 32 34 36

101

103

105

107

109

l

O
cc

ur
re

nc
es

n = 100

fixed_d
adaptive_d

14 16 18 20 22 24 26 28 30 32 34 36 38

100

102

104

106

108

1010

l

O
cc

ur
re

nc
es

n = 746

fixed_d
adaptive_d

14 16 18 20 22 24 26 28 30

100

102

104

106

108

l

O
cc

ur
re

nc
es

n = 1000

fixed_d
adaptive_d

Figure 5.2: Number of CWD output dense bitstring of length l for every pair
(n, t).

can be easily computed with the aforementioned formula:

l = (1 + blog2(d)c) · t. (5.1)

This formula cannot be used instead when leveraging the adaptive estimation
of d. It thus necessary to generated all possible bitstrings with weight t

and length n, feed them to the CWD function, i.e. the function which
given a constant weight bitstring recovers the associate binary string and
to record the length l of the returned binary strings. With this approach
we enumerate any possible input CW string and thus we determine which
lengths are accepted by the CWE, i.e. recognized as valid compressions.
Figure 5.1 shows the number of successful decoding if the CW vectors into
dense bitstrings for each recorded output length l. Note how in general an
adaptive approach allow picking smaller input size compared to a fixed one.
Table 5.1 reports the minimum and maximum bitstring lengths which can
be successfully encoded for each pair (n, t): note that the maximum amount
of padding bits needed is maxl −minl, a longer input is not CW-decodable
by construction.
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5.1.3 CWE Efficiency

Knowing the boundaries of the encodable dense string, we generated
the distributions of their produced CW vectors for each input length l by
applying enumeratively the inverse method. In particular, for each pair (n, t),
padding strategy and d estimation approach all possible binary strings of
length l were generated and fed to the CWE. If the encoding process resulted
in a success, i.e. a valid CW string, then the positions of the asserted bits
of the output vector have been recorded. We computed the entropy of the
random variable x modelling the value of the bits of the CW string, for each
set of CWE parameters (n, t, d, padding strategy), adopting the 1 frequencies
as probability values. Note that this is feasible since we explored the entire
input domain.

The zero padding strategy and constrained random one output distribu-
tions have been reported for each of the three different computational choices
for the d parameter; in particular

• fixed d results can be found in Figures 5.3, 5.4, 5.5,

• min-adaptive d results can be found in Figures 5.6, 5.7, 5.8,

• adaptive d results can be found in Figures 5.9, 5.10, 5.11.

For readability reasons the data is displayed by means of Cartesian plots
instead of histograms and the frequencies of 1 positions when n equals 100,
746, 1000 are condensed in bins in order to maintain around 30 points in
each plot. The graphs show for each triple ((n, t), d, padding) the asserted
bits distribution, the value of the entropy and the amount of failures over
different input lengths.

5.1.4 CWE Results Comments

When choosing the CWE approach, i.e. how to deal with the estimation
of the d parameter and with the LackOfEncodableInput failures, it is im-
portant to consider the density of the CW string and the desired trade off
of failure rates and uniformity of the output.

The simplest CWE implementation consists in the adoption of a zero
padding method paired with the fixed_d computation. As illustrated in
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the plots (Figure 5.3), the distribution of the set bits in this case is highly
skewed due to the accumulation of the null runlengths at the final positions
of the output vector.

Generally, observing the obtained data it is possible to say that the adop-
tion of an adaptive_d solution paired with a constrained random padding
yields a more uniform distributions of the asserted bits over the CW vector.
This is confirmed by the fact that this situation presents the higher entropy
values (Figure 5.4) compared to the other ones (Figure 5.7 and 5.10). This
combination in fact allows to decrease the minimum input length, which
correspond to the minimum bits of information that have to be encoded,
below the fixed_d limit while achieving a better uniformity over the set
bits, due to its randomness. So, as a rule of thumb, choosing an adaptive_d

computation plus a constrained random padding approach will reduce the
amount of LengthOutOfBounds failures, while improving the skewness of the
output distribution. However, when the CW vector is particularly dense
(n = 30, t = 15) the graphs clearly show that a fixed_d approach yields
substantially the same entropy and failures results as the adaptive ones.
Moreover, the min_adaptive_d strategy, which take into consideration the
input length of the string during the first estimation of said parameter and
thus guarantees higher efficiency with respect to the fixed one, results in
worse entropy value for any considered benchmark compared to the other
approaches.

Notice that, in general, selecting a smaller value as minimum input length
for the CWE will lead to a smaller amount of failures. In fact, if the con-
stant weight vector is generated before reading the entire string the algorithm
returns an InsufficientInfoEncoded failure, while if the input string ter-
minates before finding all the t values then the input is padded and the
computation continues. In this situation the choice over the padding strat-
egy is fundamental to achieve a uniform output distribution. On the other
hand, up to a certain point increasing l improves the distributions, then
longer lengths lead to a larger amount of failures. For this reason, when
the input margin is large the choice over the padding strategy doesn’t really
matter any more and the two solutions yield the same results. This can be
also observed in the "first increasing then decreasing" trend of the entropy
values within the increasing l bits.
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Figure 5.3: Asserted bit distributions of the CWE output, with fixed_d
over alternatives padding strategies and (n, t) pairs.
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computed with fixed_d approach.
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Figure 5.5: Total number of CWE failures for different input lengths com-
puted with fixed_d approach.
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Figure 5.6: Asserted bit distributions of the CWE output, with min_-
adaptive_d over alternatives padding strategies and (n, t) pairs.
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Figure 5.7: Entropy of the CWE output vector, for different input lengths
computed with min_adaptive_d approach.
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Figure 5.8: Total number of CWE failures for different input lengths com-
puted with min_adaptive_d approach.
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Figure 5.9: Asserted bit distributions of the CWE output, with adaptive_d
over alternatives padding strategies and (n, t) pairs.
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Figure 5.10: Entropy of the CWE output vector, for different input lengths
computed with adaptive_d approach.
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Figure 5.11: Total number of CWE failures for different input lengths com-
puted with adaptive_d approach.
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5.2 LEDAcrypt benchmark

This section collects LEDAcrypt benchmarks results of its three version,
KEM, KEM-LT and PKC, compiled using gcc 8.3.0 with -O3 flag. The
benchmarks results have been obtained by running both the original and
optimized implementations on an Softiron Overdrive 1000 machine with a
64-bit ARM v8 architecture. It features an AMD OpteronTM A1100 Series
processor with 4 ARM Cortex-A57 cores with 60 Hz frequency and 8 GB
DDR4-1600 RAM.

The minimum number of operands limbs allowing to exploit Toom-3 and
Karatsuba algorithms, have been tuned, by exhaustive search over the num-
ber of limbs by recording the number of cycles needed for each multiplication.
For input of shorter lengths, in general, the adoption of these algorithms in-
crement the computational time compared to the schoolbook multiplication.
The results are outlined in Table 5.1 for every security level and n0 value of
LEDAcrypt. In LEDAcrypt specific case, the schoolbook multiplication is
never used since the Karatsuba minimum number of limb is set to 9 and ev-
ery multiplication with an operands size of 1 to 9 limbs has been specifically
optimized following the work of Su and Fan [29].

For each version, key generation, encoding and decoding processes tim-
ings were taken by exploiting the clock_gettime(clockid_t clock_id,

struct timespec *tp) function from time.h with CLOCK_PROCESS_CPUTIME-

_ID, which represents the CPU-time clock of the calling process, as chosen
clock. The amount of required clock cycles has been computed by directly
reading the cntvct_el0 counter register value before and after the timed
process. Specifically, Tables 5.2a, 5.3a and 5.4a contain data from the orig-
inal implementation while Tables 5.2b, 5.3b and 5.4b have been generated
from the optimized and vectorized implementation.

For ease of reading the variances for each the recorded timings have
not been reported directly in the tables but summarized by their maximum
percentages in the captions. Note that higher variances, specifically in the
key generation process, are due to the inverse computation based on the
work [18] of Kobayashi, N. Takagi and K. Takagi. With this method in
fact, the verification of the generate key could required longer or shorter
time depending on the position of the first set bit in the polynomial to be
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Table 5.1: Minimum number of limbs of the factors for each security level of
LEDAcrypt system.

(a) LEDAkem

Security Level P N0 Karatsuba ToomCook-3

1 (128-bit)
14,939 2 9 9
8,269 3 9 10
7,547 4 9 12

3 (192-bit)
25,693 2 9 9
16,067 3 10 11
14,341 4 9 9

5 (256-bit)
36877 2 9 9
27437 3 11 14
22691 4 10 11

(b) LEDApkc and LEDAkem-LT

Security Level DFR P Karatsuba ToomCook-3

1 (128-bit) 2−64 35,899 9 9
2−128 52,147 9 10

3 (192-bit) 2−64 57,899 9 9
2−128 96,221 10 11

5 (256-bit) 2−64 89,051 9 9
2−128 152,267 11 14

inverted.
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Table 5.2: LEDAkem reference benchmarks.

(a) LEDAkem reference benchmarks, variance up to 25% (KG), 3% (E), 10%(D)

SL N0 KeyGeneration Encoding Decoding KG+E+D
(ms) (kcycles) (ms) (kcycles) (ms) (kcycles) (ms)

1
2 24.20 6,049 1.91 478 7.00 1,750 33.11
3 8.09 2,022 1.52 380 9.24 2,310 18.85
4 7.97 1,993 2.00 499 14.42 3,604 24.39

3
2 69.15 17,287 3.76 939 20.44 5,110 93.35
3 29.42 7,356 4.08 1,019 20.62 5,154 54.12
4 28.00 7,001 5.18 1,294 33.26 8,315 66.45

5
2 142.63 35,659 7.16 1,790 34.72 8,680 184.51
3 86.31 21,578 7.77 1,941 41.78 10,444 135.85
4 63.56 15,890 9.77 2,441 43.88 10,969 117.21

(b) LEDAkem optimized benchmarks, variance up to 25% (KG), 3% (E), 10%(D)

SL N0 KeyGeneration Encoding Decoding KG+E+D
(ms) (kcycles) (ms) (kcycles) (ms) (kcycles) (ms)

1
2 5.61 1,402 0.15 38 0.72 181 6.48
3 1.96 490 0.09 23 0.99 247 3.04
4 2.37 591 0.09 22 1.72 428 4.17

3
2 15.90 3,974 0.32 80 1.82 454 18.04
3 6.67 1,668 0.21 53 2.06 516 8.95
4 7.28 1,820 0.21 51 5.14 1,284 12.62

5
2 32.56 8,139 0.54 133 2.91 727 36.00
3 18.68 4,671 0.48 119 3.33 831 22.49
4 14.79 3,697 0.43 108 6.65 1,663 21.87
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Table 5.3: LEDAkem Long Term optimized benchmarks for N0 = 2.

(a) LEDAkem Long Term reference benchmarks, variance up to 45% (KG), 0.3% (E), 30%(D)

SL DFR KeyGeneration Encoding Decoding E+D
(ms) (kcycles) (ms) (kcycles) (ms) (kcycles) (ms)

1 2−64 1119.60 279,902 6.72 1,679 9.87 2,468 16.59
2−128 1741.86 435,475 10.98 2,746 10.86 2,714 21.84

3 2−64 3212.03 803,012 12.49 3,122 20.38 5,095 32.87
2−192 5907.30 1,476,837 26.61 6,653 25.27 6,316 51.88

5 2−64 16422.29 4,105,601 22.40 5,599 43.90 10,976 66.30
2−256 16695.99 4,174,005 51.30 12,825 48.85 12,212 100.15

(b) LEDAkem Long Term optimized benchmarks, variance up to 40% (KG), 6% (E), 1%(D)

SL DFR KeyGeneration Encoding Decoding E+D
(ms) (kcycles) (ms) (kcycles) (ms) (kcycles) (ms)

1 2−64 1111.21 277,805 0.25 62 0.96 239 1.21
2−128 1213.07 303,268 0.43 108 1.31 327 1.74

3 2−64 2176.18 544,056 0.69 172 1.84 459 2.53
2−192 3649.29 912,326 1.02 254 2.78 695 3.80

5 2−64 6935.10 1,733,791 1.25 312 3.37 841 4.62
2−256 14800.58 3,700,152 1.93 482 5.37 1,343 7.30
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Table 5.4: LEDApkc benchmark for N0 = 2 and message size of 1 kB.

(a) LEDApkc reference implementation benchmarks, variance up to 64% (KG), 1% (E), 20%(D)

SL DFR KeyGeneration Encoding Decoding E+D
(ms) (kcycles) (ms) (kcycles) (ms) (kcycles) (ms)

1 2−64 1382.86 345,716 7.32 1,830 12.88 3,219 20.20
2−128 1769.86 442,469 11.72 2,929 12.82 3,204 24.54

3 2−64 5157.71 1,289,431 13.44 3,361 24.79 6,198 38.23
2−192 5917.38 1,479,348 27.98 6,996 27.67 6,916 55.65

5 2−64 13749.40 3,437,379 23.86 5,965 50.48 12,620 74.34
2−256 16210.57 4,052,651 53.85 13,462 49.49 12,371 103.34

(b) LEDApkc optimized benchmarks, variance up to 40% (KG), 2% (E), 1%(D).

SL DFR KeyGeneration Encoding Decoding E+D
(ms) (kcycles) (ms) (kcycles) (ms) (kcycles) (ms)

1 2−64 1114.47 278,620 1.16 291 1.79 447 2.95
2−128 1262.54 315,635 2.05 512 2.55 636 4.60

3 2−64 2203.91 550,978 2.39 598 3.16 789 5.55
2−192 3663.11 915,791 3.58 894 5.06 1,264 8.64

5 2−64 5308.29 1,327,076 3.40 851 5.55 1,387 8.95
2−256 12124.38 3,031,135 8.67 2,168 9.05 2,262 17.72

91



CHAPTER 5. Experimental Results

5.2.1 Performance Results Comment

It is evident from the results outlined in Tables 5.2a, 5.3a, 5.4a, 5.2b, 5.3b
and 5.4b that the vectorization of the codebase achieved significant perfor-
mances improvement. These results have been obtained mainly through
the optimization and vectorization of the polynomial arithmetic operations,
such as addition, shifting, inversion and multiplication, and of the Q-Decoder
function as explained in Section 4.2, which was a bottleneck in the reference
implementation. In particular, the Karatsuba multiplications have been ex-
panded and vectorized for all the multiplication with a number of limbs
between 1 and 9 based on [29].

The following tables, Figure 5.5, summarized the speedup gained for the
three LEDAcrypt versions. Among the system primitives, the best improve-
ment is achieved by the encoding process which in LEDAkem Long Term
reference implementation took 6.72 ms while in the optimized one just 0.25
ms, thus gaining a speedup of 26.88.
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Table 5.5: LEDAcrypt speedup achieved through optimization and vector-
ization of the codebase.

(a) LEDAkem

SL N0 KeyGeneration Encoding Decoding KG+E+D

1
2 4.30 12.73 9.76 5.10
3 4.15 16.89 9.38 6.23
4 3.43 22.11 6.80 5.23

3
2 4.34 11.78 11.35 5.18
3 4.35 19.38 10.01 6.00
4 3.58 24.81 5.59 4.75

5
2 4.44 13.35 11.76 5.16
3 4.62 16.21 12.66 6.06
4 4.18 22.72 7.09 5.43

(b) LEDAkem Long Term with N0=2

SL DFR KeyGeneration Encoding Decoding E+D

1 2−64 1.01 26.88 10.28 13.71
2−128 1.44 25.53 8.29 12.55

3 2−64 1.48 18.10 11.08 12.99
2−192 1.62 26.09 9.09 13.65

5 2−64 2.37 17.92 13.03 14.35
2−256 1.13 26.58 9.10 13.72

(c) LEDApkc with N0=2

SL DFR KeyGeneration Encoding Decoding E+D

1 2−64 1.24 6.31 7.20 6.85
2−128 1.40 5.72 5.03 5.33

3 2−64 2.34 5.62 7.84 6.89
2−192 1.62 7.82 5.47 6.44

5 2−64 2.59 7.02 9.10 8.31
2−256 1.34 6.21 5.47 5.83
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Chapter 6

Conclusions

The first aim of this thesis is to analyse LEDAcrypt constant weight
encoder, i.e. the algorithm which bijectively associates any arbitrary input
bitstring with a vector of length n and weight t.

We started by choosing a proper set of n and t parameters: small enough
to allow computations and picked to generate a vast set of CW vector in
order to extract valid statistics. We observed the CWE state of the art
function with the intention of determining if the CW vector distribution was
uniform, as it was expected being the input uniform. After collecting the
data, the conclusion was that the distribution of the 1 positions over the
output space was highly skewed. In fact, when the whole input bistring has
been read, the standard CWE algorithm adopts a zero padding strategy, i.e.
concatenates 0 bits to the original input, which indeed translates in comput-
ing a zero distance between the 1 bits positions that are being generated and
results in an accumulations of asserted bits at specific positions of the out-
put strings. In order to mitigate the aforementioned issue, two alternative
constant weight encoders were considered and their distribution analysed.
These solutions attempt to improve their output distribution by incorporat-
ing some randomness into the padding step. The results, outlined in Chapter
5, confirmed, as theorized, that the constrained random padding strategy,
which arbitrarily chooses the position of the missing bits among a pool of
positions which guarantee a successful encoding, generates the most uniform
output distribution, especially when paired with an adaptive estimation of
the d parameter.
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The second goal of this thesis is to improve the LEDAcrypt performances.
We choose to exploit Arm Neon technology, a SIMD architecture ex-

tension for the ARM Cortex-A series and Cortex-R52 processors in order to
pursue this goal. SIMD instructions in fact allow to write code in a sequential
way while gaining a parallel speed up. Since NEON extension ISA support
polynomial arithmetic and especially carryless multiplications, leveraging it
is particular convenient in the LEDAcrypt case.

We rewrote the most called functions in the codebase in a vectorized
and optimized way using NEON intrinsics, i.e. function calls which are
replaced by the compiler with the appropriate sequence of Neon assembly
instructions. This means vectorizing all the polynomial arithmetic and in
addition exploiting sub-quadratic multiple precision approaches, such as the
Karatsuba [16] and ToomCook [6] algorithms, to perform the multiplication.
The computation of multiplications between large polynomial, as the one
exploited in LEDAcrypt, is in fact a time consuming process. A second
point of interest was the Q-Decoder function which represents a significant
bottleneck in the reference implementation and which has been completely
vectorized in the optimized version.

By applying wise optimization and vectorizing techniques, such as the
common loop unrolling one, we were able to reach relevant speed up of the
computation for every LEDAcrypt version and primitives, respectively PKC,
KEM, KEM-LT and key generation, encoding and decoding.
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Appendix A

Matrix Transposition with
NEON

1 uint32x4_t transpose_128 ( uint32x4_t matrix ) {
2

3 uint8_t C[ 1 6 ] = {0 , 4 , 8 , 12 ,
4 1 , 5 , 9 , 13 ,
5 2 , 6 , 10 , 14 ,
6 3 , 7 , 11 , 15} ;
7

8 uint8x16_t transpose_vec = vld1q_u8 (C) ;
9

10 re turn vreinterpretq_u32_u8 ( vqtbl1q_u8 (
11 vreinterpretq_u8_u32 ( matrix ) , transpose_vec ) ) ;
12 }

1 void transpose_128x4 ( uint64x2_t w0 , uint64x2_t w1 ,
2 uint64x2_t w2 , uint64x2_t w3 ,
3 uint64x2_t ∗ r0 , uint64x2_t ∗ r1 ,
4 uint64x2_t ∗ r2 , uint64x2_t ∗ r3 ) {
5

6 uint32x4_t t0 = ( uint32x4_t ) vuzp1q_u64 (w0 , w2) ;
7 uint32x4_t t1 = ( uint32x4_t ) vuzp1q_u64 (w1 , w3) ;
8 uint32x4_t t2 = ( uint32x4_t ) vuzp2q_u64 (w0 , w2) ;
9 uint32x4_t t3 = ( uint32x4_t ) vuzp2q_u64 (w1 , w3) ;

10

11 ∗ r0 = vreinterpretq_u64_u32 ( vtrn1q_u32 ( t0 , t1 ) ) ;
12 ∗ r1 = vreinterpretq_u64_u32 ( vtrn2q_u32 ( t0 , t1 ) ) ;
13 ∗ r2 = vreinterpretq_u64_u32 ( vtrn1q_u32 ( t2 , t3 ) ) ;
14 ∗ r3 = vreinterpretq_u64_u32 ( vtrn2q_u32 ( t2 , t3 ) ) ;
15 }

1 void transpose_8x16 ( uint64x2_t ∗x0 , uint64x2_t ∗x1 , uint64x2_t ∗x2 ,
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2 uint64x2_t ∗x3 , uint64x2_t ∗x4 , uint64x2_t ∗x5 ,
3 uint64x2_t ∗x6 , uint64x2_t ∗x7 ) {
4

5 uint32x4_t w00 , w01 , w02 , w03 ;
6 uint32x4_t w10 , w11 , w12 , w13 ;
7

8 transpose_128x4 (∗x0 , ∗x1 , ∗x2 , ∗x3 , &w00 , &w01 , &w02 , &w03) ;
9 transpose_128x4 (∗x4 , ∗x5 , ∗x6 , ∗x7 , &w10 , &w11 , &w12 , &w13) ;

10

11 w00 = transpose_128 (w00) ;
12 w01 = transpose_128 (w01) ;
13 w02 = transpose_128 (w02) ;
14 w03 = transpose_128 (w03) ;
15 w10 = transpose_128 (w10) ;
16 w11 = transpose_128 (w11) ;
17 w12 = transpose_128 (w12) ;
18 w13 = transpose_128 (w13) ;
19

20 ∗x0 = vreinterpretq_u64_u32 ( vzip1q_u32 (w00 , w10) ) ;
21 ∗x1 = vreinterpretq_u64_u32 ( vzip2q_u32 (w00 , w10) ) ;
22 ∗x2 = vreinterpretq_u64_u32 ( vzip1q_u32 (w01 , w11) ) ;
23 ∗x3 = vreinterpretq_u64_u32 ( vzip2q_u32 (w01 , w11) ) ;
24 ∗x4 = vreinterpretq_u64_u32 ( vzip1q_u32 (w02 , w12) ) ;
25 ∗x5 = vreinterpretq_u64_u32 ( vzip2q_u32 (w02 , w12) ) ;
26 ∗x6 = vreinterpretq_u64_u32 ( vzip1q_u32 (w03 , w13) ) ;
27 ∗x7 = vreinterpretq_u64_u32 ( vzip2q_u32 (w03 , w13) ) ;
28 }
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