
LLAMA

A system for log management and analysis on a

complex distributed environment

Francesco Larghi

Supervisor: Prof. Alessandro Margara

Master’s degree in Telecommunication Engineering

Internet Engineering

Politecnico di Milano

Dipartimento di Elettronica, Informazione e Bioingegneria DEIB

Italy

Academic Year 2018-2019

Abstract

This thesis is about the development of a system to manage and analyze logs on a complex

distributed environment. Logs are a crucial element used to check the behavior and the

status of a system, but unfortunately their content and format are different in the various

operating systems, software, network equipment or any other component of a system.

Logs need to be collected, parsed and stored typically all in one place to be subsequently

analyzed, but it’s a problem to move huge quantity of data over internet. This is true

both for network saturation and security or privacy issues. That’s why it’s safer to keep

logs where they are, in a distributed fashion, also because we can split computational

and storage resources in a much more efficient way. But we need a system to efficiently

retrieve or analyze logs scattered over the distributed system, possibly through a central

website tool.

That’s why we develop a system composed by both our software and open-source public

projects to have a unique tool to manage and analyze logs on a complex distributed

environment, without external costs. We used the Microservices approach to design a

modular lightweight system, easy to upgrade and deploy and to keep the possibility of

changing only single components of the system.

The result is the project LLAMA, a system to efficiently organize and archive logs on

a distributed infrastructure with a central website tool to access and analyze all of them.

3

Acknowledgements

First of all, I would like to thank prof. Alessandro Margara for having accepted to be my

advisor and for his great support for this thesis redaction. The project was designed and

implemented during my internship and my work experience in Elmec Informatica, so I

would like to thank the company itself for giving me this opportunity.

Thank to Andrea Bombelli, manager of the LLAMA project, for helping me in de-

signing the system and especially for his friendship and continuous support during my

experience. Thank to Ivan Paterno, the other member of the LLAMA team, for his will-

ingness in finding new solutions everyday and for its backing to this project together

with the Security Team, which I would like to thank too. Thank to Alessio Scaglia, the

leader of the R&D Team where I still work right now, for his encouragement and for his

availability to let me work part-time to finish my studies and complete my thesis. Thank

to Marco Mezzaro for his support with distributed and deployment technologies, and for

the time spent solving various issues. Thank to all my other colleagues that have directly

or indirectly participated to the implementation of this project: Andrea, Luca, Samuele,

Daniele, Matteo, Emanuele, Ivan, Adriano, Marta and Samuel. It’s always funny and

stimulating working with you.

My life journey in the past years was not always simple, but my family and my friends

always supported me. Most of all, I would like to thank my mother, my father and my

sisters, Federica and Marta, for their invaluable help over these years. Finally, I would

like to thank my son, Lorenzo, who this work is dedicated to. He gives me the strength

to face every difficulties, no matter how hard they look. This work and my university

experience overall are also a demonstration to him that everything is possible if you work

and study with dedication for that.

5

Contents

1 Introduction 13

1.1 The problem context . 14

1.2 Roadmap . 15

2 Requirements 17

2.1 Central managed distributed infrastructure for log management 17

2.2 Node isolation . 17

2.3 JSON as unique representation of data . 18

2.4 Efficient and reliable log management for each node 18

2.5 Log retention for a specific amount of time or space 18

2.6 Encrypted storage for logs . 18

2.7 Replicated data storage for logs . 18

2.8 Easy deployable nodes and backend infrastructure 19

2.9 One website to launch queries on all the nodes 19

2.10 Query scheduling system . 19

2.11 Authenticated endpoints and system access 19

2.12 TLS and VPN secured communication . 20

3 Background 21

3.1 Message-oriented Middleware for Distribution 21

3.1.1 RabbitMQ . 23

3.1.2 Apache Kafka . 23

3.1.3 Redis . 24

3.2 Log management . 26

7

3.2.1 Paid Commercial Software . 27

3.2.2 Open-source Projects . 27

4 Technologies 31

4.1 Celery for Redis . 31

4.2 Fluentd . 33

4.3 MongoDB . 34

4.4 Flask . 35

4.5 Containers on Docker and Kubernetes . 35

4.6 Vue.js . 37

4.7 Ansible . 38

5 Design 39

5.1 High level architecture . 39

5.2 Backend design . 40

5.3 DMI-LOG design and configuration . 42

5.4 Security . 44

5.4.1 Stunnel and TLS . 45

5.4.2 HTTPS and JWT . 45

5.4.3 Security for log storage . 45

6 Implementation 47

6.1 Celery tasks and workers for query execution on MongoDB 47

6.2 API endpoints . 50

6.2.1 /queries . 50

6.2.2 /query/:uuid . 50

6.2.3 /targets . 50

6.2.4 /scheduled-tasks . 51

6.2.5 /statistics . 51

6.2.6 /saved-queries . 51

6.3 Llama web page UI . 52

6.3.1 Query page . 52

8

6.3.2 Scheduled Queries page . 56

7 Evaluation 59

7.1 Central managed distributed infrastructure for log management 59

7.2 Node isolation . 59

7.3 JSON as unique representation of data . 60

7.4 Efficient and reliable log management for each node 60

7.5 Log retention for a specific amount of time or space 60

7.6 Encrypted and protected storage for logs 60

7.7 Replicated data storage for logs . 61

7.8 Easy deployable nodes and backend infrastructure 61

7.9 One website to launch queries on all the nodes 62

7.10 Query scheduling system . 62

7.11 Authenticated endpoints and system access 63

7.12 TLS and VPN secured communication . 63

8 Conclusion 65

8.1 Summary . 65

8.2 Future work . 66

9

List of Figures

3.1 RabbitMQ . 23

3.2 Apache Kafka . 24

3.3 Redis . 25

3.4 ELK stack . 28

4.1 Celery architecture . 32

4.2 Fluentd . 33

4.3 MongoDB Aggregation Framework . 35

4.4 Containers on Docker . 36

5.1 LLAMA high level architecture . 40

5.2 Backend design on Kubernetes . 41

5.3 DMILOG design . 43

6.1 Celery tasks execution . 48

6.2 Query page . 52

6.3 Simple Mode . 53

6.4 Result JSON explorer . 54

6.5 Advanced Mode . 54

6.6 Query complete result with Table Viewer 55

6.7 Scheduled Queries page . 56

6.8 Scheduled query example . 57

7.1 LUKS partition and users privileges . 61

7.2 MongoDB Replica Set schema . 62

11

Chapter 1

Introduction

The majority of our progress as humankind has been made thanks to recording and using

data, since we developed the ability to write. In the past, notes were made mainly on

paper and were compiled and stored by hand. Because of this documentation method,

important information was also prone to being misplaced, lost, or even mishandled. To-

day, practically every important action - especially those that occur online and on our

computers, mobile phones and tablets - is recorded somewhere in some way or another.

A log is a unit of data recording an event in some format, from software actions

(e.g. well-known log-in and log-out actions), to network activity and operating system

events. With the super fast growth of internet communications, employing a proper log

management solution is now more crucial than ever before. Nevertheless, unlike antivirus

software or similar apps, log management programs are not something that the average

user is really interested in. Many probably are not even aware of how they operate and

which problems they help to solve, even though log management tools form the basis of

some of the most significant parts of the IT industry.

In November 2018 I had an interview with ”Elmec Informatica S.P.A”, an IT company

with headquarters in Brunello (VA). This company, among the other business, is a leader

in server delivery and administration. They manage both systems located in their clients

structure and hosted servers in their own datacenter. They proposed me the idea of a

project about a distributed infrastructure to offer log management services without high

costs. Since I was very interested in this subject, I took this opportunity to write my

master thesis on it and so I started an internship that lasted 6 months.

13

Chapter 1

1.1 The problem context

The idea was to offer a basic log management and analysis service to the company clients.

The problem is that each client has his own infrastructure with lots of servers and therefore

tons of potential data to gather, process and analyze. Each infrastructure could be hosted

inside the company datacenter or even physically present on the client’s site. Since clients

are many, the amount of data to simultaneously manage could be extremely big and often

log management tools charge you for the amount of data you process too. Of course this

kind of payment system is not desirable at all for business that needs to scale on number

of clients and tons of data. Even if it could be sustainable, send all the logs to a single

central warehouse could be very complicated, both for network saturation and security

potential issues. That’s why they were looking for an ad-hoc alternative, with the help of

some open-source technology too, to be able to scale without problems on many clients, to

grant a basic log management service without huge fees and without the need to centralize

all the logs in one single point.

In the company I was inserted in the Automation&Cloud Team, where I’m actually

still working right now. This project was and is still in collaboration with the Security

Team since the log management is on their charge. I initially joined a group of 2 people,

Andrea and Ivan, with the goal of designing and implementing a proper system.

That’s how started the project LLAMA, a name that we crafted and actually stands for

Logs Archive Management and Analysis. It is a system that both provide a distributed

architecture for log collection and management and a tool, available on a webpage, to

launch queries on this infrastructure and retrieve the relative results.

14 Francesco Larghi

Chapter 1

1.2 Roadmap

This thesis is mainly about distributed systems and the core part of the whole project is

the message-oriented middleware for query distribution. That’s why I’m going to focus

more on this topic, but I will also cover log management since it’s the actual use case of

the system. I’m going to make a brief survey and comparison of the available software

around, dealing both commercial software and open-source project with their pros and

cons.

In the next chapter I’m going to make a list of all the project requirements. In

chapter 3, I will give a general background about the technologies available today. Then,

in chapter 4 I’m going to yield more information about the actual technologies that we

decided to adopt, accordingly to the previous requirements. In the fifth chapter I’m

going to focus on the design choices that we took and the overall system architecture, the

security measures and the main configurations. In chapter number 6 I will go into details

of the actual implementation, mainly about the critical parts of the system, the list of

the main endpoints and the final user interface too. Then, in chapter 7 I’m going to give

an evaluation, based on the given requirements, of the final result. Finally, in the last

chapter I will make concluding considerations about the project and the future work.

Francesco Larghi 15

Chapter 2

Requirements

The final objective of this project is to have a unique website tool to launch queries and

retrieve results on a distributed infrastructure that separately store logs for each client.

The project originally started with few requirements, but they rapidly increase togheter

with the project growth. Here is a detailed list of all the final requirements.

2.1 Central managed distributed infrastructure for

log management

The system should consist in a central website tool, communicating with a server in its

turn connected to a distributed infrastructure with one node per each client. Each node

is in charge of log collection and management.

2.2 Node isolation

Each node is not to communicate with other ones. This is crucial because each node

handle client’s private data that should not be leaked even across other nodes of the

system.

17

Chapter 2

2.3 JSON as unique representation of data

Data across the whole system should be formatted in JSON where possible. This should

be true both for data-interchange communications and data storage. Keeping just one

format should simplify the overall management of data in the system.

2.4 Efficient and reliable log management for each

node

Each node should collect, transform, route, forward and store logs efficiently and quickly.

This means that the node should be able to collect even thousands of logs per second

from various sources in different formats, parse them into a unified format (e.g. JSON)

and save them in an appropriate storage at the same time.

2.5 Log retention for a specific amount of time or

space

The log storage should be able to retain and persist data for a certain amount of time

(e.g. 6 months) or until a specific threshold of occupied space is reached (e.g. 100GB).

2.6 Encrypted storage for logs

Logs contains private client’s data and must to be stored in encrypted secured storage.

No one should be able to alter or see logs except for the system administrators or data

analysts, with adequate privileges.

2.7 Replicated data storage for logs

The data storage should admit the possibility of being extended to a cluster of machines

if particular fault tolerance measures or better read/write performances are needed.

18 Francesco Larghi

Chapter 2

2.8 Easy deployable nodes and backend infrastruc-

ture

Services composing the backend infrastructure should be easy to deploy, substitute, up-

date and maintain in general. Also, distributed nodes should be easy to deploy efficiently

with a standardized and automated procedure.

2.9 One website to launch queries on all the nodes

To launch queries on the nodes there should be a simple website. The website should

allow the users to:

1. Consult logs with a simple interface

2. Create sophisticated queries for log analysis with an advanced interface

3. Launch query asynchronously and consult results

4. Schedule queries for repeated analysis or checks (see next requirement)

2.10 Query scheduling system

The system should allow to create scheduled queries that repeatedly execute on a custom

interval of time. Schedules should be added and deleted transparently, without system

restarts.

2.11 Authenticated endpoints and system access

Each endpoint of the backend system should be secured by authentication. Only users

correctly authenticated coming from the website tool should be able to interact with the

system and launch queries.

Francesco Larghi 19

Chapter 2

2.12 TLS and VPN secured communication

The communication between all the components and services of the system should be

secured with TLS encryption. The traffic traveling over internet should also go over a

private VPN connection.

20 Francesco Larghi

Chapter 3

Background

3.1 Message-oriented Middleware for Distribution

With the ever-growing technological expansion of the world, distributed systems are be-

coming more and more widespread. They are a vast and complex field of study in computer

science. A distributed system in its most simplest definition is a group of computers work-

ing together as to appear as a single computer to the end-user. These machines operate

concurrently and can fail independently without affecting the whole system’s uptime. Sys-

tems are always distributed by necessity. There are some major benefits from distributed

system despite their objective complexity:

• Scaling Horizontally - In a standard system the only way to handle more traffic

and operations would be to upgrade the hardware and this is called scaling vertically.

It is all well and good while you can, but after a certain point even the best hardware

is not sufficient for enough traffic. Scaling horizontally simply means adding more

computers rather than upgrading the hardware of a single one. It is much cheaper

after a certain threshold respect to vertical scaling. The best thing about horizontal

scaling is that you have no cap on how much you can scale — whenever performance

degrades you simply add another machine, up to infinity potentially.

• Fault Tolerance - A cluster of many dislocated machines is inherently more fault-

tolerant than a single machine. Even if one place catches on fire, your application

would still work.

21

Chapter 3

• Load Balancing - With such systems it is possible to distribute workloads on many

machines, optimize operations, maximize throughput, minimize response time and

avoid overload of any single resource.

For a distributed system to work, though, you need the software running on those

machines to be specifically designed for running on multiple computers at the same time

and handling the problems that come along with it. That’s why distributed systems

are considerably more difficult to get right. There are many different levels and type of

distribution, like distributed filesystems, computing, application or even ledgers with the

more recent blockchain technology. These technologies act like a middleware, the software

layer that lies between the operating system and the applications of the machines in a

network. In this way, the communication level between multiple hosts of a system is

abstracted. For this project we are mainly interested in messaging systems, because these

kind of architecture suits our requirements [2.1].

Message Oriented Middleware (MOM) is a concept that involves the passing of

data between applications using a communication channel that carries self-contained units

of information (messages). In a MOM-based communication environment, messages are

usually sent and received asynchronously. Using message-based communications, appli-

cations are abstractly decoupled; senders and receivers are never aware of each other.

Instead, they send and receive messages to and from the messaging system. It is the

responsibility of the messaging system (MOM) to get the messages to their intended des-

tinations. Usually these system works with a ”publisher-consumer” system (also known

as ”publish-subscribe”). The publisher process is in charge of inserting messages in one

or more queues. Each queue buffers the messages until a consumer process (typically

running on a different machine) takes the message and consumes it. The consumption

mechanism it’s often different for each technology. That’s why now we are going to ana-

lyze the state of art, the current major software and projects available around as message

oriented middleware.

22 Francesco Larghi

Chapter 3

3.1.1 RabbitMQ

RabbitMQ is an open-source MOM that originally implemented the Advanced Message

Queuing Protocol (AMQP). It has later been extended with a plug-in architecture to sup-

port Streaming Text Oriented Messaging Protocol (STOMP), Message Queuing Telemetry

Transport (MQTT), and other protocols. RabbitMQ supports a Publish-Subscribe mech-

anism. It allows a publisher object to send messages to a Queue or even to an Exchange.

The latter is an object that allows to route messages to multiple Queues in different ways

(Direct, Topic or Fanout) [fig. 3.1]. The connections between Exchanges and Queues are

called Bindings. It also support an RPC system that automatically spawns and deletes

callback-Queues that receives the result of message consumption from the consumer.

Figure 3.1: RabbitMQ

3.1.2 Apache Kafka

Kafka is a distributed messaging system providing fast, highly scalable and redundant

messaging through a Publish-Subscribe model. Kafka’s distributed design gives it several

advantages. First, it allows a large number of permanent consumers read simultaneously

Francesco Larghi 23

Chapter 3

from files. In fact Kafka relies on the filesystem to store permanently queues and messages

instead of load them into memory. Second, Kafka is highly available and resilient to node

failures and supports automatic recovery. In real world data systems, these character-

istics make Kafka an ideal fit for communication and integration between components

of large scale data systems. All Kafka messages are organized into Topics, that are the

actual queues locally saved into files. Kafka, as a distributed system itself, runs in a

cluster. Each node in the cluster is called a Broker. Topics are divided into a number

of Partitions [fig. 3.2]. Partitions allow you to parallelize a Topic by splitting the data

across multiple Brokers. Each partition can be placed on a separate machine to allow for

multiple consumers to read from a topic in parallel. Consumers can also be parallelized

so that multiple Consumers can read from multiple Partitions in a Topic allowing for very

high message processing throughput. Kafka performances scale a lot horizontally, even

with few machines available [bib. [1]].

Figure 3.2: Apache Kafka

3.1.3 Redis

Redis is an open source in-memory data structure store. It’s not just a MOM broker, it’s

also usually used as a cache or high performance database. It implements the Publish-

24 Francesco Larghi

Chapter 3

Subscribe paradigm, allowing client to publish message to a specific Channel (the actual

queue). Redis clients could also subscribe to a Channel, consuming the incoming messages.

The strength of Redis resides in its versatility of acting both as a message broker and

a database as needed. This peculiarity can be exploited to store additional information,

other than messages, into Redis. We will see later in much more details how we can use this

feature [fig. 3.3]. Redis can also be deployed as a cluster using Sentinel or Redis Cluster.

Redis grants great performances even with a single instance, compared to other in-memory

storage systems [bib. [2]]. Since this is the actual Message-Oriented Middleware that we

adopted for our project together with Celery (a Python client for Redis), we will go in

much more details about this technologies in the Technology dedicated section [4.1].

Figure 3.3: Redis

Francesco Larghi 25

Chapter 3

3.2 Log management

Log management gives the possibility to always monitor your systems and applications

and have a detailed history of all the past events. Security specialists can act as soon as

they notice any potential issues and danger to your security setup, reducing the overall

risk your systems is subject to. Log management apps are an integral proactive security

measure and without them, we would not know where to look at when accidents happens.

We would know that something is wrong, but not be able to figure out exactly what,

or at least without spending a lot of time searching for the problem. This wasted time

can always be spent in better, more productive, and more strategic ways. Utilizing log

management is a proactive measure that any business should take complete advantage of.

IT security, by its very nature, has to be extremely adaptive and proactive, since attacks

that compromise data protection evolve on a daily basis and are becoming trickier to detect

and harder to overcome and repel. Regardless of company size or industry, everyone has

security concerns, and with good reason. Log management is another layer of protection

against unwanted incursions and data theft.

System administrators are tasked with overseeing how computer systems and servers

are operating and making sure that everything is configured and working as intended.

By collecting and reviewing logs, they know how the systems are supposed to function

normally and can react when they notice that something irregular is happening. These logs

are the first line of defense against any problem, so log management provides them a better

and more precise methodological approach to their work. Log management solutions allow

to generate ad-hoc rules for generating alerts and look for patterns correlating with similar

events. Extensive search options enable system admins to quickly sort, find, and compare

past log activity with current activity.

Last but not least, when writing code, developers often rely on log reports to figure

out where bugs are located. Debugging, monitoring for errors, and troubleshooting are

essential parts of software development, both during and after release. Through the use

of log management apps, this often cumbersome process can be made easier, leaving

developers with more time to squash bugs instead of wasting valuable resources and effort

in hunting them down. Also, using the right sort of app to manage logs is crucial to any

26 Francesco Larghi

Chapter 3

development team, since it converts unstructured data into useful and legible information

they can read and make use of.

Following, we will make a survey of both paid commercial software and open-source

projects.

3.2.1 Paid Commercial Software

There are tons of commercial software around for log management. Usually they charge

you for the amount of data processed, that of course is not an ideal policy if you need to

store and process huge amount of logs. One of the leader in log management is Splunk. It’s

probably the biggest tool in this space, a product who essentially created a new category.

It’s got hundreds of apps to make sense of almost every format of log data, from security

to business analytics to infrastructure monitoring. Splunk’s search and charting tools are

feature rich to the point that there’s probably no set of data you can’t get to through its

UI or APIs. Despite this, Splunk has two major cons. The first is that it’s an on-premise

solution which means that setup costs in terms of money and complexity are high. To

deploy a high-scale environment you will need to install and configure a dedicated cluster.

Splunk’s second issue is that it’s very expensive. To support a complex system this

means tens of thousands of dollars and the process of integration is going to be slow too.

There are also other popular log management ”freemium” solutions such as DataDog,

SumoLogic, Loggly and many others. In general the main problem of these software is of

course that they are not entirely free as an open-source solution.

3.2.2 Open-source Projects

The most popular set of open-source projects for log management is by far the ELK Stack,

a robust solution for search, log management, and data analysis. ELK stack consists in

a combination of three open source project: Elasticsearch, Logstash, and Kibana. These

projects have specific roles:

• Elasticsearch handles storage and provides a RESTful search and analytics end-

point.

Francesco Larghi 27

Chapter 3

• Logstash is a server-side data processing pipeline that ingests, transforms and loads

data.

• Kibana lets you visualize your Elasticsearch data and navigate the Elastic Stack.

Figure 3.4: ELK stack

These tools combine to provide an all in one platform for logs storage, retrieval, sorting

and analysis. ELK is becoming the most common open-source, log management platform

used globally. It is a very good set of tools and, since it is open-source, it’s also free. The

throwback is that the whole set of software is actually suitable for most use cases, but not

everyone. In those cases it’s not easy to fix or customize ELK on your needs. For example,

Elasticsearch is actually very fast for searching (its main purpose), but not as reliable and

fast as other NoSQL databases in insertion. Logstash too, which is the core tool for log

management, has its limits. For example, even if it is extensible through plug-ins, making

your own custom ones it’s not a simple process. You need to publish them in the official

public repository before being able to use them. Furthermore, Logstash is a very heavy

and resource demanding application running on JVM and this is not a trivial problem if

you would like to deploy it multiple times on lightweight technologies such as containers.

There are also alternatives to ELK and Logstash, such as Fluentd.

As the project website claims ”Fluentd is an open source data collector, which lets you

unify the data collection and consumption for a better use and understanding of data”.

Since this is the software that we actually chose, we will later discuss in much more details

its features in a dedicated section [4.2] and it’s configuration for our project [5.3] togheter

with the configuration of the relative log storage. Instead of other solutions (such as

Elasticsearch), we decided to adopt MongoDB as our main storage for log collection and

28 Francesco Larghi

Chapter 3

we will introduce this technology too in a future section [4.3].

Francesco Larghi 29

Chapter 4

Technologies

4.1 Celery for Redis

Celery is a task queue implementation for Python web applications used to asynchronously

execute work outside the HTTP request-response cycle [bib. [3]]. Task queues are used

by Celery as a mechanism to distribute work across threads or machines. A task queue’s

input is a unit of work called a task. Dedicated worker processes constantly monitor task

queues for new work to perform. Celery communicates via messages, using a broker to

mediate between clients and workers. To initiate a task the client adds a message to the

queue, the broker then delivers that message to a worker [fig. 4.1]. A Celery system

can consist of multiple clients, workers and brokers, giving way to high availability and

horizontal scaling. Celery supports different brokers like RabbitMQ, Redis, Amazon SQS,

and more. In addition to this, it provides concurrent execution (through prefork, Eventlet,

gevent) and serialization (with JSON, pickle, yaml, msgpack, zlib or bzip2 compression).

As main broker we have chosen Redis, which is the official supported one, togheter with

RabbitMQ. In this way Redis channels are directly manipulated by Celery as Celery

queues, to route its task execution mechanism. Task execution logic can be exploited

to distribute query execution across our system [2.1]. I will go into details of how we

implemented Celery tasks and workers to achieve our goal in the Implementation chapter

[6.1].

Celery also has a built in daemon service to schedule tasks, called Celery Beat. The

default class of Beat that handle schedule storage saves data on a local file. This is

31

Chapter 4

Figure 4.1: Celery architecture

an issue, because if you need to modify the schedule (adding or removing scheduled

tasks) you need to restart the daemon service to upload the changes. Fortunately, it can

also be substituted with custom ones. In our case, we substitute it with RedBeat, an

open-source Celery Scheduler class developed and adopted by Heroku. RedBeat stores

the scheduled tasks and runtime metadata directly on Redis [bib. [4]]. It gives various

performance improvement in addition to the possibility to dynamically change, insert

or delete scheduled tasks at runtime. Moreover, RedBeat also grants greater stability

respect to the default Beat class [bib. [5]]. This matches our requirements of having a

query scheduling system [2.10]. The software provides also external tools integration like

Flower [bib. [6]], to monitor task success or failure, and Jobtastic to estimate and report

execution progress. We also make use of Redis Commander, an open-source client to

directly monitor Redis’ status of channels and database [bib. [7]]

32 Francesco Larghi

Chapter 4

4.2 Fluentd

Fluentd is an open-source log collector and manager which lets you unify filter, buffer and

route data incoming from different sources and formats [bib. [8]]. It has a built-in reliable

buffering system and minimum resource requirements (it’s implemented in C and Ruby).

Moreover, Fluentd tries to structure data as JSON as much as possible: this allows Fluentd

to unify all facets of processing log data: collecting, filtering, buffering, and outputting

logs across multiple sources and destinations. This is a major plus for our purposes since

we decided to adopt JSON as main data representation and communication model [2.3].

Fluentd’s routing engine redirects messages to one or more destinations based on their

source, format, or metadata, in accordance with user needs. Fluentd also supports filtering

messages, adding custom fields, and basic data stream manipulation, that our system

requires [2.4]. It is a fully pluggable architecture easy to extend. You can implement your

own plugins in Ruby and directly use them in your Fluentd instances. As a Cloud Native

Computing Foundation (CNCF) project, Fluentd integrates with Docker and Kubernetes

as a deployable container too, which make it easy to deploy also in multiple instances

[2.8].

Figure 4.2: Fluentd

Francesco Larghi 33

Chapter 4

4.3 MongoDB

MongoDB is a document-oriented NoSQL database used for high volume data storage.

Each database contains collections which in turn contains documents. Each document

can be different with a varying number of fields. The size and content of each document

can be different from each other. The values of fields may include other documents, ar-

rays, and arrays of documents. This storage fashion is ideal for logs. MongoDB represents

JSON documents in binary-encoded format called BSON, which extends the JSON model

to provide additional data types, ordered fields, and to be efficient for encoding and de-

coding within different languages. This means that MongoDB gives users the ease of use

and flexibility of JSON documents together with the speed and richness of a lightweight

binary format. This fits our needs to keep JSON as a standard across the whole archi-

tecture [2.3]. Moreover, MongoDB grants a super fast insertion mechanism, more than

50k document inserts per second on a common hardware setup with 4 cores CPU [2.4].

Performances are also greater since the introduction of WiredTiger engine with MongoDB

3.0 [bib. [9]]. Space or time based document retention are easily implementable respec-

tively with Capped collection and Indexes expiration [2.5]. Also, MongoDB allows for

replication through Replica-set system (which grants both fault tolerance and better read

performances) and data-set partitioning called Sharding (which allows read and write

scale on multiple parallel fragments) [2.7]. Last but not least, MongoDB features power-

ful tools to analyze documents. For example, the Aggregation framework is a powerful

way to run on collections a pipeline of various commands, such as filtering, grouping,

sorting and even more complex statistical calculus, in sticking with our requirements of

providing an interface featuring an advanced way for creating analysis queries [2.9]. I’ll

explain later the actual implementation of query execution system on MongoDB in our

distributed system [6.1].

34 Francesco Larghi

Chapter 4

Figure 4.3: MongoDB Aggregation Framework

4.4 Flask

Flask is a lightweight WSGI web application framework. It is designed to make getting

started quick and easy, with the ability to scale up to complex applications. It began as

a simple wrapper around Werkzeug and Jinja and has become one of the most popular

Python web application frameworks. Flask offers suggestions, but doesn’t enforce any

dependencies or project layout. It is up to the developer to choose the tools and libraries

they want to use. There are many extensions provided by the community that make

adding new functionality easy. One of the main libraries we adopted is Flask-RESTful.

It is an extension for Flask that adds support for quickly building REST APIs. You can

easily define endpoints and relative callable actions exploiting Python’s decorators.

4.5 Containers on Docker and Kubernetes

Containers, along with containerization technologies (like Docker and Kubernetes), have

become common components in many developers’ toolkits. The goal of containerization,

at its core, is to offer a better way to create, package, and deploy software across different

Francesco Larghi 35

Chapter 4

environments in a predictable and easy-to-manage way. Containers are an operating

system virtualization technology used to package applications and their dependencies and

run them in isolated environments. They provide a lightweight method of packaging and

deploying applications in a standardized way across many different types of infrastructure.

Respect to VMs, rather than virtualizing the entire computer, containers virtualize the

operating system and the application directly. They run as specialized processes managed

by the host operating system’s kernel, but with a constrained and heavily manipulated

view of the system’s processes, resources, and environment. We can actually interpret

containers as applications togheter with folders, libraries, frameworks, etc. that they

depend on. Docker is by far the most common way of building and running containers.

It is a set of tools that allow users to create container images, push or pull images from

external registries, and run and manage containers in many different environments.

Figure 4.4: Containers on Docker

As backend production environment, we actually have in place a Kubernetes cluster

(that also hosts many other applications developed in the company). Kubernetes (also

written as k8s) is an open-source container-orchestration system for automating applica-

tion deployment, scaling, and management. It was originally designed by Google, and is

36 Francesco Larghi

Chapter 4

now maintained by the Cloud Native Computing Foundation. It aims to provide a plat-

form for automating deployment, scaling, and operations of application containers across

clusters of hosts. Kubernetes configure application through YAML files. Through Ku-

bernetes Deployments, we can deploy containerized application with Pods and Services.

A Pod is a group of one or more containers (such as Docker containers), with shared

storage/network, and a specification for how to run the containers. A Pod’s contents

are always co-located and co-scheduled, and run in a shared context. A Pod models an

application-specific “logical host” - it contains one or more application containers which

are relatively tightly coupled — in a pre-container world, being executed on the same

physical or virtual machine would mean being executed on the same logical host. Services

are an abstract way to expose an application running on a set of Pods as a network ser-

vice. They basically allow to map Pods exposed ports to other ports open in the external

environment, outside of the inner network system.

I’m not going into further details about these technologies because this is not the goal

of this writing, but these are the solutions that we implemented to fulfill our requirements

on the infrastructure deployment [2.8]. We will see in the next chapter how the whole

system was actually designed also thanks to these technologies.

4.6 Vue.js

VueJS is an open source progressive JavaScript framework used to develop interactive

web interfaces. It is one of the famous frameworks used to simplify web development.

VueJS focuses on the view layer. It can be easily integrated into big projects for front-end

development without any issues. VueJS makes the use of virtual DOM, which is also used

by other frameworks such as React, Ember, etc. The changes are not made to the DOM,

instead a replica of the DOM is created which is present in the form of JavaScript data

structures. Whenever any changes are to be made, they are made to the JavaScript data

structures and the latter is compared with the original data structure. The final changes

are then updated to the real DOM, which the user will see changing. The data binding

feature helps manipulate or assign values to HTML attributes, change the style, assign

classes with the help of binding directive called v-bind available with VueJS. Components

Francesco Larghi 37

Chapter 4

are one of the important features of VueJS that helps create custom elements, which can

be reused in HTML. VueJS provides various ways to apply transition to HTML elements

when they are added/updated or removed from the DOM. VueJS has a built-in transition

component that needs to be wrapped around the element for transition effect. We can

easily add third party animation libraries and also add more interactivity to the interface.

VueJS is very lightweight and the performance is also very fast. It is ideal to develop our

website tool [2.9].

4.7 Ansible

Ansible is an open-source IT engine which automates application deployment, intra-service

orchestration, cloud provisioning and many other IT tools [bib. [10]]. Ansible is easy to

deploy because it does not use any agents or custom security infrastructure. It works

by directly connecting to the nodes through ssh, Kerberos, etc. Ansible uses playbook

to describe automation jobs. A playbook is a series of tasks described using very simple

language i.e. YAML, which is very easy for humans to understand, read and write. After

connecting to your nodes, Ansible pushes small programs called as “Ansible Modules”.

Ansible runs that modules on your nodes and removes them when finished. It uses the

hosts file where one can group the hosts and can control the actions on a specific group in

the playbooks. We used Ansible playbooks to automate the deployment of our distributed

nodes, with the whole configuration and software installation, as our requirements asked

[2.8].

38 Francesco Larghi

Chapter 5

Design

5.1 High level architecture

This project is designed taking account of our main requirements [2.1]. The overall archi-

tecture of the system can be divided into 3 main sections [fig. 5.1].

The first part is the software running on the main network of the company (Elmec

Informatica) with the website (frontend), the backend services and the central database.

The website consists in a tool inside the company official website for internal operations

(”Automation Site”). This tool is called ”LLAMA”, as the project itself. It is imple-

mented with Vue.js, a frontend framework technology we have briefly described in the

previous chapter [4.5]. I will show later the final UI of this website tool [6.3]. On the

”Elmec Network” we also have the backend part hosted on Kubernetes. We will see in

the next section a detailed description of the backend design. Lastly, here we also have

the main database cluster implemented with MongoDB. On this database we store all

the results of the queries, scheduled queries info, and other metadata about the overall

system.

The second one is the broker, the MOM used for message distribution, hosted on the

DMZ (demilitarized zone) network. It is a Redis instance, the core part of the whole

infrastructure since it connects the central logic with the distributed machines. It is

hosted on the DMZ network of the company because it also receives traffic from internet,

which could be insecure and it’s a good practice to keep this components outside the inner

network. Anyway, Redis is connected to the distributed nodes with a secured VPN and,

39

Chapter 5

as we will see later in the Security section [5.4], the traffic is encrypted too.

Finally, the third and last part is the set of nodes composing the distributed infras-

tructure. We called the single node DMI-Log (also written DMILOG, or DMI-LOG).

DMI is actually an acronym already used for another distributed infrastructure of the

company which stays for Distributed Management Infrastructure, so we kept the name

adding ”Log” to the end to identify the purpose of these machines. I’ll show in section

[5.3] how a DMI-Log is actually designed.

Figure 5.1: LLAMA high level architecture

5.2 Backend design

Here resides all the main logic of the architecture. The logic parts were split into different

services deployed as containers on Kuberentes. This style is also known as Microservices

architecture. This architectural style structures an application as a collection of services

that are highly maintainable and testable, loosely coupled, independently deployable and

organized around business capabilities. Containerized application are separately deployed

with different resources allocation, scalability or replication configurations. On the back-

end we have 4 main containers:

• LLAMA API: it contains the RESTful API implemented in Python using Flask

framework with the Flask-RESTful extension introduced in the technology chapter

40 Francesco Larghi

Chapter 5

Figure 5.2: Backend design on Kubernetes

[4.2]. It exposes the port 5000 for incoming calls and communicates with both

MongoDB cluster and Redis through Celery. A list of all the main endpoints is

available in the next chapter [6.2].

• CELERY RESULTS: a lightweight Python container that runs a Celery worker

listening on the ”llama results” queue. After receiving queries’ results messages

from Redis, it stores them into the central MongoDB proper database. I’ll go into

details about Celery queues and workers implementation in the next chapter [6.1].

• CELERY BEAT: a Python container that simply runs an instance of Celery Beat

Francesco Larghi 41

Chapter 5

daemon, the actual system scheduler. This actually relies on the RedBeat scheduler

class to handle the task scheduling. As we introduced in the previous chapter, Red-

Beat allows to store schedules directly on Redis, and expose some Python methods

to dynamically add or delete the scheduled tasks.

• STUNNEL: all the traffic going towards Redis, is actually pointing to this container

that redirects the traffic to Redis after having encrypted it with the proper keys and

certificates. I’ll give some more information about this technology in the security

section [5.5].

Each container is deployed as a Pod that automatically restarts containers in case of

failure. Pods also replicates containers for load balancing, except for Celery Beat which it’s

not replicated because, since it’s a scheduler, there is a potential risk of sending multiple

schedules at the same time. Also, there is a Service that expose outside of Kuberentes

the port 5000 of LLAMA API to make it reachable from the outside (for the frontend

application).

5.3 DMI-LOG design and configuration

A DMI-LOG is the single node of the distributed architecture. It is the machine in charge

of log collection, management and storage. A DMI-LOG consists on a Centos 7 Linux

machine (both virtual or physical) configured to be both inside the customer network

and a VPN that is connected to the MOM (the Redis instance). To efficiently deploy

and configure this machine, we used Ansible, a technology we introduced in the chapter

before [4.7]. After having installed a Centos 7 machine, it’s possible to configure it using

the proper tool on the internal company website. This tool basically launches an Ansible

playbook that automatically installs Docker and a MongoDB Replica Set on the machine,

besides other custom configurations. Then, it automatically pulls from a private registry

the updated images of the containers and runs them.

There are 2 containers:

• CELERY CUSTOMER: a lightweight Python container that runs a Celery worker

listening on the queue assigned to that customer (company client). Each customer

42 Francesco Larghi

Chapter 5

has his message channel on Redis set up during machine automatic configuration.

As for ”CELERY RESULTS” container, I’ll go into details about the actual Celery

logic in the next chapter [6.1].

• FLUENTD LLAMA: this is a custom container created starting from the original

available image of Fluentd published on Docker Hub. Besides official plug-ins in-

stallation, we also added our own custom plug-ins to support particular log formats,

such as Cisco ASA codes, CEF and so on.

Figure 5.3: DMILOG design

Both these containers runs in host mode, that means they share the same network of

the host machine, mapping their exposed port and listening ports on the host.

The Fluentd instance listens on specific configured ports. Each DMI-LOG could have

its own configurations based on the needs of the customers, the technologies monitored

and type of logs collected. For Linux and Windows log collection we use log shippers (such

as Fluent bit, Filebeat or Winlogbeat based on the OSs), whereas network equipment (like

routers, switches, IPSs, IDSs etc.) can usually forward logs (e.g. with Syslog) directly

towards the relative ports. So, each port corresponds to a specific technology source and

Francesco Larghi 43

Chapter 5

the relative traffic will be accordingly parsed and treated with the relative plug-in. Then

the logs are inserted in their relative collection on the MongoDB ”logs” database (one

collection for each source). Fluentd has a specific plug-in also to insert logs as documents

in the MongoDB Replica Set. This is done very efficiently, in fact we reach thousands of

inserts per second (in some cases we have up to 5000/second without issues). Fluentd can

be nicely tuned to achieve great performances, for example thanks to the use of multiple

threads at the same time. Usually we adopt 4 parallel threads for a standard instance.

For what concerns MongoDB, as I previously said it is configured as a Replica Set. By

default, of course the Replica Set only contains the local instance of MongoDB that it’s

the primary one, but still there is the possibility to add more instances on other machines

to create a proper cluster if needed, as our requirements asked [2.7]. MongoDB collections

are configured to have an index on the always present timestamp field, to speed up all

the queries and also to automatically set an expiration time after which the document is

automatically deleted (usually after 6 months). The instance it’s also configured to be

accessed only with authorization. This means that only users registered by the admin

during the set-up, having specific privileges, can access (read or write) the logs. The

logical volume on which MongoDB saves the database is also encrypted. I’ll go into more

details about this and other security measurements we took in the next section.

5.4 Security

In this project the security aspect is fundamental. The data we handle is private and

contains sensitive information about the client companies and their employees. As the

CIA paradigm states, we need to provide confidentiality (information can be accessed

only by authorized entities), integrity (information can be modified only by authorized

entities and in the way they meant to) and availability (information must be available

to all the parties who have a right to access it). To grant a secure enough system, we

adopted various technologies, some of which we already cited before and some not.

44 Francesco Larghi

Chapter 5

5.4.1 Stunnel and TLS

Stunnel is a proxy designed to add TLS encryption functionality to existing clients and

servers without any changes in the programs’ code. Its architecture is optimized for

security, portability, and scalability (including load-balancing), making it suitable for large

deployments. Stunnel uses the OpenSSL library for cryptography, so it supports whatever

cryptographic algorithms are compiled into the library. As shown in the previous sections,

we used Stunnel to add TLS encryption to our backend. That’s because in this way we

don’t need to add specific Redis configuration to support encryption. In this way we can

also decouple this feature from the code and separately modify and deploy it as a portable

container. The traffic going from the backend to the Redis instance in DMZ is securely

encrypted. The Redis instance is configured to receive TLS incoming traffic. The traffic

between Redis and the DMI-LOG nodes travels inside a VPN and is encrypted with TLS,

fulfilling our requirements [2.12].

5.4.2 HTTPS and JWT

As we said before, ”LLAMA” is a web tool available inside the internal company website.

The website is secured through HTTPS and the outgoing API calls contains authorization

tokens implemented with JWT, released from the official JWT server of the company.

The tokens are then validated in the backend thanks to an ad-hoc library for Flask

endpoint authentication that we developed from scratch. The name of this library is

flask-elmecauth.py and allows to simply add authentication to Flask REST endpoints

thanks to Python decorators. The decorator @authenticated simply placed before the

endpoint declaration, wraps the action method and checks the validity of the JWT for

the requested action before the actual execution, as our requirements asked [2.11]. The

execution proceeds only if the issuer is valid and not the token is not expired.

5.4.3 Security for log storage

To fulfill our requirements [2.6], we adopted different solutions. As I showed in the previous

section, the logs are stored on DMI-LOGs inside MongoDB collections. These collections

resides in a database simply named ”logs”. Only 2 predefined and password secured users

Francesco Larghi 45

Chapter 5

can interact with the database. The user ”fluentd”, which is used by the ”FLUENTD

LLAMA” container, can insert documents and add new collections. Instead the user

”llama”, used by the container ”CELERY CUSTOMER”, can only read documents. The

Celery task (that is a Python script) cannot hurt the system because, since it’s executed

inside a container, it cannot interact with other elements or file on the DMI-LOG machine,

except for MongoDB on the port 27017 (with only read permission on logs). Moreover,

the Celery worker runs with a Linux user which privileges are limited inside the container

too.

To grant complete obfuscation of data for those who have are not accessing as Mon-

goDB users, the whole database is saved on an encrypted LUKS partition. LUKS is

the standard for Linux hard disk encryption. By providing a standard on-disk-format,

it does not only facilitate compatibility among distributions, but also provides secure

management of multiple user passwords. LUKS stores all necessary setup information in

the partition header, enabling to transport or migrate data seamlessly. To automate the

process of retrieve a key for the encryption/decryption of the partition we adopted Clevis

together with Tang. Clevis is a pluggable framework for automated decryption. It can be

used to provide automated decryption of data or automated unlocking of LUKS volumes.

Tang is a server implementation which provides cryptographic binding services without

the need for an escrow. Clevis has full support for Tang. The whole process is well

explained in the article reported [bib. [11]]. The server is hosted on separate machines

and services. The LUKS volume is initialized during the DMI-LOG configuration with

Ansible, before MongoDB installation.

46 Francesco Larghi

Chapter 6

Implementation

In this chapter we will analyze some practical aspects of the actual implementation of the

system. First of all we will see how we used Celery to implement asynchronous execution

for our queries and the relative result collection, the most important logic of the system.

Then we will make a list of the endpoints exposed by the API and finally we will show

the website final UI, illustrating how to craft queries and interact with the system.

6.1 Celery tasks and workers for query execution on

MongoDB

The overall idea of the query execution mechanism is to wrap a Python script (i.e. the

query, implemented with PyMongo library) in a Celery task that will execute only on

a specified target. The target uniquely identifies a company client on which we want

to execute the query. The target is also the actual name of the Celery queue (and so

the Redis channel). Only the Celery worker running on the target client is listening on

this channel and will consume the execution. In this way, we can easily specify where to

execute the query without conflicts. On the LLAMA webpage, the user actually has a

Python editor and a target selector. The editor is where he can write the code to build

queries to retrieve or analyze logs stored on the DMI-Log. I’ll show in the last section

of this chapter the UI of the webpage. After the query execution, the main task calls a

new one that will execute only on the results worker running on ”CELERY RESULTS”

47

Chapter 6

container in the backend, that will insert the result in the results database.

Figure 6.1: Celery tasks execution

So, there are 2 main Celery tasks:

• execute code(): this task is launched with the apply async() Celery method when a

user submit a query execution. It contains the query written on the editor, that will

execute on the remote console worker. This method take some parameters: ”code”

is the actual Python script, the query that we need to execute on the worker; ”uuid”

is the generated uuid that univocally identifies the task; ”time frame” contains the

time frame specified in the frontend on which the user wants to execute the query.

48 Francesco Larghi

Chapter 6

These parameters are then passed to the Python exec() method. This method

executes the dynamically created program, which in our case is a simple string. It

creates a separate environment with its own process on which the code is executed.

Finally the result is actually sent back calling send back result() having always as

target the queue ”llama results”.

• send back result(): As we just said this method is invoked always at the end of ex-

ecute code() to retrieve back the result. It is always executed by the results Celery

worker that runs on the ”CELERY RESULTS” container. This worker just con-

sumes messages from ”llama results” queue. The task simply insert a JSON object,

containing the result and some execution additional info, in the main MongoDB

results database.

The system already provides the import of the most useful libraries such as ”Py-

Mongo”, the official python distribution containing tools for working with MongoDB, or

”Datetime”, the main library to handle timestamps and dates. The system automatically

imports also a set of additional methods to speed up the creation of queries. The method

llama email() allows to send email from a SMTP server. This can be used for scheduled

queries to inform someone about some problems. For example, we can schedule a query

to search a specific string that should not appear inside the logs. If the string appears,

the task will send a notification email to the interested user. The idea is to implement the

whole logic inside the task. We also implemented methods to rapidly build MongoDB ag-

gregation pipelines [4.3]. The Aggregation Framework is the main tool used and suggested

to make queries, since it’s very powerful, but sometimes it takes a lot of lines to write

some always present pipeline stage. So, the method llama time() takes the ”time frame”

object of the task and returns a formatted pipeline stage that will limit the execution

only inside the time frame. Again, the method llama span() returns a formatted pipeline

stage to divide in time spans the space of the results, to group them maybe.

Francesco Larghi 49

Chapter 6

6.2 API endpoints

Here is a list of the main endpoints available on the RESTful API service.

6.2.1 /queries

ACTIONS: POST

This is the main endpoint used to launch a query. This endpoint is not inserting

objects in our main backend database (MongoDB), instead these actions interacts with

the class ”LlamaController.py” that is in charge of handling the whole query execution and

implements the Celery tasks invocation through the method ”apply async()”. Basically,

with the POST we submit a new request execution which is actually a message on Redis

(the Celery task). Each time we create a new task, we associate it with a ”uuid”, a unique

id, so we can monitor the task status on celery (with Flower for example), retrieve the

relative result later or delete the execution.

6.2.2 /query/:uuid

ACTIONS: GET - DELETE

This is the main endpoint used to poll the result of the asynchronous query execution

from the results collection in the database. We basically continuously look in the database

if the task with our target uuid has returned its results. With the DELETE action

we abort the execution, deleting the message on Redis from the relative channel and

consequently stopping the consumption on the worker. This is always done thanks to the

uuid.

6.2.3 /targets

ACTIONS: GET - POST

This endpoint is used to get the available targets (queues on which the DMI-LOGs

are listening) and insert them in the database.

50 Francesco Larghi

Chapter 6

6.2.4 /scheduled-tasks

ACTIONS: GET - POST - DELETE

This endpoint is used to get the current scheduled tasks, delete them or add new ones.

Insertion and deletion involve the invocation of the dedicated class ”BeatController.py”

that exploits the RedBeat class to organize the schedules details directly on Redis stor-

age. As said in the Design chapter, this class provides methods to save or remove tasks

schedules at runtime on Redis without the needs of restarting the scheduler daemon.

6.2.5 /statistics

ACTIONS: GET

This endpoint is used to get general statistical information collected in the database

about the status of the overall system, such as the number of queries, the scheduled

queries executed etc.

6.2.6 /saved-queries

ACTIONS: GET - POST - DELETE

This endpoint is used to insert, delete or get favorite queries that the user want to

save for future use and quick access.

Francesco Larghi 51

Chapter 6

6.3 Llama web page UI

In this last section I will introduce the LLAMA web page user interface. It is a single

page tool, divided into 4 sub-pages. The first two pages are used to launch and schedules

queries, the features we are mainly interested in. The Dashboard and Management page

are currently under development and are not part of this project thesis.

6.3.1 Query page

Figure 6.2: Query page

This is the main page of the tool, where you can craft a query and launch it [fig.

6.2] First of all, the user has to choose a target (that corresponds to the Celery queue).

This will trigger automatically a query that will load the available collections on the

relative customer. We can see in the example ”llama ELMEC” as target, which points

to the DMI LOG that collects logs inside the own company systems (the company is the

customer of itself in this case) [fig. 6.3]. By default, the ”Simple Mode” interface will

show up after the collection names are retrieved.

In this mode, we can make simple queries to just retrieve some logs and check their

content. The user has some basic filter fields, which actually are a wrapper to the actual

Python code. The auto generated code consists in a MongoDB aggregation pipeline. For

example, the ”Filter” consists in just a ”$match” pipeline stage, the ”Text Regex” exploits

”$regex” pipeline stage, ”Limit Logs” maps to ”$limit” and so on. In the special area on

the side, the user can specify the time frame on which we want to execute our query. It

provides both an absolute time picker and a relative one.

52 Francesco Larghi

Chapter 6

Figure 6.3: Simple Mode

The ”Launch Query” button just launch the asynchronous execution calling the ”POST

queries” endpoint, that will return the relative uuid and then it starts to poll over ”GET

query

:uuid”. Clicking the red button will stop and abort both the asynchronous execution and

the polling. This mode is intended to use to just check the log content, parsed structure

and make simple queries.

Francesco Larghi 53

Chapter 6

Figure 6.4: Result JSON explorer

When the execution completes the result will show up below [fig. 6.4]. The user can

navigate the result with the JSON explorer, expanding the single fields or the entire log.

It is also possible to export the result in JSON with the relative ad-hoc button.

The access to the full features and possibilities of the tool, the user should activate

the ”Advanced Mode” in the proper area on the side. After the activation the simple

interface is substituted with the integrated Python editor. This editor simply highlights

Python syntax (it is implemented with a Javascript library called ”codemirror”).

Figure 6.5: Advanced Mode

Here the user can write complex queries, retrieve logs or return just the results of

54 Francesco Larghi

Chapter 6

complex analysis. In the example [fig. 6.5], there is a complex query that exploits both

MongoDB aggregation framework and Python statistics library. The query was loaded

using the ”Saved Queries” dedicated area. In the specific case, the goal of this query is to

find outliers in signatures of Suricata (and IDS software) logs. This means that when the

statistical values of the matched signatures surpasses a certain threshold, the values are

returned as result. The ”result” and ”description” fields of the result actually contains the

value stored in the relative variable inside the query. So this two variables are assigned to

this scope. Other special variables are ”from time” and ”to time” that will contain the

value specified on the Time picker area on the side.

Figure 6.6: Query complete result with Table Viewer

We can see the result of this query [fig. 6.6] . In this case the ”Table Viewer” feature

is also activated. This will show the results in form of a table, instead of with the JSON

navigator tool. The result can be exported as usual. Besides result and description fields,

in this figure we can also see all the other fields present in the returned JSON, such as

”uuid”, ”execution time”, ”timestamp” etc.

Francesco Larghi 55

Chapter 6

6.3.2 Scheduled Queries page

This page contains another Python editor instance to write a query [fig. 6.7]. The

difference is that here you can set-up a scheduled one. A scheduled query will be executed

on the specified target on a regular interval. The interval can be specified (in minutes)

in the dedicated input section. The user can also input a name for the schedule (the

name should be unique). Clicking the ”Schedule Query” button the relative endpoint will

be called, inserting with RedBeat the schedule inside Redis. The Celery Beat scheduler

will immediately start to execute the task, waiting for an ”interval” amount of minutes

between each execution.

Figure 6.7: Scheduled Queries page

Below the Scheduled Queries editor, there is a list of the running schedules. Schedules

can be expanded, consulted and deleted with the dedicated button. In the example [fig.

6.8], we have a query that searches with a regex for a specific string inside a collection

where we store the logs of many switches. This string identifies a loop inside the network

of switches. If one or more strings are found, they are inserted in the result. Moreover,

the result is also sent via email to a couple of addresses of people in charge of solving

this type of problems. The query is executed from the scheduler each 120 minute, hence

2 hours.

56 Francesco Larghi

Chapter 6

Figure 6.8: Scheduled query example

Francesco Larghi 57

Chapter 7

Evaluation

In this chapter I will try to evaluate the overall results, proceeding for each of our require-

ments.

7.1 Central managed distributed infrastructure for

log management

As required in section 2.1, the system actually consists in a central web page tool, that

communicates with the backend system and the distributed consoles, called DMI-LOGs,

which are in charge of log collection and management. The whole infrastructure is realised

with Python. Flask is the Python framework adopted for the API and Celery is the Redis

client that handle the query remote execution mechanism and result retrieval.

7.2 Node isolation

This requirement 2.2 is achieved using separate queues for each customer. Moreover,

Celery workers are configured with ”–without-mingle” and ”–without-gossip” options that

block the workers from logging events happening on other workers, completely isolating

the container on its console.

59

Chapter 7

7.3 JSON as unique representation of data

As required in section 2.3, the system always use JSON as data representation and com-

munication format. Fluentd forces all the incoming logs to become JSON and stores them

in MongoDB which saves documents in JSON again (actually BSON as we explained in

the Technology chapter [4.3]). Celery encodes it’s message in JSON over Redis, and the

results of the queries are again saved in a MongoDB central database. The communication

with the API is RESTful, so exploiting one more time JSON format. The website shows

results with a JSON explorer that allow to dynamically navigate inside JSON fields.

7.4 Efficient and reliable log management for each

node

Thanks to Fluentd and MongoDB, also this requirement 2.4 is fulfilled. We have seen

how Fluentd efficiently collects thousands of logs per second (even 5000+/second), parse

them with relative plug-in (our custom ones too) and store them inside MongoDB, which

has stunning insertion performances and search speed as well, thanks to its indexes.

7.5 Log retention for a specific amount of time or

space

As required in section 2.5, MongoDB grants safe document retention and data persistence.

Moreover, thanks to its indexes it can automatically delete documents after a specific

amount of time. With capped collections it can also deletes documents when a specific

threshold of space is reached.

7.6 Encrypted and protected storage for logs

As we have seen in details in the dedicated section [5.4.3], this requirement is satisfied

too. We adopted a set of technologies to encrypt the partition on which MongoDB

store the database (LUKS, Clevis and Tang). Moreover, the access to the logs database

60 Francesco Larghi

Chapter 7

with MongoDB API is only possible with two pre-defined users protected by password

(”fluentd” for insertion and ”llama” for read). These users accesses are only given to

Fluentd and ”CELERY CUSTOMER” container. This fulfills our requirement 2.6.

Figure 7.1: LUKS partition and users privileges

7.7 Replicated data storage for logs

As required in section 2.7, the system supports replicated data storage thanks to Mon-

goDB Replica Set. By default it is configured as a single node Replica Set with only

one Primary node, but machines could be added to provide fault-tolerance or even better

read/write performances. To increase performances also data partitioning is available

with MongoDB Sharding.

7.8 Easy deployable nodes and backend infrastruc-

ture

As required in section 2.8 the overall infrastructure is simple to deploy and update. For

the backend infrastructure, on the git project we have a continuous integration (CI) mech-

Francesco Larghi 61

Chapter 7

Figure 7.2: MongoDB Replica Set schema

anism to automatically launch Kubernetes deployments for each new version released. For

the distributed infrastructure instead, we use Ansible to automatically deploy DMI-LOGs

and install all the software and configuration needed. We also have playbooks to only

update containers, or other components.

7.9 One website to launch queries on all the nodes

As required in section 2.9, there is a website to launch the queries on the distributed

infrastructure. The website allows the users to:

1. Consult logs with a simple interface

2. Create sophisticated queries for log analysis with an advanced interface

3. Launch query asynchronously and consult results

4. Schedule queries for repeated analysis or checks

More details about the UI can be found in section 6.3.

7.10 Query scheduling system

This requirement 2.10 is achieved thanks to Celery Beat system. The container keeps

executing the scheduled queries on the input interval. The scheduled queries could be

dynamically inserted and deleted from the website thanks to the RedBeat Scheduler class.

62 Francesco Larghi

Chapter 7

7.11 Authenticated endpoints and system access

As required in section 2.11, all the API endpoints are secured with a proper Python library

we implemented. The library wraps all the calls with a Python decorator which checks

the JWT inside each call and grants access only to incoming call with valid JWTs.

7.12 TLS and VPN secured communication

As required in section 2.12, the communication in the overall system is secured with

TLS encryption thanks to Stunnel technology. The connection between Redis and the

distributed infrastructure is also protected with a VPN since it travels on internet.

Francesco Larghi 63

Chapter 8

Conclusion

8.1 Summary

The idea of project LLAMA was to create a complete system able to provide log man-

agement and analysis for multiple distributed clients. We have seen that is possible to

provide a solution for log management without paying for commercial software, but also

that we can create a distributed system to separately store logs on different machines for

each distinct client, still launching and orchestrating queries from a central system. The

DMI-Log distributed architecture is completely independent from the query system for

log collection and management. The centralized components are only in charge of manage

the query execution and scheduling over the distributed system. The major advantage

of having developed our own software for the frontend and backend parts of the central

tool, is that we can continually add new features as needed and expand it as we want.

Moreover, since the system is loosely coupled and fragmented in small pieces and ser-

vices, we can substitute each component as we wish. For example, another choice could

also have been to select Apache Kafka instead of Redis for message distribution. The

major advantage of Kafka could have been greater performances and stability. Thanks to

its distributed nature, it provides the possibility of deploying a huge cluster to handle a

greater amount of traffic (in our case of queries). A very good comparison between those

technologies is available in this article [bib. [12]] In our case, we opted for Redis because

we were more interested in Python integration through Celery with its task execution

logic, instead of having particular stunning performances or availability, but with the cost

65

of a much more complex implementation of a logic for the query system.

8.2 Future work

I’m glad to say that LLAMA as already been adopted for some clients of the company,

first of all by Elmec Informatica itself. The system is locally used to store hundreds

of gigabytes of logs with the possibility of fast consultation and even complex analysis

without any external cost. The project is still growing and in case of an increasing number

of clients it’s possible that the architecture will change. First of all, the actual single Redis

instance is not scalable and stable enough to handle a huge number of queries. In the

past we tried to extend it to a cluster with Redis Sentinel. Redis Sentinel provides high

availability for Redis, creating a Redis deployment that resists to certain kind of failures.

It also provides other collateral tasks such as monitoring, notifications and acts as a

configuration provider for clients. Unfortunately, we had some issue in the integration of

Sentinel in the system, so we switched back to a single Redis instance. Anyway, there is

another new solution for Redis clustering, the project Redis Cluster. In future, we will

probably study in more details this technology to consider its adoption. Alternatively, we

could also think to switch to Apache Kafka in case it is needed. There is also on Celery’s

GitHub repository a pull request to add Kafka to the compatible brokers.

Finally, we are currently working on adding new features and pages to the website

interface and new API endpoints to interact with the system. For example, the Dashboard

page to visualize results, system health and performances or the Management page to

centrally manage some aspect and configuration on the DMI-Log machines.

66

Bibliography

[1] J. Kreps. (2014). Benchmarking apache kafka: 2 million writes per second (on three

cheap machines), [Online]. Available: https : / / engineering . linkedin . com /

kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-

machines.

[2] H. Zhang. (2014). Efficient in-memory data management: An analysis, [Online].

Available: https://www.comp.nus.edu.sg/~logbase/pdfs/vldb14_inmemorystudy.

pdf.

[3] (). Celery project repository on github, [Online]. Available: https://github.com/

celery/celery.

[4] (). Redbeat project repository on github, [Online]. Available: https://github.

com/sibson/redbeat.

[5] M. Sibson. (2017). Hello redbeat: A celery beat scheduler, [Online]. Available:

https://blog.heroku.com/redbeat-celery-beat-scheduler.

[6] (). Flower project repository on github, [Online]. Available: https://github.com/

mher/flower.

[7] (). Redis commander project repository on github, [Online]. Available: https://

github.com/joeferner/redis-commander.

[8] (). Fluentd project repository on github, [Online]. Available: https://github.com/

fluent/fluentd.

[9] A. Kamsky. (2015). Performance testing mongodb 3.0 part 1: Throughput improve-

ments measured ı̀ with ycsb, [Online]. Available: https://www.mongodb.com/blog/

67

post/performance-testing-mongodb-30-part-1-throughput-improvements-

measured-ycsb.

[10] (). Ansible project repository on github, [Online]. Available: https://github.com/

ansible/ansible.

[11] T. Scherf. (2018). Automatic data encryption and decryption with clevis and tang,

[Online]. Available: http : / / www . admin - magazine . com / Archive / 2018 / 43 /

Automatic-data-encryption-and-decryption-with-Clevis-and-Tang.

[12] A. Yigal. (2016). Kafka vs. redis: Log aggregation capabilities and performance,

[Online]. Available: https://logz.io/blog/kafka-vs-redis/.

68

