

POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell'Informazione

Corso di Laurea Magistrale in Computer Science and Engineering

A data-driven approach for early stopping

in autonomous robot exploration based on convolutional neural networks

Advisor: Prof. Francesco AMIGONI

Co-advisor: Dr. Matteo LUPERTO

Master thesis of:

LI Mingju Matr. 10574864/898045

LIN Chang Matr. 10597034/894651

Academic Year 2018 - 2019

LI Mingju / LIN Chang: A data-driven approach for early stopping in autonomous
robot exploration based on convolutional neural networks | Master thesis in Computer
Science and Engineering, Politecnico di Milano.
c© Copyright October 2019.

Politecnico di Milano:
www.polimi.it

Scuola di Ingegneria Industriale e dell’Informazione:
www.ingindinf.polimi.it

http://www.polimi.it
http://www.ingindinf.polimi.it

Acknowledgements

This thesis is finished with the help of many people. First we would like to thank
our project supervisor, Prof.Francesco Amigoni, for giving us this opportunity to
work on this thesis project, and our project advisor, Dr. Matteo Luperto for his
continuous guidance, support and motivation throughout the project.

We would also thank our families and our friends. They provided us a lot of
support and encouragement throughout our academic career.

v

Sommario

In questo lavoro di tesi, consideriamo le attività di esplorazione eseguite da
robot mobili autonomi in ambienti interni. Durante l’esplorazione, il robot opera
una sequenza di decisioni su dove andare e su quando fermarsi. In questa tesi,
presentiamo un approccio di deep learning che permette al robot se fermarsi. Il
nostro modello è stato sviluppato per terminare l’esplorazione quando le informazioni
raccolte nella mappa sono sufficienti per ricostruire una mappa accurata, invece
di terminare l’esplorazione quando ogni area dell’ambiente è stata effettivamente
osservata. Le attività sperimentali, condotte in diversi ambienti in simulazione,
mostrano che il nostro approccio è in grado di terminare l’esplorazione in modo
tempestivo e di risparmiare una notevole quantità di tempo.

Parole chiave: AlexNet, ROS Simulation, Exploration Early Stopping, CNN,
Deep Learning

vii

Abstract

We consider exploration tasks performed by an autonomous robot in indoor
environments. During the exploration, the robot goes through a sequence of
decisions on where to go and whether to stop. In this thesis, we present a deep
learning approach that could decide whether to stop. Our deep learning model is
developed to terminate the exploration when the map information is enough to
reconstruct and output an accurate map, instead of terminating the exploration
when every area of the environment has been actually observed. Experimental
activities, performed in several different environments, show that our approach is
able to terminate the exploration timely, and to save a significant amount of time.

Keywords: AlexNet, ROS Simulation, Exploration Early Stopping, CNN, Deep
Learning

ix

Contents

1 Introduction 1

2 Start of the Art 3
2.1 Exploration . 3

2.1.1 Definition . 3
2.1.2 Exploration Procedure . 4
2.1.3 Information Gain And Distance 5

2.2 Layout Reconstruction . 5
2.3 Backward Coverage And Forward Coverage 8
2.4 Convolutional Neural Network . 9

2.4.1 Introduction . 9
2.4.2 Theory Support . 10
2.4.3 Applications . 13

2.5 Summary . 15

3 Problem Formulation 17
3.1 Motivations . 17

3.1.1 Current Early Stopping Criterion 19
3.2 Current Time-area Diagram And Analysis 23
3.3 Problem Formulation . 25

3.3.1 Assumptions . 26
3.4 Goal . 32

3.4.1 Summary . 34

4 Proposed Solution 35
4.1 General Overview . 35
4.2 AlexNet . 39

4.2.1 AlexNet Defination, And History 39
4.2.2 Basic Configuration Of AlexNet 41
4.2.3 Differences Between AlexNet Tasks 43

4.3 Summary . 45

xi

xii CONTENTS

5 Implementation 47
5.1 ROS Architecture . 47

5.1.1 Package And Rqt_graph . 47
5.1.2 Integration Of Deep Learning And ROS 53

5.2 Data Collection . 54
5.2.1 ROS Bag Play . 54
5.2.2 Map_server Saver . 54
5.2.3 Procedure . 56

5.3 Data Pre-processing . 57
5.3.1 Crop And Resize . 57
5.3.2 Image Feature Augmentation 58

5.4 Data Labelling . 58
5.4.1 Data Visualization . 60
5.4.2 Logistic Regression And Support Vector Machine 60
5.4.3 Fuzzy Rule . 63
5.4.4 Decision Tree . 66

5.5 Model Training . 69
5.5.1 Parameter Definition . 69
5.5.2 Evaluation Method . 71
5.5.3 Underfitting And Overfitting 72
5.5.4 Experiments . 74

5.6 Summary . 77

6 Experiment and Evaluation 79
6.1 Offline Test . 79

6.1.1 Validation Set (Seen Environments) 80
6.1.2 Test Set (Unseen Environments) 81

6.2 Online Test . 83
6.3 Summary . 85

7 Conclusions 87
7.1 Conclusions . 87
7.2 Future Works . 87

A Tools 89
A.1 ROS . 89
A.2 Tensorflow . 89

B Implementation 91
B.1 Multiprocess Partial Map Analysis 91

CONTENTS xiii

B.2 Labeling . 93
B.3 Model Training . 94
B.4 Model Integration . 97

Bibliography 101

List of Figures

2.1 This is an example of frontiers in a partially observed map. The
lines in different colors are all frontiers. 4

2.2 Here we show an example of the procedure of layout reconstruction
[11]. 6

2.3 This is a very simple structure of a convolutional neural network [2]. 10

3.1 An example when the robot failed to stop timely. 18
3.2 The workflow of robot exploration with a baseline stopping criterion. 19
3.3 The observed map in relative early stage 21
3.4 One scenario when the criterion "stop when the update of the map

is small" does not fit . 22
3.5 The relationship of the exploration time and map coverage percentage

[11] . 24
3.6 Observed map, compared with the ground truth map 24
3.7 Reconstructed map, compared with the ground truth map 25
3.8 The updated workflow . 27
3.9 The simplified model or our target early stopping module 28
3.10 The goal of our current module to implement. 32
3.11 The structure of a common CNN network. 33
3.12 The structure of a CNN network with complemented information. 33

4.1 The current structure of AlexNet [19] 40
4.2 The structure of a CNN with/witout dropout [42] 40
4.3 Structures of our AlexNet. 44

5.1 The topics and nodes in our current ROS project) 50
5.2 The communications between the navigator nodes and stopping

criterion) . 51
5.3 The map distortion between the replayed map and ground truth . 56
5.4 An example of crop and resize . 58
5.5 An example of image feature augmentation 59
5.6 The BC/FC output of 100 maps 59

xv

xvi LIST OF FIGURES

5.7 The visualization of data (blue are the maps that needs exploration,
and red are the well observed maps) 61

5.8 Another kinds of visualization of data (blue are the maps that needs
exploration, and red are the well observed maps) 62

5.9 Two well observed maps . 63
5.10 Fuzzy function of map area . 65
5.11 Fuzzy function of map area . 66
5.12 Fuzzy function of map area . 67
5.13 Fuzzy function of map area . 68
5.14 Decision trees obtained from different attributes 69
5.15 AUC ROC Curve [28] . 73
5.16 Visualization of underfitting and overfitting [36] 74
5.17 The learning curve of cnn model of the optimal configuration . . . 76

6.1 An example of early stopping in test set 81
6.2 Reconstructed layout of partial map of environment 2. 82
6.3 Environments in which early stopping perform badly. 83
6.4 Online test on 5 different environments. 84

List of Tables

3.1 Analysis on factor exploration time, exploration area. 29
3.2 Analysis on factor exploration time, exploration area. 30
3.3 Analysis on factor of current frontier numbers, frontier sizes 30
3.4 Analysis on factor of frontier shape 31
3.5 Analysis on factor of observed map shapes 31

4.1 Analysis on static rules model . 36
4.2 Analysis on map encoding model 37
4.3 Analysis on deep learning (CNN) model 38
4.4 Parameters of classical AlexNet structure 39
4.5 Parameter and details of our AlexNet (Part 1) 42
4.6 Parameter and details of our AlexNet (Part 2) 43
4.7 Differences between our binary classfication task and previous general

image classification task of AlexNet 43

5.1 The responsibility during the project 48
5.2 The topic information of /analyzer and /analyzerResult 52
5.3 ROS bag info of one run in environment 7A-2 55
5.4 Two well observed maps and their BC/FC values 63
5.5 Performance of cnn model in different configurations 75
5.6 Confusion matrix of the optimal model 76

6.1 The performance of our model in validation set 80
6.2 The performance of our model in test set 81
6.3 The performance of our model in online test 85

xvii

Chapter 1

Introduction

Exploration by means of autonomous mobile robot is a task that incrementally
builds maps of initially unknown, or partially known, environments [38]. At each
stage of exploration, the robot decides whether to terminate the exploration process
by using some criterion, and if not, decides the next location (often on a frontier
between known and unknown space in the current map) to move to according to
an exploration strategy [13]. When the selected location is reached by the robot,
the map is updated according to the new knowledge of the environment and the
process would re-start.

In this paper, we concentrate on the exploration of indoor environments. In
previous work [11], the robot terminates the exploration when it has fully observed
all the environment. We present a method to terminate the exploration process
earlier, which could decide whether the current map is good enough to stop the
exploration task because the unobserved parts can be reliably predicted.

To be more specific, we consider a mobile robot exploring an initially unknown
indoor environment in order to build its 2D grid map. At each stage of the
exploration, the layout of the known part of the environment could be extracted
from the current partial map and the layout of the unknown part of the environment
could be predicted by the method of [24]. The layout is an abstract geometrical
representation of the rooms features and shapes [22]. The shape of partially
observed rooms is predicted considering that different parts of the building share
some common features. Different rooms could be related by the fact that they
share the same shapes, and could be symmetric with each other.

The main original contribution of this thesis is that we came up with a method,
which is data-driven, that could terminate the exploration process earlier with
respect to cover all area until no frontiers left to explored. The stopping criterion
in [11] could be regarded as a baseline stopping criterion. This baseline stopping
criterion is relatively conservative in the terminating exploration. So, our early

1

2 Introduction

stopping criterion is developed to terminate the exploration earlier, and output
a map, with a cost of potentially losing some accuracy. Experimental activities
show that our approach is able to halve the time spent in the exploration in many
different environments. Though there are some environments in which our model
could not terminate the exploration early, this problem could be fixed by adding
more environments in the training set.

The thesis is organized as follows. In the next chapter we will discuss the state
of the art in robot exploration. In Chapter 3, we will formulate the problem we
address in the thesis. In Chapter 4, several solutions will be proposed to solve
the problem formulated, and in Chapter 5, details of implementation will be given.
Chapter 6 includes the online and offine tests. At last, in Chapter 7, the conclusion
will be made and future works will be discussed.

Chapter 2

Start of the Art

In this chapter, we would like to introduce the background knowledge and state
of art technology related to our research. We are presenting an overview of other
approaches that have been proposed in the literature for our problem, plus a set
of techniques and methods that are relevant to the task of solving the problem of
autonomous exploration of indoor environments.

2.1 Exploration

2.1.1 Definition

Exploration is the process in which an autonomous robot incrementally explores
an initially unknown area [38]. The robot uses multiple sensors, including laser
range sensor, collision detection sensors, to discover information of the current
exploring map and use these information to make the decision of the next position
to move. We assume that the robot has no prior knowledge of the map and all the
information relative to the environment should be extracted from current observed
map.

There are two main families of approaches which are mainly used in robot
exploration.

The first one is frontier-based approach. The frontier is defined as the boundary
between known and unknown portion of the environment, as shown in Figure 2.1.
In this approach, the robot selects the next target location, which is a frontier, from
the group of boundaries between known and unknown portions of environments
[45].

The second is information-based, which moves the robot to the most informative
locations. We select frontier-based approach since it naturally address the discovery
of space for the problem of map building we consider [34].

3

4 Background

Figure 2.1: This is an example of frontiers in a partially observed map. The lines in
different colors are all frontiers.

Typically, at each stage of the exploration process, a robot selects the next best
location according to an exploration strategy [13]. There are multiple exploration
strategies which are commonly adopted in robot exploration. Usually most of these
strategies are greedy due to the inherent online nature of exploration problem [39].
In a greedy strategy, the robot always selects the best solution of the current stage.
Strategies can be defined by a single criterion or by combined criteria, to guide
the next action of the robot. For example, a robot can always select the closest
frontier for the reason of cost reduction, or select the frontier which is widest among
the set of frontiers, since the widest frontier has intuitively the highest value for
exploration. A better approach is to consider multiple criteria together, instead of
a single one. For instance, [13] chooses the next frontier by both considering the
distance from the robot current position and the expected information gain. This
is also the approach adopted by our method.

2.1.2 Exploration Procedure

In our work, an exploration process [11] can be defined as following. A single
robot is equipped with a laser range scanner with given field of view and range,
which is able to build the map ME from the environment E. The map is not
guaranteed to be the same as the environment, due to noise and error of the
laser scanner. The robot starts to explore an initially unknown environment by
frontier-based approach following the process below:

1. The robot observes a portion of E from its current position using its laser
range scanner. Then it updates its partial observed map by integrating this
portion.

2. The robot filters and generates the set of frontiers as the candidate set.

2.2. Layout Reconstruction 5

3. According to an exploration strategy, the robot selects the next best frontier
candidate.

4. The robot moves to the selected frontier and start from the first step again.

The robot will repeat above steps until there is no frontier left. At this point,
map ME could represents all free space of E.

2.1.3 Information Gain And Distance

In order to apply a combined criteria for selecting the next best candidate, a
common approach as [13] and [3] is to define an utility function. This function,
given a frontier as input, outputs its utility value which represents how much it
is worth if the frontier is selected as the best next one. The authors consider two
criterias as a combined one. The first one is the distance utility, while the second
one is the information gain of the frontier. The equation is shown below:

u(p) = α ∗ d(p) + (1− α) ∗ i(p) (2.1)

In the above equation, d(p) is the distance utility which is calculated as:

d(p) = (Dmax −D(p, pr))/Dmax (2.2)

where D(p, pr) is the distance between the robot and the center of the frontier,
and Dmax represents the maximum value of distance of all frontiers in the candidate
set. i(p) is the information gain utility value, which is calculated as:

i(p) = I(p)/Imax (2.3)

where I(p) is the estimated unexplored area of the frontier, which can be
obtained in the process of layout reconstruction (proposed in Section 2.2) and Imax

is the maximum value of I(p) for all frontiers in the candidate set.
To combine these two criteria, a weighted sum needs to be computed, to represent

the best balance between closeness and expected new area. By setting α to 1, the
strategy becomes a closest-frontier strategy. As well, by setting α to 0, the strategy
focuses only on expected information gain. Values of α can be selected by doing
multiple test experiments.

2.2 Layout Reconstruction
To reconstruct the layout L of the environment starting from its partial map

M , we use the method presented in [23] and [24]. We provide here a brief summary

6 Background

Figure 2.2: Here we show an example of the procedure of layout reconstruction [11].

of the algorithms using a running example as shown in Figure 2.2. Please refer to
the original papers for full details.

The algorithm starts from a grid map M of the environment, like the one in
Figure 2.2(a). A grid map is a map composed of a matrix of grids, in which each
value represents the probability of the grid being occupied. From M a set of edges
can be extracted, which are used to identify walls. Each wall is associated to a
representative line by clustering. The representative line identifies the direction
of the associated aligned walls. It means that all walls associated with the same
representative line, even if they are in different portions of the environment, have the
same direction. Representative lines can define a segmentation of the environment.
Examples of representative lines can be seen, in red, in Figure 2.2(b). By this
definition, after clustering all walls to a set of representative lines, a set of faces can
be obtained by the intersection of representative lines (exactly four representative
lines if the environment is rectilinear).

A face is the smallest unit representing potentially a room or part of a room,
and a face could be one of the following three types:

• Fully observed, which means the area has been completely observed in M .

• Partial observed, which means the area has been partially observed in M .

• Unknown, if no point of the area has been observed in M .

After this step, we cluster all faces into clusters of faces, in which each represents
a room. There are two different types of rooms:

• Fully observed room. This kind of room is composed of fully observed faces.

• Partially observed room. This kind of room is composed of both fully observed
faces and partially observed faces.

Starting from fully observed rooms, in order to obtain a representation of the
rooms, we follow the rules that fully observed room consists only of fully observed

2.2. Layout Reconstruction 7

faces and between any two faces there should not be any wall in M [26]. By
traversing the whole set of fully observed faces and merging them, we are able to
obtain a set of fully observed rooms. An example of fully observed rooms identified
from the partial grid map of Figure 2.2(a) is in Figure 2.2(c).

Afterwards, the best combination of fully and partially observed faces could be
obtained, to generate the set of partially observed rooms by means of representative
lines. The idea is to utilize some common structures or symmetries in floor plan
layout architecture. We assume that the unknown environments we explore all
share some common regularities. For example, if one side of the room is bounded
by a corridor, then the other side of the room has a high probability to share the
same wall with the neighbor room along the same corridor.

Practically, we usually start from the partially observed faces F , which contains
at least a frontier. We iteratively consider all adjacent faces, including fully observed,
partially observed, and unknown faces). Starting from F , we will also consider all
adjacent faces of those faces and so on, up to a maximum number of hops from
F (2 hops in our experiments). Afterwards, we generate a set of combinations of
faces (they must be connected), of which each one could be a potential room. For
each combination of faces F ′, we try to calculate a utility value representing the
probability of being an actual room. Here we introduce three criterias forming our
objective function ϕ(F ∪ F ′).

The first criteria is an intuition that the partial observed room (which is the
combination of faces F ∪ F ′) should have similar shape with respect to the rooms
which are fully observed. To be more detailed, a combination would be better
if an outer edge of the faces in this combination is longer and aligned to the
representative lines. The second criteria follows the fact that commonly a room in
a floor plan architecture usually has a simple shape (for example, rectangular) but
not a complex shape (for example, concave polygon) and not a complex shape (for
example, concave polygon). By means of this, we can compare the polygon formed
by the combination of faces F ∪ F ′ with that of its convex hull. The third criteria
prefers the shapes which are delimited by a smaller number of walls.

Finally, the set of faces F ∪ F ′{∗} that maximizes F ∪ F ′ is then associated to
the partially observed room. Then in this case, the polygon representing the layout
reconstruction of rooms is obtained by merging faces F ∪ F ′{∗}. As a result, we
obtain a layout L = r1, r2, .. reconstructed which is completely composed of fully
observed rooms and partially observed rooms.

8 Background

2.3 Backward Coverage And Forward Coverage
After the process of reconstruction, a correct layout should have the following

two characteristics:

• All rooms in the ground truth (the actual layout of the environment) should
be in the layout.

• All rooms in the layout should also be in the ground truth.

• The shape of each reconstructed room should be the same as that of the
corresponding room in the ground truth.

Following the approach of [23] and [4], we introduce two measurements to
compare the reconstructed layout L and ground truth Gt visually and numerically.

We introduce two mapping function between rooms of L and Gt, which are
forward accuracy and backward accuracy. Forward accuracy represents how well
the reconstructed layout is described by ground truth, while backward accuracy
represents how well ground truth is described by the reconstructed layout. The
mapping relationship can be shown as:

FC : r ∈ L 7→ r
′ ∈ Gt BC : r′ ∈ Gt 7→ r ∈ L (2.4)

For each room r ∈ L, forward coverage finds the room r
′ ∈ Gt which has the

maximum overlap area with r. As for backward coverage, for each room r
′ ∈ Gt, it

finds the room r ∈ L having maximum overlap area with r′ . These two mapping
functions can be used to calculate two accuray measurements, which are called
forward accuracy (AF C) and backward accuracy (ABC). These two values can be
calculated by the following equations:

AF C =
∑

r∈L area(r ∩ FC(r))∑
r∈L area(r) ABC =

∑
r′ ∈Gt

area(BC(r′) ∩ r′)∑
r′ ∈Gt

area(r′) (2.5)

where area() is the function for calculating the area of a polygon, and the
overlap between room r ∈ L and room r

′ ∈ L is defined as area (r ∩ r′).
This accuracy measurement is able to measure the similarity between two

layouts, especially between the reconstructed layout from the partially observed
map and ground truth, due to the fact that a room is the best unit to describe and
construct a floor plan layout in our problem.

At the early stage of exploration, the partial map only covers part of the ground
truth, with a relatively high AF C and a relatively low ABC . That’s because for a
room r (fully or partially observed) in the layout built from the partial map, we
are always able to find the real room r

′ in ground truth which almost (due to noise

2.4. Convolutional Neural Network 9

and error) completely covers the area of room r. And this room apparently has
the maximum overlap area. On the contrary, for a room r

′ in ground truth which
is still unexplored in the partial map, it’s apparently impossible for find a overlap
room r in the partial map. That’s the reason why we will obtain a high AF C and
low ABC .

When the partial map is almost fully explored, we will obtain a high AF C and
high ABC if the method correctly reconstructs the layout from the partial map.

2.4 Convolutional Neural Network

Nowadays, with the devolpment of machine learning and deep learning, convolu-
tional neural networks are commonly used in many domains, both scientifically and
industrially. Image classification and object recognition are two of these domains,
while autonomous exploration is considered in this thesis. In this section, we will
first describe the basic theory of convolutional neural networks, then propose they
can be used in some application domains, especially autonomous exploration of
unknown environments.

2.4.1 Introduction

Convolutional neural networks (CNNs) are a type of feedforward neural net-
work with convolutional computation and deep structure. It is one of the most
representative algorithms of deep learning [17] [15]. Convolutional neural networks
have the ability of representation learning, which means instead of learning pre-
designed features, CNNs could discover features and learn these features, and are
able to shift-invariant classify the input information according to their hierarchical
structure. Therefore, it is also called “Shift-Invariant Artificial”.

The study of convolutional neural networks began in 1980s and 1990s. The
time-delay network and LeNet-5 were the earliest convolutional neural networks
[21]. After the 21st century, with the introduction of deep learning theory and the
improvement of numerical computing device, convolutional neural network has been
rapidly developed and applied to computer vision, natural language processing and
many other fields.

The convolutional neural networks can perform both supervised learning and
unsupervised learning. The kernel parameter sharing in hidden layers and the
sparseness of the inter-layer connection guarantee that convolutional neural network
is able to extract features from grid-like topology in a small computational cost.
Therefore, convolutional neural network can learn from pixels or audio with a stable
effect and have no additional requirements for feature engineering [17] [15].

10 Background

2.4.2 Theory Support

Basic Structure

A convolutional neural network consists of multiple convolutional layers and
one or more fully connected layers at the top (corresponding to a classical neural
network), and also includes associated weights and pooling layers. This structure
enables the convolutional neural to take advantage of the two-dimensional structure
of the input data. By this feature, convolutional neural network gives better results
on image and speech recognition than other deep learning structures. Figure 2.3
shows a standard convolutional neural network structure:

Figure 2.3: This is a very simple structure of a convolutional neural network [2].

Input Layer

The input layer of a convolutional neural network can process multi-dimensional
data. Commonly, the input layer of a one-dimensional convolutional neural network
receives a one or two-dimensional array, in which a one-dimensional array is usually
sampled by time or spectrum, while a two-dimensional array may contain multiple
channels. A two-dimensional convolutional neural network receives a two or three-
dimensional array, and so on [29]. Since convolutional neural networks are widely
used in the field of computer vision, many studies presuppose three-dimensional
input data, which are the width, length and the color channels of the pictures.

2.4. Convolutional Neural Network 11

Similar to other neural network algorithms, the input features of the convolu-
tional neural network need to be normalized since we use gradient descent as the
learning algorithm. Specifically, before we input the data into our convolutional
neural network, we need to normalize the input data in the dimension of channel,
time, or frequency. For example in computer vision, the original pixel values could
be normalized to a specific interval. By normalization, we are able to improve the
learning efficiency and performance of our convolutional network [29].

Convolutional Layer

The hidden layer of the convolutional neural network includes three common
constructions, which are convolutional layer, pooling layer, and fully connected
layer.

The function of the convolutional layer is to perform feature extraction on
the input data, and contains multiple convolutional kernels. Each element in the
convolutional kernel corresponds to a weight coefficient and a bias vector, similar to
the neuron in feedforward neural network. Each neuron in the convolutional layer
is connected to a plurality of neurons in a region of the previous layer. The size of
the region depends on the size of the convolutional kernel and is called “receptive
field” in the literature [15]. Its meaning can be analogous to the receptive field
of visual cortical cells in animals. When the convolution kernel is working, it will
regularly scan the input features, multiply the input features by matrix elements in
the receptive field, and add the bias [17]:

Z l+1(i, j) = [Z l ⊗ wl](i, j) + b =
Kl∑

k=1

f∑
x=1

f∑
y=1

Z l
k(s0i+ x, s0j + y)wl+1

k (x, y)] + b

(i, j) ∈ {0, 1, ..., Ll+1} Ll+1 = Ll + 2p− f
s0

+ 1
(2.6)

The above equation describes how convolutional kernel works in each convo-
lutional layer. The summation in the equation is equivalent to solving a cross-
correlation. b is the bias. Z l and Z l+1 represents the input and output of the (l+1)
convolutional layer, which is also known as the feature map. Ll+1 is size of Zl+1

since here we assume that the width and the height of the feature map are the same.
Z(i, j) corresponds to each pixel in the feature map. K is the number of channels
of the feature map. f , s0, and p are the parameters of convolutional layer, corre-
sponding to convolutional kernel size, convolution step (stride), and padding. These
three values are hyperparameters of the convolutional neural network, together
determining the size of the output feature map of convolutional layer [17].

12 Background

Kernel size can be specified as any value smaller than the input image size.
The larger the convolutional kernel, the more complex the input features extracted
from the input image. The convolution step (stride) defines how many pixels the
convolutional kernel shifts at each step. In other words, stride controls how the
filter convolves around the input volume. For example, when stride is set to 1, the
convolutional kernel sweeps the elements of the feature map one by one. If set to n,
the convolutional kernel skips (n− 1) pixels and shifts to the nth one [9].

As it can be known from the cross-correlation calculation of the convolutional
kernel, the size of feature map will gradually decrease with the stacking of the
convolutional layers. For example, consider a 16 × 16 input image. After convolved
by a 5 × 5 convolutional kernel with one stride at each step and no padding, a
12 × 12 feature map is output. Padding is a method of increasing the size of a
feature map before is passes through the convolutional kernel to offset the effect of
dimensional shrinkage in the calculation. A common padding is padding with zero
and repetition padding by boundary value.

The convolutional layer also contains the activation function which helps to
express complex feature, represented as following [17]:

Al
i,j,k = f(Z l

i,j,k) (2.7)

where Z l
i,j,k is the output of each convolutional layer and Al

i,j,k represents the
value after activation.

Like other deep learning algorithm, convolutional neural network usually uses
Rectified Linear Unit (ReLU) as activation function. Some other variants like
ReLU includes Leaky ReLU (LReLU), parametric ReLU (PReLU), randomized
ReLU (RReLU), and so on [15]. Activation function is commonly used after the
convolutional kernel, while some algorithms using preactivation techniques place
the activation function before the convolution kernel.

Pooling Layer

After feature extraction in the convolutional layer, the output feature map is
passed to the pooling layer for feature selection and information filtering. The
pooling layer contains a predefined pooling function, which replaces the result of
previous convolutional layers. The way pooling layer selects pooling area is similar
to convolutional kernel, controlled by the pool size, step size (stride), and padding
[17].

2.4. Convolutional Neural Network 13

Fully Connected Layer

The fully connected layer in a convolutional neural network is equivalent to
the hidden layer in a traditional feedforward neural network. The fully connected
layer is usually build at the last part of the hidden layers in convolutional neural
network, and only passes signals to other fully connected layers. The feature map
looses the three-dimensional structure in the fully connected layer, and is expanded
into a vector and passed to the next layer through the activation function.

In some convolutional neural networks, the function of fully connected layer can
be partially replaced by global average pooling [35]. The global average pooling will
average all the values of each channel in the feature map. For example, considering
a 7 × 7 × 256 feature map, the global average pooling will return a 256 vector,
where each element is a 7 × 7 average pooling with stride equals to 7 and no
padding.

Output Layer

The upstream of the output layer in the convolutional neural network is usually
a fully connected layer, so its structure and working principle are the same as those
in the traditional feedforward neural network. For image classification problems,
the output layer uses a logic function or a normalized exponential function (softmax
function) to output the classification label. In object detection problems, the output
can be designed as the center coordinate, size, and classification of the output
object. In semantic image segmentation, the output layer directly outputs the
classification result for each pixel [29].

2.4.3 Applications

Image Classification

For a long time, convolutional neural network has been one of the core algorithms
in the field of image recognition, and has a stable performance when learning a
large amount of data [10]. For general large-scale image classification problems,
convolutional neural network can be used to construct hierarchical classifiers [33].
It can also be used in fine-grained recognition to extract discriminant features of
images for other classifiers to learn [40]. For the latter, features can be extracted
artificially from different parts of the image [5], or by the convolutional neural
network through unsupervised learning [18].

For text detection and text recognition, a convolutional neural network is used
to determine whether an input image contains characters and to clip valid character
segments from the image [46]. For example, the convolutional neural network

14 Background

using multiple normalized exponential functions is used for the identification of the
numbers in Google Street View Image [14]. Also in recent research, a convolutional
neural network combined with a recurrent neural network (CNN-RNN) can extract
character features and process sequence labelling [16].

Object Recognition

Convolutional neural network can be used for object recognition through three
types of method : sliding window, selective search, and YOLO (You Only Look
Once) [15]. The sliding window was used for gesture recognition [30]. But, due
to the large amount of calculation, it has been eliminated by the latter two.
Selective search corresponds to region-based convolutional neural network. It first
determines whether a window may contain a target object through general steps,
and further inputs into a complex identifier [12]. The YOLO algorithm defines
object recognition as a regression problem for the probability of occurrence of each
target in a segmentation box in the image, and uses the same convolutional neural
network to output the probability, the center coordinates, and the size of the frame
[32]. Object recognition based on convolutional neural networks has been applied
to autonomous driving [25] and real-time traffic monitoring systems [20].

Autonomous Exploration

Convolutional neural networks can also used in the field of autonomous explo-
ration of unknown environments. In recent research, [8] proposed the application
of convolution neural networks in predicting human trajectory in environment.
The authors use the model to predict average occupancy maps of walking humans
even in environments where no human trajectory data are available. With such a
predictive model, a robot can use this information to find nondisturbing waiting
positions, avoid crowded areas, or clean heavily frequented areas more often. This
approach transfers from simulation to real world data, and generalizes better to
new maps than five baselines and surpasses the performance of the baseline models
even when they are applied directly to the test set.

[6] proposed another application of convolutional neural networks in autonomous
exploration of unknown environments by predicting future observations. The author
trains a convolutional model using a database of building blueprints, which exploits
the inherent structure of buildings. The model guides the robot to find the exit
location of buildings. Comparing to traditional image processing apporaches of
extracting features through histogram of gradients (HOG) and training a support
vector machine (SVM), this method reduces the total exploration time to find the
exit location by 36%.

2.5. Summary 15

Both these two methods take advantage of the ability of feature extraction and
abstraction of convolutional neural network acquired. In domains of autonomous
exploration, most of the input images are maps obtained by the robot in a specific
environment. Comparing to image classification and object recognition, these data
are simpler (usually with only one channel), and the structure of lines and corners is
much more obvious, which means the convolutional model is able to extract enough
features for prediction even without a large amount of training data.

2.5 Summary
In this chapter, we presented an introduction of the state of the art of exploration

and deep learning in autonomous exploration. First of all, we briefly introduced
how exploration problem is defined and the general solution we used for solving an
exploration problem. Secondly, we detailed the methods we used for reconstructing
the layout of the partial map. Afterwards, we described an intuitive method to
measure the quality of the reconstructed layout of a partial map. Finally, we
illustrated what a convolutional neural network is and how the model could be used
in multiple application fields, including autonomous exploration.

Chapter 3

Problem Formulation

Chapter 2 introduces the state of art methods in robot exploration, while in this
chapter we will focus on early stopping criterion in the exploration process, and
fomulate the problem we address in the thesis. The robot with layout reconstruction
information gain exploration strategy introduced above could works stably in many
cases. However, in many cases, we want the robot to be fast in exploration.

Faster exploration speed could help us build a map in a shorter time. Sometimes,
like in search, the time spent on building a map could be more important than
some single details of the map. Even in some domestic tasks, we want our robot to
be fast, knowing the fact that sometimes this means it maybe reckless in a way.

3.1 Motivations

In this section, we would like to introduce the motivation of what problem we
found in this process of exploration with more details and statistics.

Though in the previous part of thesis, "early stopping criterion" / "early stopping
criteria" have been mentioned for several times, it is necessary to provide a formal
definition of this terminology. Generally speaking, the exploration process consists
of exploration and stopping condition, which will give an answer for the question,
"whether the agent should be stopped". Stopping criterion notifies the robot whether
the map has been fully explored and it should terminate the exploration process.
Method in [11] implements the criterion that "stops when no effective frontier exists"
as a stoppoing criterion. Early stopping criterion, based on stopping criterion, is a
method to stop before it has detected every area in the environment, when it could
provide a correct reconstructed map, based on its current exploration progress.

From the thesis of [11], the robot stops exploration when it has already observed
the whole environment space. Consider the fact that in our exploration process,
the robot always selects the frontier with the highest utility value 2.1.3, and usually

17

18 Chapter 3. Problem Formulation

with a relatively high information gain 2.1.3. Therefore, the robot is able to quickly
increment the knowledge of its map. However, it will also leave small scattered
frontiers across different rooms, as a consequence of their small information gain.
Then in the final stage of exploration (usually when the total area explored reaches
80%), the robot needs to reach all the remaining small frontiers.

The time cost for reaching all those frontiers is particularly high. They are
usually located in rooms that are far away from each other, representing small gaps
like corners, with a low information gain. Therefore, we can avoid the exploration in
these small frontiers if we are able to introduce a mechanism for the early stopping
of exploration.

Figure 3.1: An example when the robot failed to stop timely.

Figure 3.1 shows the state of one partially explored map. It is not hard for us to
conclude that this map is well explored, and we could stop and output a complete

3.1. Motivations 19

map. Nevertheless, our robot, with its current stopping criterion, detects some tiny
frontiers, and regards those frontiers as potential next destinations.

3.1.1 Current Early Stopping Criterion

In current exploration strategy, a baseline stopping criterion, that "stops when
no frontier exists", has been implemented in the system. Figure 3.2 represents the
workflow and relationships between different modules in our exploration.

Figure 3.2: The workflow of robot exploration with a baseline stopping criterion.

20 Chapter 3. Problem Formulation

Popular baseline stopping criteria include the following techniques.

* Stop when there is no frontiers in the map

In every moment in the grid map, as shown in Figure 3.3, three kinds of pixels
could be observed, free space, obstacle, unknown space. We call the set of
continuous pixel between free space and unknown space "frontier". And here
in this stopping criterion, we only stop when there is no frontier left in the
diagram. First, we have to filter noise, which is represented by tiny frontiers.
After filtering, we analysis whether there is any effective frontier left, which
could lead the agent to a new room or space. If the answer is positive, keep
on exploring, else, stop exploring.

This is a popular and basic stopping criterion applied in todays applications
due to the reason that it is easy to be implemented. It is robust, because
actually how it works is that "it never gives up any oppotunities". However,
this also lead to the problem that the exploration process always takes longer
than needed.

* Stop when the update of the map is small

If an effective exploration is being executed, the map should be updated
continuously, and we expect our map covers increasingly more area. Hence
we could use this property to stop the exploration. Assuming map area at
time stamp t1 is Mapt1, and our map area at time stamp t2 is Mapt2. The
area increase between two timestamps is

∆Map = Mapt1 −Mapt2

We could set a threshold for this ∆Map. If the ∆Map is zero for a long time,
it is reasonable to believe the map is well explored and we could stop.

Of course, more details are needed to make this method work. The most
significant thing is that we must assure that our navigator module works
normally. And another thing we must take into consideration is that it would
take a relative long time for a robot, moving from one position to another
position, especially when the structure of the building is very complex.

During the moving process showed in Figure 3.4, the robot may detect no
map area increase for a relative long time, but we still could expect that some
new area could be found by our robot from the target position.

Compared with current stopping criterion, a new stopping criterion, "stop when
the prediction area is small" could be introduced. This stopping method estimates

3.1. Motivations 21

Figure 3.3: The observed map in relative early stage

22 Chapter 3. Problem Formulation

Figure 3.4: One scenario when the criterion "stop when the update of the map is small"
does not fit

3.2. Current Time-area Diagram And Analysis 23

the amount of unexplored area, and stops exploration when it’s lower than a
predefined threshold. By using our layout reconstruction algorithm, we are able
to predict the missing part of the partially observed rooms, and automatically fill
these small gaps without actually explorating them. Therefore, we could introduce
a criteria of early stopping based on the reconstructed layout. By the work of [24],
if the unexplored area for all candidate frontiers could be predicted, and the total
amount of such area is less than 1 m2 or of another threshold, exploration would be
terminated. We can assume that the robot can finish the exploration process and
discard all remaining frontiers since we are able to predict the area beyond them
from the corresponding reconstructed layout.

However, this mechanism has its limitations which are hard to avoid in practical
situations. The first limitation is that it’s hard to decide the threshold for early
stopping, due to the fact that we have no prior knowledge about the unknown
environment we explore. The environment could be large, like school or hotel. But it
can also be just a combination of four rooms, being the house of a family. Therefore,
no matter how we choose a static threshold, there will always be some cases which
are out of the scope. The second limitation lies in the use of unexplored amount of
area as a measurement. To decide whether the robot can stop exploration or not,
using area as a single measurement is sometimes not enough. Therefore, as will
be proposed in later chapters, we introduce a new data-driven method to predict
the correct timestamp for early stopping, taking advantages of convolutional neural
networks.

3.2 Current Time-area Diagram And Analysis

In this section, we perform some analysis and visualization on the data we
obtained from using the stopping criterion in [11] (stop when no frontier exists).
The information shown in Figure 3.5 is extracted from environment 41-1.

In Figure 3.5, we could see that the robot spends almost 50% time to cover
the last 10% part of the map. Here we select the map at about 3600 seconds, and
below are the diagram of observed map (at timestamp 3600 seconds) vs ground
truth, and the diagram of predicted map vs ground truth.

On the left of Figure 3.6 is the observed map at 3600 seconds, on the right
of Figure 3.6 is the ground truth. We could see that at this timestamp, we have
already covered most of the areas in the ground truth. Though it is possible that in
the right bottom corner of the map still exists a corridor, or a door to another room
or area, we can reliably predict the shape of the map, and stop the exploration
process with some degree of confidence.

On the left of Figure 3.7 is the prediction map at 3600 seconds, and on the

24 Chapter 3. Problem Formulation

Figure 3.5: The relationship of the exploration time and map coverage percentage [11]

Figure 3.6: Observed map, compared with the ground truth map

3.3. Problem Formulation 25

Figure 3.7: Reconstructed map, compared with the ground truth map

right of Figure 3.7 is the ground truth. In our layout reconstruct method, we use
different colors to represent different rooms. Here it could be seen that there is only
one small corner missed in this prediction.

In the balance of time efficiency and map accuracy, we have to choose which
one is prefered. Sometimes we could tolerate that, just like above situation, one
small corner is missed, but sometimes we could not allow that, and we aim for our
robot not to miss anything.

Of course the predicted map is not a 100% equal to the ground truth. Besides
the small room on the right bottom corner, the big blue room on the right side of
the predicted map is not accurate. This is because these colored rooms are obtained
by the clustering algorithms. By adopting different values of parameters, we could
get different clustering results. So this could not be regarded as a false prediction.
However, still we need some good methods to combine the predicted map with the
observed map to output a final map as result of exploration. But this would not be
discussed in this thesis.

Being able to stop early is an important ability for the robot. Since it could
send a signal to the user or administrator that they could trust the current map.
We will start from this idea to find a solution for early stopping in exploration of
indoor environments.

3.3 Problem Formulation

From the analysis above, it is quite easy to find that in our current exploration
strategy, the autonomous agent keeps on exploring the environment even when it

26 Chapter 3. Problem Formulation

could do some prediction based on the layout reconstruction method and output
an accurate map compared with the ground truth.

If we could come up with a method that could effectively tell whether the robot
could stop and do a prediction, some time could be saved. This could be a very
great improvements in applications of autonomous exploring agents.

So now the problem could be formulated as building a model, given the in-
formation of the map and exploration process, that could output a conclusion
either “we could stop exploration, and output the reconstructed layout as the
exploration result” or “further exploration is needed to generate an accurate map
layout reconstruction” (just as the yellow modules in Figure 3.8).

To be more specific, as shown in Figure 3.9, the problem to be solved is how
to predict “a given map is a well-observed map” is TRUE or FALSE. Here this
“well-observed map” means a map that is almost completely explored, and for those
areas we have not observed so far, our current layout reconstruction could provide a
relative accurate prediction, and an accurate predicted map could be reconstructed
and output.

The information we mentioned about the map and the exploration process
includes but is not restricted to: the shape of the map, the scale of the map, the
relationship between one single pixel and real area it represents in the environment,
the exploration time. With this information, we could use some data driven methods
to build a model to do a prediction.

3.3.1 Assumptions

First, we have to set some assumptions that could help us in our research. For
most of the assumptions made here, they are not 100% accurate, but we could
expect them to be correct in most cases. By doing so we could simplify our problem.
These assumptions include:

1. The simulation with ROS[31] could simulate the real exploration process

In this thesis, most of our analysis are based on the simulation result performed
on ROS. Hence we should trust this ROS simulation process, the simulation
process showed in our ROS system could represent the robot action in the
live environments. This includes the computing ability of the agent in live
environment should be better than what we simulate in ROS. And the
execution of the planning trajectory, layout reconstruction, and SLAM in the
real environment should be executed just like how it is done in ROS.

2. The sensor information simulated is same with live environment

3.3. Problem Formulation 27

Figure 3.8: The updated workflow

28 Chapter 3. Problem Formulation

Figure 3.9: The simplified model or our target early stopping module

For simulation, we choose a 180 degree laser-sensor in ROS. However there
are several cases we could expect during collecting sensor information. The
first one is that solid obstacles could be detected in the sensor. However, in
another situation, the sensor may detected nothing in its reception range. And
in this cases, it would have a shape like a fan-shape area during simulation,
and we assume this shape is same as the real environments.

3. We always consider indoor environments

In our research, we only considerindoor environments. Any other environment
like forests and underground caves are not taken into consideration, because
these natural architecture are very different from the artificial building. All
of our training and testing data (100 environments) are obtained from the
indoor buildings datasets.

4. The floor is clean

We always assume that the environment has a clean floor, or the robot
could regard those obstacles as noise when dealing with them. For all the
environments we are dealing with, they have the same elevation.

We could proposed several solution for this formulated problem in Table 3.1.
The factors that could potentially help us decide the status of the map are listed
with different granularities. Explanation is attached for each factors.

We divide all these factors into three granularities:

3.3. Problem Formulation 29

Granualrity Factor Name Explanation
Global Time Is there a time boundary that we could say

a map is well-observed (after the exploration
taking t seconds, we could conclude a map
well-observed).

Map Map Shape Is there any image analysis technology we
could apply on the map (given the map shape,
do the prediction).

Map Map Area Is there any pattern on the area of the map
(when the area of the map is greater than m
m2, we could say that map is well observed).

Frontier Frontier Number Is there any rule on the number of frontiers
(when the number of frontiers is less than n,
we could conclude a map is well observed).

Frontier Frontier Size Is there are any rule of the frontier size (if
the frontier is smaller than a threshold fs,
we could say that no further exploration is
needed on this map).

Frontier Frontier Shape Is there are any image analysis technology
we could apply on the frontier shape (given
a specific frontier shape, we could conclude
this frontier no longer needs any further ex-
ploration).

Table 3.1: Analysis on factor exploration time, exploration area.

30 Chapter 3. Problem Formulation

* Global: It means these factors are considered globally during the exploration
process (exploration time, ...).

* Map: It means these factors are directly related to the maps (map area, map
complexity, map shape, ...).

* Frontier: It means these factors are directly related to each frontier in the
maps (frontier size, frontier numbers, frontier shape, ...).

Here we do some further analysis on these factors in Table 3.2, Table 3.3, Table
3.4 and Table 3.5.

Exploration Time, Map Area Covered
Pros Easy to measure.
Cons For different maps and robots, even different exploration

speeds, the time spent on a single map could be really dif-
ferent, it could hardly represent the progress of our current
exploration. And for the map area it is the same as well.

Conclusion We could use time and map area as a complement criterion in
the early stopping criterion. However, no direct relationship
between these factors and exploration status is expected in
real situation.

Table 3.2: Analysis on factor exploration time, exploration area.

Frontier Number, Frontier Size
Pros Easy to do statistics and find the rules.
Cons The number of frontiers is not a very representative factor

for the map, because in real situations (in most situations),
there are not too many frontiers, but maybe there is just one
frontier that leads to another new area and rooms.

Conclusion Could not be chosen as one of the main factors to decide.
Table 3.3: Analysis on factor of current frontier numbers, frontier sizes

To summarize above information, we could reach this conclusion. The early
stopping criterion is closely related to many factors and information collected during
the exploration process. However, from a practical point of view, the best direction
to start from is to start from map shape analysis with data driven techniques.

We would like to further clarify our goal and solution with details in the next
section.

3.3. Problem Formulation 31

Frontier Shape
Pros Enough data could be obtained, since for each map we could

sample about three or four frontiers.
Cons The data is enough, but we have to decide what area should be

cropped out, because for the frontier what is important is not
their shape, but the shape of obstacles (those solid boundaries
obtained by sensors) around them.
And another problem is that it is not easy to label these
frontiers, for three or four frontiers we found in the map, only
one of them could be the reason why the agent still needs to
explore. So the labelling is not easy to be implemented, we
need some exquisite method to do this labelling.

Conclusion This is a promising method we could explore.
Table 3.4: Analysis on factor of frontier shape

Map Shape
Pros The most direct and global information for the map status,

could be very effectively labelled and checked.
Cons We hold just 100 environments, even if we have about 30 to

40 runs for each environments, 100 is a small number when
it comes to learn general rules. Data enhancement methods
should be applied. And new environments should be added to
our current training set.

Conclusion This is the best direction we should go along.
Table 3.5: Analysis on factor of observed map shapes

32 Chapter 3. Problem Formulation

3.4 Goal
With above analysis, our goal is to build a model to classify the statement

“current map is well-observed” is true or false. The input of the model is the map
shape and the output is a binary classification of true or false.

We could abstract this problem into a binary classification task on images. And
for these images, we know there are some special features, compared with common
images:

* Single channel Our images are grayscale single channel images, could be
represented by a 2D arrays.

* Simple values For the elements appearing in the 2D array, there are only 3
unique values, meaning free pixel, unknown pixel, obstacle pixel.

It would be a good idea to keep these properties even during processing input
images, because these simple properties could help us to be more robust against
the noise and information loss happening in data processing.

And besides the map shape, other information listed above could be added
into the system as a complement for the model, as shown in Figure 3.10. Since
they could be related to the map complexity and map scale, they are all good
measurements for this kinds of abstract values.

Figure 3.10: The goal of our current module to implement.

Now to simplify the model we are dealing with, we just consider the model
with one input, that is the map shape. While still it is possible to attach other
information on this image input (input the model with a map shape of .png/.pgm
format and another file recording all the context for the map with .xml/.yml
formats). Another idea is that we could try to re-encode our map file with the

3.4. Goal 33

context information, like setting the color to be lighter if the map is big, and setting
the color to be darker if the map is small. Last but not least, we could integrate
these context value in our fully connected layer if we are dealing a convolutional
neural network + fully connected layers deep learning models. Figure 3.11 is a
common structure of a normal CNN+FCL model.

Figure 3.11: The structure of a common CNN network.

And we could integrate those complement information in the flatten input
of fully connected layer, because before the fully connected layer, the result of
the convolutional layer must by flattened to one array. Hence these complement
information could be of help just as shown in Figure 3.12.

Figure 3.12: The structure of a CNN network with complemented information.

The use of this complement network given as a future work could potentially

34 Chapter 3. Problem Formulation

improve the model performance based on our current model performance, but this
will not be discussed in our thesis.

3.4.1 Summary

In this section we would summarize all the points mentioned in this chapter.
The problem we are dealing with is that we want to add an effective early

stopping decision system into our current autonomous exploration agent. Hopefully
it will inherit the advantages of the "stop when no frontier exists", which means
it should be robust, and would not give false prediction when the map still needs
exploration. But, at the same time, it could stop earlier.

This new model could decrease the time spent on those areas for which we could
easily predict their shape, and speed up the whole exploration process.

The best way to realize such goal is to apply data-driven techniques, building a
model, which could classify input map to be “well observed” or not.

Chapter 4

Proposed Solution

To reach the goal mentioned above, we have several ideas to realize the model.
In this chapter, we will discuss all the possible solutions we offered, their advantages,
and their disadvantages. And in the later part of this chapter, we will pick out one
of the most practical methods (CNN), and gives more details about why we could
use it to solve this problem, and how we could do that.

4.1 General Overview
To build a model which could solve the above problem, we have these ideas.

35

36 Chapter 4. Proposed Solution

* Static and manually designed rules in Table 4.1

Static and Manually Designed Rules
How We could go through all the map information we have trying

to summarize the features, and design a set of rules. To do so,
we could follow this procedure

* Use image analysis method to capture special features in
the map (corners/frontiers/open areas).

* Do statistics on these features and the maps to find the
relationships between them.

* Design a set of rules (if no fan shape appears in the image,
assert true/elif the number of corners>n, assert false /
...).

Pros
* Readable, reasonable and understandable rules.

* Could be modified and edited easily.

* Easy programming, and implemented with ROS system.

Cons
* Not easy to be designed, quite hard to find the potential
rules.

* Hard to be implemented for the rooms with different
scales.

* Hard to be implemented for the rooms with peculiar
shapes.

Conclusion NOT suitable
Table 4.1: Analysis on static rules model

4.1. General Overview 37

* Map Encoding techiniques in Table 4.2

Map Encoding Techiniques
How The core idea of this method is to abstract the structure of

the map, and then learn its structure. It could be done using
following procedure.

* Abstract the map into an undirected graph. For each
room, corridor, extract them into a node in the graph,
for each door, connection, extract them into a undirected
edge.

* (Manually) label these graphs.

* Learn and generate the possible patterns and rules for
these graphs.

Pros
* Easy to visualize.

* Very light-weight model.

Cons
* Undirected graphs are hard to compare (could lead to a
NP problem).

* No mature models to learn these kinds of structures and
tasks.

Conclusion NOT suitable
Table 4.2: Analysis on map encoding model

38 Chapter 4. Proposed Solution

* Deep learning models with image analysis method in Table 4.3

Deep Learning Techiniques
How We could build deep learning models with Convolutional Neu-

ral Networks + Fully Connected Layers structures. To do so,
we have to follow this procedure.

* Data extration and preprocessing.

* (Manually) label training data.

* Define loss function.

* Define CNN structure.

* Feed the data to our model and training.

* Parameter fine tuning.

* Validation.

* Offline test.

* Online test.

Pros
* Mature method, a lot of previous research results and
sucessful industrial applications could be found.

* Good performance in image (binary) classification task.

* Easy to be implemented and integrated.

* Fit well in peculiar shape buildings.

* Does not influensed by the building scale.

* Robust to noise.

Cons
* Training takes time.

* Limited data (we only have 100 environments), and the
result may be not representative enough.

Conclusion Suitable
Table 4.3: Analysis on deep learning (CNN) model

4.2. AlexNet 39

4.2 AlexNet

In chapter 2, we have already introduced convolutional neural networks, and
their applications in real world. In the area of advanced image classification, they
are the best performance tools we have so far.

Nevertheless, convolutional neural networks are a great class of deep learning
models. In the family of convolutional neural networks, GoogleNet, PReLUNet,
Vggs and SqueezeNet are some of the most advanced CNN structures with the core
idea of convolutional layer to extract features, and fully connected layer to execute
the classifications. They have reach very high accuracy in the ImageNet image
classification task. To achieve our goal, we select AlexNet to carry out this task.

4.2.1 AlexNet Defination, And History

AlexNet [19] is known as one of the most mature, famous, and influential
convolutional networks. We could almost say that the victory of AlexNet on
ImageNet in 2012 started the era of deep learning. Later advanced CNNs also
inherit some parts of AlexNet characteristics.

The most well-known AlexNet has following parameters in Table 4.4:

Number of convolutional layers 5
Number of fully connected layers 3
Depth 8
Number of parameters 60M
Number of neurons 650k
Number of classification 1000
Batch normalization None

Table 4.4: Parameters of classical AlexNet structure

The general structrues of AlexNet could be represented as Figure 4.1.
As a epoch-making deep learning structure in 2012, AlexNet has these charac-

teristics which helped it winning the ImageNet in 2012.

1. Data Augmentation

Horizontal flipping, random cropping, object shifting, color transformation,
lighting transformation, contrast transformation, etc. These effectively added
more data to the training set and could keep the model away from overfitting.

2. Dropout

40 Chapter 4. Proposed Solution

Figure 4.1: The current structure of AlexNet [19]

In all kinds of deep learning methods, the overfitting is an inevitable problem
we are going to face in the model training. Take AlexNet as an example,
we have 60M of parameters. And for the training set, our data is relatively
limited compared with such a huge system. So it is very important to solve
this problem.

Dropout is one of the method applied by AlexNet. The core idea of dropout
could be summarized in Figure 4.2: when we are trying to perform forward
propagation, we make a neuron stop working with probability p. This could
significantly enhance the generalization ability of our model, because it means
that it will not strongly depend on some local characteristics.

Figure 4.2: The structure of a CNN with/witout dropout [42]

3. ReLu Activation Function

Activation function is designed to keep the non-linear properties of the net-
work [27]. Before AlexNet, tanh activation function and sigmoid activation

4.2. AlexNet 41

function were the most widely accepted activation functions. In AlexNet,
authors applied ReLU function[1] to replace T/S activation function. For
the traditional T/S activation function, two problems we have to face is that
gradient vanishing and the high cost of exponential computation. However,
both problems could be solved by ReLU function. It not only solves the
problem of gradient vanishing in the positive interval, but also brings a faster
computing speed to the training process.

4. Local Response Normalization

In AlexNet, one controversial method it applied is local response normalization.
This could be regarded as simulation of the suppressing function of biological
neural networks. With this method, the response with higher value could
suppress the local response with lower value. This method is also regarded as
a step to be taken to strengthen the generalization of the neural network.

5. Overlapping Pooling

Instead of the simple pooling in which each pooling window has no intersection
with others, AlexNet applied overlapping pooling. Different pooling windows
have some parts overlapped. This could be represented mathematically
by strides < windowSize. By this method (and with every other setting,
parameters and network structures unmodified), the performance on the test
data have improved by 0.4% and 0.3% [19].

6. Multi-GPU Cooperate together to train

It is quite common that the power of a single GPU is not enough to support
the training of a big model with a satisfying speed. So AlexNet is trained by
introducing several GPUs together, and then integrating the training result
together to get the final model. This kind of distributed computation is very
valuable. Though now our personal computers have become more powerful,
and in this thesis, we use centralized computation, we still need to mention
this idea and know the importance of it.

So in our research, to solve the problem formulated in chapter 3, we would
apply a AlexNet for this task. In the research, we will develop the AlexNet from its
classical structure, inheriting the characteristics mentioned above, and fine tuning
it so that it could fit this specific situation.

4.2.2 Basic Configuration Of AlexNet

In this section, we are going to start from the configuration showed in Table 4.5
and Table 4.6 to build our AlexNet model

42 Chapter 4. Proposed Solution

NAME EXPLANATION
Input layer

Input 227*227*1 single channel
cropped and enhanced ob-
served map

Convolutional layer 1
Number of Convolutional Kernel in Layer 1 96
Stride of Convolutional Kernel in Layer 1 4*4
Size of Convolutional Kernel in Layer 1 11*11
Output of Convolutional Layer 1 55*55*96

Pooling layer 1
Stride of Pooling Layer 1 3*3
Size of Pooling Layer 1 2*2
Output of Pooling Layer 1 27*27*96

Convolutional layer 2
Number of Convolutional Kernel in Layer 2 256
Stride of Convolutional Kernel in Layer 2 1*1
Size of Convolutional Kernel in Layer 2 5*5
Output of Convolutional Layer 2 27*27*256

Pooling layer 2
Stride of Pooling Layer 2 2*2
Size of Pooling Layer 2 3*3
Output of Pooling Layer 2 13*13*256

Convolutional layer 3
Number of Convolutional Kernel in Layer 3 384
Stride of Convolutional Kernel in Layer 3 1*1
Size of Convolutional Kernel in Layer 3 3*3
Output of Convolutional Layer 3 13*13*384

Convolutional layer 4
Number of Convolutional Kernel in Layer 4 384
Stride of Convolutional Kernel in Layer 4 1*1
Size of Convolutional Kernel in Layer 4 3*3
Output of Convolutional Layer 4 13*13*384

Convolutional layer 5
Number of Convolutional Kernel in Layer 5 256
Stride of Convolutional Kernel in Layer 5 1*1
Size of Convolutional Kernel in Layer 5 3*3
Output of Convolutional Layer 5 13*13*256

Pooling layer 3
Stride of Pooling Layer 3 2*2
Size of Pooling Layer 3 3*3
Output of Pooling Layer 3 6*6*256

Table 4.5: Parameter and details of our AlexNet (Part 1)

4.2. AlexNet 43

Flatten layer
Output of Flatten Layer 9216 (=6*6*256)

Fully connected layer 1
Number of Neurons on fully connected Layer 1 4096

Dropout layer 1
Dropout Probability on Dropout Layer 1 0.5

Fully connected layer 2
Number of Neurons on fully connected Layer 2 4096

Dropout layer 2
Dropout Probability on Dropout Layer 2 0.5

Fully connected layer 3 (Output layer)
Output classes 2

Table 4.6: Parameter and details of our AlexNet (Part 2)

And those above parameter could be summarized into this structure of our
AlexNet in Figure 4.3.

4.2.3 Differences Between AlexNet Tasks

One of the most important things we have to take into consideration is that
we have to take into account our particularity in this task. So we compare our
task/goal with those tasks that CNN has proved its capability in previous work.
These differences between our task and previous image classification task could be
found in Table 4.7.

Our task Previous task [19]
Single channel grey scale picture 3 Channel RGB colorful picture
Original size 4000*4000 Original size about 1200*900
Input 227*227*1 Input 227*227*3
Output classification categories 2 Output classification categories1000
Training data about 2800 samples from
2 categories

Training data about 150000 samples
from 1000 categories

Table 4.7: Differences between our binary classfication task and previous general image
classification task of AlexNet

It is quite obvious that our task is far more simpler than the previous image
classification tasks. However, it is our very limited training set that is the most
tricky problem that we should solve. From AlexNet very outstanding performance

44 Chapter 4. Proposed Solution

Figure 4.3: Structures of our AlexNet.

4.3. Summary 45

in Image Net tasks (it achieved an error of 15.3%, more than 10.8 percentage points
lower than that of the runner up), we could say that AlexNet is a very suitable
solution for that task. However, it also means our task, which is far more simpler
than Image Net task, could increase the risk of overfitting.

To solve this problem, we propose following solutions to prevent our model from
overfitting. More details would be given in chapter 5 on model developments.

* Early Stopping

We save the parameters of the model in each step of training, always keeping
the best performance model on validation set, and stop before overfitting.

* Batch Normalization

We don’t have to care about the learning rate, dropout, localization response
normalization and other parameters. It could greatly save our efforts on
parameter fine tuning, which also decrease the effect of overfitting on those
parameters randomly set manually.

* Data Augmentation

The best solution to solve overfitting is to get enough data, a possible solution
is to generate data by randomly cropping and rotation. Distortion may be not
a good idea, since indoor designed environments have very regular pattern
and distortion may destroy intern structures, so we will not execute this.

4.3 Summary
In this chapter, we discussed our solution for our special image binary classifica-

tion task. Since convolutional neural network is a mature and steady model, which
has proved itself to work in many industrial tasks, we are interested in discovering
whether it could fit in our specific task.

In next chapter, we will show the details of our model, and how we integrate dif-
ferent simulation techniques, CNN model, and different training methods together.

Chapter 5

Implementation

In this chapter, we introduce the details of the implementation and integration
of our system.

5.1 ROS Architecture
The Robot Operating System (ROS) [31] is a set of software libraries and tools

that help you build robot applications. With embedded state-of-the-art algorithms,
and with powerful developer tools, it offers highly integrated and complete solutions
for all kinds of scenarios in robot developments.

So in our research, we use ROS as a middleware, with a ROS-based framework.
The version and details of our experimental environment are listed here:

* Ubuntu 16.04

* ROS Kinetic

* Python 2.7

* Jupyter notebook

We divide our work of how to implement our model into two parts, as shown in
Table 5.1. And in the rest of this chapter, we will discuss about the details of the
implementation of our system.

5.1.1 Package And Rqt_graph

All ROS software is organized into packages. A ROS package is a coherent
collection of files, generally including both executables and supporting files, that
serves a specific purpose. Our current analysis is based on the previous research of
[23], [24].

47

48 Chapter 5. Implementation

PART 1 PART 2

* Data extraction from ROS bag
files

* Convolution neural network struc-
ture design

* Fuzzy rules

* Decision trees

* Data visualization

* Dateset creation

* Model training

* Model testing

* Parameter fine tuning

* Test result analysing

* Data pre-processing

* Map cropping, resize, and process-
ing

* BC and FC labelling

* Model training

* Model offline testing

* Model online testing

* Model selection

* Model freezing and saving

* ROS integration

* Model real application testing

MINGJU LI is in charge of this part CHANG LIN is in charge of this part
Table 5.1: The responsibility during the project

5.1. ROS Architecture 49

So besides those packages which we could find as standard libraries in ROS, we
use also:

* blueprint_exploration package: this package implements information process-
ing and decides the next step to exploration.

* floorplan_analyzer package: this package would do map layout reconstruction.

* navigation_2d-master package: this package provides a node for higher level
navigation of a mobile robot in a planar environment.

* partialmap_navigator package: this package provides sensor information
processing and navigation in the partial map exploration.

Different packages could communicate with each other by ROS topic, acting as
publishers-subscribers.

Node is the function unit in ROS [44], which could be regarded as one branch
of the package. Messages in ROS are organized into named topics. A node that
wants to share information will publish messages on the appropriate topic or topics;
a node that wants to receive information will subscribe to the topic or topics that
it’s interested in. The ROS master takes care of ensuring that publishers and
subscribers can find each other; the messages themselves are sent directly from
publisher to subscriber.

And a ROS tool, known as rqt_graph is widely used to monitoring the status
of ROS. Figure 5.1 is the rqt_graph of our current project.

Here each oval means a node , and each square means a topic. The lines mean
the relationships between different objects. We describe the most interesting part,
which is the part of navigator and floor plan analyzer in Figure 5.2.

The core part of these processes happen between node /Navigator, which would
provide agent navigation in the environment, and /FloorplanAnalyzer which would
give map information processing, and the topics related are topic /analyzer, which
is about the information of time and current map, and topic /analyzerResult which
is about the information of analyzer result.

The message type of these topics are listed in Table 5.2:
The current stop criterion could be visualized. The /Navigator sends current

collected map information, integrates it into a map and then forward the map to
/analyzer topic periodically. The interval between two messages is about 5 seconds.
The /FloorplanAnalyzer node is subscribing to this topic, and collects the map
information broadcasted on this topic.

From the official document [41], this nav_msgs/OccupancyGrid represents a
2D grid map, in which each cell represents the probability of occupancy. std_-
msgs/Header is a /std_msgs, which represents the name and timestamp of the

50 Chapter 5. Implementation

Figure 5.1: The topics and nodes in our current ROS project)

5.1. ROS Architecture 51

Figure 5.2: The communications between the navigator nodes and stopping criterion)

52 Chapter 5. Implementation

/analyzer /analyzerResult
nav_msgs/OccupancyGrid floorplan_analyzer/FrontierPrediction
std_msgs/Header header

* uint32 seq

* time stamp

* string frame_id

nav_msgs/MapMetaData info

* time map_load_time

* float32 resolution

* uint32 width

* uint32 height

* geometry_msgs/Pose origin

- geometry_msgs/Point posi-
tion (float64 x/y/z)

- geometry_msgs/Quater-
nion orientation (float64
x/y/z/w)

* int8[] data

float32[] frontierPredictedArea
int32[] frontierNumber
bool[] touchMapEdges
float32[] frontierPredictedAreaGreyP-
ixel

Table 5.2: The topic information of /analyzer and /analyzerResult

5.1. ROS Architecture 53

current message. nav_msgs/MapMetaData is the nav_msgs/MapMetaData, in
which includes the map data are saved in row-major order, starting with (0.0).
Occupancy probabilities are in the range [0,100]. Unknown is -1.

The node /FloorplanAnalyzer could handle the map information, do layout
reconstruction and analysis on the map data. For the result of the analyzer, it would
publish this result to /analyzerResult, which would tell the /Navigator whether it
should stop or not.

5.1.2 Integration Of Deep Learning And ROS

Since we would like to integrate our deep learning model into ROS system, the
way for implementing such function is to replace the original stopping decision
module in the package floorplan_analyzer package.

In the end of training stage, the result of the convolutional neural network
would be saved, or to be more specific, frozen into one static model. This will keep
parameters, convolutional kernels, weights, and functions in the model.

Tensorflow is a popular tool to develop and train machine models [37]. To use
this model, we have to load it again into the tensorflow sessions, and then feed it
into specific models, with the same shape of defined tensors. After that, we could
get the output of the model. So the implementation could be divided into these
steps.

* develop the deep learning model.

* frozen graph.

* inplement into floorplan_analyzer package.

As for the details of the floorplan_analyzer integration, starting from the original
ROS package, we are going to define a new ROS topic, known as /STOPCRITE-
RION. Our new /FloorplanAnalyzer node would subscribe to the same ROS map
information topic, and for each result, it would output a “True” or “False” message
to the ROS topic of /STOPCRITERION. Hence the /Navigator node could decide
its next move according to the result of the message it received.

According to our current model, since we would like to compare the difference
between two kinds of stopping criteria, we did not deprecate the previous method
in our project. We keep both methods and compare their performances in different
environments.

Since we are not only looking for a method of doing the image binary classi-
fication, we would build a hybrid system, with both data driven models and the
original feature extraction models.

54 Chapter 5. Implementation

5.2 Data Collection

The very first step in the training of data driven models is to get the proper
amount of data. In our current dataset, we have about 100 environments, and for
each environments, we have about 30 to 50 runs of exploration. In each run, we
have ROS bag files and several maps sampled at different stages of exploration.

Those sampled maps have very clear features and boundaries, but the problem
for this part of data is that only 3 or 5 maps are sampled during one run. Generally
speaking, each run would take a time about 3600 seconds, and for some maps with
particularly large rooms or complex structures, sometimes this time could reach
over 7200 seconds. Only 3 to 5 maps are not enough to cover the whole exploration.
We must have other methods to extract more effective data.

5.2.1 ROS Bag Play

Fortunately, we have the ROS bag files. ROS bag is a set of tools for recording
from and playing back to ROS topics. It is intended to be high performance and
avoids de-serialization and re-serialization of the messages. In our runs in different
environments, we have record the information related to the map.

Take the ROS bag files of environment 7A-2 for example. Table 5.3 is the result
of “rosbag info 7A-2.bag”.

The topics recorded in the bag file are the thing that is of significance for us.
Here the three topics save information of autonomous agent’s pose, locations, and
sensor information in each timestamp. With this information, we could recover the
observed map in any specific time stamp.

However, this map information replayed with high speed could not replay every-
thing correctly. Some information may be lost, and during the map reconstruction
some shift and distortion may appear, which may result map like Figure 5.3.

On the left of Figure 5.3 is the observed map recoved with ROS bag play with
2x speed, on the right of Figure 5.3 is the ground truth map. This problem becomes
extremely frequent when we try to play the bag file with speed of 5x or 10x. So
we have to monitor this process, and prevent it from saving a wrong map. Some
manual filtering, which means that human has to check the data and drops those
maps with distortion, must be executed to avoid use these kinds of confusing data
to train our model, otherwise it would have bad performance.

5.2.2 Map_server Saver

ROS map is another package we use to extract data from ROS bag files. From
the official document [43], map_server provides the map_server ROS node, which

5.2. Data Collection 55

path: 7A-2.bag
version: 2.0
duration: 30:04s (1804s)
start: Jan 01 1970 01:00:00.50 (0.50)
end: Jan 01 1970 01:30:05.10 (1805.10)
size: 31.1 MB
messages: 54141
compression: lz4 [136/136 chunks; 29.80%]
uncompressed: uncompressed: 102.1 MB @ 57.9 KB/s
compressed: compressed: 30.4 MB @ 17.3 KB/s (29.80%)
types:

* nav_msgs/Odometry

* sensor_msgs/LaserScan

topics:

* /base_pose_ground_truth 18047 msgs: nav_ms-
gs/Odometry

* /base_scan 18047 msgs: sensor_msgs/LaserScan

* /odom 18047 msgs: nav_msgs/Odometry

Table 5.3: ROS bag info of one run in environment 7A-2

56 Chapter 5. Implementation

Figure 5.3: The map distortion between the replayed map and ground truth

offers map data as a ROS Service. It also provides the map_saver command-line
utility, which allows dynamically generated maps to be saved to file. In the ROS
bag replay, we are going to use this to save the map with format .pgm and .yaml.

5.2.3 Procedure

We write a python jupyter notebook to batch processing the input data. A
while-loop is used to extract every environment. The whole process could be
described in following structure:

* (open a new terminal) roscore

* (open a new terminal) source Thesis/airlab-polimi-partialmapsexploration-
01004f60f141/devel/setup.bash

* rosrun learning_tf nodes/turtle_tf_broadcaster.py

* (get the time interval of this bag file)

roslaunch replay.launch dur:=time srcbag:=”/home/cesare/Thesis/Maps_-
Data/7A-2.bag”

[Here to be faster, in the launch file, we have set the rosbag play rate to 2.0.]

* (execute this command periodically)

rosrun map_server map_saver -f /home/cesare/MAPS/

5.3. Data Pre-processing 57

5.3 Data Pre-processing
Before the analysis of BC/FC methods in Section 2.3, we do some data prepro-

cessing on the maps we obtained. These are mainly image processing algorithms,
since we are dealing with a specific category of the images.

5.3.1 Crop And Resize

The partial map images saved by running the ROS bag are initially set to 4000
× 4000 pixels size. All the partial maps from the same environment have the same
resolution, which means they all have the same scale. The center of the image is
the starting position of the robot. The reason why we save the map at 4000 × 4000
pixels size is that we have no prior knowledge about how large the environment is.
Therefore, we need to make sure the image is large enough to cover all the area of
the environment.

In our convolutional neural network, the dimension of input data is bounded to
(227, 227, 3), representing a map image with size 227 × 227 pixels and 3 channels
(RGB). Therefore, we need to compress the initial images and resize them. However,
this raises a problem. At the early stages of exploration, when the area of observed
space is relatively small, it turns out that the observed space only contains a small
area in the initial image (4000 × 4000 pixels). Then, after compression, the observed
space turns into a very small area in the compressed image (227 × 227) with a high
information loss due to compression.

In order to solve the problem, we need to crop the image and let the observed
space cover approximately the same area in all initial images.

We do this by cropping the image step by step until an observed pixel or a wall
pixel is detected. In our work, step is set to 100 pixels. We start from the outline
border, crop the image into a new cropped image with size 3800 × 3800 (4000 - 2
× 100). Then if a pixel, which doesn’t represent an unexplored area, is detected in
the outline border, it means that we crop too much and need to backtrack a step.
Otherwise, we continue cropping. By cropping and resizing the images generated
from ROS bag, we are able to obtain the new dataset of images with size 227 × 227
pixels without too much information loss. As a cost, the resolution (real size of a
pixel) is different in different images. However, this is not a critical issue, since our
convolutional model aims at extracting the geometrical features and symmetries
from the image, and usually doesn’t care too much about the real size.

Figure 5.4 shows both the original image and the one after cropping and resizing.
As it can be seen from the above two images, after cropping, the explored area

is still in the center of the image and covers much more space than the original one,
which means we obtain a new image for training with less information loss.

58 Chapter 5. Implementation

Figure 5.4: An example of crop and resize

5.3.2 Image Feature Augmentation

Due to the noise and error from the laser range scanner, the observed area is
usually a sector composed of dozens of laser rays. In other words, intuitively this
kind of area should be fully observed, but instead it’s composed of half observed
pixels and half unexplored pixels. As a consequence, it reduces the accuracy of
layout reconstruction, and also increases the training cost of our convolutional
model. Therefore, we should try to augment the image and turn this kind of area
into a more recognizable one.

To do this, for each pixel, we compute a weighted average of its color and all of
its adjacent pixels’ colors by using a convolution kernel. Then we use a mapping
function as a threshold and apply this function to all pixels of the image, by given
the input of the weighted average calculated above. Closer to the position of the
laser scanner, this value is higher since the laser range data are denser. By this
method, we can find a suitable ‘cut’ of the observed sector and turn it into a more
recognizable space, as shown in Figure 5.5.

5.4 Data Labelling
In our dataset, we have the samples of the same maps at different timestamps

with total number of about 3500. To manually label these data would be very
annoying and boring. So we would like to automatically labelling the maps. In
this section we will discuss about several methods we used, their advantages and
disadvantages.

But first thing we should start with, is the result of current BC/FC method

5.4. Data Labelling 59

Figure 5.5: An example of image feature augmentation

introduced in Section 2.3, with manually attached labels as shown in Figure 5.6.

Below there are the BC/FC result for some of the environments. We could
see that for each map (of one specific environment, in one specific run, under one
specific timestamp), the BC/FC module in our system could give the output of
MapBC, MapFC, GroundTruthBC, GroundTruthFC (score value is calculated from
these four BC/FC values), Map complete rooms, Map partial rooms, Map rooms,
GroundTruth rooms Cells, GT area, Number of Frontiers.

And our goal in this section is to find how to use above information to label our
data.

Figure 5.6: The BC/FC output of 100 maps

60 Chapter 5. Implementation

5.4.1 Data Visualization

Before we start with the further details of this section, we do some data
visualization on our current manually labelled 100 map samples. Besides those
attributes mentioned above, we also consider attributes, like:

* avg(bc,fc)

This is the average value of BC and FC values.

* diff(bc,fc)

This is the difference between the BC and FC values.

* room_differences

This is the differences between the number of the rooms in the reconstructed
map and ground truth map.

* room_abs_differences

This is the absolute value differences between the number of the rooms in the
reconstructed map and ground truth map.

Their visualizations could be viewed in Figure 5.7 and Figure 5.8. We use
different dots to represent different kinds of maps. The blue dots means "maps still
need further exploration", and red cross means "well-observed maps"

It is quite obvious that the data is not linearly separable in low dimensions.
Even if in some cases we can identify relatively separable patterns, we need to find
some effective method to separate and label them.

5.4.2 Logistic Regression And Support Vector Machine

The first thing coming into our mind is the logistic regression and support
vector machine (SVM). Both methods are mature classification models in the
area of supervised learning. However, to apply these methods, one thing we must
understand is that our data is too limited to executed these two kinds of learning
methods.

The problem of limited data is that our model would overfit, which will make
our model completely useless. Hence, we need to select a different model for this
specific scenario.

5.4. Data Labelling 61

Figure 5.7: The visualization of data (blue are the maps that needs exploration, and
red are the well observed maps)

62 Chapter 5. Implementation

Figure 5.8: Another kinds of visualization of data (blue are the maps that needs
exploration, and red are the well observed maps)

5.4. Data Labelling 63

5.4.3 Fuzzy Rule

At the beginning, we supposed that BC/FC could be a great measure for the
similarity between two maps. The problem we met is that, for maps with different
scale (from about 500 m2 to 2500 m2) and different complexity (from about 10
rooms to over 50 rooms), a single BC/FC value threshold could be a bad idea.

We could see in Figure 5.9 are two observed maps, and we could try to check
the features of BC/FC for both maps.

Figure 5.9: Two well observed maps

On the left of Figure 5.9 the observed map of environment NLB, and on the
right of Figure 5.9 is the observed map of environment 7A-2.

NLB 7A-2
Map BC 89.1709124814% 94.9412952601%
Map FC 35.7892492485% 97.5088574490%
GroundTruth BC 93.4221128548% 94.1430785241%
GroundTruth FC 37.4954925237% 96.6890539687%

Table 5.4: Two well observed maps and their BC/FC values

They are almost well explored and exploration in them could be stopped.
However, if we concentrate on the BC/FC values shown in Table 5.4, we could find

64 Chapter 5. Implementation

that, the BC/FC value for the first environment is about 0.90, and for the second
environment, the BC/FC value is about 0.60. Hence, it could be reckless that we
just set one single value of BC/FC, without considering the complexity of the map.

So we need to integrate the BC/FC and other map information into a single
model. The best way of doing this is to use the fuzzy logic. Because by fuzzy logic
and fuzzy rules design [7], we have several benefits.

For the reconstructed maps, (from our observed map), it could be a “GOOD”
map (map that is similar to the ground truth) or a “BAD” map (map that is not
similar to the ground truth because it has been wrongly predicted). Instead of a
crispy set, the concept of “GOOD” and “BAD” should be two fuzzy sets.

Hence, we would like to label the map “could be stopped” if the reconstruction
of this map is “GOOD”, and “still need further exploration” if the reconstruction
of this map is “BAD”.

To do the labelling, we would need to do the reconstruction for each instance in
our training data, and label it by a fuzzy rule system.

How to design this fuzzy system? First we select several input variables that
could be involved in the judgement of the similarity of the map.

Input Variables:

* MAP AREA Figure 5.10: the area of the ground truth map

* ROOM NUMBERS Figure 5.11: the number of the rooms in the map

* MIN(MapBC, MapFC, GroundTruthBC, GroundTruthFC) Figure 5.12: the
min values of the BC FC values

* AVG(MapBC, MapFC, GroundTruthBC, GroundTruthFC) Figure 5.13: the
differentce between the BC and FC values

Output Variables: MAP QUALITY: the similarity of the map, GOOD / BAD
We could write these rules to get the result of MAP QUALITY:

1. IF MAP AREA IS BIG AND ROOM NUMBERS IS MANY AND MIN(BC,FC)
IS MEDIUM AND AVG(BC,FC) IS MEDIUM, THEN MAP QUALITY IS
GOOD

2. IF MAP AREA IS SMALL AND ROOM NUMBERS IS FEW AND MIN(BC,FC)
IS SMALL AND AVG(BC,FC) IS SMALL, THEN MAP QUALITY IS BAD

3.

The advantage of fuzzy rules is that the truth values of MAP AREA, ROOM
NUMBERS, etc. may be any real number between 0 and 1. It could handle the

5.4. Data Labelling 65

Figure 5.10: Fuzzy function of map area

66 Chapter 5. Implementation

Figure 5.11: Fuzzy function of map area

concept of partial truth, where the truth value may range between completely true
and completely false. These above rules are very readable and easy to understand.

However, it is not flawless. Fuzzy rules design, in most cases, are done by
experts in certain area. However in our system, we have to continuously adjust our
system and parameters to make it work. These may not be easy to handle.

5.4.4 Decision Tree

Decision trees are a more automatic method of rules design. They are very
popular method in the area of today’s data mining. A decision tree could apply a
sets of tree-like rules and decision, to the data, and give relative accurate results
according to our training data.

So we apply the decision tree models on the manually labelled 100 maps.
Compared with logistic regression and support vector machine, it is easier to do
generalization in decision trees by pruning and setting thresholds on the number of
the rules and depth of tree.

To get several different models to evaluate, we tried to feed manually designed
attributes, like the absolute values of difference between BC and FC, the average
value of BC and FC, based on our current attributes. And we could get the following

5.4. Data Labelling 67

Figure 5.12: Fuzzy function of map area

68 Chapter 5. Implementation

Figure 5.13: Fuzzy function of map area

5.5. Model Training 69

result shown in Figure 5.14.

Figure 5.14: Decision trees obtained from different attributes

As we could seen from the above comparison, both decision trees have relatively
close performances in the part of Map_bc branch and R_DIFF branch. And they
both reached our expectations on the accuracy. Hence we could adapt the same
trees on the testing data, which are the maps that has not been labelled. For the
data to be used in the later training, it is labelled by the decision tree we obtained
in this section.

5.5 Model Training

5.5.1 Parameter Definition

We first introduce multiple parameters which affect the performance of convolu-
tional neural network:

• Learning rate: The learning rate refers to the magnitude of network weight
updating in the optimization algorithm. The learning rate can be constant,
decreasing, momentum-based, or adaptive, and the selection of learning rate
depends on the type of optimization algorithm chosen, such as SGD, Adam,
Adagrad, and so on.

70 Chapter 5. Implementation

• Epoch: The number of epochs refers to the number of times the entire training
set is input to the neural network for training. When the difference of accuracy
between test set and training set is small, the current number of epochs may
be considered appropriate. Otherwise, it is necessary to increase the number
of epochs, or adjust the network structure.

• Batch: The number of batches is a parameter in batch normalization. In the
learning process of convolutional neural networks, small batches will perform
better, and the number is generally within the interval [16, 128]. In addition,
it should be also noted that the convolutional neural network is very sensitive
to batch size adjustments.

• Activation function: The activation function is non-linear and theoretically
allows the model to fit any function. Normally, the rectifier function (ReLU)
works well in convolutional neural networks, while any other types of activation
functions such as Sigmoid and Tanh are also available depending on the actual
task.

• Number of hidden layers: Increasing the number of hidden layers to deepen
the network depth will improve network performance to some extent, but
when the test accuracy is no longer increasing, other improvements are needed.
Increasing the number of hidden layers also raises the problem of increasing
the computational cost of training the network.

• Number of neurons: When the number of neurons in the network is set too
small, it may cause under-fitting. When the number of neurons is set too
high, if an appropriate regularization method is used, there will be no adverse
effects.

• Weight initialization: In the network, small random numbers are usually used
to initialize the weights of each network layer to prevent inactive neurons.
However, setting a too small random number may generate a zero-gradient
network. In general, the uniform distribution method work wells.

• Dropout: As a common regularization method, adding the dropout layer
can attenuate the overfitting effect of deep neural networks. The method
randomly deactivates a certain proportion of neurons in each training epoch
according to the preset probability parameters. The default value for this
parameter is usually 0.5.

5.5. Model Training 71

5.5.2 Evaluation Method

Confusion Matrix

Before we start the model evaluation, we need to select the evaluation methods.
There are many evaluation methods which could be used in our convolutional model.
And most of them are based on confusion matrix.

Confusion matrix is a standard format representing the evaluation of accuracy,
which is also called error matrix. In artificial intelligence, confusion matrix is a tool,
especially for supervised learning. In unsupervised learning, it’s generally called a
matching matrix. In the image accuracy evaluation, it’s mainly used to compare
the classification result with the actual measured value, and the accuracy of the
classification result can be displayed in a confusion matrix.

Each column in a confusion matrix represents a prediction category. As for each
row, it represents the actual attribution category of the data.

Confusion matrix is often used to describe the performance of a classification
model on a set of test data for which the true values are known. In our work, the
confusion matrix can be represented as a 2 × 2 matrix having 4 actual values: True
Positive, True Negative, False Positive (Type 1 Error) and False Negative. All our
following evaluation measurements are based on these 4 values. An example of
confusion matrix in our work is shown in Table 5.6.

Accuracy

Accuracy is the most common metric, and it’s easy to understand. Formally,
it’s defined as the number of samples correctly predicted divided by the number of
all samples, calculated by the following equation:

ACC = TP + TN

TP + TN + FP + FN
(5.1)

Accuracy simplely tells us how many percent of sample we predict correctly.
Usually the higher the accuracy, the better the classfier. However, sometimes
accuracy is not representative for a model, especially when working with a class-
imbalanced data set. A class-imbalanced data set means that there is a significant
disparity between the numbers of labels. For example, digit recognition is not a
class-imbalanced data set since commonly each digit has an approximately same
probability of appearance, while a typical example of class-imbalanced data set is
earthquake prediction. Usually earthquake has a significantly small probability,
which means that the classifier can always predict False (no earthquake) to obtain
a very high accuracy. To deal with this problem, we need some other measurements
to help analysis.

72 Chapter 5. Implementation

AUC

For a class-imbalanced data set, accuracy is not the appropriate evaluation.
AUC is a specific measure in the context of AUC ROC curve. For classification
problems (especially binary classification), AUC (Area Under The Curve) ROC
(Receiver Operating Characteristics) curve is another performance measure of the
classification at various threshold settings. ROC is a probability curve while AUC
represents the degree of measure of the separability. It tells us how much the model
is able to distinguish between different classes.

ROC curve, as shown in Figure 5.15 is plotted based on the real category of
the sample and its prediction probability. Specifically, the x axis of ROC curve if
the false positive rate, while the y axis is the true positive rate. Both of these two
rates are calculated based on confusion matrix as following:

Truth Positive Rate(TPR/Recall/Sensitivity) = TP

TP + FN
(5.2)

False Positive Rate = FP

TN
+ FP (5.3)

AUC as its name suggests, it’s the area of the portion of space under the ROC
curve. It’s not so intuitive by this definition. From another point of view, AUC can
be interpreted as the sorting ability of the classifier on the sample. For example, we
randomly take a sample (sample 1) from all samples in category 1, and take another
sample (sample 0) from all samples in category 0. Then we do the prediction
on these two samples by our classifier. The probability of predicting sample 1 as
category 1 is p1, while the probability of predicting sample 0 as category 1 is p0.
Then the probability of p1 > p0 is equals to AUC. According to this explanation,
if the classifier randomly classifies the samples, then we will obtain an AUC near
0.5. A excellent model has AUC near to 1 and it means it has good measure of
separability, while a poor model will have a relatively small AUC.

As we can see, AUC is not sensitive to the consistency of sample categories.
This is the reason why AUC is commonly selected as a evaluation measure for
binary classification problems.

5.5.3 Underfitting And Overfitting

While tuning the parameters, we also need to pay attention to the problem
of overfitting and underfitting, as shown in Figure 5.16. An important topic in
machine learning is the generalization ability of the model. A model with strong
generalization ability can be defined as a good model. For a model already trained, if
the performance on the training set is poor, this may be caused by underfitting. On

5.5. Model Training 73

Figure 5.15: AUC ROC Curve [28]

74 Chapter 5. Implementation

the contrary, if the model performs very well in the training set but poorly in the test
set, this is due to overfitting. Overfitting and underfitting can also be distinguished
from the perspective of bias and variance. Bias is the difference between the
expected output of the model and its real output, while variance describes the
difference between the output of the model obtained from different training sets
and their expected values. Underfitting leads to high bias, and overfitting leads to
high variance. Therefore, a model needs to make a trade-off between both bias and
variance.

Figure 5.16: Visualization of underfitting and overfitting [36]

5.5.4 Experiments

In our training process, we start from the initial AlexNet structure, which
contains five convolutional layers and two fully connected layers. We generate a set
of configurations based on this structure and train on the data through each model
of configuration in this set. Among all these configurations, we use an adaptive
learning rate and a rectifier (ReLU) activation function, with a random initialization
of weights. We train the model by 2800 partial map images and use a validation
set of 400 images to calculate the performance of each configuration. Table 5.5
shows how the convolutional neural network based on AlexNet performs in each
configuration.

Among all these configurations, we select the best one containing 5 convolutional
layers and 2 fully connected layers, with 30 epochs and 0.5 dropout rate. We also
plot the learning curve of this configuration as Figure 5.17. In these three plots,
x-axis represents the number of epoches while y-axis represents the value of accuracy,
loss, and AUC.

As it can be seen from Figure 5.17, the model converges after about 15 epochs.
After that, the accuracy and loss on validation data tend to be stable. With an
accuracy of 93.269%, we can conclude that the model fits well on both training set
and validation set.

5.5. Model Training 75

Model structure (CL = Convolu-
tional layer FC = Fully connected
layer, PL = Pooling Layer)

Parameters (Not
shown below if it’s
same as origin)

Accuracy(%)

CL1 + PL1 + CL2 + PL2 + CL3
+ CL4 + CL5 + PL3 + FC1 +
FC2

93.269%

CL1 + PL1 + CL2 + PL2 + CL3
+ CL4 + CL5 + PL3 + FC1 +
FC2 + FC3

Neurons of FC3 =
4096

92.696%

CL1 + PL1 + CL2 + PL2 + CL3
+ CL4 + CL5 + PL3 + FC1

92.656%

CL1 + PL1 + CL2 + PL2 + CL3
+ CL4 + CL5 + CL6 + PL3 +
FC1 + FC2

92.5%

CL1 + PL1 + CL2 + PL2 + CL3
+ CL4 + PL3 + FC1 + FC2

88.125%

CL1 + PL1 + CL2 + PL2 + CL3
+ CL4 + CL5 + PL3 + FC1 +
FC2

Neurons of FC2 =
2048

91.181%

CL1 + PL1 + CL2 + PL2 + CL3
+ CL4 + CL5 + PL3 + FC1 +
FC2

Neurons of FC2 =
1024

91.875%

CL1 + PL1 + CL2 + PL2 + CL3
+ CL4 + CL5 + PL3 + FC1 +
FC2

Dropout = 0.8 90.903%

CL1 + PL1 + CL2 + PL2 + CL3
+ CL4 + CL5 + PL3 + FC1 +
FC2

Dropout = 0.2 89.236%

CL1 + PL1 + CL2 + PL2 + CL3
+ CL4 + CL5 + PL3 + FC1 +
FC2

Kernel size of CL1 = 9 89.514%

Table 5.5: Performance of cnn model in different configurations

76 Chapter 5. Implementation

Figure 5.17: The learning curve of cnn model of the optimal configuration

Our test set contains 245 partial map images. The environments of these images
are different from those of images in both training set and validation set, which
means they are unknown to the robot. By feeding the test set to the model, we
obtain an accuracy of 77.7%, with the confusion matrix shown in Table 5.6:

Origin/Prediction True False
True 0.33 0.18
False 0.03 0.46

Table 5.6: Confusion matrix of the optimal model

The accuracy on test set is not enough high, which means there could be a
potential underfitting. However, as shown in the above confusion matrix, most of
the errors occurs in True Negative (18%) instead of False Positive (3%). This means
that our robot will never stop exploration before a map is completely explored,
but will make some wrong prediction and continue to explore when a map is good
enough. This result is actually reasonable in an practical point of view, since the
cost of a non-completed observed map is much more than the time cost of over
exploration.

5.6. Summary 77

5.6 Summary
In this chapter, we introduced some implementation details about our project.

Methods like early stopping and dropout are implemented to avoid the risk of
overfitting.

In the next chapter, we will discuss about the experimental results in offline
test and online test.

Chapter 6

Experiment and Evaluation

In this chapter, the evaluation of the model we obtained would be executed.
This evaluation includes two parts:

• Offline test: the test of the model without being integrated into the ROS
system and performed on previously acquired metric maps. This also includes
two sub-tests, the test on the validation data, which are the map information
sampled on the environments used by the system for training, and the second
test is on the test data, which are the data of unseen environments.

• Online test: the test of the model embedded in the whole exploration system,
in an environment that has not been seen by the system.

6.1 Offline Test

Before we integrate our model into our robot system in ROS, we firstly test it
offline. We select totally 8 environments for online test. For each environment, we
randomly selects multiple runs in rosbag, redo the simulation in ROS, save map
in every 90 seconds, and generate a set of partial observed maps. Then we sort
them in alphanumerical order. Since images are named with format “environment_-
run_timestamp.pgm’, they are therefore sorted by timestamp for each run of each
environment. Then we feed these images one by one to our convolutional model,
and see how they behave in both validation set (seen environments) and test set
(unseen environments).

The ideal behavior we expect is that at the early stages of exploration, the model
tells that the current partial observed map is not completed, and the robot still
needs do more exploration. At the middle stages of exploration at some timestamps,
the model predicts that the current partial observed map is completed and the robot
can early stop exploration, since the remaining unknown area can be reconstructed

79

80 Chapter 6. Experiment and Evaluation

correctly by layout reconstruction. At the late stages of exploration, the observed
maps are of course almost completed, so the model should tell to early stop.

6.1.1 Validation Set (Seen Environments)

In validation set, all environments we select for evaluation are the ones our
convolution model has seen, which means they has been used in either the training
set or validation set. We feed these images to our convolutional model, and obtain
the following results shown in Table 6.1.

Environment Run Total Time By
Original Method

Total Time By
Our Model

Improvements

1 1 4215 1434 65.98%
2 16 1804 284 84.26%
3 39 5415 4178 22.83%
4 38 1803 1803 None
5 30 3009 3009 None
6 17 1804 664 63.20%
7 43 1804 664 63.20%
8 25 1804 474 73.73%

Table 6.1: The performance of our model in validation set

Total time by original method is the original time the robot spends to explore and
stop when the predicted amount of unexplored area is less than a specific threshold.
Total time by our method is the exploration time when using our convolutional
model as the early stopping criterion. And we calculate the improvement with the
following equation:

SpeedUp = (TotalT imeByOriginalMethod− TotalT imeByOurModel)
TotalT imeByOrignalMethod

(6.1)

As we could see from the above table, in 75% of the environments, our model is
able be save more than 50% of the time. And our model also works as expected. At
first the outputs of our model are always False (which means do more exploration).
From some timestamp, when the partial observed map is almost completed, the
model outputs True (which means early stopping), and then keeps outputting True
until the end.

6.1. Offline Test 81

6.1.2 Test Set (Unseen Environments)

In test set, all environments we select are the ones our convolution model has
never seen, which means they are neither in the training set nor in the validation
set. We feed these images to our convolutional model, and obtain the results shown
in Table 6.2.

Environment Run Total Time By
Original Method

Total Time By
Our Model

Improvements

1 4 2406 2406 None
2 33 4212 1294 69.2%
3 37 3609 3609 None
4 9 6019 2864 52.41%
5 19 7825 3166 59.54%
6 21 3008 1392 53.72%
7 31 1804 1804 None
8 8 3610 3610 None

Table 6.2: The performance of our model in test set

As we could see from the above table, in 50% of the environments, our model is
able be save more than 50% of the time. We show the example of the environment
2 in Figure 6.1.

Figure 6.1: An example of early stopping in test set

Figure 6.1(b) is the partial observed map when the first time the model tells True
for early stopping, while Figure 6.1(a) is the partial observed map at the timestamp
before Figure 6.1(b). As we can infer from these two maps, our convolutional
model extracts the geometrical features from the top left part and recognize these
portions as the areas which still need more exploration. After those areas have
been explored, as shown in Figure 6.1(b), most of the remaining unexplored areas

82 Chapter 6. Experiment and Evaluation

could be reconstructed correctly in layout reconstruction, shown in Figure 6.2 (still
by learning the geometrical features by our convolution neural network model).
Intuitively, this is just the correct timestamp for early stopping.

Figure 6.2: Reconstructed layout of partial map of environment 2.

Let’s consider the environments which could not be predicted correctly in Figure
6.3.

6.2. Online Test 83

Figure 6.3: Environments in which early stopping perform badly.

As shown in Figure 6.3, we see that these kinds of environments are usually
big and complex. For the first environment (office_h), it has a hollow structure,
however in our training set we don’t have too many data of this specific structure.
For the second and third environments (Neulengbach2_updated and Henderson_-
high_school_updated), there are lots of rooms with different sizes and different
shapes. In the third environment there are also multiple hollows in different portions.
Therefore, we can conclude that our current model fits well on simple environments
but is not guaranteed to work well in complex environments.

6.2 Online Test
In online test, we integrate our model into the robot system in ROS, and see how

it behaves in exploration in ROS instead of feeding pre-generated testing images.

84 Chapter 6. Experiment and Evaluation

We do the integration by creating a module called ‘predictEarlyStop’ controlling the
prediction of early stopping. Before each call to the layout reconstruction process,
the partial observed map is post-processed into a 227 × 227 three channels images
and passed to the module. The module feeds the post-processed image into the
model and then publishes the result in a message to ROS node /navigation, which
controls the navigation of the robot. If the result is True (early stopping), the robot
stops and prints a stopping message including the current timestamp.

We run the simulation on 5 different environments. As shown in Figure 6.4, the
robot stops when all remaining unexplored areas could be reconstructed correctly
by layout reconstruction. It works in the same way in offline test. We obtain the
performance table shown in Table 6.3. As a result, an average reduction of time
cost about 34% is saved.

(a) 1 (b) 2 (c) 3

(d) 4 (e) 5

Figure 6.4: Online test on 5 different environments.

6.3. Summary 85

6.3 Summary

Environment Total Time By
Original Method

Total Time By
Our Model

Improvements

1 2407 1470 38.9%
2 1805 1360 24.7%
3 4213 1823 56.7%
4 2406 1203 50.0%
5 3010 2997 0.4%

Table 6.3: The performance of our model in online test

In this chapter, we evaluated our model in both offline test and online test. First
of all, we performed the offline evaluation both on validation set (seen environments)
and test set (unseen environments). Both of them show a time cost reduction as we
expected, with some limitations on specific environments which could be improved
in future work. Then, we do the online test in ROS exploration. The robot stops
at an early timestamp and saves 60% of the total exploration time, which further
confirms the validity of our model.

Chapter 7

Conclusions

In this paper, we have presented a method that could shorten the exploration
time of an autonomous mobile robot in an initially unknown environment by
terminating the exploration process when the environment has been partially
observed but the unobserved parts can be predicted reliably.

7.1 Conclusions

Experimental results show that our method performs well and could reduce the
time spent on exploration of about 50% in many environments. This conclusion
is consistent with the observation supported by data that the autonomous robot
usually spends about half of the time on the exploration of small corners in the
map.

However, in the previous chapter, we also observed that in some extremely
large and complicate environments, the early stopping criterion may fail. To solve
this problem, and increase the generalization over the maps, we should add more
environments to the training set. So far we only have about 90 environments, and
even though many data enhancement methods have been applied, this is still a
small number. Better performance and accuracy could be expected, with a larger
training set.

7.2 Future Works

Future work could concentrate on the improvements of the data set, providing
more training environments. Our current training set mostly consists of environ-
ments with straight walls and symmetric rooms. However, in a relative large number
of rooms encountered in the real world, the shape of the walls could be curved and
with irregular shapes. If a more robust early stopping criterion is needed, we must

87

88 Conclusions

consider to add environments with different shapes into the training set.
Moreover, now we currently consider environments without any obstacle nor

furniture. For environments with obstacles, we need to apply some algorithm to
filter those obstacles. We may also have to re-train the model the environments
with obstacles. These measures could help the early stopping criterion working
better in the new environments.

Other interesting future directions include using a modified AlexNet, with a fully
connected layer with input of other map information and context, like exploration
time, areas covered, rooms covered, and so on. Moreover, the reconstruction method
also directly influences the performance of our model, and different reconstruction
algorithms could be considered to be combined with the model.

Appendix A

Tools

In this chapter, I would introduce the main tools we used.

A.1 ROS
ROS(Robot Operating System) is a robot software platform that provides

operating system-like functions for heterogeneous computer clusters.
ROS provides some standard operating system services such as hardware ab-

straction, underlying device control, common function implementation, interprocess
messages, and packet management. ROS is based on a graph-like architecture,
in which processes at different nodes can accept, publish, and aggregate various
information (such as sensing, control, state, planning, etc.). Currently ROS mainly
supports Ubuntu. We used ros-kinetic in our project.

A.2 Tensorflow
TensorFlow is a symbolic mathematics system based on dataflow programming.

It has a multi-tiered architecture that can be deployed on a variety of servers, PC
terminals and web pages and supports GPU and TPU high-performance numerical
computing. Therefore, it is widely used in the programming of various machine
learning algorithms.

TensorFlow provides four different versions of the Python language: the ten-
sorflow, the GPU-accelerated version (tensorflow-gpu), and their daily compiled
versions (tf-nightly, tf-nightly-gpu). We used tensorflow-gpu in our training process.

89

Appendix B

Implementation

B.1 Multiprocess Partial Map Analysis
1 import time
2 import os
3 import glob
4 import cv2
5 import csv
6 import sys
7 import multiprocessing
8 from shutil import copy
9

10 import parameters as par
11 from floorplan import start_analysis
12 # ROS Object
13 from ros_object import FrontierObject as fo
14
15 # ------------------ Global variables
16 # PATH
17 INPUT_FOLDER = ’./ data/ INPUT /’
18 OUTPUT_FOLDER = ’./ data/ OUTPUT /’
19 INPUT_DATASET = ’NEW DATASET v2 ’
20 # CSV_FILEPATH = ’/home/lc/ Desktop / accuracy .csv ’
21
22
23 # Define how score is computed based on bc and fc
24 def cal_score (map_bc , map_fc , gt_bc , gt_fc):
25 score = (map_bc + map_fc + gt_bc + gt_fc) / 4.0
26
27 return score
28
29 # Define job for each process
30 def job(work):
31 map_full_path = work [0]
32 parameter_obj = work [1]
33 path_obj = work [2]
34 frontierObject = work [3]
35
36 map_full_name = map_full_path . split (’/’)[-1][: -4]
37
38 # Extract map information
39 map_name = map_full_name . split (’ ’)[0]
40 run_name = map_full_name . split (’ ’)[1]
41 timestamp = map_full_name . split (’ ’)[2]
42 # print "Map: ", map_name
43 # print "Run: ", run_name
44 # print " Timestamp : ", timestamp
45
46 # Create folder for storing layout image
47 if par. DISEGNA or par. storeLayoutImage :
48 SAVE_FOLDER = os.path.join(path_obj . OUTFOLDERS , path_obj .DATASET , map_full_name)
49 path_obj . filepath = SAVE_FOLDER + ’/’
50 if not os.path. exists (SAVE_FOLDER):
51 os. makedirs (SAVE_FOLDER)
52

91

92 Appendix B. Implementation

53 im = cv2. imread (map_full_path)
54 path_obj . nome_gt = path_obj . INFOLDERS + ’XMLs/’ + map_name + ’.xml ’
55 try:
56 analysis_data = start_analysis (parameter_obj , path_obj , im , frontierObject)
57 except :
58 return (False , map_full_name)
59
60 # print "Map BC: ", analysis_data [’Map bc ’]
61 # print "Map FC: ", analysis_data [’Map fc ’]
62 # print "GT BC: ", analysis_data [’GT bc ’]
63 # print "GT FC: ", analysis_data [’GT fc ’]
64 score = cal_score (analysis_data [’Map bc ’], analysis_data [’Map fc ’], analysis_data [’GT bc ’],

analysis_data [’GT fc ’])
65 # print " Score : ", score
66
67 analysis_data [’Map Name ’] = map_name
68 analysis_data [’Run ’] = run_name
69 analysis_data [’Timestamp ’] = timestamp
70 analysis_data [’Score ’] = score
71
72 return (True , analysis_data)
73
74 if __name__ == ’__main__ ’:
75 start_time = time.time ()
76 print " Start !"
77 print " Dataset : ", INPUT_DATASET
78
79 # Create output folder
80 if not os.path. exists (os.path.join(OUTPUT_FOLDER , INPUT_DATASET)):
81 os. makedirs (os.path.join(OUTPUT_FOLDER , INPUT_DATASET))
82
83 # Maps already processed (where to start)
84 csv_filepath = os.path.join(OUTPUT_FOLDER , INPUT_DATASET , ’accuracy .csv ’)
85 maps_done = []
86 start_from_zero = False
87 if os.path. exists (csv_filepath):
88 with open(csv_filepath , ’r’) as csv_file :
89 csv_reader = csv. reader (csv_file)
90
91 next(csv_reader)
92 for row in csv_reader :
93 maps_full_name = ’ ’.join(row [:3])
94
95 maps_done . append (maps_full_name + ’.png ’)
96 else:
97 start_from_zero = True
98 print "Maps done: ", len(maps_done)
99

100 # CSV writer
101 fieldnames = [’Map Name ’, ’Run ’, ’Timestamp ’, ’Map bc ’, ’Map fc ’, ’GT bc ’, ’GT fc ’, ’Score ’, ’Map

complete rooms ’,
102 ’Map partial rooms ’, ’Map rooms ’, ’GT rooms ’, ’Cells ’, ’GT area ’, ’Frontier ’, ’Label ’]
103 csv_file = open(os.path.join(OUTPUT_FOLDER , INPUT_DATASET , ’accuracy .csv ’), ’a+’)
104 csv_writer = csv. DictWriter (csv_file , fieldnames)
105 if start_from_zero :
106 csv_writer . writeheader ()
107
108 # Require parameters
109 parameter_obj , path_obj = par. Parameter_obj () , par. Path_obj ()
110 path_obj . INFOLDERS = INPUT_FOLDER
111 path_obj . OUTFOLDERS = OUTPUT_FOLDER
112 path_obj . DATASET = INPUT_DATASET
113 frontierObject = fo. FrontierObject (False ,[] ,[] ,[] ,[] ,[])
114
115 # Multi processing part
116 maps_all = os. listdir (os.path.join(INPUT_FOLDER , INPUT_DATASET))
117 maps_notdone = list(set(maps_all) - set(maps_done))
118 print "Maps not done: ", len(maps_notdone)
119
120 maps_notdone = [os.path.join(INPUT_FOLDER , INPUT_DATASET , m) for m in maps_notdone]
121 works = [[m, parameter_obj , path_obj , frontierObject] for m in maps_notdone]
122 works = works
123
124 cores = multiprocessing . cpu_count () - 1
125 pool = multiprocessing .Pool(processes = cores)
126
127 cnt = 1
128 for analysis_data in pool. imap_unordered (job , works):
129 sys. stdout . write (’done %d/%d\r’ % (cnt , len(works)))
130 sys. stdout . flush ()

B.2. Labeling 93

131 cnt += 1
132
133 if analysis_data [0]:
134 csv_writer . writerow (analysis_data [1])
135 csv_file . flush ()
136 else:
137 print " Error in processing map: ", analysis_data [1]
138
139 csv_file . close ()
140
141 end_time = time.time ()
142 print " Total time: ", end_time - start_time
143 print "Done!"

B.2 Labeling
1 import os
2 import csv
3 from PIL import Image
4 from shutil import copy
5
6 # Path
7 INPUT_FOLDER = ’./ data/ INPUT /’
8 OUTPUT_FOLDER = ’./ data/ OUTPUT /’
9 INPUT_DATASET = ’NEW DATASET v2 ’

10 CSV_FILEPATH = ’./ data/ OUTPUT /NEW DATASET v2/ accuracy .csv ’
11
12 # Threshold for labelling
13 # Score greater than threshold is labelled TRUE
14 # Score less than threshold is labelled FALSE
15 THRESHOLD_GT_BC = 83.831
16 THRESHOLD_GT_FC = 67.873
17 THRESHOLD_DIFF_ROOMS = 4.0
18
19 # Label the image by analysis data
20 # Here we use a decision tree to implement that
21 def label (analysis_data):
22 gt_bc = float (analysis_data [’GT bc ’])
23 gt_fc = float (analysis_data [’GT fc ’])
24 diff_rooms = int(analysis_data [’GT rooms ’]) - int(analysis_data [’Map rooms ’])
25
26 if gt_fc <= THRESHOLD_GT_FC :
27 return False
28 elif gt_bc > THRESHOLD_GT_BC :
29 return True
30 elif diff_rooms <= THRESHOLD_DIFF_ROOMS :
31 return True
32
33 return False
34
35
36
37 if __name__ == " __main__ ":
38 dataset_path = os.path.join(INPUT_FOLDER , INPUT_DATASET)
39 output_path = os.path.join(OUTPUT_FOLDER , INPUT_DATASET + ’ LABEL ’)
40
41 # Create label folders
42 true_folder = os.path.join(output_path , ’True ’)
43 if not os.path. exists (true_folder):
44 os. makedirs (true_folder)
45 false_folder = os.path.join(output_path , ’False ’)
46 if not os.path. exists (false_folder):
47 os. makedirs (false_folder)
48
49 with open(CSV_FILEPATH , ’r’) as csv_file :
50 csv_reader = csv. DictReader (csv_file)
51
52 for index , row in enumerate (csv_reader):
53 if index == 0:
54 continue
55
56 map_name = row[’Map Name ’] + ’ ’ + row[’Run ’] + ’ ’ + row[’Timestamp ’] + ’.png ’
57 map_label = label (row)
58 print str(index) + ’ ------------ ’ + map_name
59 print ’Label : ’ + str(map_label)

94 Appendix B. Implementation

60
61 src = os.path.join(dataset_path , map_name)
62 if map_label :
63 dst = os.path.join(true_folder , map_name)
64 else:
65 dst = os.path.join(false_folder , map_name)
66 copy(src , dst)

B.3 Model Training
1 # Import libraries
2 import numpy as np
3 import os
4 from PIL import Image , ImageOps
5 import PIL
6 import cv2
7
8 import sys
9 import datetime

10 from sklearn . utils import shuffle
11
12
13 import cv2
14 import matplotlib . pyplot as plt
15 import tensorflow as tf
16 import pandas as pd
17 from sklearn . metrics import roc_auc_score
18
19 original_train_data = np.load(os.path.join(os. getcwd () ,’Dataset v2/ training_set .npy ’))
20 test_data = np.load(os.path.join(os. getcwd () ,’Dataset v2/ test_set .npy ’))
21 print ("the shape of train_data is: \t" ,(original_train_data . shape))
22 print ("the shape of test_data is: \t" ,(test_data . shape))
23
24 # Split the train data in train set , validation set and test set
25 validation_data = original_train_data [2400:]
26 train_data = original_train_data [:2400]
27
28 X = np. array ([i[0] for i in train_data])
29 Y = np. array ([i[1] for i in train_data])
30
31 v_x = np. array ([i[0] for i in validation_data])
32 v_y = np. array ([i[1] for i in validation_data])
33
34 t_x = np. array ([i[0] for i in test_data])
35 t_y = np. array ([i[1] for i in test_data])
36
37 # Parameters
38 height = 227
39 width = 227
40 channel = 1
41
42 epochs = 30
43 batch = 8
44
45 steps = len(train_data)
46 remaining = steps % batch
47
48 validating_size = 40
49 nodes_fc1 = 4096
50 nodes_fc2 = 4096
51 output_classes = 2
52
53 IMG_SIZE_ALEXNET = 227
54
55 TRAIN_DIR = os. getcwd ()
56
57 # Reset Calculate Graph
58 tf. reset_default_graph ()
59
60 # Define Placeholder for a 3 Channel IMAGE
61 x = tf. placeholder (tf.float32 , shape =[None ,height ,width , channel],name=’x’)
62 # x = tf. placeholder (tf.float32 , shape =[None , IMG_SIZE_ALEXNET , IMG_SIZE_ALEXNET ,1]) /// TBD ///
63 y = tf. placeholder (tf.float32 , shape =[None , output_classes],name=’y’)
64
65 # ------------CNN Layer1 ------------

B.3. Model Training 95

66 # 3 channel input /// TBD ///
67 # 96 channel output 55*55 each
68 #w1 = tf. Variable (tf. truncated_normal ([11 ,11 , channel ,96] , stddev =0.01))
69 w1 = tf. Variable (tf. truncated_normal ([11 ,11 , channel ,96] , stddev =0.01))
70 # w1 = tf. Variable (tf. truncated_normal ([11 ,11 ,1 ,96] , stddev =0.01)) /// TBD ///
71 b1 = tf. Variable (tf. constant (0.0 , shape =[[11 ,11 , channel ,96][3]]))
72
73 output1 = tf.nn. conv2d (x,w1 , strides = [1 ,4 ,4 ,1] , padding = ’VALID ’)
74 output1 = output1 +b1
75 output1 = tf.nn.relu(output1)
76
77 # ------------ Pooling Layer1 ------------
78 # 96 channel input 55*55 each
79 # 96 channel output 27*27 each
80 output1 = tf.nn. max_pool (output1 , ksize =[1 , 3, 3, 1], strides =[1 , 2, 2, 1], padding =’VALID ’)
81
82 # ------------CNN Layer2 ------------
83 # 96 channel input 27*27 each
84 # 256 channel output 27*27 each
85 w2 = tf. Variable (tf. truncated_normal ([5 ,5 ,96 ,256] , stddev =0.01))
86 b2 = tf. Variable (tf. constant (1.0 , shape =[[5 ,5 ,96 ,256][3]]))
87
88 output2 = tf.nn. conv2d (output1 , w2 , strides =[1 , 1, 1, 1], padding =’SAME ’)
89 output2 = output2 + b2
90 output2 = tf.nn.relu(output2)
91
92 # ------------ Pooling Layer2 ------------
93 # 256 channel input 27*27 each
94 # 256 channel output 13*13 each
95 output2 = tf.nn. max_pool (output2 , ksize =[1 , 3, 3, 1], strides =[1 , 2, 2, 1], padding =’VALID ’)
96
97 # ------------CNN Layer3 ------------
98 # 256 channel input 13*13 each
99 # 384 channel output 13*13 each

100 w3 = tf. Variable (tf. truncated_normal ([3 , 3, 256 , 384] , stddev =0.01))
101 b3 = tf. Variable (tf. constant (0.0 , shape =[[3 , 3, 256 , 384][3]]))
102
103 output3 = tf.nn. conv2d (output2 , w3 , strides =[1 , 1, 1, 1], padding =’SAME ’)
104 output3 = output3 + b3
105 output3 = tf.nn.relu(output3)
106
107 # ------------CNN Layer4 ------------
108 # 384 channel input 13*13 each
109 # 384 channel output 13*13 each
110 w4 = tf. Variable (tf. truncated_normal ([3 , 3, 384 , 384] , stddev =0.01))
111 b4 = tf. Variable (tf. constant (0.0 , shape =[[3 , 3, 384 , 384][3]]))
112
113 output4 = tf.nn. conv2d (output3 , w4 , strides =[1 , 1, 1, 1], padding =’SAME ’)
114 output4 = output4 + b4
115 output4 = tf.nn.relu(output4)
116
117 # ------------CNN Layer5 ------------
118 # 384 channel input 13*13 each
119 # 256 channel output 13*13 each
120 w5 = tf. Variable (tf. truncated_normal ([3 , 3, 384 , 256] , stddev =0.01))
121 b5 = tf. Variable (tf. constant (0.0 , shape =[[3 , 3, 384 , 256][3]]))
122
123 output5 = tf.nn. conv2d (output4 , w5 , strides =[1 , 1, 1, 1], padding =’SAME ’)
124 output5 = output5 + b5
125 output5 = tf.nn.relu(output5)
126
127 # ------------ Pooling Layer3 ------------
128 # 256 channel output 13*13 each
129 # 256 channel output 6*6 each
130 output5 = tf.nn. max_pool (output5 , ksize =[1 , 3, 3, 1], strides =[1 , 2, 2, 1], padding =’VALID ’)
131
132 # ------------Flatten ------------
133 # 256 channel input 6*6 each
134 # output a vector or 6*6*256
135 flattened = tf. reshape (output5 ,[-1 ,6*6*256])
136
137 # ------------Fully connected Layer1 ------------
138 # input_size = int(flattened . get_shape () [1]) =6*6*256
139 # output neural nodes : nodes1_fc1
140 input_size = int(flattened . shape [1])
141 w1_fc = tf. Variable (tf. truncated_normal ([input_size , nodes_fc1], stddev =0.01))
142 b1_fc = tf. Variable (tf. constant (1.0 , shape =[nodes_fc1]))
143
144 output_fc1 = tf. matmul (flattened , w1_fc) + b1_fc
145 output_fc1 = tf.nn.relu(output_fc1)

96 Appendix B. Implementation

146
147 # ------------ Dropout Layer1 ------------
148 hold_prob1 = tf. placeholder (tf.float32 ,name = ’hold_prob1 ’)
149 # output_fc1 = tf.nn. dropout (output_fc1 ,rate =1- hold_prob1)
150 output_fc1 = tf.nn. dropout (output_fc1 , keep_prob = hold_prob1)
151 # Here we should also use rate = 1- keep_prob = 1- hold_prob
152
153
154 # ------------Fully connected Layer2 ------------
155 # input neurons : nodes1_fc1
156 # output neurons : nodes1_fc2
157 w2_fc = tf. Variable (tf. truncated_normal ([nodes_fc1 , nodes_fc2], stddev =0.01))
158 b2_fc = tf. Variable (tf. constant (1.0 , shape =[nodes_fc2]))
159
160 output_fc2 = tf. matmul (output_fc1 , w2_fc) + b2_fc
161 output_fc2 = tf.nn.relu(output_fc2)
162
163 # ------------ Dropout Layer2 ------------
164 hold_prob2 = tf. placeholder (tf.float32 , name = ’hold_prob2 ’)
165 # output_fc2 = tf.nn. dropout (output_fc2 ,rate =1- hold_prob2)
166 output_fc2 = tf.nn. dropout (output_fc2 , keep_prob = hold_prob2)
167
168
169 # ------------Fully Connected Layer 3------------
170 w3_fc = tf. Variable (tf. truncated_normal ([nodes_fc2 , output_classes], stddev =0.01))
171 b3_fc = tf. Variable (tf. constant (1.0 , shape =[output_classes]))
172
173 prediction = tf. matmul (output_fc2 , w3_fc)
174 prediction = tf.add(prediction , b3_fc , name = " op_to_predict ")
175
176 # REMEMBER : In the output layer , we don ’t apply activate function , and we get a 2 dimension vector of y
177
178 # Defining loss function
179 cross_entropy = tf. reduce_mean (tf.nn. softmax_cross_entropy_with_logits_v2 (labels =y, logits = prediction))
180 # Define Loss function with specific confusion matrix /// TBD ///
181
182 # Define objective
183 train = tf. train . AdamOptimizer (learning_rate =0.00001) . minimize (cross_entropy)
184
185 # Define Accuracy
186 matches = tf. equal (tf. argmax (prediction ,1) ,tf. argmax (y ,1))
187 acc = tf. reduce_mean (tf.cast(matches ,tf. float32))
188
189 # Global Initialization
190 init = tf. global_variables_initializer ()
191
192 # Starting Empty lists to keep results
193 acc_list = []
194 auc_list = []
195 loss_list = []
196 saver = tf. train . Saver ()
197
198 # GPU Training
199 config = tf. ConfigProto (allow_soft_placement =True)
200 config . gpu_options . allow_growth = True
201 config . gpu_options . allocator_type = ’BFC ’
202
203 currentDT = datetime . datetime .now ()
204 print (" ------------Strat to Train ------------")
205 print (str(currentDT))
206
207
208 with tf. Session (config = config) as sess:
209 sess.run(init)
210
211 # This is the training part
212 for i in range (epochs):
213 for j in range (0,steps -remaining , batch):
214 # Feeding step_size - amount data with 0.5 keeping probabilities on DROPOUT LAYERS
215 _,c = sess.run ([train , cross_entropy],
216 feed_dict ={x:X[j:j+ batch] , y:Y[j:j+ batch], hold_prob1 :0.5 , hold_prob2 :0.5})
217
218
219 # Writing for loop to calculate test statistics . GTX 1050 isn ’t able to calculate all test data.
220 cv_auc_list = []
221 cv_acc_list = []
222 cv_loss_list = []
223 # Validation after one epoch
224 for v in range (0, len(v_x)-int(len(v_x) % validating_size),validating_size):
225 acc_on_cv , loss_on_cv , preds = sess.run ([acc , cross_entropy ,tf.nn. softmax (prediction)],

B.4. Model Integration 97

226 feed_dict ={x:v_x[v:v+ validating_size] ,y:v_y[v:v+ validating_size] ,hold_prob1 :1.0 , hold_prob2
:1.0})

227
228 auc_on_cv = roc_auc_score (v_y[v:v+ validating_size], preds)
229 cv_acc_list . append (acc_on_cv)
230 cv_auc_list . append (auc_on_cv)
231 cv_loss_list . append (loss_on_cv)
232 acc_cv_ = round (np.mean(cv_acc_list) ,5)
233 auc_cv_ = round (np.mean(cv_auc_list) ,5)
234 loss_cv_ = round (np.mean(cv_loss_list) ,5)
235 acc_list . append (acc_cv_)
236 auc_list . append (auc_cv_)
237 loss_list . append (loss_cv_)
238 print (" ------------Epoch %i Finished ------------" %i)
239 currentDT = datetime . datetime .now ()
240 print (str(currentDT))
241 print (" Epoch :",i+1," Accuracy :",acc_cv_ ,"Loss:",loss_cv_ ,"AUC:",auc_cv_)
242
243 print (" ------------ Training Stage Finished ------------")
244
245 # This is the validation part
246 saver .save(sess , os.path.join(os. getcwd () ," CNN_MC_best .ckpt"))
247
248 f,ax=plt. subplots (1,3, figsize =(12 ,3))
249 pd. Series (acc_list).plot(kind=’line ’,title =’Accuracy on CV data ’,ax=ax [0])
250 pd. Series (loss_list).plot(kind=’line ’,figsize =(12 ,7) ,title =’Loss on CV data ’,ax=ax [1])
251 pd. Series (auc_list).plot(kind=’line ’,figsize =(12 ,7) ,title =’AUC on CV data ’,ax=ax [2])
252 plt. subplots_adjust (wspace =0.8)
253 ax [0]. set_title (’Accuracy on CV data ’)
254 ax [1]. set_title (’Loss on CV data ’)
255 ax [2]. set_title (’AUC on CV data ’)
256 plt.show ()

B.4 Model Integration
1 import os
2
3 import numpy as np
4 import cv2
5 import tensorflow as tf
6 from PIL import Image
7
8 class tfModel ():
9

10 def __init__ (self):
11 self. height = 227
12 self. width = 227
13 self. channel = 1
14 self. nodes_fc1 = 4096
15 self. nodes_fc2 = 4096
16 self. output_classes = 2
17
18 self.tf , self.x, self. prediction , self. hold_prob1 , self. hold_prob2 = self. defineModel ()
19 self. saver = self.tf. train . Saver ()
20 self. session = tf. Session ()
21 self. saver . restore (self.session , os.path.join(os. environ [’HOME ’], "

wholebuildingpredictiveexploration /src/ floorplan_analyzer /src/data/ MODEL / CNN_MC_best .ckpt"))
22
23 self.step = 100
24 self.size = 4000
25 self. fix_width = 227
26
27 def defineModel (self):
28 # Reset Calculate Graph
29 tf. reset_default_graph ()
30
31 # Define Placeholder for a 3 Channel IMAGE
32 x = tf. placeholder (tf.float32 , shape =[None ,self.height ,self.width ,self. channel],name=’x’)
33 # x = tf. placeholder (tf.float32 , shape =[None , IMG_SIZE_ALEXNET , IMG_SIZE_ALEXNET ,1]) /// TBD ///
34 y = tf. placeholder (tf.float32 , shape =[None ,self. output_classes],name=’y’)
35
36 # ------------CNN Layer1 ------------
37 # 3 channel input /// TBD ///
38 # 96 channel output 55*55 each
39 #w1 = tf. Variable (tf. truncated_normal ([11 ,11 , channel ,96] , stddev =0.01))

98 Appendix B. Implementation

40 w1 = tf. Variable (tf. truncated_normal ([11 ,11 , self.channel ,96] , stddev =0.01))
41 # w1 = tf. Variable (tf. truncated_normal ([11 ,11 ,1 ,96] , stddev =0.01)) /// TBD ///
42 b1 = tf. Variable (tf. constant (0.0 , shape =[[11 ,11 , self.channel ,96][3]]))
43
44 output1 = tf.nn. conv2d (x,w1 , strides = [1 ,4 ,4 ,1] , padding = ’VALID ’)
45 output1 = output1 +b1
46 output1 = tf.nn.relu(output1)
47
48 # ------------ Pooling Layer1 ------------
49 # 96 channel input 55*55 each
50 # 96 channel output 27*27 each
51 output1 = tf.nn. max_pool (output1 , ksize =[1 , 3, 3, 1], strides =[1 , 2, 2, 1], padding =’VALID ’)
52
53 # ------------CNN Layer2 ------------
54 # 96 channel input 27*27 each
55 # 256 channel output 27*27 each
56 w2 = tf. Variable (tf. truncated_normal ([5 ,5 ,96 ,256] , stddev =0.01))
57 b2 = tf. Variable (tf. constant (1.0 , shape =[[5 ,5 ,96 ,256][3]]))
58
59 output2 = tf.nn. conv2d (output1 , w2 , strides =[1 , 1, 1, 1], padding =’SAME ’)
60 output2 = output2 + b2
61 output2 = tf.nn.relu(output2)
62
63 # ------------ Pooling Layer2 ------------
64 # 256 channel input 27*27 each
65 # 256 channel output 13*13 each
66 output2 = tf.nn. max_pool (output2 , ksize =[1 , 3, 3, 1], strides =[1 , 2, 2, 1], padding =’VALID ’)
67
68 # ------------CNN Layer3 ------------
69 # 256 channel input 13*13 each
70 # 384 channel output 13*13 each
71 w3 = tf. Variable (tf. truncated_normal ([3 , 3, 256 , 384] , stddev =0.01))
72 b3 = tf. Variable (tf. constant (0.0 , shape =[[3 , 3, 256 , 384][3]]))
73
74 output3 = tf.nn. conv2d (output2 , w3 , strides =[1 , 1, 1, 1], padding =’SAME ’)
75 output3 = output3 + b3
76 output3 = tf.nn.relu(output3)
77
78 # ------------CNN Layer4 ------------
79 # 384 channel input 13*13 each
80 # 384 channel output 13*13 each
81 w4 = tf. Variable (tf. truncated_normal ([3 , 3, 384 , 384] , stddev =0.01))
82 b4 = tf. Variable (tf. constant (0.0 , shape =[[3 , 3, 384 , 384][3]]))
83
84 output4 = tf.nn. conv2d (output3 , w4 , strides =[1 , 1, 1, 1], padding =’SAME ’)
85 output4 = output4 + b4
86 output4 = tf.nn.relu(output4)
87
88 # ------------CNN Layer5 ------------
89 # 384 channel input 13*13 each
90 # 256 channel output 13*13 each
91 w5 = tf. Variable (tf. truncated_normal ([3 , 3, 384 , 256] , stddev =0.01))
92 b5 = tf. Variable (tf. constant (0.0 , shape =[[3 , 3, 384 , 256][3]]))
93
94 output5 = tf.nn. conv2d (output4 , w5 , strides =[1 , 1, 1, 1], padding =’SAME ’)
95 output5 = output5 + b5
96 output5 = tf.nn.relu(output5)
97
98 # ------------ Pooling Layer3 ------------
99 # 256 channel output 13*13 each

100 # 256 channel output 6*6 each
101 output5 = tf.nn. max_pool (output5 , ksize =[1 , 3, 3, 1], strides =[1 , 2, 2, 1], padding =’VALID ’)
102
103 # ------------Flatten ------------
104 # 256 channel input 6*6 each
105 # output a vector or 6*6*256
106 flattened = tf. reshape (output5 ,[-1 ,6*6*256])
107
108 # ------------Fully connected Layer1 ------------
109 # input_size = int(flattened . get_shape () [1]) =6*6*256
110 # output neural nodes : nodes1_fc1
111 input_size = int(flattened . shape [1])
112 w1_fc = tf. Variable (tf. truncated_normal ([input_size , self. nodes_fc1], stddev =0.01))
113 b1_fc = tf. Variable (tf. constant (1.0 , shape =[self. nodes_fc1]))
114
115 output_fc1 = tf. matmul (flattened , w1_fc) + b1_fc
116 output_fc1 = tf.nn.relu(output_fc1)
117
118 # ------------ Dropout Layer1 ------------
119 hold_prob1 = tf. placeholder (tf.float32 ,name = ’hold_prob1 ’)

B.4. Model Integration 99

120 # output_fc1 = tf.nn. dropout (output_fc1 ,rate =1- hold_prob1)
121 output_fc1 = tf.nn. dropout (output_fc1 , keep_prob = hold_prob1)
122 # Here we should also use rate = 1- keep_prob = 1- hold_prob
123
124
125 # ------------Fully connected Layer2 ------------
126 # input neurons : nodes1_fc1
127 # output neurons : nodes1_fc2
128 w2_fc = tf. Variable (tf. truncated_normal ([self.nodes_fc1 , self. nodes_fc2], stddev =0.01))
129 b2_fc = tf. Variable (tf. constant (1.0 , shape =[self. nodes_fc2]))
130
131 output_fc2 = tf. matmul (output_fc1 , w2_fc) + b2_fc
132 output_fc2 = tf.nn.relu(output_fc2)
133
134 # ------------ Dropout Layer2 ------------
135 hold_prob2 = tf. placeholder (tf.float32 , name = ’hold_prob2 ’)
136 # output_fc2 = tf.nn. dropout (output_fc2 ,rate =1- hold_prob2)
137 output_fc2 = tf.nn. dropout (output_fc2 , keep_prob = hold_prob2)
138
139
140 # ------------Fully Connected Layer 3------------
141 w3_fc = tf. Variable (tf. truncated_normal ([self.nodes_fc2 ,self. output_classes], stddev =0.01))
142 b3_fc = tf. Variable (tf. constant (1.0 , shape =[self. output_classes]))
143
144 prediction = tf. matmul (output_fc2 , w3_fc)
145 prediction = tf.add(prediction , b3_fc , name = " op_to_predict ")
146
147 # REMEMBER : In the output layer , we don ’t apply activate function , and we get a 2 dimension

vector of y
148
149 # Defining loss function
150 cross_entropy = tf. reduce_mean (tf.nn. softmax_cross_entropy_with_logits_v2 (labels =y, logits =

prediction))
151 # Define Loss function with specific confusion matrix /// TBD ///
152
153 # Define objective
154 train = tf. train . AdamOptimizer (learning_rate =0.00001) . minimize (cross_entropy)
155
156 # Define Accuracy
157 matches = tf. equal (tf. argmax (prediction ,1) ,tf. argmax (y ,1))
158 acc = tf. reduce_mean (tf.cast(matches ,tf. float32))
159
160 # Global Initialization
161 init = tf. global_variables_initializer ()
162
163 return tf , x, prediction , hold_prob1 , hold_prob2
164
165
166 def predict (self , im):
167 im = self. processImage (im)
168 im = im. reshape ((self.width , self.height , 1))
169 im = np. array ([im])
170
171 k = self. session .run ([tf.nn. softmax (self. prediction)], feed_dict ={ self.x:im , self. hold_prob1 :1,

self. hold_prob2 :1})
172
173 r = np. round (k, 3). argmax ()
174 if r == 0:
175 return True
176 else:
177 return False
178
179 def processImage (self , im):
180 self.size = im. shape [0]
181
182 index1 = 0
183 index2 = self.size -1
184
185 flag = True
186 while flag == True and index1 <self.size /2:
187 index1 += self.step
188 for i in range (0, self.size):
189 if im[index1][i]!=205:
190 flag = False
191 index1 -= self.step *2
192 if index1 < 0:
193 index1 = 0
194 break
195 elif im[i][index1]!=205:
196 flag = False

100 Appendix B. Implementation

197 index1 -= self.step *2
198 if index1 < 0:
199 index1 = 0
200 break
201 elif im[self.size -1- index1][i]!=205:
202 flag = False
203 index1 -= self.step *2
204 if index1 < 0:
205 index1 = 0
206 break
207 elif im[i][self.size -1- index1]!=205:
208 flag = False
209 index1 -= self.step *2
210 if index1 < 0:
211 index1 = 0
212 break
213
214 im = im[index1 :self.size -1- index1 , index1 :self.size -1- index1]
215
216 # Calculate height
217 im = Image . fromarray (im)
218 wpercent = self. fix_width / float (im.size [0])
219 height = int(im.size [1] * wpercent)
220 im = im. resize ((self.fix_width , height), Image . ANTIALIAS)
221
222 im = np. array (im)
223
224 return im

Bibliography

[1] Abien Fred Agarap. “Deep Learning using Rectified Linear Units (ReLU)”.
In: arXiv e-prints (Mar. 2018). arXiv: 1803.08375 (cit. on p. 41).

[2] Baike contributors. Convolutional Neural Network — Baike. [Online; accessed
10-Aug-2019]. 2019. url: baike.baidu.com/item/%E5%8D%B7%E7%A7%AF%
E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C (cit. on p. 10).

[3] Nicola Basilico and Francesco Amigoni. “Exploration strategies based on multi-
criteria decision making for searching environments in rescue operations”. In:
Autonomous Robots 31.4 (2011), p. 401 (cit. on p. 5).

[4] Richard Bormann et al. “Room segmentation: Survey, implementation, and
analysis”. In: Proceedings of the IEEE conference on robotics and automation
(ICRA). Stockholm, Sweden, 2016, pp. 1019–1026 (cit. on p. 8).

[5] Steve Branson et al. “Bird species categorization using pose normalized deep
convolutional nets”. In: arXiv preprint arXiv:1406.2952 (2014) (cit. on p. 13).

[6] Jeffrey A Caley, Nicholas RJ Lawrance, and Geoffrey A Hollinger. “Deep
learning of structured environments for robot search”. In: Autonomous Robots
43.7 (2019), pp. 1695–1714 (cit. on p. 14).

[7] Petr Cintula, Christian G. Fermüller, and Carles Noguera. “Fuzzy Logic”. In:
The Stanford Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Fall 2017.
Metaphysics Research Lab, Stanford University, 2017 (cit. on p. 64).

[8] Johannes Doellinger, Markus Spies, and Wolfram Burgard. “Predicting occu-
pancy distributions of walking humans with convolutional neural networks”.
In: Proceedings of the IEEE conference on Robotics and Automation Letters
3.3 (2018), pp. 1522–1528 (cit. on p. 14).

[9] Vincent Dumoulin and Francesco Visin. “A guide to convolution arithmetic
for deep learning”. In: arXiv preprint arXiv:1603.07285 (2016) (cit. on p. 12).

[10] Michael Egmont-Petersen, Dick de Ridder, and Heinz Handels. “Image pro-
cessing with neural networks—a review”. In: Pattern recognition 35.10 (2002),
pp. 2279–2301 (cit. on p. 13).

101

https://arxiv.org/abs/1803.08375
baike.baidu.com/item/%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C
baike.baidu.com/item/%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C

102 Bibliography

[11] Luca Fochetta. “Use of predicted layouts of indoor environments to improve
exploration strategies for autonomous mobile robots”. 2019 (cit. on pp. 1, 4,
6, 17, 23, 24).

[12] Ross Girshick et al. “Rich feature hierarchies for accurate object detection and
semantic segmentation”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. Columbus, OH, USA, 2014, pp. 580–587 (cit. on
p. 14).

[13] Héctor H González-Banos and Jean-Claude Latombe. “Navigation strategies
for exploring indoor environments”. In: The International Journal of Robotics
Research 21.10-11 (2002), pp. 829–848 (cit. on pp. 1, 4, 5).

[14] Ian J Goodfellow et al. “Multi-digit number recognition from street view im-
agery using deep convolutional neural networks”. In: arXiv preprint arXiv:1312.6082
(2013) (cit. on p. 14).

[15] Jiuxiang Gu et al. “Recent advances in convolutional neural networks”. In:
Pattern Recognition 77 (2018), pp. 354–377 (cit. on pp. 9, 11, 12, 14).

[16] Pan He et al. “Reading scene text in deep convolutional sequences”. In:
Thirtieth AAAI conference on artificial intelligence. Phoenix, Arizona, 2016,
pp. 3501–3508 (cit. on p. 14).

[17] Jeff Heaton. “Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learn-
ing”. In: Genetic Programming Evolvable Machines 19.1-2 (2018), s10710–
017–9314–z (cit. on pp. 9, 11, 12).

[18] Jonathan Krause et al. “Learning features and parts for fine-grained recogni-
tion”. In: Proceedings of the IEEE conference on Pattern Recognition. Stock-
holm, Sweden, 2014, pp. 26–33 (cit. on p. 13).

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classi-
fication with deep convolutional neural networks”. In: Advances in neural
information processing systems. Stateline, Nevada, USA, 2012, pp. 1097–1105
(cit. on pp. 39–41, 43).

[20] Christos Kyrkou et al. “DroNet: Efficient convolutional neural network detec-
tor for real-time UAV applications”. In: Proceedings of the IEEE conference
on Design, Automation & Test in Europe Conference & Exhibition (DATE).
Dresden, Germany, 2018, pp. 967–972 (cit. on p. 14).

[21] Yann LeCun, Yoshua Bengio, et al. “Convolutional networks for images, speech,
and time series”. In: The handbook of brain theory and neural networks 3361.10
(1995), p. 1995 (cit. on p. 9).

Bibliography 103

[22] Ziyuan Liu and Georg von Wichert. “A generalizable knowledge framework
for semantic indoor mapping based on Markov logic networks and data driven
MCMC”. In: Future Generation Computer Systems 36 (2014), pp. 42–56
(cit. on p. 1).

[23] Matteo Luperto and Francesco Amigoni. “Extracting Structure of Buildings
Using Layout Reconstruction”. In: International Conference on Intelligent
Autonomous Systems. Vol. 15. Springer. Milan, Italy, 2018, pp. 652–667 (cit.
on pp. 5, 8, 47).

[24] Matteo Luperto, Valerio Arcerito, and Francesco Amigoni. “Predicting the
Layout of Partially Observed Rooms from Grid Maps”. In: Proceedings of
the IEEE conference on Robotics and Automation (ICRA). Montreal, QC,
Canada, 2019, pp. 6898–6904 (cit. on pp. 1, 5, 23, 47).

[25] Daniel Maturana and Sebastian Scherer. “Voxnet: A 3d convolutional neural
network for real-time object recognition”. In: Proceedings of the IEEE confer-
ence on Intelligent Robots and Systems (IROS). Hamburg, Germany, 2015,
pp. 922–928 (cit. on p. 14).

[26] Claudio Mura et al. “Automatic room detection and reconstruction in cluttered
indoor environments with complex room layouts”. In: Computers & Graphics
44 (2014), pp. 20–32 (cit. on p. 7).

[27] Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Restricted
Boltzmann Machines”. In: Proceedings of the 27th International Conference on
International Conference on Machine Learning. Haifa, Israel, 2010, pp. 807–
814 (cit. on p. 40).

[28] Sarang Narkhede. Understanding AUC - ROC Curve. [Online; accessed 11-
Aug-2019]. 2018. url: https://towardsdatascience.com/understanding-
auc-roc-curve-68b2303cc9c5 (cit. on p. 73).

[29] Andrew Ng. Convolutional Neural Network — Coursera. [Online; accessed 10-
Aug-2019]. 2019. url: en.coursera.org/learn/convolutional-neural-
networks (cit. on pp. 10, 11, 13).

[30] Steven J Nowlan and John C Platt. “A convolutional neural network hand
tracker”. In: Denver, Colorado, 1995, pp. 901–908 (cit. on p. 14).

[31] Powering the world’s robots. url: https://www.ros.org/ (cit. on pp. 26,
47).

[32] Joseph Redmon et al. “You only look once: Unified, real-time object detection”.
In: Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition. Las Vegas, NV, USA, 2016, pp. 779–788 (cit. on p. 14).

https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
en.coursera.org/learn/convolutional-neural-networks
en.coursera.org/learn/convolutional-neural-networks
https://www.ros.org/

104 Bibliography

[33] Nitish Srivastava and Ruslan R Salakhutdinov. “Discriminative transfer learn-
ing with tree-based priors”. In: Advances in neural information processing
systems. Stateline, Nevada, USA, 2013, pp. 2094–2102 (cit. on p. 13).

[34] Cyrill Stachniss, Giorgio Grisetti, and Wolfram Burgard. “Information gain-
based exploration using rao-blackwellized particle filters”. In: Robotics: Science
and Systems. Vol. 2. Cambridge, MA, USA, 2005, pp. 65–72 (cit. on p. 3).

[35] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. Boston,
MA, USA, 2015, pp. 1–9 (cit. on p. 13).

[36] Srivastava Tavish. How to avoid Over-fitting using Regularization? [Online;
accessed 11-Aug-2019]. 2015. url: https://www.analyticsvidhya.com/
blog/2015/02/avoid-over-fitting-regularization/ (cit. on p. 74).

[37] TensorFlow. url: https://www.tensorflow.org/ (cit. on p. 53).

[38] Sebastian Thrun et al. “Robotic mapping: A survey”. In: Exploring artificial
intelligence in the new millennium 1.1-35 (2002), p. 1 (cit. on pp. 1, 3).

[39] Craig Tovey and Sven Koenig. “Improved analysis of greedy mapping”. In:
Proceedings of the IEEE conference on Intelligent Robots and Systems (IROS
2003). Vol. 4. Las Vegas, NV, USA, 2003, pp. 3251–3257 (cit. on p. 4).

[40] Zhenhua Wang, Xingxing Wang, and Gang Wang. “Learning fine-grained
features via a CNN tree for large-scale classification”. In: Neurocomputing
275 (2018), pp. 1231–1240 (cit. on p. 13).

[41] Wiki - ROS nav_msgs. url: http://wiki.ros.org/nav_msgs (cit. on
p. 49).

[42] Wiki : Dropout (neural networks). 2019. url: https://en.wikipedia.org/
wiki/Dropout_(neural_networks) (cit. on p. 40).

[43] Wiki : ROS map server. url: http://wiki.ros.org/map_server (cit. on
p. 54).

[44] Wiki : ROS node. url: http://wiki.ros.org/Nodes (cit. on p. 49).

[45] Brian Yamauchi. “A frontier-based approach for autonomous exploration”.
In: cira. Vol. 97. Monterey, CA, USA, 1997, p. 146 (cit. on p. 3).

[46] Chengquan Zhang et al. “Automatic discrimination of text and non-text
natural images”. In: Proceedings of the IEEE conference on Document Analysis
and Recognition (ICDAR). Tunis, Tunisia, 2015, pp. 886–890 (cit. on p. 13).

https://www.analyticsvidhya.com/blog/2015/02/avoid-over-fitting-regularization/
https://www.analyticsvidhya.com/blog/2015/02/avoid-over-fitting-regularization/
https://www.tensorflow.org/
http://wiki.ros.org/nav_msgs
https://en.wikipedia.org/wiki/Dropout_(neural_networks)
https://en.wikipedia.org/wiki/Dropout_(neural_networks)
http://wiki.ros.org/map_server
http://wiki.ros.org/Nodes

	Colophon
	Acknowledgements
	Sommario
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Start of the Art
	Exploration
	Definition
	Exploration Procedure
	Information Gain And Distance

	Layout Reconstruction
	Backward Coverage And Forward Coverage
	Convolutional Neural Network
	Introduction
	Theory Support
	Applications

	Summary

	Problem Formulation
	Motivations
	Current Early Stopping Criterion

	Current Time-area Diagram And Analysis
	Problem Formulation
	Assumptions

	Goal
	Summary

	Proposed Solution
	General Overview
	AlexNet
	AlexNet Defination, And History
	Basic Configuration Of AlexNet
	Differences Between AlexNet Tasks

	Summary

	Implementation
	ROS Architecture
	Package And Rqt_graph
	Integration Of Deep Learning And ROS

	Data Collection
	ROS Bag Play
	Map_server Saver
	Procedure

	Data Pre-processing
	Crop And Resize
	Image Feature Augmentation

	Data Labelling
	Data Visualization
	Logistic Regression And Support Vector Machine
	Fuzzy Rule
	Decision Tree

	Model Training
	Parameter Definition
	Evaluation Method
	Underfitting And Overfitting
	Experiments

	Summary

	Experiment and Evaluation
	Offline Test
	Validation Set (Seen Environments)
	Test Set (Unseen Environments)

	Online Test
	Summary

	Conclusions
	Conclusions
	Future Works

	Tools
	ROS
	Tensorflow

	Implementation
	Multiprocess Partial Map Analysis
	Labeling
	Model Training
	Model Integration

	Bibliography

