

POLITECNICO DI MILANO

DEPARTMENT OF MECHANICS

Master of Science in Mechanical Engineering

AA 2019-2020

A Restarted Iterated Pareto Greedy
algorithm for the multi-objective

hybrid flow shop scheduling
problem

Candidate:

Michele Tota

Mat. 859389

Supervisor:

Dott. Chunlong Yu

Tutor:

Prof. Quirico Semeraro

To my parents,

 that always gave me strength and support.

 Table of contents:

1. Introduction...10

2. Problem description..15

2.1 The hybrid flow shop: problem description and notation……………..…16

3. Literature review…………………………………………………………………………………….21

3.1 Methods for HFS scheduling problem..22

3.2 Sequence-dependent setup time and unrelated parallel machines…26

3.3 Multi-objective Hybrid Flow hop…………………………………………………….28

3.3.1 The Scheduling problem with Total Tardiness (TT)

objective…………...………………………………………………………….30

3.3.2 The scheduling problem with Total Setup Time (TST)

objective……………………………………………………………………….31

3.4 The Restarted Iterated Pareto Greedy Algorithm (RIPG)………………...32

4. Methodology………………………………………………………………………………………….35

4.1 A model for the SDST hybrid flow shop……………………………………………36

4.2 Encoding methods…………………………………………………………………………..37

4.3 Decoding methods………………………………………………………………………….39

4.4 The Restarted Iterated Pareto Greedy…………………………………………….44

4.4.1 The initialization phase………………………………………………....46

4.4.2 The selection phase…………………………………………………......48

4.4.3 The Greedy phase……………………………………..……………..…..49

4.4.4 The Local Search phase……………………………..……………..…..51

4.4.5 The restart phase………………………………………..…………..……53

5. Numerical results…………………………………………………………………………….……..55

5.1 Benchmark description…………………………………………….………….………….56

5.2 RIPG calibration………………………………………………………………….…………..57

5.3 Performance comparison with NGSAII…………………………………..………..66

6. Conclusions………………………………………………………………………….………..……… 87

7. References……………………………………………………………………..………..…………… 90

8. Appendix……………………………………………………………….………………………….105

8.1 Pseudocode of Initialization phase………………………………………….…....106

8.2 Pseudocode of MCDA…………………………………….……………………….......107

8.3 Pseudocode of Greedy phase…………………………………………….…….…..108

8.4 Pseudocode o Local search………………………………………………......…..…108

.

List of Figures:

Figure 1- The Hybrid Flowshop .. 18

Figure 2 -Methods classification .. 25

Figure 3- Constraints for HFS .. 28

Figure 4- Objectives for HFS ... 32

Figure 5- Scheduling example ... 37

Figure 6- Encoding/decoding classifications .. 38

Figure 7 - RIPG scheme ... 46

Figure 8 - Initialization procedure scheme .. 48

Figure 9- Hypervolume indicator ... 60

Figure 10- Main effect plot of calibration .. 61

Figure 11- Interaction plot ... 62

Figure 12- Test for equal variances.. 64

Figure 13- Normality test ... 64

Figure 14- Scatterplot interval for SRES ... 65

Figure 15 - Tests for comparison ... 67

 Figure 16 – Fronts comparison...72

Figure 17- HV means comparison 20 jobs 5 stages...72

Figure 18- HV means comparison 20 jobs 10 stages ... 73

Figure 19- HV means comparison 20 jobs 20 stages ... 73

Figure 20- HV means comparison 50 jobs 5 stages ... 74

Figure 21- HV means comparison 50 jobs 10 stages ... 74

Figure 22 - HV means comparison 50 jobs 20 stages .. 75

Figure 23 - HV means comparison 100 jobs 5 stages .. 75

Figure 24- HV means comparison 100 jobs 10 stages ... 76

Figure 25- HV means comparison 100 jobs 20 stages ... 76

Figure 26- Standard deviation comparsion 20 jobs 5 stages...................................... 77

Figure 27- Standard deviation comparsion 20 jobs 10 stages.................................... 77

Figure 28- Standard deviation comparsion 20 jobs 20 stages.................................... 78

Figure 29- Standard deviation comparsion 50 jobs 5 stages...................................... 78

Figure 30 - Standard deviation comparsion 50 jobs 10 stages................................... 79

Figure 31- Standard deviation comparsion 50 jobs 20 stages................................... 79

Figure 32 - Standard deviation comparsion 100 jobs 5 stages................................... 80

Figure 33 - Standard deviation comparsion 100 jobs 10 stages................................. 80

Figure 34- Standard deviation comparsion 100 jobs 20 stages.................................. 81

Figure 35- Main effect plot for comparsion... 82

Figure 36- Interaction plot for comparison .. 82

Figure 37- Scatterplot SRES for comparison .. 84

Figure 38- Normality test for comparison ... 84

Figure 39- Test for equal variances for comparison .. 85

List of Tables:

Table 1- Notation ... 20

Table 2 - methods for HFS ... 25

Table 3 - Processing times ecample ... 36

Table 4 - Processing times example ... 36

Table 5 – Resume table per paper .. 41

Table 6 - Notation .. 41

Table 7 - benchmark description .. 56

Table 8 - ANOVA of calibration ... 63

Table 9 - Tukey test ... 66

Table 10 - ANOVA for comparison .. 83

Table 11 - Tukey test for comparison .. 85

file:///C:/Users/Michele%20Tota/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/TESI%20-%20MICHELE%20TOTA%20859389.docx%23_Toc17627732
file:///C:/Users/Michele%20Tota/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/TESI%20-%20MICHELE%20TOTA%20859389.docx%23_Toc17627733
file:///C:/Users/Michele%20Tota/AppData/Roaming/Microsoft/Windows/Network%20Shortcuts/TESI%20-%20MICHELE%20TOTA%20859389.docx%23_Toc17627738

Abstract

The scheduling of flow shops with multiple parallel machines per stage, which

is usually referred to as the hybrid flow shop (HFS), is a complex combinatorial

optimization problem encountered in many real-world applications. The

problem is to determine the allocation of jobs to the parallel machines as well

as the sequence of the jobs assigned to each machine, so as to create a Gantt

chart to guide the production activities. The basic HFS scheduling problem has

been thoroughly studied in recent decades, both from single objective as well

as from multi-objective perspectives, but to the best of our knowledge, little

has been done to the multi-objective scheduling problem considering the

reduction of total machine setup time as one of the objectives. Given that the

machine setups act as non-value-added activities which should be avoided or

mitigated from the manufacturing practices, it is important to make a proper

schedule which results in short total setup time together with other

performance indicators, such as productivity and on-time product delivery.

For this reason, this thesis focuses on the HFS scheduling problem with the

total tardiness and total setup time objectives. In this work, a simple, yet

powerful algorithm for the sequence dependent setup time hybrid flow shop

problem is proposed. The presented method, known as Restarted Iterated

Pareto Greedy or RIPG, is compared to the NGSA-II, which is a well-known

algorithm for multi-objective optimization in literature. Computational and

statistical analyses demonstrate that the proposed RIPG method outperforms

the NGSA-II in the test instances. We conclude that the proposed method is a

candidate to be the state-of-art method for this important and practical

scheduling problem.

Chapter 1

[1] Introduction

11

Production scheduling is one of the most complex activities in the

management of production systems. It is closely connected with the firm's

performance in terms of speed, reliability, flexibility, quality, and cost. The

theory of production scheduling, that aims to provide guidelines and

methods, for efficient use of resources, has been the subject of countless

papers, over the past five decades. Although several features of scheduling

problems are still underexplored due to the variety of production

environments, the available resources, restrictions may be imposed and there

are multiple objectives to be achieved. Moreover, production scheduling is

one of the activities of the Planning, Programming and Production Control. It

is responsible for deciding the allocation of resources (machines) over time to

perform individual items (jobs and/or batch of jobs), in order to better meet

a predefined set of criteria. One can understand the production scheduling as

a set of functions of decision-making, involving:

 how to allocate jobs on machines over time, called schedule;

 decisions about how to order the jobs on a given machine called

sequence,

The scheduling of flow shops with multiple parallel machines per stage,

usually referred to as the Hybrid Flow Shop (HFS), is a complex combinatorial

problem encountered in many real world applications. Given its importance

and complexity, the HFS problem has been intensively studied [1]. Hybrid flow

shops are common manufacturing environments in which a set of n jobs are

to be processed in a series of m stages optimizing a given objective function.

There are a number of variants, all of which have most of the following

characteristics in common:

 The number of processing stages m is at least 2.

 Each stage k has machines in parallel and at least IN one of the

stages.

12

 All jobs are processed following the same production flow: stage

1, stage 2, …, stage m. A job might skip any number of stages

provided it is processed in at least one of them.

 Each job j requires a processing time p in stage k. We shall refer

to the processing of job j in stage k as “operation”.

In the “standard” form of the HFS problem all jobs and machines are available

at time zero, machines at a given stage are identical, any machine can process

only one operation at a time and any job can be processed by only one

machine at a time; preemption is not allowed, the capacity of buffers between

stages is unlimited and problem data is deterministic and known in advance.

Although most of the problems described in this review do not fully comply

with these assumptions, they mostly differ in two or three aspects only; the

standard problem will serve as a “template” to which assumptions and

constraints will be added or removed to describe different HFS variants. In

particular, in specific case, to better represent the reality of many real

industrial cases, a sequence dependent setup time will be considered with

also unrelated parallel machines and a constraint of machine eligibility. The

first limitation of unrelated machines indicates that the parallel machines in a

stage are not identical but there could be differences in terms of processing

speed or manufacturing technologies applied. These two limitations are very

common in many industrial cases and are also less considered in the previous

literature HFS scheduling problem. In terms of the objective, most researches

focus on minimizing the makespan of a schedule. However, in most of the

cases, makespan is not the most important criterion to considered. Like in the

make-to-order environment, job tardiness should be given higher priority

than makespan. Also, the setup times/costs [2] are considered as another

important indicator to evaluate the schedule quality, but seldom considered

in the literature. These motivate us to consider the total tardiness and total

setup time as objective functions to be minimized.

13

The scheduling problem can be denoted using a triplet α|β|γ notation where,

α defines the shop configuration, β describes the constraints and assumptions

and γ indicates the objective function. Consequently, the described

scheduling problem is denoted as:

𝐹𝐻𝑚, ((𝑅𝑀𝑘)𝑘=1
𝑚)| 𝑀𝑗, 𝑆𝑠𝑑| ∑ 𝑇𝑗 , 𝑇𝑆𝑇

Here, 𝐹𝐻𝑚 indicates a HFS with m stages; ((𝑅𝑀𝑘)𝑘=1
𝑚) represents that each

stage consists of multiple unrelated machines; Mj represents machine

eligibility; ∑ 𝑇𝑗 indicates the total tardiness objective and TST for the total

setup time.

Hybrid flow shop scheduling problem is a discrete optimization problem.

When multi-objectives are to be optimized, typical multi-objective

optimization methods like NSGA-II [3], SPEA2 [4] can be applied. Yet, other

algorithms exist, and in particular one potential competitor is the Iterated-

greedy search [5]. It has been applied to the single-objective flow shop

problem [6], multi-objective flow shop problem [7] and obtained state-of-art

results. The HFS scheduling problem, in most cases, are NP-hard. For instance,

HFS restricted to two processing stages, even in the case when one stage

contains two machines and the other one a single machine, is NP-hard, after

the results of [8]. Similarly, the HFS when preemption is allowed results also

in strongly NP-hard problems, according to [9]. Moreover, the special case

where there is a single machine per stage, known as the flow shop, and the

case where there is a single stage with several parallel machines, known as

the parallel machines environment, are also NP-hard, [10]. However, with

some special properties and precedence relationships, the problem might be

solvable in polynomial time[11].

The HFS scheduling problem has attracted a lot of attentions given its

complexity and practical relevance. HFS is found in all kinds of real world

scenarios including the electronics [12], [13], [14], [15], paper [16] and textile,

https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib49
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib43
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib209
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib210
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib114
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib83
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib170

14

[17], industries. Examples are also found in the production of concrete, [18],

the manufacturing of photographic film, [19], [20], and others, [21], [22], [23],

[24], [25], [26], [27]. We also find examples in non-manufacturing areas like

civil engineering [28], internet service architectures [29] and container

handling systems [30] [31]. The results, of this research, may be useful for

future research, towards the development of new solution methods, and/or

for the application of methods investigated in the context of real companies,

with this kind of scheduling problem.

The thesis is organized as follows. Chapter 2 conducts a literature review on

exact, heuristic and metaheuristic methods that have been proposed over the

last decades, also provides a discussion on different methodologies used to

solve the problem and their basic features and components. It explains the

terminology used to refer to the different assumptions, constraints and

objective functions where reviewed papers are briefly commented and only

the most important facts are highlighted. Then, the aim is to focus on applying

the optimization method called Restarted Iterated Pareto Greedy (RIPG),

which is described and presented in Chapter 3. Chapter 4 discusses the

obtained results of the experimental campaign. A comparison between the

proposed method and the conventional method is described in Chapter 5. The

results may be useful for future research, towards the development of new

solution methods, and/or for the application of methods investigated in the

context of real companies, with this kind of scheduling problem. These aspects

with relative research opportunities in HFS scheduling problem concludes the

thesis.

https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib52
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib137
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib189
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib4
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib2
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib40
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib3
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib112
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib18
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib216
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib152
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib44
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib8
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib36
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib35
https://www.sciencedirect.com/science/article/pii/S0377221709006390#sec1

15

Chapter 2

[2] Problem definition

16

This chapter defines the research problem. Furthermore, this chapter

presents some considerations about the limitations emerged from the

state-of-the-art analysis. The literature review can be organized in

three parts. First, we review different methods solving the HFS

scheduling problem, which can be categorized by exact, heuristic and

metaheuristic methods, considering the most common assumptions

and objectives. Then we review papers and organize them according

to different criteria. In particular the criteria considered for the

classification were, the encoding and decoding procedure used in the

algorithms, the machine selection rule adopted in each stage, the

technique used, the adopted constraints on the production chain and

the considered objectives.

2.1 The Hybrid Flow Shop: problem description and notation

A Hybrid Flow Shop (HFS) consists of series of production stages, each of which

has several machines operating in parallel. Some stages may have only one

machine, but at least one stage must have multiple machines. The flow of jobs

through the shop is unidirectional. Each job is processed by one machine in

each stage and it must go through one or more stage [49]. Depending on the

adopted assumptions, machines in each stage can be considered identical,

uniform or unrelated. When pij = pj/si where pj is the processing time of

job j and si is the speed of machine i, then the machines are called uniform. If

the pijs are arbitrary then the machines are called unrelated. And both of the

uniform and unrelated cases belong to non-identical parallel-machine

schedules. In our case, as we already mentioned, there are some differences

between them which makes the hypothesis of unrelated parallel machines

an important assumption close to the real industrial environment. In fact, HFS

is often found in the electronic manufacturing environment such as IC

packaging and PCB fabrication, where this assumption is often verified. The

setup times are not included in the processing time and they are sequence

17

dependent. The SDST/HFS problem can be described as follows. A set of n jobs

J = {1, 2, ..., n} have to be processed through m production stages {1, 2, ..., m}

following the same production route, i.e., first at stage 1, then at stage 2, and

so on until last stage m. Each stage k, k = 1, 2, ..., m, has a set of almost

identical parallel machines, Mk (|Mk| ≥ 2 for at least one stage, where | • |

denotes the cardinality of a set). Each job j ∈ J can be processed on one of the

|Mk| depending on a machine eligibility criterion. We denote the processing

time of job j ∈ J at stage k as pk, j. We have a SDST, denoted as sk,j',j, when job

j ∈ J is processed immediately after job j' ∈ J (j' ≠ j) on the same machine at

stage k. If job j ∈ J is the first job processed on a machine at stage k, its setup

time is denoted as sk,j,j. At any time, no job can be processed on more than

one machine, and no machine can process more than one job. All jobs are

independent and available for processing at time 0. The objective is then to

find a schedule so that the Total Setup Time and the Total Tardiness are

minimized.

The SDST assumption comes from the need to have a more realistic model of

the HFS. Another important mark to be made, is the constraint of machine

eligibility which gives a criteria on which machine is eligible to process an

operation of a given jobs. The two objectives are to minimize are the total job

tardiness and the total setup time.

Figura 1- The Hybrid Flowshop

https://www.sciencedirect.com/topics/mathematics/cardinality

18

The resume of what stated plus its notation is presented as follows:

 In stage i, there are mi unrelated parallel machines with different processing

abilities, where mi ⩾ 1.

 Between the stages i and i + 1, the buffer capacity is assumed infinite.

 Each job consists of a sequence of operations Oi,j where Oi,j denotes the ith

operation of job j, which should be carried out on a selected machine in stage

i;

 When a job arrives at a stage i, it can select exactly one machine from mi

available unrelated parallel machines. The selection is made according to an

eligibility index;

 After a job is completed at stage i, it may be processed as follows:

1) the job will be immediately delivered to the subsequent stage

when one of the machines at stage i + 1 is available;

2) in cases in which there is no available machine at stage i + 1,

the job will be stored in the following buffer given the infinite

buffer space;

 Each machine in the same stage can process only one job at a time, and each

job can be executed by only one machine at a time;

 All jobs and machines are available at time zero;

https://www.sciencedirect.com/topics/computer-science/parallel-machine
https://www.sciencedirect.com/topics/computer-science/subsequent-stage

19

 Preemption is not allowed; that is, a job cannot be interrupted before the

completion of its current operation;

 Setup times are sequence dependent and all the problem data are

deterministic and known in advance;

 Machines are reliable and no machine failures can happen.

The following table resumes the adopted notation:

Notation Description

n number of jobs (j =1,…,n)

m Number of stages (i =1,…,m)

k Index for machines inside a stage

pi,j,k Processing time of job j at stage i on machine k

Oi,j,k Operation of job j at stage i on machine k

Ei Set of eligible machines at stage i

Ci,j Completion time of Oi,j,k

dj Due date for job j

si,j Sequence-dependent setup time from job j at stage i.

Tj Tardiness of job j. 𝑇𝑗 = max (0, 𝐶𝑗 − 𝑑𝑗)

T Total Tardiness: 𝑇 = ∑ 𝑇𝑗
𝑛
𝑗=1

Tabella 1- Notation

20

The scheduling problem can be denoted using a triplet α|β|γ notation. In this

notation, α defines the shop configuration, β describes the constraints and

assumptions and γ indicates the objective functions. Consequently, the

described scheduling problem is denoted as:

𝐹𝐻𝑚 , ((𝑅𝑀(𝑘))
𝑖=1

𝑚
) |𝑀𝑗 , 𝑆𝑠𝑑| ∑ 𝑇𝑗 , 𝑇𝑆𝑇

Here, 𝐹𝐻𝑚 , indicates a HFS with m stages; represents that each stage consists

of multiple unrelated machines; 𝑀𝑗represents machine eligibility; ∑ 𝑇𝑗 , 𝑇𝑆𝑇

indicates the total tardiness and the total setup time objective.

https://www.sciencedirect.com/topics/social-sciences/scheduling
https://www.sciencedirect.com/topics/mathematics/objective-function

21

Chapter 3

[3] Literature review

22

3.1 Methods for HFS scheduling problem

In literature, methods for HFS scheduling problem can be categorized as exact

and heuristic. Exact methods, including mathematical programming and

branch & bound, solve the problem to find an optimal solution. Although the

branch and bound was first suggested by [67], the first complete algorithm

introduced as a multi-objective branch and bound that we identified was

proposed by [68]. Based on the “divide to conquer” idea, it consists in an

implicit enumeration principle, viewed as a tree search. The feasible set of the

problem to optimize is iteratively partitioned to form sub-problems of the

original one. Each sub-problem is evaluated to obtain a lower bound on the

sub-problem objective value. The lower bounds on sub-problem objective

values are used to construct a proof of optimality without exhaustive search.

Uninteresting and infeasible sub-problems are pruned, promising sub-

problems are selected and instantiated [46]. However, due to the lack of

efficient lower bounds, branch & bound approach is limited to simple shop

configurations; also, exact methods require long time for solving large

instances. Both facts limit the industrial application of exact methods. A

practical idea is to search for quasi-optimal solution in a reasonable time. For

this reason, the trend of solving HFS scheduling problems with heuristic,

especially metaheuristic, is increasing [41]. In the past decade, genetic

algorithm (GA) has gained the widest applications. Genetic Algorithms were

introduced by Holland [32] and they have been used in many scheduling

problems (see for instance [33], [34]). The GA starts with an initial population

of possible solutions called chromosomes to the problem. The relative quality

of these chromosomes is determined using a fitness function. This quality is

used to determine whether the chromosomes will be used in producing the

next generation of chromosomes. The next generation is generally formed via

the processes of crossover and mutation. Crossover is the process of

combining elements of two chromosomes, whereas mutation means

randomly altering elements of a chromosome [35]. Among the metaheuristic

methods we can underline different ones such as population learning

23

algorithm [37], taboo search [38] and ant colony system [39]. In particular,

the tabu search algorithm TSNS is commonly considered as the most effective

solution method for the considered HFS scheduling problem with related

parallel machines. Its high efficiency is obtained due to so called reduced

neighborhood based on the block properties and the accelerator designed for

Cmax computation for all neighbors of the base solution [42]. A detailed

description of all TSNS components can be found in [43]. All these focus on

minimizing the makespan but it is not the only scheduling problem tackled;

[40] focused on minimizing the weighted completion time in proportional flow

shops. Also Hybrid heuristic are used. Memetic algorithms for example are

hybrid evolutionary algorithms that combine global and local search by using

an evolutionary algorithm to perform exploration while the local search

method performs exploitation [36]. There exist hybrid heuristic algorithms

that combine particle swarm optimization (PSO) [44] [45] with simulated

annealing (SA) and PSO with tabu search (TS), for example. Particle swarm

optimization is similar to the genetic algorithm technique for optimization in

that rather than concentrating on a single individual implementation, a

population of individuals (a “swarm”) is considered instead. The algorithm

then, rather than moving a single individual around, will move the population

around looking for a potential solution. Each individual in the swarm has a

position and velocity defined, the algorithm looks at each case to establish the

best outcome using the current swarm, and then the whole swarm moves to

the new relative location [47]. Instead, Simulated Annealing (SA), introduced

in [51], was conceived for combinatorial problems, but can easily be used for

continuous problems as well. SA starts with a random solution xc and creates

a new solution xn by adding a small perturbation to xc. If the new solution is

better than the current one, it is accepted and replaces xc. In case xn is worse,

SA does not reject it right away, but applies a stochastic acceptance criterion,

thus there is still a chance that the new solution will be accepted, albeit only

with a certain probability. This probability is a decreasing function of both the

order of magnitude of the deterioration and the time the algorithm has

24

already run. This time factor is controlled by the temperature parameter T

which is reduced over time; hence, impairments in the objective function

become less likely to be accepted and, eventually, SA turns into standard local

search. The algorithm stops after a predefined number of iterations Rmax[48].

Experimental results reveal that these memetic techniques can effectively

produce improved solutions over conventional methods with faster

convergence [36]. Besides these, in recent years, other less used

metaheuristics were proposed for HFS. For example immune evolutionary

algorithm [52] and artificial bee colony [53],[54]. Lastly there have been

presented apply new metaheuristics like water flow-like algorithm [55],

firefly algorithm [57], cuckoo search algorithm [56] to solve HFS problems.

Indeed, different metaheuristics represent different search patterns in the

solution space. However, due to the existence of the No-Free Lunch (NFL)

Theorem [58], it is more important on how to make use of problem structure

information to improve the search procedure than just applying new general

purpose optimization methods to HFS problems [41]. Although there exist

many different approaches, in last years an important contribution has been

given by the Iterated-greedy algorithm. A resume table is presented here.

https://www.sciencedirect.com/topics/computer-science/evolutionary-algorithms
https://www.sciencedirect.com/topics/computer-science/evolutionary-algorithms
https://www.sciencedirect.com/topics/computer-science/firefly-algorithm
https://www.sciencedirect.com/topics/mathematics/search-algorithm
https://www.sciencedirect.com/topics/computer-science/no-free-lunch
https://www.sciencedirect.com/topics/computer-science/search-procedure

25

Tabella 2 - methods for HFS

Year Authors Tipology

1960 H. Land, A & G. Doig Branch & Bound

1975 H. Holland Genetic Algorithm

1983 G. Kiziltan, E. Yucaoglu Branch & Bound

1995 J. Kennedy, R. Eberhart Particle swarm optimization

1998 Y. Shi, R.C. Eberhart Simulated annealing

2003 J. Jdrzêjowicz, P. Jdrzêjowicz Population learning algorithm

2004 C. Oðuz, Y. Zinder et al. Taboo search

2005 C. Oguz, M.Ercan Genetic Algorithm

2006 K.C. Ying, S.W. Lin Ant colony system

2006 M. Zandieh, S.M.T.F. Ghomi, S.M.M. Husseini Immune evolutionary algorithm

2011 F. Choong, S. Phon-Amnuaisuk, M.Y. Alias Memetic algorithms

2012 F. Pargar, M. Zandieh Water flow-like algorithm

2013 M.Ciavotta, Minella, Ruiz Iterated greedy algorithm

2014 M.K. Marichelvam, T. Prabaharan, X.S. Yang Firefly algorithm

2014 M.K. Marichelvam, T. Prabaharan, X.S. Yang Cuckoo search algorithm

2015 Z. Cui, X. Gu Artificial bee colony

2016] J. Li, Q. Pan, P. Duan Artificial bee colony

Figura 2 -Methods classification

Algorithms

Exact

Branch &
Bounf

Dynamic
programming

Lagrangian &
surrogate relaxaion

methods

Implicit
enumeration
techniques

Heuristic

Greedy

Relaxation
based

Transformation
heuristic

Meta
heuristic

Simulated
annealing

Neural
networks

Tabu search

Genetic
algorithm

26

3.2 Sequence-dependent setup time and unrelated parallel
machines

Unrelated parallel machine scheduling is widely applied in manufacturing

environments such as the drilling operations for printed circuit board

fabrication [113] [114] and the dicing operations for semiconductor wafer

manufacturing [115]. A lot of papers about HFS have been published in the

literature but only a relatively minor fraction of them consider sequence

dependent setup times. In the literature, there are three types of parallel

machines scheduling even though most of researches are limited to situations

in which the processing times are the same across all machines. This type is

called identical parallel machines (Pm). In the second type, machines have

different speed but each machine works at a consistent rate, Qm [116] [117].

Finally, when machines are capable of working at different rates and when

different jobs could be processed on a given machine at different rates, the

environment is said to have unrelated parallel machines, Rm [116]. Developed

algorithms to schedule unrelated parallel machines are capable of generating

good solutions when applied to all kinds of parallel machine problems and

that’s why they are important. [118] pointed out that unrelated parallel machine

problems remain relatively unstudied and presented a survey of algorithms for

single-and multi-objective unrelated parallel machine deterministic scheduling

problems. There is much research work considering parallel machines, but few

unrelated parallel machines or sequence-dependent set-up times (SDST). In

general, such a problem is composed of job allocation and job sequencing onto

the machines, simultaneously, with similar but not necessarily identical

capabilities. In [66] the makespan and total weighted tardiness are optimized

simultaneously with a multi-phase genetic algorithm for searching Pareto

optimal solutions of a hybrid flow shop group scheduling problem. [69] uses

tabu search procedure to address a sequence-dependent group scheduling

problem on a set of unrelated-parallel machines where the run time of each

job differs on different machines. [70] proposes a new multi-objective

approach for solving a no-wait k-stage flexible flow shop scheduling problem

to minimize makespan and mean tardiness. Sequence-dependent setup times

27

are treated in this problem as one of the prominent practical assumptions.

[71] investigates a bi-objective HFS problem with sequence dependent setup

time for the minimization of the total weighted tardiness and the total setup

time. To efficiently solve this problem, a Pareto-based adaptive bi-objective

variable neighborhood search (PABOVNS) is developed and a job sequence

based decoding procedure is presented to obtain the corresponding complete

schedule. [72] paper presents an enhanced migrating bird optimization (MBO)

algorithm and a new heuristic for solving a scheduling problem. The proposed

approaches are applied to a permutation flow shop with sequence dependent

setup times. Using an adapted neighborhood, a tabu list, a restart mechanism

and an original process for selecting a new leader the MBO’s behavior is

improved and it gave state-of-the-art results when compared with other

algorithms reference. [73] proposed a genetic algorithm and a memetic

algorithm for the F/Sijk, prmu/Cmax [74] introduced an algorithm formed by a

new heuristic and a local search improvement scheme for the combined

objective of total weighted flow-time and tardiness. [75] offers a

comprehensive review of scheduling research with setup times. From an

industrial point of view, [119] solve a parallel machine scheduling problem

inspired in an aluminium foundry considering objectives related to the metal

flow; [120] consider a problem related to multi-product metal foundries; or

more recently, [121] tackle, in a metal packaging industry, an unrelated

parallel machines scheduling problem with job splitting and sequence-

dependent setup times, [122] considers a problem identified in a shipyard

modelled by unrelated parallel machines with jobs release dates, precedence

constraints and sequence-dependent setup times where machines are

eligible, and finally [123] considers a dynamic scheduling problem based on

the features of parallel heat treatment furnaces of a manufacturing company.

To the best of our knowledge, the problem under consideration has not been

addressed in the literature, although some papers address the unrelated

parallel machines problem with machine eligibility and setup times with

additional constraints.

https://www.sciencedirect.com/topics/engineering/metal-flow
https://www.sciencedirect.com/topics/engineering/metal-flow
https://www.sciencedirect.com/topics/engineering/related-problem
https://www.sciencedirect.com/topics/engineering/shipyard
https://www.sciencedirect.com/topics/engineering/constraints
https://www.sciencedirect.com/topics/engineering/heat-treatment
https://www.sciencedirect.com/topics/engineering/manufacturing-company
https://www.sciencedirect.com/topics/mathematics/constraints

28

3.3 Multi-objective hybrid Flow Shop

There are several different approaches to the multi-objective optimization.

The most immediate and commonly employed methodology is the so-called

“a priori” approach. As the name implies, this methodology requires to specify

some desirability or a prioristic information given by the decision maker so to

create a weighted combination of all objectives into one single mathematical

function, which effectively turns the problem into a single-objective one. As

one can imagine, the main drawback of this approach is about how to set the

weights for each objective, which is not a trivial procedure. Furthermore,

different objectives are usually measured in different scales, making the

choice of the weighs even more complicated. On the other hand, there is a

class of techniques referred to as “a posteriori” methods. The final goal of this

kind of approach is to provide a set of non-dominated solutions that cover the

trade-off between the selected objectives. This set of non-dominated solution

is referred to as the Pareto frontier. The decision maker, after the

optimization has been carried out, selects the desired solution from the

Pareto frontier. The approach used in our RIPG methodology is “a posteriori”.

Year Authors Constraints adopted

1985 Potts, C. N Unrelated parallel machines

2002 Yu L, Shih HM, Pfund M, Carlyle WM, Fowler JW Unrelated parallel machines

2002 Kim DW, Kim KH, Jang W, Chen FF Unrelated parallel machines

2003 Hsieh JC, Chang PC, Hsu LC Unrelated parallel machines

2003 Rajendran, C., Ziegler, H. seuqence-dependent setup time

2004 Pfund, M., J. W. Fowler, and J. N. D. Gupta. Unrelated parallel machines

2005 Ruiz, R., Maroto, C., Alcaraz, J. seuqence-dependent setup time

2008 Pinedo, M. Unrelated parallel machines

2008 Ali Allahverdi, C.T. Ng, T.C.E. Cheng, Mikhail Y. Kovalyov, seuqence-dependent setup time

2010 N. Karimi, M. Zandieh, H.R. Karamooz, seuqence-dependent setup time

2012 Mir Abbas Bozorgirad, Rasaratnam Logendran, seuqence-dependent setup time

2014 H. Asefi, F.Jola, M.Rabiee, M.E. Tayebi Araghi seuqence-dependent setup time

2016 Huixin Tian, Kun Li, Wei Liu seuqence-dependent setup time

2018 A. Sioud, C. Gagné, seuqence-dependent setup time

Figura 3- Constraints for HFS

29

In fact, in each step where selection must be performed, the Pareto frontier

is identified, and the non-dominated solution set is chosen as the set that will

continue in the algorithm.

The literature on multi-objective optimization is very rich. The few proposed

multi-objective methods for the PFS and HFS problem are mainly based on

evolutionary optimization and on local search techniques e.g. simulated

annealing (SA) or tabu search. In [76], there is a comprehensive review of the

literature related to this problem. Thus, here we restrict ourselves to only the

most significant papers and to some other more recent published material.

Focusing only on the “a posteriori” approach, the number of publications in

the flowshop literature is reduced to the following works. A genetic algorithm

(GA) was proposed by [77] which obtained a Pareto front for makespan and

total tardiness. In this algorithm, referred to as MOGA (Multi Objective

Genetic Algorithm), the selection phase employs a fitness value assigned to

each solution as a function of the weighted sum of the objectives. The weights

for each objective are randomly assigned at each iteration of the algorithm.

Later, in [78], the authors extended this algorithm by means of a local search

procedure applied to every newly generated solution. [79] present a

comprehensive study about the effect of adding local search to their previous

algorithm [78] The local search is only applied to good individuals and by

specifying search directions. This form of local search was shown to give

better solutions for many different multi-objective genetic algorithms. [80]

proposes a Pareto-based simulated annealing algorithm for makespan and

total flowtime criteria and the results of the proposed method is compared

with [79]. The makespan and total flowtime objectives are studied in [81],

which proposed simulated annealing methods. Two versions of these SA

(MOSA and MOSA-II) are shown to outperform the GA of [78] . According to

the comprehensive computational evaluation of [76], where 23 methods were

tested for the multi-objective flowshop, an enhanced version of MOSA-II

algorithm is shown to consistently outperform all other methods. NGSA-II was

firstly presented by [82]. A variant of this procedure was presented by with

https://www.sciencedirect.com/topics/computer-science/multi-objective-optimization
https://www.sciencedirect.com/topics/computer-science/simulated-annealing
https://www.sciencedirect.com/topics/computer-science/simulated-annealing
https://www.sciencedirect.com/topics/computer-science/tabu-search
https://www.sciencedirect.com/science/article/pii/S0377221713000052?via%3Dihub#b0115
https://www.sciencedirect.com/topics/mathematics/genetic-algorithms
https://www.sciencedirect.com/topics/computer-science/selection-phase
https://www.sciencedirect.com/topics/mathematics/weighted-sum
https://www.sciencedirect.com/science/article/pii/S0377221713000052?via%3Dihub#b0075
https://www.sciencedirect.com/science/article/pii/S0377221713000052?via%3Dihub#b0080

30

the name [83] with the name of hMGA and it uses a working population with

dynamic size made of only heterogeneous solutions. This choice prevents the

algorithm from getting stalled in local optima. [84] presented an iterated

greedy (IG) procedure based on the NEH heuristic. This algorithm is an

evolution of the IG basic principle for the multi-objective PFSP.

3.3.1 The Scheduling problem with Total Tardiness (TT) objective

Several metaheuristic methods have been used for total tardiness

minimization. Most of the methods until now, have been used to the

permutation flowshops but not only. [87] used algorithm (GA), [88] used tabu

search, [89] proposed a simulated annealing algorithm with local search and

[90] used a differential evolution algorithm. In particular, [91] presented a

detailed review and comparative evaluation of numerous exact, heuristic and

metaheuristic methods for the PFSP with total tardiness objective. [91] also

proposed a benchmark suite that is used in this work, to be able to compare

the algorithms on a common test set. In most recent works, [92] report the

results for parallel and serial execution of several cooperative metaheuristics

for both total tardiness and makespan criterion. [94] present a GA with path

relinking, and [95] use an elite guided steady-state GA. [93] use a variable

iterated greedy algorithm where the number of jobs that are removed from

the current permutation varies from 1 to n – 1. [96] use an integrated iterated

local search (IILS) that is based on Iterated Local Search (ILS). [97] presents an

iterated local search algorithm hybridized with a variable neighborhood

descent algorithm. The IG algorithm presented by [99] for the PFSP is a simple

and easy to implement, yet powerful and effective metaheuristic [98]

proposes a new evolutionary approach with a new mating scheme designed

for the problem that can achieve better results as the size of the problem

increases.

https://www.sciencedirect.com/topics/computer-science/basic-principle

31

3.3.2 The scheduling problem with Total Setup Time (TST) objective

We already mentioned that in this work, sequence dependent setup time

represents an important feature and constraint of our work. Very less studied

is the case where Total Setup Time is considered as objective to minimize.

Actually, what is much more frequent is the minimization of Total Flow Time,

(TFT) which includes also idleness or the Total Completion Time (TCT) which

considers the setup time with processing time and idleness. Actually, there

exist some production environments where setup time and cost are much

higher than pure processing, that’s why it can be very interesting for this case

to be investigated. In [104] the authors presented a mixed integer linear

programming (MILP) model for the exact solution of small instances and a

heuristic called iterative resource scheduling with alternatives (IRSA) for larger

ones. [105] proposed three algorithms for the job shop problem with

processing alternatives. [106,107] focused on RCPSP with alternatives that is

close to the Total Setup Time minimization in Production Scheduling with 13

alternative job shop problems and proposed agent based metaheuristic

algorithms to minimize the makespan. [108] presented an integrated model

of process planning and scheduling problems which are carried out

simultaneously. The authors developed a genetic algorithm to minimize the

schedule length. [109] dealt with the setup times in general and published a

survey in which many different problems related to the setup times are

summarized. The authors also reported on solution approaches and proposed

a notation for all of these problems. [110] published a study for a metal casting

company concerning the minimization of the total setup costs in which the

authors demonstrate the importance of setup times by calculating the savings

to the company. The authors proposed a two-phase Pareto heuristic to

minimize the makespan and the total setup costs. In the first phase, the

makespan is minimized and, in the second phase, the total setup costs are

minimized, while the makespan is not allowed to get worse. [111] focused on

a single machine earliness and tardiness problem with sequence dependent

32

setup times. The objective function is to minimize the total setup time,

earliness and tardiness. [112] proposed a hybrid simulated annealing

algorithm for the single machine problem with sequence dependent setup

times. The objective function is given by the sum of the setup costs, delay

costs and holding costs.

Figura 4- Objectives functions for HFS

3.4 The Restarted Iterated Pareto Greedy Algorithm (RIPG)

The Iterated Greedy (IG) algorithm was first proposed in [59] and its basic

mechanism consists of iteratively destructing some elements of a solution,

reconstructing a new one using a constructive greedy technique and, finally

improving it by means of an optional local search procedure. Hence, the

central core of this algorithm is identified by two main phases: the

destruction/construction phase and the local search. During the destruction

phase some solution components are removed from a previously constructed

Year Authors Objectives

1981 N. Baba Total Tardiness

1981 J. Solis Francisco, Wets, J.B. Roger Total Tardiness

1997 N. Mladenovic, P. Hansen Total Tardiness

2001 P. Hansen, N. Mladenovic Total Tardiness

2003 Kis, T. Total setup time

2004 Yuan, X.M., Khoo, H.H., Spedding, T.A., Bainbridge, I., Taplin, D.M.R.Total setup time

2007 R. Ruiz, T. Stützle Total Tardiness

2008 Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.Y. Total setup time

2009 Shao, X., Li, X., Gao, L., Zhang, C. Total setup time

2010 [94] E. Vallada, R. Ruiz Total Tardiness

2010 T. Kellegöz, B. Toklu, J. Wilson Total Tardiness

2010 . Leung, C.W., Wong, T.N., Maka, K.L., Fung, R.Y.K. Total setup time

2010 Li, X., Zhang, C., Gao, L., Li, W., Shao, X. Total setup time

2012 Capek, R., ˇ S˚ˇucha, P., Hanz álek, Z. Total setup time

2013 T. Chen, X. L Total Tardiness

2014 R. M’Hallah Total Tardiness

2015 T. Cura Total Tardiness

33

complete candidate solution. The construction procedure then applies a

greedy constructive heuristic to reconstruct a complete candidate solution.

Once a candidate solution has been completed, an acceptance criterion

decides whether the newly constructed solution will replace the incumbent

solution. In other words, in the first, some elements of the current solution

are randomly removed, and then reinserted in such a way that a new

complete, and hopefully better solution is obtained. IG iterates over these

steps until some stopping criterion is met. These two destruction/construction

phases constitute the so-called greedy phase. The initial sequence is

generated by a well-known NEH heuristic, which build a starting sequence for

each objective to optimize. NEH evaluates a total of [n(n + 1)/2] − 1 schedules;

n of these schedules are complete sequences. This makes the complexity of

NEH rise to which can lead to considerable computation times for large

instances. However, [85] introduced a data structure that allows to reduce its

complexity. The job sequence obtained by applying the NEH heuristic gives

the initial solution of the IG algorithm. In our case we have two objectives, so

the starting sequences generated for our algorithm will be two. So, basically,

the NEH is a greedy constructive method that tests every removed element

into all possible positions of the current partial solution until the sequence

with the best objective function value is found. Of course this suggests that,

The NEH heuristic can optimize only one objective at a time.

IG is currently being studied in many other research works, with similar

assumptions to the one of our interest. For example, [61] extended the IG

method to other objectives and to sequence-dependent setup times. [62]

applied IG to multistage hybrid flow shop scheduling problems with

multiprocessor tasks. [64] applied IG algorithms to train scheduling problems

and [65] used IG for single machine scheduling problems with sequence-

dependent setup times. Finally, [63] used Iterated Greedy algorithms for node

placement in street networks.

34

To give a general scheme about how the algorithm is divided, it can be broken

into five phases:

1. Initialization. In this first phase, an initial set of good solutions is

generated using two NEH heuristics, each one designed to attain good

values for a specific criterion.

2. Selection. The second phase, chooses one solution from the current

working set for the next phase.

3. Greedy phase. This phase represents the real core of the entire

procedure. It is constituted by the two phases of destruction and

construction.

4. Local search. This phase is applied usually after greedy phase, over a

selected element of the current working set.

5. Restart. This is the last phase procedure is implemented to prevent

the algorithm from getting stuck in local optima.

The detailed procedure will be described later in chapter 4.

https://www.sciencedirect.com/topics/mathematics/local-optimum

35

Chapter 4

 [4] Methodology

36

4.1 A model for the SDST Hybrid Flowshop

As an example, we consider a problem with four jobs (n = 4) and two stages

(m = 2), with two machines at stage one (|M1| = 2) and three machines at

stage two (|M2| = 3). The processing times and setup times are given in Tables

1 and 2, respectively. In this example we consider the special case of unrelated

parallel machine where the processing time of the jobs on all parallel

machines are identical. A schedule chart is shown in Figure 5.

 J1 J2 J3 J4

Stage 1 4 5 4 3

Stage 2 5 5 3 2

Tabella 3 - Processing times example

 Stage 1 Stage 2

Ji\Jj J1 J2 J3 J4 Ji\Jj J1 J2 J3 J4

J1 2 3 2 2 J1 2 3 2 2

J2 2 2 3 4 J2 2 1 3 4

J3 4 2 2 3 J3 3 3 2 3

J4 3 3 2 2 J4 4 3 2 2

. Tabella 4 - Processing times example

https://www.sciencedirect.com/science/article/pii/S0096300317300127#tbl0001
https://www.sciencedirect.com/science/article/pii/S0096300317300127#tbl0001
https://www.sciencedirect.com/science/article/pii/S0096300317300127#tbl0002

37

Figura 5- Scheduling example

4.2 Encoding methods

Encoding method consists of representing a schedule by a string of decision

variables, or saying, chromosome. A schedule is defined by indicating the start

and finish times for each operation on the machine to which it is assigned.

Since we are optimizing regular objectives like Setup Time and Total Tardiness,

all operations are expected to be started as early as possible. There can be

distinguished basically two types of encoding: a direct encoding, which usually

involves large solution space, that may render inefficient the searching

procedure. In fact, It has been demonstrated that the more detailed the

encoding, the worse the results. Indeed, indirect encoding employing

surrogate heuristics in the decoding procedures for completing the solution is

usually much efficient than a direct encoding. For this reason, most of the

researches use the following indirect encoding scheme: a solution is encoded

as a job permutation.

https://www.sciencedirect.com/topics/social-sciences/heuristics
https://www.sciencedirect.com/topics/social-sciences/information-theory
https://www.sciencedirect.com/topics/mathematics/permutation

38

Encoding representations can be farther classified into nine categories

Direct Encoding - Operation based

- Job based

- Job pair relation based

- Completion time based

- Random keys

Indirect Encoding - Preference list based

- Priority rule based

- Disjunctive graph based.

- Machine based.

Figura 6- Encoding/decoding classifications

These classification takes more sense when contextualized in GA environment

with job shops and these nine categories can be grouped into the already

mentioned two basic encoding approaches—direct and indirect. So the point

is that In direct approach, a schedule is encoded as a chromosome and genetic

operators are used to evolve better individual ones. Categories 1 to 5 are

examples of this category. In case of indirect approach, a sequence of decision

preferences will be encoded into a chromosome. In this, encoding, genetic

operators are applied to improve the ordering of various preferences and a Πj

schedule is then generated from the sequence of preferences. Categories 6 to

9 are examples of this category. Some words need to be spent on Random

Keys Representation (RK), because more than others, it is used sometimes

also in Hybrid Flow Shop environment. In this representation, each gene is

represented with random numbers generated between 0 and 1. These

random numbers in a given chromosome are sorted out and are replaced by

integers and now the resulting order is the order of operations in a chromo-

some. This string is then interpreted into a feasible schedule. Any violation of

39

precedence constraints can be corrected by a correction algorithm

incorporated.

4.3 Decoding methods

Decoding is to derive a schedule from the encoded solution. The encoding

procedures described does not contain all the required information and

decision variables for constructing a HFS schedule. These missing

information like for example machine selection decisions, are determined by

some heuristics during the decoding procedure. That’s why the solution

quality strictly depends on the decoding method. Also in this case, the most

used decoding methods are:

1) List scheduling (LS). It is a decoding method adopted in many researches (as

shown in Table 1); an initial job list L1 is created in the first stage, according

to some objective to optimize. Then jobs are picked out from L1 sequentially

and scheduled as early as possible on the machine selected by a machine

assignment rule. In the remaining stages, it is applied the same procedure as

in stage 1 except that Li (i > 1) is created by the First-come-first-served (FCFS)

rule, that is sorting the jobs increasingly by their completion time in the

precedent stage. As a consequence, it happens than especially with

increasing number of stages, the sequence of processed jobs can change

stage by stage because each time, the next job of the list is scheduled on the

machine that is available first. If a tie exists, then usually the job is scheduled

on the machine with the smallest index. List schedules are also used in

branch-and-bound algorithms for problems in which the set of list schedules

is dominant, i.e., contains at least one optimal solution.

2) Permutation scheduling (PS). This method is similar to LS except that the job

lists in each remaining stage are equal to π as well.

https://www.sciencedirect.com/topics/computer-science/selection-decision
https://www.sciencedirect.com/topics/social-sciences/scheduling
https://www.sciencedirect.com/science/article/pii/S030505481830217X#tbl0001
https://www.sciencedirect.com/topics/computer-science/first-come-first-served
https://www.sciencedirect.com/topics/computer-science/completion-time

40

Both these methods are widely used in literature and in HFS environment.

Anyway both these methods have drawbacks. When scheduling has to be

done, the objective that is to be optimized is very crucial for deciding which

process job has the priority to be processed first than others and these urgent

jobs, called “hot jobs” must be completed as soon as possible. That’s why they

are placed in the left part of the solution. Yet this is only for stage 1 but makes

no guarantees for the subsequent stages where jobs are queued by the FCFS

rule. For this reason, it is very difficult to control the propagation of the

schedule, especially when a higher number of jobs in the sequence is

considered. That’s why this kind of approach leads to the difficult handling of

urgent jobs. If in the scheduling decision process, one wants to precisely

define when a job will start and when it will finish, this become very hard to

do when number of operations and number of jobs increases. Such we call the

controllability problem. On the contrary, this problem with PS this problem is

not present because we schedule the jobs in each stage by the same sequence

π. Yet, this leads to another problem: unnecessary machine idleness. More

specifically, when the sequence that jobs exiting from the stage is different

from π, to schedule the jobs at the stage i by sequence π we have to delay the

starting time of some jobs, which may lead to unnecessary machine idleness.

So idleness will be higher when the processing times of the operations of each

jobs are variable from one stage to another and also between the jobs

themselves. It ends up with less tightness of the schedule, given this approach

so static. We call this the tightness problem. In this research, literature review

was conducted also to better understand which decoding method was the

better to use in the application of this algorithm. As shown in the table, a

resume of part of the investigated paper has been summarized.

https://www.sciencedirect.com/topics/computer-science/subsequent-stage
https://www.sciencedirect.com/topics/social-sciences/controllability

41

T
a

b
ella

 5
 - R

esu
m

e ta
b

le p
er p

a
p
er

42

Here some notation used in table 5:

Tabella 6 -- Notation

This very small literature review, has been distinguished from the wider one

conducted in chapter 2, because has the goal to identify some features

especially concerning the encoding and decoding methods used.

As shown in the tables, different methods and approaches have been chosen,

but encoding and decoding methods are essentially the same. In particular,

job permutation represents the much used encoding method. As said before,

this kind of indirect encoding is much more efficient. Indeed, no particular

preference seems shown about the decoding method. Given that we are

optimizing objectives like Total Tardiness and Total Setup Time, it is somehow

logic to expect that, especially when the number of jobs is increasing, it can

be much more important to have control on the jobs we are scheduling.

Moreover, it is important to remember the assumption of unrelated parallel

machines with machine eligibility. For completeness, also the machine

selection criteria has been specified in the tables. It can be seen that the first

MSR = Machine selection rule

UPM = unrelated parallel machines

SP = scheduling problem

PFS = Permutation flowshop

HFS = hybrid flowshop

SA = simulated annealing

TB = Tabu search

GA = Genetic alghorithm

RIPG = Restarted iterated pareto greedy

TABC: Tabu search bee colony algorithm

PABOVNS = A Pareto-Based Adaptive Variable Neighborhood Search

EMB = enanched migrating birds

LS = List Scheduling

PS = Permutation Scheduling

FAM = First available machine

ECT = earliest completion time

JP = job permutations

43

available machine rule is preferred, especially given that in most cases, the

maximum makespan is the objective to minimize.

4.4 The restarted iterated pareto greedy

In the literature review, it has been already said like the Iterated Greedy

procedure belogs to the class of the stochastic local search techniques (SLS).

Now, similarly to [7], we propose a procedure named Restarted Iterated

Pareto Greedy (RIPG). The logic behind this algorithm is very simple: a greedy

multi-objective strategy is iteratively applied over a set of non-dominated

solutions. The proposed RIPG is an extension of the above described IG. In

fact, the main drawback of IG procedure is that they are prone to get stuck in

local optimum solutions. The reason lies behind their very nature as they are

greedy methods. RIPG is no different. To avoid this potential problem, we

have included a simple, yet reliable restart phase. This procedure merely

consists of storing all the elements of the current working set in a separate

archive and then creating a new random working set of 100 elements. The

main advantage of this restart procedure is that it is a very fast way to

introduce diversification inside our metaheuristic scheme, whereas its main

inconvenience consists of the difficulty in choosing of a suitable restarting

criterion. To give a general scheme about how the algorithm is divided, it can

be broken into five phases:

1) Initialization. In this first phase, an initial set of good solutions is generated

using two NEH heuristics [127], each one designed to attain good values for a

specific criterion. The first one for the Total Tardiness objective (TT) and the

second one for the minimization of the Total Setup Time (TST). After that, the

remaining four phases are iteratively repeated and constitute the main loop

of the algorithm.

https://www.sciencedirect.com/topics/computer-science/stochastic-local-search
https://www.sciencedirect.com/topics/computer-science/metaheuristics

44

2) Selection. The second phase, chooses one solution from the current working

set for the next phase. The procedure adopted to do this is the so called

Modified Crowding Distance Assigned procedure (MCDA). This method was

originally presented in [86] has been developed in order to carry out the

selection process. At each solution is assigned a value (Crowding Distance)

which depends on the normalized Euclidean distances between it and the

solutions that precedent. The main difference between the classical one and

this new modified version resides in the fact that the modified procedure

considers the number of times each solution has been already selected in

previous iterations (Selection Counter), and uses this information to calculate

the Modified Crowding Distance (MCD). This modification prevents allocating

computing resources to search the same regions. The element with the

highest value of MCD is selected as the starting point for the Greedy or local

search phases.

3) Greedy phase. This phase represents the real core of the entire procedure. It

is constituted by the two phases of destruction and construction. The

destruction procedure is applied to a permutation π of n jobs and it chooses

randomly, without repetition d jobs. These d jobs are then removed from π in

the order in which they were chosen. The result of this procedure are two

subsequences, the first being the partial sequence πD with n − d jobs, that is

the sequence after the removal of d jobs, and the second being a sequence of

d jobs, which we denote as πR. πR contains the jobs that have to be reinserted

into πD to yield a complete candidate solution in the order in which they were

removed from π. The construction phase starts with subsequence πD and

performs d steps in which the jobs in πR are reinserted into πD.. This process

is iterated until πR is empty.

https://www.sciencedirect.com/topics/computer-science/euclidean-distance
https://www.sciencedirect.com/topics/computer-science/previous-iteration
https://www.sciencedirect.com/topics/mathematics/starting-point

45

4) Local search. This phase is applied usually after greedy phase, over a selected

element of the current working set.

5) Restart. This is the last phase procedure is implemented to prevent the

algorithm from getting stuck in local optima.

In Figure 1 it is presented a general scheme of the procedure. The detailed

procedure will be described later in chapter 4.

Figura 7 - RIPG scheme

4.4.1 The inizitalization phase

Conducetd experiments done in literature, clearly showed that a good initial

working set greatly improves the quality of RIPG. This is certainly expected as

it is also the case with the single-objective PFSP. In the first phase, an initial

set of good solutions is generated using two well-known NEH heuristics, each

one designed to attain good values for a specific criterion. In fact, it is intuitive

that the generated initial solutions represent the starting point on which more

complex elaborations had be done. From this perspective, the initial solutions

play an underlying role in creating a high performing algorithm. By the way,

https://www.sciencedirect.com/topics/mathematics/local-optimum

46

since our analysis focuses on reaching not one but two objectives, the choice

in the adopted heuristics was due to choose heuristics the return of good

enough solutions but that also ensure a sufficient level of diversity. Further

considerations are needed. First, it is not sure that these initial solutions will

be well spread in the Pareto front. Also, this algorithm methodology adopts

the selection process and the greedy phase many times. This approach is

capable of greatly improving solutions. Selecting only one of the initial

solutions for the greedy phase could have a negative result: all other initial

solutions could be dominated after this phase. As a result, there is loss of

diversity and coverage in the Pareto front. So, discarding some initial solutions

can be a mistake because you lose the possibility to go toward promising

directions. That’s why, in the first step of the RIPG, all initial solutions are

processed by the greedy phase, without applying the selection operator, and

for each one, a non-dominated set is obtained.

So summarizing, the results of this heuristics generates the Initial Solution Set

(ISS), making use of two well-known NEH heuristics, will soon generate

respectively two initial solutions, one optimizing the objective of the Total

Tardiness (TT) and one optimizing the objective of Total Setup Time (TST). This

is the starting point of the procedure, which will step by step be replaced by

better solutions. In a first step, all initial solutions are processed by the Greedy

Phase one by one. The obtained solutions of this process are added to the ISS

and then, the dominated ones are removed and the initial current working set

(CWS) is conformed. The word “dominated” refers to the concept of Pareto

dominance. The concept of Pareto dominance is of extreme importance in

multi-objective optimization, especially where some or all of the objectives

and constraints are mutually conflicting. In such a case, there is no single point

that yields the "best" value for all objectives and constraints. Instead, the best

solutions, often called a Pareto or non-dominated set, are a group of solutions

such that selecting any one of them in place of another will always sacrifice

quality for at least one objective or constraint, while improving at least one

other. In our case, the aim behind this policy, adopted in the initial phase, is

47

to avoid that a likely large improvement during the initial iterations might

generate a set of solutions that dominate the remaining initial solutions,

impoverishing the quality and diversity of the working set too early. At each

iteration of the algorithm, the selection phase is applied. Its role is to point

the search towards promising directions. Selection achieves this goal by

choosing one solution from the current working set on the basis of

considerations related to their quality. The detailed description of it, will be

done later in the text. In this way, only those solutions that are more likely to

increase the quality of the current working set will be kept, speeding up the

whole search process. After this initialization, the working set of non-

dominated solutions is ready for the main algorithm phases. The diagram and

the pseudocode is in [APPENDIX - 8.1].

1

• NEH_EDD to generate two initial solutions, one for
each objective to optimize, constiututing CWS

2
• Greedy phase of the CWS

3

• Filtering and keep the non dominated solutions in
the CWS.

Figura 8 - Initialization procedure scheme

https://www.sciencedirect.com/topics/mathematics/dominates
https://www.sciencedirect.com/topics/computer-science/selection-phase

48

4.4.2 The selection phase

As already mentioned before, a selection phase is often applied before the

greedy phase to choose which solutions are more convenient to elaborate,

based on a criteria presented by [124], for the first time. The aim of the

selection phases to select a candidate solution belonging to a less crowded

region of the Pareto front and at the same time has already been selected a

small number of times To do so, a modified version of the Crowding Distance

Assignment (CDA) procedure, has been developed in order to carry out the

selection process. The original CDA method divides the working set into

dominance levels, i.e., the set of non-dominated solutions form the first-level

Pareto front. Once we remove these elements, we have another non-dominated

set of solutions, which correspond with the second-level Pareto front. This

procedure is repeated until all solutions are assigned to a Pareto front. Here, we

do not consider this distinction in levels, because it’s not useful for our

objectives. Afterwards, it assigns to each solution a value (Crowding Distance)

dependent on the normalized Euclidean distances between it and the

solutions that precede and follow it. Such technique favors the selection of the

most isolated solutions of the first frontier This CDA will represent a sort of

priority value and create a hierarchy inside the field of the solutions.

Therefore, applying the standard Crowding Distance procedure results in an

algorithm that gets easily stuck, as if no improvements are found after the

greedy and local search phases, the Pareto fronts do not change and the same

solution is selected repeatedly. To avoid this, we add a selection counter (n_sel)

to each solution which counts the number of times each solution has been

selected. This represents the main difference between the normal CDA

procedure and the MCDA adopted here. Then, it uses this information to

calculate the Modified Crowding Distance (MCD). At the end, the solution with

the highest value of MCD is selected as the starting point for the Greedy or

the local search phases. The use of such an operator demonstrated, in

preliminary experiments, to significantly improve the Pareto front in terms of

https://www.sciencedirect.com/topics/computer-science/candidate-solution
https://www.sciencedirect.com/topics/computer-science/modified-version
https://www.sciencedirect.com/topics/computer-science/selection-process
https://www.sciencedirect.com/topics/mathematics/euclidean-distance
https://www.sciencedirect.com/topics/mathematics/starting-point

49

quality and spread of its solutions. The diagram of this phase and the

pseudocode are presented in [APPENDIX – 8.2] .

4.4.3 The greedy phase

This is the heart and most innovative part of the algorithm even though the

structure of the original IG is still kept unchanged. However, there are some

important differences between the greedy phase adopted in the first original

IG procedure, and the one adopted here inside the RIPG. In particular, in the

original procedure where only one partial solution is maintained and a NEH-

like greedy heuristic is applied in one unique step at each iteration of the

algorithm. The innovation here, is that, in RIPG, the Greedy phase becomes

an iterative process, that works with a set of partial solutions and returns a

set of non-dominated permutations. Let’s go into the details; the Greedy

phase can be basically divided into two steps: In the first one, called

Destruction Phase, a block of d consecutive elements is randomly removed

from the MCDA-selected solution. This is the other important difference with

the original GP because there the removal was not carried out by groups of

elements. So, The Destruction step chooses a randomly a starting position k,

and a block of d consecutive elements are removed from the selected

solution. This 𝑘 parameter is of great importance and will be one of the

parameters that will be tuned afterwards in the calibration of the algorithm.

The second step, called Construction phase, iteratively reconstructs the

solution by reinserting, one by one, all the d removed elements into all

possible positions of a group of partial solutions. This inserting scheme was

already effectively used in [125] and it is possible thanks to the use of Pareto

dominance. At each step, a new set of partial solutions is generated. More

specifically, let n be the length of the initial solution and d the size of the block

of removed elements. During the first iteration, the first of the d removed

elements is inserted in all possible positions of the partial solution. This

generates (𝑛 − 𝑑 + 1) new partial solutions. The next removed element, will

https://www.sciencedirect.com/topics/mathematics/pseudocode
https://www.sciencedirect.com/topics/computer-science/partial-solution
https://www.sciencedirect.com/topics/computer-science/greedy-heuristic
https://www.sciencedirect.com/topics/mathematics/iterative-process
https://www.sciencedirect.com/topics/computer-science/starting-position

50

be inserted in all positions of all previous (𝑛 − 𝑑 + 1) partial solutions,

generating a new set of partial solutions of size (𝑛 − 𝑑 + 1) × (𝑛 − 𝑑 + 2)

and so on. This process is repeated until the last removed element is inserted

and a set of complete solutions is generated. At the end of this process the

total number of generated complete solutions would be equal to ∏ (𝑛 −𝑑
𝑖=1

𝑑 + 1). This defines an upper bound for the number of solutions generated

by the greedy phase of the algorithm, that is:

∏(𝑛 − 𝑑 + 𝑖)

𝑑

𝑖=1

 ≥ ∏(𝑛 − 𝑑)

𝑑

𝑖=1

+ ∏ 𝑖

𝑑

𝑖=1

= (𝑛 − 𝑑)𝑑 + 𝑑!

Regardless of this, the bound is very far from being tight because, at each

iteration, all the dominated incomplete sequences are removed. And this is

actually the main drawback of this procedure. When d values become large,

the size of the partial solutions grows exponentially. For example, for n=20

and d=5 the number of complete final solutions would be more than

1.860.000. To overcome this problem, each time a set of partial solutions is

generated, only the non-dominated partial solutions are kept and the

dominated ones are discarded. Actually, the Construction step is a variation of

the NEH insertion scheme used in the initialization phase. The main difference

from that heuristic is in the use of Pareto dominance to maintain not just one

incomplete partial solution at each iteration (as in NEH), but a whole set of

non-dominated partial solutions generated during the insertion process.

These solutions are added to the current working set, and then the MCD

selection procedure is applied. In this way, a solution is selected to be

processed by the local search phase, which is explained next. This greedy phase

is precisely described in the pseudo-code [APPENDIX -8.3]

51

4.4.4 The local search phase

In order to maintain the algorithm as simple and fast as possible we focused

our effort in obtaining a simple and fast local search procedure, This phase

has been demonstrated to be very helpful in improving the quality of solutions

in the single as well as in the multi-objective cases. Also here, as it has been

for all other phases until now, there are some differences between the

original Ig and the RIPG. It is important to remember that the Local search

procedure allows only one sequence at a time as input. In the original IG, the

local search procedure uses as input the outcome of the greedy phase. For the

multi-objective case, the greedy phase returns a set of non-dominated

elements, which in most of the cases are made by more than one solutions.

So it is intuitive that, to better choose which of the current working set

element must undergo the local search, the previously described selection

process is performed after the greedy phase and the solution with the highest

MCD value is chosen and processed by the local search phase. In order to

maintain the algorithm as simple and fast as possible we focused our effort in

maintaining the structure of the local search much simple and fast as possible.

Here it is a detailed description: 𝑛𝑠𝑒𝑙 elements belonging to the selected

solution are randomly chosen, removed and re-inserted into

𝑛𝑛𝑒𝑖𝑔ℎ consecutive positions, half of which usually precede and half follow the

original position of the element. The symmetricity of the neighborhood with

respect of the original selected position is not guaranteed because it strictly

depends on the distance of the original position from the beginning or from

the end of the sequence. Local search in a multi-objective setting is not as

simple as one might think. The above procedure is repeated Selection Counter

(𝑛𝑐𝑜𝑢𝑛𝑡) times. This is because if a solution has been selected previously, its

closest neighborhood has been already explored. In the hope of improving the

selected solution further, a deeper local search has to be carried out. An upper

bound is imposed to the number of removed elements. To further speed up

this local search, we employ the well-known accelerations of [126].

Afterwards, Pareto dominance is checked and a final non-dominated set is

https://www.sciencedirect.com/topics/computer-science/speed-up

52

generated as a result. During the initial design phase a decision had to be

taken for which were the most suitable values to assign to 𝑛𝑠𝑒𝑙 and 𝑛𝑛𝑒𝑖𝑔ℎ.

According to [7] which already used this two parameter in their experiments,

the best values were 𝑛𝑛𝑒𝑖𝑔ℎ = 5 and 𝑛𝑠𝑒𝑙 dynamically changing according to

the value of 𝑛𝑐𝑜𝑢𝑛𝑡 as explained in the following formula:

𝑛𝑠𝑒𝑙 = {
𝑛𝑐𝑜𝑢𝑛𝑡 𝑛𝑐𝑜𝑢𝑛𝑡 ≤ 𝑛/2

𝑛
2⁄ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

However, we decided to keep the value of 𝑛𝑛𝑒𝑖𝑔ℎ as this one decided by the

author, and test the variation of the performance of the algorithm in the

phase of Calibration that will be treated later. The pseudocode of the local

search procedure is presented [APPENDIX – 8.4]:

4.4.5 The restart phase

The last phase of the RIPG procedure is the restart phase. As we already

mentioned, this whole algorithm, made up by a very large number of greedy

phase followed by selections has the tendency to choose a certain direction

and this can bring to a situation of stuck in local optimum points: this is the

one main drawback of original IG methods. This is actually a problem that is

present in all the greedy methods, because it intrinsically depends from its

nature and of course RIPG is no different. To avoid this potential problem, we

have included a simple, yet reliable restart phase. As one can intuitively

understand, the idea is to set a certain condition that, if verified, certify that

our algorithm is in a situation of stuck and so need to be restarted with the

addition of some variability. This procedure merely consists of storing all the

elements of the current working set in a separate archive and then creating a

new random working set of 100 elements. This is the simplest possible restart

scheme that still allows the algorithm to escape from a situation in which the

current working set is stalled. This procedure has one main advantage and one

53

main disadvantage. The main advantage is that it is a very fast way to

introduce diversification which opens new promising directions and also add

necessary diversification. Its main inconvenience consists of the difficulty in

choosing a suitable restart criterion, which is far from being a trivial decision.

The general idea, also proposed in [7], was to execute a restart when the

working set has not been changed during a sufficiently large number of

iterations. Yet, this do not solve our decisional problem because in this case,

we’ll have to choose a reasonable limit number of iterations and so to

understand when a working can be considered not changed. Initial tests and

calibrations done by [7] results in choosing the maximum number of iterations

as 𝑛 × 2 according to the size of the input instance. However this strategy is

sometimes inaccurate because it cannot detect a change in the working set

that does not affect its cardinality, yet it is very simple and fast. Anyway, we

need also to consider the right lower bound for this number that is, be also

careful that the minimum number of iterations does not generate too much

restart procedures, otherwise the algorithm lose consistency. In this way, it

could prevents reaching of a steady state condition in the search or being too

seldom applied, it could waste valuable CPU time. Based on these

considerations, we however decided to not use the same criterion as done in

[7].

The termination criteria is applied when a maximum number of decodings is

reached. This budget is calculated by the following formula:

𝑀𝑎𝑥𝐷𝑒𝑐𝐵𝑢𝑑𝑔𝑒𝑡 =
150.000 𝑥 𝑛𝑗𝑜𝑏𝑠

100
+ 5.000[𝑚𝑠]

https://www.sciencedirect.com/topics/mathematics/cardinality

54

Chapter 5

 [5] Numerical results

55

5.1 Benchmark description

The aim of this section is to describe how numerical analysis has been

conducted and the criteria adopted to select the most convenient benchmark

for the calibration of the RIPG and the comparison with a competitor

algorithm considered for our specific problem. In our case we will later

compare the performances of RIPG with the ones of the NGSA-II.

It is to be noted that different test benchmarks have been adopted for the

calibration phase and for the comparison. In fact, the RIPG computational

time of analysis rises exponentially when a large number of jobs and stages is

considered. Moreover, it is even rare that in the industrial field of application

of this algorithm, a very high number of stages is considered. That’s why, for

these practical reasons, a 10 instance file for the calibration of the algorithm

has been generated, each with a number of jobs chosen randomly among

among {15, 30, 45, 60}, random number of stages among {4, 8, 12} and a

random number of machines (with at least one machine per stage).

The obtained test benchmark is summarized in the following table:

Tabella 7 - benchmark description

56

As shown in the table, an instance is defined by 3 parameters:

n and m indicate the number of jobs and number of stages, respectively. L

indicates the number of machines. The operation processing times are

generated with the following criteria: the common pattern is to generate the

processing time for each operation independently using a uniform

distribution.

For any instance, the job release dates are set to 0, and the due dates are

generated using the method of (Choi et al., 2005). Given two parameters TF

and DR called tardiness factor and due date range respectively, the due date

is calculated by:

𝐷𝑈(𝑃 (1 − 𝑇𝐹 −
𝐷𝑅

2
) , (𝑃 (1 − 𝑇𝐹 +

𝐷𝑅

2
))

where P is a lower bound on the makespan.

We set TF=0.1, DR=0.8 for a proper simulation of real situations. In each stage

the number of parallel machines is DU(2, 4). For each job, not all but at least

one machine in a stage is eligible to process it. The probability that a machine

is not eligible to process a job is set as 20%.

The sequence-dependent setup times between jobs on all machines are

random integers sampled from [1,99].

5.2 RIPG calibration

With a full factorial experimental design, the three factors to calibrate in the

RIPG algorithm are the following:

- “k” parameter: as explained in chapter 4, this value is involved in the

Destruction step of the Greedy phase. It represents starting position of the job

https://www.sciencedirect.com/science/article/pii/S030505481830217X#bib0007
https://www.sciencedirect.com/topics/computer-science/lower-bounds
https://www.sciencedirect.com/topics/computer-science/parallel-machine
https://www.sciencedirect.com/topics/mathematics/factorials
https://www.sciencedirect.com/topics/mathematics/experimental-design
https://www.sciencedirect.com/topics/computer-science/starting-position

57

sequence where the block of d consecutive elements is removed. Potentially

this value could be randomly generated in the interval between 1 and the

length of the job sequence, but in these extreme cases, the functionality of

the greedy phase is lost. So, to ensure at the same time good functionality and

enough variability of the returned solutions, some reasonable values for the

calibration of the k parameter are chosen as k = {3, 5, 7};

- “n_neigh” parameter: this parameter stands for “number of neighborhoods”

and is involved in the Local Search phase where n_sel elements belonging to

the selected solution are randomly chosen and reinserted into n_neigh

consecutive positions, half of which usually precede and half usually follows

the original position of the removed element. As also suggested in Ciavotta,

Minella and Ruiz 2013, where n_neigh = 5 is indicated as optimal parameter,

we decide to calibrate the algorithm also testing n_neigh = 3 and n_neigh = 7.

So the values chosen for the calibration are n_neigh= {3, 5, 7};

- “dec_fun”: it stands for decoding function. We have to choose among

Permutation Scheduling (PS) and List Scheduling (LS). So we have that

dec_fun = {PS, LS}. From the literature review we have seen that probably for

the characteristics of our problem,

So summarizing with a full factorial design of experiments (DoE), the total

number of tests is:

10 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 × 5 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 × 2 𝑑𝑒𝑐𝑓𝑢𝑛 × 3 𝑛𝑛𝑒𝑖𝑔ℎ × 3 𝑘 = 900

To evaluate the performance of the algorithm the Hypervolume indicator has

been considered. The hypervolume indicator is a set measure used in

evolutionary multiobjective optimization to evaluate the performance of

search algorithms and to guide the search. The hypervolume indicator, first

introduced by Zitzler et al. as the ‘size of the space covered’, is used in many

cases as the underlying indicator function. Up to now, it is the only known

indicator that is compliant with the concept of Pareto-dominance, i.e.,

whenever a set of solutions dominates another set, its hypervolume indicator

58

value is higher than the one of the latter. A theoretical understanding why

hypervolume-based algorithms outperform their Pareto-dominance based

counterparts is still missing.

Classical definitions of the hypervolume indicator, also known as Lebesgue

measure or S-metric are based on volumes of polytopes [15] or hypercubes

[6] and assume that Pareto dominance is the underlying preference relation.

Without loss of generality, we assume that k objective functions f = (f1, . . . ,

fk) that map solutions x ∈ X from the decision space X to an objective vector

f(x) = (f1(x), . . . , fk(x)) ⊆ Rk have to be maximized. The goal for hypervolume-

based algorithms is to maximize the hypervolume indicator IH. The

hypervolume indicator 𝐼𝐻(𝐴) of a solution set A ⊆ X can be defined as the

hypervolume of the space that is dominated by the set A and is bounded by a

reference point r = (r1, . . . , rk) ∈ Rk :

IH(A) = λ[∪a∈A (f1(a), r1) × (f2(a), r2) × … × (fk(a), rk)]

where λ(S) is the Lebesgue measure of a set S and [f1(a), r1] × [f2(a), r2] × · · ·

× [fk(a), rk] is the k-dimensional hypercuboid consisting of all points that are

weakly dominated by the point a but not weakly dominated by the reference

point. Note that the hypervolume indicator is Pareto-dominance compliant.

Fixing the maximal number µ of solutions in an evolutionary algorithm A, the

goal of maximizing the hypervolume indicator changes to finding a set of µ

solutions that have the maximal hypervolume indicator value among all sets

of µ solutions. Given one or more fronts and a reference point, it measures

the volume of the space region between them. In our case, being the objective

functions the minimizations of Total setup time and Total tardiness, the

reference point chosen for each instance is represented by the Nadir Point of

59

the fits, consisting in the maximum value for each of the objective functions.

The following figure gives a simplified yet practical representation of what

stated before. In the figure f1 and f2 are the objective function values.

Figura 9- Hypervolume indicator

.

To compare different algorithms, the common measure for makespan criteria

is the relative percentage increase (RPI), as in Pan and Ruiz (2012). Yet for

tardiness criteria, RPI is no longer adaptable because it may provide a division

by zero when the schedule has no tardy jobs (Naderi et al., 2009). For this

reason we use the relative deviation index (RDI) as the response variable,

which is defined as follow:

𝑅𝐷𝐼 =
𝐴𝑙𝑔𝑠𝑜𝑙 − 𝑀𝑖𝑛𝑠𝑜𝑙

𝑀𝑎𝑥𝑠𝑜𝑙 − 𝑀𝑖𝑛𝑠𝑜𝑙
 × 100

where Algsol is the objective value of the current algorithm on the given

instance, Maxsol and Minsol are the worst and best objective value obtained by

any of the algorithms in the comparison, respectively. Specially, in the case

https://www.sciencedirect.com/science/article/pii/S030505481830217X#bib0028
https://www.sciencedirect.com/science/article/pii/S030505481830217X#bib0025
https://www.sciencedirect.com/topics/computer-science/current-algorithm

60

that the Maxsol and Minsol are equal to each other, the RDI will be 0 for all the

algorithms.

The experiments are implemented in Matlab 2018a on a PC with Intel® Core™

i7 -2670QM CPU @ 2.2 GHz 8GB of RAM. To increase algorithm running speed,

all decoding methods (which accounts for more than 90% of algorithm

running time) are converted to C++ codes and called in Matlab environment.

The results of calibration experiments are analyzed by ANOVA. The ANOVA

has been performed using MINITAB and choosing a significance level of 0.05.

First the main effect plot shows which of the factors is likely to be significant.

As shown here, the decoding type seems to have large influence on the

performance of RIPG, while k and n_neigh seems not to be so relevant.

Figura 10- Main effect plot of calibration

https://www.sciencedirect.com/topics/social-sciences/information-theory
https://www.sciencedirect.com/topics/mathematics/significance-level-a

61

Ciavotta, Minella and Ruiz 2013, as reference of our RIPG, used n_neigh =5

and k =5 based on their analisys. We made calibration in their neighbourhood,

testing also 3 and 7 as suitable values The interaction plot doesn’t show

particular interactions. In almost every case lines seems to be quite parallel.

Let us see now the effective ANOVA table for the model:

Figura 11- Interaction plot

62

Two considerations can be done here:

• k and dec_type are relevant and also their interaction.

• R-sq is high enough to consider a good reliability of the model

To verify if the reliability of the model is satisfied, we need also to verify the

Tabella 8- ANOVA of calibration

63

hypothesis of normality of the standard residuals (SRES), their interval and the

hypothesis of equal variance. The obtained plots are the following:

k dec_type

7

5

3

@dec_PS_ST_pseq_vis_mex

@dec_LS_ST_pseq_vis_c_mex

@dec_PS_ST_pseq_vis_mex

@dec_LS_ST_pseq_vis_c_mex

@dec_PS_ST_pseq_vis_mex

@dec_LS_ST_pseq_vis_c_mex

191817161514131211

P-Value 0,648

Bartlett’s Test

95% Bonferroni Confidence Intervals for StDevs

Test for Equal Variances: RDI vs k; dec_type

Figura 5- Normality test

Figura 12- Test for equal variances

64

From these plots we can say that:

• Normality of SRES is accepted;

• Scatterplot of SRES is almost concentrated between [+3; -3];

• The hypotesis of equal variances is accepted.

So the model is reliable and we can perform the Tukey test using a confidence

interval of 95% (CI=95%).

80604020

5

4

3

2

1

0

-1

-2

-3

-4

76543

FITS

S
R

E
S

k

Scatterplot of SRES vs FITS; k

Figura 14- Scatterplot interval for SRES

65

Tabella 9- Tukey test

From the ANOVA analysis, we can conclude that:

• As decoding type, Permutation scheduling (PS) is always preferable,

independently by the choice of other parameters.

• N_neigh is not significant, so we keep the same value n_neigh=5, as

(Ciavotta, Minellla and Ruiz, 2013).

• The k=3 is better than k=5, which is better than k=7.

So, for further analysis of comparison with NGSA-II, we will use the results

of this section so to use the better performances obtainable from our RIPG.

5.3 Performance comparison with NGSA-II

For the comparison between the RIPG and NSGA-II, a set of 9 instances has

been selected. Each instance has 10 cases. The instances are organized in

66

blocks of 3, each respectively with n_jobs= 20, 50, 100 and m_stages = 5,10,

20.

Figura 15 - Tests for comparison

As before, we have:

𝟗 𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 × 𝟏𝟎 𝒄𝒂𝒔𝒆𝒔 × 𝟓 𝒓𝒆𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒐𝒏𝒔 × 𝟐 𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎

= 𝟗𝟎𝟎 𝒕𝒐𝒕𝒂𝒍 𝒄𝒂𝒔𝒆𝒔

For a preliminary idea of the performance of the algorithms a plot of the

obtained fronts is showed for each combination of jobs and stages. Later,

results and interpretations of these graphs will be discussed.

67

T
O

T
A

L
 S

E
T

U
P

 T
IM

E

TOTAL TARDINESS

TOTAL TARDINESS

T
O

T
A

L
 S

E
T

U
P

 T
IM

E

68

T
O

T
A

L
 S

E
T

U
P

 T
IM

E

TOTAL TARDINESS

TOTAL TARDINESS

T
O

T
A

L
 S

E
T

U
P

 T
IM

E

69

T
O

T
A

L
 S

E
T

U
P

 T
IM

E

T
O

T
A

L
 S

E
T

U
P

 T
IM

E

TOTAL TARDINESS

TOTAL TARDINESS

70

T
O

T
A

L
 S

E
T

U
P

 T
IM

E

T
O

T
A

L
 S

E
T

U
P

 T
IM

E

TOTAL TARDINESS

TOTAL TARDINESS

71

Figura 16 - Fronts comparison

T
O

T
A

L
 S

E
T

U
P

 T
IM

E

TOTAL TARDINESS

Figura 17 - HV means comparison 20 jobs 5 stages

72

Figura 18 - HV means comparison 20 jobs 10 stages

Figura 19 - HV means comparison 20 jobs 20 stages

73

Figura 20- HV means comparison 50 jobs 5 stages

Figura 21- HV means comparison 50 jobs 10 stages

74

Figura 22- HV means comparison 50 jobs 20 stages

Figura 23 - HV means comparison 100 jobs 5 stages

75

Figura 24- HV means comparison 100 jobs 10 stages

Figura 25 - HV means comparison 100 jobs 20 stages

76

Figura 26- Standard deviation comparison 20 jobs 5 stages

Figura 27 - Standard deviation comparison 20 jobs 10 stages

77

Figura 28 - Standard deviation comparison 20 jobs 20 stages

Figura 29 - Standard deviation comparison 50 jobs 5 stages

78

Figura 30- Standard deviation comparison 50 jobs 10 stages

Figura 31 - Standard deviation comparison 50 jobs 20 stages

79

Figura 32 - Standard deviation comparison 100 jobs 5 stages

Figura 33 - Standard deviation comparison 100 jobs 10 stages

80

• Both the comparison plot of the fronts and the HV means for each instance

shows that generally, it seems RIPG have better performances in almost

each case we have considered.

To have a statistical confirmation of what stated, ANOVA analysis is

conducted in the following slides. The comparison is performed using RDI.

The ANOVA results are listed below.

Figura 34 - Standard deviation comparison 100 jobs 20 stages

81

Figura 35 - Main effect plot for comparison

Figura 36- Interaction plot for comparison

82

Factor Information

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value

 Alg 1 544137 544137 1103,16 0,000

 n 2 1853 926 1,88 0,153

 m 2 2591 1296 2,63 0,073

 Alg*n 2 27391 13695 27,77 0,000

 Alg*m 2 881 441 0,89 0,410

 n*m 4 1959 490 0,99 0,411

Error 886 437020 493

 Lack-of-Fit 4 6459 1615 3,31 0,011

 Pure Error 882 430562 488

Total 899 1015832

Model Summary

S R-sq R-sq(adj) R-sq(pred)

22,2093 56,98% 56,35% 55,61%

Tabella 10 - ANOVA for comparison

ANOVA shows that the factor “Algorithm” and its interaction with the number

of jobs n, seems to be the only relevant factors. Now the hypothesis of

normality of SRES, their interval and test for equal variances must be verified

to check if the results obtained by ANOVA can be accepted or further

elaborations of the data are needed.

Factor Type Levels Values

Alg Fixed 2 NGSA-II; RIPG

n Fixed 3 20; 50; 100

m Fixed 3 5; 10; 20

83

Figura 37- Scatterplot SRES for comparison

Figura 38 - Normality test for comparison

80604020

4

3

2

1

0

-1

-2

-3

-4

10080604020

FITS

S
R

E
S

n

Scatterplot of SRES vs FITS; n

84

The hypothesis of normality of SRES is rejected because p-value is less than

0.05. Anyway the distribution and the shape of the data allow to keep the

validity of conclusions obtained by the ANOVA. The SRES are almost

concentrated between [-3, 3]. So same considerations can be done.

Figura 39 - Test for equal variances for comparison

Tabella 11 - Tukey test for comparison

Alg n m

RIPG

NGSA-II

100

50

20

100

50

20

20

10

5

20

10

5

20

10

5

20

10

5

20

10

5

20

10

5

4540353025201510

P-Value 0,000

Bartlett’s Test

95% Bonferroni Confidence Intervals for StDevs

Test for Equal Variances: RDI vs Alg; n; m

85

So, from these graphs we can see that even if the normality of SRES in the ANOVA

of comparison is rejected, the figures shows a trend which let us think the Tukey

test can be performed and the ANOVA results are valid. The conclusion is that, is

evident that the performance showed by the RIPG is far better than NSGA-II in

almost every case we have considered, independently from the number of jobs and

machines we are considering. The results, of this research, may be useful for future

research, towards the development of new solution methods, and/or for the

application of methods investigated in the context of real companies, with this kind

of scheduling problem.

So from this analysis we can finally conclude that:

• Even if the normality of SRES in the ANOVA of comparison is rejected, the

figures shows a trend which let us think the Tukey test can be performed

and the ANOVA results are valid.

• The conclusion is that, is evident that the performance showed by the RIPG

are far better than NSGA-II in almost every case we have considered,

independently from the number of jobs and machines we are considering.

• The results, of this research, may be useful for future research, towards the

development of new solution methods, and/or for the application of

methods investigated in the context of real companies, with this kind of

scheduling problem.

86

Chapter 6

[6] Conclusions

87

In this study we have proposed a RIPG algorithm to solve the hybrid flow shop

scheduling problem with unrelated machines and machine eligibility

constraint to minimize the total tardiness and total setup time. This research

is motivated by considering some features common in the industrial field of

the Hybrid Flowshop yet not well considered in the literature of the

optimization of production scheduling. There have been several methods

proposed in the literature for the a posteriori multi-objective flowshop

problem. However, as far as we know, the setup times have seldom been

considered in the objective function therein. This paper represents a first

attempt to tackle this problem. A relatively new approach, the iterated greedy

procedure, has been adopted for the problem. The proposed algorithm is

analyzed in detail, and its performance is shown to be superior to the

conventional multi-objective approach. Moreover, by analyzing two widely

used decoding methods, permutation scheduling and list scheduling, we

discover that in our context and for the considered objectives, PS is shown

providing better results. Indeed, the PS has a higher controllability on the

schedule building procedure, and it seems to be a fundamental factor for its

superiority, especially when the number of jobs increases.

We have presented two main contributions to the field of the multi-objective

flowshop. First, as said before, we have considered for this environment, the

sequence-dependent setup times both in the shop model and the objective

functions. Second, we have extended a new strategy which achieved state-of-

the-art results for the single objective flowshop, the Iterated Greedy

metaheuristic, in order to deal with several objectives . With this we highlight

the relevance of a scientific and algorithm engineering approach in designing

and developing algorithms for manufacturing systems. The limited yet

focused campaign of tests by means of ANOVA have confirmed that this

algorithm shows far better performances than a serious competitor well

applied in this field as NGSAII. As a consequence, the proposed method can

be considered the one of the state-of-art procedure for this scheduling

problem.

https://www.sciencedirect.com/topics/computer-science/scheduling-problem
https://www.sciencedirect.com/topics/mathematics/posteriori
https://www.sciencedirect.com/topics/computer-science/multiobjective
https://www.sciencedirect.com/topics/computer-science/metaheuristics
https://www.sciencedirect.com/topics/computer-science/scheduling-problem
https://www.sciencedirect.com/topics/computer-science/scheduling-problem

88

Future research lines stem from the possibility of, first, applying this scheme

to solve different or more realistic and complicated scheduling problems;

second, investigating the possibility to incorporate user preference

information into the search procedure for a more concentrated search on the

objective space and to generate higher quality solutions aligned to the user

preference.

89

[7] References

90

[1] Rubén Ruiz, aJosé Antonio Vázquez-Rodríguezb (2009);

The Hybrid Flow shop scheduling problem ;

European Journal of Operational Research,Volume 205, Issue 1, 2010, pp 1-18,

[2] Allahverdi A, Soroush H M.

The significance of reducing setup times/setup costs.

 European Journal of Operational Research, 2008, 187(3): 978-984.

[3] Deb K, Pratap A, Agarwal S, et al.

A fast and elitist multiobjective genetic algorithm: NSGA-II.

IEEE transactions on evolutionary computation, 2002, 6(2): 182-197.

[4] Zitzler E, Laumanns M, Thiele L.

SPEA2: Improving the strength Pareto evolutionary algorithm.

TIK-report, 2001, 103.

[5] Stützle T, Ruiz R.

A simple and effective iterated greedy algorithm for the permutation flowshop

scheduling problem,

European Journal of Operational Research, Volume 177, Issue 3, 2007, Pages 2033-2049,

[6] Ruiz R, Stützle T.

An iterated greedy heuristic for the sequence dependent setup times flowshop

problem with makespan and weighted tardiness objectives.

European Journal of Operational Research, 2008, 187(3): 1143-1159.

[7] Ciavotta M, Minella G, Ruiz R.

 Multi-objective sequence dependent setup times permutation flowshop: A new

algorithm and a comprehensive study.

 European Journal of Operational Research, 2013, 227(2): 301-313.

[8] J.N.D. Gupta,

Two-stage, hybrid flow shop scheduling problem,

Journal of theOperational Research Society 39 (4) (1988) 359–364

[9] J.A.Hoogeveen,J.K.Lenstra,B.Veltman,

Preemptive scheduling in atwo-stagemultiprocessor flow shop is np-hard,

 European Journal of OperationalResearch 89 (1) (1996) 172–175.

https://www.sciencedirect.com/science/article/pii/S0377221709006390#!
https://www.sciencedirect.com/science/article/pii/S0377221709006390#!

91

[10] M.R. Garey, D.S. Johnson,

Computers and intractability: a guide to the theoryof NP-completeness,

A Series of Books in the Mathematical Sciences, W.H.Freeman, San Francisco, 1979

[11] H. Djellab, K. Djellab,

Preemptive hybrid flowshop scheduling problem of interval orders,

European Journal of Operational Research 137 (1) (2002) 37–49

[12] R.J. Wittrock,

Scheduling algorithms for flexible flow lines,

IBM Journal of Research and Development 29 (4) (1985) 401–412

[13] R.J. Wittrock,

An adaptable scheduling algorithm for flexible flow lines,

Operations Research 36 (3) (1988) 445–453

[14] C.-Y. Liu, S.-C. Chang,

Scheduling flexible flow shops with sequence-dependent setup effects,

IEEE Transactions on Robotics and Automation 16(4) (2000) 408–419

[15] Z.H. Jin, K. Ohno, T. Ito, S.E. Elmaghraby,

Scheduling hybrid flowshops in printed circuit board assembly lines,

Textile production systems: a succession of non-identicalparallel processor shops,

Production and Operations Management11 (2) (2002) 216–230

[16] H.D. Sherali, S.C. Sarin, M.S. Kodialam,

Models andalgorithms for a two-stageproduction process, Production Planning and Control

Production Planning & Control, (1990) pp. 27–39

[17] J. Grabowski, J. Pempera,

Sequencing of jobs in some production system,

European Journal of Operational Research 125 (3) (2000) 535–550

[18] A.G.P. Guinet,
Textile Production Systems: a Succession of Non-identical Parallel Processor Shops
Journal of the Operational Research Society 42 (8)(1991) 655–671

[19] H. Tsubone, M. Ohba, H. Takamuki, Y. Miyake,

A production schedulingsystem for a hybrid flow-shop: a case-study,

Omega-International Journal of Management Science 21 (2) (1993) 205–214

92

[20] E.-H. Aghezzaf, H. Van Landeghem,

An integrated model for inventory andproduction planning in a two-stage hybrid

production system,

International Journal of Production Research 40 (17) (2002) 4323–4339

[21] L. Adler, N. Fraiman, E. Kobacker, M. Pinedo, J.C. Plotnicoff, T.P. Wu, Bpss:

A scheduling support system for the packaging industry,

Operations Research41 (4) (1993) 641–648.

[22] D.E. Deal, T. Yang, S. Hallquist,

Job scheduling in petrochemical production:two-stage processing with finite intermediate

storage,

 Computers and Chemical Engineering 18 (4) (1994) 333–344.

[23] E.-H. Aghezzaf, A. Artiba, O. Moursli, C. Tahon,

Hybrid flowshop problems, adecomposition based heuristic approach,

Proceedings of the International Conference on Industrial Engineering and Production Management,

IEPM’95,FUCAM-INRIA, 1995, pp. 43–56

[24] H.-T. Lin, C.-J. Liao,

 A case study in a two-stage hybrid flow shop with setuptime and dedicated machines,

 International Journal of Production Economics86 (2) (2003) 133–143

[25] S. Bertel, J.-C. Billaut,

A genetic algorithm for an industrial multiprocessorflow shop scheduling problem

with recirculation,

European Journal of Operational Research 159 (3) (2004) 651–662

[26] T. Yang, Y. Kuo, I. Chang,

Tabu-search simulation optimization approach forflow-shop scheduling with multiple processors

– a case study,

International Journal of Production Research 42 (19) (2004) 4015–403

[27] R. Ruiz, C. Maroto,

A genetic algorithm for hybrid flowshops with sequencedependent setup times and

machine eligibility,

 European Journal of Operational Research 169 (3) (2006) 781–800

[28] M. Dror, P.A. Mullaserif,

Three stage generalized flowshop: scheduling civilengineering projects,

Journal of Global Optimization 9 (3-4) (1996) 321–344

93

[29] A. Allahverdi, F.S. Al-Anzi,

 Scheduling multi-stage parallel-processor servicesto minimize average response time,

Journal of the Operational ResearchSociety 57 (1) (2006) 101–110.

[30] L. Chen, L.-F. Xi, J.-G. Cai, N. Bostel, P. Dejax,

An integrated approach formodeling and solving the scheduling problemof container

handling systems,

Journal of Zhejiang University Science A 7 (2) (2006) 234–239.

[31] L. Chen, N. Bostel, P. Dejax, J.C. Cai, L.F. Xi,

A tabu search algorithm for theintegrated scheduling problem of container handling systems

in a maritime terminal,

European Journal of Operational Research 181 (1) (2007) 40–58.

[32] H. Holland

Adaptation in natural and artificial systems
The University of Michigan Press, Ann Arbor (1975)

[33] C.L. Chen, V.S. Vempati, N. Aljaber

An application of genetic algorithms for flow shop problems
Eur J Oper Res, 80 (1995), pp. 389-396

[34] T. Murata, H. Ishibuchi, H. Tanaka

Genetic algorithms for flow-shop scheduling
Comput Indus Eng, 30 (1996), pp. 1061-1071

[35] C. Oguz, M.Ercan

Performance of local search heuristics on scheduling a class of pipelined

multiprocessor tasks
Comp. and Electrical Eng. (2005)

[36] F. Choong, S. Phon-Amnuaisuk, M.Y. Alias

Metaheuristic methods in hybrid flow shop scheduling problem

Expert Systems with Applications (2011)

[37] J. Jdrzêjowicz, P. Jdrzêjowicz

Population-based approach to multiprocessor task scheduling in multistage hybrid

flow shops
Lecture Notes in Computer Science, 2773 (2003), pp. 279-286

94

[38] C. Oðuz, Y. Zinder, V. Do, A. Janiak, M. Lichtenstein

Hybrid flow-shop scheduling problems with multiprocessor task systems
European Journal of Operations Research, 152 (2004), pp. 115-131

[39] K.C. Ying, S.W. Lin

Multiprocessor task scheduling in multistage hybrid flowshops: An ant colony

system approach
International Journal of Production Research, 44 (2006), pp. 3161-3177

[40] D.F. Shiau, S.C. Cheng, Y.M. Huang

Proportionate flexible flow shop scheduling via a hybrid constructive genetic

algorithm
Expert Systems with Applications, 34 (2008), pp. 1133-1143

[41] C. Yu, Q.Semeraro, A.Matta

A genetic algorhitm for the hybrid flow shop scheduling with unrelated parallel

machines and machine eligibility

Computers and Operations Research, 100, (2018), pp. 211-229

[42] W. Bozejko, J. Pempera, c.Smutnicki

Parallel tabu search algorithm for the hybrid flow shop problem

Computers & Industrial engineering , 65, 2013, pp. 466-474

[43] E. Nowicki, C. Smutnicki

The flow shop with parallel machines: A tabu search approach
European Journal of Operational Research, 106 (1998), pp. 226-253

[44] J. Kennedy, R. Eberhart

Particle swarm optimization
IEEE International Conference on Neural Networks, vol. 4 (1995), pp. 1942-1948

[45] Y. Shi, R.C. Eberhart

A modified particle swarm optimizer
Proc. Of the IEEE International Conference of Evolutionary Computation, IEEE Press,

Piscataway (1998), pp. 69-73

[46] A. Przybylski, X. Gandibleux,

Multi-objective branch and bound

European Journal of Operational Research, Volume 260, Issue 3,(2017) pp. 856-872

95

[47] Peter Wilson, H. Alan Mantooth,

Model-Based Optimization Techniques,

Model-Based Engineering for Complex Electronic Systems, Newnes, 2013, pp. 347-367,

[48] M. Gilli, D. Maringer, E. Schumann,

Heuristic Methods in a Nutshell,

Numerical Methods and Optimization in Finance,Academic Press, 2011, pp 337-379,

[49] Etmaghraby S. E. & Kamoub R. E. (1997).

Production control in hybrid flowshops: an example from textile manufacturing.

The Planning and Scheduling of Production Systems (Artiba a. and Elmaghraby S. E.

ed.). Chap. 6, Chapman & Hall, UK

[50] Vignier, Billaut, Proust, 1999

Les problèmes d’ordonnancement de type flow-shop hybride: état de l’art
RAIRO-Oper. Res., 33 (2) (1999), pp. 117-183

[51] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi,

Optimization by Simulated Annealing,

Readings in Computer Vision, Morgan Kaufmann, 1987, pp. 606-615

[52] M. Zandieh, S.M.T.F. Ghomi, S.M.M. Husseini

An immune algorithm approach to hybrid flow shops scheduling with sequence-

dependent setup times
Appl. Math. Comput., 180 (1) (2006), pp. 111-127

[53] Z. Cui, X. Gu

An improved discrete artificial bee colony algorithm to minimize the makespan on

hybrid flow shop problems
Neurocomputing, 148 (2015), pp. 248-259

[54] J. Li, Q. Pan, P. DuanAn improved artificial bee colony algorithm for solving

hybrid flexible flowshop with dynamic operation skipping
IEEE Trans. Cybern., 46 (6) (2016), pp. 1311-1324

[55] F. Pargar, M. Zandieh

Bi-criteria SDST hybrid flow shop scheduling with learning effect of setup times:

water flow-like algorithm approach
Int. J. Prod. Res., 50 (10) (2012), pp. 2609-2623

https://www.sciencedirect.com/science/article/pii/S030505481830217X#bbib0044

96

[56] M.K. Marichelvam, T. Prabaharan, X.S. Yang

Improved cuckoo search algorithm for hybrid flow shop scheduling problems to

minimize makespan
Appl. Soft Comput., 19 (2014), pp. 93-101

[57] M.K. Marichelvam, T. Prabaharan, X.S. Yang

A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling

problems
IEEE Trans. Evol. Comput., 18 (2) (2014), pp. 301-305

[58] D.H. Wolpert, W.G. Macready

No free lunch theorems for optimization
IEEE Trans. Evol. Comput., 1 (1) (1997), pp. 67-82

[59] R. Ruiz, T. Stützle

A simple and effective iterated greedy algorithm for the permutation flowshop

scheduling problem
European Journal of Operational Research, 177 (3) (2007), pp. 2033-2049

[60] M. Nawaz, E.E. Enscore Jr, I. HamA heuristic algorithm for the m machine, n job

flowshop sequencing problem
Omega-International Journal of Management Science, 11 (1) (1983), pp. 91-95

[61] R. Ruiz, T. Stützle

An iterated greedy heuristic for the sequence dependent setup times flowshop

problem with makespan and weighted tardiness objectives
European Journal of Operational Research, 187 (3) (2008), pp. 1143-1159

[62] K.-C. Ying

An iterated greedy heuristic for multistage hybrid flowshop scheduling problems

with multiprocessor tasks
IEEE Transactions on Evolutionary Computation, 60 (6) (2008), pp. 810-817

[63] F. Toyama, K. Shoji, J. Miyamichi

An iterated greedy algorithm for the node placement problem in bidirectional

manhattan street networks
Proceedings of the 10th annual conference on genetic and evolutionary

computation,(2008), pp. 579-584

97

[64] Y. Zhi, F. Armin, H. Henning, B. Prasanna, S. Thomas, S. Michael

Iterated greedy algorithms for a real-world cyclic train scheduling problem
Hybrid metaheuristics, Springer, Berlin (2008), pp. 102-116

[65] M.F. Tasgetiren, Q.-K. Pan, Y.-C. Liang

A discrete differential evolution algorithm for the single machine total weighted

tardiness problem with sequence dependent setup times
Computers & Operations Research, 36 (6) (2009), pp. 1900-1915

[66] N. Karimi, M. Zandieh, H.R. Karamooz,

Bi-objective group scheduling in hybrid flexible flowshop: A multi-phase approach,

Expert Systems with Applications,Volume 37, Issue 6,(2010) pp 4024-4032,

[67] H. Land, A & G. Doig, A. (1960).

An Automatic Method of Solving Discrete Linear Programming Problems.

Econometrica. 28. 497-520. 10.2307/1910129.

[68] G. Kiziltan, E. Yucaoglu

An algorithm for multiobjective zero-one linear programming
Management Science, 29 (1983), pp. 1444-1453

[69] Mir Abbas Bozorgirad, Rasaratnam Logendran,

Sequence-dependent group scheduling problem on unrelated-parallel machines,

Expert Systems with Applications,

Volume 39, Issue 10, 2012, pp. 9021-9030,

[70] H. Asefi, F.Jola, M.Rabiee, M.E. Tayebi Araghi

A hybrid NGSA-II and VNS for solving a bi-objective no-wait flexible flowshop

scheduling problem

The international Journal of Advanced Manufacturing Technology, (2014), Volume 75,

Issue 5-8, pp 1017-1033

[71] Huixin Tian, Kun Li, Wei Liu

A Pareto-Based Adaptive Variable Neighborhood Search for Biobjective Hybrid

Flow Shop Scheduling Problem with Sequence-Dependent Setup Time

Mathematical Problems in Engineering Volume 2016, Article ID 1257060, 11 pages

[72] A. Sioud, C. Gagné,

Enhanced migrating birds optimization algorithm for the permutation flow shop

problem with sequence dependent setup times,

European Journal of Operational Research, Volume 264, Issue 1, 2018, Pp 66-73,

98

[73] Ruiz, R., Maroto, C., Alcaraz, J.

Solving the flowshop scheduling problem with sequence dependent setup times

using advanced metaheuristics

(2005) European Journal of Operational Research, 165 (1), pp. 34-54.

[74] Rajendran, C., Ziegler, H.

Scheduling to minimize the sum of weighted flowtime and weighted tardiness of jobs

in a flowshop with sequence-dependent setup times

(2003) European Journal of Operational Research, 149 (3), pp. 513-522.

[75] Ali Allahverdi, C.T. Ng, T.C.E. Cheng, Mikhail Y. Kovalyov,

A survey of scheduling problems with setup times or costs,

European Journal of Operational Research, 2008, pp. 985-1032,

[76] Eva Vallada, Rubén Ruiz, Gerardo Minella,

Minimising total tardiness in the m-machine flowshop problem: A review and

evaluation of heuristics and metaheuristics,

Computers & Operations Research, Volume 35, Issue 4, 2008, pp. 1350-1373

[77] Tadahiko Murata, Hisao Ishibuchi, Hideo Tanaka,

Multi-objective genetic algorithm and its applications to flowshop scheduling,

Computers & Industrial Engineering, Volume 30, Issue 4, 1996, pp 957-968,

[78] H. Ishibuchi and T. Murata,

A multi-objective genetic local search algorithm and its application to flowshop

scheduling,

in IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), vol. 28, no. 3, pp. 392-403, Aug. 1998.

[79] H. Ishibuchi, T. Yoshida and T. Murata,

Balance between genetic search and local search in memetic algorithms for

multiobjective permutation flowshop scheduling,"

in IEEE Transactions on Evolutionary Computation, vol. 7, no. 2, pp. 204-223, April

2003.

[80] R. K. Suresh and K. M. Mohanasundaram,

Pareto archived simulated annealing for permutation flow shop scheduling with

multiple objectives,

IEEE Conference on Cybernetics and Intelligent Systems, 2004., Singapore, 2004, pp.

712-717.

99

[81] T.K. Varadharajan, Chandrasekharan Rajendran,

A multi-objective simulated-annealing algorithm for scheduling in flowshops to

minimize the makespan and total flowtime of jobs,

European Journal of Operational Research, Volume 167, Issue 3, 2005, Pages 772-795,

[82] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.

A fast and elitist multiobjective genetic algorithm: NSGA-II

(2002) IEEE Transactions on Evolutionary Computation, 6 (2), pp. 182-197

[83] Yandra, H.Tamura

A new multiobjective genetic algorithm with heterogeneous population for solving

flowshop scheduling problems

(2007), International Journal of Computer integrated Manufacturing, Volume 20, Issue 5,

pp. 465-477

[84] Framina N,, Jose M, Leisten, Rainer,

A multi-objective iterated greedy search for flowshop scheduling with makespan

and flowtime criteria

OR Spectrum, 2008", volume 30, pp. 787--804",

[85] E. Taillard

Some efficient heuristic methods for the flow shop sequencing problem
European Journal of Operational Research, 47 (1) (1990), pp. 67-74

[86] K. Deb

A fast and elitist multiobjective genetic algorithm: NSGA-II
IEEE Transactions on Evolutionary Computation, 6 (2) (2002), pp. 182-197

[87] G.C. Onwubolu, M. Mutingi

Genetic algorithm for minimizing tardiness in flow-shop scheduling
Production Planning and Control, 10 (1999), pp. 462-471

[88] V.A. Armentano, D.P. Ronconi

Tabu search for total tardiness minimization in flow-shop scheduling problems
Computers and Operations Research, 26 (1999), pp. 219-235

[89] S. Hasija, C. Rajendran

Scheduling in flowshops to minimize total tardiness of jobs
International Journal of Production Research, 42 (2004), pp. 2289-2301

https://www.tandfonline.com/author/Yandra
https://www.tandfonline.com/author/Tamura%2C+Hiroyuki

100

[90] G. Onwubolu, D. Davendra

Scheduling flow shops using differential evolution algorithm
European Journal of Operational Research, 171 (2006), pp. 674-692

[91] E. Vallada, R. Ruiz, G. Minella

Minimising total tardiness in the m-machine flowshop problem: A review and

evaluation of heuristics and metaheuristics
Computers & Operations Research, 35 (4) (2008), pp. 1350-1373

[92] E. Vallada, R. Ruiz

Cooperative metaheuristics for the permutation flowshop scheduling problem
European Journal of Operational Research, 193 (2009), pp. 365-376

[93] J.M. Framinan, R. Leisten

Total tardiness minimization in permutation flow shops: A simple approach based on a

variable greedy algorithm

International Journal of Production Research, 46 (22) (2008), pp. 6479-6498

[94] E. Vallada, R. Ruiz

Genetic algorithms with path relinking for the minimum tardiness permutation

flowshop problem
OMEGA, The International Journal of Management Science, 38 (2010), pp. 57-67

[95] T. Kellegöz, B. Toklu, J. Wilson

Elite guided steady-state genetic algorithm for minimizing total tardiness in

flowshops
Computers & Industrial Engineering, 58 (2010), pp. 300-306

[96] T. Chen, X. Li

Integrated iterated local search for the permutation flowshop problem with

tardiness minimization
Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics

(SMC). Manchester, 13–16 October 2013 (2013)

[97] R. M’Hallah

An iterated local search variable neighborhood descent hybrid heuristic for the total

earliness tardiness permutation flow shop
International Journal of Production Research, 52 (13) (2014), pp. 3802-3819

101

[98] T. Cura

An evolutionary algorithm for the permutation flowshop scheduling problem with

total tardiness criterion
International Journal of Operational Research, 22 (3) (2015), pp. 366-384

[99] R. Ruiz, T. Stützle

A simple and effective iterated greedy algorithm for the permutation flow shop

scheduling problem
European Journal of Operational Research, 177 (3) (2007), pp. 2033-2049

104] Capek, R., ˇ S˚ˇucha, P., Hanz´alek, Z.

Production scheduling with alternative process plans.

Eur. J. Oper. Res. 217(2), 300–311 (2012)

[105] . Kis, T.

Job-shop scheduling with processing alternatives.

Eur. J. Oper. Res. 151(2), 307–322 (2003)

[106] . Leung, C.W., Wong, T.N., Maka, K.L., Fung, R.Y.K.

Integrated process planning and scheduling by an agent-based ant colony optimization.
Comput. Ind. Eng. 59(1), 166–180 (2010)

[107] Li, X., Zhang, C., Gao, L., Li, W., Shao, X.

An agent-based approach for integrated process planning and scheduling.

Expert Syst. Appl. 37(2), 1256–1264 (2010)

[108] Shao, X., Li, X., Gao, L., Zhang, C.

Integration of process planning and scheduling - a modified genetic algorithm-based

approach.

 Comput. Oper. Res. 36(6), 2082– 2096 (2009)

[109] Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.Y.

A survey of scheduling problems with setup times or costs.

Eur. J. Oper. Res. 187(3), 985–1032 (2008)

[110] Yuan, X.M., Khoo, H.H., Spedding, T.A., Bainbridge, I., Taplin, D.M.R.

Minimizing total setup cost for a metal casting company.

Winter Simul. Conf. 2, 1189–1194 (2004)

[111] Wang, L., Wang, M.

A hybrid algorithm for earliness-tardiness scheduling problem with sequence dependent

setup time.

Proceedings of the 36th Conference on Decision and Control, pp. 1219–1223. IEEE (1997)

102

[112] Mirabi, M.

A hybrid simulated annealing for the single-machine capacitated lotsizing and scheduling

problem with sequence-dependent setup times and costs and dynamic release of jobs.

Int. J. Adv. Manuf. Technol. 54(9–12), 795–808 (2010)

[113] Yu L, Shih HM, Pfund M, Carlyle WM, Fowler JW (2002)

Scheduling of unrelated parallel machines: an application to PWBmanufacturing.

IIE Trans 34, pp. 921–9312.

[114] Hsieh JC, Chang PC, Hsu LC (2003)

 Scheduling of drillingoperations in printed circuit board factory.

Comp Industr Engin44 pp. 461–473.

[115] Kim DW, Kim KH, Jang W, Chen FF (2002)

Unrelated parallelmachine scheduling with setup times using simulated annealing.

Robo Comput-Integr Manuf 18 pp.223–231,

 [116] Pinedo, M. 2008.

Scheduling Theory, Algorithms, and Systems.

3rd ed. New York: Prentice Hall.

[117] Potts, C. N. 1985.

Analysis of a Linear Programming Heuristic for Scheduling Unrelated Parallel Machines.
Discrete Applied Mathematics 10: pp. 155–164.

[118] Pfund, M., J. W. Fowler, and J. N. D. Gupta. 2004.

A Survey of Algorithms for Single and Multi-objective Unrelated Parallel-machine:

Deterministic Scheduling Problems.

 Journal of the Chinese Institute of Industrial Engineers 21, pp. 230–241.

[119] Gravel, M., Price, W.L., Gagné, C.

Scheduling jobs in an Alcan aluminium foundry using a genetic algorithm

(2000) International Journal of Production Research, 38 (13), pp. 3031-3041.

[120] Dolgui, A., Eremeev, A.V., Kovalyov, M.Y., Kuznetsov, P.M.

Multi-product lot sizing and scheduling on unrelated parallel machines

(2010) IIE Transactions (Institute of Industrial Engineers), 42 (7), pp. 514-524.

[121] Fu, L.-L., Aloulou, M.A., Triki, C.

Integrated production scheduling and vehicle routing problem with job splitting and

delivery time windows

(2017) International Journal of Production Research, 55 (20), pp. 5942-5957.

103

[122] Afzalirad, M., Rezaeian, J.

A realistic variant of bi-objective unrelated parallel machine scheduling problem:

NSGA-II and MOACO approaches

(2017) Applied Soft Computing Journal, 50, pp. 109-123.

[123] Baykasoğlu, A., Ozsoydan, F.B.

Dynamic scheduling of parallel heat treatment furnaces: A case study at a

manufacturing system

(2018) Journal of Manufacturing Systems, 46, pp. 152-162.

[124] K. Deb

A fast and elitist multiobjective genetic algorithm: NSGA-II
IEEE Transactions on Evolutionary Computation, 6 (2) (2002), pp. 182-197

[125] J.E.C. Arroyo, V.A. Armentano

A partial enumeration heuristic for multi-objective flowshop scheduling problems
Journal of the Operational Research Society, 55 (9) (2004), pp. 1000-1007

[126] E. Taillard,

Some efficient heuristic methods for the flow-shop sequencing problem
European Journal of Operational Research, 47 (1) (1990), pp. 65-74

[127] Muhammad Nawaz, E Emory Enscore, Inyong Ham,

A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem,

Omega, 1983, Pages 91-95,

104

[8] Appendix

105

8.1 Pseudocode of initialization phase

%% INITIALIZATION PHASE

% Declare number of objectives and greedy phase counter

n_obj= set the number of objectives;

n_dec_gp= 0;

% NEH_EDD is used to generate two initial solutions, one for

% each objective to optimize, which will create the CWS

[Current working set or CWS] = NEH_EDD (decoding method, input data);

% decoding of CWS

% initialize counter n_eval

n_eval=0;

for i = 1: length(CWS)

 [CWS] = decoding (CWS, input data);

end

%Greedy phase of ISS

%update counters

for i= 1: length(CWS)

 [CWS, n_dec]= greedy_phase (CWS, input data);

 n_eval = n_eval+1 ;

 n_dec_gp = n_dec_gp + n_dec;

end

%put obtained solutions in the current working set
CWS = initial solutions

% filters the doubles
CWS = CWS without doubles;

% keep the non dominated solutions.
CWS= paretofront(CWS)

106

8.2 Pseudocode of MCDA

function [d] = MCDA_(X, N_eval)

% X is the solution set

% N_eval is the vector of counters

% d is the MCDA value

% return the number of points and number of objectives

[DimSet, n_obj] = size(X);

% Define the whole matrix PS
% the last column as a point index

PS = [X N_eval zeros(DimSet,4) [1:DimSet]'];

for m = 1,…,n_obj

 PS= sort_rows(PS(m));

 PS_dist=PS(:,4)';

 if DimSet>2

 % save one line

 PS([1,end], m+3)=-1;

 else

 % To tackle the special case where DimSet = 2

 PS([1, end], m+3)= 1;

 end

 for i=2,…,DimSet-1

 fmax = max(PS(:,m));

 fmin = min(PS(:,m));

 PS_dist(i)= PS_dist(i) + ((PS(i+1,m)-PS(i-1,m))/(fmax – fmin));

 PS(i, m+3)= PS_dist(i);

 end

end

PS(PS(:,5) == -1, 5) = max(PS(:,5));

PS(:,6) = PS(:,5) + min(max(PS(:,5),0));

% return to the original order
PS(:,7) = PS(:,6)./(PS(:,3)+1);

PS= sort_rows(PS, 8);

d = PS(:,end - 1);

end

107

8.3 Pseudocode of Greedy phase

%% GREEDY PHASE

% define the k value, that is the number of elements to remove

k= 5;

% destruct function outputs are 𝜋𝑑 , 𝜋𝑟

[𝜋𝑑, 𝜋𝑟] = destruct(selected solution, k);

% construct function. It outputs a set of non-dominated

% solutions to add to the CWS

[SET]= construct(𝜋𝑑, 𝜋𝑟, data input);

% count the number of decodings

n_dec= count number of decodings

8.4 Pseudocode of local search

function [LS]= Local_search(Sol, n_sel, n_neigh, data input)

% Sol is the selected solution for the local search
% n_neigh is the number of positions a element could be moved to the left or to the
%right

% Pos is a n_sel array which stores the positions of the elements to

%remove

Pos = random_array(1 length(Sol));

for i=1,…,n_sel

 if Pos(i) <= n_neigh/2 then

 n_left = Pos(i)-1;

 n_right = n_neigh-n_left;

 else

 if Pos(i) > length(Sol)-n_neigh/2 then

 n_right = length(Sol) - Pos(i);

 n_left = n_neigh - n_right;

 else

 n_right= round(n_neigh/2);

 n_left= round(n_neigh/2);

 end

 end

% Remove job in position Pos(i)
Sol_new =Job_remove(Sol, Pos(i));

108

% Insert the removed element in Pos(i)-j
 for j=1,…,n_left

 X_left(j,:) = Job_insert(Sol_new, Sol(Pos(i)), Pos(i)-j);

 end

 % Insert the removed element in Pos(i)-j
 for j= 1:n_right

 X_right(j,:) = Job_insert(Sol_new, Sol(Pos(i)), Pos(i)+j);

 end

%store in LS, n_sel x n_neigh insertions

LS= [LS; X_left; X_right];

end

% Evaluation and final solution of LS

% initialize counter

for i=1,…,number_of_solutions_in_LS

 [TotTard, SPS] = decoding(LS(i), data input);

 n_eval = 0;

end

 PF= paretofront(LS));

 LS=LS(PF);

End

