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The scheduling of flow shops with multiple parallel machines per stage, which 

is usually referred to as the hybrid flow shop (HFS), is a complex combinatorial 

optimization problem encountered in many real-world applications. The 

problem is to determine the allocation of jobs to the parallel machines as well 

as the sequence of the jobs assigned to each machine, so as to create a Gantt 

chart to guide the production activities. The basic HFS scheduling problem has 

been thoroughly studied in recent decades, both from single objective as well 

as from multi-objective perspectives, but to the best of our knowledge, little 

has been done to the multi-objective scheduling problem considering the 

reduction of total machine setup time as one of the objectives. Given that the 

machine setups act as non-value-added activities which should be avoided or 

mitigated from the manufacturing practices, it is important to make a proper 

schedule which results in short total setup time together with other 

performance indicators, such as productivity and on-time product delivery. 

For this reason, this thesis focuses on the HFS scheduling problem with the 

total tardiness and total setup time objectives. In this work, a simple, yet 

powerful algorithm for the sequence dependent setup time hybrid flow shop 

problem is proposed. The presented method, known as Restarted Iterated 

Pareto Greedy or RIPG, is compared to the NGSA-II, which is a well-known 

algorithm for multi-objective optimization in literature. Computational and 

statistical analyses demonstrate that the proposed RIPG method outperforms 

the NGSA-II in the test instances. We conclude that the proposed method is a 

candidate to be the state-of-art method for this important and practical 

scheduling problem. 
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[1] Introduction 
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Production scheduling is one of the most complex activities in the 

management of production systems. It is closely connected with the firm's 

performance in terms of speed, reliability, flexibility, quality, and cost. The 

theory of production scheduling, that aims to provide guidelines and 

methods, for efficient use of resources, has been the subject of countless 

papers, over the past five decades. Although several features of scheduling 

problems are still underexplored due to the variety of production 

environments, the available resources, restrictions may be imposed and there 

are multiple objectives to be achieved. Moreover, production scheduling is 

one of the activities of the Planning, Programming and Production Control. It 

is responsible for deciding the allocation of resources (machines) over time to 

perform individual items (jobs and/or batch of jobs), in order to better meet 

a predefined set of criteria. One can understand the production scheduling as 

a set of functions of decision-making, involving: 

  how to allocate jobs on machines over time, called schedule;  

 decisions about how to order the jobs on a given machine called 

sequence,  

The scheduling of flow shops with multiple parallel machines per stage, 

usually referred to as the Hybrid Flow Shop (HFS), is a complex combinatorial 

problem encountered in many real world applications. Given its importance 

and complexity, the HFS problem has been intensively studied [1].  Hybrid flow 

shops are common manufacturing environments in which a set of n jobs are 

to be processed in a series of m stages optimizing a given objective function. 

There are a number of variants, all of which have most of the following 

characteristics in common: 

 The number of processing stages m is at least 2. 

 Each stage k has machines in parallel and at least IN one of the 

stages. 
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 All jobs are processed following the same production flow:  stage 

1, stage 2, …, stage m.  A job might skip any number of stages 

provided it is processed in at least one of them. 

 Each job j requires a processing time p in stage k. We shall refer 

to the processing of job j in stage k as “operation”. 

In the “standard” form of the HFS problem all jobs and machines are available 

at time zero, machines at a given stage are identical, any machine can process 

only one operation at a time and any job can be processed by only one 

machine at a time; preemption is not allowed, the capacity of buffers between 

stages is unlimited and problem data is deterministic and known in advance. 

Although most of the problems described in this review do not fully comply 

with these assumptions, they mostly differ in two or three aspects only; the 

standard problem will serve as a “template” to which assumptions and 

constraints will be added or removed to describe different HFS variants. In 

particular, in specific case, to better represent the reality of many real 

industrial cases, a sequence dependent setup time will be considered with 

also unrelated parallel machines and a constraint of machine eligibility. The 

first limitation of unrelated machines indicates that the parallel machines in a 

stage are not identical but there could be differences in terms of processing 

speed or manufacturing technologies applied. These two limitations are very 

common in many industrial cases and are also less considered in the previous 

literature HFS scheduling problem. In terms of the objective, most researches 

focus on minimizing the makespan of a schedule. However, in most of the 

cases, makespan is not the most important criterion to considered. Like in the 

make-to-order environment, job tardiness should be given higher priority 

than makespan. Also, the setup times/costs [2] are considered as another 

important indicator to evaluate the schedule quality, but seldom considered 

in the literature. These motivate us to consider the total tardiness and total 

setup time as objective functions to be minimized.  
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The scheduling problem can be denoted using a triplet α|β|γ notation where, 

α defines the shop configuration, β describes the constraints and assumptions 

and γ indicates the objective function. Consequently, the described 

scheduling problem is denoted as:  

𝐹𝐻𝑚, ((𝑅𝑀𝑘)𝑘=1
𝑚 )| 𝑀𝑗, 𝑆𝑠𝑑| ∑ 𝑇𝑗 , 𝑇𝑆𝑇 

Here, 𝐹𝐻𝑚 indicates a HFS with m stages;  ((𝑅𝑀𝑘)𝑘=1
𝑚 ) represents that each 

stage consists of multiple unrelated machines; Mj represents machine 

eligibility; ∑ 𝑇𝑗  indicates the total tardiness objective and TST for the total 

setup time. 

Hybrid flow shop scheduling problem is a discrete optimization problem. 

When multi-objectives are to be optimized, typical multi-objective 

optimization methods like NSGA-II [3], SPEA2 [4] can be applied. Yet, other 

algorithms exist, and in particular one potential competitor is the Iterated-

greedy search [5]. It has been applied to the single-objective flow shop 

problem [6], multi-objective flow shop problem [7] and obtained state-of-art 

results.  The HFS scheduling problem, in most cases, are NP-hard. For instance, 

HFS restricted to two processing stages, even in the case when one stage 

contains two machines and the other one a single machine, is NP-hard, after 

the results of [8]. Similarly, the HFS when preemption is allowed results also 

in strongly NP-hard problems, according to [9]. Moreover, the special case 

where there is a single machine per stage, known as the flow shop, and the 

case where there is a single stage with several parallel machines, known as 

the parallel machines environment, are also NP-hard, [10]. However, with 

some special properties and precedence relationships, the problem might be 

solvable in polynomial time[11]. 

The HFS scheduling problem has attracted a lot of attentions given its 

complexity and practical relevance. HFS is found in all kinds of real world 

scenarios including the electronics [12], [13], [14], [15], paper [16] and textile, 

https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib49
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib43
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib209
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib210
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib114
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib83
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib170
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[17], industries. Examples are also found in the production of concrete, [18], 

the manufacturing of photographic film, [19], [20], and others, [21], [22], [23], 

[24], [25], [26], [27]. We also find examples in non-manufacturing areas like 

civil engineering [28], internet service architectures [29] and container 

handling systems [30] [31]. The results, of this research, may be useful for 

future research, towards the development of new solution methods, and/or 

for the application of methods investigated in the context of real companies, 

with this kind of scheduling problem. 

The thesis is organized as follows. Chapter 2 conducts a literature review on 

exact, heuristic and metaheuristic methods that have been proposed over the 

last decades, also provides a discussion on different methodologies used to 

solve the problem and their basic features and components. It explains the 

terminology used to refer to the different assumptions, constraints and 

objective functions where reviewed papers are briefly commented and only 

the most important facts are highlighted. Then, the aim is to focus on applying 

the optimization method called Restarted Iterated Pareto Greedy (RIPG), 

which is described and presented in Chapter 3. Chapter 4 discusses the 

obtained results of the experimental campaign. A comparison between the 

proposed method and the conventional method is described in Chapter 5. The 

results may be useful for future research, towards the development of new 

solution methods, and/or for the application of methods investigated in the 

context of real companies, with this kind of scheduling problem. These aspects 

with relative research opportunities in HFS scheduling problem concludes the 

thesis. 

 

 

 

 

https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib52
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib137
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib189
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib4
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib2
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib40
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib3
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib112
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib18
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib216
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib152
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib44
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib8
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib36
https://www.sciencedirect.com/science/article/pii/S0377221709006390#bib35
https://www.sciencedirect.com/science/article/pii/S0377221709006390#sec1
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This chapter defines the research problem. Furthermore, this chapter 

presents some considerations about the limitations emerged from the 

state-of-the-art analysis. The literature review can be organized in 

three parts. First, we review different methods solving the HFS 

scheduling problem, which can be categorized by exact, heuristic and 

metaheuristic methods, considering the most common assumptions 

and objectives. Then we review papers and organize them according 

to different criteria. In particular the criteria considered for the 

classification were, the encoding and decoding procedure used in the 

algorithms, the machine selection rule adopted in each stage, the 

technique used, the adopted constraints on the production chain and 

the considered objectives.  

 

2.1 The Hybrid Flow Shop: problem description and notation 

A Hybrid Flow Shop (HFS) consists of series of production stages, each of which 

has several machines operating in parallel. Some stages may have only one 

machine, but at least one stage must have multiple machines. The flow of jobs 

through the shop is unidirectional.  Each job is processed by one machine in 

each stage and it must go through one or more stage [49]. Depending on the 

adopted assumptions, machines in each stage can be considered identical, 

uniform or unrelated. When pij = pj/si where pj is the processing time of 

job j and si is the speed of machine i, then the machines are called uniform. If 

the pijs are arbitrary then the machines are called unrelated. And both of the 

uniform and unrelated cases belong to non-identical parallel-machine 

schedules. In our case, as we already mentioned, there are some differences 

between them which makes the hypothesis of unrelated parallel machines 

an important assumption close to the real industrial environment. In fact, HFS 

is often found in the electronic manufacturing environment such as IC 

packaging and PCB fabrication, where this assumption is often verified. The 

setup times are not included in the processing time and they are sequence 
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dependent. The SDST/HFS problem can be described as follows. A set of n jobs 

J = {1, 2, ..., n} have to be processed through m production stages {1, 2, ..., m} 

following the same production route, i.e., first at stage 1, then at stage 2, and 

so on until last stage m. Each stage k, k = 1, 2, ..., m, has a set of almost 

identical parallel machines, Mk (|Mk| ≥ 2 for at least one stage, where | • | 

denotes the cardinality of a set). Each job j ∈ J can be processed on one of the 

|Mk| depending on a machine eligibility criterion. We denote the processing 

time of job j ∈ J at stage k as pk, j. We have a SDST, denoted as sk,j',j, when job 

j ∈ J is processed immediately after job j' ∈ J (j' ≠ j) on the same machine at 

stage k. If job j ∈ J is the first job processed on a machine at stage k, its setup 

time is denoted as sk,j,j. At any time, no job can be processed on more than 

one machine, and no machine can process more than one job. All jobs are 

independent and available for processing at time 0. The objective is then to 

find a schedule so that the Total Setup Time and the Total Tardiness are 

minimized. 

The SDST assumption comes from the need to have a more realistic model of 

the HFS. Another important mark to be made, is the constraint of machine 

eligibility which gives a criteria on which machine is eligible to process an 

operation of a given jobs. The two objectives are to minimize are the total job 

tardiness and the total setup time.  

 

Figura 1- The Hybrid Flowshop 

https://www.sciencedirect.com/topics/mathematics/cardinality
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The resume of what stated plus its notation is presented as follows:  

 In stage i, there are mi unrelated parallel machines with different processing 

abilities, where mi ⩾ 1. 

 

 Between the stages i and i + 1, the buffer capacity is assumed infinite. 

 

 Each job consists of a sequence of operations Oi,j where Oi,j denotes the ith  

operation of job j, which should be carried out on a selected machine in stage 

i; 

 

 When a job arrives at a stage i, it can select exactly one machine from mi 

available unrelated parallel machines. The selection is made according to an 

eligibility index; 

 
 

 After a job is completed at stage i, it may be processed as follows:  

 

1) the job will be immediately delivered to the subsequent stage 

when one of the machines at stage i + 1 is available;  

2) in cases in which there is no available machine at stage i + 1, 

the job will be stored in the following buffer given the infinite 

buffer space;  

 

 Each machine in the same stage can process only one job at a time, and each 

job can be executed by only one machine at a time; 

 

 All jobs and machines are available at time zero; 

https://www.sciencedirect.com/topics/computer-science/parallel-machine
https://www.sciencedirect.com/topics/computer-science/subsequent-stage
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 Preemption is not allowed; that is, a job cannot be interrupted before the 

completion of its current operation; 

 

 Setup times are sequence dependent and all the problem data are 

deterministic and known in advance; 

 

 Machines are reliable and no machine failures can happen. 

 

 

 

The following table resumes the adopted notation: 

Notation Description 

n number of jobs (j =1,…,n) 

m Number of stages (i =1,…,m) 

k Index for machines inside a stage 

pi,j,k Processing time of job j at stage i on machine k 

Oi,j,k Operation of job j at stage i on machine k 

Ei Set of eligible machines at stage i 

Ci,j Completion time of Oi,j,k 

dj Due date for job j 

si,j Sequence-dependent setup time from job j at stage i. 

Tj Tardiness of job j.        𝑇𝑗 = max (0, 𝐶𝑗 −  𝑑𝑗) 

T Total Tardiness:          𝑇 =  ∑ 𝑇𝑗
𝑛
𝑗=1  

 

Tabella 1- Notation 
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The scheduling problem can be denoted using a triplet α|β|γ notation. In this 

notation, α defines the shop configuration, β describes the constraints and 

assumptions and γ indicates the objective functions. Consequently, the 

described scheduling problem is denoted as:  

𝐹𝐻𝑚 , ((𝑅𝑀(𝑘))
𝑖=1

𝑚
) |𝑀𝑗 , 𝑆𝑠𝑑| ∑ 𝑇𝑗 , 𝑇𝑆𝑇 

Here, 𝐹𝐻𝑚 , indicates a HFS with m stages; represents that each stage consists 

of multiple unrelated machines; 𝑀𝑗represents machine eligibility; ∑ 𝑇𝑗 , 𝑇𝑆𝑇 

indicates the total tardiness  and the total setup time objective. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.sciencedirect.com/topics/social-sciences/scheduling
https://www.sciencedirect.com/topics/mathematics/objective-function
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Chapter 3 
 

 

[3] Literature review 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



22 

 

 

3.1 Methods for HFS scheduling problem  

In literature, methods for HFS scheduling problem can be categorized as exact 

and heuristic. Exact methods, including mathematical programming and 

branch & bound, solve the problem to find an optimal solution. Although the 

branch and bound was first suggested by [67], the first complete algorithm 

introduced as a multi-objective branch and bound that we identified was 

proposed by [68]. Based on the “divide to conquer” idea, it consists in an 

implicit enumeration principle, viewed as a tree search. The feasible set of the 

problem to optimize is iteratively partitioned to form sub-problems of the 

original one. Each sub-problem is evaluated to obtain a lower bound on the 

sub-problem objective value. The lower bounds on sub-problem objective 

values are used to construct a proof of optimality without exhaustive search. 

Uninteresting and infeasible sub-problems are pruned, promising sub-

problems are selected and instantiated [46]. However, due to the lack of 

efficient lower bounds, branch & bound approach is limited to simple shop 

configurations; also, exact methods require long time for solving large 

instances. Both facts limit the industrial application of exact methods. A 

practical idea is to search for quasi-optimal solution in a reasonable time. For 

this reason, the trend of solving HFS scheduling problems with heuristic, 

especially metaheuristic, is increasing [41].  In the past decade, genetic 

algorithm (GA) has gained the widest applications. Genetic Algorithms were 

introduced by Holland [32] and they have been used in many scheduling 

problems (see for instance [33], [34]). The GA starts with an initial population 

of possible solutions called chromosomes to the problem. The relative quality 

of these chromosomes is determined using a fitness function. This quality is 

used to determine whether the chromosomes will be used in producing the 

next generation of chromosomes. The next generation is generally formed via 

the processes of crossover and mutation. Crossover is the process of 

combining elements of two chromosomes, whereas mutation means 

randomly altering elements of a chromosome [35].  Among the metaheuristic 

methods we can underline different ones such as population learning 
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algorithm [37], taboo search [38] and ant colony system [39].  In particular,  

the tabu search algorithm TSNS is commonly considered as the most effective 

solution method for the considered HFS scheduling problem with related 

parallel machines. Its high efficiency is obtained due to so called reduced 

neighborhood based on the block properties and the accelerator designed for 

Cmax computation for all neighbors of the base solution [42]. A detailed 

description of all TSNS components can be found in [43]. All these focus on 

minimizing the makespan but it is not the only scheduling problem tackled;  

[40] focused on minimizing the weighted completion time in proportional flow 

shops. Also Hybrid heuristic are used. Memetic algorithms for example are 

hybrid evolutionary algorithms that combine global and local search by using 

an evolutionary algorithm to perform exploration while the local search 

method performs exploitation [36]. There exist hybrid heuristic algorithms 

that combine particle swarm optimization (PSO) [44] [45] with simulated 

annealing (SA) and PSO with tabu search (TS), for example. Particle swarm 

optimization is similar to the genetic algorithm technique for optimization in 

that rather than concentrating on a single individual implementation, a 

population of individuals (a “swarm”) is considered instead. The algorithm 

then, rather than moving a single individual around, will move the population 

around looking for a potential solution. Each individual in the swarm has a 

position and velocity defined, the algorithm looks at each case to establish the 

best outcome using the current swarm, and then the whole swarm moves to 

the new relative location [47].  Instead, Simulated Annealing (SA), introduced 

in [51], was conceived for combinatorial problems, but can easily be used for 

continuous problems as well. SA starts with a random solution xc and creates 

a new solution xn by adding a small perturbation to xc. If the new solution is 

better than the current one, it is accepted and replaces xc. In case xn is worse, 

SA does not reject it right away, but applies a stochastic acceptance criterion, 

thus there is still a chance that the new solution will be accepted, albeit only 

with a certain probability. This probability is a decreasing function of both the 

order of magnitude of the deterioration and the time the algorithm has 
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already run. This time factor is controlled by the temperature parameter T 

which is reduced over time; hence, impairments in the objective function 

become less likely to be accepted and, eventually, SA turns into standard local 

search. The algorithm stops after a predefined number of iterations Rmax[48].  

Experimental results reveal that these memetic techniques can effectively 

produce improved solutions over conventional methods with faster 

convergence [36]. Besides these, in recent years, other less used 

metaheuristics were proposed for HFS. For example immune evolutionary 

algorithm [52] and artificial bee colony [53],[54]. Lastly there have been 

presented apply new metaheuristics like water flow-like algorithm [55], 

firefly algorithm [57], cuckoo search algorithm [56] to solve HFS problems. 

Indeed, different metaheuristics represent different search patterns in the 

solution space. However, due to the existence of the No-Free Lunch (NFL) 

Theorem [58], it is more important on how to make use of problem structure 

information to improve the search procedure than just applying new general 

purpose optimization methods to HFS problems [41]. Although there exist 

many different approaches, in last years an important contribution has been 

given by the Iterated-greedy algorithm.  A resume table is presented here. 

 

 

 

https://www.sciencedirect.com/topics/computer-science/evolutionary-algorithms
https://www.sciencedirect.com/topics/computer-science/evolutionary-algorithms
https://www.sciencedirect.com/topics/computer-science/firefly-algorithm
https://www.sciencedirect.com/topics/mathematics/search-algorithm
https://www.sciencedirect.com/topics/computer-science/no-free-lunch
https://www.sciencedirect.com/topics/computer-science/search-procedure
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Tabella 2 - methods for HFS 

 

 
 

Year Authors Tipology 

1960 H. Land, A & G. Doig Branch & Bound

1975 H. Holland Genetic Algorithm 

1983 G. Kiziltan, E. Yucaoglu Branch & Bound

1995 J. Kennedy, R. Eberhart Particle swarm optimization 

1998 Y. Shi, R.C. Eberhart Simulated annealing 

2003 J. Jdrzêjowicz, P. Jdrzêjowicz Population learning algorithm 

2004 C. Oðuz, Y. Zinder et al. Taboo search 

2005 C. Oguz, M.Ercan Genetic Algorithm 

2006 K.C. Ying, S.W. Lin Ant colony system 

2006 M. Zandieh, S.M.T.F. Ghomi, S.M.M. Husseini Immune evolutionary algorithm 

2011 F. Choong, S. Phon-Amnuaisuk, M.Y. Alias Memetic algorithms 

2012 F. Pargar, M. Zandieh Water flow-like algorithm 

2013 M.Ciavotta, Minella, Ruiz Iterated greedy algorithm 

2014 M.K. Marichelvam, T. Prabaharan, X.S. Yang Firefly algorithm

2014 M.K. Marichelvam, T. Prabaharan, X.S. Yang Cuckoo search algorithm

2015 Z. Cui, X. Gu Artificial bee colony 

2016 ] J. Li, Q. Pan, P. Duan Artificial bee colony 

Figura 2 -Methods classification 
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3.2 Sequence-dependent setup time and unrelated parallel 
machines 

Unrelated parallel machine scheduling is widely applied in manufacturing 

environments such as the drilling operations for printed circuit board 

fabrication [113] [114] and the dicing operations for semiconductor wafer 

manufacturing [115]. A lot of papers about HFS have been published in the 

literature but only a relatively minor fraction of them consider sequence 

dependent setup times. In the literature, there are three types of parallel 

machines scheduling even though most of researches are limited to situations 

in which the processing times are the same across all machines. This type is 

called identical parallel machines (Pm). In the second type, machines have 

different speed but each machine works at a consistent rate, Qm [116] [117]. 

Finally, when machines are capable of working at different rates and when 

different jobs could be processed on a given machine at different rates, the 

environment is said to have unrelated parallel machines, Rm [116]. Developed 

algorithms to schedule unrelated parallel machines are capable of generating 

good solutions when applied to all kinds of parallel machine problems and 

that’s why they are important. [118] pointed out that unrelated parallel machine 

problems remain relatively unstudied and presented a survey of algorithms for 

single-and multi-objective unrelated parallel machine deterministic scheduling 

problems. There is much research work considering parallel machines, but few 

unrelated parallel machines or sequence-dependent set-up times (SDST). In 

general, such a problem is composed of job allocation and job sequencing onto 

the machines, simultaneously, with similar but not necessarily identical 

capabilities. In [66] the makespan and total weighted tardiness are optimized 

simultaneously with a multi-phase genetic algorithm for searching Pareto 

optimal solutions of a hybrid flow shop group scheduling problem. [69] uses 

tabu search procedure to address a sequence-dependent group scheduling 

problem on a set of unrelated-parallel machines where the run time of each 

job differs on different machines. [70] proposes a new multi-objective 

approach for solving a no-wait k-stage flexible flow shop scheduling problem 

to minimize makespan and mean tardiness. Sequence-dependent setup times 
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are treated in this problem as one of the prominent practical assumptions. 

[71] investigates a bi-objective HFS problem with sequence dependent setup 

time for the minimization of the total weighted tardiness and the total setup 

time. To efficiently solve this problem, a Pareto-based adaptive bi-objective 

variable neighborhood search (PABOVNS) is developed and a job sequence 

based decoding procedure is presented to obtain the corresponding complete 

schedule. [72] paper presents an enhanced migrating bird optimization (MBO) 

algorithm and a new heuristic for solving a scheduling problem. The proposed 

approaches are applied to a permutation flow shop with sequence dependent 

setup times. Using an adapted neighborhood, a tabu list, a restart mechanism 

and an original process for selecting a new leader the MBO’s behavior is 

improved and it gave state-of-the-art results when compared with other 

algorithms reference. [73] proposed a genetic algorithm and a memetic 

algorithm for the F/Sijk, prmu/Cmax [74] introduced an algorithm formed by a 

new heuristic and a local search improvement scheme for the combined 

objective of total weighted flow-time and tardiness. [75] offers a 

comprehensive review of scheduling research with setup times. From an 

industrial point of view,  [119] solve a parallel machine scheduling problem 

inspired in an aluminium foundry considering objectives related to the metal 

flow; [120] consider a problem related to multi-product metal foundries; or 

more recently, [121] tackle, in a metal packaging industry, an unrelated 

parallel machines scheduling problem with job splitting and sequence-

dependent setup times, [122] considers a problem identified in a shipyard 

modelled by unrelated parallel machines with jobs release dates, precedence 

constraints and sequence-dependent setup times where machines are 

eligible, and finally [123] considers a dynamic scheduling problem based on 

the features of parallel heat treatment furnaces of a manufacturing company.  

To the best of our knowledge, the problem under consideration has not been 

addressed in the literature, although some papers address the unrelated 

parallel machines problem with machine eligibility and setup times with 

additional constraints. 

https://www.sciencedirect.com/topics/engineering/metal-flow
https://www.sciencedirect.com/topics/engineering/metal-flow
https://www.sciencedirect.com/topics/engineering/related-problem
https://www.sciencedirect.com/topics/engineering/shipyard
https://www.sciencedirect.com/topics/engineering/constraints
https://www.sciencedirect.com/topics/engineering/heat-treatment
https://www.sciencedirect.com/topics/engineering/manufacturing-company
https://www.sciencedirect.com/topics/mathematics/constraints
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3.3 Multi-objective hybrid Flow Shop 

There are several different approaches to the multi-objective optimization. 

The most immediate and commonly employed methodology is the so-called 

“a priori” approach. As the name implies, this methodology requires to specify 

some desirability or a prioristic information given by the decision maker so to 

create a weighted combination of all objectives into one single mathematical 

function, which effectively turns the problem into a single-objective one. As 

one can imagine, the main drawback of this approach is about how to set the 

weights for each objective, which is not a trivial procedure. Furthermore, 

different objectives are usually measured in different scales, making the 

choice of the weighs even more complicated. On the other hand, there is a 

class of techniques referred to as “a posteriori” methods. The final goal of this 

kind of approach is to provide a set of non-dominated solutions that cover the 

trade-off between the selected objectives. This set of non-dominated solution 

is referred to as the Pareto frontier. The decision maker, after the 

optimization has been carried out, selects the desired solution from the 

Pareto frontier. The approach used in our RIPG methodology is “a posteriori”. 

Year Authors Constraints adopted 

1985 Potts, C. N Unrelated parallel machines 

2002 Yu L, Shih HM, Pfund M, Carlyle WM, Fowler JW Unrelated parallel machines 

2002 Kim DW, Kim KH, Jang W, Chen FF Unrelated parallel machines 

2003 Hsieh JC, Chang PC, Hsu LC Unrelated parallel machines 

2003 Rajendran, C., Ziegler, H. seuqence-dependent setup time

2004 Pfund, M., J. W. Fowler, and J. N. D. Gupta. Unrelated parallel machines 

2005 Ruiz, R., Maroto, C., Alcaraz, J. seuqence-dependent setup time

2008 Pinedo, M. Unrelated parallel machines 

2008 Ali Allahverdi, C.T. Ng, T.C.E. Cheng, Mikhail Y. Kovalyov, seuqence-dependent setup time

2010 N. Karimi, M. Zandieh, H.R. Karamooz, seuqence-dependent setup time

2012 Mir Abbas Bozorgirad, Rasaratnam Logendran, seuqence-dependent setup time

2014 H. Asefi, F.Jola, M.Rabiee, M.E. Tayebi Araghi seuqence-dependent setup time

2016 Huixin Tian, Kun Li,  Wei Liu seuqence-dependent setup time

2018 A. Sioud, C. Gagné, seuqence-dependent setup time

Figura 3- Constraints for HFS 



29 

 

 

In fact, in each step where selection must be performed, the Pareto frontier 

is identified, and the non-dominated solution set is chosen as the set that will 

continue in the algorithm.  

The literature on multi-objective optimization is very rich. The few proposed 

multi-objective methods for the PFS and HFS problem are mainly based on 

evolutionary optimization and on local search techniques e.g.  simulated 

annealing (SA) or tabu search. In [76], there is a comprehensive review of the 

literature related to this problem. Thus, here we restrict ourselves to only the 

most significant papers and to some other more recent published material. 

Focusing only on the “a posteriori” approach, the number of publications in 

the flowshop literature is reduced to the following works.  A genetic algorithm 

(GA) was proposed by [77] which obtained a Pareto front for makespan and 

total tardiness. In this algorithm, referred to as MOGA (Multi Objective 

Genetic Algorithm), the selection phase employs a fitness value assigned to 

each solution as a function of the weighted sum of the objectives. The weights 

for each objective are randomly assigned at each iteration of the algorithm. 

Later, in [78], the authors extended this algorithm by means of a local search 

procedure applied to every newly generated solution. [79] present a 

comprehensive study about the effect of adding local search to their previous 

algorithm [78] The local search is only applied to good individuals and by 

specifying search directions. This form of local search was shown to give 

better solutions for many different multi-objective genetic algorithms. [80] 

proposes a Pareto-based simulated annealing algorithm for makespan and 

total flowtime criteria and the results of the proposed method is compared 

with [79]. The makespan and total flowtime objectives are studied in [81], 

which proposed simulated annealing methods. Two versions of these SA 

(MOSA and MOSA-II) are shown to outperform the GA of [78] . According to 

the comprehensive computational evaluation of [76], where 23 methods were 

tested for the multi-objective flowshop, an enhanced version of MOSA-II 

algorithm is shown to consistently outperform all other methods. NGSA-II was 

firstly presented by [82]. A variant of this procedure was presented by with 

https://www.sciencedirect.com/topics/computer-science/multi-objective-optimization
https://www.sciencedirect.com/topics/computer-science/simulated-annealing
https://www.sciencedirect.com/topics/computer-science/simulated-annealing
https://www.sciencedirect.com/topics/computer-science/tabu-search
https://www.sciencedirect.com/science/article/pii/S0377221713000052?via%3Dihub#b0115
https://www.sciencedirect.com/topics/mathematics/genetic-algorithms
https://www.sciencedirect.com/topics/computer-science/selection-phase
https://www.sciencedirect.com/topics/mathematics/weighted-sum
https://www.sciencedirect.com/science/article/pii/S0377221713000052?via%3Dihub#b0075
https://www.sciencedirect.com/science/article/pii/S0377221713000052?via%3Dihub#b0080
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the name [83] with the name of hMGA and it uses a working population with 

dynamic size made of only heterogeneous solutions. This choice prevents the 

algorithm from getting stalled in local optima. [84] presented an iterated 

greedy (IG) procedure based on the NEH heuristic. This algorithm is an 

evolution of the IG basic principle for the multi-objective PFSP. 

 

 

3.3.1  The Scheduling problem with Total Tardiness (TT) objective 

 

Several metaheuristic methods have been used for total tardiness 

minimization. Most of the methods until now, have been used to the 

permutation flowshops but not only. [87] used algorithm (GA), [88] used tabu 

search, [89] proposed a simulated annealing algorithm with local search and 

[90] used a differential evolution algorithm. In particular, [91] presented a 

detailed review and comparative evaluation of numerous exact, heuristic and 

metaheuristic methods for the PFSP with total tardiness objective. [91] also 

proposed a benchmark suite that is used in this work, to be able to compare 

the algorithms on a common test set. In most recent works, [92] report the 

results for parallel and serial execution of several cooperative metaheuristics 

for both total tardiness and makespan criterion. [94] present a GA with path 

relinking, and [95] use an elite guided steady-state GA. [93] use a variable 

iterated greedy algorithm where the number of jobs that are removed from 

the current permutation varies from 1 to n – 1. [96] use an integrated iterated 

local search (IILS) that is based on Iterated Local Search (ILS). [97] presents an 

iterated local search algorithm hybridized with a variable neighborhood 

descent algorithm. The IG algorithm presented by [99] for the PFSP is a simple 

and easy to implement, yet powerful and effective metaheuristic [98] 

proposes a new evolutionary approach with a new mating scheme designed 

for the problem that can achieve better results as the size of the problem 

increases.  

https://www.sciencedirect.com/topics/computer-science/basic-principle


31 

 

 

3.3.2  The scheduling problem with Total Setup Time (TST) objective  

We already mentioned that in this work, sequence dependent setup time 

represents an important feature and constraint of our work. Very less studied 

is the case where Total Setup Time is considered as objective to minimize. 

Actually, what is much more frequent is the minimization of Total Flow Time, 

(TFT) which includes also idleness or the Total Completion Time (TCT) which 

considers the setup time with processing time and idleness. Actually, there 

exist some production environments where setup time and cost are much 

higher than pure processing, that’s why it can be very interesting for this case 

to be investigated. In [104] the authors presented a mixed integer linear 

programming (MILP) model for the exact solution of small instances and a 

heuristic called iterative resource scheduling with alternatives (IRSA) for larger 

ones. [105] proposed three algorithms for the job shop problem with 

processing alternatives. [106,107] focused on RCPSP with alternatives that is 

close to the Total Setup Time minimization in Production Scheduling with 13 

alternative job shop problems and proposed agent based metaheuristic 

algorithms to minimize the makespan. [108] presented an integrated model 

of process planning and scheduling problems which are carried out 

simultaneously. The authors developed a genetic algorithm to minimize the 

schedule length. [109] dealt with the setup times in general and published a 

survey in which many different problems related to the setup times are 

summarized. The authors also reported on solution approaches and proposed 

a notation for all of these problems. [110] published a study for a metal casting 

company concerning the minimization of the total setup costs in which the 

authors demonstrate the importance of setup times by calculating the savings 

to the company. The authors proposed a two-phase Pareto heuristic to 

minimize the makespan and the total setup costs. In the first phase, the 

makespan is minimized and, in the second phase, the total setup costs are 

minimized, while the makespan is not allowed to get worse. [111] focused on 

a single machine earliness and tardiness problem with sequence dependent 
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setup times. The objective function is to minimize the total setup time, 

earliness and tardiness. [112] proposed a hybrid simulated annealing 

algorithm for the single machine problem with sequence dependent setup 

times. The objective function is given by the sum of the setup costs, delay 

costs and holding costs. 

 

 

Figura 4- Objectives functions for HFS  

 

 
3.4 The Restarted Iterated Pareto Greedy Algorithm (RIPG) 

The Iterated Greedy (IG) algorithm was first proposed in [59] and its basic 

mechanism consists of iteratively destructing some elements of a solution, 

reconstructing a new one using a constructive greedy technique and, finally 

improving it by means of an optional local search procedure. Hence, the 

central core of this algorithm is identified by two main phases: the 

destruction/construction phase and the local search. During the destruction 

phase some solution components are removed from a previously constructed 

Year Authors Objectives 

1981 N. Baba Total Tardiness

1981 J. Solis Francisco, Wets, J.B. Roger Total Tardiness

1997 N. Mladenovic, P. Hansen Total Tardiness

2001 P. Hansen, N. Mladenovic Total Tardiness

2003 Kis, T. Total setup time 

2004 Yuan, X.M., Khoo, H.H., Spedding, T.A., Bainbridge, I., Taplin, D.M.R.Total setup time 

2007 R. Ruiz, T. Stützle Total Tardiness

2008 Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.Y. Total setup time 

2009 Shao, X., Li, X., Gao, L., Zhang, C. Total setup time 

2010 [94] E. Vallada, R. Ruiz Total Tardiness

2010 T. Kellegöz, B. Toklu, J. Wilson Total Tardiness

2010 . Leung, C.W., Wong, T.N., Maka, K.L., Fung, R.Y.K. Total setup time 

2010 Li, X., Zhang, C., Gao, L., Li, W., Shao, X. Total setup time 

2012 Capek, R., ˇ S˚ˇucha, P., Hanz álek, Z. Total setup time 

2013 T. Chen, X. L Total Tardiness

2014 R. M’Hallah Total Tardiness

2015 T. Cura Total Tardiness
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complete candidate solution. The construction procedure then applies a 

greedy constructive heuristic to reconstruct a complete candidate solution. 

Once a candidate solution has been completed, an acceptance criterion 

decides whether the newly constructed solution will replace the incumbent 

solution. In other words, in the first, some elements of the current solution 

are randomly removed, and then reinserted in such a way that a new 

complete, and hopefully better solution is obtained. IG iterates over these 

steps until some stopping criterion is met. These two destruction/construction 

phases constitute the so-called greedy phase. The initial sequence is 

generated by a well-known NEH heuristic, which build a starting sequence for 

each objective to optimize. NEH evaluates a total of [n(n + 1)/2] − 1 schedules; 

n of these schedules are complete sequences. This makes the complexity of 

NEH rise to which can lead to considerable computation times for large 

instances. However, [85] introduced a data structure that allows to reduce its 

complexity. The job sequence obtained by applying the NEH heuristic gives 

the initial solution of the IG algorithm. In our case we have two objectives, so 

the starting sequences generated for our algorithm will be two. So, basically, 

the NEH is a greedy constructive method that tests every removed element 

into all possible positions of the current partial solution until the sequence 

with the best objective function value is found. Of course this suggests that, 

The NEH heuristic can optimize only one objective at a time.   

IG is currently being studied in many other research works, with similar 

assumptions to the one of our interest.  For example, [61] extended the IG 

method to other objectives and to sequence-dependent setup times. [62] 

applied IG to multistage hybrid flow shop scheduling problems with 

multiprocessor tasks. [64] applied IG algorithms to train scheduling problems 

and [65] used IG for single machine scheduling problems with sequence-

dependent setup times. Finally, [63] used Iterated Greedy algorithms for node 

placement in street networks. 
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To give a general scheme about how the algorithm is divided, it can be broken 

into five phases:  

1. Initialization. In this first phase, an initial set of good solutions is 

generated using two NEH heuristics, each one designed to attain good 

values for a specific criterion.  

2. Selection. The second phase, chooses one solution from the current 

working set for the next phase.  

3. Greedy phase. This phase represents the real core of the entire 

procedure. It is constituted by the two phases of destruction and 

construction. 

4. Local search. This phase is applied usually after greedy phase, over a 

selected element of the current working set.  

5. Restart. This is the last phase procedure is implemented to prevent 

the algorithm from getting stuck in local optima.  

The detailed procedure will be described later in chapter 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.sciencedirect.com/topics/mathematics/local-optimum
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4.1    A model for the SDST Hybrid Flowshop 

 

As an example, we consider a problem with four jobs (n = 4) and two stages 

(m = 2), with two machines at stage one (|M1| = 2) and three machines at 

stage two (|M2| = 3). The processing times and setup times are given in Tables 

1 and 2, respectively. In this example we consider the special case of unrelated 

parallel machine where the processing time of the jobs on all parallel 

machines are identical. A schedule chart is shown in Figure 5. 

 

 J1 J2 J3 J4 

Stage 1 4 5 4 3 

Stage 2 5 5 3 2 

     

Tabella 3 - Processing times example 

 

 

 Stage 1  Stage 2 

Ji\Jj J1 J2 J3 J4 Ji\Jj J1 J2 J3 J4 

J1 2 3 2 2 J1 2 3 2 2 

J2 2 2 3 4 J2 2 1 3 4 

J3 4 2 2 3 J3 3 3 2 3 

J4 3 3 2 2 J4 4 3 2 2 

 

     

.  Tabella 4 - Processing times example 

 

 

https://www.sciencedirect.com/science/article/pii/S0096300317300127#tbl0001
https://www.sciencedirect.com/science/article/pii/S0096300317300127#tbl0001
https://www.sciencedirect.com/science/article/pii/S0096300317300127#tbl0002
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Figura 5- Scheduling example 

 

 

4.2    Encoding methods 

 

Encoding method consists of representing a schedule by a string of decision 

variables, or saying, chromosome.  A schedule is defined by indicating the start 

and finish times for each operation on the machine to which it is assigned. 

Since we are optimizing regular objectives like Setup Time and Total Tardiness, 

all operations are expected to be started as early as possible. There can be 

distinguished basically two types of encoding: a direct encoding, which usually 

involves large solution space, that may render inefficient the searching 

procedure. In fact, It has been demonstrated that the more detailed the 

encoding, the worse the results. Indeed, indirect encoding employing 

surrogate heuristics in the decoding procedures for completing the solution is 

usually much efficient than a direct encoding. For this reason, most of the 

researches use the following indirect encoding scheme: a solution is encoded 

as a job permutation. 

 

 

https://www.sciencedirect.com/topics/social-sciences/heuristics
https://www.sciencedirect.com/topics/social-sciences/information-theory
https://www.sciencedirect.com/topics/mathematics/permutation
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Encoding representations can be farther classified into nine categories 

Direct Encoding  - Operation based  

- Job based  

- Job pair relation based  

- Completion time based 

- Random keys  

Indirect Encoding  - Preference list based  

- Priority rule based  

- Disjunctive graph based. 

- Machine based. 

 

Figura 6-  Encoding/decoding classifications 

 

These classification takes more sense when contextualized in GA environment 

with job shops and these nine categories can be grouped into the already 

mentioned two basic encoding approaches—direct and indirect. So the point 

is that In direct approach, a schedule is encoded as a chromosome and genetic 

operators are used to evolve better individual ones. Categories 1 to 5 are 

examples of this category. In case of indirect approach, a sequence of decision 

preferences will be encoded into a chromosome. In this, encoding, genetic 

operators are applied to improve the ordering of various preferences and a Πj 

schedule is then generated from the sequence of preferences. Categories 6 to 

9 are examples of this category. Some words need to be spent on Random 

Keys Representation (RK), because more than others, it is used sometimes 

also in Hybrid Flow Shop environment. In this representation, each gene is 

represented with random numbers generated between 0 and 1. These 

random numbers in a given chromosome are sorted out and are replaced by 

integers and now the resulting order is the order of operations in a chromo- 

some. This string is then interpreted into a feasible schedule. Any violation of 
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precedence constraints can be corrected by a correction algorithm 

incorporated. 

4.3   Decoding methods 

Decoding is to derive a schedule from the encoded solution. The encoding 

procedures described does not contain all the required information and 

decision variables for constructing a HFS schedule. These missing 

information like for example machine selection decisions, are determined by 

some heuristics during the decoding procedure. That’s why the solution 

quality strictly depends on the decoding method. Also in this case, the most 

used decoding methods are:  

1) List scheduling (LS). It is a decoding method adopted in many researches (as 

shown in Table 1);  an initial job list L1 is created in the first stage, according 

to some objective to optimize. Then jobs are picked out from L1 sequentially 

and scheduled as early as possible on the machine selected by a machine 

assignment rule.  In the remaining stages, it is applied the same procedure as 

in stage 1 except that Li (i > 1) is created by the First-come-first-served (FCFS) 

rule, that is sorting the jobs increasingly by their completion time in the 

precedent stage. As a consequence, it happens than especially with 

increasing number of stages, the sequence of processed jobs can change 

stage by stage because each time, the next job of the list is scheduled on the 

machine that is available first. If a tie exists, then usually the job is scheduled 

on the machine with the smallest index. List schedules are also used in 

branch-and-bound algorithms for problems in which the set of list schedules 

is dominant, i.e., contains at least one optimal solution. 

 

2)  Permutation scheduling (PS). This method is similar to LS except that the job   

lists in each remaining stage are equal to π as well.  

https://www.sciencedirect.com/topics/computer-science/selection-decision
https://www.sciencedirect.com/topics/social-sciences/scheduling
https://www.sciencedirect.com/science/article/pii/S030505481830217X#tbl0001
https://www.sciencedirect.com/topics/computer-science/first-come-first-served
https://www.sciencedirect.com/topics/computer-science/completion-time
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Both these methods are widely used in literature and in HFS environment. 

Anyway both these methods have drawbacks. When scheduling has to be 

done, the objective that is to be optimized is very crucial for deciding which 

process job has the priority to be processed first than others and these urgent 

jobs, called “hot jobs” must be completed as soon as possible. That’s why they 

are placed in the left part of the solution.  Yet this is only for stage 1 but makes 

no guarantees for the subsequent stages where jobs are queued by the FCFS 

rule. For this reason, it is very difficult to control the propagation of the 

schedule, especially when a higher number of jobs in the sequence is 

considered. That’s why this kind of approach leads to the difficult handling of 

urgent jobs. If in the scheduling decision process, one wants to precisely 

define when a job will start and when it will finish, this become very hard to 

do when number of operations and number of jobs increases. Such we call the 

controllability problem. On the contrary, this problem with PS this problem is 

not present because we schedule the jobs in each stage by the same sequence 

π. Yet, this leads to another problem: unnecessary machine idleness. More 

specifically, when the sequence that jobs exiting from the stage is different 

from π, to schedule the jobs at the stage i by sequence π we have to delay the 

starting time of some jobs, which may lead to unnecessary machine idleness. 

So idleness will be higher when the processing times of the operations of each 

jobs are variable from one stage to another and also between the jobs 

themselves.  It ends up with less tightness of the schedule, given this approach 

so static. We call this the tightness problem. In this research, literature review 

was conducted also to better understand which decoding method was the 

better to use in the application of this algorithm. As shown in the table, a  

resume of part of the investigated paper has been summarized. 

 

 

https://www.sciencedirect.com/topics/computer-science/subsequent-stage
https://www.sciencedirect.com/topics/social-sciences/controllability
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Here some notation used in table 5: 

 

 

 

 

 

 

 

 

Tabella 6 -- Notation 

 

This very small literature review, has been distinguished from the wider one 

conducted in chapter 2, because has the goal to identify some features 

especially concerning the encoding and decoding methods used.   

As shown in the tables, different methods and approaches have been chosen, 

but encoding and decoding methods are essentially the same. In particular, 

job permutation represents the much used encoding method. As said before, 

this kind of indirect encoding is much more efficient. Indeed, no particular 

preference seems shown about the decoding method. Given that we are 

optimizing objectives like Total Tardiness and Total Setup Time, it is somehow 

logic to expect that, especially when the number of jobs is increasing, it can 

be much more important to have control on the jobs we are scheduling. 

Moreover, it is important to remember the assumption of unrelated parallel 

machines with machine eligibility.  For completeness, also the machine 

selection criteria has been specified in the tables. It can be seen that the first 

MSR = Machine selection rule 

UPM = unrelated parallel machines 

SP = scheduling problem 

PFS = Permutation flowshop 

HFS = hybrid flowshop 

SA = simulated annealing 

TB = Tabu search  

GA = Genetic alghorithm 

RIPG = Restarted iterated pareto greedy 

TABC: Tabu search bee colony algorithm 

PABOVNS = A Pareto-Based Adaptive Variable Neighborhood Search 

EMB = enanched migrating birds  

LS = List Scheduling 

PS = Permutation Scheduling 

FAM = First available machine 

ECT = earliest completion time 

JP = job permutations  
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available machine rule is preferred, especially given that in most cases, the 

maximum makespan is the objective to minimize.  

4.4   The restarted iterated pareto greedy 

In the literature review, it has been already said like the Iterated Greedy 

procedure belogs to the class of the stochastic local search techniques (SLS). 

Now, similarly to [7], we propose a procedure named Restarted Iterated 

Pareto Greedy (RIPG). The logic behind this algorithm is very simple: a greedy 

multi-objective strategy is iteratively applied over a set of non-dominated 

solutions. The proposed RIPG is an extension of the above described IG. In 

fact, the main drawback of IG procedure is that they are prone to get stuck in 

local optimum solutions. The reason lies behind their very nature as they are 

greedy methods. RIPG is no different. To avoid this potential problem, we 

have included a simple, yet reliable restart phase. This procedure merely 

consists of storing all the elements of the current working set in a separate 

archive and then creating a new random working set of 100 elements. The 

main advantage of this restart procedure is that it is a very fast way to 

introduce diversification inside our metaheuristic scheme, whereas its main 

inconvenience consists of the difficulty in choosing of a suitable restarting 

criterion. To give a general scheme about how the algorithm is divided, it can 

be broken into five phases:  

1) Initialization. In this first phase, an initial set of good solutions is generated 

using two NEH heuristics [127], each one designed to attain good values for a 

specific criterion. The first one for the Total Tardiness objective (TT) and the 

second one for the minimization of the Total Setup Time (TST). After that, the 

remaining four phases are iteratively repeated and constitute the main loop 

of the algorithm. 

 

https://www.sciencedirect.com/topics/computer-science/stochastic-local-search
https://www.sciencedirect.com/topics/computer-science/metaheuristics
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2) Selection. The second phase, chooses one solution from the current working 

set for the next phase. The procedure adopted to do this is the so called 

Modified Crowding Distance Assigned procedure (MCDA). This method was 

originally presented in [86] has been developed in order to carry out the 

selection process. At each solution is assigned a value (Crowding Distance) 

which depends on the normalized Euclidean distances between it and the 

solutions that precedent. The main difference between the classical one and 

this new modified version resides in the fact that the modified procedure 

considers the number of times each solution has been already selected in 

previous iterations (Selection Counter), and uses this information to calculate 

the Modified Crowding Distance (MCD). This modification prevents allocating 

computing resources to search the same regions. The element with the 

highest value of MCD is selected as the starting point for the Greedy or local 

search phases. 

 

3) Greedy phase. This phase represents the real core of the entire procedure. It 

is constituted by the two phases of destruction and construction. The 

destruction procedure is applied to a permutation π of n jobs and it chooses 

randomly, without repetition d jobs. These d jobs are then removed from π in 

the order in which they were chosen. The result of this procedure are two 

subsequences, the first being the partial sequence πD with n − d jobs, that is 

the sequence after the removal of d jobs, and the second being a sequence of 

d jobs, which we denote as πR. πR contains the jobs that have to be reinserted 

into πD to yield a complete candidate solution in the order in which they were 

removed from π. The construction phase starts with subsequence πD and 

performs d steps in which the jobs in πR are reinserted into πD.. This process 

is iterated until πR is empty. 

 

https://www.sciencedirect.com/topics/computer-science/euclidean-distance
https://www.sciencedirect.com/topics/computer-science/previous-iteration
https://www.sciencedirect.com/topics/mathematics/starting-point
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4)  Local search. This phase is applied usually after greedy phase, over a selected 

element of the current working set.  

 

5) Restart. This is the last phase procedure is implemented to prevent the 

algorithm from getting stuck in local optima.  

In Figure 1 it is presented a general scheme of the procedure. The detailed 

procedure will be described later in chapter 4.  

 

 

Figura 7 - RIPG scheme 

 
 

 

4.4.1  The inizitalization phase  

Conducetd experiments done in literature, clearly showed that a good initial 

working set greatly improves the quality of RIPG. This is certainly expected as 

it is also the case with the single-objective PFSP. In the first phase, an initial 

set of good solutions is generated using two well-known NEH heuristics, each 

one designed to attain good values for a specific criterion. In fact, it is intuitive 

that the generated initial solutions represent the starting point on which more 

complex elaborations had be done. From this perspective, the initial solutions 

play an underlying role in creating a high performing algorithm. By the way, 

https://www.sciencedirect.com/topics/mathematics/local-optimum
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since our analysis focuses on reaching not one but two objectives, the choice 

in the adopted heuristics was due to choose heuristics the return of good 

enough solutions but that also ensure a sufficient level of diversity.  Further 

considerations are needed. First, it is not sure that these initial solutions will 

be well spread in the Pareto front. Also, this algorithm methodology adopts 

the selection process and the greedy phase many times. This approach is 

capable of greatly improving solutions. Selecting only one of the initial 

solutions for the greedy phase could have a negative result: all other initial 

solutions could be dominated after this phase. As a result, there is loss of 

diversity and coverage in the Pareto front. So, discarding some initial solutions 

can be a mistake because you lose the possibility to go toward promising 

directions. That’s why, in the first step of the RIPG, all initial solutions are 

processed by the greedy phase, without applying the selection operator, and 

for each one, a non-dominated set is obtained.  

So summarizing, the results of this heuristics generates the Initial Solution Set 

(ISS), making use of two well-known NEH heuristics, will soon generate 

respectively two initial solutions, one optimizing the objective of the Total 

Tardiness (TT) and one optimizing the objective of Total Setup Time (TST). This 

is the starting point of the procedure, which will step by step be replaced by 

better solutions. In a first step, all initial solutions are processed by the Greedy 

Phase one by one. The obtained solutions of this process are added to the ISS 

and then, the dominated ones are removed and the initial current working set 

(CWS) is conformed. The word “dominated” refers to the concept of Pareto 

dominance. The concept of Pareto dominance is of extreme importance in 

multi-objective optimization, especially where some or all of the objectives 

and constraints are mutually conflicting. In such a case, there is no single point 

that yields the "best" value for all objectives and constraints. Instead, the best 

solutions, often called a Pareto or non-dominated set, are a group of solutions 

such that selecting any one of them in place of another will always sacrifice 

quality for at least one objective or constraint, while improving at least one 

other. In our case, the aim behind this policy, adopted in the initial phase, is 
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to avoid that a likely large improvement during the initial iterations might 

generate a set of solutions that dominate the remaining initial solutions, 

impoverishing the quality and diversity of the working set too early. At each 

iteration of the algorithm, the selection phase is applied. Its role is to point 

the search towards promising directions. Selection achieves this goal by 

choosing one solution from the current working set on the basis of 

considerations related to their quality. The detailed description of it, will be 

done later in the text. In this way, only those solutions that are more likely to 

increase the quality of the current working set will be kept, speeding up the 

whole search process. After this initialization, the working set of non-

dominated solutions is ready for the main algorithm phases. The diagram and 

the pseudocode is in [APPENDIX - 8.1].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

1

• NEH_EDD to generate two initial solutions, one for 
each objective to optimize, constiututing CWS

2
• Greedy phase of the CWS

3

• Filtering and keep the non dominated solutions in 
the CWS.

Figura 8 - Initialization procedure scheme 

https://www.sciencedirect.com/topics/mathematics/dominates
https://www.sciencedirect.com/topics/computer-science/selection-phase
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4.4.2  The selection phase  

As already mentioned before, a selection phase is often applied before the 

greedy phase to choose which solutions are more convenient to elaborate, 

based on a criteria presented by [124], for the first time. The aim of the 

selection phases to select a candidate solution belonging to a less crowded 

region of the Pareto front and at the same time has already been selected a 

small number of times  To do so, a  modified version of the Crowding Distance 

Assignment (CDA) procedure, has been developed in order to carry out the 

selection process.  The original CDA method divides the working set into 

dominance levels, i.e., the set of non-dominated solutions form the first-level 

Pareto front. Once we remove these elements, we have another non-dominated 

set of solutions, which correspond with the second-level Pareto front. This 

procedure is repeated until all solutions are assigned to a Pareto front. Here, we 

do not consider this distinction in levels, because it’s not useful for our 

objectives. Afterwards, it  assigns to each solution a value (Crowding Distance) 

dependent on the normalized Euclidean distances between it and the 

solutions that precede and follow it. Such technique favors the selection of the 

most isolated solutions of the first frontier This CDA will represent a sort of 

priority value and create a hierarchy inside the field of the solutions. 

Therefore, applying the standard Crowding Distance procedure results in an 

algorithm that gets easily stuck, as if no improvements are found after the 

greedy and local search phases, the Pareto fronts do not change and the same 

solution is selected repeatedly. To avoid this, we add a selection counter (n_sel) 

to each solution which counts the number of times each solution has been 

selected. This represents the main difference between the normal CDA 

procedure and the MCDA adopted here. Then, it uses this information to 

calculate the Modified Crowding Distance (MCD). At the end, the solution with 

the highest value of MCD is selected as the starting point for the Greedy or 

the local search phases. The use of such an operator demonstrated, in 

preliminary experiments, to significantly improve the Pareto front in terms of 

https://www.sciencedirect.com/topics/computer-science/candidate-solution
https://www.sciencedirect.com/topics/computer-science/modified-version
https://www.sciencedirect.com/topics/computer-science/selection-process
https://www.sciencedirect.com/topics/mathematics/euclidean-distance
https://www.sciencedirect.com/topics/mathematics/starting-point
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quality and spread of its solutions. The diagram of this phase and the 

pseudocode are  presented in [APPENDIX – 8.2] . 

 
 

4.4.3  The greedy phase 
 

This is the heart and most innovative part of the algorithm even though the 

structure of the original IG is still kept unchanged. However, there are some 

important differences between the greedy phase adopted in the first original 

IG procedure, and the one adopted here inside the RIPG. In particular, in the 

original procedure where only one partial solution is maintained and a NEH-

like greedy heuristic is applied in one unique step at each iteration of the 

algorithm. The innovation here, is that, in RIPG, the Greedy phase becomes 

an iterative process, that works with a set of partial solutions and returns a 

set of non-dominated permutations. Let’s go into the details; the Greedy 

phase can be basically divided into two steps:  In the first one, called 

Destruction Phase, a block of d consecutive elements is randomly removed 

from the MCDA-selected solution. This is the other important difference with 

the original GP because there the removal was not carried out by groups of 

elements.  So, The Destruction step chooses a randomly a starting position k, 

and a block of d consecutive elements are removed from the selected 

solution. This 𝑘 parameter is of great importance and will be one of the 

parameters that will be tuned afterwards in the calibration of the algorithm. 

The second step, called Construction phase, iteratively reconstructs the 

solution by reinserting, one by one, all the d removed elements into all 

possible positions of a group of partial solutions. This inserting scheme was 

already effectively used in [125] and it is possible thanks to the use of Pareto 

dominance. At each step, a new set of partial solutions is generated. More 

specifically, let n be the length of the initial solution and d the size of the block 

of removed elements. During the first iteration, the first of the d removed 

elements is inserted in all possible positions of the partial solution. This 

generates (𝑛 − 𝑑 + 1) new partial solutions. The next removed element, will 

https://www.sciencedirect.com/topics/mathematics/pseudocode
https://www.sciencedirect.com/topics/computer-science/partial-solution
https://www.sciencedirect.com/topics/computer-science/greedy-heuristic
https://www.sciencedirect.com/topics/mathematics/iterative-process
https://www.sciencedirect.com/topics/computer-science/starting-position
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be inserted in all positions of all previous (𝑛 − 𝑑 + 1)  partial solutions, 

generating a new set of partial solutions of size  (𝑛 − 𝑑 + 1) × (𝑛 − 𝑑 + 2) 

and so on. This process is repeated until the last removed element is inserted 

and a set of complete solutions is generated. At the end of this process the 

total number of generated complete solutions would be equal to  ∏ (𝑛 −𝑑
𝑖=1

𝑑 + 1). This defines an upper bound for the number of solutions generated 

by the greedy phase of the algorithm, that is: 

 

∏(𝑛 − 𝑑 + 𝑖)

𝑑

𝑖=1

 ≥   ∏(𝑛 − 𝑑)

𝑑

𝑖=1

+  ∏ 𝑖  

𝑑

𝑖=1

=   (𝑛 − 𝑑)𝑑 + 𝑑! 

 
 
 

Regardless of this, the bound is very far from being tight because, at each 

iteration, all the dominated incomplete sequences are removed. And this is 

actually the main drawback of this procedure. When d values become large, 

the size of the partial solutions grows exponentially. For example, for n=20 

and d=5 the number of complete final solutions would be more than 

1.860.000. To overcome this problem, each time a set of partial solutions is 

generated, only the non-dominated partial solutions are kept and the 

dominated ones are discarded. Actually, the Construction step is a variation of 

the NEH insertion scheme used in the initialization phase. The main difference 

from that heuristic is in the use of Pareto dominance to maintain not just one 

incomplete partial solution at each iteration (as in NEH), but a whole set of 

non-dominated partial solutions generated during the insertion process. 

These solutions are added to the current working set, and then the MCD 

selection procedure is applied. In this way, a solution is selected to be 

processed by the local search phase, which is explained next. This greedy phase 

is precisely described in the pseudo-code [APPENDIX -8.3]   
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4.4.4  The local search phase 

In order to maintain the algorithm as simple and fast as possible we focused 

our effort in obtaining a simple and fast local search procedure, This phase 

has been demonstrated to be very helpful in improving the quality of solutions 

in the single as well as in the multi-objective cases. Also here, as it has been 

for all other phases until now, there are some differences between the 

original Ig and the RIPG. It is important to remember that the Local search 

procedure allows only one sequence at a time as input. In the original IG, the 

local search procedure uses as input the outcome of the greedy phase. For the 

multi-objective case, the greedy phase returns a set of non-dominated 

elements, which in most of the cases are made by more than one solutions. 

So it is intuitive that, to better choose which of the current working set 

element must undergo the local search, the previously described selection 

process is performed after the greedy phase and the solution with the highest 

MCD value is chosen and processed by the local search phase. In order to 

maintain the algorithm as simple and fast as possible we focused our effort in 

maintaining the structure of the local search much simple and fast as possible. 

Here it is a detailed description: 𝑛𝑠𝑒𝑙  elements belonging to the selected 

solution are randomly chosen, removed and re-inserted into 

𝑛𝑛𝑒𝑖𝑔ℎ consecutive positions, half of which usually precede and half follow the 

original position of the element. The symmetricity of the neighborhood with 

respect of the original selected position is not guaranteed because it strictly 

depends on the distance of the original position from the beginning or from 

the end of the sequence. Local search in a multi-objective setting is not as 

simple as one might think. The above procedure is repeated Selection Counter 

(𝑛𝑐𝑜𝑢𝑛𝑡  ) times. This is because if a solution has been selected previously, its 

closest neighborhood has been already explored. In the hope of improving the 

selected solution further, a deeper local search has to be carried out. An upper 

bound is imposed to the number of removed elements. To further speed up 

this local search, we employ the well-known accelerations of [126]. 

Afterwards, Pareto dominance is checked and a final non-dominated set is 

https://www.sciencedirect.com/topics/computer-science/speed-up
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generated as a result. During the initial design phase a decision had to be 

taken for which were the most suitable values to assign to 𝑛𝑠𝑒𝑙  and 𝑛𝑛𝑒𝑖𝑔ℎ. 

According to [7] which already used this two parameter in their experiments, 

the best values were  𝑛𝑛𝑒𝑖𝑔ℎ = 5 and 𝑛𝑠𝑒𝑙  dynamically changing according to 

the value of 𝑛𝑐𝑜𝑢𝑛𝑡  as explained in the following formula:  

𝑛𝑠𝑒𝑙 =  {
𝑛𝑐𝑜𝑢𝑛𝑡           𝑛𝑐𝑜𝑢𝑛𝑡 ≤ 𝑛/2

𝑛
2⁄                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

 

However, we decided to keep the value of 𝑛𝑛𝑒𝑖𝑔ℎ  as this one decided by the 

author, and test the variation of the performance of the algorithm in the 

phase of Calibration that will be treated later. The pseudocode of the local 

search procedure is presented [APPENDIX – 8.4]: 

 

4.4.5  The restart phase 
 

The last phase of the RIPG procedure is the restart phase. As we already 

mentioned, this whole algorithm, made up by a very large number of greedy 

phase followed by selections has the tendency to choose a certain direction 

and this can bring to a situation of stuck in local optimum points: this is the 

one main drawback of original IG methods. This is actually a problem that is 

present in all the greedy methods, because it intrinsically depends from its 

nature and of course RIPG is no different. To avoid this potential problem, we 

have included a simple, yet reliable restart phase. As one can intuitively 

understand, the idea is to set a certain condition that, if verified, certify that 

our algorithm is in a situation of stuck and so need to be restarted with the 

addition of some variability. This procedure merely consists of storing all the 

elements of the current working set in a separate archive and then creating a 

new random working set of 100 elements. This is the simplest possible restart 

scheme that still allows the algorithm to escape from a situation in which the 

current working set is stalled. This procedure has one main advantage and one 
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main disadvantage. The main advantage is that it is a very fast way to 

introduce diversification which opens new promising directions and also add 

necessary diversification. Its main inconvenience consists of the difficulty in 

choosing a suitable restart criterion, which is far from being a trivial decision. 

The general idea, also proposed in [7], was to execute a restart when the 

working set has not been changed during a sufficiently large number of 

iterations. Yet, this do not solve our decisional problem because in this case, 

we’ll have to choose a reasonable limit number of iterations and so to 

understand when a working can be considered not changed. Initial tests and 

calibrations done by [7] results in choosing the maximum number of iterations 

as 𝑛 × 2 according to the size of the input instance. However this strategy is 

sometimes inaccurate because it cannot detect a change in the working set 

that does not affect its cardinality, yet it is very simple and fast. Anyway, we 

need also to consider the right lower bound for this number that is, be also 

careful that the minimum number of iterations does not generate too much 

restart procedures, otherwise the algorithm lose consistency. In this way, it 

could prevents reaching of a steady state condition in the search or being too 

seldom applied, it could waste valuable CPU time. Based on these 

considerations, we however decided to not use the same criterion as done in 

[7].  

The termination criteria is applied when a maximum number of decodings is 

reached. This budget is calculated by the following formula: 

 

𝑀𝑎𝑥𝐷𝑒𝑐𝐵𝑢𝑑𝑔𝑒𝑡 =
150.000 𝑥 𝑛𝑗𝑜𝑏𝑠

100
+ 5.000[𝑚𝑠] 

 

  

 

 

 

 

 

https://www.sciencedirect.com/topics/mathematics/cardinality
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5.1 Benchmark description 

The aim of this section is to describe how numerical analysis has been 

conducted and the criteria adopted to select the most convenient benchmark 

for the calibration of the RIPG and the comparison with a competitor 

algorithm considered for our specific problem. In our case we will later 

compare the performances of RIPG with the ones of the NGSA-II. 

It is to be noted that different test benchmarks have been adopted for the 

calibration phase and for the comparison. In fact, the RIPG computational 

time of analysis rises exponentially when a large number of jobs and stages is 

considered. Moreover, it is even rare that in the industrial field of application 

of this algorithm, a very high number of stages is considered. That’s why, for 

these practical reasons, a 10 instance file for the calibration of the algorithm 

has been generated, each with a number of jobs chosen randomly among 

among {15, 30, 45, 60}, random number of stages among {4, 8, 12} and a 

random number of machines (with at least one machine per stage).  

The obtained test benchmark is summarized in the following table:  

 

Tabella 7 - benchmark description 
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As shown in the table, an instance is defined by 3 parameters: 

n and m indicate the number of jobs and number of stages, respectively. L 

indicates the number of machines. The operation processing times are 

generated with the following criteria: the common pattern is to generate the 

processing time for each operation independently using a uniform 

distribution.  

For any instance, the job release dates are set to 0, and the due dates are 

generated using the method of (Choi et al., 2005). Given two parameters TF 

and DR called tardiness factor and due date range respectively, the due date 

is calculated by:  

𝐷𝑈(𝑃 (1 − 𝑇𝐹 −
𝐷𝑅

2
) , (𝑃 (1 − 𝑇𝐹 +

𝐷𝑅

2
)) 

 

where P is a lower bound on the makespan.  

We set TF=0.1, DR=0.8 for a proper simulation of real situations. In each stage 

the number of parallel machines is DU(2, 4). For each job, not all but at least 

one machine in a stage is eligible to process it. The probability that a machine 

is not eligible to process a job is set as 20%. 

The sequence-dependent setup times between jobs on all machines are 

random integers sampled from [1,99].  

 

5.2   RIPG calibration   

With a full factorial experimental design, the three factors to calibrate in the 

RIPG  algorithm are the following:  

- “k” parameter: as explained in chapter 4, this value is involved in the 

Destruction step of the Greedy phase. It represents starting position of the job 

https://www.sciencedirect.com/science/article/pii/S030505481830217X#bib0007
https://www.sciencedirect.com/topics/computer-science/lower-bounds
https://www.sciencedirect.com/topics/computer-science/parallel-machine
https://www.sciencedirect.com/topics/mathematics/factorials
https://www.sciencedirect.com/topics/mathematics/experimental-design
https://www.sciencedirect.com/topics/computer-science/starting-position
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sequence where the block of d consecutive elements is removed.  Potentially 

this value could be randomly generated in the interval between 1 and the 

length of the job sequence, but in these extreme cases, the functionality of 

the greedy phase is lost. So, to ensure at the same time good functionality and 

enough variability of the returned solutions, some reasonable values for the 

calibration of the k parameter are chosen as k = {3, 5, 7}; 

- “n_neigh” parameter:  this parameter stands for “number of neighborhoods” 

and is involved in the Local Search phase where n_sel elements belonging to 

the selected solution are randomly chosen and reinserted into n_neigh 

consecutive positions, half of which usually precede and half usually follows 

the original position of the removed element. As also suggested in Ciavotta, 

Minella and Ruiz 2013, where n_neigh = 5 is indicated as optimal parameter, 

we decide to calibrate the algorithm also testing n_neigh = 3 and n_neigh = 7. 

So the values chosen for the calibration are n_neigh= {3, 5, 7}; 

- “dec_fun”: it stands for decoding function. We have to choose among 

Permutation Scheduling (PS) and List Scheduling (LS). So we have that  

dec_fun = {PS, LS}.  From the literature review we have seen that probably for 

the characteristics of our problem,  

So summarizing with a full factorial design of experiments (DoE), the total 

number of tests is: 

10 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 × 5 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 × 2 𝑑𝑒𝑐𝑓𝑢𝑛  × 3 𝑛𝑛𝑒𝑖𝑔ℎ × 3 𝑘 = 900   

To evaluate the performance of the algorithm the Hypervolume indicator has 

been considered. The hypervolume indicator is a set measure used in 

evolutionary multiobjective optimization to evaluate the performance of 

search algorithms and to guide the search. The hypervolume indicator, first 

introduced by Zitzler et al. as the ‘size of the space covered’, is used in many 

cases as the underlying indicator function. Up to now, it is the only known 

indicator that is compliant with the concept of Pareto-dominance, i.e., 

whenever a set of solutions dominates another set, its hypervolume indicator 
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value is higher than the one of the latter. A theoretical understanding why 

hypervolume-based algorithms outperform their Pareto-dominance based 

counterparts is still missing.  

Classical definitions of the hypervolume indicator, also known as Lebesgue 

measure or S-metric are based on volumes of polytopes [15] or hypercubes 

[6] and assume that Pareto dominance is the underlying preference relation. 

Without loss of generality, we assume that k objective functions f = (f1, . . . , 

fk) that map solutions x ∈ X from the decision space X to an objective vector 

f(x) = (f1(x), . . . , fk(x)) ⊆ Rk have to be maximized. The goal for hypervolume-

based algorithms is to maximize the hypervolume indicator IH. The 

hypervolume indicator 𝐼𝐻(𝐴) of a solution set A ⊆ X can be defined as the 

hypervolume of the space that is dominated by the set A and is bounded by a 

reference point r = (r1, . . . , rk) ∈ Rk :  

 

IH(A) =  λ[∪a∈A (f1(a), r1) × (f2(a), r2) × … × (fk(a), rk)] 

 

where λ(S) is the Lebesgue measure of a set S and [f1(a), r1] × [f2(a), r2] × · · · 

× [fk(a), rk] is the k-dimensional hypercuboid consisting of all points that are 

weakly dominated by the point a but not weakly dominated by the reference 

point. Note that the hypervolume indicator is Pareto-dominance compliant. 

Fixing the maximal number µ of solutions in an evolutionary algorithm A, the 

goal of maximizing the hypervolume indicator changes to finding a set of µ 

solutions that have the maximal hypervolume indicator value among all sets 

of µ solutions. Given one or more fronts and a reference point, it measures 

the volume of the space region between them. In our case, being the objective 

functions the minimizations of Total setup time and Total tardiness, the 

reference point chosen for each instance is represented by the Nadir Point of 
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the fits, consisting in the maximum value for each of the objective functions. 

The following figure gives a simplified yet practical representation of what 

stated before. In the figure f1 and f2 are the objective function values.  

 

Figura 9- Hypervolume indicator 

. 

To compare different algorithms, the common measure for makespan criteria 

is the relative percentage increase (RPI), as in Pan and Ruiz (2012). Yet for 

tardiness criteria, RPI is no longer adaptable because it may provide a division 

by zero when the schedule has no tardy jobs (Naderi et al., 2009). For this 

reason we use the relative deviation index (RDI) as the response variable, 

which is defined as follow:  

𝑅𝐷𝐼 =  
𝐴𝑙𝑔𝑠𝑜𝑙 − 𝑀𝑖𝑛𝑠𝑜𝑙  

𝑀𝑎𝑥𝑠𝑜𝑙 − 𝑀𝑖𝑛𝑠𝑜𝑙
 × 100 

where Algsol is the objective value of the current algorithm on the given 

instance, Maxsol and Minsol are the worst and best objective value obtained by 

any of the algorithms in the comparison, respectively. Specially, in the case 

https://www.sciencedirect.com/science/article/pii/S030505481830217X#bib0028
https://www.sciencedirect.com/science/article/pii/S030505481830217X#bib0025
https://www.sciencedirect.com/topics/computer-science/current-algorithm


60 

 

 

that the Maxsol and Minsol are equal to each other, the RDI will be 0 for all the 

algorithms. 

The experiments are implemented in Matlab 2018a on a PC with Intel® Core™ 

i7 -2670QM CPU @ 2.2 GHz 8GB of RAM. To increase algorithm running speed, 

all decoding methods (which accounts for more than 90% of algorithm 

running time) are converted to C++ codes and called in Matlab environment. 

The results of calibration experiments are analyzed by ANOVA. The ANOVA 

has been performed using MINITAB and choosing a significance level of 0.05. 

First the main effect plot shows which of the factors is likely to be significant. 

As shown here, the decoding type seems to have large influence on the 

performance of RIPG, while k and n_neigh seems not to be so relevant. 

 

Figura 10- Main effect plot of calibration 

 

 

https://www.sciencedirect.com/topics/social-sciences/information-theory
https://www.sciencedirect.com/topics/mathematics/significance-level-a
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Ciavotta, Minella and Ruiz 2013, as reference of our RIPG, used n_neigh =5 

and k =5 based on their analisys. We made calibration in their neighbourhood, 

testing also 3 and 7 as suitable values The interaction plot doesn’t show 

particular interactions. In almost every case lines seems to be quite parallel. 

Let us see now the effective ANOVA table for the model: 

 

 

Figura 11- Interaction plot 
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Two considerations can be done here:  

• k and dec_type are relevant and also their interaction.  

• R-sq is high enough to consider a good reliability of the model  

To verify if the reliability of the model is satisfied, we need also to verify the  

 

Tabella 8- ANOVA of calibration 
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hypothesis of normality of the standard residuals (SRES), their interval and the 

hypothesis of equal variance. The obtained plots are the following: 

 

 

 

k dec_type

7

5

3

@dec_PS_ST_pseq_vis_mex

@dec_LS_ST_pseq_vis_c_mex

@dec_PS_ST_pseq_vis_mex

@dec_LS_ST_pseq_vis_c_mex

@dec_PS_ST_pseq_vis_mex

@dec_LS_ST_pseq_vis_c_mex

191817161514131211

P-Value 0,648

Bartlett’s Test

95% Bonferroni Confidence Intervals for StDevs

Test for Equal Variances: RDI vs k; dec_type

Figura 5- Normality test 

Figura 12- Test for equal variances 
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From these plots we can say that:  

• Normality of SRES is accepted; 

• Scatterplot of SRES is almost concentrated between [+3; -3]; 

• The hypotesis of equal variances is accepted. 

 

So the model is reliable and we can perform the Tukey test using a confidence 

interval of 95% (CI=95%). 
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Scatterplot of SRES vs FITS; k

Figura 14- Scatterplot interval for SRES 
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Tabella 9- Tukey test 

 

From the ANOVA analysis, we can conclude that: 

• As decoding type, Permutation scheduling (PS) is always preferable,  

independently by the choice of other parameters.  

• N_neigh is not significant, so we keep the same value n_neigh=5, as 

(Ciavotta, Minellla and Ruiz, 2013). 

• The k=3 is better than k=5, which is better than k=7.   

 

So, for further analysis of comparison with NGSA-II, we will use the results 

of this section so to use the better performances obtainable from our RIPG.  

 

5.3   Performance comparison with NGSA-II   

For the comparison between the RIPG and NSGA-II, a set of 9 instances has 

been selected. Each instance has 10 cases. The instances are organized in 
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blocks of 3, each respectively with n_jobs= 20, 50, 100 and m_stages = 5,10, 

20.  

 

Figura 15 - Tests for comparison 

 

As before, we have: 

𝟗 𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 × 𝟏𝟎 𝒄𝒂𝒔𝒆𝒔 × 𝟓 𝒓𝒆𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒐𝒏𝒔 × 𝟐 𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎

= 𝟗𝟎𝟎 𝒕𝒐𝒕𝒂𝒍 𝒄𝒂𝒔𝒆𝒔  

For a preliminary idea of the performance of the algorithms a plot of the 

obtained fronts is showed for each combination of jobs and stages. Later, 

results and interpretations of these graphs will be discussed. 
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Figura 16 - Fronts comparison 
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Figura 17 - HV means comparison 20 jobs 5 stages 
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Figura 18 - HV means comparison 20 jobs 10 stages 

Figura 19 - HV means comparison 20 jobs 20 stages 
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Figura 20- HV means comparison 50 jobs 5 stages 

Figura 21- HV means comparison 50 jobs 10 stages 
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Figura 22- HV means comparison 50 jobs 20 stages 

Figura 23 - HV means comparison 100 jobs 5 stages 
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Figura 24- HV means comparison 100 jobs 10 stages 

Figura 25 - HV means comparison 100 jobs 20 stages 
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Figura 26- Standard deviation comparison 20 jobs 5 stages 

Figura 27 - Standard deviation comparison 20 jobs 10 stages 
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Figura 28 - Standard deviation comparison 20 jobs 20 stages 

Figura 29 - Standard deviation comparison 50 jobs 5 stages 
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Figura 30- Standard deviation comparison 50 jobs 10 stages 

Figura 31 - Standard deviation comparison 50 jobs 20 stages 
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Figura 32 - Standard deviation comparison 100 jobs 5 stages 

Figura 33 - Standard deviation comparison 100 jobs 10 stages 
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• Both the comparison plot of the fronts and the HV means for each instance 

shows that generally, it seems RIPG have better performances in almost 

each case we have considered.  

To have a statistical confirmation of what stated, ANOVA analysis is 

conducted in the following slides.  The comparison is performed using RDI. 

The ANOVA results are listed below. 

 

 

Figura 34 -  Standard deviation comparison 100 jobs 20 stages 
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Figura 35 - Main effect plot for comparison 

Figura 36- Interaction plot for comparison 
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Factor Information    

 

 

 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

  Alg 1 544137 544137 1103,16 0,000 

  n 2 1853 926 1,88 0,153 

  m 2 2591 1296 2,63 0,073 

  Alg*n 2 27391 13695 27,77 0,000 

  Alg*m 2 881 441 0,89 0,410 

  n*m 4 1959 490 0,99 0,411 

Error 886 437020 493       

  Lack-of-Fit 4 6459 1615 3,31 0,011 

  Pure Error 882 430562 488       

Total 899 1015832          

 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

22,2093 56,98% 56,35% 55,61% 

    

 

Tabella 10 - ANOVA for comparison 

 

ANOVA shows that the factor “Algorithm” and its interaction with the number 

of jobs n, seems to be the only relevant factors. Now the hypothesis of 

normality of SRES, their interval and test for equal variances must be verified 

to check if the results obtained by ANOVA can be accepted or further 

elaborations of the data are needed.  

Factor Type Levels Values 

Alg Fixed 2 NGSA-II; RIPG 

n Fixed 3 20; 50; 100 

m Fixed 3 5; 10; 20 
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Figura 37- Scatterplot SRES for comparison 

 

 

Figura 38 - Normality test for comparison 
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The hypothesis of normality of SRES is rejected because p-value is less than 

0.05. Anyway the distribution and the shape of the data allow to keep the 

validity of conclusions obtained by the ANOVA. The SRES are almost 

concentrated between [-3, 3]. So same considerations can be done. 

 

Figura 39 - Test for equal variances for comparison 

 

 

Tabella 11 - Tukey test for comparison 

 

Alg n m

RIPG

NGSA-II

100

50

20

100

50

20

20

10

5

20

10

5

20

10

5

20

10

5

20

10

5

20

10

5

4540353025201510

P-Value 0,000

Bartlett’s Test

95% Bonferroni Confidence Intervals for StDevs

Test for Equal Variances: RDI vs Alg; n; m
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So, from these graphs we can see that even if the normality of SRES in the ANOVA 

of comparison is rejected, the figures shows a trend which let us think the Tukey 

test can be performed and the ANOVA results are valid.  The conclusion is that, is 

evident that the performance showed by the RIPG is far better than NSGA-II in 

almost every case we have considered, independently from the number of jobs and 

machines we are considering. The results, of this research, may be useful for future 

research, towards the development of new solution methods, and/or for the 

application of methods investigated in the context of real companies, with this kind 

of scheduling problem. 

So from this analysis we can finally conclude that: 

• Even if the normality of SRES in the ANOVA of comparison is rejected, the 

figures shows a trend which let us think the Tukey test can be performed 

and the ANOVA results are valid.  

• The conclusion is that, is evident that the performance showed by the RIPG 

are far better than NSGA-II in almost every case we have considered, 

independently from the number of jobs and machines we are considering.  

• The results, of this research, may be useful for future research, towards the 

development of new solution methods, and/or for the application of 

methods investigated in the context of real companies, with this kind of 

scheduling problem. 
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Chapter 6 
 

 

[6] Conclusions 
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In this study we have proposed a RIPG algorithm to solve the hybrid flow shop 

scheduling problem with unrelated machines and machine eligibility 

constraint to minimize the total tardiness and total setup time. This research 

is motivated by considering some features common in the industrial field of 

the Hybrid Flowshop yet not well considered in the literature of the 

optimization of production scheduling. There have been several methods 

proposed in the literature for the a posteriori multi-objective flowshop 

problem. However, as far as we know,  the setup times have seldom been 

considered in the objective function therein. This paper represents a first 

attempt to tackle this problem. A relatively new approach, the iterated greedy 

procedure, has been adopted for the problem. The proposed algorithm is 

analyzed in detail, and its performance is shown to be superior to the 

conventional multi-objective approach. Moreover, by analyzing two widely 

used decoding methods, permutation scheduling and list scheduling, we 

discover that in our context and for the considered objectives, PS is shown 

providing better results. Indeed, the PS has a higher controllability on the 

schedule building procedure, and it seems to be a fundamental factor for its 

superiority, especially when the number of jobs increases.  

We have presented two main contributions to the field of the multi-objective 

flowshop. First, as said before, we have considered for this environment, the 

sequence-dependent setup times both in the shop model and the objective 

functions. Second, we have extended a new strategy which achieved state-of-

the-art results for the single objective flowshop, the Iterated Greedy 

metaheuristic, in order to deal with several objectives . With this we highlight 

the relevance of a scientific and algorithm engineering approach in designing 

and developing algorithms for manufacturing systems. The limited yet 

focused campaign of tests by means of ANOVA have confirmed that this 

algorithm shows far better performances than a serious competitor well 

applied in this field as NGSAII. As a consequence, the proposed method can 

be considered the one of the state-of-art procedure for this scheduling 

problem. 

https://www.sciencedirect.com/topics/computer-science/scheduling-problem
https://www.sciencedirect.com/topics/mathematics/posteriori
https://www.sciencedirect.com/topics/computer-science/multiobjective
https://www.sciencedirect.com/topics/computer-science/metaheuristics
https://www.sciencedirect.com/topics/computer-science/scheduling-problem
https://www.sciencedirect.com/topics/computer-science/scheduling-problem
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Future research lines stem from the possibility of, first, applying this scheme 

to solve different or more realistic and complicated scheduling problems; 

second, investigating the possibility to incorporate user preference 

information into the search procedure for a more concentrated search on the 

objective space and to generate higher quality solutions aligned to the user 

preference. 
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8.1   Pseudocode of initialization phase   

 

 
%% INITIALIZATION PHASE 
 
% Declare number of objectives and greedy phase counter  
 
n_obj= set the number of objectives; 

n_dec_gp= 0;  
  
% NEH_EDD is used to generate two initial solutions, one for 

% each objective to optimize, which will create the CWS  

    

[Current working set or CWS] = NEH_EDD (decoding method, input data); 

 

 
% decoding of CWS 

% initialize counter n_eval  

 
n_eval=0;   
  
for i = 1: length(CWS) 

 

      [CWS] = decoding (CWS, input data); 
 
end 
  
%Greedy phase of ISS 

%update counters  

 
 
for i= 1: length(CWS) 

      

   [CWS, n_dec]= greedy_phase (CWS, input data);   

   n_eval = n_eval+1 ;  

   n_dec_gp = n_dec_gp + n_dec;  
  
end 
 
%put obtained solutions in the current working set  
CWS = initial solutions 

 
% filters the doubles  
CWS = CWS without doubles;  
 
% keep the non dominated solutions.  
CWS= paretofront(CWS) 
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8.2   Pseudocode of MCDA 

 

 
function [d] = MCDA_(X, N_eval) 
 

% X is the solution set 

% N_eval is the vector of counters  

% d is the MCDA value 

 

% return the number of points and number of objectives 

[DimSet, n_obj] = size(X);  
 
% Define the whole matrix PS 
% the last column as a point index 
 
PS = [X N_eval zeros(DimSet,4) [1:DimSet]'];    
 
  
for m = 1,…,n_obj     

      

    PS= sort_rows(PS(m)); 

    PS_dist=PS(:,4)'; 

      

      

    if DimSet>2 
 
        % save one line 

        PS([1,end], m+3)=-1;  

 
    else 

 
        % To tackle the special case where DimSet = 2 

        PS([1, end], m+3)= 1;  

 
    end 

      

    for i=2,…,DimSet-1 

          

        fmax = max(PS(:,m)); 

        fmin = min(PS(:,m)); 

          

        PS_dist(i)= PS_dist(i) + ((PS(i+1,m)-PS(i-1,m))/(fmax – fmin)); 

                                                                        

     

        PS(i, m+3)= PS_dist(i); 

          

    end 

      

end 
  
PS( PS(:,5) == -1, 5) = max(PS(:,5));     

PS(:,6) = PS(:,5) + min( max(PS(:,5),0));  
 
% return to the original order  
PS(:,7) = PS(:,6)./(PS(:,3)+1); 

PS= sort_rows(PS, 8);       

d = PS(:,end - 1); 
  
end 
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8.3   Pseudocode of Greedy phase   

 

%% GREEDY PHASE  

 

% define the k value, that is the number of elements to remove  

k= 5;   

   

% destruct function outputs are 𝜋𝑑 ,  𝜋𝑟  

[𝜋𝑑,  𝜋𝑟] = destruct(selected solution, k); 

 

% construct function. It outputs a set of non-dominated  

% solutions to add to the CWS 

[SET]= construct(𝜋𝑑,  𝜋𝑟, data input);  

 

% count the number of decodings  

n_dec= count number of decodings  

 

 

 

8.4   Pseudocode of local search    

 

 
function [LS]= Local_search(Sol, n_sel, n_neigh, data input) 
  
% Sol is the selected solution for the local search  
% n_neigh is the number of positions a element could be moved to the left or to the 
%right  
 
% Pos is a n_sel array which stores the positions of the elements to 

%remove 

Pos = random_array(1 length(Sol));  

 

  
for i=1,…,n_sel   

       

      

    if Pos(i) <= n_neigh/2   then  

          

        n_left = Pos(i)-1; 

        n_right = n_neigh-n_left;  

          

    else 

        if Pos(i) > length(Sol)-n_neigh/2    then  

              

            n_right = length(Sol) - Pos(i); 

            n_left = n_neigh - n_right;  

              

        else 

              

            n_right= round(n_neigh/2);          

            n_left= round(n_neigh/2);  

              

        end 

    end   

   
% Remove job in position Pos(i) 
Sol_new =Job_remove(Sol, Pos(i)); 
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% Insert the removed element in Pos(i)-j 
    for j=1,…,n_left 

          

        X_left(j,:) = Job_insert(Sol_new, Sol(Pos(i)),  Pos(i)-j);    

          

    end  

 
 % Insert the removed element in Pos(i)-j 
    for j= 1:n_right  

       

        X_right(j,:) = Job_insert(Sol_new, Sol(Pos(i)), Pos(i)+j);  

          

    end  

 
%store in LS, n_sel x n_neigh insertions 

LS= [LS; X_left; X_right];            
 
end 
  
% Evaluation and final solution of LS 

% initialize counter  

for i=1,…,number_of_solutions_in_LS 

      

     

     [TotTard, SPS] = decoding(LS(i), data input); 

     n_eval = 0; 

      

end 
  
          

  PF= paretofront(LS));  

  LS=LS(PF); 

   

   

End 

 


