
POLITECNICO DI MILANO
Master of Science in Computer Engineering

Degree Centrality and Superhubs: the

lastminute.com Case

Thesis Supervisor: Prof. Sara Comai

Company Tutor: Alessandro Rozza

Candidate:

Andrea Brenna

Student ID: 878929

Academic Year 2019-2020





Rivela il tuo sorriso in una stella se vorrai

Per stasera andrebbe bene anche cos̀ı





Sommario

L’obiettivo di questa tesi è di analizzare diverse tecniche di centralità appli-

cate sull’enorme rete di trasporto aereo di lastminute.com al fine di estrapo-

lare un elenco di aeroporti che rappresentano gli aeroporti ”più trafficati” del

mondo soprannominati ”superhub”. Il primo passo è definire l’ambiente in

cui verrà eseguito il progetto e la scelta si baserà sulla piattaforma Google

Cloud già utilizzata in azienda. I dati analizzati provengono da diverse

interazioni che l’utente può fare sul sito lastminute.com come dati di preno-

tazione, dati di ricerca e dati dei risultati di ricerca, al fine di avere una mole

importante di informazioni e più conoscenza possibile. Il grafo è la migliore

struttura dati da sfruttare per questo tipo di problema e le diverse misure di

centralità dei grafi verranno sfruttate per ottenere l’elenco dei ”superhub”.

Ci sono molte misure di centralità applicate sui grafi; in questa tesi ver-

ranno analizzate cinque diverse tecniche: la classica centralità, eigenvector

centrality, Katz centrality, betweeness centrality e una particolare centralità

ponderata. La tesi presenta diverse simulazioni al fine di confrontare la

misura della centralità menzionata in precedenza in termini di dimensioni

del grafico (numero di vertici |V | e bordi |E|), complessità computazionale,

tempistica di esecuzione, scalabilità e risultati.
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Abstract

The goal of this thesis is to analyse different techniques of centrality applied

on a huge air transportation network of lastminute.com in order to extrap-

olate a list of airports that represent the ”busiest” airports in the world

nicknamed as ”superhubs”. The first step is to define the environment in

which the project will run, and the choice lean on the Google Cloud Platform

already used in the company. The analysed data come from different inter-

action that the user can do on the lastminute.com site such as booking data,

search data and search results data, in order to have a lot of information and

much more knowledge as possible. The graph is the best data structure to

exploit for this kind of problem and the degree centrality measure is used to

achieve the extrapolation of the ”superhubs” list. There are a lot of degree

measures applied on graphs; in this thesis five different techniques will be

analysed: the classical degree centrality, the eigenvalue centrality, the Katz

centrality, betweeness centrality and a particular weighted centrality. The

thesis presents different simulations in order to compare the centrality mea-

sure mentioned before in terms of graph size (number of vertices |V | and

edges |E|), computational complexity, timing of execution, scalability and

results.
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importanza, va a chi non c’è più ma sono certo che il suo sguardo sia sempre

stato fisso su di me.

Grazie.

V





Contents

Sommario I

Abstract III

Ringraziamenti V

1 Introduction 3

1.1 About lastminute.com . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Environment 7

2.1 IDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Apache Spark . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Python . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Graph Library . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Vertica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Google Environment - Google Cloud Platform . . . . . . . . . 12

2.3.1 Cloud Dataproc . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Compute Engine . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Google Cloud Storage . . . . . . . . . . . . . . . . . . 14

2.3.4 Proposal Architecture . . . . . . . . . . . . . . . . . . 14

3 Related Works 17

3.1 Analysis of the Air Transport Network Characteristics of Ma-

jor Airports . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Analysing the multilevel structure of the European airport

network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Robustness analysis metrics for worldwide airport network:

A comprehensive study . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Network Centrality of Metro Systems . . . . . . . . . . . . . 21

VII



4 Data Structure & Algorithm 23

4.1 Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Centrality Algorithms . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Degree Centrality . . . . . . . . . . . . . . . . . . . . . 24

4.2.2 Betweenness Centrality . . . . . . . . . . . . . . . . . 25

4.2.3 Weighted Centrality . . . . . . . . . . . . . . . . . . . 26

4.2.4 Eigenvector Centrality . . . . . . . . . . . . . . . . . . 27

4.2.5 Katz Centrality . . . . . . . . . . . . . . . . . . . . . . 28

5 Data Analysis 31

5.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Data manipulation . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Scalability 37

6.1 1 month of data . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 2 months of data . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3 3 months of data . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Results 41

7.1 Degree Centrality . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.2 Betweenness Centrality . . . . . . . . . . . . . . . . . . . . . . 41

7.3 Eigenvector Centrality . . . . . . . . . . . . . . . . . . . . . . 42

7.4 Katz Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.5 Weighted Centrality . . . . . . . . . . . . . . . . . . . . . . . 44

7.6 Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Conclusions 47

Bibliography 49



List of Figures

2.1 Apache Spark ecosystem . . . . . . . . . . . . . . . . . . . . . 9

2.2 Architecture of the project. (a) Cloud Dataproc. (b) Google

Cloud Storage. (c) Compute Engine. . . . . . . . . . . . . . . 14

5.1 Steps of Research Data Analysis . . . . . . . . . . . . . . . . 33

IX





List of Tables

5.1 Dataset example of Research Data . . . . . . . . . . . . . . . 34

5.2 Dataframe example with ave results number per search field . 35

6.1 Recap Scalability Analysis. . . . . . . . . . . . . . . . . . . . 39

7.1 Degree Centrality, based on Research Data. Top 10 ’superhubs’. 42

7.2 Betweenness Centrality, based on Research Data. Top 10

’superhubs’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.3 Eigenvector Centrality, based on Research Data. Top 10 ’su-

perhubs’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.4 Katz Centrality, based on Research Data. Top 10 ’superhubs’. 43

7.5 Recap Weighted Centrality based on Research Data. . . . . . 44

7.6 Recap Centrality based on Research Data. . . . . . . . . . . . 45

1



2



Chapter 1

Introduction

1.1 About lastminute.com

Lastminute.com Group (formerly known as Bravofly Rumbo Group) is a

publicly traded multinational Group in the online travel industry and owns

a number of brands including:

• lastminute.com: lastminute.com is an online travel and leisure retailer.

The company was founded by Lady Lane-Fox and Brent Hoberman

to offer late holiday deals online. lastminute.com was acquired by

Bravofly Rumbo Group in March 2015.

• Volagratis: Volagratis.com was launched Italy in 2004. Since the pi-

oneering search engine for low cost flights has become a full-service

travel provider, offering a range of services including hotels, flights,

city breaks, holidays, cruises and car rentals.

• Rumbo: Launched in Spain in 2000, Rumbo also operates websites in

other European countries as well as in South America. Rumbo is a

full-service travel website, with its offering comprising hotels, flights,

city breaks, package holidays and cruises.

• Bravofly: Bravofly is a full-service travel website, integrating a variety

of travel products and services, including flights offered by low cost and

traditional airlines worldwide. Founded in 2006, Bravofly websites are

available in 17 languages and across 40 countries.

• Jetcost: Jetcost is a metasearch website that enables users to search

for and compare travel and leisure products from a range of suppli-

ers. Jetcost websites operate in 38 countries across Europe, Asia and

America.



• Hotelscan: Hotelscan is a metasearch engine for Hotels, Bed & Break-

fasts, Hostels, Apartments and other types of accommodations. Its

daily updated database of around 1.3 million properties with data

from over 100 online booking websites.

• Weg: weg.de is a German travel website operated by Comvel GmbH,

which was founded 2004 in Munich. weg.de, is one of Germany’s best-

known online travel sites and offers its customers the entire range of

travel options, with primary focus on package holidays and all-inclusive

vacations.

Every month, the Group reaches across all its websites and mobile apps (in

17 languages and 40 countries) 43 million users that search for and book

their travel and leisure experiences. More than 1,200 people work for the

Group, which conducts its business through its operational headquarters in

Chiasso (Switzerland) and a further 10 offices worldwide.

1.2 Objectives

lastminute.com group is an online travel industry and is interested in under-

standing the most important airports, called ”superhubs”, in its air trans-

portation network. Currently there are around 10,000 airports worldwide

that make the network of lastminute.com very complex and difficult to ex-

plore. The value of importance that lastminute.com gives to ”superhubs”

is not only related to how well an airport is connected in the network but

also how convenient it is, in economic terms, ”go through” a specific airport.

These specifications are fully combined with the concept of degree centrality

of a node in a graph. The degree centrality of a node is one of the main

topics regarding the graph theory. Degree is a simple centrality measure

that counts how many neighbours a node has and reflects how much a node

is important in a network. There are several different techniques in the lit-

erature that permit to calculate the degree centrality of a node in a network

taking into consideration different aspects related to the structure of the

network itself. The goal of this thesis is to give to lastminute.com a list of

”superhubs” that combine the concept of traffic and economic convenience

by exploring the world of the degree centrality measures and understand-

ing the best technique applicable to the network in question. This thesis

is articulated in different steps of analysis, starting from the choice of the

environment in which the application should run. The chosen environment

is the Google Cloud Platform, offered by Google, a suite of cloud computing

services that runs on the same infrastructure that Google uses internally
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for its end-user products. Google Cloud Platform offers different kind of

products, three of them are fundamental for the development of the project:

Cloud Dataproc, Compute Engine and Google Cloud Storage. Their func-

tionalities will be explained in depth in the chapter X. The next step of

the analysis is understanding the best data structure to adopt and the most

suitable centrality algorithms. The choice of the graph as a data structure

is quite natural because permits to represent the air transportation network

in a clear and complete way. The airports will be represented as nodes in

the graph and a trip between airport A (departure airport) and airport B

(arrival airport) will be represent as an edge. In order to enrich the graph,

the edges of the network will be ”weighted” adding information like price,

number of searches per trip, etc. Before starting with the algorithmic part,

several jobs were analyzed to get an overview of the most complete on the

techniques used and the data structures analyzed. The main goal of this

application is to compare different centrality measures in a graph and com-

pare results and performance. The search of centrality measures that were

suitable for the network in question and for the extrapolation of the ”su-

perhubs” led to the choice of four different techniques: the classical degree

centrality, applied to an undirected and unweighted graph; the eigenvector

centrality and the Katz centrality that measure of the influence of a node in

a network; a weighted centrality based on [1], applied to a undirected and

weighted graph, using information about the price and the average number

of results giving the searches of a specific period of time. The data manip-

ulated for the creation of the graphs coming from different iteration that a

user can do surfing on the lastminute.com site:

• A simple search for a flight with specific regarding: the airports of

departure and arrival, that will be represent as a node in the graph;

dates, which allows to slice the analysis periods; the number of flight

solution proposed by the site, that will be represent as a weight of an

edge linking departure and arrival airport.

• A booking of a flight that contains more information than before: the

airports of departure and arrival, flight dates, flight duration, price,

number of passengers, etc.

The data manipulation phase is a crucial because it is necessary to be able

to compress and prepare the data in order to make the creation of the graph

and the subsequent analysis as fast as possible. To give an idea of the

amount of data we talk about, for a month we have about 500GB of data

to manipulate. The last step of analysis is test, on different configuration of
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graphs, the results and the performance of the centrality measure listed be-

fore. The results highlight how, despite the different techniques adopted and

the different approaches in the construction of the graph, the ”superhubs”

are similar or sometimes equal and concentrated mainly in Europe.

6



Chapter 2

Environment

This chapter introduces the environment that has been chosen to develop

the project, entering in detail the single components, their peculiarities and

their usefulness for the final result.

2.1 IDE

2.1.1 Apache Spark

Apache Spark [1] is an open-source distributed general-purpose cluster-

computing framework. Apache Spark has as its architectural foundation

the resilient distributed dataset (RDD), a read-only multiset of data items

distributed over a cluster of machines, that is maintained in a fault-tolerant

way. Apache Spark supports the following four languages that are, Scala,

Java, Python and R; in this particular project I use Python. The following

are the key features of Apache Spark:

• Polyglot: Spark provides high-level APIs in Java, Scala, Python and R.

Spark code can be written in any of these four languages. It provides

a shell in Scala and Python. The Scala shell can be accessed through

./bin/spark-shell and Python shell through ./bin/pyspark from the

installed directory.

• Speed: Spark runs up to 100 times faster than Hadoop MapReduce for

large-scale data processing. Spark is able to achieve this speed through

controlled partitioning. It manages data using partitions that help

parallelize distributed data processing with minimal network traffic.

• Multiple Formats: Spark supports multiple data sources such as Par-

quet, JSON, Hive and Cassandra. The Data Sources API provides a



pluggable mechanism for accessing structured data though Spark SQL.

Data sources can be more than just simple pipes that convert data and

pull it into Spark.

• Lazy Evaluation: Apache Spark delays its evaluation till it is abso-

lutely necessary. This is one of the key factors contributing to its

speed. For transformations, Spark adds them to a DAG of compu-

tation and only when the driver requests some data, does this DAG

actually gets executed.

• Real Time Computation: Spark’s computation is real-time and has

less latency because of its in-memory computation. Spark is designed

for massive scalability and the Spark team has documented users of

the system running production clusters with thousands of nodes and

supports several computational models.

• Hadoop Integration: Apache Spark provides smooth compatibility

with Hadoop. This is a great boon for all the Big Data engineers

who started their careers with Hadoop. Spark is a potential replace-

ment for the MapReduce functions of Hadoop, while Spark has the

ability to run on top of an existing Hadoop cluster using YARN for

resource scheduling.

• Machine Learning: Spark’s MLlib is the machine learning component

which is handy when it comes to big data processing. It eradicates

the need to use multiple tools, one for processing and one for machine

learning. Spark provides data engineers and data scientists with a

powerful, unified engine that is both fast and easy to use.

In 2.1 the Apache Spark ecosystem is shown, it presents five different com-

ponents:

• Spark Core: Spark Core is the foundation of the overall project. It

provides distributed task dispatching, scheduling, and basic I/O func-

tionalities, exposed through an application programming interface (for

Java, Python, Scala, and R) centered on the RDD abstraction. This

interface mirrors a functional/higher-order model of programming: a

”driver” program invokes parallel operations such as map, filter or

reduce on an RDD by passing a function to Spark, which then sched-

ules the function’s execution in parallel on the cluster. RDDs are

immutable and their operations are lazy; fault-tolerance is achieved

by keeping track of the ”lineage” of each RDD (the sequence of oper-

ations that produced it) so that it can be reconstructed in the case of
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Figure 2.1: Apache Spark ecosystem

data loss. Besides the RDD-oriented functional style of programming,

Spark provides two restricted forms of shared variables: broadcast

variables reference read-only data that needs to be available on all

nodes, while accumulators can be used to program reductions in an

imperative style.

• Spark Streaming: Spark Streaming uses Spark Core’s fast scheduling

capability to perform streaming analytics. It ingests data in mini-

batches and performs RDD transformations on those mini-batches of

data. This design enables the same set of application code written for

batch analytics to be used in streaming analytics, thus facilitating easy

implementation of lambda architecture. However, this convenience

comes with the penalty of latency equal to the mini-batch duration.

Streaming has support built-in to consume from Kafka, Flume, Twit-

ter, ZeroMQ, Kinesis, and TCP/IP sockets. In Spark 2.x, a separate

technology based on Datasets, called Structured Streaming, that has

a higher-level interface is also provided to support streaming. It is

used for processing real-time streaming data. Spark SQL: Spark SQL

is a component on top of Spark Core that introduced a data abstrac-

tion called DataFrames, which provides support for structured and

semi-structured data.

• Spark SQL provides a domain-specific language (DSL) to manipulate

DataFrames in Scala, Java, or Python. It also provides SQL language

support, with command-line interfaces and ODBC/JDBC server. Al-

though DataFrames lack the compile-time type-checking afforded by
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RDDs, as of Spark 2.0, the strongly typed DataSet is fully supported

by Spark SQL as well. It integrates relational processing with Spark’s

functional programming API.

• GraphX: GraphX is a distributed graph-processing framework on top

of Apache Spark. Because it is based on RDDs, which are immutable,

graphs are immutable and thus GraphX is unsuitable for graphs that

need to be updated, let alone in a transactional manner like a graph

database. GraphX provides two separate APIs for implementation of

massively parallel algorithms (such as PageRank): a Pregel abstrac-

tion, and a more general MapReduce-style API. Unlike its predecessor

Bagel, which was formally deprecated in Spark 1.6, GraphX has full

support for property graphs (graphs where properties can be attached

to edges and vertices). GraphX can be viewed as being the Spark in-

memory version of Apache Giraph, which utilized Hadoop disk-based

MapReduce.

• MLlib: Spark MLlib is a distributed machine-learning framework on

top of Spark Core that, due in large part to the distributed memory-

based Spark architecture, is as much as nine times as fast as the disk-

based implementation used by Apache Mahout and scales better than

Vowpal Wabbit. Many common machine learning and statistical al-

gorithms have been implemented and are shipped with MLlib which

simplifies large scale machine learning pipelines like classification, re-

gression, collaborative filtering, cluster analysis methods, etc.

2.1.2 Python

Python is an interpreted, high-level, general-purpose programming language

[2]. Python is dynamically typed and garbage-collected. It supports multiple

programming paradigms, including procedural, object-oriented, and func-

tional programming. Python is often described as a ”batteries included” lan-

guage due to its comprehensive standard library. Python is a multi-paradigm

programming language. Object-oriented programming and structured pro-

gramming are fully supported, and many of its features support functional

programming and aspect-oriented programming (including by metaprogram-

ming and metaobjects (magic methods)). Many other paradigms are sup-

ported via extensions, including design by contract and logic programming.

Python uses dynamic typing, and a combination of reference counting and a

cycle-detecting garbage collector for memory management. It also features

dynamic name resolution (late binding), which binds method and variable
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names during program execution. Python’s design offers some support for

functional programming in the Lisp tradition. It has filter, map, and reduce

functions; list comprehensions, dictionaries, sets and generator expressions

2.1.3 Graph Library

Python supports various graph libraries.

• iGraph: igraph is a collection of network analysis tools with the em-

phasis on efficiency, portability and ease of use. igraph is open source

and free. igraph can be programmed in R, Python, Mathematica and

C/C++ [3].

• Snappy: Snap.py is a Python interface for SNAP [4]. SNAP is a gen-

eral purpose, high performance system for analysis and manipulation

of large networks. SNAP is written in C++ and optimized for maxi-

mum performance and compact graph representation. It easily scales

to massive networks with hundreds of millions of nodes, and billions

of edges. Snap.py provides performance benefits of SNAP, combined

with flexibility of Python. Most of the SNAP functionality is available

via Snap.py in Python.

• Spark GraphX: GraphX is a new component in Spark for graphs and

graph-parallel computation. At a high level, GraphX extends the

Spark RDD by introducing a new Graph abstraction: a directed multi-

graph with properties attached to each vertex and edge. To support

graph computation, GraphX exposes a set of fundamental operators

(e.g., subgraph, joinVertices, and aggregateMessages) as well as an

optimized variant of the Pregel API. In addition, GraphX includes a

growing collection of graph algorithms and builders to simplify graph

analytics tasks.

• NetworkX: NetworkX [5] is a Python package for the creation, manipu-

lation, and study of the structure, dynamics, and functions of complex

networks. NetworkX provides:

– tools for the study of the structure and dynamics of social, bio-

logical, and infrastructure networks;

– a standard programming interface and graph implementation that

is suitable for many applications;

– a rapid development environment for collaborative, multidisci-

plinary projects;
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– an interface to existing numerical algorithms and code written in

C, C++, and FORTRAN; and

– the ability to painlessly work with large nonstandard data sets.

With NetworkX you can load and store networks in standard and

nonstandard data formats, generate many types of random and classic

networks, analyze network structure, build network models, design

new network algorithms, draw networks, and much more.

2.2 Vertica

Vertica Systems is an analytic database management software company [6].

The column-oriented Vertica Analytics Platform was designed to manage

large, fast-growing volumes of data and provide very fast query perfor-

mance when used for data warehouses and other query-intensive applica-

tions. The product claims to greatly improve query performance over tradi-

tional relational database systems, and to provide high availability and ex-

abyte scalability on commodity enterprise servers. Vertica is infrastructure-

independent, supporting deployments on multiple cloud platforms (AWS,

Google, Azure), on-premises and natively on Hadoop nodes. Its design

features include: column-oriented storage organization, massively parallel

processing (MPP) architecture, standard SQL interface, in-database ma-

chine learning, native integration with open source big data technologies

like Apache Kafka and Apache Spark, etc.

2.3 Google Environment - Google Cloud Platform

Google Cloud Platform (GCP) [7], offered by Google, is a suite of cloud com-

puting services that runs on the same infrastructure that Google uses inter-

nally for its end-user products, such as Google Search and YouTube. Along-

side a set of management tools, it provides a series of modular cloud services

including computing, data storage, data analytics and machine learning.

Google Cloud Platform provides Infrastructure as a service (IaaS), Plat-

form as a service (PaaS), and Serverless computing environments. Google

Cloud Platform is a part of Google Cloud, which includes the Google Cloud

Platform public cloud infrastructure, as well as G Suite, enterprise versions

of Android and Chrome OS, and application programming interfaces (APIs)

for machine learning and enterprise mapping services. This type of archi-

tecture allows to develop the project in a powerful and intelligent way by

exploiting the various components that GCP makes available. From the
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over 90 products that Google offers, three of these are fundamental to the

success of the project: Cloud Dataproc, Compute Engine and Google Cloud

Storage (GCS)

2.3.1 Cloud Dataproc

Google Cloud Dataproc (Cloud Dataproc) is a cloud-based managed Spark

and Hadoop service offered on Google Cloud Platform. Cloud Dataproc

utilizes many Google Cloud Platform technologies such as Google Compute

Engine and Google Cloud Storage to offer fully managed clusters running

popular data processing frameworks such as Apache Hadoop and Apache

Spark. Cloud Dataproc is a Platform as a service (PaaS) product designed

to combine the Spark and Hadoop frameworks with many common cloud

computing patterns. Cloud Dataproc separates compute and storage, which

is a relatively common design for many cloud Hadoop offerings. Cloud Dat-

aproc utilizes Google Compute Engine virtual machines for compute and

Google Cloud Storage for file storage. Cloud Dataproc has a set of con-

trol and integration mechanisms that coordinate the lifecycle, management,

and coordination of clusters. Cloud Dataproc is integrated with the YARN

application manager to make managing and using clusters easier. Cloud

Dataproc includes many open source packages used for data processing, in-

cluding items from the Spark and Hadoop ecosystem, and open source tools

to connect these frameworks with other Google Cloud Platform products.

2.3.2 Compute Engine

Google Compute Engine (GCE) is the Infrastructure as a Service (IaaS)

component of Google Cloud Platform which is built on the global infrastruc-

ture that runs Google’s search engine, Gmail, YouTube and other services.

Google Compute Engine enables users to launch virtual machines (VMs) on

demand. VMs can be launched from the standard images or custom im-

ages created by users. GCE users must authenticate based on OAuth 2.0

before launching the VMs. Google Compute Engine can be accessed via the

Developer Console, RESTful API or command-line interface (CLI). Google

provides certain types of machine:

• Standard machine: 3.75 GB of RAM per virtual CPU

• High-memory machine: 6.5 GB of RAM per virtual CPU

• High-CPU machine: 0.9 GB of RAM per virtual CPU

• Shared machine: CPU and RAM are shared between customers
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• Memory-optimized machine: greater than 14 GB RAM per vCPU.

Each of these, obviously, has different costs depending on the power of the

machine. As part of development, Compute Engine connects various entities

called resources, performing different functions. When a virtual machine in-

stance is launched, an instance resource is created that uses other resources,

such as disk resources, network resources and image resources.

2.3.3 Google Cloud Storage

Google Cloud Storage is a RESTful online file storage web service for storing

and accessing data on Google Cloud Platform infrastructure. The service

combines the performance and scalability of Google’s cloud with advanced

security and sharing capabilities. It is an Infrastructure as a Service (IaaS),

comparable to Amazon S3 online storage service. Contrary to Google Drive

and according to different service specifications, Google Cloud Storage ap-

pears to be more suitable for enterprises. Google Storage offers four storage

classes, identical in throughput, latency and durability. The four classes,

Multi-Regional Storage, Regional Storage, Nearline Storage, and Coldline

Storage differ in their pricing, minimum storage durations, and availability.

2.3.4 Proposal Architecture

Figure 2.2: Architecture of the project. (a) Cloud Dataproc. (b) Google Cloud Storage.

(c) Compute Engine.

In 2.2 the proposal architecture is shown.

Cloud Dataproc is used to take care of reading and preparing data using the

Spark libraries; the data is read from the Google Cloud Storage (GCS) on

which the result of the data preparation will be written. The Google Cloud

Storage (GCS) is used to store all the raw data and all the information useful

for the development of the project, containing also additional information

useful for the company to the correct operation of all internal operations.

Compute Engine is used for many different reasons:
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• read the prepared data from the Google Cloud Storage (GCS);

• create graphs using libraries and calculate the degree centrality in

order to identify the superhubs;

• write in Google Cloud Storage (GCS) the output (small text file, i.e.,

.csv or .txt);

The idea behind this architectural proposal is to run the ”superhubs” anal-

ysis weekly or monthly in order to avoid seasonality and have a list that

must be as precise and up-to-date as possible.
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Chapter 3

Related Works

This chapter analysis similar works that address the same problem.

3.1 Analysis of the Air Transport Network Char-

acteristics of Major Airports

In [8] the authors analyse the same problem using different software and

different methodology. The methodology used in this paper is the Social

Network Analysis (SNA) supported by the UCINET, a network analysis

software program developed in 2002 by Lin Freeman, Martin Everett and

Steve Borgatti.

Social network analysis (SNA) is the process of investigating social structures

through the use of networks and graph theory. It characterizes networked

structures in terms of nodes (individual actors, people, or things within the

network) and the ties, edges, or links (relationships or interactions) that

connect them. Examples of social structures commonly visualized through

social network analysis include social media networks, memes spread, in-

formation circulation, friendship and acquaintance networks, business net-

works, social networks, collaboration graphs, kinship, disease transmission,

and sexual relationships. These networks are often visualized through so-

ciograms in which nodes are represented as points and ties are represented

as lines. These visualizations provide a means of qualitatively assessing

networks by varying the visual representation of their nodes and edges to

reflect attributes of interest. Social network analysis has emerged as a key

technique in modern sociology. It has also gained a significant following

in anthropology, biology, demography, communication studies, economics,

geography, history, information science, organizational studies, political sci-

ence, social psychology, development studies, sociolinguistics, and computer



science and is now commonly available as a consumer tool. Social network

analysis is used extensively in a wide range of applications and disciplines.

Some common network analysis applications include data aggregation and

mining, network propagation modeling, network modeling and sampling,

user attribute and behavior analysis, community-maintained resource sup-

port, location-based interaction analysis, social sharing and filtering, recom-

mender systems development, and link prediction and entity resolution. In

the private sector, businesses use social network analysis to support activities

such as customer interaction and analysis, information system development

analysis, marketing, and business intelligence needs (see social media ana-

lytics). Some public sector uses include development of leader engagement

strategies, analysis of individual and group engagement and media use, and

community-based problem solving.

The data analysed in order to calculate the final results coming from three

different airline alliances creating a network composed by 1,060 airports and

5,580 routes covering 173 country. The techniques used to extrapolate its

”superhubs” are the classical degree centrality and the betweenness central-

ity, working before on the totality of the world airports and then studying

two particular case, the US case and the China case. The final results shown

in this paper are different from mine, so considerations must be made. The

authors analysed data based on the three biggest airline alliance, that are

Star Alliance (composed of 27 members worldwide), Oneworld (composed

of 13 members worldwide) and SkyTeam (composed of 19 members world-

wide), so with a good coverage of the annual air traffic but considering only

the routes these airlines serve during the year. In fact, this study is based

on two measure of degree centrality that are not weighted and don’t take

care of, for example, the number of connections during the period analysed,

the cost of the flight or the different trip solutions offered by different airline

company. The resulting network is composed by almost all of the world’s

airports (1,060) but presents a very limited number of connections (5,580)

compared with my networks that take care of all the data mentioned before.

As already mentioned, the results of this analysis are different from mine

because the top30 ”superhubs” extrapolated in this work are distributed

worldwide (about 80% extra European and only 17% European), whereas

my ”superhubs” are mostly concentrated in the Europe area. This is due

to the fact that lastminute.com customers are mostly European, so the evi-

dence of my analysis is influenced by this.
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3.2 Analysing the multilevel structure of the Eu-

ropean airport network

In [9] the authors analyse the same problem but take into account only the

European Airport Network (EAN), one of the central elements of the World

Airport Network (WAN). The data analysed in this paper include all the

flights between European cities (including Canary Island and Madeira) in

August 2014 covered by the OAG dataset. OAG is an air travel intelligence

company that provides accurate, timely and actionable digital information

and applications to the world’s airlines, airports, government agencies and

travel-related service companies. With the world’s largest network of air

travel data, OAG plays an integral part in helping power a wide variety of

industry solutions. They are able to connect their customers to the traveller

by providing a full life-cycle of products and they tell the whole story from

scheduling and planning, flight status and day-of-travel updates to post jour-

ney analysis and on-time performance review. With an unrivalled ability to

aggregate complex data sets, OAG delivers real-time flight information in-

sights, compelling visualisations, powerful applications and analytics. OAG

is best known for its airline schedules database which holds future and his-

torical flight details for more than 900 airlines and over 4,000 airports. This

dataset provides US domestic flight schedules, including airline information

(carrier code, name, flight number, etc.) and routing information (airport

code, departure and arrival time, stops, number of seats, etc.) from 2008-

2019 by year and month. The data structure analysed is a multi-layered

network composed by 601 airports and 6,401 connections between nodes

coming from a dataset containing 652,291 flights. The limited number of

airports is due to a constraint the authors gave to the network that is to

consider only the macro airport including all the micro airports associated

to it, for example London is indicated as LON (macro airport) including all

the nine micro airports of the city, such as London-City (LCY), Gatwick

(LGW), London-Heathrow (LHR), London-Luton (LTN), London-Stansted

(STN) and so on. The particular network used in this work is exploited

to better understand the internal organization of the EAN, composed by

three different layers: a core layer; a bridge layer; a periphery layer. It has

been used two different measures of degree: a classical degree centrality;

a weighted degree centrality based on the number of flights scheduled in

August 2014. The core layer contains the nodes belonging to the k-core of

maximum k degree, including 69 airports that represent the airports with

the highest degree centrality in the network and have an excellent connectiv-

ity between them and also with the rest layers of the network. The bridge
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layer includes 444 airports that represent a subset of nodes with a good

value of degree centrality and a good connectivity between them and also

with the core layer. The periphery layer consists of 88 nodes and has low

significance in EAN network, with only 27 connections with the bridge and

63 with the core. The results achieved by this paper are similar to mine

and also comparable. If we take into consideration only the core layer of the

EAN network, it is possible to observe how the airports extract are similar

to mine unless there are differences due to the order. In fact, the EAN

network constructed can be compared with the networks that will be built

due to the fact that, as already mentioned, the lastminute.com market is

mostly influenced by European customers. On the other hand, some clarifi-

cations and considerations must be made. The EAN network is based on a

very small amount of data because take into account only the period of Au-

gust 2014 in fact the number of connections is very limited. Moreover, the

construction of the network doesn’t take into consideration the cost of the

flight or the different trip solutions offered by different airline company, data

that are fundamental in order to have a more precise measure of a weighted

centrality. The last weakness of this work is the utilization of only macro

airports: this approach gives a solution that will not be precise because

”weights” in the same way the micro airports which can be different in size

and traffic. For example, London-Heathrow is one of the busiest airport in

Europe with 5 terminals and in 2013 served about 72 millions of passengers.

In the same period, London-Stansted served about 18 millions of passengers

and has only one terminal.

3.3 Robustness analysis metrics for worldwide air-

port network: A comprehensive study

[10] represents a complete study of worldwide airport network. The authors

construct a huge directed and weighted network based on the data extracted

from Sabre Airport Data Intelligence (ADI) of 2013. Airport Data Intelli-

gence (ADI) uses bookings made via Global Distribution System (GDS) as

its primary data source, and leverages external data sources and proprietary

algorithms to estimate direct airline bookings and charter operations to ob-

tain a complete view of scheduling and traffic data. You will be able to

obtain:

• Origin airport, destination airport and connecting airport

• Average fare at segment and O&D level
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• Point-of-origin airport

• Point-of-sale to zip code level

• Operating and marketing airline

• Booking and cabin-class data

• Future bookings

• Segment traffic divided into local, behind, beyond and bridge

Two different weights are used for this study: geographical distances and

the number of passengers travelling between two airports. The resulting

network is composed by 3885 nodes and 228080 links, that represents a

complete and satisfactory representation of the annual air traffic worldwide.

In order to evaluate the strength of a node, the authors analyse the net-

work using 6 different typology of degree, 3 of them used only in my work:

weighted degree, where the degree of a node u is the sum of all weights

for the incoming and outgoing links of u; betweenness centrality; closeness

centrality; eigenvector centrality; Bonacich power centrality; damage. All of

these measures are used to ”attack” the network in order to truncate some

nodes and some connection and then test the robustness of the resulting

network. They perform system analysis of the robustness for the worldwide

airport network with three different weights (unweighted, distance weighted,

and passenger weighted), measured by three different robustness measure.

After an exhaustive analysis of time consuming and computational efficiency

of all the previous operations, the results are shown. The top 40 airports

present an important presence in Asia (35%) and North America (38%) and

only in minor part in terms of Europe (18%), whereas my ”superhubs” are

mostly concentrated in the Europe area. This is due to the fact that last-

minute.com customers are mostly European, so the evidence of my analysis

is influenced by this.

3.4 Network Centrality of Metro Systems

The last paper analysed, [11], is related to another topology of network, the

metro system. As in the air transportation, the metro transportation is a

system adapt to exploit the concept of graph and centrality. The authors

analyse a total of 28 metro networks, from the smallest, Athens, to the

biggest, London, worldwide. The measure of centrality used to calculate the

most important nodes in each network is the betweenness centrality, that is
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particularly relevant in the case of public transport, in fact, it differs from

most centrality indicators. Indeed, the importance does not rely so much

on the location of the node as an end point, but on whether or not it is

used to join any two other nodes (taking the shortest paths). This kind of

paper is not so relevant in order to evaluate my work but is very important

to highlight the powerful and ductility of the graph as a data structure and

the measure of degree centrality in order to extract the most relevant nodes

of a generic network.
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Chapter 4

Data Structure & Algorithm

This chapter analyses in detail the data structure and the centrality mea-

sures algorithms used and modified in order to reach the desired results.

4.1 Graph

A graph is an abstract data type that is meant to implement the undirected

graph and directed graph concepts from mathematics; specifically, the field

of graph theory. A graph data structure consists of a finite (and possibly

mutable) set of vertices, |V | (also called nodes or points), together with a

set of unordered pairs of these vertices for an undirected graph or a set of

ordered pairs for a directed graph. These pairs are known as edges (also

called links or lines), and for a directed graph are also known as arrows.

The vertices may be part of the graph structure or may be external entities

represented by integer indices or references. A graph data structure may

also associate to each edge some edge value, such as a symbolic label or a

numeric attribute (cost, capacity, length, etc.). The choice of the graph as a

data structure is a rather obvious choice because it allows to represent the

airports as nodes and the connection between them as edges. In order to

develop the project, I chose a particular kind of directed graph that is the

Multi Graph. This kind of graph permits to have multiple arcs, i.e., arcs

with the same source and target nodes, that in this particular case represent

different flight solutions. Different information is associated with each arc:

• Cost per person;

• Departure date;

• Arrival date;



• Number of hops;

• Flight type;

• Id booking;

• Number of results.

4.2 Centrality Algorithms

In graph theory and network analysis, indicators of centrality identify the

most important vertices within a graph.

4.2.1 Degree Centrality

The degree centrality is defined as the number of links incident upon a node

(i.e., the number of ties that a node has). The degree can be interpreted

in terms of the immediate risk of a node for catching whatever is flowing

through the network (such as a virus, or some information). In the case of a

directed network (where ties have direction), we usually define two separate

measures of degree centrality, namely indegree and outdegree. Accordingly,

indegree is a count of the number of ties directed to the node and outdegree is

the number of ties that the node directs to others. When ties are associated

to some positive aspects such as friendship or collaboration, indegree is often

interpreted as a form of popularity, and outdegree as gregariousness. The

degree centrality of a vertex v, for a given graph G := (V,E) with |V |
vertices and |E| edges, is defined as

CD(v) = deg(v)

Calculating degree centrality for all the nodes in a graph takes Θ(V 2) in

a dense adjacency matrix representation of the graph, and for edges takes

Θ(E) in a sparse matrix representation. The time complexity is O(|V |).
The definition of centrality on the node level can be extended to the whole

graph, in which case we are speaking of graph centralization. Let v∗ be the

node with highest degree centrality in G. Let X := (Y,Z) be the |Y | node

connected graph that maximizes the following quantity (with y∗ being the

node with highest degree centrality in X):

H =

|Y |∑
j=1

[CD(y∗)− CD(yj)]
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Correspondingly, the degree centralization of the graph is as follows:

CD(G) =

∑|V |
i=1[CD(v∗)− CD(vi)]

H

The value of H is maximized when the graph X contains one central node

to which all other nodes are connected (a star graph), and in this case

H = (n− 1)((n− 1)− 1) = n2 − 3n+ 2

So, for any graph G := (V,E),

CD(G) =

∑|V |
i=1[CD(v∗)− CD(vi)]

|V |2 − 3|V |+ 2

4.2.2 Betweenness Centrality

In graph theory, betweenness centrality is a measure of centrality in a graph

based on shortest paths. For every pair of vertices in a connected graph,

there exists at least one shortest path between the vertices such that either

the number of edges that the path passes through (for unweighted graphs)

or the sum of the weights of the edges (for weighted graphs) is minimized.

The betweenness centrality for each vertex is the number of these short-

est paths that pass through the vertex. Betweenness centrality was devised

as a general measure of centrality: it applies to a wide range of problems

in network theory, including problems related to social networks, biology,

transport and scientific cooperation. Although earlier authors have intu-

itively described centrality as based on betweenness, Freeman (1977) gave

the first formal definition of betweenness centrality. Betweenness centrality

finds wide application in network theory; it represents the degree to which

nodes stand between each other. For example, in a telecommunications net-

work, a node with higher betweenness centrality would have more control

over the network, because more information will pass through that node.

The betweenness centrality of a node v is given by the expression:

g(v) =
∑
s 6=v 6=t

σst(v)

σst

where σst is the total number of shortest paths from node s to node t and

σst(v) is the number of those paths that pass through v. Note that the

betweenness centrality of a node scales with the number of pairs of nodes

as implied by the summation indices. Therefore, the calculation may be re

scaled by dividing through by the number of pairs of nodes not including v,
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so that g ∈ [0, 1]. The division is done by (N−1)(N−2) for directed graphs

and (N−1)(N−2)/2 for undirected graphs, where N is the number of nodes

in the giant component. Note that this scales for the highest possible value,

where one node is crossed by every single shortest path. This is often not

the case, and a normalization can be performed without a loss of precision

normal(g(v)) =
g(v)−min(g)

max(g)−min(g)

which results in:

• max(normal) = 1

• min(normal) = 0

Note that this will always be a scaling from a smaller range into a larger

range, so no precision is lost.

On unweighted graphs, calculating betweenness centrality takes O(|V ||E|)
time using Brandes’ algorithm.

4.2.3 Weighted Centrality

The weighted centrality described below is based on [12] Freeman (1978)

asserted that the degree of a focal node is the number of adjacencies in

a network, i.e. the number of nodes that the focal node is connected to.

Degree is a basic indicator and often used as a first step when studying

networks (Freeman, 2004; McPherson et al., 2001; Wasserman and Faust,

1994). In an attempt to combine both degree and strength, we use a tuning

parameter α, which determines the relative importance of the number of ties

compared to tie weights. More specifically, we propose a degree centrality

measure, which is the product of the number of nodes that a focal node is

connected to, and the aver-age weight to these nodes adjusted by the tuning

parameter. We formally propose the following measure:

CwaD = ki(
si
ki

)α = k
(1−α)
i sαi

where:

• ki = CD(i) =
∑N

j xij , where i is the focal node, j represents all other

nodes, N is the total number of nodes, and x is defined as 1 if node i

is connected to node j, and 0 otherwise;

• si = CwD(i) =
∑N

j wij , where w is the weighted adjacency matrix, in

which wij is greater than 0 if the node i is connected to node j, and

the value represents the weight of the tie;
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• α is a positive tuning parameter that can set according to the research

setting and data.

In order to calculate the weighted centrality measure of nodes, I weighted

the network using an approach based on the average number of results given

a specific request on the lastminute.com site:

wij =
AveNumberOfResultsij

AveNunmberOfResultskj(∀k 6= i)

4.2.4 Eigenvector Centrality

In graph theory, eigenvector centrality (also called eigencentrality) is a mea-

sure of the influence of a node in a network. If a node is pointed to by many

nodes (which also have high Eigenvector centrality) then that node will have

high eigenvector centrality. Relative scores are assigned to all nodes in the

network based on the concept that connections to high-scoring nodes con-

tribute more to the score of the node in question than equal connections to

low-scoring nodes. A high eigenvector score means that a node is connected

to many nodes who themselves have high scores. Google’s PageRank and

the Katz centrality are variants of the eigenvector centrality. For a given

graph G := (V,E) with |V | vertices let A = (av,t) be the adjacency matrix,

i.e. av,t = 1 if vertex v is linked to vertex t, and av,t = 0 otherwise. The

relative centrality, x, score of vertex v can be defined as:

xv =
1

λ

∑
t∈M(v)

xt =
1

λ

∑
t∈G

av,txt

Where M(v) is a set of the neighbours of v and λ is a constant. With a small

rearrangement this can be rewritten in vector notation as the eigenvector

equation:

Ax = λx

In general, there will be many different eigenvalues for which a non-zero

eigenvector solution exists. However, the additional requirement that all the

entries in the eigenvector be non-negative implies (by the Perron-Frobenius

theorem) that only the greatest eigenvalue results in the desired centrality

measure. The component of the related eigenvector then gives the relative

centrality score of the vertex in the network. The eigenvector is only defined

up to a common factor, so only the ratios of the centralities of the vertices

are well defined. To define an absolute score, one must normalise the eigen

vector e.g. such that the sum over all vertices is 1 or the total number of

vertices n. Power iteration is one of many eigenvalue algorithms that may
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be used to find this dominant eigenvector. Furthermore, this can be gener-

alized so that the entries in A can be real numbers representing connection

strengths, as in a stochastic matrix. The time complexity of this centrality

is O(|V |3).

4.2.5 Katz Centrality

In graph theory, the Katz centrality of a node is a measure of centrality in a

network. It was introduced by Leo Katz in 1953 and is used to measure the

relative degree of influence of an actor (or node) within a social network.

Unlike typical centrality measures which consider only the shortest path

(the geodesic) between a pair of actors, Katz centrality measures influence

by taking into account the total number of walks between a pair of actors.

Katz centrality computes the relative influence of a node within a network

by measuring the number of the immediate neighbours (first degree nodes)

and also all other nodes in the network that connect to the node under

consideration through these immediate neighbours. Connections made with

distant neighbours are, however, penalized by an attenuation factor α. Each

path or connection between a pair of nodes is assigned a weight determined

by α and the distance between nodes as αd . Let A be the adjacency matrix

of a network under consideration. Elements (aij) of A are variables that

take a value 1 if a node i is connected to node j and 0 otherwise. The

powers of A indicate the presence (or absence) of links between two nodes

through intermediaries. If CKatz(i) denotes Katz centrality of a node i, then

mathematically:

CKatz(i) =
+∞∑
k=1

n∑
j=1

αk(Ak)ji

Note that the above definition uses the fact that the element at location

(I, j) of Ak reflects the total number of k degree connections between nodes

i and j. The value of the attenuation factor α has to be chosen such that it

is smaller than the reciprocal of the absolute value of the largest eigenvalue

of A. In this case the following expression can be used to calculate Katz

centrality:
−−−→
CKatz = ((I − αAT )−1 − I)

−→
I

Here I is the identity matrix,
−→
I is a vector of size n (n is the number

of nodes) consisting of ones. AT denotes the transposed matrix of A and

(I−αAT )−1 denotes matrix inversion of the term (I−αAT ). Katz centrality

can be used to compute centrality in directed networks such as citation

networks and the World Wide Web. Katz centrality is more suitable in the
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analysis of directed acyclic graphs where traditionally used measures like

eigenvector centrality are rendered useless. Katz centrality can also be used

in estimating the relative status or influence of actors in a social network.

In neuroscience, it is found that Katz centrality correlates with the relative

firing rate of neurons in a neural network. Being this measure a variant of

eigenvector centrality, it has the same time complexity equal to O(|V |3).
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Chapter 5

Data Analysis

Before starting with the algorithmic part of the project, this chapter presents

all the necessary steps before the creation of the graphs and consequent

calculation of the ”superhubs”, from the data acquisition phase to the ma-

nipulation and its final aggregation. All these steps are crucial in order to

lighten and make the data easier to handle for Dataproc machines and the

Spark environment. lastminute.com stores huge amounts of data every day

in different locations. The data relating to the number of results produced

by a search are stored in Google Cloud Storage (GCS). This type of data

will be fundamental in order to create different graphs and be able to take

advantage of the weighted centrality explained above. Obviously the data

present in these databases are full of additional information not useful to

our analysis. For example, the data has about twenty fields but for the

purpose of analysis only 4 are fundamental. The data relating to the num-

ber of searches is stored in 2 different buckets (one relating to the request

and one relating to the response) on Google Cloud Storage according to a

well-defined sub-folder structure: a folder for each day of the year within

which we find .avro files divided by time ranges. Avro is a data serialization

system. Avro provides:

• Rich data structures.

• A compact, fast, binary data format.

• A container file, to store persistent data.

• Remote procedure call (RPC).

• Simple integration with dynamic languages. Code generation is not

required to read or write data files nor to use or implement RPC

protocols.



• Code generation as an optional optimization, only worth implementing

for statically typed languages.

Avro relies on schemas. When Avro data is read, the schema used when

writing it is always present. This permits each datum to be written with

no per-value overheads, making serialization both fast and small. This also

facilitates use with dynamic, scripting languages, since data, together with

its schema, is fully self-describing. When Avro data is stored in a file, its

schema is stored with it, so that files may be processed later by any pro-

gram. If the program reading the data expects a different schema this can

be easily resolved, since both schemas are present. Avro schemas are de-

fined with JSON . This facilitates implementation in languages that already

have JSON libraries. The size of this raw data before handling is too large

and would require hours of processing even on a Google Dataproc clus-

ter. For example, research data occupies around 20 GB of data per day,

about 600 GB per month and almost 8 TB for a whole year. The han-

dling and aggregation phases are therefore fundamental. n the following

sections the phases described above will be presented in detail, but first we

need to introduce two fundamental concepts related to Spark and Spark-

SQL, Dataset and Dataframe. A Dataset is a distributed collection of data.

Dataset is a new interface added in Spark 1.6 that provides the benefits

of RDDs (strong typing, ability to use powerful lambda functions) with

the benefits of Spark SQL’s optimized execution engine. A Dataset can

be constructed from JVM objects and then manipulated using functional

transformations (map, flatMap, filter, etc.). The Dataset API is available in

Scala and Java. Python does not have the support for the Dataset API. But

due to Python’s dynamic nature, many of the benefits of the Dataset API

are already available (i.e. you can access the field of a row by name nat-

urally row.columnName).A DataFrame is a Dataset organized into named

columns. It is conceptually equivalent to a table in a relational database or

a data frame in R/Python, but with richer optimizations under the hood.

DataFrames can be constructed from a wide array of sources such as: struc-

tured data files, tables in Hive, external databases, or existing RDDs. The

DataFrame API is available in Scala, Java, Python, and R. In Scala and

Java, a DataFrame is represented by a Dataset of Rows. In the Scala API,

DataFrame is simply a type alias of Dataset[Row]. While, in Java API, users

need to use Dataset¡Row¿ to represent a DataFrame. This particular data

structure combined with the power of SparkSQL will play a fundamental

role in all phases of data analysis. The steps of data analysis are represent

in figure 5.1.
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Figure 5.1: Steps of Research Data Analysis

5.1 Data acquisition

The first step is the data acquisition.

The research data, as already said, is stored in two different bucket inside

Google Cloud Storage in avro format. The two bucket are named REQUEST

and RESPONSE and between an ID it is possible to associate a request,

that a user can do on the lastminute.com site, to the number of total results

associate to this request. Also in this case there are a large number of field

but only 3 are interesting:

• departure airport

• arrival airport

• total results number

Downloading this data is simpler than the previous one because using Dataframe

and SparkSQL it is possible to acquire the data with a simple python com-

mand, e.g.

comple te in fo rmat ion data f rame =

sqlContext . read . format ( ’com . databr i ck s . spark . avro ’ )

. load ( ”GoogleCloudPath” )

. s e l e c t ( ’ f i e l d 1 ’ , ’ f i e l d 2 ’ , . . . , ’ f i e l d N ’ )
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The Dataset is represent in Table 5.2. The research data will be saved on

dep airport arr airport total results number

MXP LHR 324

BCN DXB 123

... ... ...

... ... ...

Table 5.1: Dataset example of Research Data

the special bucket and then re-acquired to the successive phases.

5.2 Data manipulation

The second step is the data manipulation. This phase is fundamental in

order to prepare and enrich the data before the data analysis phase, graphs

creation and centrality measure calculations.

In order to prepare the data before create the graphs and calculate the

weight centrality based on the average number of results, described in 4.2.3,

the acquired Dataframe is enriched with the field ave results number per search

calculated as:

ave results number per search =
sum total results number

count per trip

In the above formula there are two additional fields that enrich the basic

dataframe:

• sum total results number, that represents the sum of all fields total results number

for a specific trip (departure airport and arrival airport) during the

period considered.

• count per trip, that represents the number of occurences for a specific

trip (departure airport and arrival airport) during the period consid-

ered.

The following Python code permits to create the desired data structure:

comple te in fo rmat ion data f rame = acqu i red data f rame

. groupBy ( ’ d e p a r t u r e a i r p o r t ’ , ’ a r r i v a l a i r p o r t ’ )

. agg ({ ’ t o t a l r e s u l t s n u m b e r ’ : ’ sum ’ , ’ ∗ ’ : ’ count ’ })

. withColumn ( ’ a v e r e s u l t s n u m b e r p e r s e a r c h ’ ,

h udf (sum( t o t a l r e s u l t s n u m b e r ) , count (∗ ) )
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h udf represents a User-defined function that is a feature of Spark SQL to

define new Column-based functions that extend the vocabulary of Spark

SQL’s DSL for transforming Datasets.

The resulting Dataframe is composed as in Table 5.6.

dep airport arr airport sum(*) count(*) ave results number per search

MXP LHR 12000 100 120

BCN DXB 3000 35 85.71

... ... ... ... ...

MAN JFK 6540 22 297.27

Table 5.2: Dataframe example with ave results number per search field

The average number of results per search will be used to determine the

weights of the graph.

5.3 Data analysis

The last phase is the data analysis in which the graphs will be created and

the centrality measure applied. The research data are used to calculate

the weighted centrality explained in 4.2.3 but also to calculate all the other

measure explained in Chapter 4. The Python library used is NetworkX.

The Dataframe containing the average number of results per trip will be

crossed and through special NetworkX functions the nodes will be created

and at the same time the edge will be created and weighted according to

the weighted centrality formula analyzed in 4.2.3. The NetworkX function

used during this phase are:

• creation of a node:

graph

. add node ( i d a i r p o r t )

• creation of a edge:

graph

. add edge ( i d d e p a r t u r e a i r p o r t ,

i d a r r i v a l a i r p o r t )

• extraction in a dictionary of the classical degree centrality:

networkX

. d e g r e e c e n t r a l i t y ( graph )
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• extraction in a dictionary of the betweenness degree centrality:

networkX

. b e t w e e n n e s s c e n t r a l i t y ( graph )

• extraction in a dictionary of the eigenvector centrality:

networkX

. e i g e n v e c t o r c e n t r a l i t y ( graph )

• extraction in a dictionary of the katz centrality:

networkX

. k a t z c e n t r a l i t y ( graph )

The results will be analysed in the next session.
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Chapter 6

Scalability

In this chapter will be analysed the scalability of the data acquisition and

data manipulation phases.

Scalability is an attribute that describes the ability of a process, network,

software or organization to grow and manage increased demand. A system,

business or software that is described as scalable has an advantage because

it is more adaptable to the changing needs or demands of its users or clients.

Scalability is often a sign of stability and competitiveness, as it means the

network, system, software or organization is ready to handle the influx of

demand, increased productivity, trends, changing needs and even presence

or introduction of new competitors. In order to analyze the scalability of

this project will be analyzed different amounts of data and different config-

urations of Google Cloud Platform, in terms of Dataproc (the GCP element

that deals with the acquisition and manipulation of the data). Before start-

ing with the analysis of the scalability is important to introduce the concept

of Infrastructure as code (IaC) and Terraform [13] and its capabilities. In-

frastructure as code is the process of managing and provisioning computer

data centers through machine-readable definition files, rather than physical

hardware configuration or interactive configuration tools. Terraform is an

open-source infrastructure as code (IaC) software tool created by HashiCorp.

Terraform supports a number of cloud infrastructure providers such as Ama-

zon Web Services, IBM Cloud (formerly Bluemix), Google Cloud Platform,

Linode, Microsoft Azure, Oracle Cloud Infrastructure, or VMware vSphere

as well as OpenStack. In this particular case Terraform is used to build

on demand a Dataproc structure on Google Cloud Platform. There are

3 different types of machines that can be instantiated, each with different

characteristics in terms of CPU, memory, disk and cost:

• General-purpose machine types: offer the best price-performance ratio



for a variety of workloads. They have up to 96 vCPU and 624GB of

memory. They are called n1-standard-X in which X represent the

number of vCPUs.

• High-memory machines types: this type is ideal for tasks that require

a moderate increase of memory. They have up to 96 vCPU and 624GB

of memory. They are called n1-highmem-X in which X represent the

number of vCPUs.

• High-CPU machines types: this type is ideal for tasks that require a

moderate increase of vCPUs relative to memory. They have up to 96

vCPU and 624GB of memory. They are called n1-highcpu-X in which

X represent the number of vCPUs.

The typology chosen for the application is the High-CPU machines types

being an CPU intensive application. To test scalability, different High-CPU

machines will be used in a master/workers configuration with increasing

amounts of research data.

6.1 1 month of data

The first test is based on the research data of May, about 700GB of data. 3

different configuration of master/workers are used:

1. 1 Master and 4 Workers configured as n1-highcpu-16: 109 minutes of

execution time.

2. 1 Master configured as n1-highcpu-64 and 4 Workers configured as

n1-highcpu-16: 38 minutes of execution time.

3. 1 Master configured as n1-highcpu-64 and 8 Workers configured as

n1-highcpu-16: 30 minutes of execution time.

6.2 2 months of data

The second test is based on the research data of May and June, about

1.2 TB of data. The first configuration tested before (6.1) is excluded by

this simulation due to the execution times, so 2 different configurations of

master/workers are used:

2 1 Master configured as n1-highcpu-64 and 4 Workers configured as

n1-highcpu-16: 61 minutes of execution time.
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3 1 Master configured as n1-highcpu-64 and 8 Workers configured as

n1-highcpu-16: 52 minutes of execution time.

6.3 3 months of data

The last test is based on the research data of May, June and July, about 1.6

TB of data. 2 different configurations of master/workers are used:

2 1 Master configured as n1-highcpu-64 and 4 Workers configured as

n1-highcpu-16: 93 minutes of execution time.

3 1 Master configured as n1-highcpu-64 and 8 Workers configured as

n1-highcpu-16: 81 minutes of execution time.

The results are summarized in the table 6.1

# months Size of Data Conf 1 Conf 2 Conf 3

1 700 GB 109 mins 38 mins 30 mins

2 1.2 TB 61 mins 52 mins

3 1.6 TB 93 mins 81 mins

Table 6.1: Recap Scalability Analysis.
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Chapter 7

Results

In this section the degree measures will be analyzed in order to understand

the distribution of ”superhubs” in the lastminute.com network. The data

analyzed and used for the creation of the graphs refer to the May, June and

July 2019 quarter.

7.1 Degree Centrality

The first measure analyzed is the classical degree centrality. The results of

this analysis are shown in table 7.1. It can be seen that the results of the

analysis related to the researches (7.1) present macro airports rather than

micro airports; this characteristic is attributable to the fact that during a

search on the lastminute.com site the user is usually searching for macro air-

ports and only later he/she will select the micro-airport of interest to him.

This peculiarity will be present in all analyzes related to research data. The

average of the degree centrality at 2456 airports was 0.0275. London and

Paris airport had 18.87 times more connectivity than the average. Adolfo

Suarez Barajas Airport, which is the largest airport in Madrid, and Frank-

furt International Airport were found to have 15 times higher connectivity

than the average. The ”superhubs” are concentrated in the European area,

while to find an extra European airport you have to go down to the thirtieth

position (JFK - New York - John F. Kennedy).

7.2 Betweenness Centrality

The second measure analyzed is the betwenness centrality. The results of

this analysis are shown in table 7.2. London and Paris airport had 35 times

more connectivity than the average. Adolfo Suarez Barajas Airport, which is



POS IATA Code City airport name

1 LON London London

2 PAR Paris Paris

3 MAD Madrid Adolfo Suarez Barajas

4 FRA Frankfurt International

5 MIL Milan Milan

6 LHR London Heatrow

7 BCN Barcelona El Prat

8 MAN Manchester Manchester

9 ROM Rome Rome

10 MUC Munich Franz Josef Strauss

Table 7.1: Degree Centrality, based on Research Data. Top 10 ’superhubs’.

the largest airport in Madrid, was found to have 14 times higher connectivity

than the average. Among the top 30 airports, 23 airports were from the

Europe, 4 from Asia, 1 from America and 2 from Oceania.

POS IATA Code City airport name

1 LON London London

2 PAR Paris Paris

3 MAD Madrid Adolfo Suarez Barajas

4 MIL Milan Milan

5 FRA Frankfurt International

6 BKK Bangkok Suvarnabhumi Interna-

tional

7 SYD Sydney Kingsford Smith

8 LHR London Heatrow

9 BCN Barcelona El Prat

10 NYC New York New York

Table 7.2: Betweenness Centrality, based on Research Data. Top 10 ’superhubs’.

7.3 Eigenvector Centrality

The fourth measure analyzed is the Eigenvector centrality. The results of

this analysis are shown in table 7.3. London, Paris and Frankfurt inter-

national airports had 9 times more connectivity than the average. Adolfo

Suarez Barajas Airport, which is the largest airport in Rome, was found
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to have 8 times higher connectivity than the average. Among the top 30

airports, 29 airports were from the Europe and only 1 from America.

POS IATA Code City airport name

1 LON London London

2 PAR Paris Paris

3 FRA Frankfurt International

4 MAD Madrid Adolfo Suarez Barajas

5 BCN Barcelona El Prat

6 LHR London Heatrow

7 MIL Milan Milan

8 MAN Manchester Manchester

9 MUC Munich Franz Josef Strauss

10 ROM Rome Rome

Table 7.3: Eigenvector Centrality, based on Research Data. Top 10 ’superhubs’.

7.4 Katz Centrality

The last measure analyzed is the Katz centrality. The results of this anal-

ysis are shown in table 7.4. London and Paris airports had 10 times more

connectivity than the average. Adolfo Suarez Barajas Airport, which is the

largest airport in Rome, was found to have 7 times higher connectivity than

the average. Among the top 30 airports, 27 airports were from the Europe,

2 from America and only 1 from Asia.

POS IATA Code City airport name

1 LON London London

2 PAR Paris Paris

3 MAD Madrid Adolfo Suarez Barajas

4 FRA Frankfurt International

5 MIL Milan Milan

6 BCN Barcelona El Prat

7 LHR London Heatrow

8 MAN Manchester Manchester

9 MUC Munich Franz Josef Strauss

10 ROM Rome Rome

Table 7.4: Katz Centrality, based on Research Data. Top 10 ’superhubs’.
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7.5 Weighted Centrality

The weighted centrality studied in [12] will be analyzed considering two

different value of α and in order to calculate centrality biased towards weight

(α = 1) and balanced between degree centrality and weight (α = 0.5). The

results are shown in table 7.5. Although the two analyzes are based on

the different balance between degree centrality and weights depending on

the alpha used, the results are similar. Considering α = 0.5, among the

top 30 airports, 20 airports were from the Europe, 5 from Asia, 3 from

America and 2 from Oceania. Considering instead α = 1, among the top

30 airports, 18 airports were from the Europe, 6 from Asia, 3 from America

and 3 from Oceania. The conclusion that can be drawn from these results

is that unlike all other measures this presents the most widely distributed

list of ”superhubs”.

POS α = 0.5 α = 1

1 PAR PAR

2 LON LON

3 MAD MIL

4 MIL MAD

5 CPH (Copenhagen) HKG

6 HKG CPH

7 CDG BKK

8 BKK CDG

9 BCN SIN (Singapore)

10 ROM SYD

Table 7.5: Recap Weighted Centrality based on Research Data.

7.6 Recap

The results are summarized in 7.6 for research data. As can be seen the

results are almost identical except for some exceptions or changes of posi-

tion. In the table it is also possible to note that for almost all the results the

superhubs belong to the European area and the first positions are always

occupied by London, Paris, Madrid, Milan and Frankfurt, not by chance

these airports represent the largest hubs in Europe. In fact, for example,

London, Paris, Frankfurt - International and Madrid - Alfonso Suarez Bara-

jas are part of the top 50 largest airports in Europe and from these analysis

we can deduce that they are also the busiest. If we consider a list of top 30
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”superhubs” the percentage of European airports is close to 80% and the

remaining part would be occupied by international airports such as Sydney,

New York, Bangkok, Dubai, etc.

POS Degree Betweenness Eigenvector Katz

1 LON LON LON LON

2 PAR PAR PAR PAR

3 MAD MAD FRA MAD

4 FRA MIL MAD FRA

5 MIL FRA BCN MIL

6 LHR BKK LHR BCN

7 BCN SYD MIL LHR

8 MAN LHR MAN MAN

9 ROM BCN MUC MUC

10 MUC NYC ROM ROM

Table 7.6: Recap Centrality based on Research Data.
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Chapter 8

Conclusions

In this thesis I have presented different degree centrality measures and an

environment capable of handling a large amount of data. The degree cen-

trality measures presented in Chapter 7 underline how the lastminute.com

network is conditioned by the European market and how in particular the

airports of London, Paris, Madrid, Frankfurt and Milan represent the busi-

est and most central airports on the world scene. All the lists shown above

are calculated considering the May-June-July quarter so the results could

be affected by seasonality. The process of calculating or updating the list

of ”superhubs” is designed to run once a month by acquiring data from the

last 3/6 months in order to avoid the seasonal nature of the data as in the

case examined.

Another important conclusion can be drawn from the infrastructure with

which the project was developed. Google Cloud Platform is a powerful

and configurable infrastructure to your liking and with the help of Apache

Spark and Python it turns out to be a perfect and efficient infrastructure

for handling large amounts of data as in the case of lastminute.com. In this

particular case, the configuration of machines used in Chapter 6 highlights

an application that is not perfectly scalable but capable of processing almost

2 TB of data in less than two hours.
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