
Politecnico di Milano

School of Industrial and Information Engineering
Master of Science in Aeronautical Engineering

Model identification and inversion-based control for
multi-rotor UAVs

Advisor: Prof. Marco LOVERA
Co-Advisor: Dr. Simone PANZA

Eng. Mattia GIURATO

Thesis by:
Daniele MIGLIORE Matr. 883572

Academic Year 2018–2019





A mia sorella





Acknowledgments

Durante il mio percorso di studi, ho incontrato molte persone che mi hanno
sostenuto e permesso di crescere umanamente e professionalmente.

Per prima cosa vorrei ringraziare il professor Marco Lovera, che mi ha permesso
di sviluppare una tesi interessante e innovativa, per la quale ho potuto applicare
i miei studi in un ambito nuovo e attuale, rendendosi sempre disponibile per
qualsiasi tipo di chiarimento. Non può mancare un grazie a Simone che, con
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domi ogni giorno.





Abstract

Nowadays the interest in unmanned aerial vehicles (UAVs) is constantly increas-
ing for different military and civil applications; these activities call for high-level
requirements and therefore high-performance control laws. Mathematical models
of the UAV dynamics can be used to synthesize the controllers. Classically, the
problem is solved with a SISO approach, i.e., for each axis a model of the attitude
dynamics is identified and then used to tune the parameters of a cascade control
system.

The aim of this thesis is to identify structured models for the angular and
linear dynamics of a multi-rotor UAV, considering single-input-multiple-output
(SIMO) problems. These structured models can be exploited to design control
laws based on the UAV equations of motion.

Black-box and grey-box model identification techniques are studied and ap-
plied to a quadrotor UAV. Then a new approach to obtain a structured model
starting from an unstructured one has been proposed. Estimation data has been
collected in flight, in closed-loop and in laboratory conditions at the Aerospace
Systems and Control Laboratory of Politecnico di Milano. After analyzing and
comparing the results, it was possible to design and simulate model inversion con-
trol laws such as the Explicit Model Following (EMF) and the Dynamic Inversion
(DI). The designed controllers have been deployed to the quadrotor flight control
unit and compared sending repeatable command inputs from a ground station.
Experimental results have verified the achieved performance and have validated
the accuracy of the identified models by comparing measured data with simulated
data.





Sommario

Al giorno d’oggi l’interesse per aeromobili a pilotaggio remoto (APR) è in continuo
aumento in diverse applicazioni militari e civili, le quali prevedono requisiti sem-
pre più stringenti e, pertanto, leggi di controllo ad alta prestazione. Per la sintesi
dei controllori si possono usare modelli matematici rappresentanti la dinamica
di questi velivoli. L’approccio comunemente utilizzato prevede l’identificazione
di modelli della dinamica di assetto per il progetto di regolatori in cascata, con-
siderando problemi di tipo singolo-ingresso-singola-uscita (SISO).

Lo scopo di questa tesi è quello di ottenere modelli strutturati di tipo singolo-
ingresso-multi-uscita (SIMO) della dinamica angolare e della dinamica lineare per
un multirotore APR. Questo può permettere di progettare leggi di controllo basate
sulle equazioni della dinamica del volo del velivolo.

Tecniche di identificazione di modelli a scatola nera e a scatola grigia sono stu-
diate e applicate a un quadricottero. Viene proposto inoltre un nuovo approccio
per ottenere un modello strutturato partendo da uno non strutturato. I dati per
la stima dei modelli sono stati raccolti in volo in anello chiuso presso il labora-
torio di controllo e sistemi aerospaziali (ASCL) del Politecnico di Milano. Dopo
aver analizzato e confrontato i risultati ottenuti, è stato possibile progettare e
simulare le leggi di controllo quali la Dynamic Inversion (DI) e l’Explicit Model
Following (EMF). I controllori progettati sono stati importati sull’unità di con-
trollo di volo del quadricottero e confrontati comandando il drone da una stazione
di terra. I risultati degli esperimenti hanno verificato le prestazioni raggiunte
e validato l’affidabilità dei modelli identificati confrontando i dati misurati con
quelli simulati.
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Introduction

Unmanned Aerial Vehicles (UAVs), commonly known as drones, are aircraft char-
acterized by the absence of a pilot aboard. For this thesis, multi-rotor UAVs will
be considered. The interest in this type of small aircraft is steadily increasing over
the years in numerous military and civilian applications such as disaster relief,
search and rescue, cargo transport, industrial plant monitoring, motion-picture
industry and many others. These activities impose high-level requirements.

To meet this growing demand, high-performance control laws are required. In
fact, despite the advantages of weight, size and low costs, multi-rotor UAVs are
affected by non-linearity and instability. Typically, flight controllers are designed
simulating their closed-loop architecture with a model of the aircraft to be con-
trolled, which is the result of an experimental identification campaign. System
identification is the art of building mathematical models for a real system based
on experimental data. Finding a model which best fits measured data is relatively
simple, on the contrary, estimating a model possessing a structure which reflects
the physical behaviour of the system and which can predict the behavior of the
aircraft is far from trivial.

Nowadays, having an aircraft simulator is essential because it allows to save a
lot of time (and resources) avoiding time-consuming and often risky experimental
tests. Moreover, if a grey-box approach is followed, the structured model can be
used to design model inversion-based control laws which can replace the stock
autopilot deployed in the quadcopter, usually consisting in a PID cascade control
system.

For the purpose of this thesis, both the angular and linear dynamics of a
quadrotor UAV are identified considering single-input-multiple-output (SIMO)
models instead of the classical single-input-single-output (SISO) ones for the at-
titude dynamics only. Two different approaches are studied: black-box and grey-
box model identification. The former is performed using the subspace model
identification (SMI) method, a robust and efficient technique which can deal with
multiple-input-multiple-output (MIMO) problems, starting from measured data
only, both in open and closed-loop conditions. The only disadvantage is the
lack of a physical insight of the system which means that no information about
the state space representation is given. For this reason, a grey-box approach is
also used in order to estimate the parameters of a model of the aircraft with
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physically-motivated structure (i.e., based on the vehicle equations of motion) us-
ing the output-error method, an iterative technique which requires the knowledge
of the system in terms of dynamics equations. A new structured model identifica-
tion technique is proposed which can overcome the disadvantages of the previous
methods: unstructured black-box models can be used to obtain structured models
by performing a model matching with an H∞ approach.

With the hypothesis of decoupled dynamics at low speed, the quadrotor can be
identified exciting each body axis from the hovering condition separately. The ob-
tained models must be validated using different data from those used for the iden-
tification phase and simulating the closed-loop architecture for unstable modes.
Moreover, an uncertainty analysis of the results is performed to study their re-
liability. The complete structured plant model of the aircraft and therefore the
physical parameters (stability and control derivatives with respect to states and in-
puts) are so obtained. The stock autopilot implemented on the quadcopter flight
control unit can be replaced with Dynamic Inversion (DI) and Explicit Model
Following (EMF) control laws, designed inverting the equations of motion which
are used to construct the structured model. Before testing in flight the quad-
copter, simulations are executed together with a robustness analysis of the flight
controllers.

State of the art

System identification has been much discussed in the last two decades in the
literature. First of all an interesting overview of the subject can be found in [5],
in which Ljung examines the art and technique of building mathematical model
in different research areas.

Examples of black-box model identification for multi-rotor UAVs can be found
in [6], [7], [8] and [9]. In [6] (2014), Bergamasco and Lovera provided the first
contribution considering the closed-loop identification for the dynamics of a hov-
ering quadrotor using the subspace model identification technique, together with
a detailed uncertainty analysis of the identified models.

More recently, in [9], Wu and Lovera investigated the problem of model iden-
tification of the attitude dynamics of a small-scale helicopter, providing a detailed
comparison of time-domain and frequency-domain techniques. The former is per-
formed with the SMI method while the software CIFER (Comprehensive Identi-
fication from Frequency Responses) is used for frequency-domain model identifi-
cation.

Panizza, Riccardi and Lovera in [7] provided a comparison of the black-box
and grey-box model identification for the attitude dynamics of a variable-pitch
quadrotor, demonstrating the limits of the output-error method in comparison
to the higher performance obtained with SMI approach. More details about this
study can be found in [8]. Then the novel model-matching technique which is
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proposed and described in [10] by Bergamasco and Lovera is performed for the
longitudinal axis only (SISO problem).

Structured identification for the dynamics of multi-rotor UAVs can be also
found in [11], [12], [13], [14] and [15] (lateral axis only), where CIFER software is
used to obtain the stability and control parameters of the aircraft. In [11] (Saetti et
al.), once the multi-rotor physical parameters are obtained, the Dynamic Inversion
(DI) and the Explicit Model Following (EMF) control laws are designed for the
identified quadcopter. DI and EMF were also applied in [15] (Tischler et al.) for
the inner attitude loop (lateral case only).

Thesis structure

To facilitate the reading, the organization of the thesis structure is provided:

� Chapter 1: an overview of the flight dynamics and control theory for multi-
rotor UAVs is provided;

� Chapter 2: the quadrotor UAV used for the purpose of this thesis is described
in detail. The hardware and software components are provided with also a
description of the indoor facility used for the experimental tests;

� Chapter 3: different model identification techniques are described, together
with a selection of possible identification inputs. An overview of the previous
works carried out at the ASCL laboratory is also proposed;

� Chapter 4: the quadrotor identified models are analyzed in detail, together
with a description of the validation phase. Black-box, grey-box and model
matching identification results are compared both in the time and in the
frequency domain. An uncertainty analysis of the final results is performed;

� Chapter 5: a procedure for the design of the Explicit Model Following and
the Dynamic Inversion control laws is proposed in detail together with a
description of the stock quadrotor autopilot;

� Chapter 6: the complete identified model is used to simulate the closed-loop
architecture for a preliminary tuning of the controllers and to perform a
robustness analysis;

� Chapter 7: the two different controllers are implemented on the quadcopter
flight control unit and compared in the time domain. The accuracy of the
simulators is tested comparing measured data with simulated data. Finally,
a comparison of the stock autopilot control system and the inversion-based
flight controller is proposed.





Chapter 1

Multi-rotor dynamics and control
review

In this chapter, an overview of the flight dynamics and control of a multi-rotor
UAV will be provided in order to understand all the formalism and conventions
which can be found in this work. For a more detailed study of the subject, the
reader can refer to [16], [17] and [18].

1.1 Reference frames

The motion of an aircraft can be described using different reference frames. Usu-
ally, multi-rotor UAVs are controlled in an Earth fixed frame while the equations
of motion, that will be used in this thesis, are written in the body axes. These
reference systems will be therefore described.

Earth fixed frame

The hypotheses of flat and still Earth surface are made since the experimental tests
are performed in an indoor cage as will be shown in Chapter 2. For these reasons,
a fixed frame FE = {OE, N,E,D} attached to the Earth can be considered an
inertial reference system. The origin can be an arbitrary fixed point on the Earth,
the standard convention provides the N axis pointing North, the E axis East
and the D axis aligned with the direction of gravity, pointing downward. This
reference system is also known as the NED (meaning North-East-Down) frame.

Body frame

Typically is preferred to express the equations of motion in a moving reference
system instead of an inertial frame. The body frame FB = {OB, XB, YB, ZB} is
used for this purpose. This frame, in fact, has the origin in the center of gravity
of the aircraft and changes the orientation with it. The XB axis is parallel to
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the longitudinal axis of the aircraft, the ZB axis lays in the plane of symmetry
pointing downward and the YB axis is found according to the right-handed rule.

1.2 Euler angles and three dimensional rotations

In order to switch from one reference system to another, rotation matrices must
be introduced. In this section, a procedure of how these rotation matrices can be
obtained will be provided.

Euler angles

The Euler angles (Φ,Θ,Ψ) are three angular quantities which can be used to
describe the position of a generic reference frame F1 = {x1, y1, z1}, such as the
fixed-body frame, with respect to an inertial reference one F2 = {x2, y2, z2}. In
order to make the axes of the two frames coincide, a sequence of three rotations
is required. Considering the components of a generic vector defined in the system
F1 = {x1, y1, z1} which have to be rotated to the system F2 = {x2, y2, z2}, the
passages to obtain the rotation matrix T21 from system 1 to system 2 will be
provided, with T21 such that:

T21 ∈ R3x3, T21
−1 = T21

ᵀ, det(T21) = 1. (1.1)

The equation (1.1) means respectively that the matrix T21 represents a three
dimensional rotation, is orthogonal and does not change the magnitude of the
vector to be rotated.

To understand how rotation matrices work, one axis at a time is considered
associating a rotation matrix Rk around the k axis for each Euler angle (Φ,Θ,Ψ).
For example, the rotation about the x axis of an angle Φ is:

Rx(Φ) =

1 0 0
0 cos Φ − sin Φ
0 sin Φ cos Φ

 . (1.2)

This transformation does not change the component of the vector aligned with
the x axis and the sign of the rotation angle follows the right-handed rule. Other
rotation matrices are obtained in a similar fashion:

Ry(Θ) =

cos Θ 0 sin Θ
0 1 0

sinΘ 0 cos Θ

 , (1.3)

Rz(ψ) =

cos Ψ − sin Ψ 0
sin Ψ cos Ψ 0

0 0 1

 . (1.4)
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Rotations can be considered in cascade and the generic vector components ex-
pressed in the new reference system are so obtained:x2

y2

z2

 = T21

x1

y1

z1

 = Rz(Ψ)Ry(Θ)Rx(Φ)

x1

y1

z1

 (1.5)

where T21 is the rotation matrix from the reference system F1 to the reference
system F2:

T21 =

CΨCΘ CΨSΦSΘ − SΨCΦ CΨCΦSΘ + SΨSΦ

SΨCΘ SΨSΘSΦ + CΨCΦ SΨSΘCΦ − CΨSΦ

−SΘ SΦCΘ CΦCΘ

 . (1.6)

with Cα = cosα and Sα = sinα. Since the matrix T21 is orthogonal, the inverse
coincides with its transpose: T−1

21 = T ᵀ
21 = T12. An interesting application for this

thesis is the conversion of the velocity vector VE expressed in the NED frame FE
to the body frame FB:

VE =

VxVy
Vz

 , (1.7)

vB =

uv
w

 , (1.8)

vB = TBE(φ, θ, ψ)VE (1.9)

TBE =

 CψCθ SψCθ −Sθ
CψSφSθ − SψCφ SψSθSφ + CψCφ SφCθ
CψCφSθ + SψSφ SψSθCφ − CψSφ CφCθ

 . (1.10)

where vB is the velocity of the aircraft resolved to body axes, TEB(φ, θ, ψ) is the
rotation matrix from the Earth fixed frame to the body frame, φ, θ, ψ are the roll
angle, pitch angle and yaw angle respectively.

Time derivatives of Euler angles

The Euler rates are defined as:

ωe =

φ̇θ̇
ψ̇

 (1.11)

while the body angular velocity vector as:

ωb =

pq
r

 (1.12)
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The relationship between Euler rates and body rates is useful from a practical
point of view as body rates can be measured with sensors installed on-board in
an easier way.

To get the body-axis rates from the Earth-axis rates, consider the Euler rates
individually, resolve them individually to intermediate axes and then finally to
body axes. Define the Euler rate elemental vectors:

ωφ̇ =

φ̇0
0

 , ωθ̇ =

0

θ̇
0

 , ωψ̇ =

0
0

ψ̇

 . (1.13)

Rotate ωψ̇ through the angle θ about the y axis and add the result to the ωθ̇
vector. Rotate the sum about the x axis through the angle φ, and add the result
to the ωφ̇ vector. The result is the vector of body-axis angular rates:

ωb = ωφ̇ +Rx(φ)[ωθ̇ +Ry(θ)ωψ̇]. (1.14)

After some rearrangement:

ωb = E(φ, θ)ωe (1.15)

with:

E =

1 0 − sin θ
0 cosφ cos θ sinφ
0 sinφ cos θ cosφ

 (1.16)

To get the Earth-axis rates in terms of the body-axis rates, the transformation
matrix E is inverted:

E−1 =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

 . (1.17)

Unlike the T21 matrix in equation (1.6), the inverse of E is not the transpose
and furthermore E−1 is singular for θ = ±90 deg. This singularity is known
as the gimbal lock and can be solved using quaternions. Finally, for the small
perturbation theory, an approximation can be applied:φ̇θ̇

ψ̇

 = E−1

pq
r

 ≈
pq
r

 . (1.18)

Quaternions

A possible solution for the problem of the gimbal lock is the use of quaternions.
A quaternion is a four-dimensional representation of a sphere that can be used to
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represent the orientation of the airplane body-fixed frame with respect to a fixed
inertial one. Quaternions are generally represented in the form:

q =


q0

q1

q2

q3

 (1.19)

where q0, q1, q2, q3 are real numbers such that ||q|| = 1. A relation between the
Euler angles (φ, θ, ψ) and the quaternions q is provided:

φ = tan−1

ï
2(q2q3 + q0q1)

q2
0 − q2

1 − q2
2 + q2

3

ò
, (1.20)

θ = sin−1 [−2(q1q3 − q0q2)], (1.21)

ψ = tan−1

ï
2(q1q2 + q0q3)

q2
0 + q2

1 − q2
2 − q2

3

ò
. (1.22)

Finally, the quaternion derivative as functions of the three body axes rotational
rates (p, q, r) are given by:

d

dt


q0

q1

q2

q3

 = −1

2


0 p q r
−p 0 −r q
−q r 0 −p
−r −q p 0



q0

q1

q2

q3

 . (1.23)

1.3 Flight dynamics equations

The dynamic equilibrium of an aircraft can be expressed by two vectorial equa-
tions:

Fa + Fv + Fi = 0, (1.24)

Ma +Mv +Mi = 0 (1.25)

where a, v and i indexes refer to applied, reaction and inertial respectively. For
an aircraft in flight, the reaction forces and moments are null. The inertial forces
and moments can be defined in an inertial reference frame as:

Fi = −dQ
dt
, (1.26)

Mi = −dK
dt
− vp ∧Q (1.27)

where Q is the momentum, K is the moment associated with the momentum and
P is the reference point. Then, considering the reference point P coinciding with
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the center of gravity CG, the applied forces and moments are:

Fa =
dQ

dt
, (1.28)

Ma =
dK

dt
. (1.29)

Linear equations of motion

Starting from equation (1.28) and by using Poisson’s formulas, it is possible to
write the linear motion equation:

F =
d(Q)

dt
=
d(mvb)

dt
=

Å
dm

dt

ã
vb +m

Å
∂vb
∂t

+ ωb × vb
ã
. (1.30)

In the case of a UAV, the mass m does not change and therefore equation (1.30)
can be re-written as:

mv̇b + ωb × (mvb) = Fext (1.31)

where the vector Fext represents the sum of the gravity force Fg and the forces
generated by the UAV propellers Fprop:

Fext = Fg + Fprop. (1.32)

Angular equations of motion

The definition of the inertia matrix is introduced:

Jn =

 Jxx −Jxy −Jxz
−Jxy Jyy −Jyz
−Jzx −Jzy Jzz

 . (1.33)

where:

Jxx =

∫
(y2 + z2)dm, Jyy =

∫
(x2 + z2)dm, Jzz =

∫
(x2 + y2)dm, (1.34)

Jxy =

∫
(xy)dm, Jxz =

∫
(xz)dm, Jyz =

∫
(yz)dm. (1.35)

If the quadrotor frame can be considered symmetric, it follows that the equa-
tion (1.33) will be diagonal because Jxy = Jxz = Jyz = 0.

Considering now the equation (1.29), the angular motion equation can be
obtained:

Jnω̇b + ωb × Jnωb = Mext (1.36)

where Mext is the sum of the moments generated by the UAV propellers Mprop

and the aerodynamic damping Mdamp caused by the rotating propellers moving
through the air:

Mext = Mprop +Mdamp. (1.37)

These linear and angular equations of motion will be the starting point for the
structured model identification performed in Part I.
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1.4 Actuator model

Multi-rotor aircraft are controlled by regulating the thrust generated by each
propeller. For the purpose of this thesis, quadcopter UAVs with an X rotors
configuration will be analyzed. Figure 1.1 is reported as an example to show
motor numbering and senses of rotation.

Figure 1.1: X rotors configuration [1].

Once the airframe of the multi-rotor aircraft is defined, forces and moments
can be described more in detail. Thrust T and torque Q are quadratic functions
of the rotational speed Ω of the i-th electric motors:

Ti = CTρAR
2 = KTΩ2

i , (1.38)

Qi = CQρAR
3 = KQΩ2

i (1.39)

where CT and CQ are the dimensionless thrust and torque coefficients, ρ is the
air density, A and R are the area of the propeller disk and its radius respectively.
Introducing also the parameter b as the distance between the center of gravity of
the quadcopter and the j-th rotor, is now possible to define in the body axes the
vectors Fprop and Mprop introduced respectively in equation (1.32) and equation
(1.37):

Fprop = −

 0
0

KT (Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

 , (1.40)

Mprop =

KT
b√
2
(−Ω2

1 + Ω2
2 + Ω2

3 − Ω2
4)

KT
b√
2
(Ω2

1 − Ω2
2 + Ω2

3 − Ω2
4)

KQ(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)

 . (1.41)

These vectors can be rearranged in order to construct the so called ”allocation
matrix” which describes the generated thrust and moments as functions of the
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propeller speeds: 
T
L
M
N

 = MAllocation


Ω2

1

Ω2
2

Ω2
3

Ω2
4

 (1.42)

MAllocation =


KT KT KT KT

−KT b/2
1/2 KT b/2

1/2 KT b/2
1/2 −KT b/2

1/2

KT b/2
1/2 −KT b/2

1/2 KT b/2
1/2 −KT b/2

1/2

KQ KQ −KQ −KQ

 . (1.43)

The equation (1.42) is inverted to control the rotational motor speeds for the
required thrust and moments:

MMixer = M−1
Allocation (1.44)


Ω2

1

Ω2
2

Ω2
3

Ω2
4

 = MMixer


T
L
M
N

 (1.45)

MMixer =


1/(4KT ) −21/2/(4KT b) 21/2/(4KT b) 1/(4Kq)
1/(4KT ) 21/2/(4KT b) −21/2/(4KT b) 1/(4KQ)
1/(4KT ) 21/2/(4KT b) 21/2/(4KT b) −1/(4KQ)
1/(4KT ) −21/2/(4KT b) −21/2/(4KT b) −1/(4KQ)

 . (1.46)

Finally, angular speed is transformed in voltage and applied to the motor.



Chapter 2

Drone platform

The ANT-R quadrotor is one of the latest multirotor UAV built at the Aerospace
Systems and Control Laboratory (ASCL) at Politecnico di Milano, now used for
research purposes. In this chapter, the quadrotor main characteristics will be
provided, together with an overview of the ANT-R hardware and software com-
ponents and of the test facility.

2.1 ANT-R quadrotor characteristics

The quadcopter was assembled with commercial off-the-shelf components, with
the aim of obtaining a light racer quadrotor with high performance and optimized
for forward flight. The ANT-R main features are:

� Take Off Weight (TOW): 800 g;

� Frame size: 250mm carbon fiber frame;

� Motors: 4x EMAX brushless motors Race Spec;

� Propellers: 4x three-bladed propellers 5045;

� Rotor configuration: H configuration;

� Battery: 4 s Li-Po 2650mAh;

� Flight time (hovering): 800 s.

A detailed view of the quadcopter is shown in Figure 2.1. As can be seen from the
figure, the H rotors configuration, which can be considered equal to an X configu-
ration in terms of rotors numbering, makes the platform asymmetric, determining
different inertia moments about the x and y body axes.
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Figure 2.1: ANT-R quadcopter.

Main Processor STM32F427 Rev 3
Max current sensing 90A
Max input voltage 45V (10S LiPo)
Dimensions 38 x 43 x 12mm
Weight 15.8 g

Table 2.1: 3DR Pixhawk Mini features [2].

2.2 Hardware components

In this section the hardware components of the quadrotor will be described:

� Flight Control Unit (FCU): an electronic board which runs the flight con-
trol laws and the Inertial Measurement Unit. The Pixhawk Mini [2], a
next-generation evolution of the Pixhawk, is used as FCU for the ANT-R
quadrotor, see Figure 2.2 for a detailed view of the board and Table 2.1 for
the main features;

Figure 2.2: 3DR Pixhawk Mini autopilot [2].
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CPU Quad-core Cortex-A7 Up to 1.2GHz
RAM 512MB DDR3
Storage 8GB
PCB Size 40 x 40mm
Power Supply DC 5V / 2A
OS/Software UbuntuCore
Weight 7.5 g

Table 2.2: NanoPi computer companion features [3].

� Flight companion computer: the NanoPi [3] is integrated onboard (see Fig-
ure 2.3), main features are reported in Table 2.2. The FCU and the NanoPi
communicate with the MAVLink [19] messaging protocol;

Figure 2.3: NanoPi computer companion [3].

� Magnetometer: it measures the Earth’s magnetic field and is used as further
sensor for heading reference;

� Electronic Speed Controller (ESC): an electronic circuit used to limit and
control the rotational speed of each DC motor;

� Power Distribution Board (PDB): it connects the ESCs to the drone battery;

� Radio receiver module: it is used to control the quadcopter with a remote-
controller (RC); the RC used is the FrSky Taranis X9D Plus;

� GPS receiver: it can be used as additional source for position and linear
velocity measurements;

� Safety switch: this component allows the user to arm the quadcopter.

2.3 Software components

As for the hardware, the software components are listed:
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� PX4 firmware: an open source autopilot flight control system [20] for drones
and other unmanned vehicles, which is run on the Pixhawk Mini;

� Robot Operating System (ROS): a software installed in the companion com-
puter of the quadcopter, used to communicate with the ground station;

� MAVproxy: a fully-functioning Ground Control Station (GCS) for UAVs.
Thanks to MAVproxy it is possible to control the Pixhawk Mini from GCS
by the MAVLink protocol.

2.4 Aerospace systems and control laboratory

The laboratory used for all the experiments described in this thesis is the Aerospace
Systems and Control Laboratory (ASCL) at Politecnico di Milano. Inside the lab-
oratory there is the Flying Arena for Rotorcraft Technologies (FlyART), a dedi-
cated flying cage for drones with dimensions 12 x 6 x 3m. Since the indoor GPS
signal is poor, this cage is equipped with the OptiTrack motion capture system
(Mo-Cap) [4], which is used to determine the position (and also the attitude) of
the quadcopter. The system is composed by 12 fixed Infra-Red (IR) sensitive
cameras (see Figure 2.4) which track the quadcopter thanks to infrared sensitive
markers (see Figure 2.5) mounted with a unique layout on the top of the multi-
rotor airframe, so as to distinguish each drone. The software used to control the
Mo-Cap system is the Motive software (see [4] for more details). Data are sent
wirelessly to the NanoPi companion computer, which is connected to the Pixhawk
FCU.

Figure 2.4: Infrared OptiTrack camera [4].

Figure 2.5: Infrared sensitive markers [4].

Finally, a Ground Station (GS) is equipped with two Operating Systems (OS):
Windows OS (Windows 10 pro [21]) in which Motive is installed and Linux OS
(Ubuntu [22]) in which MATLAB [23] is run.



Part I

Quadrotor dynamics
identification





Chapter 3

Model identification of
multi-rotor UAVs

This part of the thesis concerns the problem of system identification. System
identification is the science of building mathematical models starting from input-
output data. Given the growing need to have multi-rotor aircraft with high per-
formance, it is necessary to have accurate models which better describe the real
system, in order to simulate and implement high-performance control laws. For
this reason, the field of system identification has been much discussed in last
decades in the literature, see most recent studies [7], [8], [11], [6], [9], [13], [14],
[15] and [24]. Model identification techniques can be characterized in terms of
model structure (black-box, grey-box or white-box models), data domain (time
domain or frequency domain) and type of the model (state space model or transfer
function).

In this chapter, an overview of the input data selection for the identification
phase will be provided. Then, two types of techniques will be analyzed: black-box
model identification studying the subspace model identification (SMI) method,
and grey-box model identification performed with the output-error method. As
is known, the former is extremely robust and efficient, non iterative and gives
the possibility to solve MIMO problems, both in open and closed-loop conditions.
The only disadvantage is the lack of a physical meaning of the state space rep-
resentation. This method indeed allows the user to derive a model starting from
input-output data only. Output-error instead requires iterations and the knowl-
edge of the equations which describe the real system, which can be derived, in
this case, from Newton’s second law. Moreover, closed-loop data have an output-
input correlation which makes the estimates of this method biased. However,
output-error allows to obtain the physical parameters of the aircraft, which are
needed for the design of the model inversion control laws described in Part II of
the thesis. Finally, a new approach will be shown (see [10]): the idea is to obtain
a structured model starting from the identified black-box one by solving a model
matching problem.
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The UAV to be identified is the ANT-R quadrotor, the main characteristics of
which are reported in Chapter 2. An overview of the previous system identification
activities performed on this quadcopter will be provided.

3.1 Identification experiments

Different types of inputs can be studied for system identification. Usually, for
this type of small aircraft, off-board automated inputs from the ground station
are preferred rather than manually piloted with the remote-controller. MATLAB
functions were implemented in order to have fast, precise and repeatable inputs,
injecting the excitation before the quadcopter mixer (see Chapter 1.4 for more
details about the mixer).

The decision of which class of input to use depends on the domain in which
the identification phase will be performed. For the frequency-domain approaches,
periodic excitations are used: a frequency sweep excitation is shown in Figure 3.1
as an example. The long duration of the input is needed in order to minimize data
leakages in the computation of the frequency spectra and to excite the system at
low frequencies. Other characteristic parameters of the sweep are the minimum
and maximum frequency and the amplitude, which can be expressed as percentage
of the maximum applicable input.
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Figure 3.1: Example of a frequency sweep injection.

For the time-domain identification instead, it is possible to use shorter exper-
iments to excite a large range of frequencies. An example is the Pseudo Random
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Binary Sequence (PRBS); this signal consists in steps commands of constant am-
plitude and as the name suggests, the main property is the random choice of
the step sign (see Figure 3.2 for an example). PRBS sequence is characterized
by its duration, the bandwidth of excitation and the maximum (and minimum)
normalized amplitude of the input.
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Figure 3.2: Example of a PRBS injection.

Another interesting signal for the time-domain identification is the so-called
3211 maneuver. The designation refers to the particular duration of each control
reversal. Usually at least two different pulse amplitudes are used to verify the
linearity of the system and the duration of the second pulse is chosen half the
period of the dominant mode of the response to be identified. Guidelines and
details can be found in [25] and an example of the sequence is shown in Figure
3.3.

Given the instability of a multirotor aircraft around the body x and y axes,
frequency sweep excitation is preferred rather than PRBS and 3211 sequences,
in order to use frequency-domain identification methods. Yaw and heave are
typically stable, PRBS sequences and time-domain estimation can be used.

During the identification phase, delays must be taken into account: if present,
they can lead to the estimation of a non-minimum phase system. For this reason,
time delays must be estimated by studying the cross-correlation between signals,
using the MATLAB function delayest or graphically, comparing inputs and out-
puts. Then, delays can be removed with a backward shift of the outputs. Finally,
in the validation phase, they must be re-introduced to simulate the model and
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Figure 3.3: Example of a 3211 signal.

compare the simulated output with the measured output.

3.2 Black-box model identification

Black-box identification allows to obtain an unstructured model of a system, which
means that the state space representation has no physical meanings, using only
input-output data. Subspace Model Identification (SMI) belongs to this class of
methods and has been much discussed in the last few decades in the literature
(see [7], [8], [6], [9]). This technique in fact allows to obtain an unstructured
model, starting from collected inputs and outputs data generated both in open
and closed-loop conditions. Moreover, it is attractive since the algorithm is non
iterative, it deals with SISO and MIMO problems, it is robust, efficient and very
reliable from a numerical point of view, even considering short experiments; on
the contrary, the frequency-domain approach requires collecting data for longer
time in order to perform good frequency sweeps.

The procedure of the model identification through black-box modeling is now
proposed in detail. To do this, the recent Predictor-Based System IDentification
(PBSID) (see [26]) will be used and described.
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3.2.1 Predictor-Based System IDentification

In this section the PBSID algorithm is analyzed in detail. Considering the state
space model representation:

x(t+ 1) = Ax(t) +Bu(t) + w(t) (3.1)

y(t) = Cx(t) +Du(t) + v(t) (3.2)

and assuming w(t) and v(t) are ergodic sequences of finite variance, the innovation
form is obtained:

x(t+ 1) = Ax(t) +Bu(t) +Ke(t) (3.3)

y(t) = Cx(t) +Du(t) + e(t). (3.4)

Substituting e in (3.3) and introducing Z(t) as the input-output vector:

x(t+ 1) = (A−KC)x(t) + (B −KD)u(t) +Ky(t) (3.5)

x(t+ 1) = Āx(t) +
[
B −KD K

] ïu(t)
y(t)

ò
(3.6)

x(t+ 1) = Āx(t) + B̄Z(t) (3.7)

the following system of equations is obtained through forward propagation:

x(t+ 2) = Ā2x(t) +
[
ĀB̄ B̄

] ï z(t)
z(t+ 1)

ò
(3.8)

...

x(t+ p) = Āpx(t) +KpZ(t,t+p−1) (3.9)

with Kp =
[
Āp−1B̄ B̄

]
where p and f are called ”past” and ”future” windows

sizes. Since Ā is asymptotically stable: limp→∞ Ā
p = 0 and if p is considered large

enough, the output becomes:

y(t+ p) = CKpZ(t,t+p−1) +Du(t+ p) + e(t+ p) (3.10)

y(t+ p+ f) = CKpZ(t+f,t+f+p−1) +Du(t+ f + p) + e(t+ p+ f). (3.11)

Considering p = f , the CKp and D matrices can be estimated solving a least
square problem:

min
CKp,D

||y(t+ p)− CKpZ(t,t+p−1) −Du(t+ p)||. (3.12)

Since CKp and Kp are now known, multiplying equation (3.9) by Γp defined as
the extended observability matrix (3.13), with Āp = 0:

Γp =


C
CĀ
...

CĀp−1

 (3.13)
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Γpx(t+ p) = ΓpKpZ(t,t+p−1) (3.14)

the second member of the equation is all known. Using the Singular Value De-
composition (SVD), an estimate of the state sequence X is obtained:

ΓpKpZ(t,t+p−1) = UΣV T (3.15)

X = Σ1/2V T . (3.16)

The C matrix is obtained solving another least squares problem:

min
C
||y(t)− CX(t)−Du(t)||. (3.17)

Finally, it is now possible to compute e and estimate also A,B,K:

min
A,B,K

||X(t+ 1)− AX(t)−Bu(t)−Ke(t)||. (3.18)

3.2.2 Predictor-Based System IDentification parameters

Once the estimation input-output data are collected in flight, black-box model
identification is done choosing the model order n, the past and future windows
sizes p and f . The order of the identifiable model can be guessed from sudden
”drops” in the plot of the singular values computed in equation (3.15), see Figure
3.4 for an example.

Choosing systems with unnecessarily high order can make the model less reli-
able, usually a simple model which provides the best fit to data is preferred. The
model order and parameters p and f that best meet this trade-off on a different
input-output dataset, the so-called cross-validation dataset, are chosen as final
values.

The obtained unstructured models will be used to perform the new model
matching approach proposed in [10] and described in Section 3.4.

3.3 Grey-box model identification

Unlike the previous method, linear grey-box model identification is based on an
iterative approach: the algorithm needs the definition of a parametric model class
with unknown parameters, besides the estimation data. In order to define the
model class, dynamics equations were derived from Newton’s second law (see [18]
and [16]). This physical insight is the advantage of this type of identification
method: thanks to the obtained parameters it was possible to implement the
model inversion control laws described in the Part II of the thesis.



3.3 Grey-box model identification 25

0 2 4 6 8 10 12 14 16 18 20
10

-2

10
-1

10
0

10
1

10
2

10
3

Figure 3.4: Choice of n from inspection of the singular values in equation (3.15).

3.3.1 Equations of motion

Starting from the Newton’s second law, the force and moment equations expressed
in the inertial reference system are obtained:

F =
dQ

dt
(3.19)

M =
dK

dt
+ vp ∧Q (3.20)

where F and M are the external applied forces and moments, Q is the momen-
tum, K is the moment associated with the momentum and P is the reference
point. Then, with the hypothesis of small perturbations about the trim condition
and considering the reference point P coinciding with the center of gravity, the
equations of motion expressed in the quadrotor body-fixed frame (the origin is the
center of gravity, with the x axis aligned with the longitudinal axis of the quad-
copter, z axis is perpendicular to x and it lays in the longitudinal plane pointing
downward, y axis is perpendicular to the other axes according to the right handed
rule) are derived:

u̇ = Xuu+Xqq − g sin θ +Xδδlong (3.21)

v̇ = Yvv + Ypp+ g sinφ+ Yδδlat (3.22)

ẇ = Zww + Zδδvert (3.23)



26 Model identification of multi-rotor UAVs

ṗ = Lvv + Lpp+ Lδδlat (3.24)

q̇ = Muu+Mqq +Mδδlong (3.25)

ṙ = Nrr +Nδδdir (3.26)

where u, v and w are the perturbation speeds along the three body axes (x, y and
z), p, q and r are the roll, pitch and yaw rates respectively, φ, θ and ψ are the roll,
pitch and yaw angles. The parameters Xu, Xq, Mu, Mq, Yv, Yp, Lv, Lp, Nr, Zw
are the dimensional stability derivatives with respect to velocities and rates, δlat,
δlong, δdir, δvert are the control inputs, Xδ, Yδ, Zδ, Lδ, Mδ, Nδ are the dimensional
control derivatives with respect to the relative control input and finally g is the
gravitational acceleration. It must be observed that these derivatives parameters
contain mass and moments of inertia of the quadcopter, for example:

Xu =
1

m

Å
dX

du

ã
, Mu =

1

Jyy

Å
dM

du

ã
. (3.27)

3.3.2 Accelerometer measurements

Accelerometers measurements specific external forces excluding gravity. For this
reason, these measurements were used as outputs for the identification phase:

ax = u̇+ g sin θ = Xuu+Xqq +Xδδlong (3.28)

ay = v̇ − g sinφ = Yvv + Ypp+ Yδδlat (3.29)

az = ẇ − g = Zww − g + Zδδvert. (3.30)

3.3.3 Linear grey-box model estimation

Grey-box model identification has been performed using the output-error method.
Consider the data set of measured input-output {u(ti), y(ti)} with i ∈ [1, N ] and
the state space representation:

x(t+ 1) = A(Θ)x(t) +B(Θ)u(t) (3.31)

y(t) = C(Θ)x(t) +D(Θ)u(t) + v(t) (3.32)

with v a Gaussian process with zero mean defined as the measurement noise and
Θ the vector of the unknown parameters. Disturbance acting on the plant is
not included in this model class. Maximum Likelihood (ML) principle consists
in choosing as estimate of the parameter the value of Θ which maximizes the
likelihood function, which is defined as the joint probability of the observed data.
Defining the prediction error e as the difference between the measured output ym
and the output of the model ỹ:

e(k,Θ) = ym(k)− ỹ(k,Θ) (3.33)
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maximize the likelihood function is equal to minimize the cost function:

J(Θ) =
1

N

N∑
k=1

e(k,Θ)2 (3.34)

which is equal to the sum of the squares of the deviations between the measured
and the model output.

To do this, the MATLAB function greyest can be used. The initial system,
which is described by the equations in Section 3.3.1 and Section 3.3.2, must have
the same input and outputs dimensions of the estimations data. Data can be
expressed both in time and frequency-domain. Since the equations of motion are
written in continuous time, it is necessary to take this into account during the
procedure. Then, the unknown parameters must be initialized, and they must
constitute a stable system if the identification is performed in time-domain. For
unstable modes in fact, greyest is used in frequency-domain. The numerical search
method used for iterative parameter estimation was set to ’auto’: Subspace Gauss-
Newton, Adaptive subspace Gauss-Newton, Levenberg-Marquardt, and Steepest
descent least squares search algorithms are tried in sequence at each iteration and
the one which minimizes the cost function is chosen (see [27] for more details).

To distinguish between local and global minima of the cost function, different
initial conditions are chosen for each unknown parameter of the considered sys-
tems. Once the model is found, the standard deviations of these parameters are
also known. A good criterion to exclude parameters in the model structure is the
standard deviation σ% expressed as percentage of each parameter Θi: if σ%i >
20%, Θi can be neglected, since it would not affect the cost function J(Θ) (see
also [11] and [12]).

In the next subsections, the linearized systems used for grey-box model identi-
fication will be provided separately for each axis, considering decoupled dynamics
at low speed.

3.3.4 Lateral dynamics

The linearized system which describes the lateral dynamics is:v̇ṗ
φ̇

 =

Yv Yp g
Lv Lp 0
0 1 0

vp
φ

+

YδLδ
0

 δlat (3.35)

with outputs: ï
p
ay

ò
=

ï
0 1 0
Yv Yp 0

òvp
φ

+

ï
0
Yδ

ò
δlat (3.36)

where the unknown parameters are the stability derivatives (Yv, Yp, Lv, Lp) and
the control derivatives (Yδ and Lδ). The input is the lateral actuators control
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input, which is the sum of the injected excitation and the feedback action term.
Roll rate and acceleration along y axis are considered as outputs as shown in
Figure 3.5.
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Figure 3.5: Lateral estimation data set.

3.3.5 Longitudinal dynamics

The linearized system which describes the longitudinal dynamics is:u̇q̇
θ̇

 =

Xu Xq −g
Mu Mq 0
0 1 0

uq
θ

+

Xδ

Mδ

0

 δlong (3.37)

with outputs: ï
q
ax

ò
=

ï
0 1 0
Xu Xq 0

òuq
θ

+

ï
0
Xδ

ò
δlong (3.38)

where the unknown parameters are the stability derivatives (Xu, Xq, Mu, Mq)
and the control derivatives (Xδ and Mδ). The input is the longitudinal actuators
control input and the considered outputs are pitch rate and acceleration along x
axis (see Figure 3.6).
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Figure 3.6: Longitudinal estimation data set.

3.3.6 Directional dynamics

In this case the linearized system is derived only from the moment equation:ï
ṙ

ψ̇

ò
=

ï
Nr 0
1 0

ò ï
r
ψ

ò
+

ï
Nδ

0

ò
δdir (3.39)

with r as output.
The unknown parameters are the stability and control derivatives Nr and Nδ.

The input is the directional actuators control input, which is the sum of the
injected excitation and the feedback action term. Yaw rate is the only output as
can be seen in Figure 3.7.

3.3.7 Vertical dynamics

Finally, the z axis is considered:

ẇ = Zww + Zδδvert (3.40)

with outputs: ï
w
ẇ

ò
=

ï
1
Zw

ò [
w
]

+

ï
0
Zδ

ò
δvert. (3.41)
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Figure 3.7: Directional estimation data set.

Parameters Zw and Zδ are the unknown of the system identification, with the
vertical actuators control as input, the velocity along z axis and its derivative as
outputs (see Figure 3.8).

3.4 Model matching

This section analyzes a more recent approach to perform state space model identi-
fication, following the method described in [10]. As seen in previous sections, there
is no physical meaning in the state space representations obtained using SMI meth-
ods, but they are famous for their robustness, efficiency and non-iterative nature
and they only require estimation input-output data. On the contrary, grey-box
identification needs an initial system of the equations of motion, it is iterative,
but it provides the physical parameters of the aircraft. Therefore, the idea is to
obtain a structured model starting from an unstructured one, using structured
H∞ optimization. The complexity of the method lies in the number of uncertain
parameters. This problem is mathematically equivalent to the one solved by P.
Apkarian in 2006 (refer to [28] and [29] for details).
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Figure 3.8: Vertical estimation data set.

3.4.1 The H∞ approach

Given the system representing the unstructured identified model M̂id from ob-
served input-output data:

ẋ(t) = Âx(t) + B̂u(t) (3.42)

y(t) = Ĉx(t) + D̂u(t), (3.43)

introducing Θ as the vector of the unknown physical parameters of the model, the
structured state-space model Ms(Θ) is:

ẋ(t) = A(Θ)x(t) +B(Θ)u(t) (3.44)

y(t) = C(Θ)x(t) +D(Θ)u(t). (3.45)

The vector Θ is found by solving the optimization problem:

Θ∗ = arg min ||M̂id −Ms(Θ)||, (3.46)

or using transfer functions:

Θ∗ = arg min ||Ĝid(s)−Gs(s,Θ)||∞ (3.47)

where Ĝid(s) and Gs(s, θ) are the unstructured and structured transfer functions
respectively.
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The idea is then to minimize the difference between the two models (possibly
of the same order) in terms of the H∞ norm. This is done using the MATLAB
function systune (see [30] and [31] for details): tunable elements of the system
are initialized and the system of equations described in Section 3.3 is defined,
then design requirements are specified focusing on a frequency range of interest
(where the identified model captures the real system with high accuracy), paying
attention to the default option of the function which imposes stability of the
closed-loop system; actually since this is an identification problem there is no
feedback, so the stability property is referred to the (open-loop) identified model.
Finally systune is used to find the unknown free parameters.

Before matching the two systems, since the equations of motion are expressed
in continuous-time, the identified model with PBSID algorithm must be con-
verted from discrete to continuous-time (systune works with block elements with
the same sampling time only). This has been done using the Tustin discretiza-
tion method, which approximates the integral of the differential equation with
trapezoidal areas.

Results can be compared with the ones obtained with the output-error model
identification.

3.5 Validation phase

Once the identified model is found, it must be validated using additional input-
output datasets; if the obtained model is unstable, a closed-loop validation must
be performed. To compare the measured output with the model output and
therefore to verify the fidelity of the identified model, validation parameters are
used such as the Variance Accounted For (VAF), defined as:

VAF = max

Å
1− Var(ym − yest)

Var(y)
, 0

ã
100, (3.48)

the percentage of fitting (FIT):

FIT = max

Å
1− ||ym − yest||

2

||ym − E(ym)||
, 0

ã
100 (3.49)

and the Prediction Error Cost (PEC):

PEC =
1√
N
||ym − yest||2. (3.50)

The two signals are the same if VAF = FIT = 100% and PEC = 0. Another vali-
dation method consists in comparing the estimate of the non-parametric frequency
response function, obtained from input/output data, to the frequency response of
the transfer function of the identified model.
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3.6 Previous works

The multi-rotor aircraft chosen for system identification in this thesis is the ANT-
R quadrotor, a racer platform used for research studies at the ASCL laboratory
at Politecnico di Milano. A detailed description of the quadrotor can be found
in Chapter 2. Until now, only the attitude dynamics of the quadcopter has been
identified considering SISO problems and using subspace model identification with
PRBS injections. These models in fact were needed to tune the gains of the
cascade PID controller of the attitude loops (see Chapter 5.2 for more details
about the ANT-R flight controller). In one of the most recent applications in fact,
the platform was used as a follower drone to study UAV autonomous landing on
moving aerial vehicle (see [32]) and therefore a high-performance controller was
extremely necessary, without needing to have a physical insight of the state space
representation of the system.

In this case, to obtain the physical parameters of the quadrotor which are
needed for the model inversions control laws proposed in Part II, SIMO (single-
input, multiple-output) structured problems must be studied, considering both
the force and moment equations and considering all the axes.

3.7 Conclusions

In this chapter, different methods for both structured and unstructured system
identification have been described. For grey-box model identification, the equa-
tions of motion along each axis were derived, considering decoupled dynamics at
low speed. Additionally, an overview of the previous works performed on the
identified quadcopter was proposed. The obtained models will be shown in detail
in the next chapter and an uncertainty analysis of the results will be performed.





Chapter 4

Validation phase and results

In this chapter the identified models of the ANT-R quadrotor will be presented,
validated and discussed using the subspace model identification, the output-error
model identification and a new model matching technique, as seen in the previous
chapter. Validation phase is performed differently on each axis, depending on the
stability of the particular system. In fact, since this type of aircraft is open-loop
unstable around the x and y axes, once the model is found, it must be validated
considering the complete closed-loop architecture. On the contrary, when a stable
system is validated, it is sufficient to simulate the response from input to outputs
of the open-loop identified model. Results obtained with different techniques will
be compared both in the time domain and in the frequency domain. Finally, an
uncertainty analysis of the chosen models will be performed.

4.1 ANT-R identification experiments

All the experimental data have been obtained in flight in laboratory conditions:
the ANT-R quadrotor was controlled off-board from the ground station, with
position control activated for safety reasons. Automated inputs were preferred
over those commanded by a pilot, in order to have precise, fast and repeatable
signals. Considering dynamic decouplings at low speeds, the quadcopter has been
perturbed from the hovering condition on each axis separately. The excitation
has been injected directly on the actuators.

Frequency sweeps were considered to study lateral and longitudinal dynam-
ics only, generating rolling and pitching moments. This choice comes from the
frequency-domain method which has been used to obtain the grey-box model,
given the unstable nature of the quadrotor dynamics. Sweeps were performed
with a normalized amplitude of 0.1 (which means 10% of the maximum applica-
ble moment), a range of frequency between 0.3 rad/s and 3 rad/s and a duration
of 70 s. As seen in the previous chapter, the long duration is required in order to
excite the system at low frequencies. Amplitude and frequency range parameters
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A [ ] ω [rad/s] T [s]
Longitudinal dynamics 0.1, 0.2 [0-50] 20
Lateral dynamics 0.1, 0.2 [0-50] 20
Directional dynamics 0.1 [0-30] 20
Vertical dynamics 0.3 [0-20] 20

Table 4.1: PRBS parameters.

were the results of a build-up approach, starting from small values and increasing
them gradually to excite correctly the dominant dynamics without any risk.

Pseudo random binary sequences were primarily chosen to identify directional
and vertical dynamics, producing yawing moments and thrust on z axis. PRBS
sequences have been also used for the lateral and longitudinal planes in order to
compare results from different input excitations. Parameters for the sequences are
reported in Table 4.1. As for the frequency sweeps, PRBS maximum frequencies
and amplitudes were the results of several tests following a build-up approach.
Tests with higher amplitudes have been terminated with the radio controller for
safety reasons while higher frequencies would not have been consistent with the
expected dominant attitude dynamics. The duration for all the tests was set
to 20 s, a trade-off choice in order to have a short experiment reaching also low
frequencies.

The following variables have been used as outputs for system identification:
rates and accelerations for lateral and longitudinal planes, yaw-rate only for di-
rectional plane. These measurements come from the Inertial Measurements Unit
(IMU) with a sampling time of 1/250 s, which corresponds to 250Hz. Finally,
vertical velocity and its derivative were used for the z axis, where the first one
was obtained by the OptiTrack, a motion capture system, with a sampling time
of 0.01 s (100Hz). The derivative of velocity has instead been calculated using
a finite difference method. These physical quantities are fundamental for the
aerodynamic derivatives of forces and moments (see Ref [18] and Chapter 3.3 for
details). Actuator controls, which are the sum of injected signal and feedback
term, were logged as inputs instead, expressed as normalized amplitudes (maxi-
mum value of 1).

For the validation phase of unstable dynamics, piloted maneuvers with velocity
and angle set-point were executed and used to simulate the model in closed-loop
conditions. Directional and vertical models were validated (and cross-validated
for subspace models) on different PRBS sequences. Injections on position were
also performed to simulate the complete closed-loop architecture (attitude and
position) with amplitudes equal to 1m and 2m and a maximum frequency of
15 rad/s given the slower position dynamics (for the attitude maximum value was
50 rad/s).

It must be remembered that, when comparing the collected and simulated
outputs, delays must be taken into account since they are removed during the
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identification phase. Estimated delays range from 0.008 s and 0.032 s, depending
on the signals.

4.2 Black-box models

Following the procedure explained in Chapter 3.2, subspace model identification
has been performed to obtain unstructured models which best represent the dy-
namics of the quadcopter.

4.2.1 Lateral dynamics

The first considered problem is the lateral plane: 2 PRBS sequences and the best
frequency sweep flight data were chosen for the model identification. Another
sweep motion and 2 more PRBS sequences were used for the cross-validation.
Then, 2 datasets for the closed-loop validation have been obtained piloting man-
ually the ANT-R. Additionally, an input-output data set obtained with PRBS
excitation injected on position y was also used for the validation phase to simulate
the complete (attitude and position) closed-loop architecture of the quadrotor.

From singular values plot, the order of the model was found to be n = 3,
which is in agreement with the system of equations described in grey-box model
identification in Chapter 3, with past and future windows sizes p = f = 12. The
Bode diagram of the model is shown in Figure 4.1. Best results were obtained
with the frequency sweep excitations.

For the validation phase, since the ANT-R proved to be unstable around x axis,
closed-loop simulation has been performed. The architecture from angle set-point
to the quadrotor outputs (see Chapter 5 for more details) was simulated in closed-
loop in the time-domain: roll rate, acceleration along y axis and the roll angle
are shown in Figure 4.2 and Figure 4.3 as an example, comparing simulated and
measured signals together with the Variance Accounted For (VAF) of the model.
Closed-loop validation based on data collected in manually commanded flight has
been shown since it represents a more realistic situation than a PRBS sequence
response. Results indicate that the identified model is accurate considering the
attitude, worse performance are obtained simulating the acceleration in closed-
loop.

4.2.2 Longitudinal dynamics

Since the considered quadrotor is asymmetrical, the longitudinal plane must be
studied with no symmetry assumption. As for the lateral case, 2 PRBS sequences
and the best frequency sweep flight data were chosen for the model identifica-
tion, another sweep motion and 2 more PRBS sequences were used for the cross-
validation. Finally 2 data set have been obtained piloted manually the quadrotor
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Figure 4.1: Bode diagram of lateral black-box model: roll rate (top) and lateral
acceleration (bottom).
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Figure 4.2: Black-box closed-loop validation: roll angle φ.
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Figure 4.3: Black-box closed-loop validation of the lateral model: roll rate (top)
and lateral acceleration (bottom).

for the closed-loop validation and 1 data set injecting a PRBS sequence on the
position with the same parameter values as the lateral case.

The model order was found to be n = 3, with p = f = 12 as for the lateral case.
The plot of the frequency response function is shown in Figure 4.4. Validation
in the time-domain with measured data obtained piloting manually the ANT-R
shows results similar to the lateral dynamics: the unstructured model can predict
well only the attitude of the quadrotor (see Figure 4.5 for the pitch angle and
Figure 4.6 for the complete model outputs simulation).

4.2.3 Directional dynamics

The first analyzed open-loop stable system is the directional dynamics: 5 data set
were obtained with different PRBS sequences. 2 data set were used for the model
identification, 1 for the cross-validation and the last 2 for the validation of the
identified model.

Even if the system of equations described in Chapter 3 equation (3.39) is of
the first order, considering n = 3 from singular values plot with p = f = 21, the
model (Figure 4.7) has been found to be much more accurate. As can be seen from
Figure 4.8, the VAF metric reaches 90% (if a first order model is considered, the
VAF drops to 73%). Validation and cross-validation were done simulating directly
the response of the model to a directional actuator input, given the stability of
the quadcopter around z axis. This stable model gave very good results in terms
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Figure 4.4: Bode diagram of longitudinal black-box model: pitch rate (top) and
longitudinal acceleration (bottom).
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Figure 4.5: Black-box closed-loop validation: pitch angle θ.
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Figure 4.6: Black-box closed-loop validation of the longitudinal model: pitch rate
(top) and longitudinal acceleration (bottom).

of VAF on all the considered datasets.

4.2.4 Vertical dynamics

Finally, the vertical axis has been considered. 3 best datasets obtained with 3
different PRBS injections were used to identify, cross-validate and validate the
model.

The quadrotor proved to be stable along the z axis, with an identified black-
box model which is very accurate for both the considered outputs (vertical velocity
and its derivative), see Figure 4.10. A second order model with p = f = 9 has
been chosen both by looking at the singular values and by cross-validating and
comparing the simulated outputs with those measured (as for the directional case,
a model order of 1 would have dropped the performance). The Bode diagram is
illustrated in Figure 4.9.

4.3 Grey-box models

In this section structured models are derived, including their physical parameters
(dimensional stability and control derivatives) and their accuracies. In order to
compare the same dynamic model obtained with different methods, validation
results are reported on the same data set.
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Figure 4.7: Bode diagram of directional black-box model: yaw rate.
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Figure 4.8: Black-box directional model validation: yaw rate.
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Figure 4.9: Bode diagram of vertical black-box model: vertical velocity (top) and
vertical velocity derivative (bottom).
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Figure 4.10: Black-box vertical model validation: vertical velocity (top) and ver-
tical velocity derivative (bottom).
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Pole Frequency [rad/s] Damping ratio [ ]
First order roll mode -4.252 4.252 -
Roll oscillating mode 1.994 ± 3.603i 4.118 -0.484
First order pitch mode -4.250 4.250 -
Pitch oscillating mode 2.008 ± 3.611i 4.132 -0.486
Yaw mode -8.178 8.178 -
Vertical mode -0.731 0.731 -

Table 4.2: Grey-box models eigenvalues.

4.3.1 Lateral dynamics

Grey-box model identification in frequency-domain is applied and the obtained
lateral model is shown in Figure 4.11. The eigenvalues of the system are shown in
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Figure 4.11: Bode diagram of lateral grey-box model: roll rate (top) and lateral
acceleration (bottom).

Table 4.2. As can be observed, one of them has negative real part, and a pair of
complex conjugate eigenvalues is present in the right-half plane, which represent
an unstable mode for the quadrotor in open-loop conditions. The identified pa-
rameters and their standard deviation are reported in Table 4.3. The derivatives
of force and moment with respect to roll rate were set to zero since σ% was found
to be 17.09% and 58.589% respectively (other values are lower than 5%). The
same data set used for black-box validation are used here to simulate the ANT-R
in closed-loop conditions. Results are shown in Figure 4.12 and 4.13 with the
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Parameter Value σ%

Yv -0.264 1/s 4.837
Yp 0 m/(s rad) -
Lv -7.349 rad s/m 4.927
Lp 0 1/s -
Yδ 9.568 m/s2 4.647
Lδ 1079.339 rad/s2 2.762

Table 4.3: Lateral identified parameters.

Variance Accounted For of the model. As can be observed from Figures 4.3 and
4.13, the structured model follows the measured outputs even better than the
black-box one, especially the acceleration.
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Figure 4.12: Grey-box closed-loop validation: roll angle φ.

4.3.2 Longitudinal dynamics

As for the lateral case, the frequency-domain identification is performed on the
longitudinal axis. The eigenvalues of the system are similar to the lateral ones,
the small differences are due to the asymmetry of the quadrotor. Results are
shown in Figure 4.14 and Table 4.2. Also in this case, the derivatives of force and
moment with respect to pitch rate were set to zero since their standard deviation
σ% was too large (96.3069% for the force and 111.6025% for the moment); the
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Figure 4.13: Grey-box closed-loop validation of the lateral model: roll rate (top)
and lateral acceleration (bottom).
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Figure 4.14: Bode diagram of longitudinal grey-box model: pitch rate (top) and
longitudinal acceleration (bottom).
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Parameter Value σ%

Xu -0.234 1/s 4.651
Xq 0 m/(s rad) -
Mu 7.525 rad s/m 4.353
Mq 0 1/s -
Xδ -10.237 m/s2 3.204
Mδ 701.578 rad/s2 2.573

Table 4.4: Longitudinal identified parameters.

other values are reported in Table 4.4. The pitch angle setpoint has been used
to simulate the closed-loop configuration: a comparison between simulated and
measured outputs is shown in Figures 4.15 and Figure 4.16. The model showed
very accurate results on both the considered outputs.
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Figure 4.15: Grey-box closed-loop validation: pitch angle θ.

4.3.3 Directional dynamics

The quadrotor model identified by the greyest function has proved to be stable
about the z axis. Figure 4.17 and Table 4.2 show the Bode diagram and the real
negative pole of the model. Even if the percentage standard deviation is high
(see Table 4.5) with respect to other identified parameters in the complete model,
Nr was taken into account for the validation phase, which was done simulating
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Figure 4.16: Grey-box closed-loop validation of the longitudinal model: pitch rate
(top) and longitudinal acceleration (bottom).
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Figure 4.17: Bode diagram of directional grey-box model: yaw rate.
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Parameter Value σ%

Nr -8.178 1/s 8.289
Nδ 255.590 rad/s2 3.679

Table 4.5: Directional identified parameters.

the directional model with a different PRBS signal as excitation. Results of the
validation in the time domain are reported in Figure 4.18. The model simulated
well the measured outputs on all the validation data set.
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Figure 4.18: Grey-box directional model validation: yaw rate.

4.3.4 Vertical dynamics

Finally, as seen for the black-box model identification, vertical dynamics for the
ANT-R was found to be stable, Bode diagram and eigenvalues are reported in
Figures 4.19 and Table 4.2. As can be seen from Table 4.6, percentage standard
deviations are extremely low. At the end, Figure 4.20 shows the comparison
between the simulated and the measured outputs, which gave very good results
both in term of vertical velocity and vertical velocity derivative.
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Figure 4.19: Bode diagram of vertical grey-box model: vertical velocity (top) and
vertical velocity derivative (bottom).

Parameter Value σ%

Zw -0.731 1/s 2.497
Zδ -34.351 m/s2 0.401

Table 4.6: Vertical identified parameters.
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Figure 4.20: Grey-box vertical model validation: vertical velocity (top) and ver-
tical velocity derivative (bottom).

4.4 Black-box and grey-box model identification

results comparison

In this section a comparison between the obtained models is proposed. Starting
from the vertical and directional dynamics, subspace model identification turned
out to be more accurate than output-error model identification. This could be ex-
plained by the choice of n, p and f for the Predictor-Based System IDentification
technique: these were the results of several attempts with the goal of maximizing
the validation parameters, without looking at the equation of motions described in
Chapter 3.3, considering in fact a model order equal or higher than two. Results
are shown in Table 4.7 for vertical dynamics and Table 4.8 for directional dynam-
ics, reporting VAF metrics. The models were also compared with the estimate of
the non-parametric frequency response functions obtained with the observed data.
As an example, Figure 4.21 shows the comparison of the unstructured and struc-
tured directional models in the frequency domain, confirming the best accuracy
of the unstructured one on a wider bandwidth. It is also reported the coherence
function of the measured data for consistency, indicating over which frequency
range the experimental data are valid, see Figure 4.22. It can be seen from the
figure that a model of the first order can not correctly describe the physics of
the real system. Similar results were obtained considering the vertical case.
On the contrary, for the lateral and longitudinal cases, output-error identification
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SMI Output-error
V AFw 79.777 % 61.976 %
V AFẇ 90.925 % 86.329 %

Table 4.7: Validation parameters comparison between SMI and output-error ap-
proaches: vertical dynamics.

SMI Output-error
V AFr 90.807 % 81.736 %

Table 4.8: Validation parameters comparison: directional dynamics.
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Figure 4.21: Directional model Bode diagram comparison between SMI and
output-error approaches: yaw rate.
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Figure 4.22: Coherence function of the directional non-parametric frequency re-
sponse function.

SMI Output-error
V AFp 92.906 % 93.761 %
V AFay 20.767 % 67.110 %

Table 4.9: Validation parameters comparison between SMI and output-error ap-
proaches: lateral dynamics.

provided more accurate models considering both the outputs (angle rate and ac-
celeration). The same procedure of the previous cases was followed: validation
metrics are shown in Table 4.9 for lateral dynamics and Table 4.10 for longitudi-
nal dynamics. As an example of the models comparison in the frequency-domain,
Figure 4.23 is reported to show the lateral case (very similar results were obtained
in the longitudinal plane), demonstrating the higher reliability of the structured
model, especially in the bandwidth of interest (see also Figure 4.24 for the co-
herence function of the lateral non-parametric response function obtained from
measured data). Finally, Figure 4.23 confirms results shown in Table 4.9: all the
obtained models are more accurate considering the angular rate rather than the
acceleration.

SMI Output-error
V AFq 94.232 % 95.860 %
V AFax 13.118 % 61.415 %

Table 4.10: Validation parameters comparison between SMI and output-error
approaches: longitudinal dynamics.
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Figure 4.23: Lateral model Bode diagram comparison between SMI and output-
error approaches: roll rate p (top), lateral acceleration ay (bottom).
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Figure 4.24: Coherence function of the lateral non-parametric frequency response
functions: roll rate p (top), lateral acceleration ay (bottom).
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4.5 Model matching

In this final section, model matching was performed starting from the identified
unstructured models. Obtained models are analyzed, comparing them with the
output-error ones. As for the output-error method, different initial conditions
for the physical parameters were tested to distinguish between local and global
minima. Best results are related to the open-loop stable systems.

4.5.1 Directional dynamics

The case around the z axis is the simplest one, since it is constituted by a SISO
system and parameters to be identified are two: the stability and control deriva-
tives. Results are reported in Figure 4.25 and in Table 4.11, along with those
obtained with output-error model identification. The two models are very similar
both in terms of physical parameters and VAF metric.
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Figure 4.25: Directional model Bode diagram comparison between output-error
and model-matching approaches: yaw rate.

4.5.2 Vertical dynamics

Regarding the vertical axis, very satisfactory results were obtained with model-
matching identification both in terms of physical parameters and VAF: Bode dia-
gram can be found in Figure 4.26 and the obtained parameters with the validation
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Parameter Output-error Model matching
Nr -8.178 1/s -8.989 1/s
Nδ 255.590 rad/s2 265.100 rad/s2

V AF 81.736 % 81.307 %

Table 4.11: Comparison of directional identified parameters.

metrics are reported in Table 4.12. Also in this case, the two identified models
are nearly the same.
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Figure 4.26: Vertical model Bode diagram comparison between output-error and
model-matching approaches: vertical velocity (top) and vertical velocity derivative
(bottom).

4.5.3 Lateral and longitudinal dynamics

The two remaining x and y axes are more complex since they have more unknown
variables to be tuned and it must be taken care when dealing with unstable systems
using systune. Unlike previous cases, physical parameters are more different than
those obtained using the output-error approach, even if the identified models
with model matching proved to be very similar. Results are shown in Table 4.13
for the lateral plane and in Table 4.14 for the longitudinal plane. Moreover, a
comparison of the obtained lateral dynamic models with the output-error and the
model matching approaches is reported in Figure 4.27 as an example. In these
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Parameter Output-error Model matching
Zw -0.731 1/s -0.776 1/s
Zδ -34.352 m/s2 -34.385 m/s2

V AFw 61.972 % 61.659 %
V AFẇ 86.319 % 86.267 %

Table 4.12: Comparison of vertical identified parameters.

Parameter Output-error Model matching
Yv -0.264 1/s -0.211 1/s
Yδ 9.568 m/s2 9.379 m/s2

Lv -7.349 rad s/m -3.613 rad s/m
Lδ 1079.339 rad/s2 851.287 rad/s2

V AFp 93.761 % 93.539 %
V AFay 67.110 % 66.955 %

Table 4.13: Comparison of lateral identified parameters.

cases the physical parameters were too much sensitive to the choice of the initial
unstructured model (therefore of n, p and f values) and of the focus imposed
during the model matching. For these reasons, even if the obtained models were
very accurate, these physical parameters were not considered reliable.

4.6 Uncertainty analysis

Before moving on to the flight-controller design, a more detailed analysis of the
uncertainty parameters of the complete grey-box model must be done. As seen
in Chapter 4.3, output-error model identification also gives as result the stan-
dard deviations of the quadrotor stability and control derivatives. The identified
physical parameters were perturbed considering a Gaussian distribution and their
standard deviations and the obtained models are shown in the frequency domain
in Figure 4.28, Figure 4.29, Figure 4.30, Figure 4.31, Figure 4.32, Figure 4.33,

Parameter Output-error Model matching
Xu -0.234 1/s -0.282 1/s
Xδ -10.237 m/s2 -8.758 m/s2

Mu 7.525 rad s/m 6.2967 rad s/m
Mδ 701.578 rad/s2 473.0611 rad/s2

V AFq 95.860 % 94.340 %
V AFax 61.415 % 66.660 %

Table 4.14: Comparison of longitudinal identified parameters.
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Figure 4.27: Lateral model Bode diagram comparison between output-error and
model-matching approaches: roll rate p (top) and lateral acceleration ay (bottom).

Figure 4.34 and Figure 4.35 (in all cases, a vector of 500 elements were obtained
for each physical parameter). Results confirmed the accuracy of the identified
models, especially in the interested frequency ranges. Higher dispersion must be
observed in the directional pole-zero map (Figure 4.32). Finally, these models will
be used to perform a robustness analysis of the controllers in Chapter 6.

4.7 Conclusions

In conclusion, system identification has been performed using the subspace model
identification, the output-error model identification and a new model-matching
technique. Both structured and unstructured identified models for all the axes
were derived and discussed, proving the instability nature of the quadcopter
around the x and y axes. All the structured models represented well the physics
of the ANT-R, with simulations fitting the real data with very high accuracy.
Moreover, an uncertainty analysis confirmed the fidelity of the obtained models.
Finally, results agree with the existent literature (see [11], [14], [15] and [12] as
examples). For these reasons, the complete plant model obtained with the output-
error approach has been used for the design of the flight controllers discussed in
Part II.
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Figure 4.28: Grey-box uncertainty analysis of lateral dynamics: Bode diagram.

Figure 4.29: Grey-box uncertainty analysis of lateral dynamics: pole-zero map.
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Figure 4.30: Grey-box uncertainty analysis of longitudinal dynamics: Bode dia-
gram.

Figure 4.31: Grey-box uncertainty analysis of longitudinal dynamics: pole-zero
map.
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Figure 4.32: Grey-box uncertainty analysis of directional dynamics: Bode dia-
gram.
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Figure 4.33: Grey-box uncertainty analysis of directional dynamics: pole-zero
map.
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Figure 4.34: Grey-box uncertainty analysis of vertical dynamics: Bode diagram.

Figure 4.35: Grey-box uncertainty analysis of vertical dynamics: pole-zero map.



Part II

Quadrotor dynamics control





Chapter 5

Dynamic inversion and explicit
model following control laws

The second part of the thesis deals with the problem of quadrotor control: this
type of small aircraft is affected by non-linearity and instability; it is provided
with four propellers which must control six degrees of freedom (three translations
and three rotations around each axis), resulting as an underactuated system. For
these reasons and for the increasing interest in unmanned aerial vehicles, high-
performance control systems are required.

As a part of an accurate model to simulate the real system, the identification
phase gave as results an estimate of the quadrotor physical parameters, which
include the dimensional stability and control derivatives with respect to states
and control inputs. The idea in fact is to replace the stock PID architecture of
the ANT-R quadcopter with model inversion control laws: the Explicit Model
Following (EMF) and the Dynamic Inversion (DI) control laws. These control
systems have been much studied on full size and mid size helicopters in the last
two decades (see [24], [33] and [34] for examples). On the contrary, few studies
have been done on small scale quadrotors (see [11] and [15]).

The procedure for the design of EMF and DI control laws will be described.
Then, flight controllers will be simulated with the identified model, implemented
on the quadcopter flight control unit and tested in flight, comparing the results
of the different architectures.

5.1 Complete plant model

The identification of the ANT-R quadrotor position and attitude dynamics (see
Chapter 4) has been performed using Subspace Model Identification, output-error
model identification and with a new model matching technique, considering as
input the control actuators input, which is the sum of the injected excitation
signal and the feed-back term, angular rates and accelerations as outputs for
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lateral and longitudinal dynamics, yaw rate only for directional dynamics and
vertical velocity with its derivative for the z axis.

The following complete plant model has been obtained by combining the mod-
els obtained with the output-error approach on each axis, since couplings have
been neglected at low speed, see the state space system at equation (5.1), the
state space matrices at equation (5.2) and equation (5.3), the state and input
vectors at equation (5.4) and equation (5.5) respectively. The identified plant
model proved to be minimum phase, unstable around x and y axes and accurate
in all validation tests. Identified stability and control derivatives values with their
percentage standard deviations are shown in Table 5.1, differences between lateral
and longitudinal parameters are due to the asymmetry of the considered platform.
Moment derivatives with respect to pitch and roll rate (Mq and Lp) were neglected
since the associated uncertainty values were considered too large. These results
are in agreement with the literature, see [11], [15] and [12].

ẋ = Ax+Bu (5.1)

A =



Yv Yp g 0 0 0 0 0 0
Lv Lp 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 Xu Xq −g 0 0 0
0 0 0 Mu Mq 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 Nr 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 Zw


(5.2)

B =


Yδ 0 0 0
Lδ 0 0 0
0 Xδ 0 0
0 Mδ 0 0
0 0 Nδ 0
0 0 0 Zδ

 (5.3)

x =
[
v p φ u q θ r ψ Vz

]ᵀ
(5.4)

u =
[
δlat δlong δdir δver

]ᵀ
. (5.5)

5.2 ANT-R stock flight controller

The quadrotor considered for identification and control has one of the most com-
mon feedback controller in multi-rotors aircraft: a cascade PID architecture. Both
position and attitude dynamics controls are composed by two closed-loops: the
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Parameter Value Unit σ%

Yv -0.264 1/s 4.837
Yp 0 m/(s rad) -
Lv -7.349 rad s/m 4.927
Lp 0 1/s -
Yδ 9.568 m/s2 4.647
Lδ 1079.339 rad/s2 2.762
Xu -0.234 1/s 4.651
Xq 0 m/(s rad) -
Mu 7.525 rad s/m 4.353
Mq 0 1/s -
Xδ -10.237 m/s2 3.204
Mδ 701.578 rad/s2 2.573
Nr -8.178 1/s 8.289
Nδ 255.590 rad/s2 3.679
Zw -0.731 1/s 2.497
Zδ -34.351 m/s2 0.401

Table 5.1: Complete plant identified parameters.

outer loop has a proportional gain KPouter on the tracking error between the set-
point and the feedback term (angles or positions), while the inner loop is a PID
for the angular rates and the velocities respectively:

PID(s) = KP + sKD +
1

s
KI (5.6)

where KP , KD and KI are respectively the proportional, derivative and integral
gains. Regulator parameters are reported in Table 5.2 and Table 5.3 for all axes.
These gains were calibrated starting from stock values to obtain satisfactory per-
formance in terms of response, tracking accuracy and disturbance rejection; a final
trial and error manual calibration was performed in flight. Considering the lateral
attitude dynamics as example, a block diagram of the closed-loop attitude dynam-
ics is shown in Figure 5.1. In the figure, the input of block UAV is the difference
between opposite rotational motors speeds δΩ, which is obtained by multiplying
the mixer matrix and the moment δL, which is the output of the PID controller
(for more details about the mixer matrix see Chapter 1); eφ is the error between
the roll angle set-point and the measured signal (which is obtained integrating
the roll rate p); ep is the error between the desired roll rate (obtained as output
of the proportional gain Pinner) and the measurement.
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Figure 5.1: ANT-R stock flight controller: attitude dynamics.

Parameter y φ x θ ψ z
KPouter 0.95 6.5 0.95 6 2.8 1

Table 5.2: ANT-R stock flight controller: proportional gains.

5.3 Dynamic Inversion control law design

In this section the DI controller will be described in detail. DI inverts the equations
which were used to obtain the plant model using feedback linearization. The
procedure for the design of the control law (see [11] and [24]) can be divided in
three steps:

1. Choice of the state vector x, input u and output y:

ẋ = Ax+Bu (5.7)

y = Cx (5.8)

x ∈ Rn, u ∈ Rm, y ∈ Rm. (5.9)

DI can deal with square MIMO systems of any order as long as measurements
of the states exist for feedback.

2. Differentiation of the output equation until the explicit dependence of the
control is observed in the output:

ẏ = CAx+ CBu. (5.10)

Parameter Vy p Vx q r Vz
KPinner

0.06 0.05 0.06 0.07 0.08 0.2
KIinner

0.02 0.05 0.02 0.05 0.1 0.02
KDinner

0.001 0.001 0.001 0.001 0 0

Table 5.3: ANT-R stock flight controller: PID parameters.
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3. Inversion of the output equation

u = (CB)−1(v − CAx) (5.11)

v = ẏcmdf +Ke (5.12)

e = ycmdf − y (5.13)

where v is the pseudo command vector and K is the compensator of e, which
is the difference between the filtered desired output ycmdf and the measured
output y.

The architecture instead consists in three blocks:

� feedback to achieve model inversion;

� command filter: the reference signal is filtered to obtain a smoother response
to pilot command;

� feed-back compensation to govern disturbance rejection.

A schematic of the DI flight control system is shown in Figure 5.2.
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Figure 5.2: Dynamic Inversion block diagram.

5.3.1 Stability issues

The main problem of Dynamic Inversion could be the presence of zeros in the
right-half complex plane (non minimum phase, NMP zeros). If equation (5.11) is
substituted in equation (5.7):

ẋ = (I −B(CB)−1C)Ax+B(CB)−1ν (5.14)

it can be observed that the eigenvalues of the inverted system are the zeros of the
initial one. Therefore, if the identified model is NMP, the controlled system is
unstable. To solve this problem, the Approximate Dynamic Inversion method or
simple inputs-outputs redefinition can be used (see [24] for more details).
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5.3.2 Inner loop: attitude

The inner loop controls the pitch, roll, yaw and vertical dynamics. Following the
procedure in the previous section:

1. States, inputs and outputs are chosen for the inner loop:

x =
[
p φ q θ r w

]ᵀ
(5.15)

u =
[
δlat δlong δdir δvert

]ᵀ
(5.16)

ycmd =
[
φcmd θcmd rcmd Vzcmd

]ᵀ
(5.17)

y =
[
φ θ r Vz

]ᵀ
. (5.18)

2. A partition of matrix C is needed to see the control in the output equation
since pitch and roll angle equations must be differentiated twice while the
yaw rate and vertical velocity equations only once:

C =

ï
C1

C2

ò
(5.19)

C1 =

ï
0 1 0 0 0 0
0 0 0 1 0 0

ò
(5.20)

C2 =

ï
0 0 0 0 1 0
0 0 0 0 0 1

ò
(5.21)

φ̈

θ̈
ṙ

V̇z

 =

ñ
C1Â

2x+ C1ÂB̂u

C2Âx+ C2B̂u

ô
(5.22)

where Â and B̂ are the modified state space matrices:

Â =


Lp 0 0 0 0 0
1 0 0 0 0 0
0 0 Mq 0 0 0
0 0 1 0 0 0
0 0 1 0 Nr 0
0 0 0 0 0 Zw

 (5.23)

B̂ =


Lδ 0 0 0
0 0 0 0
0 Mδ 0 0
0 0 0 0
0 0 Nδ 0
0 0 0 Zδ

 . (5.24)
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3. Inversion of the output equation:

u =

ñ
C1ÂB̂

C2B̂

ô−1Ç
ν −
ñ
C1Â

2

C2Â

ô
x

å
(5.25)

with the pseudo-command vector v defined as:
νφ
νθ
νr
νVz

 =


φ̈cmd
θ̈cmd
ṙcmd
V̇zcmd

+


eφ
eθ
er
eVz

KP +


ėφ
ėθ
0
0

KD +


∫
eφ∫
eθ∫
er∫
eVz

KI (5.26)

and
e = ycmd − y. (5.27)

The block diagram of the inner loop is illustrated in Figure 5.3, which was ob-
tained with equations (5.25) and (5.26). A second order command filter of the
second order was chosen for pitch and roll angle and PID regulators for feed-back
compensation. For the yaw rate and the vertical velocity, a first order filter and
PI compensator were used.
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Figure 5.3: Dynamic Inversion block diagram: inner loop.
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5.3.3 Outer loop: velocity

The outer loop tracks the lateral and the longitudinal velocities. Usually, these
quantities are commanded in the Earth fixed frame (NED), while equations of
motion are written in the body frame. A rotation matrix TEB from the body
frame FB to NED frame FE is so introduced in the flight control scheme:VxVy

Vz

 = TEB

uv
w

 (5.28)

TEB =

cosψ cos θ cosψ sinφ sin θ − sinψ cosφ cosψ cosφ sin θ + sinψ sinφ
sinψ cos θ sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ− cosψ sinφ
− sin θ sinφ cos θ cosφ cos θ

 .
(5.29)

(See Chapter 1 for more details about three dimensional rotations). Now the DI
law for the outer loop can be designed:

1. The vectors of states, inputs and outputs are:

xᵀ =
[
u v

]
, uᵀ =

[
θcmd φcmd

]
(5.30)

yᵀcmd =
[
ucmd vcmd

]
, yᵀ =

[
u v

]
. (5.31)

2. Considering the lateral and longitudinal equations of motion, the output
equations are:

v̇ = Yvv + gφcmd (5.32)

u̇ = Xuu− gθcmd. (5.33)

3. Equations (5.33) and (5.32) are inverted:

φcmd = 1/g (νv − Yvv) (5.34)

θcmd = −1/g (νu −Xuu) (5.35)

with the pseudo-command vector defined as:ï
νu
νv

ò
=

ï
u̇cmd
v̇cmd

ò
+

ï
eu
ev

ò
KP +

ï∫
eu∫
ev

ò
KI . (5.36)

For both lateral and longitudinal planes, a first order command filter of the first
order is used to obtain a more desirable reference signal and a PI controller com-
pensates the error between the desired and the measured velocity. Finally, the
schematic of the outer loop for the lateral dynamics is shown in Figure 5.4 as
an example and was derived from equations (5.36) and (5.34). Note that, since
model inversion is written in body axes, set-point velocities must be rotated for
consistency.
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Figure 5.4: Dynamic Inversion block diagram: outer loop, lateral axis.

5.3.4 Error dynamics

The equations of motion which are used to identify and control the quadcopter
are based on approximations. Model inversion in fact is not exact and, moreover,
disturbances are present. For these reasons, error dynamics is introduced and it
will be described in detail how to obtain controller gains for the inner attitude loop
and the outer velocity loop starting from the definition of the pseudo-command
vector:

ν = ÿcmd +KP e+KDė+KI

∫ t

0

e dτ . (5.37)

For a DI controller:

e(n) = ν − y(n)
cmd (5.38)

where n is the order of differentiation. Substituting equation (5.38) in (5.37):

ë+KP e+KDė+KI

∫ t

0

e dτ = 0 (5.39)

In the Laplace domain:

E(s)

Å
s2 +KDs+KP +

1

s
KI

ã
= 0 (5.40)

s3 +KDs
2 +KP s+KI = 0. (5.41)

Considering a third order system constituted by a pair of complex conjugate poles
(introduced with the damping ratio ξ and the natural frequency ωn) and a real
pole p:

(s2 + 2ξωns+ ωn
2)(s+ p) = 0 (5.42)

s3 + (p+ 2ξωn)s2 + (2ξωnp+ ωn
2)s+ ωn

2p = 0. (5.43)

It is possible to match equations (5.41) and (5.43):

KD = 2ξωn + p (5.44)

KP = 2ξωnp+ ωn
2 (5.45)

KI = ωn
2p. (5.46)
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ωn [rad/s] ξ
Pitch 10 0.9
Roll 10 0.9
Yaw 1 0.9
Heave 1 0.9

Table 5.4: Dynamic Inversion: natural frequencies ωn and damping ratios ξ for
inner loop.

ωn [rad/s] ξ
Lateral velocity 1 0.9
Longitudinal velocity 1 0.9

Table 5.5: Dynamic Inversion: natural frequencies ωn and damping ratios ξ for
outer loop.

Initial values for ωn and ξ were set equal to those of the command filters while
the real pole p was considered equal to p = ωn/5 for frequency separation from
the complex conjugate ones. In a similar way it is possible to derive values for
the gains of the PI controllers:

KP = 2ξωn (5.47)

KI = ωn
2. (5.48)

Initial inner loop natural frequencies and damping ratios are reported in Table 5.4.
For the outer loop, ωn can be set at least at a decade away from the bandwidth of
the inner loop, which means: ωnouter = ωninner

/10 in order to have a slower outer
dynamics (see Table 5.5 for outer loop values).

5.4 Explicit Model Following control law design

Another flight controller which uses simplified model inversion is the Explicit
Model Following. Unlike the previous one, Explicit Model Following is based on
the idea of inverting the equations using feed-forward linearization. The architec-
ture in fact is composed by:

� feed-forward to achieve model inversion;

� command filters in order to have a desirable response for the pilot;

� feed-back compensation.

An example of the block diagram is shown in Figure 5.5. As for Dynamic Inversion,
a detailed description of control laws design for the velocity and the attitude loops
will be provided.
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Figure 5.5: Explicit Model Following block diagram.

5.4.1 Inner loop: attitude

In order to construct the inner loop which tracks roll angle, pitch angle, yaw
rate and velocity along the z axis, the following inverted transfer functions were
obtained:

� Pitch:
δlong
θ

=
s(s−Mq)

Mδ

; (5.49)

� Roll:
δlat
φ

=
s(s− Lp)

Lδ
; (5.50)

� Yaw:
δdir
r

=
s−Nr

Nδ

; (5.51)

� Heave:
δvert
Vz

=
s− Zw
Zδ

. (5.52)

The architecture of the inner loop can be found in Figure 5.6. Values for command
filters are the same as for DI for both inner and outer loops in order to have the
same command input. A Linear Quadratic Regulator (LQR) is used as dynamic
compensator, see Section 5.4.3 for a detailed description.

5.4.2 Outer loop: velocity

Lateral and longitudinal velocities are controlled independently on each axis using
LQR and the following first order decoupled linear models:
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Figure 5.6: Explicit Model Following block diagram: inner loop.
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� Longitudinal velocity:
θcmd
Vx

=
s−Xu

−g
; (5.53)

� Lateral velocity:
φcmd
Vy

=
s− Yv
g

. (5.54)

A schematic of the controller for the lateral velocity is shown in Figure 5.7 as an
example.
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Figure 5.7: Explicit Model Following block diagram: outer loop.

5.4.3 Disturbance rejection

The optimal regulators were obtained minimizing the cost function:

J(x, u) =

∫ t

0

(xᵀQx+ uᵀRu) dτ (5.55)

where matrices Q and R were related to the largest desired responses and inputs,
as suggested in [11]:

Q = diag
î

α1
2

x12max
... αn

2

xn2
max

ó
(5.56)

R = ρ diag
î

β1
2

u12max
... βm

2

um2
max

ó
(5.57)

where ximax is the desired maximum displacement from equilibrium of state xi
and similarly uimax is the desired maximum control action displacement from
equilibrium of control input ui, the constant values ρ, αi, i = 1, . . . , n and βi, i =
1, . . . ,m are additional weights. Values for Linear Quadratic Regulator penalties
are reported in Tables 5.6 and Table 5.7 for the attitude loop, Table 5.8 and
Table 5.9 for the velocity loop; the α and β parameters were chosen such that∑n

i=1 αi
2 = 1 and

∑m
j=1 βi

2 = 1, ρouter = 0.25 and ρinner = 2.
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Finally, for the inner loop, the state vector and the modified state space ma-
trices for the LQR disturbance rejection are:

xᵀinner =
[
p φ

∫
φ q θ

∫
θ r

∫
r Vz

∫
Vz
]

(5.58)

Ainner =



Lp 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 Mq 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 Nr 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 Zw 0
0 0 0 0 0 0 0 0 1 0


(5.59)

Binner =



Ld 0 0 0
0 0 0 0
0 0 0 0
0 Md 0 0
0 0 0 0
0 0 0 0
0 0 Nd 0
0 0 0 0
0 0 0 Zd
0 0 0 0


. (5.60)

For the outer loop, the state space matrices used for the LQR regulators are:

Av =

ï
Yv 0
1 0

ò
, Bv =

ï
g
0

ò
(5.61)

for the lateral plane, and

Au =

ï
Xu 0
1 0

ò
, Bu =

ï
−g
0

ò
(5.62)

for the longitudinal plane.

5.5 Conclusions

In conclusion, Dynamic Inversion and Explicit Model Following control laws for a
quadcopter have been described and compared to the most common cascade PID
architecture. Initial values for command filters and feedback compensations were
provided. The next step will be the simulation and the comparison of the two
model inversion control laws.
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ximax
Pitch rate 600π/180
Pitch angle 35π/180
Integral pitch angle 0.05π/180
Roll rate 600π/180
Roll angle 35π/180
Integral roll angle 0.05π/180
Yaw rate π/180
Integral yaw rate π/180
Vertical velocity 0.1
Integral vertical velocity 1

Table 5.6: Linear Quadratic Regulator: inner loop state penalties.

uimax
Lateral input 0.001
Longitudinal input 0.001
Directional input 0.001
Vertical input 0.05

Table 5.7: Linear Quadratic Regulator: inner loop input penalties.

ximax
Lateral velocity 10/4
Integral lateral velocity 10/4
Longitudinal velocity 10/4
Integral longitudinal velocity 10/4

Table 5.8: Linear Quadratic Regulator: outer loop state penalties.

uimax
Lateral input 10π/180
Longitudinal input 10π/180

Table 5.9: Linear Quadratic Regulator: outer loop input penalties.





Chapter 6

Simulator results

Before implementing the Dynamic Inversion and the Explicit Model Following
flight controllers on the ANT-R quadcopter, simulations of both the architectures
were performed using MATLAB and Simulink [35]. Closed-loop simulation is
important since it allows to predict the behavior of the real system, saving time
and increasing the safety level of the experimental tests.

In this chapter, the identified model (see Chapter 5.1 and Part I for more de-
tails) will be inserted in both flight control architectures to simulate the responses
of specific command inputs, studying all the axes and comparing the results. Fi-
nally, considering the uncertainty values of the identified physical parameters, a
robustness analysis will be performed to study stability and performance of the
flight controllers.

The accuracy of the designed simulators will be tested in the next chapter,
comparing measured data to simulated data.

6.1 Dynamic Inversion simulator

Following the procedure explained in Chapter 5.3, the architecture of Dynamic
Inversion control law is designed in Simulink. In order to control the position
and the altitude of the quadrotor, further outer loops for lateral, longitudinal,
vertical positions and for yaw angle are added with simple proportional gains
which multiply the error between the set-point and the measurement. In this way,
the architectures of the two proposed controllers become comparable to the one
of the stock controller. All final regulator gains are reported in Table 6.1 (PID
values), Table 6.2 (PI values) and Table 6.3 (P values). Moreover, saturation
blocks have been inserted to impose limits on specific signals (velocities, angles
and angular rates), see Table 6.4 for details. Finally, command filters values are
shown in Table 6.5 and Table 6.6; the filter time constants were chosen in relation
to the desired response time of the quadcopter along each axis. The block diagram
of the complete Dynamic Inversion simulator is shown in Figure 6.1 as an example.
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KP KI KD

Roll and pitch angle 136 200 20

Table 6.1: Dynamic Inversion: PID gains.

KP KI

Longitudinal velocity 1.8 1
Lateral velocity 1.8 1
Vertical velocity 10 1
Yaw rate 30 1

Table 6.2: Dynamic Inversion: PI gains.

Parameter KP

Longitudinal position 0.95
Lateral position 0.95
Vertical position 1
Yaw angle 20

Table 6.3: Dynamic Inversion: P gains.

Signal Max Min
Longitudinal velocity 3 m/s -3 m/s
Lateral velocity 3 m/s -3 m/s
Vertical velocity 1 m/s -3 m/s
Roll angle 35 deg -35 deg
Pitch angle 35 deg -35 deg
Roll rate 600 deg /s -600 deg /s
Pitch rate 600 deg /s -600 deg /s
Yaw rate 600 deg /s -600 deg /s

Table 6.4: Signal saturation values.

Command τ
Longitudinal velocity 0.5
Lateral velocity 0.5
Vertical velocity 0.4
Yaw rate 0.1

Table 6.5: First order command filter values.

Command ω ξ
Roll angle 10 0.9
Pitch angle 10 0.9

Table 6.6: Second order command filter values.
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Figure 6.1: Dynamic Inversion simulator: Simulink architecture.
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6.2 Explicit Model Following simulator

As for Dynamic Inversion, the procedure described in Chapter 5.4 for the design
of the Explicit Model Following flight controller is followed, adding the same
DI control outer loops for lateral, longitudinal, vertical positions and for yaw
angle. Saturation blocks are also inserted for safety reasons. Command filters
are the same chosen for DI controller in order to have the same input command
and compare the responses. Linear Quadratic Regulator penalties described in
Chapter 5.4.3 gave the following optimal controllers K as results:

Kinner =
0.015 0.12 0.51 0 0 0 0 0 0 0

0 0 0 0.020 0.14 0.51 0 0 0 0
0 0 0 0 0 0 0.014 0.026 0 0
0 0 0 0 0 0 0 0 −0.21 −0.022

 (6.1)

with the state space vector:

xᵀinner =
[
p φ

∫
φ q θ

∫
θ r

∫
r Vz

∫
Vz
]

(6.2)

for the inner loop, while for the outer loop (KVx for the longitudinal plane and
KVy for the lateral plane):

KVx =
[
−0.151 −0.0987

]
(6.3)

KVy =
[
0.1480 0.0987

]
(6.4)

with the state space vectors

xᵀVx =
[
Vx

∫
Vx
]

(6.5)

xᵀVy =
[
Vy

∫
Vy
]
. (6.6)

6.3 Simulator results comparison

Dynamic Inversion and Explicit Model Following control laws are compared simu-
lating the responses of different set-points. As examples, speed command doublet
responses along lateral and longitudinal axes are shown in Figure 6.2 and Fig-
ure 6.3 respectively, in order to analyze the complete architectures (both attitude
inner loop and velocity outer loop). Considered outputs are the velocity along
the specific axis, the angular rate, the angle and the actuators control input,
perturbed from the trim condition. Results showed how the two different flight
controllers gave similar results considering all the outputs. In both the lateral
and longitudinal cases, the output velocity features a slight overshoot with the
Explicit Model Following control law. Small differences between the two axes are
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present due to the asymmetry of the controlled quadcopter. In fact, very similar
values of angles and angular rates are reached during the same maneuvers, but
the required applied moment is higher in the longitudinal plane.

Considering the attitude inner loop, angular command doublets around the
x, y, z axes and speed command doublets along the z axis were studied. The
lateral case is shown as an example in Figure 6.4. Also in this case, the angle
response of the EMF controller is slightly different then the DI case. In order
to study these differences of the outputs, the actuators control input is analyzed
more in detail: this signal is the sum of the model inversion term and the error
compensation term. The former is the same for both architectures, since it was
constructed using the same equations of motion, the only difference is that the
EMF term acts in feedforward while the DI term acts in feedback which contains
the measured signal.

6.4 Robustness analysis

The main challenge of Dynamic Inversion and Explicit Model Following is not
only the high accuracy of the identified model used to simulate and tune the
flight controllers, but also the fidelity of the identified physical parameters of the
quadrotor, namely the dimensional stability and control derivatives. During flight
in fact, if these parameters differ too much from those of the real system, there
will be a feed-back term for DI and a feed-forward term for EMF which will
cause disturbances. In simulation this effect can not be seen if the nominal model
is used. For this reason a robustness analysis has been performed in the time-
domain. The stability and control derivatives of the quadcopter were perturbed
considering again their standard deviations and a Gaussian distribution as seen
in Chapter 4.6, while the control loops with model inversions remained fixed.
Responses to doublet inputs on each axis were simulated 500 times with 500 plant
models.

Results of 500 lateral speed command doublet response simulations are shown
in Figure 6.5 as an example for the DI control law. As can be seen from the figure,
even if the model is perturbed, the outputs remain close to the nominal ones,
confirming the robustness of the controller. Very similar results were obtained
considering the longitudinal plane and simulating the EMF flight controller with
the same procedure.

6.5 Conclusions

The identified model was used to simulate the designed Dynamic Inversion and
Explicit Model Following flight controllers, analyzing typical responses to different
command inputs. This was an important phase of the work because allowed to
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Figure 6.2: Simulation comparison: lateral speed command doublet response
(from top to bottom: lateral velocity Vy, roll rate p, roll angle φ and lateral
actuators control input δlat).
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Figure 6.3: Simulation comparison: longitudinal speed command doublet re-
sponse, from top to bottom (longitudinal velocity Vx, pitch rate q, pitch angle
θ and longitudinal actuators control input δlong).



88 Simulator results

0 1 2 3 4 5 6
-200

-100

0

100

0 1 2 3 4 5 6

-20

0

20

0 1 2 3 4 5 6

-5

0

5

Figure 6.4: Simulation comparison: roll angle command doublet response (from
top to bottom: roll angle φ, roll rate p and lateral actuators control input δlat).
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Figure 6.5: Dynamic Inversion robustness analysis: lateral velocity command
doublet response (from top to bottom: lateral velocity Vy, roll rate p, roll angle φ
and lateral actuators control input δlat).
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obtain a preliminary tuning of the controllers, avoiding wasting time with numer-
ous in-flight tests. All final simulation results were satisfactory, demonstrating
the stability and the robustness of both the DI and EMF control laws. Last step
of the thesis will be to test the controllers in flight, implementing the designed
Simulink models on the ANT-R quadrotor flight control unit.



Chapter 7

Experimental results

The last part of the thesis deals with the in-flight experimental tests of the Dy-
namic Inversion and the Explicit Model Following control laws. At first, an
overview of the application used to implement a custom flight control system
on the quadcopter will be described. Then, the designed flight controllers will
be imported in the ANT-R quadrotor, substituting the stock controller. The two
different architectures will be tested and compared in details. In addition, a com-
parison between measured and simulated data will be provided, to show the level
of accuracy of the identified model and the fidelity of the closed-loop simulators.
Finally, Dynamic Inversion control law results will be compared to those obtained
with the stock ANT-R autopilot.

7.1 Flight controllers design

As seen in Chapter 2, the ANT-R quadrotor uses the Pixhawk Mini as Flight
Control Unit (FCU). The FCU hosts the PX4 firmware, an open-source autopilot
system; the software can be downloaded from GitHub [20] and users can modify
the autopilot at will. A MATLAB Graphic User Interface (GUI) application
developed at the Aerospace System and Control Laboratory at Politecnico di
Milano (see [36] for more details) was used to compile and import the controller
designed in Simulink into the PX4 firmware, which was modified to automate
the entire procedure. The Simulink Embedded Coder in fact can automatically
generate C++ code from a Simulink model.

The first step of the procedure is to design a Simulink model with the same
inputs-outputs defined by the modified PX4 firmware. Then, the model is inserted
in a Simulink template and using the application it is possible to automatically
generate the C++ code and deploy the new controller to the quadcopter FCU.

In this section, the complete Simulink models of Dynamic Inversion and Ex-
plicit Model Following to be tested in flight will be analyzed.

Starting from the Simulink models of DI and EMF control laws used for the
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simulations and studied in the previous chapter, some changes were necessary
before inserting the models in the template for the generation of the C++ library:

� The Pixhawk Mini flight control unit is able to receive the informations
from the optical motion capture system (see Chapter 2). In particular, the
information of the quadrotor velocity is expressed in the NED reference
system; as it is necessary to have feedback terms expressed in the body-
reference frame, a further rotation matrix must be included in the model;

� The identified model was obtained considering as inputs the normalized
moments and thrust with respect to the maximum applicable inputs. A
normalized mixer matrix is therefore used to obtain the required motors
angular speeds Ω, considering theX configuration of the quadrotor platform:

Ω2
1

Ω2
2

Ω2
3

Ω2
4

 = MMixer


δvert
δlat
δlong
δdir

 (7.1)

MMixer =


−1/(4KT ) −21/2/(4KT b) 21/2/(4KT b) 1/(4KQ)
−1/(4KT ) 21/2/(4KT b) −21/2/(4KT b) 1/(4KQ)
−1/(4KT ) 21/2/(4KT b) 21/2/(4KT b) −1/(4KQ)
−1/(4KT ) −21/2/(4KT b) −21/2/(4KT b) −1/(4KQ)

 (7.2)

with the constant values KT = KQ = 0.25 and b = 2;

The obtained complete architecture is shown in Figure 7.1. Finally, the Simulink
models are imported in the quadcopter using the MATLAB GUI application.

7.2 In-flight tests results

The only problem encountered in flight with both the control laws was a distur-
bance acting on the yaw angle, causing an uncontrollable rotation around z axis
of the quadcopter. This problem was solved by imposing the derivative Nr of the
yaw moment with respect to the yaw rate equal to zero. This term in fact gener-
ated a positive feed-back component in the Dynamic Inversion control system and
a feed-forward component in the Explicit Model Following control system meant
to cancel the open-loop yaw dynamics, which implied that the identified physical
parameter was not accurate. Imposing Nr equal to zero is in agreement with the
literature (see [12] as an example) when the quadrotor is identified around the
hovering condition (it must be remembered that also the derivatives of the mo-
ments with respect to roll rate and pitch rate were set to zero, see Chapter 4.3
for more details).
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Figure 7.1: Simulink flight controller architecture example.
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To compare the two different flight controllers, speed command doublets were
chosen as inputs, in order to have a comparison of both the outer velocity loop and
the inner attitude loop. In this case, off-board automated inputs were preferred
rather than manual radio controls in order to have precise, fast, repeatable and
therefore comparable commands. Figure 7.2 shows the response of the ANT-R to
a lateral speed command doublet of 1m/s amplitude with a semi-period of 2 s.

As seen in Chapter 6.3 studying the simulations, the output velocity of the
EMF flight controller features a slight overshoot with respect to the desired output
while DI control system follows correctly the set-point. Very similar angular rates
and angles were reached during the maneuvers.

In order to study these small differences of the two flight controllers, the control
input actuator is studied once again in details. This signal is the sum of the model
inversion and the error compensation terms of both the inner and the outer loops
(see Chapter 5 for a detailed description of the control laws). A comparison
of these quantities is shown in Figure 7.4 and Figure 7.5 for the outer velocity
loop, where data are expressed in degrees as inputs for the inner attitude loop
and in Figure 7.6 and Figure 7.7 for the inner loop, where data are expressed in
percentage of the maximum applicable moment as inputs for the mixer matrix.

Considering the outer loop as an example (Figure 7.4 and Figure 7.5), the two
considered terms are defined more in depth in Figure 7.3:

� For the control action term, the output of the PI regulator aPI (Figure 7.3a),
which has unit of measurements m/s2, is divided by g and compared to the
output of the LQR compensation φLQR (Figure 7.3b), which has unit of
measurements of an angle;

� For the model inversion term, the signal aPI (Figure 7.3a) divided by g is
subtracted from the output of the dynamic inversion φcmd and compared to
the EMF feed-forward term φcmdff (Figure 7.3b).

Differences in the error compensation term for both the loops are clearly due to
the different control systems: PID regulators are present in the DI flight controller
while LQR is used in the EMF flight controller. This could be solved by adjusting
the LQR penalties in such a way that they would give results more similar to the
Dynamic Inversion control law. More interesting are the model inversion terms:
as can be seen in Figure 7.5 and Figure 7.7 the noise is an important factor in the
results; in fact despite having used the same equations of motion in both DI and
EMF model inversions, the Dynamic Inversion flight controller introduces these
terms in feedback and, as seen in the previous section, these signals come from the
optical motion capture system and noise disturbances are inevitable. Moreover,
these quantities must be rotated from the NED to the body reference system,
introducing also possible numerical errors.

Finally, concerning the z axis, the quadrotor maintained correctly the alti-
tude with both the implemented flight controllers, with no significant differences.
Results along the vertical axis are reported in Figure 7.8.



7.2 In-flight tests results 95

56 58 60 62 64 66

-1

0

1

56 58 60 62 64 66
-2

-1

0

56 58 60 62 64 66

0

100

200

56 58 60 62 64 66

-10

0

10

56 58 60 62 64 66

-2

0

2

Figure 7.2: DI and EMF comparison: lateral speed command doublet response
(from top to bottom: lateral velocity Vy, lateral position y, roll rate p, roll angle
φ, lateral control actuator input δlat).
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Figure 7.4: DI and EMF comparison: outer loop control action term.
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Figure 7.7: DI and EMF comparison: inner loop model inversion term.
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Figure 7.8: DI and EMF comparison: vertical axis (from top to bottom: vertical
velocity Vz, vertical position z, vertical actuators control input δvert).
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7.3 Simulations and in-flight tests comparison

In this section, the accuracy of the ANT-R quadrotor simulators studied in Chap-
ter 6 will be verified. Data were collected commanding manually the quadcopter
with the radio-controller with attitude control activated (no comparable and re-
peatable data obtained with off-board command inputs were required in this case,
rather the focus was put on verifying the accuracy of the identified model when
considering realistic manual command inputs). The angular set-point was used
as input for the simulations. Dynamic Inversion control law results are shown in
Figure 7.9, considering the lateral axis as an example. The considered outputs are
the same used for the model identification (see Chapter 4), except for the simu-
lated angle which was obtained integrating the angular rate. The same procedure
has been followed for the Explicit Model Following controller, see Figure 7.10 for
the results.

As can be seen from these tests, all the simulated outputs fit the real data
with very high accuracy, confirming once again the fidelity of the identified model
and therefore of the simulators.

Furthermore, thanks to these tests with the ANT-R quadrotor commanded
manually with the radio-controller, it was also possible to get informations from
the pilot about the flying qualities. The quadcopter in fact proved to be easy to
control along each axis, confirming not only the high-performance control systems
but also the correct choices of the command filter values.

7.4 Dynamic Inversion and stock ANT-R au-

topilot comparison

As seen in Chapter 5.2, the stock quadrotor used a cascade PID architecture
as flight controller. For this reason and for the the good results obtained in the
previous sections, Dynamic Inversion control law is compared with the stock ANT-
R control system. The same speed doublet command input and the same outputs
described in Section 7.2 are used for the comparison and results are shown in
Figure 7.11. Very similar measured outputs are obtained, except for the peak of
the roll rate p which is higher with the DI flight controller. The vertical axis is
studied in Figure 7.12; although differences are very small, the quadrotor with the
Dynamic Inversion installed onboard seems to better maintain the altitude.

7.5 Directional dynamics

As seen in Section 7.2 by describing the in-flight tests, the directional structured
identified model was not reliable since the physical parameters (the stability and
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Figure 7.9: DI measured and simulated data comparison (from top to bottom:
roll angle φ, roll rate p, lateral acceleration ay, lateral control input actuator δlat).
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Figure 7.10: EMF measured and simulated data comparison (from top to bottom:
roll angle φ, roll rate p, lateral acceleration ay, lateral control input actuator δlat).
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Figure 7.11: DI and stock control laws comparison: lateral speed command dou-
blet response (from top to bottom: lateral velocity Vy, lateral position y, roll rate
p, roll angle φ, lateral control actuator input δlat).
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Figure 7.12: DI and stock control laws comparison: vertical axis (from top to
bottom: vertical velocity Vz, vertical position z, vertical actuators control input
δvert).
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control derivatives Nr and Nδ) inserted in the block diagram caused disturbances
around the z axis.

Considering the unstructured model obtained with subspace model identifi-
cation and described in Chapter 4.2.3, a model order equal to 3 proved to be
very accurate for the directional dynamics, both in term of VAF metric and by
comparing the frequency response of the identified transfer function with the non-
parametric frequency response function extracted from input/output measured
data. If the unstructured model is used to simulate the plant model and the
model inversion controllers are designed with the first structured model order, the
resulting system is in fact closed-loop unstable, explaining the initial flight tests
results and confirming that a first model order for the directional dynamics is not
reliable.

7.6 Conclusions

The Simulink models of both Dynamic Inversion and Explicit Model Following
flight controllers have been imported in the PX4 firmware of the ANT-R quadro-
tor, substituting the stock autopilot control system. Then, the two different con-
trol laws have been tested in flight and compared, giving very satisfactory results:
the quadcopter proved to be stable and controllable by studying both off-board
input responses and qualitative impressions of the pilot. The identified derivative
of the yaw moment with respect to the yaw rate was set to zero, a choice in agree-
ment with the literature. The small differences between the two control laws have
been analyzed in details. Moreover, a comparison between measured data and
simulated data has been performed, demonstrating not only the high accuracy of
the identified model used to simulate the complete architectures, but also of the
identified physical parameters of the quadcopter which are present in the model
inversion terms. Finally, the Dynamic Inversion control law has been compared
with the stock ANT-R autopilot, obtaining very similar results and confirming
the good levels of performance obtained with the designed controller.



Conclusions

The problem of system identification of a multi-rotor UAV has been considered.
A quadcopter has been used to perform structured model identification for both
the angular and the linear dynamics in order to replace the stock autopilot system
with model inversion-based controllers. Closed-loop data were collected in flight in
laboratory conditions. Previously, only the attitude dynamics of the quadcopter
has been identified with unstructured models and considering SISO problems.

First of all, an overview of the most recently discussed model identification
techniques was provided, together with a description of the possible experimen-
tal tests. Then, subspace model identification was performed obtaining accurate
unstructured models especially for the attitude and vertical dynamics. For the
purpose of this thesis, the physical parameters of the aircraft model were estimated
using the output-error model identification with satisfactory results. Additionally,
to overcome the disadvantage of the SMI method (which consists in the absence
of the physical meaning of the state space representation) and the limits of the
output-error (in the use of closed-loop data and in the iterative nature of the ap-
proach), a new model-matching technique was investigated to obtain structured
models; results were compared with the output-error ones in the time and fre-
quency domain and in terms of the estimated stability and control derivatives.
The novel approach resulted sensitive to the unstructured identified model to
be matched for the lateral and longitudinal cases, and the physical parameters
were not considered reliable. On the contrary, very similar results were obtained
studying both the directional and the vertical dynamics. Output-error models
were also compared with those obtained with SMI method. The former proved to
be very accurate on the lateral and longitudinal axes, while for the vertical and
the directional dynamics best performance were obtained with the unstructured
models.

Due to the accuracy and to the uncertainty values of the physical parameters
obtained with the output-error approach, the structured models were used to
design inversion-based controllers. The complete model proved to be unstable
around x and y axes and minimum phase. The Dynamic Inversion and the Explicit
Model following control laws were studied and simulated to tune the gains of the
Dynamic Inversion PID and the penalties of the Explicit Model Following LQR
regulators. DI and EMF architectures were compared in the time domain giving
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very similar results. A robustness analysis confirmed the stability and performance
of the designed control systems.

Finally, the two flight controllers were implemented on the flight control unit
of the quadcopter replacing the stock PID cascade architecture. The first order
directional model proved to be unreliable, and the derivative of the yaw moment
with respect to the yaw rate was set to zero since it introduced undesired effects
in the control systems. Then, using off-board automated inputs it was possible
to compare in detail the responses of DI and EMF to the same speed command
doublets. Similar results were obtained in terms of response and tracking accuracy.
A slight overshoot was observed in the velocity output of the EMF controller as
in simulations. Additional datasets were used to validate the designed simulators.
Simulated outputs fitted all the measured outputs with high accuracy, confirming
once again the fidelity of the identified models. Dynamic Inversion control law
was also compared to the stock flight controller considering again speed doublets
as inputs, observing appreciable improvements in the angular rates.

To summarize the results: structured model identification for the angular
and linear dynamics of a multi-rotor UAV was studied in order to design high-
performance controllers based on model inversion, starting from closed-loop mea-
sured data. This approach can be used to replace the stock autopilot systems.
Furthermore, this study confirmed the importance of system identification used
to build accurate aircraft simulators.

Further developments

System identification can be improved to increase the performance of model
inversion-based controllers by:

� Considering higher orders for the structured models, especially for the direc-
tional dynamics which proved to be very accurate considering an unstruc-
tured model of the third order. This could also lead to better results with
the novel model-matching approach;

� Performing an experimental identification campaign exciting the multi-rotor
UAV from a condition of forward flight, to study how the physical identified
parameters change with respect to an hovering initial condition, especially
considering the stability derivatives with respect to the angular rates which
were set to zero due to their high-uncertainty values;

� Optimizing the injection sequences used for identification;

� Studying approaches to identify the moments of inertia of the aircraft to
include this information in the identified model and hence improve its accu-
racy.
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