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Abstract

In the life, almost every challenge, from the easiest to the hardest one, can be mathe-

matically modeled and analyzed as a game.

This thesis is an extension of the work previous done and exposed in the article “Cancer

treatment as a game: integrating evolutionary game theory into the optimal control of

chemotherapy” written by P. A. Orlando, R. A. Gatenby and J. S. Brown (2012). In

few words in their work, the game is the cancer treatment where the antagonist players

are the oncologist and the cancer. In this unsymmetrical game, the oncologists choose

a therapy whereas tumors follow an adaptive strategy to the surrounding environment.

It is supposed that the oncologist can gain an advantage in this game by choosing treat-

ment strategies that anticipate the adaptations of the tumor. In particular, the article

examines the potential benefit of exploiting evolutionary tradeoffs in tumor adapta-

tions to therapy. Orlando et al. analyze a math model, without spatial structure and

phenotypic diversity, where cancer cells face tradeoffs in allocation of resistance to two

chemotherapy drugs. The tumor ‘chooses’ its strategy by natural selection and the on-

cologist, who can play rationally, chooses her strategy by solving a control problem.

So the cancer treatment game has a distinctive leader-follower (or “Stackelberg”) game

dynamics, where the leader chooses her strategy and then the follower adapts. The

oncologist should exploit this clear advantage. In this thesis, an individual-based evo-

lutionary model is developed to model spatial heterogeneity and phenotypic diversity.

In the first chapter the article “Cancer treatment as a game: integrating evolutionary

game theory into the optimal control of chemotherapy” is summarized and explained.

Then, after this introductory chapter, the new individual-based evolutionary stochastic

discrete model is discussed and explained, in particular its state profile and its updating

rules, which govern how the state profile changes from one step to the next one. We use

probabilistic rules, obtaining so a stochastic model, in contrast with the deterministic

one of the first chapter. The third chapter concerns the calibration of the two models,

in order to then be able to make a reliable comparison. So the first experiments about

cancer cells growth and their strategies evolution are performed and explained, investi-

gating their adaptation to the surrounding environment.

Finally, the best oncologist strategy, i.e. the best chemotherapy protocol, is looked for

using the gradient method. The research question is if a static protocol, i.e. a time

invariant delivery of both drugs simultaneously, is a better oncologist strategy then a

dynamic protocol, where the delivery of the two drugs negatively covaries.

The conclusion is that the knowledge of evolutionary tradeoff and the objective function

to be optimized are crucial in planning optimal chemotherapy schedules for the patients.



Sommario

Nella vita, quasi ogni sfida, dalla più semplice alla più difficile, può essere modellizzata

matematicamente e analizzata come un gioco. Questa tesi è un’estensione del lavoro

svolto in precedenza ed esposto nell’articolo “La cura del cancro come gioco: integrare

la teoria del gioco evolutivo nel controllo ottimale della chemioterapia” scritto da P. A.

Orlando, R. A. Gatenby e J. S. Brown (2012). In sintesi nel loro lavoro, il gioco è il

trattamento del cancro in cui i giocatori antagonisti sono l’oncologa e il cancro.

In questo gioco asimmetrico, le oncologhe scelgono una terapia mentre i tumori seguono

una strategia adattiva all’ambiente circostante. Si presume che l’oncologa possa ot-

tenere un vantaggio in questo gioco scegliendo strategie di trattamento che anticipano

gli adattamenti del tumore. In particolare, l’articolo esamina il potenziale beneficio

dello sfruttamento dei compromessi evolutivi negli adattamenti del tumore alla terapia.

Orlando et al. analizzano un modello matematico, senza struttura spaziale e diversità

fenotipica, in cui le cellule tumorali affrontano compromessi nell’assegnazione della re-

sistenza a due farmaci chemioterapici. Il tumore “sceglie” la sua strategia per selezione

naturale e l’oncologa, che può giocare razionalmente, sceglie la sua strategia risolvendo

un problema di controllo. Quindi il gioco per la cura del cancro ha una dinamica tipica

di gioco leader-follwer (o di “Stackelberg”), in cui il leader sceglie la sua strategia e

poi il follower si adatta. L’oncologa dovrebbe sfruttare questo chiaro vantaggio. In

questa tesi, viene sviluppato un modello evolutivo basato sull’individuo per modelliz-

zare l’eterogeneità spaziale e la diversità fenotipica. Nel primo capitolo viene sintetizzato

e spiegato l’articolo “Il trattamento del cancro come gioco: integrazione della teoria dei

giochi evolutiva nel controllo ottimale della chemioterapia”. Quindi, dopo questo capi-

tolo introduttivo, viene esposto e discusso il nuovo modello evolutivo discreto stocastico

basato sull’individuo, in particolare il suo profilo di stato e le sue regole di aggiorna-

mento, che regolano il modo in cui il profilo di stato cambia da uno step al successivo.

Usiamo regole probabilistiche, ottenendo cos̀ı un modello stocastico, in contrasto con

quello deterministico del primo capitolo. Il terzo capitolo riguarda la calibrazione dei

due modelli, al fine di poter effettuare un confronto affidabile. Quindi vengono eseguiti

e spiegati i primi esperimenti sull’evoluzione delle strategie e sulla crescita delle cellule

tumorali, studiando il loro adattamento all’ambiente circostante.

Infine, si cerca la migliore strategia oncologica, ovvero il miglior protocollo di

chemioterapia, usando il metodo del gradiente. La questione investigata è quale tra

un protocollo statico, ovvero una somministrazione invariante nel tempo di entrambi i

farmaci contemporaneamente, e un protocollo dinamico, in cui la somministrazione dei

due farmaci covaria negativamentesia, sia la strategia migliore per l’oncologa.



La conclusione é che la conoscenza del compromesso evolutivo e la funzione obiettivo

da ottimizzare sono cruciali nella pianificazione di programmi di chemioterapia ottimali

per i pazienti.
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Introduction

Game theory is an applied mathematics branch that studies and analyzes the individual

decisions of a subject, in situations of conflict or strategic interaction with other rivals,

aimed at the maximum gain of each subject. From this point of view, cancer treatment

is seen as a game [1], where the oncologist would like to eliminate or, at least, restrain

the cancer, whereas the cancer goal is to grow and develop as much as possible, adapting

itself to the surrounding environment. With few exceptions, cancers remain incurable.

Treatments usually appear effective initially but almost invariably fail due to evolution

of tumor resistance [2]. The mechanisms by which cancer cells achieve resistance are

extremely diverse and can vary depending on the mechanism of action and molecular

characteristics of the chemotherapeutic drug [3]. Even highly targeted therapy, such

as Herceptin for breast cancer patients, typically produces only transient response with

rapid evolution of adaptive strategies [4]. Thus, evolution of resistance to treatment is

the ultimate cause of death in patients.

However, this is not a symmetric game, indeed the oncologist can play rationally and,

solving a control problem, can understand evolution, while the cancer cannot, it can

only evolve in response to what is happening and can never anticipate or predict future

selection force. The cancer treatment game has a clear leader-follower game dynamics

[5]. Indeed the oncologist chooses her strategy, then the cancer can only adapt to the

oncologist strategy, following natural selection. The oncologist should exploit this ad-

vantage to fight the cancer.

We examine one potential component of the cancer treatment game by focusing on the

potential exploitation of evolutionary tradeoffs to the advantage of the oncologist. For

instance, if cancer cells face a tradeoff in resistance between two drugs, then it is possible

to select for tumor resistance to one of the drugs, while simultaneously increasing tumor

susceptibility to a second drug. This situation is referred to as an evolutionary double

bind [6]. A scenario in which cancer can have three different tradeoffs is investigated.

The different tradeoffs influence how cancer cells can allocate additively more, less or

equal amount when generalizing resistance to two drugs versus specializing resistance

to a single drug. In this thesis an individual-based evolutionary model [7] is developed

in order to analyze spatial heterogeneity and phenotypic diversity. This is the novelty

compared to the work done by Orlando et al.

Once developed the phenotypic individual-based model, some experiments are performed

to calibrate the new model with the differential one proposed by Orlando et al. These

experiments are also useful to understand the evolution of cancer but above all to test

the individual-based evolutionary model overcoming both computational and theoretical

problems.
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The final intent is to understand the best strategy, i.e. the best oncological protocol,

to fight the cancer and see if and how the results change from the ones obtained by

Orlando et al. due to the use of the individual-based evolutionary model.



Chapter 1

The deterministic model

This chapter presents the work done in the article called “Cancer treatment as a game:

integrating evolutionary game theory into the optimal control”[1] written by Orlando et

al. and the inspirer of this thesis.

1.1 Introduction

The novelty of the article is to see cancer treatment as a game. The players of the

game are the oncologist and cancer. They are not symmetric players. Indeed, only the

oncologist can play rationally. Cancer cells, like all evolving organisms, can only adapt

to current conditions: they can neither anticipate nor evolve adaptations for treatments

that the oncologist has not yet applied. The oncologist can optimize cancer therapy

using treatment strategies based on understanding evolutionary dynamics of cancer cell

response and adaptation to treatment. While cancer cells can only evolve due to what

is happening in the surrounding environment. This is a clear advantage in the game

that should be exploited by the oncologists, planning strategies, i.e. long-term protocol,

that anticipate evolutionary and ecological dynamics of the cancer cells. So the treat-

ment has a distinctive leader-follower dynamics; the “leader” oncologist plays first and

the “follower” cancer then responds and adapts to therapy. Orlando et al. examine

one potential component of the cancer treatment game by focusing on the potential

exploitation of evolutionary tradeoffs to the advantage of the oncologist. For instance, if

cancer cells face a tradeoff in resistance between two drugs, then it is possible to select

for tumor resistance to one of the two drugs, while simultaneously increasing tumor

susceptibility to the other drug. They refer to this scenario as an evolutionary double

bind [6]. They view the interactions between the oncologist and a cancer as a differen-

tial game and frame this hypothesis using evolutionary game theory to determine how

1
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natural selection chooses the strategies that cancer cells deploy. Then, applying control

theory, they want to determine the optimal treatment strategy available to the oncolo-

gist. Their work is based on the one done by Cunningham et al (2011) [8] to understand

optimal treatment protocols that may result in a double-bind scenario. Previous studies

have incorporated the evolution of resistance within an optimal control problem [9]. To

understand the Darwinian evolutionary dynamics a G-function, or fitness, generating

function is used [10]. The novelty of Orlando et a. consist on applying for the first

time G-functions [11] in an optimal control framework, to understand how they can use

the evolutionary competence of cancer to the oncologist advantage. Researchers have

applied G-functions to cancer to understand how cancer adapts to the environment in a

variety of publications over the last decade [12, 13]. The article [1] investigates different

trade-offs resistance between two drugs, but also different relationship in their effects on

cancer cells and the combination of these two phenomena on the optimal treatment pro-

tocols. The different tradeoffs affect whether cancer cells can allocate additively more,

less, or equal amounts when generalizing resistance to two drugs as opposed to specializ-

ing to be resistant to a single drug. Tradeoffs are one way that affects how multiple drugs

influence the fitness of cancer cells. Examining these scenarios oncologist would like to

answer the therapy question: when is it an optimal protocol to give a static treatment of

both drugs versus a dynamic treatment, which vary the concentration of drugs over time?

1.2 The model

Orlando et al. propose a predator-prey type model to describe tumor (the prey) growth

subject to chemotherapy (the predator). In this model, in absence of the predator, the

prey grows to his carring capacity described by the logistic growth equation. Once the

tumor has grown, they then let two different therapies act as predators that induce

tumor cell pharmacologic mortality:

dN

dt
= N [r(1− N

K
)− d1y1 − d2y2 − βy1y2] (1.1)

In this model, N is the total tumor population size. The term in the brackets is the

per capita growth rate of the tumor in the absence of therapy, where r is the intrinsic

growth rate and K is the carrying capacity. Chemotherapy influences the per capita

death rate of the cells in additive or non-additive ways. The terms d1 and d2 are per

capita mortality rates per unit drug concentration for drug 1 and drug 2, respectively,

and y1 and y2 are the concentrations of drugs 1 and 2, respectively.

Obviously, this model has not spatial structure. So, it is implicitly assumed that the
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drug concentrations are equal throughout the tumor. This is a too reductive assumption

for a disease as cancer and so in the next chapters the model is extended in this direction,

providing a spatial model. The last term of the per capita growth rate determines the

type and magnitude of drug interaction. The sign of β determines whether drugs are

antagonistic (β < 0) or synergistic (β > 0). With antagonism, the presence of one

treatment reduces the direct efficacy of the other and vice-versa. With synergism, each

treatment type amplifies the effectiveness of the other at killing tumor cells.

The innovation of Orlando et al. is to transform this basic oncological model into

an evolutionary model through the use of a fitness generating function or G-function

[11] allowing them to model an evolutionary dynamics with a continuous spectrum of

phenotypic resistance. G-functions [10] consider how the fitness of rare mutants in the

population are influenced by the tumor resistance strategies, the resident population

size as well as the environment. Their article is the first to apply G-functions in an

optimal control framework, to understand how it is possible to use the evolutionary

competence of cancer to give an advantage to the oncologist. In this function, tumor

cell fitness is defined as per capita growth rate. The G-function models the potential

fitness of rare mutant tumor cells. The fitness of a tumor cell is influenced by its heritable

phenotype or strategy (v), the resistance strategy of the resident population (u), the cell

population size (N), and the concentrations of the two drugs (y1 and y2) administered

by the oncologist. Given a particular ecological circumstance, the G-function defines the

fitness of all potential mutants contained within the phenotypically feasible strategy set

(upper and lower bounds on v). This allows Orlando et al. to determine how natural

selection will act within a population, as they assert in their article [1]. For instance, if

in a particular ecological circumstance, rare mutant cancer cells with higher resistance

have higher fitness than the current resident strategy, and vice versa for mutants with

lower resistance, then resistance will increase by natural selection.

To create the G-function, the ecological parameters of the model have to be a function

of the evolutionary variables:

G(v, N, y1, y2) = r

(
1− N

K(v)

)
− d1(v)y1 − d2(v)y2 − βy1y2 (1.2)

This G-function does not directly depend on the current resident strategy (u). Orlando

et al. let the phenotypic strategy of a cell be vector valued with two evolutionary

variables (v = [v1, v2]). The first is a cell’s overall investment in resistance (v1) and the

second is a cell’s allocation of resistance to drug 1 (v2). Finally, v′2 is a cell’s allocation of

resistance to drug 2, which is mathematically deduced from v2, depending on the tumor

evolutionary tradeoff.

To make clearer the notation and avoid confusion, from now onward the notation will
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change: v is a cell’s overall investment in resistance, while v1 and v2 are a cell’s allocation

of resistance to drug 1 and drug 2, respectively.

Orlando et al. assume that as much a cell spends in resistance, as much the cancer

carrying capacity declines. They choose an exponential function as carrying capacity

function

K = Kmaxe
−v2

2σ2
k (1.3)

where v is the overall investment in resistance (which was v1 in the article) and σk is

the standard deviation parameter of a Gaussian function.

Figure 1.1: Three different tradeoffs in allocation of resistance between the two drugs.

Three different functions, shown in figure 1.1, are used to caracterized a cell’s allocation

of resistance to both drugs:

1. a linear one given by

v2 = 1− v1 (1.4)

( which is v′2 = 1− v2 in the article).

In this case, specializing on a single drug or generalizing on both drugs, is equal

in term of allocation.
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2. a concave trade off given by

v2 = 1−
√

1− (v1 − 1)2 (1.5)

( v′2 = 1−
√

1− (v2 − 1)2 in the article)

Using this function, cells allocate additively more by specializing as opposed to

generalizing.

3. a convex function given by

v2 =
√

1− v21 (1.6)

( v′2 =
√

1− v22 in the article)

In this last case, cells allocate additively more by generalizing as opposed to spe-

cializing.

The product of the overall cell’s investment in resistance (v) and allocation to that drug

(v1 or v2 for drug 1 and drug 2, respectively) is the cell’s resistance to that drug. Indeed,

for cell’s per capita mortality rate, the following functions, which are influenced by drug

resistance, are choosen:

d1 =
1

k1 + vv1
(1.7)

and

d2 =
1

k2 + vv2
(1.8)

for drug 1 and 2, respectively (k1 and k2 are the baseline levels of resistance to drugs).

The article’s authors derive the evolutionary dynamics, i.e. how the cancer cell ’choose’

their strategy in the game against the oncologist, following Fisher’s fundamental theorem

of natural selection [14]: the direction of natural selection is given by the gradient of

the fitness function with respect to the fitness of rare mutants. Thus, the evolutionary

dynamics for each evolutionary variable of the resident is given by

dui
dt

= s
dG

dvi
|vi=ui (1.9)

where s is a speed parameter, defined larger with increased genetic variance or mutation

rate.
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1.3 The optimal control problem

Using the just described model, Orlando et al. formulate a control problem where the

goal is to minimize the tumor size at the end of the protocol period so that the oncol-

ogist can exploit the result to choose her strategy in the game against the tumor. The

mathematical formulation of the problem, which is solved numerically with GPOPS

software[15], is:

Minimize N(tf )

Subject to 

dN

dt
= NG|v=u

du1
dt

= s
dG

dv
|v=u1

du2
dt

= s
dG

dv
|v1=u2

dy1
dt

= w1 − z1y1
dy2
dt

= w2 − z2y2

w1 ≤ 10

w2 ≤ 10

N(0) = Kmax,

y1(0) = 0,

y2(0) = 0,

u1(0) = 0,

u2(0) = 0.5,

tffixed

(1.10)

After the equations for the dynamics for the tumor population, the fourth and fifth

equations of the problem are related to the concentration of the two chemotherapy

drugs. In particular, w1 and w2 are the control variable, chosen by the oncologist, which

represent the rates of drug delivery for drug 1 and 2, respectively. Drug clearance is

modeled with basic first order pharmacokinetics, where z1 and z2 are per unit drug

clearance rates. The upper bound on the total amount of drugs dosage is set to avoid

toxicity to the patient.
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1.4 Results

1.4.1 Cancer at its best and worst

Figure 1.2: The effects of two drugs on cancer cell fitness in two different scenarios.
In A the cancer cells are using their best evolutionary strategy against the combination
of drugs. In B the cancer cells have a fixed level of resistance and are using their worst
evolutionary strategy in terms of allocation to either drug. The linear, concave, and
convex tradeoffs are represented by solid, dashed, and dotted lines, respectively. Note
that the total concentration of drug 1 and drug 2 is fixed at 10, consistent with the
optimization problem. Parameters in common for both panels: r = 1, Kmax = 10,

σk = 30, k1 = k2 = 10, β= 0. For panel B u1 = 3.

To understand the effectiveness of the potential therapies from the cancer perspective,

the G-function model is studied independently of any control by the oncologist. Orlando

et al. optimize the fitness of the cancer using different ratios of the two drugs, both when

cancer maximizes fitness and when minimizes fitness, to understand how cancer cell fit-

ness change with different drug combination. These experiments suggest the nature of

the protocol: whether it should be static (i.e. the oncologist do not vary drug concen-

trations over time) or dynamic (i.e. the oncologist should vary drug concentrations).

With fitness maximization and when a single drug is given, the cancer best strategy is

a specialized resistance approach, while when both drugs are given, the best strategy is

to generalize resistance (equally resistant to both drugs). Specialized resistance means

becoming maximally resistant to the administered drug, but remain susceptible to the

other one. Orlando et al. find out that cancer cells have higher fitness as specialists

when given a single drug rather than generalists when given both drugs, as shown in

figure 1.2(A). In other words, the cancer cells face a ‘penalty of multitasking’, since

they are less fit when they try to generalize resistance to both drugs. Exploiting this

‘penalty of multitasking’, the best static treatment is to give both drugs simultaneously

at maximum dose.
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On the other hand, exploiting the case of fitness minimization, is possible to understand

the effectiveness of a dynamical treatment strategy: if the oncologist varies drug con-

centrations rapidly, she can exploit the evolutionary tradeoff by treating cancer with

the drug it is most susceptible to. So a dynamic treatment of switching drugs may

work better. Figure 1.2(B) shows that all tradeoff types are susceptible to a dynamical

treatment.

1.4.2 Solutions to the control problem without drug interactions

As guessed in the previous sub-chapter, the solutions to the control problem without

drug interactions have a common beginning: an increase in both drugs simultaneously

at the maximum rate to increase drug concentrations as quickly as possible until the

upper limit of drugs concentration is hit. Then, the solution with the concave tradeoff

becomes dynamical. On the other hand, with both linear and convex tradeoffs, in the

optimal control solutions, after the initial phase of drugs increase, there is a constant

chattering control, which appears to stochastically vary the drugs just slightly from equal

concentrations for the rest of the planning period. Orlando et al. are curious as to how

much of an improvement this chattering control is over a static control of equal drug

concentrations after the initial drug increase phase. They find that there is virtually no

difference. With both treatments at the end of planned treatment period, the tumor

size is practically equal. This subtle difference is not clinically signicant, and they can

regard the optimal control as static, in that the best strategy is to use as much drug as

possible and in equal concentrations. This results are shown in figure 1.3.

1.4.3 Solutions to the control problem with drug interactions

Orlando et al. analyzed also the control problem with drug interactions finding that the

interactions can increase or counteract the effect of tradeoffs. For instance, the linear

tradeoff, with antagonist interaction, has a dynamical solution but also the solution to

the concave tradeoff, with synergistic interaction, switches to a static solution. Finally,

the convex tradeoff with an antagonist interaction surprisingly shifts from a static solu-

tion of two drugs to a static solution of a single drug, instead of switching to a dynamic

solution, as shown in figure 1.4.
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Figure 1.3: Optimal state profiles for the three different tradeoff types without drug
interactions. The left panels show tumor cell densities (solid line) and the concentrations
of drug 1 (dashed line) and drug 2 (dotted line). The right panel shows the tumor cells
resistance to drug 1 (solid line) and drug 2 (dashed line). The top, middle, and bottom
panels show the solutions for the linear, concave, and convex tradeoffs, respectively.

Parameters in common to all panels: r = 1,Kmax = 10, σk = 30, k1 = k2 = 10,
β = 0, z1 = z2 = 0.9.
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Figure 1.4: Optimal state profiles for the three different tradeoff types with drug
interactions. The left panels show tumor cell densities (solid line) and the concentrations
of drug 1 (dashed line) and drug 2 (dotted line). The right panel shows the tumor cells
resistance to drug 1 (solid line) and drug 2 (dashed line). The top, middle, and bottom
panels show the solutions for the linear tradeoff with antagonistic drugs (β = 0.01),
concave tradeoff with synergistic drugs (β = 0.01), and convex tradeoff with antagonistic

drugs (β = 0.01), respectively.Parameters in common to all panels:
r = 1,Kmax = 10, σk = 30, k1 = k2 = 10, z1 = z2 = 0.9.
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1.4.4 Comparing best and worst treatment protocols

Orlando et al., following the lead of Engelhart et al. [16], determine how effective the

optimal control solution is by xing the total amount of drugs over the planning period

and investigating the differences between maximizing the nal tumor population. So

they compare best and worst treatment protocols for all the previous different scenarios.

Without drug interaction, the result for the best and worst protocols are practically

equal, but with drug interaction, the best protocol is clearly more effective, decreasing

tumor size as much as 60% in the concave case with synergistic drugs interaction.



Chapter 2

The phenotypic individual-based

spatial model

Orlando et al. claim, in their conclusions, that an individual-based approach would be

interesting to describe spatial heterogeneity and or phenotypic diversity. This is how

the model, presented in the previous chapter, is extended.

2.1 Individual-based models

Individual-based models (IB models in abbreviation) are a class of computational mod-

els aimed at computer simulation of actions and interactions of autonomous agents to

evaluate their effects on the system as a whole [17].

IB models, also called agent-based models, indeed are a population and community

modeling approach that allows for a high degree of complexity of individuals and of

interactions among individuals or agents. So, populations or systems of populations are

simulated as being composed of discrete individual organisms. These individuals might

represent autonomous characters in games, plants and animals in ecosystems or people

in communities.

Each individual has a set of state variables or attributes and behaviors. State variables

can include spatial location, physiological traits and behavioral traits. These attributes

vary among the individuals and can change through time.

Behaviors can include growth, reproduction, habitat selection, foraging, and death.

Unlike traditional differential equation population models, which are described in terms

of imposed top-down population parameters, such as birth and death rates as the model

described in the previous chapter, individual-based models are bottom-up models in

12
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which population-level behaviors emerge from the interactions among autonomous in-

dividuals with each other and their environment. These models typically consist of an

environment or framework in which the interactions occur and some number of individ-

uals defined in terms of their behaviors (procedural rules) and characteristic parameters

[18]. The individual state profile is updated at each time step, which is discrete, through

specif rules, that typically depend on the interacting neighbors state profile. An advan-

tage of individual-based models over traditional models is that they can incorporate

any number of individual-level mechanisms. They are thus used whenever one or more

of the following aspects, which are hard or impossible to represent in population-level

differential equations, are considered essential for answering a research question or solv-

ing an applied problem: variation among individuals and of individuals during their life

cycle; local interactions among individuals; and adaptive behavior, which includes phys-

iology and energy budgets. This aspects are essentially to be described in cancer treat-

ment research studies. When in a IB model some evolutionary dynamics are analyzed,

the model is called individual-based evolutionary model [7]. Hence individual-based

evolutionary models represent the frontier of modern population genetics and provide

the richest and more realistic framework for describing demography and evolutionary

change. Other than the genetic information, they can virtually incorporate any further

detail, like age, stage, or space distribution of populations and environmental fluctua-

tions. Thus individual-based methods can be predict better evolutionary outcomes [19].

Individual-based models are therefore particularly suited whenever the aim is to obtain

long-term simulations of the stochastic process to be compared with field or laboratory

data. However, the algorithms for the simulation of individual-based models typically

require accurate tuning of several parameters and, in general, analytical analyses are

complex to be carried out.

2.2 Model description

An individual-based evolutionary model [7] is built to analyze the cancer growth, espe-

cially its phenotypic diversity, and its response to a possible oncological treatment in

order to understand the best protocol to fight the disease.

To represent the space and the agents, we use a two dimensional square network with

freedom degree four, i.e. each node can communicate with its four neighbors, as shown

in the figure 2.1 in the next page.

Each node represent a cell, an individual of our IB model. Each individual can be

healthy or tumoral. The grid size is set to 100x100. The density in the grid represents

the cancer dimension. As in the article [1], only the cancer individual characteristics

will be analyzed.
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Figure 2.1: Image representing a grid with freedom degree four.
In graph theory it is called lattice graph or square grid graph.

The nodes represents cells.

2.2.1 State profile

The state of each agent, i.e. each cell or node in our IB model, is composed firstly by a

boolean variable which is equal to 1 if the cell is a cancer cell, 0 if there is a healthy cell.

If the node represents a cancer cell there are other attributes or state variables which

represent its phenotypic strategy in the game. A real variable v, which is a cell’s overall

investment in resistance. Then, two variables v1 and v2 describe the cell’s allocation of

resistance to drug 1 and to drug 2, respectively.

Finally, y1 and y2 track the concentration in all nodes (cancer but also healthy) of drug

1 and drug 2, respectively.

Phenotypes are the basic characteristics of cancer cells individuals, thus the resulting

evolutionary model is said phenotypic individual-based model [7].

2.2.2 Updating rules or behaviors

In this IB model, the discrete time describes the ecological one. From the time step (t)

to (t+1), which corresponds to spending a minute in real life hypothetically, the status

of all nodes is updated according to the following rules. Obviously, using probabilities to

describe the updating rules, the IB spatial model is a stochastic model, in contrast with

the previous chapter model which is a deterministic one. Moreover, evolutionary pro-

cesses have three other important sources of stochasticity: first, genetic drift randomly

alters phenotypes with no effect on fitness; second, mutations introduce new phenotypic
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values at random into the populations; third, mutants arise initially as single individuals

and consequently are liable to accidental extinction [20].

2.2.2.1 Duplication

Each cancer cell, with random order, reproduces itself with probability b(v), i.e. with

probability that depends on the cell’s overall investment in resistance. b(v) decreases

with increasing v because more energy the cell spends in resistance, less energy has for

reproduce itself.

Inspired by the declining carrying capacity function K(v) used by Orlando et al., the

birth probability is firstly set to

b(v) = bmaxe
−v2/(2σb2 ) (2.1)

where bmax = 1 and σb must be estimated.

Maintain adherence with parameter r = 1 of the logistics equation of the previous

chapter is challenging and it could not have physical meaning. Indeed, r is a rate,

precisely birth minus death rate at low cancer density, or rather cancer growth per unit

of cancer and per unit of time at low cancer density. So it could be bigger than 1, while

in the IB model at each discrete step, i.e. each unit of time, a cell can reproduces itself

at most one time. A possible way to overcome the problem is to use Gillespie algorithm

[21].

Another way is to set the time step fixed and equal to 1, in which at most one birth and

one death event can occurred, and directly describe the death and birth probability.

So, following the second way, the birth probability is reviewed because it does not have

to be a semi-exponential function. Orlando et al. use a semi-exponential function for

the carrying capacity function. Hence, at most the regime capacity, with respect to

the phenotype v, can result to be a semi-exponential function. Assuming that switching

from v = 0 to v = ε > 0 has a not negligible effect on the birth rate, the birth probability

is set to

b(v) = e−b1v (2.2)

with first derivative in v = 0 negative, imposing parameter b1 > 0.

In case of reproduction, the cell selects randomly a neighbour node and duplicates itself

only if there is not another cancer cell, i.e. only if the selected node is an healthy cell,

otherwise it does not reproduce itself.
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The fact of reproducing in random order and only if the chosen cell is not already oc-

cupied by another cancer cell, implements a mechanism of competition for the space,

analogous to the mortality quadratic term of the logistics cancer growth used in the arti-

cle of Orlando et al. The mortality quadratic term describes, in a statistical framework,

the number of encounters per unit of time that a well mixed gas molecule makes with

other gas molecules. Imagining that every encounter can produce a death, the term

of mortality is therefore proportional to this rate of meetings. Randomly selecting a

neighbour cell therefore wants to describe the fact that randomly moving an individual

can die, or in this case, not reproduce itself.

Mutation events During reproduction, two different evolutionary mutation events

can occur: the copy overall investment in resistance and its allocation of resistance

to the drugs can mutate from the ancestor ones. The probability of mutation is µ,

with probability 1 − µ the copy is not mutated. This two mutation events have the

same probability and are independent of each other, in analogy with Orlando et al.

deterministic model where the evolutionary dynamics for the evolutionary variable are

governed by the same speed parameter s and are independent of each other (1.9).

Mutation of v

At first, the phenotype v is reported on a real scale defining

z = ln v (2.3)

The new variable z changes to the mutated one

zµ = z + δz (2.4)

where δz is drawn from a normal distribution N(0, σ2v), with σv = 1. The mutated

phenotype is

vµ = ezµ (2.5)

This transition to the natural logarithm is very standard for drawing variations of non-

negative variables and corresponds to take

vµ = vρv (2.6)

where ρv is drawn from a log-normal distribution LN(0, σ2v).
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In evolution strategies the normal or gaussian distribution is generally regarded as the

best choice for mutation [22]. This is because the multivariate normal distribution has

some advantages: maximum entropy; rotation symmetry; unimodal and centered in zero;

can be rotated, scaled, adapted and sampled easily; infinite support.

The problem with this implementation occurs while the phenotype dynamics is ana-

lyzed. Indeed, before the oncologist gives the drugs to an ill patient, the cancer overall

investment in resistance (v) is obviously null and so the transformed variable z is equal

to minus infinity and therefore also z′ = − inf, effectively blocking the mutation. Also

with v practically zero the same problem arises, in this case caused by the extremely

flat tail of the exponential function. To avoid these problems the mutations are drawn

directly on v, setting v null if the mutated phenotype is negative, thus obtaining

vµ = v + δv if v + δv ≥ 0

vµ = 0 if v + δv < 0
(2.7)

where δv is drawn from a normal distribution N(0, σ2v), with σv = 0.1.

Mutation of v1

The allocation of resistance v1 (defined in the real interval [0,1]) is reported on a real

scale with the transformation

z1 = (2(v1 −
1

2
)) (2.8)

The variable z1 changes to the value

z1 = z1 + δz1 (2.9)

with δz1 drawn from a normal distribution N(0, σ2v1) [22]. The mutated v1 is

v1µ =
1

2
+

tanh(z′1)

2
(2.10)

As explained just above in the v mutation event, to allow v1 to mutate until the bounds

0 or 1 if needed, the mutations are drawn directly on v1, truncating the mutations that

exceed the limits, obtaining

v1µ = v1 + δv1 if 0 ≤ v1 + δv1 ≤ 1

v1µ = 0 if v1 + δv1 < 0

v1µ = 1 if v1 + δv1 > 1

(2.11)

where δv1 is drawn from a normal distribution N(0, σ2v), with σv1 = 0.1.
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2.2.2.2 Mortality

Every time step, each cancer cell dies with probability

1− e−d(v) (2.12)

where

d(v) = m(v) + d1(v, v1)y1 + d2(v, v2)y2 (2.13)

In particular

m(v) = m0 +m1v (2.14)

represents the natural mortality, as it is neither induced nor influenced by drugs;

d1(v, v1) =
1

k1 + vv1
(2.15)

and

d2(v, v2) =
1

k2 + vv2
(2.16)

multiplied for the drug concentrations y1 and y2 respectively, represent the pharmaco-

logical mortality.

Note that the tumor cell’s resistance to a single drug is represented by the product

between the cell’s overall investment in resistance v and the allocation of resistance to

that drug (v1 or v2). The cell’s mortality and fitness due to drug toxicity are influenced

by drug resistance as shown in equations (2.15) and (2.16).



The phenotypic individual-based spatial model 19

2.2.2.3 Drugs diffusion

One advantage of the IB model is that a mechanism of drugs diffusion can be described,

which is clearly more realistic than supposing that the drugs concentrations are always

equal in the space in the immediate vicinity of the tumor.

The concentrations of drug 1 y1 and drug 2 y2 of each grid node are updated syn-

chronously from step i to step (i+1), adding the input term wi, chosen by the oncologist

and positive only in the drug arrival cells (i.e. the perimeter of the grid), to the diffusive

one, obtaining

y1(i+ 1) = w1(i) + (1− z)y1(i) +
z

4

∑
y1neighbors(i) (2.17)

and

y2(i+ 1) = w2(i) + (1− z)y2(i) +
z

4

∑
y2neighbors(i) (2.18)

where z represents the node drug fraction dispersed in the four direction, which arrived

to and from the four neighboring nodes (square grid graph in figure 2.1).



Chapter 3

Calibrating the two models

In this chapter we describe how the spatial model parameters are set in order to calibrate

the spatial model on the deterministic one presented in the first chapter.

The stochastic spatial model is numerically analyzed and simulated using MATLAB

software.

The first step is to understand how a cancer grows with a specific phenotype v. Sub-

sequently, the mutations of the disease are studied firstly without drugs administration

and then with drugs administration with the goal of comparing cancer evolution in the

two models.

3.1 Understanding cancer growth

The first MATLAB simulations are made with the aim of understanding how the cancer

growth in the grid because, when the ‘game’ between the oncologist and the cancer

starts, the disease is already at its regime status, in analogy with Orlando et al. study,

where in the optimal control problem 1.10 the initial condition for N is N(0) = Kmax,

i.e. the cancer is at its maximum carrying capacity.

These simulations begin with four cancer cells in the middle of the grid, in absence of

drugs and without mutations. Each step, the IB evolutionary model status is updated

according with the updating rules describes in the previous chapter, subsection 2.2.2. A

simulation is stopped when the cancer reaches its regime status. This denotes that the

cancer cells mean number differs from the step after cancer cells mean number less than

ε for a prefixed number of consecutive steps. ε is chosen equal to 0.01 and the number

of consecutive steps equal to 300.

This study is done with the intent to calibrate the parameters of the IB model in order to

have a cancer that grows up to occupy almost the whole grid for v = 0, which means no

20
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energy spent on resistance to the drugs but all energy spent on growth, and which instead

asymptotically occupies regions gradually smaller as v grows up to becomes extinct for

v above a critical value. In System Theory this phenomenon, using the bifurcation

jargon, is called transcritical bifurcation, i.e. in the system there is an exchange of

equilibrium points stability. Indeed, for the IB model, below the critical value, for the

cancer the extinction is an unstable equilibrium and its strictly positive regime status is

a stable equilibrium, whereas, above the critical value, the two equilibria exchange their

stability [23]. The now strictly negative regime becomes obviously unstable whereas the

extinction becomes stable.

Recalling that the carrying capacity of the deterministic model is

K = Kmaxe
−v2

2σ2
k (3.1)

with Kmax = 10 and σk = 30, which is the standard deviation parameter of a Gaussian

function, the parameters b1, m0 and m1 of the birth and death probability, described

in equations (2.2) and (2.14) respectively, are set in order to have cancer extinction, i.e.

the transcritical bifurcation, for v = 30. Thirty is the value of the standard deviation of

the carrying capacity function and it is chosen because in a Normal distribution, as it

is well known, the interval [mean± standard deviation] includes about 68% of all data.

Including one standard deviation is a questionable choice, indeed it will modified due

to a problem encountered in the next section 3.3.2. The parameter m0 is set equal to
1
k1

= 1
k2

= 1
10 of the deterministic model, which means to fix the measurement unit of

the drugs. Indeed, the mortality induced at v = 0 by the dosage y = 1 of a drug is equal

to the natural one. That is, y = 1 is that quantity of drug, for time unit, that doubles

the mortality compared to the case, always with v = 0, without drug.

The parameter m1 is to be estimated, together with b1. With the idea to have the

trade-off half on the birth rate and half on the mortality, the two parameters are chosen

equal. The resulting estimate is m1 = b1 = 1
70 . Indeed, with these parameters the birth

probability is more or less equal to the death probability but the mechanism of space

competition, which is introduced to reflect the quadratic term of the logistic model and

explained in the duplication section 2.2.2.1, cause the tumor extinction. The experimen-

tal results are shown in the next figure ( 3.1 ).
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Figure 3.1: Standardize population size with respect to phenotype v,
with model parameters m0 = 1

10 , m1 = b1 = 1
70 . Linear tradeoff.

With this parameter, many simulations have been made, underlying that with a stochas-

tic model only one result is practically insignificant, to see the relation between the phe-

notype v and the mean population regime size reaches by the cancer. Mean population

size because the model is stochastic so little importance is given to the number, which is

very variable, of the last step. To compare the results with the carrying capacity func-

tion K(v) (1.3), which is equal to Kmax = 10 for v = 0, the results have been divided by

0.1Nmax, where Nmax is the biggest number of cancer cells reaches at regime, in order

to have a new maximum equal to 10(= Kmax).

The relation between the population size and the phenotype seems more linear than

exponential, as shows figure 3.1. However, these experiments are performed without

drugs, so they are less significant since K(v) depends on v which need drugs presence,

in the real life, to be positive. A cancer develops resistance strategy v only in presence

of chemotherapy.

The bifurcation event, which is a transcritical bifurcation, suddenly occurs at v = 30

approximately. This bifurcation represent the extinction threshold, since for v > 30

the cancer does not exist. This is caused by the fact that tumor spends too energy in

resistance to drugs, which are not already present in these experiments, and remains

with insufficient energy to proliferate.
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3.2 Probability of mutation

In this section, it is explained how the mutation parameter µ, for mutation events 2.2.2.1,

is chosen.

Here, the choice seems with less constraints, since in the deterministic model only one

phenotype at time is present, forbidding a presence of phenotype diversity in the cancer.

This is a clear limitation of Orlando et al. model, since it is well known that a cancer

changes quickly and different types of cancer cells are present at the same time in the

cancer mass [2, 24]. Moreover, in the optimal control problem exposed in section 1.3, the

second and third equations, which determine the mutations, contain a speed parameter

s, which is only specified that is larger with increased genetic variance or mutation rate.

To understand how a mutated cell evolves in a cancer mass in our IB models, a random

phenotype v is selected and, after reached its regime in the grid as explained in the

previous section 3.1, another advantaged phenotype vµ is randomly selected and put

in the center of the grid. Advantaged vµ means obviously vµ < v in absence of drugs,

having no sense investing in resistance at the expense of the carrying capacity. Then,

the simulation continues until only one phenotype is present in the cancer mass, which

usually is the advantaged one, but not always for the space competition mechanism (the

less advantage v has reached its regime before the appearance of vµ) or simply because,

as already stressed, the model is stochastic. So, the experiment is repeated numerous

times and the average time Tr in which the mutated phenotype vµ replaces v is calcu-

lated obtaining Tr almost 1000.

To remain adherent to the concentrated deterministic model of Orlando et al., the av-

erage time between two mutations, 1
µ , is smaller than the average time Tr required by

vµ for the replacement. However, to have a little more phenotypic heterogeneity, which,

as said before, is true in the reality and possible only in the IB model and not in the

deterministic one, the parameter µ is set to a value 10 times 1
Tr

, with the intent to focus

the analysis on cancers that rapidly evolve to study their adaptation to drugs, obtaining

µ = 0.01.
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3.3 Analyzing cancer evolution

Now that cancer cells parameters have been calibrated, the cancer evolution is stud-

ied through mutations, which are understood as the ultimate long-time driving force of

evolution [25]. The experimental results are compared with the evolution in the deter-

ministic model, using long simulations where several mutations occur with probability

µ, just described. This analysis is performed without any control by the oncologist.

Two types of experiments are performed to see if the IB model allows cancer to evolve

towards its best strategy in that situation of the game.

The first experiment only concerns the overall investment in resistance strategy v, since

the environment is without drugs. A cancer, with strictly positive strategy v, is let

reach its regime status, without mutation events. Once reached the regime, the cancer

cells strategy has the possibility to mutate. It is expected that now, due to the absence

of drugs, the cancer cells strategy mutates until the strategy v becomes equal to zero,

which in this situation represents the best strategy. Indeed, for cancer cells, it makes no

sense to spend energy on drugs resistance, since drugs are absent, and this saved energy

can be spent reproduction.

The experiment is performed with several different starting phenotypes v.

The results are always in accordance with intuition and expectations, indeed in no case

the evolution of the phenotype v does not tend towards 0, its best strategy. The figure 3.2

in the next page shows this evolution, in the plane (number of steps,v), in the worst case,

i.e. with initial v almost equal to the extinction threshold, which is the worst strategy.

The second experiment concerns the dynamics of v together with the one of v1, this

time, however, in presence of drugs but again without any control by the oncologist, i.e.

drugs delivery always constant and equal for drug 1 and 2.

So, before performing the experiment, it is necessary to calibrate the value of the control

variables w1, w2, which are oncologist’s strategies, and the z1 and z2 parameters, which

is the per unit drug clearance rate, which govern the fourth and the fifth equations of

the optimal control problem (1.10).
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Figure 3.2: Evolution of the average phenotype v̄ (blue line),v̄-standard deviation
(yellow line) and v̄+standard deviation (red line) of the resident population tends to
zero, the best strategy in that situation. Model parameters: m0 = 1

10 , b1 = m1 = 1
70 .

Linear tradeoff.

3.3.1 Calibrating drugs clearance and diffusion

For Orlando et al., drug clearance is modeled with basic first order pharmacokinetics,

where z1 and z2 are per unit drug clearance rates (1.10). z1 and z2 are chosen equal,

so from now on they will be indifferently called za. In the article [1], 1
za

is the time

constant with which the drug concentration y(t) goes to zero if no drug is supplied to

the patient. The idea is that the volume V of liquid that carries the drug is constant

and that there is a constant flow rate F equal in entry and exit. The entry flow rate

arrives with a drug concentration that is w(t) divided by V. The output flow goes away

with a concentration y(t). Therefore the dynamics of concentration follows the equation

dy(t)

dt
=
w(t)

V
− zay(t) (3.2)

where, za = F
V . It should be noted that in Orlando et al. article the control variable

w is the concentration of drug given to the patient for unit of time, or micro-grams per

liter of volume of the treated mass, but it could be more natural to measure the dosage

in the mass flow rate of the drug.

On the other hand, in the IB spatial model, we suppose that every cell in the grid,

from step t to step (t+1), diffuses a fraction z of its liquid in four equal parts in the
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four neighbors directions, as discussed in subsection 2.2.2.3 and we assume that each

node receives the same incoming flow at null drug concentration. Thus, we obtain that

the concentration goes to zero with dynamics (1 − z)t, so with time constant equal

to −1
ln(1−z) . The time constant is obtained passing through the exponential function,

f(t) = (1 − z)t = exp (ln (1− t)t), and applying the definition of the time constant

usually called τ : df(t)
dt = − 1

τ (f(t)− c), where c is a constant.

Finally, equalizing the two time constants of the two models 1
za

= −1
ln(1−z) , it is obtained

z = 1− exp(−za). Since za = 0.9, it turns out z = 0.5934 approximately.

The control variable w(t) in Orlando et al. article is measured in mass
volume·time , where

the volume V is that of the mass in which the drug is diluted, therefore difficult, if

not impossible, to measure. As considered just above (3.2), the dynamics equation in

continuous-time for the mass, incoming mass less outgoing mass, is

d(y(t)V )

dt
= w(t)− y(t)F (3.3)

where w(t) is the control variable measured by mass
time and y(t) is the drug concentration,

so y · V is the drug mass contained in the volume V, F is the flow rate of incoming

and outgoing liquid, that are equal to maintain constant volume, and hence y · V is the

outgoing mass of drug. Dividing by V, it is obtained

d(y(t))

dt
=
w(t)

V
− zay(t) (3.4)

where za = F
V is the eigenvalue, which matches 1

time . Discretizing, it is achieved

y(t+ 1) = y(t) +
w

V
δt (3.5)

where the value of w
V is the same value of w(t) of the article written by Orlando et al.,

in order to do analogous and comparable experiments.

3.3.2 Comparing cancer evolution at its regime status

in the two models

In this section, as mentioned before, it is analyzed how the phenotype v and the cancer

resistance allocation v1 evolve in presence of drugs. Now that finally all the parameters

of the IB spatial model have been calibrated on the deterministic model, we are able to

compare the two cancer regime values in the same conditions.

To do this test, in analogy with Orlando et al., at the beginning cancer is allowed to

develop, in absence of drugs, up to its regimen, as in the first experiments presented in

this chapter 3.1. Obviously, when the cancer reaches its regime, in absence of drugs, all
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its cells have strategies v = 0 and v1 = 0.5, the best ones. Subsequently, the drugs are

spread in order to understand how the two strategies evolve in the IB spatial model and

compare the results with the deterministic model.

The experiment is performed in the case of linear trade-off (1.4) with constant control

variable w1 = w2 = 5, in analogy to the optimal solution of Orlando et al. in their

control problem with linear trade-off.

As explained in the mutation paragraph ( 2.2.2.1), it is forbidden to start the study of

the dynamics of v with initially null phenotype, otherwise there would be no evolution.

This problem is solved using a practically null phenotype. It is expected that, while

administering the drugs, the phenotype v increases so that the cancer cells are more

resistant to drugs by decreasing the cell’s per capita mortality rate ( 2.15 and 2.16).

Unexpectedly, this does not happen, as shown in figure 3.3 below.

Figure 3.3: Graphic shows the mean strategy v̄ of the resident population for one
million of steps in the IB model. Model parameters: µ = 0.001, m0 = 1

10 , b1 = m1 = 1
70 .

Linear tradeoff.

This phenomenon is caused by the parameters of the IB model. Indeed, the birth

probability and natural mortality decrease and increase, respectively, too much with

phenotype v, remembering that parameter b1 is equal to m1, compared to how the cell’s

per capita d1 ( 2.15) and d2 ( 2.16) pharmacological mortality effects decrease with v,
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then, for the cancer cells, it is more convenient to evolve towards v = 0. So the parame-

terization is reviewed in order to have extinction at v = 100, because, remembering that

the carrying capacity function (1.3) of the deterministic model is a semi-exponential

function with standard deviation σk = 30, at this threshold almost all observable data

fall in the interval. So parameters b1 = m1 are chosen equal to 1
220 .

The experiment is repeated with the new parameterization and, as expected, the strat-

egy v evolves and it evolves up to the value 25, as shown in figure 3.4 below. Note that

it seems that the evolution occurs sharply in few steps, caused by the passage through

the exponential function (2.5) during mutations. But the evolution of the strategy v

not always occurred. One example of a case where the strategy evolution does not take

place is shown in figure 3.5.

Figure 3.4: The evolution of the average phenotype v̄ of the resident population for
one million of steps in the IB model with parameters m0 = 1

10 , b1 = m1 = 1
220 and

µ = 0.001. Initial value of v = 0.00001. Linear tradeoff.

Repeating several times this experiment for different initial values of the phenotype v

almost zero, however, it is observed that this growth of the phenotype always takes place

only with starting v greater than 0.001.

The fact that starting from v very low the phenotype may not evolve, it may perhaps

depend on the fact that some cells mutate with vµ lower than v that numerically goes

to minus infinity and so the evolution becomes impossible, as already explained. Or it

may happens because the exponential function queue is so flat that even mutations with

larger mutated phenotype are still very small and so they not give enough advantage to
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Figure 3.5: Example of a case, with initial v = 0.00001, in which the evolution of the
average strategy v̄ of the resident population tends to zero. IB model parameters:m0 =

1
10 , b1 = m1 = 1

220 and µ = 0.001. Linear tradeoff.

allow the growth of the phenotype.

As discussed in the mutation paragraph ( 2.2.2.1), the solution lies in avoiding to go

through the exponential function during mutation events and drawing mutations directly

on v and v1.

The experiment is performed with the new mutation rules and now the cancer phenotype

v always evolves up to 25, also with initial value equal to 0, which is allowed with mu-

tations directly on v. Note that, with this new implementation, evolution phenomenon

does not occur briefly as before, but it is sweeter.

Since the concentration of the two drugs are equal and the experiments are done in the

case of linear evolutionary tradeoff, with which generalizing to accommodate both drugs,

or specializing on a single drug is equal in term of allocation, as expected, the strategy

v1 floats around the value 0.5, which means generalized resistance, because there is no

advantage in a specialized resistance to a single drug in presence of both drugs with

equal concentration.

This results of how the cancer strategies evolve are shown in figures 3.6 and 3.7.
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Figure 3.6: Evolution of the mean phenotype v̄(blue line),v̄-standard deviation (yellow
line) and v̄+standard deviation (red line) of the resident population that tends to 24
approximately with mutation directly drawn on v. IB model parameters: m0 = 1

10 ,
b1 = m1 = 1

220 and µ = 0.001. Linear tradeoff.

Figure 3.7: Evolution of the average phenotype v̄1(blu line),v̄1+standard deviation
(yellow line) and v̄1-standard deviation (red line) of the resident population fluctuates
around 0.5.IB model parameters: m0 = 1

10 , b1 = m1 = 1
220 and µ = 0.001. Linear

tradeoff.
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3.3.2.1 The phenotypic regime of the deterministic model

Since the idea is to compare the phenotypic regime in the two models, we need to analyze

the phenotypic regime in the deterministic model. Indeed, in the figure reported in the

first section 1.3, which shows the optimal state profile, the time variable belongs only to

the interval [0, 8] and it clearly seems that the phenotypic variables, figure below, have

not yet reached the regime. Since cells allocation of resistance is equal to both drugs,

the graphic shows half of the evolution of strategy v.

Figure 3.8: Evolution of the cells drug resistance to drug 1 of the resident population
in the deterministic model with linear tradeoff(figure 1.3, top right panel). Since cells
allocation of resistance is equal to both drugs, the graphic shows half of the evolution

of strategy v.

To see the regime state of the system, the differential system is numerically solved using

MATLAB, specifically with ode45. ODE solvers can solve systems of differential equa-

tions of the form d(y(t))
dt y = f(t, y(t)).

[t, y] = ode45(odefun, tspan, y0), where tspan = [t0, tf ], integrates the system of differ-

ential equations d(y(t))
dt y = f(t, y(t)) from t0 to tf with initial conditions specified in y0.

Each row in the solution array y corresponds to a value returned in column vector t.
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The differential equations and their initial conditions are the one of the optimal control

problem (1.10): 

dN

dt
= NG|v=u

du1
dt

= s
dG

dv
|v=u1

du2
dt

= s
dG

dv
|v1=u2

dy1
dt

= w1 − z1y1
dy2
dt

= w2 − z2y2

N(0) = Kmax, y1(0) = 0, y2(0) = 0,

u1(0) = 0, u2(0) = 0.5, tffixed

(3.6)

The control variables are set w1 = w2 = 5, inspired by the optimal solution found in

the linear tradeoff (figure 1.3, top right panel). In the article the value of the speed pa-

rameter s is not specified, but it has been empirically found that with s = 2 and tf = 8

the solution obtained with ode45 coincides with the solution presented by Orlando et

al.. The final time tf is set equal to 5000, in order to see if and how the system reached

its regime in a long time interval. The results are shown in figures 3.9, 3.10 and 3.11.

The overall investment in energy u1, of the resident population, which corresponds to

our variable v, converges almost to the value 22.5, while u2 is always equal to 0.5, which

means generalized resistance, i.e. equal resistance to both drugs, which is an intuitive

strategy in this case of linear tradeoff and control variable equal and constant. These

are the best cancer strategies in the specified environment.

Figure 3.9: Evolution of the cancer population size N in the deterministic model with
linear tradeoff.
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Figure 3.10: Evolution of the strategy v in the deterministic model with linear trade-
off.

Figure 3.11: Evolution of the strategy v1 in the deterministic model with linear
tradeoff.

The best cancer strategies are almost equal in the two models, having both generalized

resistance, or v1 = 0.5, but the overall investment in energy in the IB model is slightly

greater. This is probably due to the choice to have cancer extinction in v=100. So

parameters b1 = m1 are reset equal to 1
210 in order to have also in the IB spatial model

the overall mean investment in energy that converges almost to 22.5. This is done

empirically, repeating the experiment changing the parameters until the convergence hit

the desired value.

Note that, since in the IB model a phenotopyc diversity is present, convergence refers

to the mean resident population value.
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Figure 3.12: Evolution of the mean phenotype v̄(blue line),v̄-standard deviation (yel-
low line) and v̄+standard deviation (red line) of the resident population that tends to
22.5 approximately with mutation directly drawn on v. IB model parameters: m0 = 1

10 ,
b1 = m1 = 1

210 and µ = 0.001. Linear tradeoff.

Figure 3.13: Evolution of the average phenotype v̄1(blu line),v̄1-standard deviation
(yellow line) and v̄1+standard deviation (red line) of the resident population fluctuates
around 0.5. IB model parameters: m0 = 1

10 , b1 = m1 = 1
210 and µ = 0.001. Linear

tradeoff.



Chapter 4

Oncologist best strategy

Once calibrated the IB stochastic model, we need to understand which is the best strat-

egy for the oncologist, who can think ahead and can design strategy to fight cancer,

which instead follows only its evolutionary boost to adapt itself as much as possible to

the environment and to grow up, as in a leader-follower game[5]. So, we want to under-

stand in which direction the cancer growth gradient pushes with respect to the control

variables, so that the oncologist can try to push its growth in the opposite direction.

With this goal, the gradient descent method is presented and applied to look for the

best oncologist protocol.

4.1 Gradient descent method

Generally speaking, gradient descent method is a first-order iterative optimization algo-

rithm for finding a minimum, or a maximum in the case of gradient ascent method, of a

function. To find a local minimum of a function, the idea of the gradient descend is to

take steps proportional to the negative of the function gradient, which indicates the di-

rection of local maximum function growth, at the current point. It is also possible to use

an approximation of gradient if the function is not well known, such as in cancer growth

case, it only needs that the function is defined and differentiable in a neighborhood of

the current point. These are our assumptions. So, the method generates a sequence

of points with decreasing objective function. The draw back of this method is the fact

that every local minimum has null gradient and therefore the gradient descent method

solution usually is the local minimum closest to the starting point.

35
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4.2 Searching optimal control variables

In this research, the function to be minimized is the number of cancer cells and its

parameters are the control variables w1 and w2 of the oncologist. To simplify the study,

it is considered a short period of time, which ideally corresponds to a real month, where

each discrete step of the IB model correspond to a real minute, and it is supposed that in

this period the oncologist can vary its control variable every two days, however obtaining

fifteen parameters to be optimized, not so few.

As the model is stochastic, not only the number N of cancer cells of the last step is

looked at, but the mean cells number N, in the last 1% of steps, is the objective function

to be optimized. To reduce stochastic error, the results are the mean of five MATLAB

simulations obtained with different random number generator.

Orlando et al. impose a constraint on the total amount of drugs concentration to avoid

toxicity to the patient, y1 + y2 ≤ 10. We think that even clinically it is more practical

to put a limit for the oncologist on the dosage of a drug, rather than a limit on the

concentration that the drug has in a certain tissue, which should therefore be measured

every times or, in any case, with regularity, in this study the constraint is directly put

on the control variables w1 and w2. These are the rates of drug delivery for drug 1 and

drug 2, respectively. Moreover in the IB model presented in this thesis, by imposing the

constraint on the control variables w1 + w2 ≤ 10, it is automatically satisfied also the

constraint on the drugs concentration y1 + y2 ≤ 10.

Since the problem is analyzed in an optimal control framework, it is clear that the

solution lies on the constraint upper bound. Indeed, any solution having w1 + w2 < 10

can be improved, or at least equaled, being the goal minimizing the number of cancer

cells, increasing up to the limit the supply of drugs that can only decrease the final

cancer population size. The more drug is present in a cancer cell, the more likely it is

to die the next step in the model. So, at the end, only one control variable w1 must

be optimized, from which the other control variable will be automatically obtained by

imposing w2 = 10− w1.

The idea is relative simple but the application is numerically quite complex.

In Orlando et al. optimal control problem the initial conditions are cancer population

size N(0) = Kmax, overall resistance v = 0, generalized resistance v1 = 0.5 and null drug

concentrations y1(0) = y2(0) = 0. In analogy with their study, we let cancer reach its

regime status with null overall investment in resistance, i.e. with v = 0, without drug

presence and with generalized resistance (v1 = 0.5). This situation represents the case of

a cancer developing in an individual still unaware of the disease. Once a cancer reaches

its regime, the one-month treatment period begins, where the control variable can change

value every two days. The starting control variable is constant along the whole month

and its value is 5, so the situation is w1 = 5 and therefore w2 = 10 − w1 = 5 for all
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protocol period. With this signal, the objective function is calculated, called F0. Now we

need to estimate the gradient of the objective function, using the incremental ratio, with

respect to the fifteen parameters of the oncologist control variable. Therefore the first

parameter is took and increased by a δ. If it violates the constraint on maximum drug

delivery or on the positiveness, it is set equal to the limit value. All other parameters are

left unchanged. With this new control signal, the objective function, called F1 because

the first parameter has been changed, is calculated. Now the gradient with respect to

the first parameter p1 is estimated as

∂F

∂p1
=

F1 − F0

(p1 + δ)− p1
=
F1 − F0

δ
(4.1)

where δ = 0.5. Calculated the incremental ratio with respect to the first parameter,

p1 is put back to the value it had before adding the delta, i.e. in the base signal with

which F0 has been calculated. Then the process is repeated for the second parameter p2.

So p2 is increased by δ, and, leaving all the other parameters unchanged with respect

to the base signal as before, the objective function F2 is calculated and therefore the

incremental ratio with respect to the second parameter ∂F
∂p2

= F2−F0
δ .

This procedure is repeated for all fifteen parameters, thus obtaining an estimate of the

gradient of the objective function with respect to the base signal. Then, once the gra-

dient is normalized, the signal moves, in a space with dimension fifteen, in the opposite

gradient direction of a step of length r = 1. With this obtained new control signal, the

objective function is calculated. If it is less than the one calculated with the previous

base signal (so a better solution has been found), the new signal becomes the new base

signal and the procedure is repeated, i.e. it is estimated the gradient of the new base

signal and then the signal is moved in the opposite direction. On the other hand, if

the objective function is increased instead of decreased, the step is halved until a lower

objective function is found. The halving is repeated until a better objective function is

found or the length step r becomes smaller than a certain threshold ε, which is chosen

equal to 1
26

= 1
64 . If we do not find a better objective function before crossing the thresh-

old ε, the last base signal used to calculate the objective function F0 is the researched

optimal solution.
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4.3 Results

This procedure is applied for all three different tradeoffs with a common set of parame-

ters.

The method is found to be particularly heavy numerically. One real month correspond

to fifty thousand steps almost. To take a possible step with the gradient method, we

need to calculate the objective function for all fifteen parameters incremented by δ plus

the case with the base signal. To reduce the stochastic error, we mediate these results

on five different cases, getting simulations that last several hours and perform almost

four millions of steps.

4.3.1 Linear tradeoff

Figure 4.1: The figure shows the optimal control variable w1 (w2 = 10−w1) obtained
with linear tradeoff. Model parameters: m0 = 1

10 , b1 = m1 = 1
210 and µ = 0.001.

In the case of linear tradeoff, the optimal signal seems to fluctuate randomly around

the value w1 = 4.3, approximately. The fact that the signal fluctuates is in agreement

with Orlando et al. solution (figure 1.3, top left panel), which however fluctuates less

and around the value 5, that is about drugs equal dosage. In this situation, the tumor

keeps generalized resistance, i.e. equal to both drugs. In their concentrated differential

model, tumor has its strategy, unique for all cancer cells, which are not studied individ-

ually. Instead, with our IB model, each cancer cell is allowed to have its own strategy

to play the game against the oncologist. This situation reflects better the reality, where
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in a tumor coexist different type of mutated cells with different strategy [24]. Here, we

appreciate the richness of the IB model [19]. This is an improvement of the IB model on

the differential one, which allows tumor to have only one general strategy. The oscilla-

tions of the optimal signal are more marked with our model so that tumor has enough

drug and time to develop cancer cell’s resistance to the drug with higher concentration

(figure 4.2), in this case drug 2. The oncologist can now exploit this situation providing

the patient with a greater dosage of the other drug, here drug 1, to which the tumor is

more susceptible. The tumor responds by gaining resistance to drug 1. Now, the oncol-

ogist can again hit the tumor with the drug 2 which the cancer cells are less resistant

to. This scenario is called evolutionary double bind [6]. The experimental results with

this oncologist strategy are shown in figure 4.2.

In their study, Orlando et al. wonder how much their optimal solution, in which the

drugs vary randomly just slightly from equal concentration (chattering control), differs

from the case of constant control, with equal drugs concentration. They find that in

practice there is no difference. So they assert that the optimal control is static. Also

in the IB model the optimal solution does not significantly vary from the solution with

equal drugs concentration. Numerically, the solution obtained with the optimal signal,

figure 4.1, decreases to 3012.5 from 3036.72 mean cancer cells number, achieved with

w1 = 5 along all protocol. There is practically no clinical difference in the tumor final

population size.

In conclusion, in the linear tradeoff case, we find that the optimal protocol is dynamic,

where drugs concentration varies along time according with the control variable w1 shown

in figure 4.1. However, we note that a static protocol, where the best strategy is to use

the maximum drugs amount, avoiding patient toxicity, and in equal concentrations, gains

practically the same effect.
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Figure 4.2: Cancer state profile evolution for the case of linear tradeoff. The top
panels show the evolution of the mean cell’s overall investment in resistance v̄ (blue
line), v̄+standard deviation (red line) and v̄-standard deviation (yellow line) on the
right, and the cell’s mean allocation of resistance to drug 1 v̄1 (blue line), v̄1+standard
deviation (red line) and v̄1-standard deviation (yellow line) on the left. The left bottom
panel shows the tumor cell’s resistance to drug 1 (blue line) and drug 2 (red line). The
right bottom panel show the number of cancer cell step by step. Model parameters:

m0 = 1
10 , b1 = m1 = 1

210 and µ = 0.001.
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4.3.2 Convex tradeoff

Figure 4.3: The figure shows the optimal control variable w1 (w2 = 10−w1) obtained
with convex tradeoff. Model parameters: m0 = 1

10 , b1 = m1 = 1
210 and µ = 0.001.

Even with the convex tradeoff, the optimal signal (figure 4.3) fluctuates but, in this

case, the oscillations seem less random. In fact, after an increase in a drug concentra-

tion there is usually a decrease and vice versa. Therefore the signal seems to rise and

fall (not fluctuate randomly), but with relatively large amplitudes, on average amplitude

one, around the situation of equal concentration. Also in this case, the difference with

the solution obtained with the differential model (figure 1.3, down right and left panels)

is due to the high degree of phenotypic diversity of the IB model. Indeed, since each

cell plays with its own strategy, which is allowed to mutate also in the situation with

equal drugs concentration, there is no reason that all cancer cells have equal generalized

resistance [24]. So the oncologist can induce and try to control the cancer cells allocation

of resistance, exploiting the evolutionary double bind [6] as just explained in the case of

linear tradeoff. This is done with unequal values of control variables, as in the solution

found (figure 4.3). Therefore, clearly there are resistance allocations, or v1 strategies,

different within the tumor. Thus an optimal solution is an oscillating solution, that tries

to control and induce the development of resistance, with the aim of providing some

days more drug amount of the type which the cancer is more susceptible to.

The improvement obtained with this oscillating solution, that exploits the phenotypic

diversity and the evolutionary double bind, is better than in the linear case, but not

so significant. The resident population mean number decreases from 3583.9, achieved

with static solution (w1 = w2 = 5), to 3567.9. The obtained reduction is approximately
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1%, which is not particularly numerically significant. But we are focusing on qualitative

results, since to have quantitative reliable result the IB evolutionary model should be

more detailed and related to a specific tumor type. Cancers are a large family of diseases

that involve abnormal cell growth, in so many different possible forms.

So, as in the linear case, the optimal control is a dynamic protocol, in which drugs con-

centration varies along time according with the control variable w1 shown in figure 4.3.

However, as in the linear tradeoff, a static protocol, with w1 = w2 = 5, obtains practi-

cally the same effect.

Moreover, we are investigating tumor with rapid evolution to analyze their adaptation

to the surrounding environment. Fighting tumor with slow evolution, the effectiveness

of a dynamic protocol should be more evident.

Figure 4.4: Cancer state profile evolution for the case of convex tradeoff. The top
panels show the evolution of the mean cell’s overall investment in resistance v̄ (blue
line), v̄+standard deviation (red line) and v̄-standard deviation (yellow line) on the
right, and the cell’s mean allocation of resistance to drug 1 v̄1 (blue line), v̄1+standard
deviation (red line) and v̄1-standard deviation (yellow line) on the left. The left bottom
panel shows the tumor cell’s resistance to drug 1 (blue line) and drug 2 (red line). The
right bottom panel show the number of cancer cell step by step. Model parameters:

m0 = 1
10 , b1 = m1 = 1

210 and µ = 0.001.
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4.3.3 Concave tradeoff

Figure 4.5: The figure shows the optimal control variable w1 (w2 = 10−w1) obtained
with concave tradeoff. Model parameters: m0 = 1

10 , b1 = m1 = 1
210 and µ = 0.001.

Finally, analyzing the case of concave tradeoff, the mechanism of alternating drugs is

more evident compared to the other two tradeoffs. In this case, we find large variations

but in some consecutive days there are small, or almost null, variations. With this type

of solution, it is clear that the oncologist should exploit the evolutionary tradeoff, by in-

ducing cancer cells specialized resistance and then exploiting tumor susceptibility to the

other drug, i.e. exploiting the evolutionary double bind [6]. As figure 4.6 shows, cancer

cells are driven by the oncologist to adapt their resistance to a single drug (here drug 2),

before varying the drug concentration in favor of the other drug (drug 1). So she treats

the tumor with the more effective drug. The tumor responds by gaining resistance to

the last drug (in this case drug 1), until its resistance becomes specialized to that drug.

So the oncologist exploits again this situation hitting the tumor with the more effective

drug (drug 2), and so on.

The optimal protocol is dynamic, similarly to the one analyzed by Orlando et al. one

(figure 1.3, middle panels). However the difference, in the solutions obtained with the

two models, consists on drugs concentration optimal profile. In the IB model one drug

does not completely alternate with the other one, as it happens with the differential

model. The idea behind the protocol is the same: to induce the specialization of cancer

cells resistance and then to hit the tumor with the other drug to which it is not resistant.

In the IB model the tumor resistance becomes specialized to a single drug even if drugs

oscillations do not go from zero up to ten (the maximum value). These experimental
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results are illustrated in figure 4.2, which shows the tumor evolution along the monthly

cure protocol. The improvement obtained with this optimal oscillating solution is defi-

nitely better than in the other two evolutionary tradeoffs but not extremely significant.

The resident population mean number reduces from 2567.9 to 2460.6, i.e. obtaining

more or less a 5% reduction, which is clinically significant in only one month protocol

therapy and it could be probably improved over a longer care period.

So, in the concave evolutionary tradeoff case, the best treatment protocol is a dynamic

one, where drug concentrations are negatively covaried over time.

Figure 4.6: Cancer state profile evolution for the case of concave tradeoff. The top
panels show the evolution of the mean cell’s overall investment in resistance v̄ (blue
line), v̄+standard deviation (red line) and v̄-standard deviation (yellow line) on the
right, and the cell’s mean allocation of resistance to drug 1 v̄1 (blue line), v̄1+standard
deviation (red line) and v̄1-standard deviation (yellow line) on the left. The left bottom
panel shows the tumor cell’s resistance to drug 1 (blue line) and drug 2 (red line). The
right bottom panel show the number of cancer cell step by step. Model parameters:

m0 = 1
10 , b1 = m1 = 1

210 and µ = 0.001.
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Moreover this advantage, exploited by the oncologist and given by the evolutionary

tradeoff, can become more effective with drug interaction in comparison to the one

obtained by Orlando et al. Indeed, the effect of drugs interaction is mathematically

expressed as βy1y2, where β determines the type and amplitude, and y1, y2 are the drug

1 and 2 concentration, respectively. The effect is maximum with equal concentration

and minimum, i.e. null, in presence of only one drug. So the dynamic optimal protocol,

where concentration varies a little around equal concentration, becomes more efficacious

with drug interaction, which is almost to its maximum effectiveness. Drugs interactions

appear to be prevalent in cancer chemotherapy. The problem consists on that patients

usually suffer for drug interaction. Indeed, a review article reports 1/3 of chemotherapy

patients suffer from drug interactions [26]. Hence, understanding the type of drug inter-

action [27] and discovering it before the drugs are already in use is crucial in planning

optimal protocol for a patient.
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4.4 Optimal protocol

In conclusion, as in the solutions obtained by Orlando et al., the phenotypic IB spatial

model drives differences in the optimal treatment protocols, based on the different evo-

lutionary tradeoffs in cancer cells allocation of resistance.

We investigate different type of control variables solutions, such as the case in which

only one drug is administered during whole protocol, or in which the drugs completely

alternate their presence. The local optimal solutions found with the gradient method

are probably also the best solutions, but it is difficult to say with certainty in a space of

fifteen dimensions. One way to overcome the problem is using a Monte Carlo method.

It consists on generating a set of random initial solutions to use as starting points in

the gradient method. Since with our IB models this method results too computational

heavy, we investigate only some different solutions arbitrarily chosen. We have never

found better solutions than the ones previously discussed. We have observed that for

all three tradeoffs analyzed, the tumor has higher fitness with specialized resistance,

when a single drug is administered, rather than with generalized resistance, when both

drugs are administered. This phenomenon in Evolutionary Theory is called ‘penalty

of multitasking’, since cancer cells are less fit when they try to generalize resistance to

both drugs. In the concave case, however, the cancer faces an evident local ‘benefit of

multitasking’, meaning that even though the cancer cells have higher fitness as specialist

rather than generalist, when the cancer cells do generalize, they have higher fitness as

balanced generalist (equal resistance to both drugs) as opposed to slightly imbalanced

generalists. In Evolutionary Theory, ‘benefit of multitasking’ means that cancer cells

have higher fitness when they generalize resistance in response to a multidrug therapy

as opposed to specializing in response to a single drug therapy. So the optimal solution

with concave tradeoff found with the IB model is an oscillating solution, as figure 4.5

shows, where never the delivery of one drug reaches the value ten nor drops to zero, but

both drugs are always present and negatively covary during all protocol. Thus the best

treatment strategy is a dynamic one, which can exploit tumor susceptibility hitting it

with the drug it is more vulnerable to. When the cells develop resistance to that drug,

they are hit with the other drug, which they are not evolutionarily prepared for. So

the cancer adapts to the last drug and consequently is hit with the other one by the

oncologist, who exploits the drug to which the cancer vulnerability is greater.

Contrary to this, both the linear and convex tradeoffs not lead to a clear local ‘ben-

efit of multitasking’. In both those tradeoffs, with the oscillating solutions found, the

cancer develops more resistance with respect to the drug present in greater amount.

Therefore the oncologist varies the concentration exploiting the drug to which cancer

is more susceptible, but the difference with a static protocol appears not particularly
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clinically significant from the point of view of the final cancer population size. So the

best oncologist strategy protocol can be dynamic, where the control variables negatively

covary according to figures 4.1 and 4.3, or static, where both drugs are maintained at

equal concentration level.

It should be noted, however, that cancer arrives at the end of treatments with different

evolutionary strategies using different protocols. Therefore from this point of view a

dynamic treatment appears more effective with the aim of controlling the phenotypes.

This is clearly true also for the concave tradeoff. Moreover, in the last year, optimal

control framework in cancer literature is apparently changing the objective function:

enforcing a static tumor volume and controlling cancer cells phenotype is likely a better

objective function than reducing tumor size [2, 28]. From controlling tumor phenotype

point of view, the optimal protocol is dynamic for all evolutionary tradeoffs. Indeed,

as already discussed, with oscillating control variables the oncologist can induces and

control cancer cells phenotype evolution [6, 29].

Analyzing instead the cancer cells number, bottom right panels in figures 4.2, 4.4 and 4.6,

in case of convex tradeoff the tumor gives the impression of being adapted to the pro-

tocol and having developed a strategy that allows it to resume its growth. While, with

both linear and concave tradeoffs, using a dynamic protocol, exploiting the evolutionary

double bind [6], the oncologist is able to enforce a static tumor volume, especially in the

concave tradeoff case [2].

In this thesis, however, we are focusing more on qualitative than quantitative result,

i.e. if the optimal protocol should be static or dynamic. Each real tumor, indeed, has

its own specific characteristics, while our IB model is quite generic to obtain reliable

quantitative experimental results. We consider generally tumors with rapid evolution to

investigate how their strategies change to adapt them to chemotherapy. The dynamic

protocols appear more effective, especially in a controlling framework.
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Conclusion

In this thesis we develop a phenotypic individual-based model [7] to analyze cancer evo-

lution, starting from the differential model presented in the first chapter, focusing on

if and how the results change considering spatial heterogeneity and phenotypic diver-

sity. We investigate experimental results to understand if the best oncologist protocol

should be static or dynamic. It is well known that in real life tumors develop itself

in heterogeneous environments and with phenotypic diversity, also in a scenario with

equal drugs concentration [24]. The richness of individual cancer cells diversity and

the spatial structure, given by the IB model, can not be investigated in the differential

model. Those improvements brings to different, but partially in agreement, results and

strategies, related to different evolutionary tradeoffs. The IB model, however, is more

challenging to accommodate in an optimal control framework. If the objective function

is reducing the final population size, we find that the best protocols for the oncologist

are almost in agreement with the ones obtained with the differential model 1.4.2. For

the concave tradeoff the optimal protocol is evidently dynamic.

In the linear and convex case, we discover optimal dynamic protocols ( 4.1 and 4.3 ),

which slightly vary the drugs concentrations from equal concentration level. We note,

however, that their effectiveness is practically equal to the one obtained with a static

protocol. These optimal dynamic protocols may work better if the objective function

switch on enforcing a static tumor volume and or controlling tumor phenotype. In the

last years, cancer modeling literature is going in this direction[2, 28].

In the concave tradeoff, the optimal oncologist strategy is evidently a dynamic protocol,

as founded by Orlando et. The difference lies in how the drugs amounts vary. With

the IB model, to exploit optimally the evolutionary trade-off, the oncologist does not

need to bring the supply of a drug up to the maximum. From the analysis, it is clear

that it is sufficient to supply drugs in slightly different quantities (such as w1 = 6 and

so w2 = 10 − w1 = 4 for example) to induce cancer cells to specialize their resistance.
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Then, the oncologist can exploit this specialization, hitting the tumor with the other

drug to which tumor resistance is almost null. Moreover, a dynamic protocol, where

drugs concentration varies few around equal concentration, probably becomes more ef-

ficacious with drug interaction, which is almost to its maximum effectiveness with this

type of dynamic protocol.

We discover optimal dynamic protocols for the linear and convex tradeoffs, but with

practically the same effectiveness of the optimal static protocols, in a framework of op-

timizing the final population size. These dynamic protocols become more successful if

the objective function changes to enforce a static volume or to control tumor phenotype.

The conclusion is that the knowledge of the cancer evolutionary tradeoff and the objec-

tive function to be optimized are crucial in planning optimal chemotherapy schedules

for the patients.
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5.1 Future research direction

A major challenge for the individual-based approach is the development of theoretical

and empirical methods to investigate optimal control strategies in cancer chemotherapy.

In this thesis we focus on qualitative results, obtained with the gradient descent method,

that allow to confirm and validate our IB model with respect to the differential model.

We suggest to investigate those experiments in a more realistic setting, i.e. with a longer

time horizon, since a one month oncological protocol is quite short, and also with a more

realistic clinical constrain, as break period without drugs during chemotherapy.

In this IB evolutionary model, the tumor spreads itself growing up in the grid, but there

is no geometry in the shape of the tumor. The hypothesis is that the density with which

the tumor occupies the grid reflects the actual dimensions of the tumor in a real life. To

have a model that investigates tumor geometry (e.g.[30] and[31]), we propose to change

the natural mortality function and use a function that increases with the number of

neighbors occupied by a cancer cell.

We suggest investigation in the optimal framework using an adaptive dynamics [7]. This

is an optimization scheme of genetic inspiration, not to be confused with the genetics

of cancer cells, also called particle filter. The idea briefly consists on starting with a

set of control signals, which are the particles, each with its own expected value of the

objective function. The particles are then reproduced with probability linked to the

associated value of the objective function, with mutations that randomly modify the

signal. Leaving the particles evolve, the final population will be composed of signals

with the best objective functions. We computationally develop this method, but it find

out to be extremely heavy. The simulation could last several days, also analyzing very

small signal populations.

Finally, investigating with enforcing a static tumor volume and or controlling tumor

phenotype could be a better objective function following cancer modeling literature.
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