
POLITECNICO DI MILANO
School of Industrial and Information Engineering

Department of Electronics, Information and Bioengineering
Master of Science in Biomedical Engineering

Surgical Path Planner for Steerable Catheters with

Reinforcement Learning Approach

NearLab
Neuroengineering and medical robotics Laboratory

of Politecnico di Milano

Supervisor: Prof. Elena De Momi
Co-supervisor: Dott. Ing. Alice Segato

Master Thesis of:
Sestini Luca, 897026

Academic Year 2018-2019

To My Beloved Parents.

Index

Sommario i

Abstract iii

1 INTRODUCTION 1
1.1 Keyhole neurosurgery framework 1
1.2 Glioblastoma treatment . 2
1.3 Steering flexible needles . 4
1.4 EDEN2020 project overview 10
1.5 Aim of the work . 11

2 STATE OF THE ART OF PATH PLANNING 14
2.1 Standard path planning: literature overview 14

2.1.1 The path planning problem 14
2.1.2 Artificial Potential Field methods 15
2.1.3 Graph-Based methods 16
2.1.4 Sampling-Based methods 18

2.2 Path planning algorithms for steerable needles 20
2.2.1 Learning-based methods 23

2.3 Thesis Objective . 24

3 MATERIALS AND METHODS 26
3.1 Workflow overview . 26
3.2 Dataset creation . 28
3.3 Path planner development . 33

3.3.1 Reinforcement Learning background 34
3.3.2 GA3C algorithm . 41
3.3.3 Reward function . 48
3.3.4 Training strategy . 51

4 EXPERIMENTAL SETUP AND RESULTS 52
4.1 Experimental setup . 52

4.1.1 Environment creation 52
4.1.2 Training setup . 53
4.1.3 Hardware and Software specifications 53
4.1.4 Experimental protocol 55

4.2 Results evaluation . 56
4.2.1 Training performances 56
4.2.2 Testing performances and comparison with state-of-

the-art . 56

5 DISCUSSION 63

6 CONCLUSION AND FUTURE WORK 65

Bibliography 67

Ringraziamenti

Abbreviations

A2C Advantage Actor-Critic

A3C Asynchronous Advantage Actor-Critic

AC Actor-Critic

CST Corticospinal Tracts

DRL Deep Reinforcement Learning

EDEN2020 Enhanced Delivery Ecosystem for Neurosurgery in 2020

GA3C Asynchronous Advantage Actor-Critic on a GPU

GBM Glioblastoma Multiforme

KN Keyhole Neurosurgery

LSTM Long Short-Time Memory

MIN Minimally Invasive Neurosurgery

MIS Minimally Invasive Surgery

MR Magnetic Resonance

NNs Neural Networks

PBN “Programmable Bevel-Tip” Needle

RL Reinforcement Learning

RNN Recurrent Neural Network

RRT Rapidly Exploring Random Tree

SGD Stochastic Gradient Descent

List of Figures

1.1 Straight path limitations in brain environment. 3
1.2 Transverse and sagittal views of a Glioblastoma Multiforme

(GBM) in T1-weighted MRI. 4
1.3 Concentric-tube robot comprising four telescoping sections

that can be rotated and translated with respect to each other 5
1.4 Dutycycle bevel tip solution 6
1.5 Tendon-actuated tip needle 7
1.6 Interlocked segments steerable catheter 8
1.7 Multi-segment catheter design and front view cross-section. . . 9
1.8 Kinematic view of a four-part needle 10
1.9 EDEN2020 platform in use, with fine positioner, and visual

front end . 11

2.1 Application of Dijkstra’s algorithm to a simple graph 17
2.2 Comparison between RRT and RRT* growth of the tree. . . . 20
2.3 Simulation of the RG-RRT planning strategy to target prostate

region. 22

3.1 Training workflow . 27
3.2 Path planner workflow . 28
3.3 T1 weighted MR images. 29
3.4 Time of Flight MR angiography, taken at the level of the Circle

of Willis . 29
3.5 High Angolar-Resolution Diffusion Imaging highlighting cor-

ticospinal tracts (coronal view) 30

3.7 3DSlicer rendering of corticospinal tracts extracted from
HARDI MR image. 31

3.6 3DSlicer rendering of blood vessels and brain cortex extracted
by means of thresholding segmentation 31

3.8 3DSlicer rendering of brain model obtained registering brain
cortex, blood vessels and corticospinal tracts models 32

3.9 Example of 3D map, obtained by binarizing the model shown
in Figure 3.8. 33

3.10 Example of 2D map, obtained by considering the central slice,
parallel to the frontal plane of the corresponding 3D map. . . 33

3.11 Reinforcement Learning basic flowchart 36
3.12 Actor-Critic algorithm . 42
3.13 Architecture of the network used by GA3C. 44
3.14 RNN network structure: real architecture and dynamic repre-

sentation . 45
3.15 Dynamic representation of RNN and LSTM networks 46
3.16 Reward function: kinematic constraints 51

4.1 Original 2D binary map and hemisphere maps obtained from
it and used during training . 54

4.2 Training performance assessment on 2D model 57
4.3 Training performance assessment on 3D model 58
4.4 Path connecting the same starting cell and exit cell obtained

through GA3C model and A* algorithm on a 2D map. 59
4.5 Box-plots comparing the performances of the proposed GA3C

algorithm and A* algorithm on a 2D map, according to the
main required features. 60

4.6 Path connecting the same starting cell and exit cell obtained
through GA3C model and RRT* algorithm on a 3D map. . . . 61

4.7 Box-plots comparing the performances of the proposed GA3C
algorithm and RRT* algorithm on a 3D map, according to the
main required features. 62

List of Tables

2.1 Steps of Dijkstra’s algorithm solving the path planning prob-
lem in Figure 2.1. 18

3.1 Reward weights . 50

4.1 Cost function weights . 55
4.2 Computational times and Smoothness indexes on 2D test map 60
4.3 Computational times and Smoothness indexes on 3D test map 62

Sommario

Negli ultimi anni, la richiesta di procedure chirurgiche meno invasive è
aumentata sostanzialmente. La chirurgia mini-invasiva permette di interve-
nire minimizzando l’entità delle incisioni e il danneggiamento di tessuti sani,
riducendo, di conseguenza i tempi di guarigione e i conseguenti rischi di in-
fezione. Ciò risulta in procedure più sicure, con sostanziale riduzione dei
rischi post-operatori, maggior comfort per il paziente e riduzione dei tem-
pi di ricovero in ospedale. Con il termine “Keyhole Neurosurgery” (KN) si
indica un esempio di chirurgia mini-invasiva eseguita attraverso una piccola
incisione alla base del cranio. Attraverso l’incisione, un catetere può essere
inserito all’interno del cranio per effettuare biopsie o trattamenti specifici.
Questo lavoro si concentra su un’applicazione di KN per il trattamento del
Glioblastoma multiforme, una delle forme di gliomi più aggressiva e tutt’o-
ra difficile da curare. L’approccio standard per il suo trattamento consiste
della resezione chirurgica; tuttavia questo approccio presenta importanti li-
miti, ed un’insoddisfacente probabilità di successo. Il trattamento attraverso
somministrazione locale di specifici farmaci anti-tumorali, eseguita in modo
mini-invasivo tramite KN, è stato recentemente proposto come alternativa.

Tuttavia, raggiungere lesioni collocate in zone profonde del cervello rap-
presenta tuttora un importante limite all’applicazione di KN per trattamento
locale del glioblastoma. Recentemente, diversi prototipi di cateteri flessibili
sono stati proposti; essi rappresentano un importante passo in avanti rispet-
to ai cateteri rigidi, comunemente utilizzati, richiedendo però, al contempo,
una pianificazione del percorso più complessa, che deve tenere in considera-
zione una molteplicità di fattori normalmente assenti per cateteri rigidi. Gli
algoritmi di pianificazione presenti in letteratura, sono generalmente limitati
dall’impossibilità di ottimizzare direttamente le traiettorie, rispetto a tutti i
parametri richiesti. Al contrario, utilizzano generalmente degli step successi-
vi di raffinamento di una prima traiettoria grezza, richiedendo un alto tempo
computazionale, e portando spesso a risultati sub-ottimali.

i

Lo scopo di questo lavoro è quello di contribuire allo sviluppo di un pia-
nificatore di traiettorie curvilinee per cateteri flessibili, che possa assistere il
chirurgo, in fase pre-operatoria. Al pianificatore è richiesto di stimare la mi-
glior traiettoria curvilinea per raggiungere un target a partire da un’area di
ingresso, definita dal chirurgo. In questo lavoro, l’ottimalità della traiettoria
è valutata considerando la distanza minima da strutture vitali (vasi e tratti
corticospinali) e la sua conformità rispetto ai limiti cinematici e geometrici
del catetere flessibile.

Il metodo proposto è basato su un particolare approccio di “Reinforcement
Learning” (RL) chiamato “Asynchronous Advantage Actor-Critic” (A3C), per
la prima volta utilizzato in questo contesto, per le informazioni a noi note
dalla letteratura. Il pianificatore esegue una segmentazione semi-automatica
di risonanze magnetiche multi-modali appartenenti al paziente, per identifi-
care ed estrarre le regioni anatomiche di interesse. I modelli così ottenuti,
assieme al punto di ingresso e al target, vengono forniti in input al modello
A3C, che restituisce in output la traiettoria ottimale. Il modello A3C è ba-
sato sull’utilizzo di reti neurali, e necessita di una fase di training in grado di
garantirne la massima capacità di generalizzazione (il modello deve fornire la
traiettoria ottimale dato un nuovo paziente, senza effettuare alcun’altra fase
di training).

Il metodo sviluppato è in grado di stimare traiettorie sia nello spazio 2D
che 3D, e considera, come strutture anatomiche da evitare, vasi sanguigni
e tratti corticospinali. I test sono stati effettuati confrontando il pianifica-
tore proposto con metodi standard presenti in letteratura. La qualità dei
risultati è stata stabilita valutando i tre principali requisiti richiesti al pia-
nificatore: minimizzazione della lunghezza della traiettoria calcolata (limite
geonetrico del catetere), capacità di evitare gli ostacoli, mantenendo la mag-
gior distanza possibile da tratti corticospinali e vasi sanguigni, e rispetto dei
limiti cinematici del catetere.

I risultati mostrano che la soluzione proposta è capace di generare tra-
iettorie migliori rispetto ai metodi presenti in letteratura, in accordo con
una funzione di costo che tiene in considerazione i requisiti menzionati. In
più, rispetto ai pianificatori standard, l’approccio “learning-based”, proprio

ii

del RL, garantisce maggiore flessibilità al metodo proposto, rendendo possi-
bile una sua futura estensione ad ambienti dinamici per un possibile utilizzo
intra-operatorio.

Il lavoro è stato svolto nel contesto del progetto Europeo “Enhanced De-
livery Ecosystem for Neurosurgery in 2020” (EDEN2020). Tra i suoi scopi,
EDEN2020 punta a sviluppare cateteri in grado di rimanere in-situ per pe-
riodi prolungati, per il trattamento di malattie neuro-oncologiche croniche.
La principale tecnologia sviluppata all’interno del progetto è il “Programma-
ble Bevel-tip Needle” (PBN), un nuovo catetere flessibile con una particolare
struttura fatta da quattro segmenti incastrati tra loro, che permettono il
movimento nello spazio 3D con ottima destrezza.

iii

Abstract

Over the last few decades, the demand for less invasive surgery for brain
interventions has increased a lot. Minimally Invasive Surgery (MIS) allows to
intervene minimizing the size of incisions and the damage to healthy tissues,
thus reducing the wound healing time and the associated risk of infection.
All this results on safer procedures, with reduced post-operative risks and
discomfort for the patient, and shorter hospitalization time. Keyhole Neu-
rosurgery (KN) is an example of MIS performed through a very small hole
in the skull, called “burr hole” or “keyhole”. Through the keyhole, catheters
can be inserted into the brain for biopsy and therapy. This work focuses on
an application of KN for glioblastoma treatment through local drug delivery,
a currently investigated approach that aims at overcoming the limitations of
standard surgical resection approach.

However, reaching deep located targets still represents a major challenge,
which limits the application of local treatment of glioblastoma. Recently
developed prototypes of steerable catheters represent an important step for-
ward from rigid ones, but have also introduced the need for automatic path
planners, able to deal with a complex optimization process of trajectories.
Path planning algorithms present in literature are generally limited when
applied to steerable catheters, by the impossibility to directly optimize the
trajectories, according to all the requested features. Instead, they generally
use subsequent refinement steps of a raw trajectory, leading to high compu-
tational time and sub-optimal results.

The aim of this work is to contribute to the development of a surgical
path planner for curvilinear trajectories, able to pre-operatively assist the
surgeon to define the best surgical trajectory to perform. The path planner
is expected to estimate the best curvilinear trajectory for reaching a given
target from an entry area, identified by the surgeon, ensuring a high level
of safety and compliance with kinematic and geometric constraints of the
catheter.

iii

The developed system is based on a Reinforcement Learning (RL) ap-
proach, named Asynchronous Advantage Actor-Critic (A3C) algorithm, ap-
plied for the first time in the context of KN path planning. The path planner
performs a semi-automatic segmentation of multi-modal Magnetic Resonance
(MR) images of the patient, in order to identify and extract anatomical re-
gions of interest such as anatomical obstacles and brain cortex. The ob-
tained models of the anatomical structures, together with the entry and
target points, are fed to the A3C model, which computes the optimal trajec-
tory connecting the two points. The A3C model is based on a deep-learning
approach, using neural networks, thus requiring an accurate training phase.
During the training phase, the model is expected to get a solid generalization
capability, in order to be able to perform optimally on new unseen patients,
without any retraining phase.

The proposed method is able to deal with both 2D and 3D path planning
problems, and it considers, as safety regions, blood vessels and corticospinal
tracts. The proposed solution was tested against standard path planning
algorithms from literature. The quality of the performances was assessed
evaluating the three main requested features: insertion length minimization
(geometric constraint), obstacles clearance and kinematic feasibility.

The overall study shows that, compared to standard path planning al-
gorithms, the proposed method was able to determine better solutions, ac-
cording to a cost-function defined considering all the requested features. Ad-
ditionally, with respect to standard path planning algorithms, the learning-
based approach guarantees a greater flexibility to the model, making it suit-
able to be extended to dynamic environments and used not only pre- but
also intra-operatively.

This project is carried in the context of the European project Enhanced
Delivery Ecosystem for Neurosurgery in 2020 (EDEN2020). Among its var-
ious goals, EDEN2020 project aims at developing steerable probes that can
remain in-situ for long periods for the treatment of chronic neuro-oncological
diseases. The main technology of this project, currently under development,
is PBN (Programmable Bevel-tip Needle), a new multi-segment steerable
probe with a programmable bevel, able to move in 3D space with great dex-

iv

terity.

v

Chapter 1

INTRODUCTION

1.1 Keyhole neurosurgery framework

Surgical treatments have sensibly improved the quality of life, allowing us to
live longer and healthier. However, classical open-surgery is often a trauma
for the body, with large incisions and damages to healthy tissues surrounding
the targeted area. This creates risks for the patient during the intervention
and also after, when the long wound healing times expose him to the risk of
developing infections. In addition to this, the long hospitalization times fol-
lowing open-surgeries, are generally associated with high costs [1]. For these
reasons, over the last few decades, new techniques have been intensively in-
vestigated, leading to a massive development of MIS.
Starting from the 1970s, when Kurt Semm, in Munich and Kiel, began to ex-
tend laparoscopy from diagnosis to surgical operations [2], an increasing num-
ber of procedures, previously treated with open surgery, started to be treated
non-surgically; an important boost for MIS was represented by the develop-
ment of imaging techniques and the solid introduction of image guidance in
surgery procedures [3]. Another factor contributing to the success of MIS is
the constant upgrading of surgical instruments, which have gone from cum-
bersome tools to sophisticated, automatically controlled instruments. The
use of minimally invasive approaches into surgical specialties, including gen-
eral surgery, urology, thoracic surgery and neurosurgery, has changed not only

1

the performance of specific operations but, more importantly, the strategic
approach to all surgeries [4].

Focusing on Minimally Invasive Neurosurgery (MIN), much work has been
done in order to increase the safety and efficacy of brain and spine surgery [5].
One important application of MIS techniques is the KN, whose application
to procedures such as diagnostic biopsy, Deep Brain Stimulation , and local
drug delivery for tumor treatments is currently under investigation. Keyhole-
neurosurgery (KN) is an example of minimally invasive surgery performed
through a very small hole in the skull, called “burr hole” or “keyhole” [6].
Through the keyhole, catheters can be inserted into the brain for biopsy
and therapies, using limited-sized keyhole craniotomies. The development
of MIN, and in particular KN, has introduced new challenges: in complex
environments as the brain, straight trajectories are often unfeasible, requiring
an undesirable compromise between targeting accuracy and safeness of the
path (Figure 1.1). Modern KN is trying to substitute the use of a rigid
needles with steerable ones, in order to increase their dexterity in a complex
environment as the brain, allowing curvilinear, safer trajectories, and thus a
better targeting of the lesion, with minimized side risks of intercepting safety
areas [7]. In neurosurgery, such forbidden areas are generally represented by
blood vessels, lateral ventricles, Corticospinal Tracts (CST), midbrain and
cerebellum [8].

1.2 Glioblastoma treatment

A Glioma is a type of tumor that starts in the glial cells of the brain or the
spine. Gliomas comprise about 30% of all brain tumors and central nervous
system tumors, and 80% of all malignant brain tumors [9]. There are four
grades of Glioma, each associated different treatment strategies:

• Grade I: rare in adults and typically occurring in pediatric patients. It
is the least aggressive form and typically grows very slowly. Grade I
tumors are relatively benign, but they might put pressure on an area
of the brain, leading to symptoms.

2

Figure 1.1: Straight path (in black) not feasible due to the presence of a
safety-critical “no-go” region. Curvilinear path (in blue) instead allows to
reach the target in a safe way

• Grade II: benign glioma typically found in adults, with relatively slow
growth. Grade II tumors are considered benign, although they could
lead to symptoms by impinging on areas of the brain, and can poten-
tially transform into a grade III and grade IV tumors.

• Grade III: malignant tumor, for which immediate treatment is required
in order to prevent growth and/or transformation into a grade IV
glioma.

• Grade IV: acGBM, one of the most prevalent and malignant forms of
central nervous system tumors, with a very high spreading rate.

Figure 1.2 shows the axial and sagittal views of a glioblastoma (grade IV
glioma) imaged with contrast-enhanced MR.
At present, conventional therapies for these tumors are very little effective.
Surgical resection is often ineffective, or even harmful. GBM has a “crab
claw-like” invasion pattern, creating unclear borders between malignant and
healthy tissue, thus making complete surgical resection difficult to obtain;

3

Figure 1.2: Transverse and sagittal views of a GBM in T1-weighted MR
image.

additionally, the surgical procedure can stimulate the growth of malignant
cells [10]. In addition to this, the central nervous system barriers (blood
cerebrospinal, fluid barrier, arachnoid barrier, blood-brain barrier, blood-
tumor barrier) represent a challenge to the delivery of cytotoxic drugs at
therapeutic concentrations at the tumor site. This can resul in a poor cyto-
toxic activity and the development of drug resistance [11]. Many studies are
focusing on the possibility to locally deliver drugs on the tumor, in order to
maximize the efficacy of the treatment, while reducing toxicity for healthy
cells [12].
Having a catheter that can move flexibly in the brain means being able to
directly reach the lesion, ensuring a trajectory safe from anatomical struc-
tures as ventricles, blood vessels, corticospinal tracts, accurately targeting
the tumor [13].

1.3 Steering flexible needles

In recent years many prototypes of steerable catheters have been developed
for different applications in MIS.
The first steerable catheter presented is the one by Dupont [14]. It is com-
posed by multiple pre-bent concentric stylets. The structure of steerable
needles based on concentric tubes is shaped with curving segments progres-

4

sively decreasing in their diameters (Figure 1.3), inserted inside each other.
By changing relative translation and rotation of each tube, the desired 3D
trajectory can be achieved. This prototype, presented in 2012, continues to
be a rich source of design, modeling, control, and sensing challenges for the
research community, although some drawbacks as the overall limited curva-
ture variability and the restrictions on achievable shapes given by the stylets
preshaping.

Figure 1.3: Concentric-tube robot comprising four telescoping sections that
can be rotated and translated with respect to each other [14]. Each tube (1
to 5) has its own translational (l) and rotational (θ) variables (courtesy of E.
Dupont, 2010).

The second solution presented is the dutycycle bevel tip one (Figure 1.4).
It is based on the natural tendency of thin needles to curve toward the
bevel-tip, due to the asymmetric force distribution applied by the tissue on
the surface area of the tip (“Asymmetry-based steering”). In case of constant
bevel angle, the direction of motion is controlled by rotating the needle at the
base around its long axis, thus changing the orientation of the bevel tip with
respect to the tissue. A linear relationship between duty cycle and curva-
ture was observed across all needle materials and radii, and tissue stiffnesses.
Duty-cycled rotation of a bevel tipped needle allows for proportional control
of the curvature of bevel tipped needles during insertion[15]. Several differ-
ent methods of needle steering have been proposed in the literature. “Base
manipulation” bends the needle by applying a force perpendicular to the in-
sertion direction. “Tissue manipulation” can move the targets and obstacles
into and out of the needle’s path, respectively. Each of these methods are

5

conceptually independent, but may be combined, thereby increasing control
authority over the needle trajectory (Figure 1.4).

Figure 1.4: Dutycycle bevel tip solution. The needle is principally controlled
by acting on the basis rotation parameter τ (“asymmetry-based steering”).
Together with this other solutions have been tested: “base manipulation”
exploits a force exerted at needle basis. “Tissue manipulation” exploits a
force acting on the tissue (courtesy of B. Reed, 2012).

Another interesting prototype is the tendon-actuated tip implementation
(Figure 1.5): the tip steering motion of the catheter is actuated in a tendon-
driven manner. Two antagonistic groups of tendon actuation realize the distal
tip deflecting with two-degree-of-freedom allowing it to reach a considerable
large spatial workspace without catheter shaft rotation [16]. However, as
many other minimally invasive surgical techniques, there remains a critical
challenge to obtain sensory feedback from the end-effectors. In addition to
the physical and medical constraints, such as limited workspace, biocompat-
ibility and sterilizablity, it is even more technical demanding for the appli-
cation of endoscopic surgery since the transmission path is narrow, flexible
and even varying over time. Without proper position/force information at
the distal end for close-loop control, existence of any positional errors such
as tendon elongation and motion backlash could significantly deteriorate the
system performance. As a result, it would require surgeon to continuously
adjust the inputs in order to correct the errors based on visual feedback
throughout the surgery. This might impair the user experience and distract

6

the surgeon’s concentration, leading to potential prolonged operation time
or safety risks [17].

Figure 1.5: Tendon-actuated tip needle (courtesy of Konh, 2015).

Finally one of the latest developed prototypes is the multi-segment steer-
able probe with a programmable bevel (Figure 1.6). “Programmable Bevel-
Tip” Needle (PBN) has a biologically inspired design that reproduces the
multi-segment ovispositor (or egg laying channel) of certain parasitic wasps
[18]. The needle is made out of four axially interlocked segments, which
are able to slide along one another and are actuated independently by an
actuation box able to generate four independent, linear motions. All seg-
ments possess a flat bevel tip, inclined by a certain fixed angle from the
needle centre axis. By sliding on each others, the four interlocked segments
create on offset. The offset is used to generate oriented shear forces with
the surrounding tissues, which, in turn, are exploited to obtain steering in
3D space. Previously described solutions (concentric-tubes, duty-cycle bevel
tip, tendon-actuated), when compared to straight needles present some draw-
backs, including the potential to increase the extent of tissue trauma at the
needle interface. The PBN, just presented above, seems to alleviate this issue
[19], being able to steer without the need for duty-cycle spinning along the
insertion axis or any active mechanisms at the tip.

7

Figure 1.6: Interlocked segments steerable catheter [18]. Segments I-IV can
slide on each other. The most advanced one takes the name of “leading
segment”: its offset with respect to the other segments is one of the variables
that control needle motion. (courtesy of Leibinger, 2016).

In its current embodiment, the needle is made of plastic and can steer in
three dimensions without duty-cycle spinning along the insertion axis, which
has recently been shown to significantly reduce tissue deformation as a result
of the insertion process [20] [21]. PBN steering is performed using a combi-
nation of pushing and rotation of the needle’s segments, along their insertion
axis. Figure 1.7 shows a cross section of the design, which is symmetrical
about 4 axes. Each segment has two lumens: one is used as a working chan-
nel, possibly containing sensors, as optical fibers or electromagnetic trackers,
or cannullas for local drug delivery; the other is employed to anchor the
transmission link needed to actuate the movement.

8

Figure 1.7: Multi-segment catheter design and front view cross-section [19].
The cross-section highlights the Dovetail interlocks, allowing reciprocal slid-
ing, the working channels, and the transmission link holes. (courtesy of
Secoli, 2018).

The detailed kinematic model of the four segments steerable needle is
illustrated in Figure 1.8 and described in the following equation:

ẋ(t) = cos(θ) cos(ψ)v1

ẏ(t) = cos(θ) sin(ψ)v1

ẏ(t) = − sin(θ)v1

θ̇(t) = k1δprZv1

ψ̇(t) = k1δprY v1

δprZ = v2

δprY = v3

The system defined has 3 inputs: the insertion cruise speed v1 and the
change of projected steering offsets (δprY,Z) along the normal and osculating
planes, represented by v2 and v3 respectively, which cause the needle to steer
along a predetermined direction by a prescribed amount. The functions k1,2
are experimentally derived and considered to be constant. Angles θ and
ψ are defined in Figure 1.8. A high level controller, which linearises the

9

kinematic system by means of chained-form transformation, generates the
references for a low level controller. This latter performs the actuation of the
4 segments, which work together to produce a specific tip orientation and
prescribed steering offset [22].

Figure 1.8: Kinematic view of a four-part needle, highlighting the osculating
and normal planes, and the inclination angles θ, ψ and δ of the needle-
mounted reference frame [22] (courtesy of Secoli, 2014).

1.4 EDEN2020 project overview

This work was developed in the context of EDEN2020, which aims at pro-
viding a significant change in the treatment of brain diseases, by developing
an integrated technology platform for minimally invasive surgery. In do-
ing so, the project attempts to integrate different technologies in a single
surgical follow-up: pre-operative and diffusion MRI, intra-operative ultra-
sounds, robotic assisted catheter steering, brain drug diffusion modeling and
a robotics assisted neurosurgical robotic product (Neuromate Renishaw) [23].
The project aims at achieving different objectives:

1. To engineer robotically deployable steerable catheters, that can remain

10

in situ for long periods for the treatment of chronic neuro-oncological
diseases.

2. To enhance autonomy in monitoring robotic steerable catheter, surgeon
cooperation, targeting proficiency and fault tolerance.

3. To achieve accuracy, precision and update rates in sensing and perceiv-
ing intraoperative changing brain anatomy.

4. To study in vivo diagnostic sensing in flexible access surgery.

Figure 1.9: EDEN2020 platform in use, with fine positioner, and visual front
end [23].

1.5 Aim of the work

Local drug delivery for treating glioblastoma, performed by means of KN,
has been intensively researched in recent years, as an alternative to surgical
resection. However, reaching deep located targets still represents a major
challenge, which limits the application of local treatment of glioblastoma.
Recently developed prototypes of steerable catheters represent an important

11

step forward from rigid ones, but have also introduced the need for automatic
path planners, able to deal with a complex optimization process of trajecto-
ries. In fact, curvilinear planning in an environment as the brain, requires
to guarantee an optimal clearance from safety regions, as blood vessels and
corticospinal tracts, in order to avoid any risk of causing hemorrhages and
seizures; additionally, trajectories, in order to be feasible, need to meet the
kinematic and geometrical constraints of the catheter, as maximum curva-
ture and insertion length.
In literature, while path planners for rigid catheters have been intensively
studied, research on curvilinear ones is currently ongoing. The major limit of
the state-of-art methods for curvilinear path planners is the impossibility to
directly optimize the trajectories according to obstacle clearance, kinematic
and geometrical constraints. Instead, they generally generate a raw trajec-
tory optimized to have minimum length, and then refine it in subsequent
steps to meet the other requirements. This often leads to suboptimal results.
The aim of this work was to present a path planning algorithm, able to pre-
operatively assist the surgeon to estimate an optimal trajectory connecting
a starting point, located on the cerebral cortex and a target, located deep
inside the brain. The trajectory is expected to guarantee a sufficient clear-
ance from blood vessels and corticospinal tracts, and to meet the kinemtic
and geometrical constraints of the steerable needle.

This dissertation is structured as follows:

1. Chapter 1 introduces a general background of keyhole neurosurgery and
steering flexible needles, focusing on the clinical problem of glioblas-
toma treatment.

2. Chapter 2 summarizes the current state-of-the-art path planners for
steerable needles.

3. Chapters 3 describes the overall developed system, focusing on the RL
approach to the problem.

12

4. Chapter 4 describes the experimental protocol and summarizes the ob-
tained results.

5. Chapter 5 discusses the results in order to assess the efficiency of the
proposed curvilinear path planner.

6. Chapter 6 presents the conclusions concerning the project and describes
possible future developments.

13

Chapter 2

STATE OF THE ART OF PATH
PLANNING

2.1 Standard path planning: literature overview

2.1.1 The path planning problem

The path planning problem can be defined as the task of finding the set of
subsequent positions of an agent, allowing it to reach a target point (ctarget),
starting from a starting point (cstart) and avoiding collisions with known ob-
stacles. The agent in a path planning problem can be represented by a robot,
a car, a catheter etc. This problem is often formalized by defining the set of
possible agent configurations (Uconf), the space in which no configurations are
allowed, due to the presence of obstacles, (Uobst), and the difference between
these two spaces (Ufree), which is the space of the admitted configurations
[24]:

Ufree = Uconf − Uobst (2.1)

14

Therefore, solving the path planning problem means determining σ(t)(t ∈
[0, 1]), such that:

σ(t) ∈ Ufree
σ(0) = cstart

σ(1) = ctarget

(2.2)

Two important metrics to evaluate path planning algorithm approaches are
the completeness and the optimality. Completeness refers to the capability
of the algorithm of finding a solution, if one exists; optimality refers to the
capability of the algorithm to find the optimal solution, according to the path
length, among the existing ones.
In the context of path planning, a variety of approaches has been proposed
in literature, many of which can be divided in three categories: artificial
potential field, graph-based and search-based methods.

2.1.2 Artificial Potential Field methods

These methods try to solve the path planning problem by considering the
moving agent as a point, subject to an attractive potential field generated by
the target (Uatt), and a repulsive potential field generated by the obstacles
(Urep) [25]. The analytical formulation for the potential fields is:

Uatt(x) =
1

2
ka ρ

2
targ(x) (2.3)

Urep(x) =

1
2
kr (1

ρobs(x)
− 1

ρ0
)2, ifρ < ρ0

0, otherwise
(2.4)

where ka and kr are constants, x is the vector identifying the agent position,
ρtarg is the distance between the agent and the target, ρ is the distance from
the closest obstacle and ρ0 determines the maximum region of repulsion (far

15

located obstacles should not influence the agent). The related forces are
obtained by computing the gradient:

Fatt(x) = −∇Uatt(x) (2.5)

Frep(x) = −∇Urep(x) (2.6)

From each configuration the agent is moved to the next by a force Fatt+Frep,
which pushes it towards the target and far from the obstacles.
However, Artificial Potential Fields methods suffer from the presence of local
minima of the potential field. Different solutions have been proposed in
order to avoid the local minima trapping problem: Li, et al. [26] used an
improved version of the conjugated gradient method in order to escape from
local minima, while Park, et al. [27] located virtual obstacles around the
local minimum points to prevent the robot to be trapped.

2.1.3 Graph-Based methods

In path planning context in continuous space, a common way to simplify the
environment is to discretize it in a set of points (nodes), connected according
to specific criteria by edges. The structure, including nodes and edges, is
named “graph”.
Once the space is discretized, graph-based algorithms use dynamic program-
ming techniques, iteratively calculating the cost of the connection between
nodes, and finding the best path from a start configuration to a target one
minimizing this cost. Two examples of graph-based methods are Dijkstra’s
algorithm [28] and A* [29]. Dijkstra’s algorithm aims at finding the short-
est path between a node and all other nodes in the graph. As first step,
all nodes are marked as unvisited and a certain cost is assigned to each of
them (0 for cstart, ∞ for the others). Dijkstra’s algorithm defines the cost of
a node as a cost-to-come, equal to the length of the shortest obstacles-free

16

path, connecting the node and cstart, passing through visited nodes. At each
iteration, the unvisited node with smallest known cost-to-come is considered,
and the distances from all the unvisited nodes inside a neighbourhood with
predefined extension is computed. Costs-to-come for the neighbour nodes
are computed. For each node, if the new cost-to-come is smaller than the
previously estimated, the new estimate replace the previous (a shorter path
was found). After the updates, the current node is marked as visited and
removed from the unvisited set. The algorithm iterates until the target is
visited.

Figure 2.1: Application of Dijkstra’s algorithm to a simple graph. The green
node S is the start, the red one T is the target. Distances between adjacent
nodes are reported.

Figure 2.1 and Table 2.1 show a simple application of Dijkstra’s algo-
rithm. A critic drawback of Dijkstra’s algorithm is that it does not consider
any information about the target location, thus expanding in every direction.
A* is a modified version of Dijkstra’s algorithm, improved to overcome the
aforementioned limitation. A* algorithm takes into consideration the target
location, by defining the cost associated with a node n as f(n) = g(n)+h(n),
with g(n) being the cost-to-come, as previously defined in Dijkstra’s algo-
rithm, and h(n) being an heuristic estimate of the cost-to-go.
Graph-based methods are resolution-complete, meaning that, at the chosen

17

Table 2.1: Steps of Dijkstra’s algorithm solving the path planning problem
in Figure 2.1.

Step 0 Step 1 Step 2 Step 3 Step 4
S = 0 ExpandS ExpandBS ExpandAB EndTA

A =∞ BS = 2 AB = 3 TA = 5

B =∞ AS = 2 CB = 6 CA = 7

C =∞ C = ∞ TB = 6

T =∞ T = ∞

resolution, they are guaranteed to find a solution, if one exists. In addition,
they are also resolution-optimal, meaning that they can find the optimal so-
lution, among the existing ones, at the chosen resolution. Thus, optimality is
guaranteed inside the limits imposed by the discretization of the domain: an
higher resolution ensures an improvement in the quality of the solution, but
it also increases the computational time necessary to find it. In particular,
when dealing with high-dimensional spaces, the graph size and the compu-
tational time grow exponentially (“curse of dimensionality”) [30], requiring a
reduction of the resolution, thus possibly leading to a suboptimal result.

2.1.4 Sampling-Based methods

Sampling-based methods, do not require an a priori discretization of the
domain, but progressively sample the space, increasing the accuracy of the
solution as long as the search progresses.
As opposite to graph-based methods, sampling-based methods do not explic-
itly characterize Ufree and Uobst, but generate solutions and then check their
feasibility through a collision detector. These algorithms are probabilistic-
complete, meaning that, when the number of samples tends to ∞, they are
guaranteed to find a solution, if existing.
One of the first sampling-based algorithms is Rapidly Exploring Random
Tree (RRT) [31]. The algorithm starts with an initialization of the space,
including only start and target points. At every iteration a new random

18

point is sampled in the free space, and the closest node in the growing tree
is identified. If their distance is no more than a user-defined length (λ), and
the connecting edge is collisions-free, the node is added to the growing tree.
The research is target-oriented by occasionally sampling, as a new point, the
target. If the connection satisfies the aforementioned requisites, the target is
reached and the research is stopped.
RRT-connect is an enchanced version of RRT, which involves the parallel
growth of two trees, one rooted on the starting point and one on the target
point [32], ensuring a faster convergence. The research is focused by occa-
sionally sampling, as a new point, the nearest point on the other tree. If the
connection satisfies the aforementioned requisites, the two trees are connected
(and so the starting and target node), and the research is stopped. RRT and
RRT-connect are both probabilistic-complete, but they are not asymptotically
optimal, meaning that they do not guarantee an asymptotical convergence
to an optimal solution, as the number of samples goes to ∞.
RRT* is a modified version of RRT, improved in order to be almost-surely
asymptotically optimal [33]. The main difference with RRT, is on how a new
point is connected to the growing tree. While RRT and RRT-connect look
for the closest point of the growing tree, RRT* looks for the nearby node
(nodes inside a circle centered on the new point a with user-predefined ra-
dius) which minimizes the cost-to-come. The radius is a crucial parameter,
determining a trade-off between efficiency of the search and improvement of
the tree, and so of the solution. Figure 2.2 shows a comparison between RRT
and RRT* exploration.

19

Figure 2.2: Comparison between RRT and RRT* growth of the tree. RRT*,
by connecting the new point to the nearby one which minimizes the cost-to-
come, generates smoother branches (courtesy of Dong, 2015).

2.2 Path planning algorithms for steerable nee-

dles

The application of path planning to steerable needles, in the context of MIS,
introduces new crucial requirements that the computed trajectories are sup-
posed to meet. Clearance from obstacles, not considered by the aforemen-
tioned classical path planning algorithms, becomes an essential requirement.
In neurosurgery applications, as local drug delivery for glioblastoma treat-
ment, the needle must keep an acceptable distance from cerebral blood ves-
sels, and import brain structures as Thalamus, Ventricles, Pons and Corti-
cospinal tracts. In addition, the obtained trajectories must be feasible for the
catheter, by taking into consideration kinematic and geometrical constraints
as maximum curvature and insertion length, and its non-holonomicity (the
property of having a number of controllable degrees of freedom is smaller than
the number of degrees of freedom of the needle). Many of the aforementioned
path planning approaches have been implemented as path planners for steer-

20

able needles. In the context of brachytherapy procedures, Li et al. [26]
suggested a path-planning method with obstacle avoidance capability, based
on an artificial potential field where a conjugate gradient algorithm is used.
Clearance from anatomical structures can be achieved, but the method does
not allow to optimize the trajectory in order to minimize its length or to
meet specific kinematic constraints. Duindam et al. proposed a 3D motion
planning for a steerable needle as a dynamical optimization problem with
a discretization of the control space using inverse kinematics [34]. This ap-
proach, based on the kinematic model of the needle, is able to provide the
region of feasible paths, but little capability to take into account other crucial
aspects as the obstacle avoidance. Graph-based and sampling based methods
have been extensively explored, integrating them with different strategies in
order to guarantee obstacle clearance and the compliance to kinematic con-
straints. Patil et al. [35] proposed an RRT-based algorithm, combined with a
reachability-guided sampling heuristic (RG-RRT, Figure 2.3). This method
differs from standard RRT in the choice of the new random point at each
iteration: while in RRT the new point is sampled randomly from Ufree, in
RG-RRT, the allowed space for sampling is limited to the region of space
accessible to the needle, according to its kinematic constraints. A similar
approach was investigated by Caborni et al. [36], and tested in a neurosurgi-
cal context, limited to 2D space. Obstacle clearance represents a limitation
for RG-RRT methods. The computed trajectories, in fact, are not directly
optimized to guarantee clearance from safety regions, but only evaluated and
ranked by means of a risk-based cost function. Favaro et al. [37] proposed
a path planning algorithm exploiting multiple refinement steps, in order to
refine the trajectories in order to meet the requested features (Figure 2.4).
The algorithm generates a raw trajectory by means of a sampling-based ap-
proach, and iteratively add sampling points to improve it by minimizing its
length. Then obstacle clearance is evaluated by considering an additional
safety-margin: trajectories regarded as not safe are discarded. Finally, a
smoothing phase is accomplished, in order to make trajectories compliant
with needle kinematic constraints. Finally the multiple candidates obtained
at this phase are ranked according to a cost function, and the best path is

21

selected.

Figure 2.3: Simulation of the RG-RRT planning strategy. Given an entry
point in the skin and a target in the prostate region, multiple feasible paths
are obtained. Notice how all path meet the kinematic constraints of the
needle thanks to the Reachability-guided approach (courtesy of Patil et al.,
2010).

22

Figure 2.4: Path planning algorithm involving the computation of a first,
raw trajectory, optimized in order to have minimum length, and then refined
through multiple steps in order to meet obstacle clearance and smoothness
requirements. (courtesy of Favaro et al., 2018).

2.2.1 Learning-based methods

Graph-based and sampling-based methods, considered the standard ap-
proaches for path planning, present some limitations when applied to steer-
able catheters, related to the impossibility to directly optimize the trajectory
in terms of obstacle clearance and kinematic constraints. Learning-based
methods, as typical of machine-learning approaches, allow to work around
the problem, without requiring the explicit definition of a series of subse-
quent steps necessary to solve the problem. The models, instead, require a
training phase during which they directly learn from data, with a “black-box”
approach. Deep Reinforcement Learning (DRL) has recently been used in

23

the path planning domain.
[38, 39] demonstrate that DRL is suitable for solving path planning prob-
lems. Several studies [40, 41, 42] about applying DRL in navigation, focus
on static environments, without motion or change of the environment, with
promising results. [43] applied the DRL approach to a grid path planning
problem, with promising results on small environments.

2.3 Thesis Objective

When applied to steerable needles, path planning algorithms need to con-
sider important requisites as clearance from safety regions and compliance
to catheter kinematic and geometrical constraints. The solutions present in
literature are generally limited by the impossibility to directly optimized tra-
jectories according to all the requested features. RG-RRT-based methods,
as the on by Carboni et al. [36], for example, considers obstacle clearance
only in a separate ranking phase, and not as part of an optimization process;
other methods, as the one by Favaro et al. [37], start from a sampling-based
method to obtain a raw trajectory, and then perform subsequent refinement
steps to meet all the requirements. This, in general, increases the computa-
tional time, and often leads to sub-optimal solutions, being a refined version
of an initial sub-optimal (with respect to obstacle clearance and compliance to
kinematic constraints) raw solution. In addition to this, most of the proposed
algorithms are limited to 2D, and often deals with simplified environments
with geometrical objects.

The herein proposed algorithm is a novel path planner for steerable nee-
dles, suitable for both 2D and 3D spaces. It aims at overcoming the current
limits found in literature by using a Deep Reinforcement Learning approach.
The algorithm takes an input a model of the brain, a target and a starting
point, and produces as output a trajectory connecting the two. The brain
model is obtained via semi-automatic segmentation of multimodal MR im-
ages, and it includes blood vessels and corticospinal tracts. The optimality
of the trajectory is evaluated considering the three main requested features:

24

clearance from obstacles, compliance to kinematic constraints and insertion
length.

25

Chapter 3

MATERIALS AND METHODS

3.1 Workflow overview

As we have seen, the development of steerable needles has introduced many
new possibilities in MIS. In glioblastoma treatment, KN offers the possibil-
ity to perform local drug delivery, currently investigated as an alternative
to surgical resection, or in support to it; in addition to the specific clinical
context-related advantages, MIS guarantees, in general, smaller damages to
healthy tissues, reducing the risk of the intervention and the patient hospital-
ization time. Steerable catheters potentially allow to minimize the trade off
between targeting accuracy and clearance from safety areas, imposed by tra-
ditional rigid catheters.To perform these interventions, a pre-operative phase
is necessary to carefully plan the path that catheter should follow to reach the
target. The aim of this project is to develop a fully automatic pre-operative
planning system that allows to plan safe curvilinear trajectories, compliant
to kinematic and geometric constraints of the catheter.
The proposed method is based on a Deep Reinforcement Learning approach.
Differently from current solutions presented in literature the method is based
on a typical machine-learning “black-box” approach, which does not require
to define an explicit series of subsequent steps in order to obtain the trajec-
tory. The method instead, requires the development of a dataset, on which
the DRL model is trained. Once trained, the model is ready to perform on

26

new unseen data. Figure 3.1 summarizes the main steps involved in training.
Once the model is trained it performs on new patients following the workflow
summarized in Figure 3.2. Each step will be analyzed in detail in the next
paragraphs.

Figure 3.1: Training workflow showing: the dataset creation, starting from
multi-modal MR images, involving segmentation and registration of the ob-
tained brain cortex, blood vessels and corticospinal tracts models; 2D and 3D
maps creation; development of the path planner, involving GA3C network
and algorithm definition, reward function implementation, according to the
requested constraints, definition of a training strategy. At the end of training
the trained learning-based model is ready to be used on unseen data.

27

Figure 3.2: Path planner workflow: given a new patient, multi-modal MR
images are acquired and then segmented and registered to obtain 2D/3D
maps. The map is fed to the trained model, together with target and entry
location. The model directly provides the 2D/3D path optimized in order to
ensure clearance from safety areas and to be compliant to needle kinematic
and geometric constraints.

3.2 Dataset creation

The training dataset was built using high-resolution multi-modal MR images.
The MR images considered included:

• a 3D T1-weighted sagittal Fast-Field Echo (Figure 3.3).

• a 3D high-resolution time-of-flight MR angiography (TOF-MRA, Fig-
ure 3.4).

• a high angular resolution diffusion MR images (HARDI) with diffusion
gradients applied along 60 non-collinear directions (Figure 3.5).

28

Figure 3.3: T1 weighted MR images. From left to right transverse, sagittal
and coronal views are shown.

Figure 3.4: Time of Flight MR angiography, taken at the level of the Circle
of Willis.

29

Figure 3.5: High Angolar-Resolution Diffusion Imaging highlighting corti-
cospinal tracts (coronal view).

The ToF and the T1-weighted images were segmented by thresholding in
order to obtain, blood vessels and brain models, respectively. The goal of
image segmentation is to divide the starting image into a set of semantically
meaningful, homogeneous, and non-overlapping regions. The segmentation
result is a label map, classifying each pixel/voxel as belonging, or not, to a
certain structure, which can be used to build a 3D model of the segmented
structure.
Segmentation was performed by means of thresholding on voxels values.
Small isolated voxel clusters (< 100 voxels) were discarded, having no se-
mantic meaning. Figure 3.6 shows the result of the segmentation step on a
ToF and on a T1-weighted MR image, extracting the vessels and the brain
cortex, respectively.

30

Figure 3.7: 3DSlicer rendering of corticospinal tracts extracted from HARDI
MR image.

Figure 3.6: (A) 3DSlicer rendering of brain blood vessels extracted by thresh-
olding segmentation of ToF image. (B) 3DSlicer rendering of brain cortex
extracte by thresholding segmentation of T1-weighthed MR image.

From HARDI images, MR Tractography reconstruction of the corti-
cospinal tracts (CST) based on a q-ball residual bootstrap algorithm were
obtained using Diffusion imaging in Python (Dipy) software [44] [45]. Figure
3.7 shows the result of the reconstruction of the CSTs. The three models: 1)
brain cortex, 2) blood vessels and 3) CST were registered, allowing to obtain
a unique model (Figure 3.8).

31

Figure 3.8: 3DSlicer rendering of brain model obtained registering brain
cortex, blood vessels and corticospinal tracts models.

From the model, 3D binary label maps were created (dimension 256 ×
256 × 256 mm), having zeros corresponding to regions accessible to the
catheter, and ones otherwise (safety structures: blood vessels and corti-
cospinal tracts).The label maps were used to generate the 3D maps, with
each voxel corresponding to a cell (free=0 or occupied=1, depending on the
label). The term "map" refers to the constructed environment. In addition,
from every 3D map, a 2D map was obtained by considering the central slice,
parallel to the frontal plane. Figures 3.9 and 3.10 show examples of a 2D
and 3D maps, respectively.

32

Figure 3.9: Example of 3D map, obtained by binarizing the model shown in
Figure 3.8.

Figure 3.10: Example of 2D map, obtained by considering the central slice,
parallel to the frontal plane of the corresponding 3D map.

3.3 Path planner development

In collaboration with radiologists of San Raffaele Hospital, and taking into
consideration PBN characteristics we identified implicit and explicit rules
used by neurosurgeons when selecting a best possible trajectory, to be trans-
lated, in a second step, in numerical constraints and implemented in the path
planner:

33

• Maximization of clearance from anatomical obstacles. The
catheter should not intercept any vital or risky structure in his path.
Although ensuring a minimal distance would work fine for this aim,
the path planner is requested to optimize the paths maximizing the
distance from blood vessels and corticospinal tracts, in order to better
deal with possible uncertainties.

• Minimization of path curvature. In order to be feasible for the real
catheter, the path should be compliant to its kinematic constraints. In
order to ensure this, the path planner was requested to optimize the
paths minimizing its curvature.

• Minimization of path length. In order to be feasible for the real
catheter, the path should be compliant to its geometric constraints, in
particular diameter and length. While diameter is a fixed parameter,
taken into consideration when considering clearance from obstacles,
the length constraint was explicitely addressed by requiring the path
planner to minimize the insertion length.

• Limitation of the hemisphere. Trajectories crossing the two hemi-
spheres would unnecessarily increase the risk of intercepting vital struc-
tures as the ventricles, without bringing any particular benefit. For this
reason, choosing target and starting point located in different hemi-
spheres was not allowed. This allowed us to consider one hemisphere
at time, easing the training process.

The above mentioned constraints were implemented by properly shaping a
“reward function”, whose role, in RL context, will be described in the following
section.

3.3.1 Reinforcement Learning background

RL is an area of machine learning concerned with how software agents ought
to take actions in an environment so as to maximize some notion of cu-
mulative reward. Reinforcement learning is one of the three basic machine

34

learning paradigms, alongside supervised and unsupervised learning. It dif-
fers from supervised learning in that labelled input/output pairs need not be
presented; it also differs from unsupervised learning, which aims at finding
previously unknown patterns in data sets without pre-existing labels, since it
involves a continuous interactions with an external, unknown environment.
Reinforcement learning, due to its generality, is studied in many other disci-
plines, such as game theory, control theory, operations research, information
theory, simulation-based optimization, multi-agent systems, swarm intelli-
gence, statistics and genetic algorithms.
Basic reinforcement is modeled as a Markov Decision Process, and it includes:

• An agent, which takes actions.

• An environment, the world where the agent acts.

• A state st, the concrete and immediate situation in which the agent
finds itself.

• An action at, which makes the agent interact with the environment
and change its state. At each t the agent decides which one to choose
among a set of possible actions A.

• A reward rt, the feedback which measure the success or failure of an
agent’s action.

At every time step, the agent, which is in a state st, chooses an action at,
according to its policy (π), such that:

π(st) = at (3.1)

As a response, the agent receives a new state st+1 from the environment, and
a reward rt (Figure 3.11). The goal of the agent is to determine an optimal
policy π∗ allowing it to take actions inside the environment, maximizing, at
each t, the sum of discounted rewards Rt =

∑T
t′=t γ

t′−trt, with γ, in range
(0,1], called “discount factor”. The value of the discount factor determines

35

Figure 3.11: Reinforcement Learning basic flowchart showing the agent, at
current state st, taking an action at and getting from the environment a new
state st+1 and a reward rt.

how forward-looking the agent is: if γ = 0 the agent gives importance only
to the immediate reward; if γ = 1 the agent gives the same importance to
all future rewards [46].

Determining the sum of discounted rewards for a specific state can be
difficult, especially for high-dimensional problems, typical when dealing with
reinforcement learning. However, an estimation of it can be given by the
value functions [46]. The state value function V :

V (s) = E[Rt|st = s] = E[
T∑
t′=t

γt
′−trt|st = s] = E[rt + γV (st+1)|st = s] (3.2)

gives the expectation of Rt, given the current state st. The state-action value
function Q:

Q(s, a) = E[Rt|st = s, at = a] = E[
T∑
t′=t

γt
′−trt|st = s, at = a] =

= E[rt + γmax
a′

Q(st+1, a
′)|st = s, at = a] (3.3)

gives the expectation of Rt according to the current state st, after taking an
action at, according to the current policy (π). Notice the three equivalent
definitions of the value functions: the third, in particular, highlights the

36

separate contribute of the current reward rt, and the estimate of the value
function associated with the new state st+1. This definition has the form of
a Bellman equation [47], and has a pivotal role in RL, which will be clarified
later in this section.

EXPLORATION TECHNIQUES

A critical aspect in reinforcement learning is balancing agent’s exploration
of the environment and exploitation of the gained knowledge. Differently
from the other machine learning approaches, in RL, the agent is responsible
to build its own training dataset, while training on it. At each t the agent
is required to take an action, and decide whether to exploit the knowledge
gained so far, or to pick up a more uncertain action to increase its knowledge
about the environment.
The two extreme exploration strategies consist in total exploration (random
choice of actions) and total exploitation (choice, at each t, of the action
maximizing the Q-value). A simple combination of the two is the epsilon-
greedy approach [46], which involves choosing, at each t, an optimal action
or a random one, according to a certain predefined probability. Boltzman
exploration [48] is a more sophisticated exploration technique, which exploits
the information contained on the estimated Q-values, by assigning to each
action a weighted probability. The values are estimated by means of a soft-
max layer, so that the probability of each one to be chosen is proportional
to its Q-value. An additional parameter τ(t) is used to control the prob-
ability distribution of the softmax output, and it is annihilated over time,
gradually turning exploration (uniform probability distribution over all the
possible actions) in exploitation (high probability associated to actions with
high q-values). The probability distribution associated with each action is
specified in eq. 3.4.

P (a) =
exp(Q(s, a)/τ(t))∑N
i=1 exp(Q(s, ai)/τ(t))

(3.4)

37

Another exploration strategy is the Bayesian one, which exploits the
agents uncertainties about its actions, as done by Bayesian Neural Networks
[49], by introducing a dropout layer as Bayesian approximator [50]. The
percentage of dropped nodes is annihilated over time, gradually turning
exploration in exploitation.

VALUE-FUNCTION BASED and POLICY GRADIENTS BASED
ALGORITHMS

Stated that the aim of the agent is to determine the optimal policy π∗,
maximizing the sum of discounted rewards Rt, different approaches can be
exploited, roughly classifiable in two categories: value-function learning and
policy gradients learning.
Value-function learning involves the iterative estimation of a value function,
in general the state-action one (Q(s, a)). Optimal policy π∗ can then be
extracted from the estimated state-action function Q(s, a), knowing that:

π∗(s) = arg max
a

Q∗(s, a) (3.5)

where Q∗(s, a) is the real state-action value function, under the optimal pol-
icy. A popular value-function based algorithm is one-step Q-learning [46]
(Algorithm 1). In Algorithm 1, operation 6 corresponds to the update rule,
with α being the “learning rate”, and multiplying a term defined in RL context
as “Temporal-Difference error” (TD error). In it, it is possible to recognize
the expression of Rt defined in equation 3.3. The TD error corresponds to
the difference between the current estimation of Q(st, at) and a new, refined
version which better approximates Rt. The TD error is a crucial element of
RL, and will be presented again later in this section.
The Q-learning algorithm presented in Algorithm 1 is in a “tabular form”.
In tabular methods the state-value function Q(s, a) is stored in a table, hav-
ing one entry for each state-action couple. This is feasible in problems with
small discrete state and action spaces; in many cases of practical interest,

38

Algorithm 1 Tabular one-step Q-learning pseudocode
// Randomly initialize Q(s, a),∀s ∈ S, ∀a ∈ A
// Initialize episodes counter T ← 0

// Initialize steps counter t← 0

1: repeat
2: select initial state s0
3: repeat
4: select action at according to exploration policy (e.g. ε-greedy)
5: take action at, get new state st+1 and reward rt
6: Q(st, at)← Q(st, at) + α[Rt + γmaxa′ Q(st+1, a

′)−Q(st, at))]

7: st ← st+1

8: t← t+ 1

9: until t > tmax

10: T ← T + 1

11: until T > Tmax

however, the state and action spaces are continuous, making it unfeasible to
use tables. In those cases the value functions must be approximated, using
some sort of more compact parameterized function representation. A major
breakthrough in reinforcement learning, was represented by the introduction
of Neural Networks (NNs) [51]. NNs can deal with high dimensional con-
tinuous state and action spaces; in addition, they have great generalization
capability, making training faster and more efficient.
Deep Reinforcement Learning (DRL) combining deep-learning methods, in-
volving NNs, and reinforcement learning algorithms, has become the stan-
dard way to deal with reinforcement learning problems. In value-based deep
reinforcement learning methods, the action value function is approximated
by a neural network. Let Q(s, a; θ) be an approximate action-value function,
with θ the weights of the neural network. The updates to θ can be derived
from a variety of reinforcement learning algorithms. In one-step deep Q-
learning (function approximation version of the tabular one-step Q-learning,
described in Algorithm 1), the weights θ of the action value function Q(s, a; θ)

39

are learned by iteratively minimizing a loss function L defined as:

L(θt) = E(rt + γmax
a′

Q(st, a
′; θt)−Q(st, at; θt))

2 (3.6)

corresponding to a squared version of the TD error. The loss L(θt) is then
used to update the weights. A basic optimization algorithm is the Stochastic
Gradient Descent (SGD), with update rule defined as:

θt+1 = θt − α∇θtL(θt) (3.7)

with α being the learning rate. More sophisticated algorithms for optimiza-
tion of stochastic objective functions are generally used, as SGD with Nes-
terov momentum or ADAM [52].

Policy-gradient based algorithms, differently from the previously men-
tioned algorithms, parametrize the policy function π as π(s; θ), and update
the parameters θ by performing gradient ascent on E(Rt). One example
of policy-gradient based methodes is the REINFORCE family of algorithms
[53]. Standard REINFORCE algorithms update the policy parameters θ in
the direction of ∇θlogπ(st; θ)Rt, which is an unbiased estimate of E(Rt). It
is possible to reduce the variance of this estimate while keeping it unbiased
by subtracting a learned function of the state bt(st), known as “baseline”,
from the return [53]. The resulting gradient is ∇θlogπ(st; θ)(Rt − bt(st)). A
learned estimate of the value function V (st) is commonly used as of the base-
line bt(st). When an approximation of V (st) is used as baseline, the quantity
Rt−bt(st), used to scale the policy gradient, can be seen as an approximation
of the advantage function, defined as:

ADV (st, at) = Q(st, at)− V (st) (3.8)

and it results on a much lower variance of the estimated policy gradient. The
presented approach, including the baseline estimation by means of the state
value function, directly introduces us to the next DRL model, the actor-critic.

40

ACTOR-CRITIC METHOD

Algorithms using parametrized policies, as the basic REINFORCE algo-
rithms, are called “Actor-only methods”. When using only the value function
approximations, as DQN, algorithms are regarded as “Critic-only methods”.
The combination of the two solutions takes the name of Actor-Critic (AC)
approach.
In AC methods the critic learns to approximate an estimation of the return
Rt, and use it to update the policy approximation of the actor (Figure 3.12).
Actor and critic are implemented by means of two independent neural net-
works, having weights named θp and θv, respectively. Among all the different
algorithms included in the AC family, Advantage AC has a relevant role.
Advantage Actor-Critic (A2C) specifically uses an estimate of the advantage
function ADV (st, at) as an unbiased estimate of E(Rt) with subtracted base-
line bt(st), in order to update the actor parameters θp. Parallelly, the critic
updates its parameters θv, exploiting the TD error, as done by Critic-only
methods.

3.3.2 GA3C algorithm

The Asynchronous Advantage Actor-Critic method, popularly called A3C,
is a highly computational efficient way of utilizing the A2C approach [54].
Analogously to the previously described A2C algorithm, A3C maintains a
separate memory structure to explicitly represent the policy independently
from the value function, with weights named θp and θv, respectively, and
uses an estimate of the advantage function in order to update the actor
parameters estimating the policy. The computational efficiency comes from
the asynchronous nature of the algorithm. The model consists of a global
network, processing the state in input and outputting the state value func-
tion V (st; θv) (critic) and the policy π(st; θp) (actor); copies of the global
network are assigned to independent agents, named “workers”, whose num-

41

Figure 3.12: Schematic representation of Actor-Critic algorithm: at each t

the agent takes an action from a certain state and gets a new state and a
reward. The reward is used by the critic to compute a TD error, which in
turn is used to update the critic itself and the actor. (courtesy of Sutton &
Barto, 1992).

42

ber is, at maximum, equal to the number of threads available in the CPU.
Every worker interacts with a copy of the environment, and periodically
updates the global network. Multiple actors-learners acting in parallel incre-
ment exploration efficiency, by exploring different parts of the environments,
eventually using different exploration techniques. Additionally, by running
multiple independent workers in parallel, the overall changes being applied to
the weights of the global network are likely to be less correlated in time, than
a single agent applying online updates. In addition to stabilizing learning,
the asynchronous action of the workers guarantees a reduction in training
time, almost linearly proportional to their number.
In this work, the reinforcement learning problem is addressed with the Asyn-
chronous Advantage Actor-Critic on a GPU (GA3C) algorithm [55], a hybrid
CPU/GPU implementation of the standard A3C algorithm.

PATH PLANNING PROBLEM FORMULATION IN REIN-
FORCEMENT LEARNING CONTEXT

The path planning problem is formulated in RL terms. The agent is the
tip of the catheter. Since the needle advances and curves with a continuous
trajectory, the path travelled by the object can be an be approximated as a
“follow the leader” path. In this configuration, the distal part of the needle
follows its tip and remarks its travelled points.
The agent operates on an grid, static environment composed of free cells
and occupied cells, corresponding to obstacles. The grid environment is the
binary label map obtained after segmentation step, describe in section 3.2.
Every cell is a state, described by its coordinates in the image reference
frame. From each cell the agent can take an action, corresponding to a
movement toward a free adjacent cell (8 possible actions in 2D, 26 in 3D).
Actions moving the agent toward an occupied cell or outside the environment
are considered inadmissible. Given a starting cell, S(xs,ys,zs), placed on the
skull, and a target cell G(xg,yg,zg), placed inside the brain, the task is to
find a path (P = {X0, X1, .., Xn−1}, X0 = S, Xn−1 = G) as an admissible
sequence of free cells. The constraints described in section 3.3 are imple-

43

mented by properly defining the reward function, and will be described later
in this section.

NETWORK STRUCTURE

In Figure 3.13 the structure of the global network is reported.

Figure 3.13: Architecture of the network used by GA3C. The pink box con-
tains the global neural network, having the current frame (ft) as input and
the policy π and the value V as outputs, and running on the GPU. The blue
box contains the n workers running in parallel, each one with a copy of the
global network, and periodically interacting with it.

The network starts with convolutional layers to process spatial depen-
dencies. At each t, it takes as input a “frame” (ft), the binary map with
start and target cells colored in red and green, respectively. The activation
function used was leaky Rectified Linear Unit (leaky ReLU) [56].
The convolutional layers are followed by a Long Short-Time Memory (LSTM)
network to process temporal dependencies between consecutive frames [57].
LSTM are a specific kind of Recurrent Neural Network (RNN). RNNs are a
kind of NN able to model time dependencies, due to the presence of connec-
tions between output and input, which allow information to persist. Figure
3.14 shows a representation of a RNN, highlighting the real network struc-
ture, and the dynamic representation.

44

Figure 3.14: RNN network structure: real architecture and dynamic repre-
sentation. A is the basic cell equal at each t. xt are the inputs, ht are the
outputs at each t.

Multiple tasks as speech recognition, language modelling and translation,
require the network to handle both long- and short- time dependencies. Ba-
sic RNNs often struggle with long-term dependencies [58]. LSTM networks
are explicitly designed to avoid the long-term dependency problem. Figure
3.15 shows a comparison between the dynamic representations of RNNs and
LSTM networks. All recurrent neural networks have the form of a chain of
repeating modules of neural network. In standard RNNs, the repeating mod-
ule have a simple structure, such as a single layer with hyperbolic tangent
activation function (tanh) (Figure 3.15A). The output at previous timestep
t hn−1 is concatenated with the current input xt, and fed to the tanh layer,
which produces the new output ht. LSTMs also have this chain like struc-
ture, but the repeating cell has a different structure. Instead of having a
single neural network layer, there are four, interacting with each other. In
LSTM networks every cell gets the new external input xt, and two inputs
from the previous one: the previous output ht−1, as for RNNs, and an ad-
ditional term Ct−1, called “cell state”. The cell state term flows through all
the cells, undergoing updates involving “forgetting” obsolete information and
“learning” new information. The two operations are regulated by structures
called “gates”, implemented as layers with sigmoid activation function (σ),
producing a scalar value in range [0,1], followed by a pointwise multiplica-
tion operation (

⊗
). The updated version of the cell state, Ct is filtered

by the third gate, which decides what parts of it to output as ht. In this

45

Figure 3.15: (A) Dynamic representation of RNN, highlighting the network
structure: a single layer with tanh activation function taking as input the
concatenation of the previous output ht−1 and the current input xt. (B) Dy-
namic representation of LSTM network, highlighting the network structure:
multiple layers interact with each other, in order to update the cell state term
Ct, responsible to keep memory of previous events. Layers with σ activation
function are responsible of “learning” and “forgetting” of the cell state term.

46

work, the LSTM network can capture the movements of the agent through-
out different frames, forming a global view of the trajectory, necessary to
ensure the respect of kinematic constraints. The standard strategy for mod-
elling temporal dependencies, is passing as input the last n frames (n defined
depending on the context, e.g. n = 4 in [51]): this introduces a trade-off
between the extension of the modelled time-dependencies and the computa-
tional cost associated with it (bigger n allows to have a better modelling of
time dependencies, but also increases the amount of data to be processed at
each iteration). LSTM networks allow to model time dependencies among
several frames, without requiring an increase of the input dimension.
Finally, the LSTM net is followed by the actor and the critic layers. The
actor is implemented through a softmax layer, having as many outputs as
the number of actions. The critic is implemented by a fully connected layer
consisting in one output neuron having linear activation function. Actor and
critic weights on the network are defined as θv and θl, respectively.
During training, each worker gets a copy of the global network. For conve-
nience, actor and critic weights for a specific worker will be named θ′v and θ′l,
respectively. Each worker interacts with the environment and collects expe-
rience, storing, in a buffer B, a transition for each t (B = {si, ai, ri, si+1}, i =

0 .., t). Once the worker’s experience history is large enough (t = tmax), the
buffer B is used to compute the sum of discounted rewards (Rt) and advan-
tage (ADV (st, a, θ

′
v, θ
′
l)), which, in turn, are used to calculate value loss, Lv:

Lv =
∑

(Rt − V (st, θ
′
v))2 (3.9)

and policy loss, Lp:

Lp = −log(π(st, θ
′
l)) · ADV (st, a, θ

′
v, θ
′
l)− β ·H(π(st, θ

′
l)) (3.10)

Lp contains an entropy term (H) with β in (0,1], in order to improve
exploration by discouraging premature convergence to suboptimal determin-
istic policies [54]. The worker then uses Lp and Lv to compute the gradients

47

∆θ′l
and ∆θ′v :

∆θ′v = ∇θ′v(Lv) (3.11)

∆θ′l
= ∇θ′l

(Lp) (3.12)

and use them to update the global network parameters. In this work
ADAM optimizer was used to perform gradient descent optimization.
Once the global network is updated, the worker resets its own weights to the
ones of the global network, the buffer B is emptied, t is reinitialized to 0,
and exploration is restarted. The pseudocode for the algorithm is presented
in Algorithm 2.

3.3.3 Reward function

The reward function is the part of the model in which the rules described in
paragraph 3.3 are translated in mathematical constraints and implemented.
The three main requirements that the algorithm is expected to fullfil are:

1. path length minimization

2. obstacle clearance maximization

3. compliance with needle kinematic constraints

The reward function r(st, at) is defined as:

r(st, at) =

kw target reached

−k1 ·Dst+1−T − k2 · exp(α/π)− k3 · β
π/2
− k4

(3.13)

A positive constant reward kw is given upon reaching the target.
In case the target is not reached, a negative reward is given according to:

48

Algorithm 2 A3C - pseudocode for each actor-learner worker.
// Assume global network actor-critic weights θl and θv
// Assume worker specific actor-critic weights θ′l and θ′v
// Assume global counter T
Initialize thread step counter t← 1

1: repeat
2: Reset gradients: dθl ← 0 and dθv ← 0

3: Synchronize thread parameters: θ′l = θl and θ′v = θv

4: tstart = t

5: Get state st
6: repeat
7: Perform at according to policy π(st; θ

′
l)

8: Receive reward rt and new state st+1

9: t← t+ 1

10: T ← T + 1

11: until terminal st or if t− tstart == tmax

12:

Rt =

0, for terminal st

V (st, θ
′
v), for non− terminal st

13: for i ∈ {t− 1, . . . , tstart} do
14: Rt ← ri + γ Rt

15: compute gradients ∆θ′l
and ∆θ′v

16: accumulate gradients wrt θl: dθl ← dθl + ∆θ′l

17: accumulate gradients wrt θv: dθv ← dθv + ∆θ′v

18: update of θl using dθl and of θv using dθv
19: until T > Tmax

49

• path length minimization, with a reward proportional to the distance
Dst+1−T between the new state and the target, defined as:

Dst+1−T =
√

(xst+1 − xg)2 + (yst+1 − yg)2 + (zst+1 − zg)2 (3.14)

• needle’s kinematic constraints, with two rewards given proportionally
to two different angles: the angle α, between the action at and the
vector connecting the state st and the target G; the angle β, between
the action at and the previous one at−1. The two angles are shown
in Figure 3.16. The reward associated with angle α makes the agent
learns to move always toward the target, avoiding curved trajectories
when straight ones are feasible. The reward associated with angle β
is implemented to avoid abrupt changes in the direction. The two
rewards, combined, allow the agent to learn how to move in a smooth,
efficient way in the environment.

• obstacle clearance maximization, with a constant negative reward kobst
given if the agent is in a cell with minimum distance dm ≤ 1 pixel/voxel.
This reward makes the agent learn to keep a minimum distance from
obstacles. The negative reward can be extended to cells close to the
ones adjacent to obstacles, in order to increase the minimum distance
from obstacles that the agent should respect.

kw, k1, k2, k3 and kobst are constant values used to modulate the impact of
the different terms on the total reward, which allow to menage the trade-
off in the optimization process. In this context, the values assigned to each
constant were empirically determined and are shown in Table 3.1.

Table 3.1: Reward weights

kw k1 k2 k3 kobst

6 1/32 1/5 1/2 1/2

50

Figure 3.16: (A) α is the angle between the current action at, connecting the
current state st with the new one st+1 and the vector connecting st and the
target G. (B) β is the angle between the current action at and the previous
one at−1.

3.3.4 Training strategy

According to the constraint defined in paragraph 3.3, training could be per-
formed for each hemisphere separately. This allows to sensibly shorten and
ease the training process, since the workers have to learn ho to move in a
reduced environment. At every episode a new starting point was randomly
chosen among the available free cells, and a new exit point was chosen inside
a predefined target area. The target area was determined by manually iden-
tifying a cell, and considering, as part of the target area, all the nearby cells
contained in a circle/sphere with ray λ. Additionally, at every episode, each
agent was assigned a different map among the ones available for training, in
order to encourage its ability to learn the correct policy, independently from
the specific environment, starting point or exit point, thus maximizing its
generalization and abstraction capabilities.

51

Chapter 4

EXPERIMENTAL SETUP AND
RESULTS

4.1 Experimental setup

4.1.1 Environment creation

The maps for training and testing phase were obtained from multi-modal
MR images of 7 healthy subjects, acquired on a 3T Ingenia CX scanner
(Philips Healthcare, Best, The Netherlands). The ethical committee of Vita-
Salute San Raffaele University and IRCCS San Raffaele Scientific Institute
approved the study, and all subjects provided signed informed consent prior
to MR imaging. The MRI protocol included: a 3D T1-weighted sagittal
Fast-Field Echo (acquisition matrix: 320 × 299; voxel size, 0.8 × 0.8 × 0.8
mm; thickness: 0.8/0 mm gap;) a 3D high-resolution time-of-flight MR an-
giography (TOF-MRA) (acquisition matrix: 500×399; acquired voxel size,
0.4×0.5×0.9 mm; reconstructed voxel size: 0.3 × 0.3 × 0.45 260 mm; thick-
ness: 0.45/-0.45 mm gap) and high angular resolution diffusion MR images
(HARDI) with diffusion gradients applied along 60 non-collinear directions
(acquisition matrix, 128×126; voxel size, 2×2×2 mm; thickness, 2/0 mm

gap).
Both the ToF and the T1-weighted images were segmented by thresholding

52

using 3DSlicer, an open source software for biomedical imaging processing
[59]. Blood vessels and brain models were extracted. From HARDI images,
MR Tractography reconstruction of the corticospinal tracts (CST) based on
a q-ball residual bootstrap algorithm were obtained using Diffusion imaging
in Python (Dipy) software ([44], [45]). The three models : 1) brain cortex,
2) blood vessels and 3) corticospinal tracts were registered in 3DSlicer, by
means of a roto-translation operator and the 3D binary label maps were ob-
tained (dimension 256 × 256 × 256 mm). From the label maps, 3D maps
and 2D maps were built, as described in paragraph 3.2. For each of the 7
patients 1 3D and 1 2D map were generated, for a total of 7 2D and 7 3D
maps, and used as the environment in the reinforcement learning model.

4.1.2 Training setup

Among the 7 2D and 3D maps, 6 2D maps and 6 3D maps were used during
the training phase of the model; 1 2D map 1 3D map were used for the testing
phase. Each map was split in two hemispheres (Figure 4.1), according to the
training strategy defined in section 3.3.4. In order to train the model, 12
workers operated in parallel (one for each available thread in the CPU). At
every episode a new starting point was randomly chosen among the available
free cells, and a new exit point was chosen inside a predefined target area.
The target area ray λ was set equal to 3 for 2D, and to 2 for 3D. At every
episode, each agent was assigned a different map among the 6 available for
training.
The same strategy was followed to train both the 2D and the 3D models.

4.1.3 Hardware and Software specifications

We performed our experiments on a Linux machine equipped with a 6-core i7
CPU, 16GB of RAM and 1 NVIDIA Titan XP GPU with 12GB of VRAM.
The GA3C algorithm was implemented in Tensorflow, an open source ma-
chine learning library for research and production [60]. Training perfor-
mances were visualized by Tensorboard, a Tensorflow visualization tool.

53

Figure 4.1: (A) Original 2D binary map. (B) and (C): hemisphere maps
obtained from A and used during training. The grey regions represent the
target areas for each map, inside which, at each iteration, a new target is
chosen.

54

4.1.4 Experimental protocol

The same experimental protocol was followed for both the 2D and the 3D
models. Experiments were carried out on the predefined testing map, not
used during training. A total amount of 20 couples of starting points (located
on the skull) and target points (located inside the target area) were identified,
and a trajectory for each couple was generated using the trained model. In
order to assess the quality of the proposed method, the obtained trajectories
were compared to the ones obtained by means of two standard algorithms:
A*[29] and RRT*[33], for 2D and 3D, respectively.

The obtained trajectories were evaluated considering their length (l), the
minimum (dm) and average distance (d̄) from obstacles, and the maximum
curvature (kM).

Additionally, a cost function Fc, accounting for the above mentioned pa-
rameters, was defined as:

Fc = exp(w1 ·
l

DS−T
− w2 ·

dm
dM
− w3 · d̄

dM
+ w4 · kM) (4.1)

where DS−T is the Euclidean distance between start cell and target cell.
Coefficients w1, w2, w3, w4 are the parameters weights, and are shown in
Table 4.1. The cost function, containing all the main requested features, was
used during testing stage, to assess the quality of the obtained trajectories.
As the number of samples for each map was small, non-parametric statis-
tics was used [61]. To evaluate differences between each pair of methods, a
pairwise comparison for each feature was run, through Mann-Whitney U test
(U < 127, p < 0.05).

Table 4.1: Cost function weights

w1 w2 w3 w4

0.5 1.5 1.5 1.5

55

4.2 Results evaluation

4.2.1 Training performances

The training performances were monitored by considering the value, at in-
creasing iterations number, of:

• policy loss Lp (defined in eq. 3.10)

• value loss Lv (defined in eq. 3.9)

• path length l

• reward r

Figures 4.2 and 4.3 show the training performances of 2D and 3D models,
respectively. Each plot shows a smoothed version of the specific quantity for
each worker. The spikes on the loss functions are due to Adam optimization
with mini-batches, and are not significant when evaluating training perfor-
mances. For both 2D and 3D models training, a stable value is reached with
very few iterations with respect to standard RL algorithms, thanks to the
parallel, asynchronous action of the workers.

4.2.2 Testing performances and comparison with state-

of-the-art

GA3C vs A* on 2D environments

In order to assess the quality of performances on 2D environments, the pro-
posed GA3C method was compared with the standard A* algorithm, follow-
ing the experimental protocol defined in section 4.1.4. Figure 4.4 shows an
example of a trajectory obtained through GA3C model and A*. Figure 4.5
summarizes the obtained results. Table 4.2 shows the computational time
required to compute the trajectories, and a smoothness index, obtained by
normalizing the maximum value of curvature for each path: lower values
correspond to higher smoothness of the path. Both computational times

56

Figure 4.2: Training performance assessment on 2D model. (A) Policy loss,
expressed in arbitrary unit of measurement. (B) Value loss, expressed in
arbitrary unit of measurement. (C) Path length, expressed considering, as
unit of measurement, the size of a pixel. (D) Reward, expressed in arbitrary
unit of measurement. Every quantity is observed at increasing iterations
number.

57

Figure 4.3: Training performance assessment on 3D model. (A) Policy loss,
expressed in arbitrary unit of measurement. (B) Value loss, expressed in
arbitrary unit of measurement. (C) Path length, expressed considering, as
unit of measurement, the size of a voxel. (D) Reward, expressed in arbitrary
unit of measurement. Every quantity is observed at increasing iterations
number.

58

and smoothness indexes are reported with the 25% and 75% quantiles, and
median value.

Figure 4.4: Path connecting the same starting cell and exit cell obtained
through GA3C model (A) and A* algorithm (B) on a 2D map. Black cells
correspond to obstacles, white cells correspond to free space.

59

Figure 4.5: The presented solution (GA3C) is tested against A* algorithm
one 2D test map, not used for training, on 20 computed trajectories.The
box-plots resume the obtained results in terms of path length, maximum
curvature, average and minimum distance from obstacles, and cost. Each
value in the box-plots is normalized in the range [0,1]. Statistical significance
of Mann-Whitney U test is also reported for each feature (* p < 0.05, **
p < 0.01).

Table 4.2: Computational times and Smoothness indexes on 2D test map

Comput. Tme Smoothness
Case 25th Median 75th 25th Median 75th

GA3C 0.464s 0.699s 1.016s 0.358 0.358 0.500

A∗ 0.009s 0.009s 0.013s 0.358 0.439 0.750

60

GA3C vs RRT* on 3D environments

In order to assess the quality of performances on 3D environments, the pro-
posed GA3C method was compared with the standard RRT* algorithm, fol-
lowing the experimental protocol defined in section 4.1.4. Figure 4.6 shows
an example of a trajectory obtained through GA3C model and RRT*. Fig-
ure 4.7 summarizes the obtained results. Table 4.3 shows the computational
time required to compute the trajectories, and a smoothness index, obtained
by normalizing the maximum value of curvature for each path: lower val-
ues correspond to higher smoothness of the path. Both computational times
and smoothness indexes are reported with the 25% and 75% quantiles, and
median value.

Figure 4.6: Path connecting a starting cell (S) and an exit cell (G) obtained
through GA3C model in green and RRT* algorithm in yellow, on a Slicer
model of a 3D map. Corticospinal tracts (CST) and vessels are shown in
blue and red, respectively. (A) shows a sagittal view of the whole brain; (B)
shows a close-up, highlighting the higher smoothness of the GA3C generated
trajectory, with respect to RRT*.

61

Figure 4.7: The presented solution (GA3C) is tested against RRT* algorithm
on the 3D test map, on 20 computed trajectories.The box-plots resume the
obtained results in terms of path length, maximum curvature, average and
minimum distance from obstacles, and cost. Each value in the box-plots is
normalized on range [0,1]. Statistical significance of Mann-Whitney U test
is also reported for each feature (* p < 0.05, ** p < 0.01)).

Table 4.3: Computational times and Smoothness indexes on 3D test map

Comput. Tme Smooth. Index
Case 25th Median 75th 25th Median 75th

GA3C 0.087s 0.109s 0.118s 0.090 0.095 0.125

RRT ∗ 0.05s 0.053s 0.069s 0.286 0.352 0.352

62

Chapter 5

DISCUSSION

In this work we presented a grid path planning method using GA3C Deep
Reinforcement Learning, and we tested it in the context of minimally inva-
sive neurosurgery.
When compared to A* and RRT* algorithms, the proposed method showed
a superior behaviour, according to the cost function defined in eq. 4.1, as
shown in Figures 4.5 and 4.7, rightmost column. Breaking down the cost
function, Figures 4.5 and 4.7 show the behaviour of the proposed method
with respect to the critical parameters on the test map. When applied to 2D
and compared to A*, the proposed method was able to generate trajectories
with an higher average and minimum distance from critical structures. The
maximum curvature reached was globally lower, making the paths suitable
to meet kinematic constraints of the PBN, as proved by the smoothing in-
dex in Table 4.2. Finally, the length was in general comparable (average
difference: 0.73, standard deviation: 2.32). Figure 4.4 shows a comparison
between trajectories generated by GA3C and A* on a 2D map, highlighting
the higher smoothness and obstacle clearance of the trajectory obtained with
the proposed method.

When applied to 3D and compared to RRT*, the proposed method was
able to generate trajectories with significantly lower length and significantly
higher smoothness (Table 4.3). Regarding the minimum distance value, we
observed that the paths are always at a feasible secure distance from the ob-

63

stacles. However, the 3D environment, at the given resolution, introduces far
more obstacles than a 2d environment and forces the path minimum distance
to be lower. Figure 4.6 shows a comparison between trajectories generated
by GA3C and RRT* on a 3D map, highlighting the higher smoothness and
lower length of the GA3C generated trajectory, with respect to RRT*.
Training results, shown in Figures 4.2 and 4.3, show a fast convergence of
path length and reward values toward asymptotic values, with very small im-
provement after that. The 3D model takes slightly longer to converge, and
the asymptotic reward value reached is lower than the one of the 2D case.
This is due to the higher complexity of the 3D problem, mostly related to the
much higher number of actions (26 in 3D against 8 in 2D), that substantially
increase the challenges in learning the optimal policy π∗.
The computational times, higher with respect to A* and RRT* (Tables 4.2
and 4.3), are motivated by the more complex optimization of the trajectories
required to the proposed model, not performed by A* and RRT*. How-
ever, when compared to methods involving subsequent refinement steps, our
method performs significantly faster [37] [45].
In addition to this, the learning-based nature of the proposed approach,
offers several advantages with respect to graph-based and sampling-based
methods: the proposed model can be continuously improved, by retraining
it with new maps, making it learn from new unseen data; it is flexible with
respect to optimization strategies, allowing to menage the trade-off between
different requested features (e.g. accepting to increase the insertion length,
to maximize the clearance from safety regions, or vice versa), depending on
the specific need; it could be trained to adapt to dynamic environments, as
a real brain, where the interaction of the needle with the tissues, and the
resulting deformations, may require the ability to continuously recompute
the optimal trajectory.
Despite the good results on the presented new maps, the models occasion-
ally fail to generate trajectories when dealing with new maps with severe
differences from the ones it was trained on. This is more evident in 3D
environments, for the above mentioned reasons.

64

Chapter 6

CONCLUSION AND FUTURE
WORK

The present work proposes a novel automatic planner for steerable needles in
the context of keyhole-neurosurgery. Given multi-modal MR images of the
patient, a surgeon-defined starting point, and a target, the proposed path
planner can provide an optimal trajectory, according to predefined features
as insertion length, clearance from safety regions, as blood vessels and corti-
cospinal tracts, and compliance to needle’s kinematics limits.
The model is based on a DRL approach, and uses a GA3C algorithm [54]
[55] to solve the path planning problem. The model is trained exploiting a
unique approach involving multiple workers running in parallel, on different
CPU threads, getting independent experience, and periodically updating a
global network. This approach guarantees a more stable learning and lower
computational times, with respect to standard DRL approaches. The opti-
mization of the trajectories according to the three main requested features,
is obtained by properly shaping the reward function and tuning the weight
coefficients present in it, thus determining the trade-off between different fea-
tures optimization.
When tested against the standard A* and RRT* algorithms, the proposed
method performed better in terms of cost function, generating smoother
trajectories with a sensibly higher clearance from safety regions, and with

65

comparable length. By simultaneously optimizing trajectories according to
all the requested features, and not by subsequent refinements, the proposed
method permits to obtain an higher accuracy, with a sensibly lower compu-
tational time. When dealing with maps with severe differences from the ones
used in training phase, the algorithm occasionally fails to provide trajecto-
ries, mainly in 3D environments. This limit could be overcome by increasing
the number of maps used for training, and eventually running more work-
ers in parallel to speed-up the training phase. The clearance from safety
regions could be improved by introducing rewards proportional to the values
of a distance map, making the reward function associated with it continuous,
and the optimization process more accurate. The kinematic feasibility of the
trajectories could be also improved by introducing in the reward function an
inverse kinematic model of the catheter [62], accurately defining the region
of space of admissible trajectories.
The most stimulating aspects of the proposed learning-based approach are
its flexibility and the possibility to extend it to dynamic environments. The
flexibility is given by the reward function, which allows to easily implement
all the requested features in it: more constraints could be added, without
increase of the computational complexity of the model. The possibility to
extend the model to dynamic environments is probably the most stimulating
possible future development. The path planner could be trained to be able to
respond to environment changes, as the ones that could take place during an
insertion (due to needle-tissues interaction), making it suitable to work not
only pre-operatively, but also intra-operatively, in combination with recently
developed MR intraoperative systems [63].

66

Bibliography

[1] K Fitch, T Engel, and A Bochner. «Cost Differences Between Open
and Minimally Invasive Surgery.» In: Managed care (Langhorne,
Pa.) 24.9 (2015), pp. 40–48.

[2] K Bhattacharya. «Kurt Semm: a laparoscopic crusader». In: Journal
of minimal access surgery 3.1 (2007), p. 35.

[3] Terry M Peters. «Image-guidance for surgical procedures». In:
Physics in Medicine & Biology 51.14 (2006), R505.

[4] Mack MJ. «Minimally Invasive and Robotic Surgery». In: JAMA
285.5 (2001), pp. 568–572.

[5] Chris S. Karas and E. Antonio Chiocca. «Neurosurgical robotics:
a review of brain and spine applications». In: Journal of Robotic
Surgery 1.1 (2007), pp. 39–43.

[6] Robert Reisch Et al. «The Keyhole Concept in Neurosurgery». In:
World Neurosurgery 79.2 (2013), S17.e9–S17.e13.

[7] N. Abolhassani, R. Patel and M. Moallem. «Needle insertion into
soft tissue: A survey». In: Medical engineering and physics 29.4
(2007), pp. 413–431.

[8] E. De Momi Et al. «Multi-trajectories automatic planner for Stere-
oElectroEncephaloGraphy (SEEG)». In: Medical engineering and
physics 9.6 (2014), pp. 1087–10971.

[9] McKinsey L Goodenberger and Robert B Jenkins. «Genetics of
adult glioma». In: Cancer genetics 205.12 (2012), pp. 613–621.

67

[10] L Nam et al. «Drug delivery nanosystems for the localized treatment
of glioblastoma multiforme». In: Materials 11.5 (2018), p. 779.

[11] Yuan-Yuan Xu et al. «Development of targeted therapies in treat-
ment of glioblastoma». In: Cancer biology & medicine 12.3 (2015),
p. 223.

[12] Marc Fakhoury. «Drug delivery approaches for the treatment of
glioblastoma multiforme». In: Artificial cells, nanomedicine, and
biotechnology 44.6 (2016), pp. 1365–1373.

[13] Max J Cotler et al. «Steerable Microinvasive Probes for Localized
Drug Delivery to Deep Tissue». In: Small (2019), p. 1901459.

[14] P. E. Dupont, J. Lock, B. Itkowitz and E. Butler. «Design and con-
trol of concentric-tube robots». In: IEEE Transactions on Robotics
26.2 (2010), pp. 209–225.

[15] Kyle B. Reed Et al. «Robot-Assisted Needle Steering». In: IEEE
Robot Autom 18.4 (2011), pp. 35–46.

[16] P. Qi, H. Liu, L. Seneviratne and K. Althoefer. «Towards kinematic
modeling of a multidof tendon driven robotic catheter». In: Engi-
neering in Medicine and Biology Society (EMBC), 2014 36th Annual
International Conference of the IEEE (2014), pp. 3009–3012.

[17] Zhenglong Sun Et al. «Modeling and motion compensation of a
bidirectional tendon-sheath actuated system for robotic endoscopic
surgery». In: Computer Methods and Programs in Biomedicine 119.2
(2015), pp. 77–87.

[18] A. Leibinger, M. J. Oldfield and F. R. y Baena. «Minimally disrup-
tive needle insertion: a biologically inspired solution». In: Interface
focus 6.3 (2016).

[19] R. Secoli and F. Rodriguez y Baena. «Experimental validation of
curvature tracking with a programmable bevel-tip steerable needle».
In: International Symposium on Medical Robotics (2018).

68

[20] M. Oldfield Et al. «Method to Reduce Target Motion Through
Needle-Tissue Interactions». In: Ann Biomed Eng 43.11 (2015),
pp. 2794–803.

[21] C. Burrows Et al. «Multi-target Planar Needle Steering with a Bio-
inspired Needle Design.» In: Advances in Italian Mechanism Science
(2016), pp. 51–60.

[22] R. Secoli and F. Rodriguez y Baena. «Closed-loop 3D Motion Mod-
eling and Control of a Steerable Needle for Soft Tissue Surgery». In:
2013 IEEE International Conference on Robotics and Automation
(ICRA) (2013).

[23] Eden2020. url: http://www.eden2020.eu/about/objectives-
approach-and-impact.

[24] Alessandro Gasparetto et al. «Path planning and trajectory plan-
ning algorithms: A general overview». In: Motion and operation
planning of robotic systems. Springer, 2015, pp. 3–27.

[25] Qidan Zhu, Yongjie Yan, and Zhuoyi Xing. «Robot path planning
based on artificial potential field approach with simulated anneal-
ing». In: Sixth International Conference on Intelligent Systems De-
sign and Applications. Vol. 2. IEEE. 2006, pp. 622–627.

[26] Pan Li et al. «A combination method of artificial potential field
and improved conjugate gradient for trajectory planning for needle
insertion into soft tissue». In: J Med Biol Eng 34.6 (2014), pp. 568–
573.

[27] Min Gyu Park and Min Cheol Lee. «A new technique to escape
local minimum in artificial potential field based path planning». In:
KSME international journal 17.12 (2003), pp. 1876–1885.

[28] Edsger W Dijkstra. «A note on two problems in connexion with
graphs». In: Numerische mathematik 1.1 (1959), pp. 269–271.

69

http://www.eden2020.eu/about/objectives-approach-and-impact
http://www.eden2020.eu/about/objectives-approach-and-impact

[29] Peter E Hart, Nils J Nilsson, and Bertram Raphael. «A formal
basis for the heuristic determination of minimum cost paths». In:
IEEE transactions on Systems Science and Cybernetics 4.2 (1968),
pp. 100–107.

[30] Richard E Bellman. Adaptive control processes: a guided tour.
Vol. 2045. Princeton university press, 2015.

[31] Steven M LaValle. «Rapidly-exploring random trees: A new tool for
path planning». In: (1998).

[32] James J Kuffner and Steven M LaValle. «RRT-connect: An ef-
ficient approach to single-query path planning». In: Proceedings
2000 ICRA. Millennium Conference. IEEE International Confer-
ence on Robotics and Automation. Symposia Proceedings (Cat. No.
00CH37065). Vol. 2. IEEE. 2000, pp. 995–1001.

[33] Sertac Karaman and Emilio Frazzoli. «Incremental sampling-
based algorithms for optimal motion planning». In: arXiv preprint
arXiv:1005.0416 (2010).

[34] Vincent Duindam et al. «Screw-based motion planning for bevel-tip
flexible needles in 3D environments with obstacles». In: 2008 IEEE
international conference on robotics and automation. IEEE. 2008,
pp. 2483–2488.

[35] Sachin Patil and Ron Alterovitz. «Interactive motion planning for
steerable needles in 3D environments with obstacles». In: 2010
3rd IEEE RAS & EMBS International Conference on Biomedical
Robotics and Biomechatronics. IEEE. 2010, pp. 893–899.

[36] Chiara Caborni et al. «Risk-based path planning for a steerable
flexible probe for neurosurgical intervention». In: 2012 4th IEEE
RAS & EMBS International Conference on Biomedical Robotics and
Biomechatronics (BioRob). IEEE. 2012, pp. 866–871.

70

[37] Alberto Favaro et al. «Automatic optimized 3d path planner for
steerable catheters with heuristic search and uncertainty tolerance».
In: 2018 IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE. 2018, pp. 9–16.

[38] Volodymyr Mnih et al. «Human-level control through deep rein-
forcement learning». In: Nature 518.7540 (2015), p. 529.

[39] Timothy P Lillicrap et al. «Continuous control with deep reinforce-
ment learning». In: arXiv preprint arXiv:1509.02971 (2015).

[40] Piotr Mirowski et al. «Learning to navigate in complex environ-
ments». In: arXiv preprint arXiv:1611.03673 (2016).

[41] Piotr Mirowski et al. «Learning to navigate in cities without a
map». In: Advances in Neural Information Processing Systems.
2018, pp. 2419–2430.

[42] Lei Tai, Giuseppe Paolo, and Ming Liu. «Virtual-to-real deep rein-
forcement learning: Continuous control of mobile robots for mapless
navigation». In: 2017 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). IEEE. 2017, pp. 31–36.

[43] Aleksandr I Panov, Konstantin S Yakovlev, and Roman Suvorov.
«Grid path planning with deep reinforcement learning: Preliminary
results». In: Procedia computer science 123 (2018), pp. 347–353.

[44] Eleftherios Garyfallidis et al. «Dipy, a library for the analysis of
diffusion MRI data». In: Frontiers in neuroinformatics 8 (2014),
p. 8.

[45] Alice Segato et al. «Automated steerable path planning for Deep
Brain Stimulation safeguarding fiber tracts and deep grey matter
nuclei». In: (2019).

[46] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[47] Donald E Kirk. Optimal control theory: an introduction. Courier
Corporation, 2012.

71

[48] Ling Pan et al. «Reinforcement Learning with Dynamic Boltzmann
Softmax Updates». In: arXiv preprint arXiv:1903.05926 (2019).

[49] Charles Blundell et al. «Weight uncertainty in neural networks». In:
arXiv preprint arXiv:1505.05424 (2015).

[50] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approx-
imation: Representing model uncertainty in deep learning. 2016.

[51] Volodymyr Mnih et al. «Playing atari with deep reinforcement learn-
ing». In: arXiv preprint arXiv:1312.5602 (2013).

[52] Diederik P Kingma and Jimmy Ba. «Adam: A method for stochastic
optimization». In: arXiv preprint arXiv:1412.6980 (2014).

[53] Ronald J Williams. «Simple statistical gradient-following algorithms
for connectionist reinforcement learning». In: Machine learning 8.3-
4 (1992), pp. 229–256.

[54] Volodymyr Mnih et al. «Asynchronous methods for deep reinforce-
ment learning». In: International conference on machine learning.
2016, pp. 1928–1937.

[55] Mohammad Babaeizadeh et al. «GA3C: GPU-based A3C for deep
reinforcement learning». In: CoRR abs/1611.06256 (2016).

[56] Bing Xu et al. «Empirical evaluation of rectified activations in con-
volutional network». In: arXiv preprint arXiv:1505.00853 (2015).

[57] Sepp Hochreiter and Jürgen Schmidhuber. «Long short-term mem-
ory». In: Neural computation 9.8 (1997), pp. 1735–1780.

[58] Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. «Learning
long-term dependencies with gradient descent is difficult». In: IEEE
transactions on neural networks 5.2 (1994), pp. 157–166.

[59] Steve Pieper, Michael Halle, and Ron Kikinis. «3D Slicer». In: 2004
2nd IEEE international symposium on biomedical imaging: nano to
macro (IEEE Cat No. 04EX821). IEEE. 2004, pp. 632–635.

72

[60] Mart Abadi et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Software available from tensorflow.org.
2015. url: http://tensorflow.org/.

[61] L VAJANI. PROBABILITY AND STATISTICAL-INFERENCE-
HOGG, RV, TANIS, EA. 1978.

[62] V. Duindam Et al. «Three- dimensional motion planning algorithms
for steerable needles using inverse kinematics». In: The International
Journal of Robotics Research, 29.7 (2010), pp. 789–800.

[63] Christian Senft et al. «Intraoperative MRI guidance and extent of
resection in glioma surgery: a randomised, controlled trial». In: The
lancet oncology 12.11 (2011), pp. 997–1003.

73

http://tensorflow.org/

Ringraziamenti

Ed eccoci ai ringraziamenti, la parte più impegnativa da scrivere per una
persona di poche parole come me, ma allo stesso tempo la più bella.

Ringrazio la Professoressa Elena De Momi per la fiducia e le enormi op-
portunità che mi ha offerto durante questo percorso. Grazie per le sfide che
mi ha permesso di affrontare, perché mi hanno fatto scoprire tanto di me che
non conoscevo.

Un ringraziamento sentito alla mia correlatrice Alice, per il bel viaggio
che abbiamo condiviso. Grazie per avermi insegnato qualcosa di nuovo ogni
giorno.

Grazie a J e Pizzi. Nonostante le diverse strade che abbiamo preso ab-
biano provato ad allontanarci, io mi sento ancora come quando eravamo lì,
tutti e tre insieme, dalla Marisa. Siete la cosa più bella che ho vissuto in
questi anni al Poli.

Grazie a tutti i miei amici, siete troppi per nominarvi tutti. Ricordo
ancora il giorno prima di partire per Milano: sembrava fosse la fine di tutto,
e invece è stato soltanto un nuovo meraviglioso inizio. Niente ci ha mai
separato e niente lo farà mai.

Grazie anche a chi mi ha fatto fare le cinque tutte le sere quando il giorno
dopo dovevo scrivere la tesi, perché la mattina mi alzavo stanco, ma col
sorriso.

Grazie Sofia, perché io e te siamo cresciuti insieme. L’album che mi
regalasti cinque anni fa tra qualche lacrima, è ancora lì a farmi compagnia.

Grazie ai miei coinquilini, a quelli che sono passati per poco e se ne sono
andati, e a quelli che ci sono sempre stati. Grazie Ghezzo, Vinz, Leo e Samu,
siete stati una meravigliosa famiglia milanese.

Grazie nonne Nada e Popa, e nonni Gigi e Gino, grazie a chi è qui a
guardarmi e a chi lo fa da un po’ più lontano. Non mi sono mai sentito solo
grazie a voi.

Grazie Mamma e Babbo, mi conoscete da una vita e sapete che il grazie
che dedico a voi è quello più pieno e sentito, senza bisogno di aggiungere
altro.

	Sommario
	Abstract
	INTRODUCTION
	Keyhole neurosurgery framework
	Glioblastoma treatment
	Steering flexible needles
	EDEN2020 project overview
	Aim of the work

	STATE OF THE ART OF PATH PLANNING
	Standard path planning: literature overview
	The path planning problem
	Artificial Potential Field methods
	Graph-Based methods
	Sampling-Based methods

	Path planning algorithms for steerable needles
	Learning-based methods

	Thesis Objective

	MATERIALS AND METHODS
	Workflow overview
	Dataset creation
	Path planner development
	Reinforcement Learning background
	GA3C algorithm
	Reward function
	Training strategy

	EXPERIMENTAL SETUP AND RESULTS
	Experimental setup
	Environment creation
	Training setup
	Hardware and Software specifications
	Experimental protocol

	Results evaluation
	Training performances
	Testing performances and comparison with state-of-the-art

	DISCUSSION
	CONCLUSION AND FUTURE WORK
	Bibliography
	Ringraziamenti

