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Abstract

Usage of numerical modelling techniques in a clinical setting is limited due to the
computational resources and modelling expertise required. This thesis focuses on
multiscale modelling and model order reduction as tools to reduce the
computational cost and improving model robustness of hemodynamical models.
Firstly, it is shown, using data for an aortic flow phantom, that integration of
patient-specific data favours a multiscale approach due to measurement
uncertainties leading to a violation of the conservation of mass and momentum.
Stability of different multiscale model coupling schemes for partitioned modelling
is addressed, demonstrating the superior stability of central-difference based
schemes compared to more traditional explicit and semi-implicit schemes. This is
highly relevant for the application of large artery modelling due to the potentially
large number of models coupled simultaneously, including boundary condition
models and Fluid-structure interaction (FSI). A compressible fluid model capable
of representing wave propagation at reduced cost is analysed in order to suggest
improvements for increased accuracy. Additionally, this part considers the
limitations and functional difference between a 1D wave propagation, compressible
fluid and 2-way FSI model. Lastly, a proof of concept is given for reduced order
models (ROMs) of 3D field data in medicine using a singular value decomposition
based approach. Effects of the choice and normalisation of training data on the SVD
basis and ROM are explored. This ultimately leads to generation of a 3D transient
ROM of the pressure field within a sudden expansion at an average percentual error
of 0.45[%].
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1.1. Motivation
The field of cardiovascular medicine has progressed greatly during the 20" and 21%
century leading to advances in many different fields of scientific research.
Cardiovascular modelling and simulation is one of those fields able to aid greatly
in diagnosis, risk assessment and treatment planning. As medicine moves evermore
in the direction of personalised medicine, it is becoming increasingly important to
be able to provide individualised care within a reasonable timeframe and at minimal
cost. For cardiovascular models to be useful in this clinical setting it is necessary to
have robust model implementations and consider model order reduction techniques
to speed up their evaluation. Therefore, this work is dedicated to studying
cardiovascular model stability and order reduction to facilitate the translation of
scientific advancement to real-world applications. The introduction below serves to

introduce the general concepts treated in the remainder of the text.

1.2. Cardiovascular diseases

Cardiovascular diseases(CVDs) remain the main cause of death in many parts of
the world [1, 2] and include all diseases affecting the human circulatory system. As
an example, prevalence of CVDs in the United States was around 48% in 2016.
Trends for prevalence of- and death rates due to CVDs however, show a decline,
resulting in CVDs no longer being the leading cause of death in Western Europe
[3]. However, recent evidence suggests the rate of decline is decreasing in North
America and that CVDs are still the main cause of death worldwide [4].

Nevertheless, the burden of CVDs remains significant as demonstrated by the loss
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of 64 million disability adjusted life years in Europe alone, a measure for the years
in life lost due to disability or dying prematurely. In the opinion of the author, the
real objective in medicine should not just be to prolong people’s lives but to prevent
premature loss of life while providing people a better quality of life than they would

have had otherwise.

Trends of decline up till now, are in part attributable to risk factor modification, i.e.
improvements in lifestyle choices including better dietary and exercise regimes as
well as reductions in smoking rates. Aside from preventative strategies, better
medical care has contributed to improved outcomes for patients affected by CVDs,
with a reduction of mortality rates and an increase in hospital discharge rates overall
[5] [1] [3]. However, it should be noted that these outcomes are heavily region and

disease dependent.

The most prevalent CVDs include Ischaemic heart disease and stroke. As the field
of CVDs is incredibly broad, it is outside the current scope to discuss individual
diseases in detail. The focus of this thesis is on the dynamics within large arteries

including aortic and peripheral artery diseases.

1.3. Cardiovascular physiology
The cardiovascular system functions as the body’s main transport system for
substances including oxygen, nutrients and waste products [6]. At the organ level,
a set of pulsatile pumps, the left and right chambers of the heart, pump fluid through

two networks of vessels, namely the systemic and pulmonary circulation. Both
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circulations consist of an arterial part, transporting blood towards the tissues and a
venous part transporting blood away from the tissues to the heart. At the
microscopic level, exchange of substances takes place in the capillaries which are

part of the microcirculation.

All remaining vessels between the heart and the capillaries are essentially conduits
transporting blood from the heart to the tissue’s capillaries. Each heartbeat, blood
gets expelled at high velocity and pressure, into the large arteries of both
circulations to be transported elsewhere in the body. In the capillaries, the pulsatile
character of the flow is no longer present and blood flow is almost constant. As
such, the main function of the larger arteries is to act as a passive pump, i.e. to store
blood at sufficient pressure in order to provide a constant capillary flow from

heartbeat to heartbeat.

The difference in function at different scales, leads to different structural
requirements and composition of each part. Blood vessels are composed of different
layers or tunics, namely the tunica intima, tunica media and tunica externa [6, 7].
The intima is the innermost layer consisting out of a layer of endothelium and
connective tissue making contact with the blood. The media consists mainly of
smooth muscle cells, elastin and collagen and is the main determinant of the
structural properties of a vessel. Lastly the externa consists mainly of collagen and
serves as a support anchor to surrounding tissues as well as protection of the vessel.

Vascular walls therefore consist of a composite material and are known to exhibit
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non-linear, viscoelastic and anisotropic behaviour [8, 9]. For the current work, a
simplification is made neglecting these non-linear characteristics and the reader is
encouraged to read the work of Fung 1993 [10] for a more thorough introduction to

the subject.

Because the function of the capillaries is to facilitate a fast exchange of substances,
the average blood pressure and flow velocity are low and the blood vessel wall
consists almost solely out of a single layer of endothelium and they consist only out
of the tunica intima. As a result, these vessels are relatively in-elastic. On the other
hand, large arteries closer to the heart need to be able to expand to store blood and
pressure energy. Elastin is the component allowing blood vessels to expand [10]

and as such large arteries have a high proportion of tunica media.

The ability of a vessel to distend due to internal pressure is called the compliance
of the vessel and is defined as the volume change of the lumen per unit pressure
change [7]. Vessel compliance introduces the phenomenon of pressure and flow
wave propagation. Were the vessel non-compliant, any pressure and flow waves
would travel at the speed of sound of the fluid, which for blood is of order O(10%)
[m s?] [11]. Whereas in reality the wave velocity is in the order of magnitude of
0O(1~10)[m s] [12]. The vessel’s compliance additionally has a dampening effect.
In the absence of vessel compliance the heart would need to output more work due
to an increased after load, the heart would need to accelerate all the fluid in the

cardiovascular system with every heartbeat and [13]. And in fact, it has been found
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in many instances that vascular stiffening can lead to pathologies including
hypertension, promotion of atherosclerosis, myocardial hypertrophy and heart

failure [14, 15, 16].

1.4. model order reduction techniques need
The use of 2D or 3D modelling and simulations can provide detailed local
descriptions of physical quantities including pressure, flow, force and displacement.
However, requirements regarding mesh element density and time-step sizes make
these simulations computationally expensive. Although few studies report mesh
independence and time-step convergence analyses, examples in literature exist. As
an example, the work from de Santis et. al [17] demonstrated that over 2 million
elements were required for grid independence. Their steady-state simulation of the
coronary circulation, using an unstructured tetrahedral mesh, required 43 minutes

for reaching convergence using a CPU with 4 cores.

For transient simulations the convergence of many time-steps is required resulting
in even longer simulation times. In addition, a full fluid-structure interaction (FSI)
coupling can substantially add to this time as demonstrated in the study of Brown
et al. [18]. An FSI simulation with a fluid mesh of the thoracic aorta containing
500,000 elements and 35,000 structural elements for the vessel wall, required over

145 hours to complete.
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The two examples mentioned above are geographically very limited in scope. Only
relatively small sections of the vasculature are represented using 3D techniques. As
such, simulation of the full circulatory system utilizing only 2D/3D techniques is
very challenging. Increasing computational power is an option as was done in a
demonstration by Zhou et al. [19] in which a simulation was performed for a large
portion of the cardiovascular system containing over 1.07 billion elements.
Simulation takes only 1.25[s] per time step using 163,840 CPU cores available from

a high-performance computing cluster (HPC).

HPC resources tend to be out of reach of most care providers as they are very costly.
It is well known that the conditions in one part of the cardiovascular system are
highly dependent on conditions throughout the rest of the cardiovascular system.
Correctly representing all relevant parts of the system is critical for accurate results.
As it stands at the current time, the computational expense required is preventative
of the use of 3D modelling techniques in a clinical setting making an excellent case

for model order reduction techniques.

1.5. Modelling cardiovascular dynamics
Cardiovascular models attempt to capture the hemodynamics of the vasculature
under study. Secomb [20] defines hemodynamics as “the physical study of flowing
blood and of all the solid structures through which it flows”. For the current context

this definition is limited to the study of structural mechanics, fluid mechanics and
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the interaction between them (FSI). The focus is particularly on the description of

pressure and flow in the cardiovascular system.

1.5.1. Modelling Fluid mechanics
The use of fluid mechanics models is finding its way into clinical applications in
recent years. In very few instances have relevant analytical solutions been found
for general problems and solutions have mostly been provided using numerical
models. Computational fluid dynamics (CFD) is the branch involved with the
numerical modelling of fluid Mechanics. The work of Morris et al. [21] provides a
small overview of studies in recent years in which CFD has proven useful in
studying various diseases or to aid in the understanding and design of medical

devices including valve prostheses and vascular stents.

All methods in computational fluid dynamics attempt to provide solutions to a set
of conservation differential equations. Under the assumption that thermal processes
can be neglected this reduces to deriving 2D/3D pressure- and flow fields using the
conservation of mass and momentum. Derivation of these equations can be found

in most introductory books [22] regarding computational fluid dynamics and are

given by:
Dp R
Mass —+V-(pv) =0 (Eg. 1.1)
conservation Dt
Dv 5
Momentum p—=-Vp+V-t+pf (Ea. 1.2)
conservation Dt
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With p the fluid density, ¥ the velocity vector, p the pressure, T is the viscous stress

tensor and f is any remaining body force per unit mass. DD—? Is the convective

derivative operator of a function according to:

D—<a+*v) (Eg. 1.3)
Dt \at 'V 4%

The conservation of mass and momentum are special case derivations of the
Reynolds transport theorem [23] which can be written for any scalar quantity y as:

DYy d

=— dQ v, - #)dl Eq. 1.4
Dt dtfﬂmp +frp<p(vr n) (Eq. 1.4)

In which ¢ is the quantity ¥ per unit mass, Q an arbitrary control volume, T its
control surface, v, the fluid velocity relative to the control surface velocity and 7
the normal vector at a point of the control surface. As such, egs. 1.1-1.2 effectively

describe the convection and diffusion of mass and momentum.

Egs. 1.1-1.2, or for that matter any set of balance equations in continuum
mechanics, can be solved using the finite difference, finite element and finite
volume methods. While finite element method solvers for fluid mechanics can be
found in academic applications it is most often used for solving structural
mechanics problems. In commercial applications the finite volume method is much
more common. Ansys Fluent (Ansys Inc., Canonsburg, Pennsylvania, USA), is a
2D/3D CFD solver utilizing the finite volume methods and will be used for the

remainder of this text.
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In the finite volume method, a domain is subdivided into smaller control volumes.
The flow of fluid is then followed through these control volumes in an Eulerian
fashion as individual fluid parcels are continuously flowing in and out of the
domain. Subsequently, the integral form of eqgs. 1.1-1.2 is used to derive a
discretised set of equations under certain interpolation assumptions. For each

control volume this leads to an equation of the form:

aphy = Z aip; + by (Eq. 1.5)

l

With quantities with subscript p relating to the current control volume, subscript |
relating to all neighbouring control volumes and b some source term. A solvable
set of equations can be formed by combining the resulting equations for all control
volumes. For a more thorough treatment of the finite volume method the reader is

encouraged to read the introductory work by Versteeg et al. [24].

1.5.2. Structural Mechanics
Whereas finite volume methods are most often used for solving fluid mechanics
problems, finite element methods are most often used for structural mechanics
problems. In structural mechanics the goal is to find stress and displacement fields
for a given structure and boundary conditions. As the focus is on control mass, it is
intuitive to define the problem from a Lagrangian standpoint. In this case

conservation of mass and conservation of linear momentum can be expressed as:

10
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D(pV
Mass (V) =0 (Eg. 1.6)
conservation Dt
0%u S
Momentum P =V-0+pf (Eq. 1.7)
conservation ot

Where u is the displacement vector and o is the stress tensor. In the case of vascular
simulations, the mass of the structure contributes little to the inertia of the system
and therefore the movement can be considered to be quasi-static. For the finite

element analysis this means that the goal becomes to find the solution to the system:
Ki=F (Eq. 1.8)

With K the stiffness matrix relating the vector of all nodal displacements # to the

vector of nodal forces . The reader is referred to the introductory text by Reddy
[25] for the process of arriving at the system of equations in eq. 1.8. ANSYS
Mechanical (Ansys Inc., Canonsburg, Pennsylvania, USA) is the finite element
analysis software used for simulation of the vascular wall. While time dependent
inertial effects are deemed irrelevant, they are still included in simulations with the

system being solved by ANSYS Mechanical [26] being:

0%u(t)  ou(t) ., . -
7z T C 3, + Kii(t) = F(t) (Eq. 1.9)

With M the structural mass matrix and € the structural dampening matrix. Inclusion
of this behaviour was considered to allow for large deformations and possible non-

linearities.

11
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1.5.3. Multiscale & Multiphysics modelling
As was mentioned before, modelling cardiovascular dynamics can be very
computationally expensive. This is further complicated by the multiphysical nature
of the cardiovascular system. Creating a model description of parts of the
cardiovascular system, many different physical aspects and time- and geometrical
scales can be considered. An example is provided for the case of modelling the
human heart in the works of Zhang et al. [27] and Chabiniok et al. [28]. 3 different
types of physics are involved, namely the electrophysiology involved in signal
conduction, the structural mechanics involved in muscle contraction and the fluid
dynamics governing the blood pumped in and out of the heart. Each of these types
of physics can be considered at a protein scale, a cell scale, a tissue scale or an organ
scale. As such multiscale electrophysiology modelling can mean including ion
channel modelling on a protein scale while simultaneously modelling the electrical
propagation on a tissue or organ level. Considering and incorporating effects on

different scales has led to the discipline of multiscale modelling.

While it is important to represent all relevant parts of the cardiovascular system, not
all parts need to consider the same level of detail. The term multiscale modelling in
cardiovascular modelling often implies geometrical multiscale modelling. This
term was introduced by Quarteroni [29] to imply the usage of different models,
incorporating different characteristic scales within the cardiovascular system. A
high-fidelity 3D model can be used to represent details at a very local scale of

millimetres for a limited part of the circulation while at its boundaries it can be

12
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coupled to 0D or 1D models representing details of entire compartments on a scale
of centimetres to meters. This approach can significantly reduce the computational
cost of these types of simulations. Arguably the most well-known pioneering works
modelling large portions of the arterial circulation are done by Westerhof [30] and
Anliker [31], respectively using 0D lumped parameter and 1D models. While these
models are not themselves multiscale, their approach to model the cardiovascular
system outside of the 3D region as OD or 1D regions, has been used in numerous

studies [29, 32, 33, 34].

As multiscale modelling techniques can significantly reduce the computational cost
of simulations, they can be an asset for translating models to a clinical setting.
However, few studies can be found regarding the numerical stability of these
models. In the current work special attention is brought to the stability in coupling
multiscale models between 3D and 0D models. For this 0D modelling is introduced

in chapter 3 with the stability considerations considered in chapter 4.

1.6. Thesis Outline
As mentioned in the motivational part of the introduction, the focus of the current
work is on stability considerations for multiscale models and model order reduction
techniques for cardiovascular models. As such Chapter 1 has dealt with introducing

the context of CVVDs

Chapter 2 starts of by introducing the need for multiscale models to pose proper

boundary conditions. Two boundary condition schemes posing BCs from

13
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retrospective data highlight the potential physical incoherence between pressure

and flow arising from directly posing measurement data at boundary conditions.

Chapter 3 discusses the lumped parameter models known as the Windkessel (WK)
models and discusses their use as BC models. An open-source plug-in for Fluent
has been created for the 2- & 3-element WK and their accuracy requirements are

analysed.

Chapter 4 discusses the stability that comes with partitioned multiscale modelling
approaches. Stability of BC couplings is analysed with respect to their energy
conservation properties and the stability of several often used explicit and implicit
schemes is considered. Based on these findings an energy conservative boundary

coupling scheme is introduced.

Chapter 5 addresses speedup techniques for FSI which includes a 3D compressible
fluid model. The chapter goes deeper into the discrepancies between conventional
2-Way 3D FSI method, the compressible fluid model and a 1D wave-propagation

model in order to suggest improvements to the 3D compressible fluid method.

Chapter 6 lastly deals with Reduced order modelling utilizing a reduced basis
approach. This chapter attempts to analyse the training-set size and the basis size
Requirements for generating a singular value decomposition (SVD) basis and

accompanying transient reduced order model (ROM).

14
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2. Clinically derived simulation
BCs

15
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2.1. Introduction
The goal of developing techniques for simulation of hemodynamics is to apply
these techniques to realistic patient-specific cases. Due to technological
advancement of computational capabilities and advancement of the field more and
more attention is directed towards patient-specific modelling in recent years. Some
examples include patient-specific cardiac models [35] , carotid artery simulation

[36], coronary simulations [37] and investigations of the abdominal aorta [38].

A review article by Taylor and Figueroa [39] offers more examples and aptly
describes the stages for patient-specific simulation of the cardiovascular system.
The first stage in their process concerns the patient-specific data acquisition. In
order to perform a 3D simulation, it is first necessary to derive a patient specific 3D
representation of the anatomy of interest. In practice, different imaging modalities,
most often Magnetic Resonance Imaging (MRI) or Computed Tomography (CT),
can be used to obtain geometric information which can be processed into a
computational mesh later on. Secondly, assuming a multiscale model, measurement
data is required to provide appropriate boundary conditions (BCs). Lastly, the data
observed dictates the physical detail required to accurately simulate the patient-

specific case.

Geometrical image acquisition and image segmentation is a subject of sufficient

complexity to be fully out of the scope of the current text. The current chapter

focusses on the modelling choices with respect to imposing BCs derived from

16
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patient-specific data. The work from two studies of Morbiduci et al. note the
importance of those BC choices. In [40] the modelling choice between prescribing
pre-set flow rate division at the outlets is compared against using a lumped-
parameter model at the boundary, noting a significant difference between both
approaches. In [41] the effect regarding the inlet velocity profiles, considering
developed and plug flow, is compared against MRI derived data for several
hydrodynamic indicators, similarly noting the importance of this choice at inlet. For
the work of Gallo et al. [42] a patient-specific geometry is simulated under various
combinations of plug flow outlet conditions including BCs derived from patient-
specific data. One of the main conclusions of this study is that BC choices are one

of the main determinants of the simulation outcome.

For measuring patient-specific physiological data, the most commonly used
techniques measuring velocity and flow include ultrasonic velocimetry and MRI.
Pressure is more complicated to measure non-invasively. Often only invasive
measurements can be taken due to the measurement location. These can be acquired
by inserting and manoeuvring a pressure wire to the vessel of interest. However due
to this invasive nature and accompanying disadvantages of this procedure, these
measurements are rarely available from retrospective studies while it is difficult to
prospectively acquire them. Pressure can be obtained non-invasively from remote
locations as for example from brachial cuff measurements, but models are required
to relate these measurements to local blood pressures within the region of interest.

An example includes the estimation of central aortic blood pressure(ceBP), which

17
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is the blood pressure internal to the ascending aortic arch. Acquisition of ceBP is
outside the scope of the current text but an interested reader is referred to a review

article by Stergiou et al. [43] .

The focus of the current study is investigation of patient-specific boundary
conditions for a thoracic aorta flow phantom. A study by Muller [44] investigated
the dynamics of flow and pressure for the thoracic aorta using several imaging
modalities and measurement techniques. The goal of this study was to measure flow
at multiple sites along the thoracic aorta and the supra-aortic vessels for a cohort of
patients. This data was used to derive flow signals representative for the cohort to
be used as BCs for a mock aortic circuit. A secondary outcome of these experiments
was derivation of pressure and flow curves suitable for numerical simulation using
CFD. Suitability of the results by Muller [44] with respect to CFD simulation
remained untested after successfully representing flow signals using characteristic

feature points.

The chapter goal is to attempt patient-specific simulation from a scenario of mock
retrospective data. For this mock aortic set-up pressure data is available for the rigid
walled phantom from Miller, which was very kindly provided by Prof. Dr. Hendrik
von Tengg-Kobligk making this chapter possible. This allows for an analysis under
the best of conditions possible without confounding physical effects like vessel
compliance or patient movement. Two different numerical boundary schemes are
compared against measured data in order to provide insights in the difficulties

regarding the treatment of retrospective data.
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2.2. Mock aortic set-up
The flow phantom part of the mock aortic circuit set-up is shown below in fig. 2.1,
Is made out of acrylic and is therefore rigid. Locations of the vessels are indicated
in white and refer to the ascending aorta (Asc), right subclavian artery (Rsa), right
carotid artery (Rca), left carotid artery (Lca), left subclavian artery (Lsa) and the
Descending aorta (Dsc). At the Asc inlet, the flow phantom was connected via PVC
tubing to a pulsatile flow pump and a bicycle inner tire acting as a compliance. At
all outlets, tubing was connected to a set of valves to regulate the resistance of each
outlet, before returning to the inlet of the pump. During operation, the circuit is a
fully closed circuit. To create a mean hydrostatic pressure comparable to the
average pressure in the cardiovascular system a water bath is connected
downstream to the flow phantom, which can be raised to a certain level. Pressure
was measured through luer-lok fittings, small fittings which in this case enable
connecting the flow phantom to pressure sensors by PVC tubing. Locations for
these fitting are indicated in red following the naming convention of the vessels.
Flow was measured in different places depending on the measurement modality
used. Using MR, for both 2D-plane and 3D+t measurements, flow measurements
were derived at or close to the location of the luer-lok fittings. Ultrasound flow
meters were connected in-line with the PVC tubing connecting the phantom to the
remaining components of the mock aortic circuit. As such, ultrasound flow

measurements are made external to the flow phantom. It is assumed that both the
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PVC tubing and the acrylic flow phantom are effectively rigid and therefore all

measurement modalities should theoretically represent the same flow.

Fig. 2.1 - Flow phantom from Muller [44]. Indications in white for

boundary/vessel location, indications in red for pressure measurements at

integrated Luer-locks.

Conditions in the flow phantom are similar to those in the human cardiovascular
system. In the physiological case, the heart exerts a pressure expelling a volume
equal to the stroke volume with each heartbeat into the aorta. Due to aortic
compliance, part of the stroke volume gets stored at a certain pressure within the
aorta while a part flows through to the downstream vasculature. The volume that is
stored, eventually flows through into the venous system, which effectively acts as
a storage with a very high compliance. Pressure within the venous system is
relatively constant for all practical purposes and therefore the distribution of flow
is predominantly determined by the resistance encountered along the way through

the different tissues. In the flow phantom conditions are similar to a degree, where
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a volume can be stored at a certain pressure within the bicycle tire, while the flow
distribution is determined by a set of valves. However, the venous compliance is
absent. This implies that the pump effectively dictates a flow boundary distal to the

resistances caused by the valves.

The flow phantom experiment is able to provide pressure and flow measurements
for an incompressible flow through a known rigid geometry. The exact geometry is
available from computer aided design (CAD) files used to produce the flow
phantom. These will be used to attempt the numerical modelling of the flow
phantom and look at the data requirements for CFD. As pressure and flow
measurements at locations within the phantom are used, it is unnecessary to analyse
or model the remaining components of the flow and these are considered as black-

box components.

2.3. Numerical simulation setup

2.3.1. Computational scenarios

Two numerical scenarios have been designed which are classified according to their
BCs. Regardless of the scenario, the Asc inlet is always prescribed as a mass flow
boundary. Due to the inclusion of the compliance of the bicycle tire before the inlet,
it could be argued that pressure should be prescribed instead. However, the pressure
inside the tire is unknown and it is unlikely in patient-specific cases that pressure
data is available. As a result, one of the outcomes of both scenarios is the pressure

at inlet. Downstream, the Dsc outlet is prescribed as a pressure boundary in order
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to not over-constrain the numerical setup. As a result, another outcome for both
scenarios is the flow at the Dsc outlet. The two scenarios are now defined by the
description of the remaining 4 boundaries of the supra-aortic vessels (RSA, RCA,
LCA and LSA). The first scenario is referred to as the pressure-BC scenario as all
remaining boundaries are prescribed as pressure boundaries. The second scenario
is referred to as the flow-BC case in which all remaining boundaries except the
descending outlet are flow boundaries. These two experimental setups represent

two different physical cases for aortic flow.

The pressure-BC case represents a situation where pressure differentials between
outlets govern the flow fraction over a cycle. Pressure measurements can be made
from remote locations with respect to the region of interest and related back to
locations within the region of interest either through a set of assumptions or an
underlying model. Inflow conditions can be determined from estimating the stroke
volume from the heart for which in practice the most common options include
ultrasound and or gMRI measurements. Advantages of this approach from a data
collection point of view, are that other more readily available modalities than MRI
can be used to estimate the required BC data, but it is difficult to obtain sufficiently
precise pressure measurements. An important outcome of simulations done using

the pressure scenarios is the flow at the outlets.

The flow-BC case is more representative of the current day clinical conditions and

can be used to determine the pressure distribution. Flow distribution through the
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outlets is fully pre-determined however and for the current case requires flow
information for all supra-aortic vessels. At the present time, flow data for these
vessels requires investigation using MRI. The advantage of this approach is that the
pressure at the Dsc boundary is only used as a pressure reference and therefore the
results are expected to be far less sensitive to any measurements error with respect
to this pressure. The resulting outcome of this approach however is only the

pressure distribution between the separate vessels.

2.3.2. Computational setup

Fig. 2.2 demonstrates the process for constructing the computational mesh.

Geometry

Fig. 2.2 - Polyhedral computational mesh(right), constructed from

geometry(middle) derived from interior volume of CAD model(left)

A CAD-model was available from which the physical flow phantom was
constructed. Construction of the geometry consists of determining the internal
volume of the flow phantom which was accomplished using Spaceclaim (ANSYS

Inc., Cannonsburg, Pennsylvania, US). The tapered connection at the inlet has been
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retained in order to simulate the inlet effects of the experimental setup, while the
outlet has been cut at the location of the luer-lok used for pressure measurements.
It is assumed that the tapering at the outlet has a limited effect on the pressure and
velocity profiles within the flow phantom. The computational mesh is constructed
using Fluent Meshing (ANSYS Inc., Cannonsburg, Pennsylvania, US). A mesh is
constructed using polygonal elements with an average diameter of approximately
1[mm] in addition to a set of 7 prism-layers near the wall. Finally, the mesh is used
in a simulation using Fluent (ANSYS Inc., Cannonsburg, Pennsylvania, US). From
the flow data reported in the thesis by Muller, it was estimated that the maximum
flow velocity is approximately 2[m/s]. As such to satisfy a courant number of
CFL = 1[—] atime-step of At = 5- 107*[s] is chosen. The peak Reynolds number
in the wider section of the ascending aorta is estimated to be in the order of
magnitude of O(Rep) = 10*[—] necessitating the inclusion of a turbulence model
for better convergence properties of the simulation. For this purpose, a large eddy
simulation was performed with the Smagorinsky-Lilly subgrid-scale model. While
this model is not appropriate for the conditions within the phantom, this model has
the lowest requirements in terms of data and model set-up. BC profiles, regardless
of the physical quantity prescribed, are prescribed as uniform scalar values over
their surfaces. Therefore, it is assumed that pressure and flow can be averaged over

the boundary surfaces, i.e pressure and velocity are independent of radial position.

2.4. Data pre-processing

2.4.1. Flow pre-processing
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Before proceeding to simulation of both scenarios it is necessary to pre-process the
acquired data. Upon closer inspection of the datasets provided by Miller, only the
raw data from the flow measurements was available. Effectively, this means that
flow signals over time were available from ultrasound measurements whereas raw
MRI data was available for the 2D- and 3D-PC MRI derived measurements. Due
to the complex nature and the expertise required for pre-processing MRI data, a
choice was made to forego analysis of the MRI data and attempt simulating the
experimental setup based on the ultrasound measurements. As an example, fig. 2.3
below demonstrates the flow derived for all 3 flow measurement modalities as

reported in the thesis by Miiller.

400 - Native config ASC
] Flowmeter

3507 ——2D-PC MRI
= 300 ——3D-PC MRI
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Fig. 2.3 - Ascending aortic boundary flow from Ultrasound flowmeters, 2D-PC &

3D-PC MRI (Miiller [44])

A maximum difference of about 25[ml/s] exists between measurement modalities,
corresponding to approximately 8% of the maximum flow. Additionally, it can be

seen that the 2D-PC MRI results follow the ultrasound measurements more closely
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over the full duration of the signal as compared to the 3D-PC MRI results. While
no information is available on the true pressure and flow conditions, it can be argued
that the flow patterns are representative of the true flow due to good agreement

between different measurement methods.

Graphs were available in the thesis for all boundaries of the flow phantom, but an
attempt is made to reconstruct the flow using the data provided by the raw

ultrasound flow measurements.

Flow was measured using 3 ultrasound probes simultaneously. As there are 6
boundaries besides the wall itself, ultrasound flow measurements were made using
effectively two separate experiments. Flow through the Asc, Rsa and Rca
boundaries were simultaneously measured first after which the ultrasound probes
were relocated behind the Dsc, Lsa and Lca vessels. As the ultrasound probes are
an in-line component of the setup rather than a device placed over the outside of the
PVC tubing, it was necessary to shut off the pump and recalibrate the setup after
relocation of the ultrasound probes. Therefore, besides 3 of the 6 flow
measurements not being recorded at the same time it cannot be guaranteed that the

measurements were taken under identical conditions.

For the native configuration of the aortic arch approximately 70[s] of usable raw

ultrasound flow data was available at a resolution of approximately 20[Hz]. A

single flow cycle lasts for 1.024[s] which is dictated by the cycle duration of the
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pulsatile pump. A set of data point and their measurement time was available with
unequal spacing in time. These measurement points were then distributed over 50
subintervals of equal length within their cycle. As a first attempt, the subintervals
for all cycles are grouped and averaged. The group averaged flow over a cycle can
be seen in fig. 2.4. It can be seen that the Asc and Dsc flow measurements appear

to contain noise and showcase discontinuous flow patterns between data points.

350 Group averaged Flow from data

0 200 400 600 800 1000
time[ms]

Fig. 2.4 - Group averaged flow at flow phantom boundaries from raw ultrasound

measurements.

To smooth the flow over a cycle and increase the time resolution, cubic spline
interpolation was used as suggested in study of Miller et al. As can be seen from
fig. 2.5 however, the flow measurements retain their noise and are not
representative of the measurements presented by Miiller. Therefore, this approach
is deemed unacceptable for re-producing flow signals suitable for numerical

simulation.
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250 Cubic spline interpolated flow

Fig. 2.5 - Cubic spline interpolation g;nt;[he] group averaged flow from fig 2.4.
To obtain more acceptable flow curves for numerical simulation a separate process
as described in the thesis of Midller is broadly followed. This process will be
partially demonstrated for the ascending aorta boundary (Asc). Firstly, a cubic
spline is fitted throughout the entire dataset obtained from the continuous
measurement of approximately 70[s] in duration. The resulting signal is then
resampled at 128 datapoints per cycle which is equal to a frequency of 125[Hz].
Each individual cycle can be regarded as a single instance of an ensemble average.
Data was available for the raw measurements indicating when one cycle ends and
the next begins. However, this resulted in individual cycles of intermittent length.
l.e. subsequent cycles would either contain 21 datapoints or 22 datapoints. It is
likely that this is an artefact of the discrete sampling rate. Additionally, upon closer
inspection it appeared that the full-length signal drifts slightly over time, indicating
that the signal is slightly longer than the indicated 1.024[s]. Fig. 2.6 depicts the first
60 cycles where the drift over time has manually been corrected as well as possible
in order to have a minimal spread between all signals within the dataset. A choice

was made to only isolate the first 60 cycles as the remaining cycles had very
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apparent data anomalies which did not describe the physical process within the flow
phantom. Following this correction process, the signals were resampled for all

signals to have equally spaced points over time.

Asc: 60 cycles
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Fig. 2.6 - Ensemble of Asc flow cycles derived from ultrasound demonstrating

signal variability.

Finally, the ensemble average of all cycles is taken to give flow signal
representative of the conditions within the flow phantom. Fig. 2.7 depicts the

ensemble average of these 60 cycles:
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Fig. 2.7 - Ensemble average of all Asc flow cycles
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In comparison to the results from the thesis by Miller, it can be remarked that both
the maximum and minimum flow are marginally higher, with the maximum flow at
approximately 350[ml/s] and the minimum at approximately -25[ml/s]. The
maximum flow derived from fig. 2.3 from the work of Mller is approximately 325
[ml/s] while the minimum is approximately -35[ml/s]. This difference is within the
order of magnitude of the difference between the different measurement modalities.
Additionally, it was mentioned that the native configuration of the aortic arch was
measured separately twice to study repeatability of the experiment resulting in a
4.45[%] difference in average flow. It is unclear from the text if the reported graphs
belong to the first or the second measurement experiment. For the current study a
choice was made to analyse the data of the second measurement experiment as the
corresponding pressure measurements correspond better with the flow patterns
prescribed at the inlet. Therefore, the difference might be explained by the analysis
of different datasets. Lastly, only the first 60 cycles of the dataset were considered
potentially changing the magnitude and average flow of the ensemble averaged
signal. Besides these discrepancies, the signal is considered to be in reasonable

agreement with the results from Miller.

The process above was similarly carried out for all other boundaries, matching the
individual cycles. There are effectively 2 datasets for a measurement experiment.
The first dataset consisting of the Asc, Rsa and Rca data while the second one
consists of the Dsc, Lsa and Lca data. Signals within a dataset can be processed

simultaneously. However, as the data in the two datasets has been measured
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independently, they are uncorrelated in time. Information on the required time shift
to correlate both datasets was available for the raw ultrasound measures. The result

for all ensemble averages is provided below in Fig. 2.8:

Ensemble averaged flow
350 T T T T

N_~

0 0.2 0.4 0.6 0.8 1
time[s]

Fig. 2.8 - Ensemble averaged flow cycles for all boundaries

When compared to the graphs from Mdller the graphs of the current study have
similar patterns, maximum and minimum flow. However, they are not identical due
to the same discrepancies mentioned for the derivation of Asc flow.

While these results seem encouraging, a number of issues still exists at this point
with respect to using these flow signals for numerical simulation BCs. Most
importantly, due to the rigidity of the flow phantom and the fluid being
incompressible, the inflow needs to be exactly equal to the outflow to comply with
the conservation of mass. Fig. 2.9 below shows the inflow through the Asc and the
combined outflow of all other boundaries. For a large part of the cycle, mass is not
conserved. Were mass conserved, both graphs for in- and outflow- would overlap.
For the first 0.7[s] of the cycle, the outflow signals seem to have shifted with respect

to time nor are the maxima and minima of the in- and outflow equal.
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Total In-/Outflow
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Fig. 2.9 - Inflow through the Asc and outflow through the remaining boundaries

of the flow phantom showing non-conservation of mass over time.

To make the flow comply with the conservation of mass, the difference between in-
and outflow, hereby referred to as the residual flow, is either added to or subtracted
from the outlet boundaries. In order to determine the portion of the residual flow
attributable to individual boundaries, each boundary receives a percentage of the
total residual flow, according to the flow fraction of that individual outlet. For
example, the Dsc has a flow fraction of approximately 68% of the total inflow and
therefore receives 68% of the total residual flow for each time-step. The average
flow per cycle after this correction, adhering to the conservation of mass is depicted

below in fig. 2.10:
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250 Corrected ensemble averaged flow
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Rsa
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Dsc
Lsa
Lea | 4
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Fig. 2.10 - Ensemble averaged flow cycles corrected for conservation of mass.

Lastly, for an ensemble average for which the conditions remain unchanged, the
resulting signals should be periodic. While this is not apparent from fig. 2.10, the
flow cycles provided are not periodic and cause data discontinuities during
simulation. Depending on which types of BCs are set for the numerical model in-
silico, this might be a requirement for simulating consecutive cycles. A straight-
forward way of guaranteeing continuity between cycles is to approximate these
signals using a Fourier series. For this purpose, the signals have been approximated
using the first 20 harmonics, and subsequently sampled at 2000[Hz] for producing
10 consecutive cycles. This sampling rate is a necessary requirement imposed by
the simulation time-step size which in turn was imposed by the element size and
flow velocity. The resulting flow cycles are shown for the first 5 cycles in Fig. 2.11.
These are used for numerical simulation in both the pressure-BC and the flow-BC
scenario. To obtain a lower discrepancy between the Fourier series approximation
and the original signals, the original signals were shifted in time in order for the

Asc flow to start in a local minimum at ¢t = 0[s]. It should be noted that application
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of a Fourier approximation after enforcing the balance of mass, breaks that
enforcement. This discrepancy can be rectified by re-enforcing the balance of mass
after producing the continuous signal containing multiple consecutive cycles.
However, due to prescribing the Dsc as a pressure boundary, a degree of freedom
exists to guarantee mass conservation and the difference with respect to the

measured data is expected to be negligibly small.

Cyclic Flow Signals

T T T T T

Asc
Rsa
Rca
Dsc
Lsa
Lca

time|s]
Fig. 2.11 - Ensemble averaged flow cycles after correcting for conservation of

mass and enforcing periodicity used for simulation.

2.4.2. Pressure

Only one set of data was available for the pressure cycles similar to those reported
in the thesis of Miiller et al. Therefore, no ensemble averaging of raw data was
possible. In order to obtain cyclic pressure measurements, all signals were
smoothed and subsequently approximated by the 20 first harmonics of a Fourier
series, sampled at 2000[Hz] producing again 10 consecutive cycles. The results of

pressure signal processing for a single cycle are depicted in Fig. 2.12 below.
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Pressures
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Fig. 2.12 - Pre-processed Pressure signals used for simulation

2.4.3. Pressure- and Flow-measurement inconsistencies
Lastly it should be noted that pressure signals were measured during the acquisition
of the MRI signals. Before the MRI measurements could be taken it was necessary
to remove all ultrasound flow probes and subsequently re-calibrate the setup. As
such it cannot be guaranteed that pressure signals correlate with any of the flow
signals with respect to time or the overall experimental conditions. Physically
however, pressure and flow are very strongly coupled. Without modelling the
geometry in some form or way, it is not straightforward to match the pressure and
flow signals with respect to time or magnitude, as the acceleration of flow depends

on the local pressure gradients.

Some inconsistencies between pressure and flow data can be shown a priori, based
on the measurement data alone. As demonstrated by the flow fraction of 68[%]
towards the Dsc, it can be assumed that the main flow occurs between the Asc and

Dsc. Fluid acceleration and deceleration between the Asc and Dsc, can be estimated
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by the pressure differential between these outlets. This is a result of applying
Newton’s second law of motion and therefore pressure is directly proportional to
acceleration. Acceleration can also be estimated from the time derivative of flow.
In order to compare the patterns for acceleration derived from the pressure
differential and the boundary flow, their respective signals are rescaled according
to equation 2.1. This scales signals to have a range of 1 between their maximum
and minimum value but retains the zero-crossings from the original signal.

@(t)
max(¢(t)) — min (¢(1))

Pscatea(t) = (Eq. 2.1)

Fig. 2.13 below shows the time derivatives of the boundary flow at the Asc and Dsc

in blue and red respectively, as well as the pressure differential between both

boundaries shown in purple.

Indication of fluid acceleration
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time|s]
Fig. 2.13 - Accelerative/decelerative phases of the flow derived from Pressure
differential between the Asc and Dsc boundaries and derived from flow

measurements do not agree.
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Accelerative phases according to the pressure differential have been drawn as
shaded areas in purple, while decelerative phases have been drawn as areas shaded
in red. It can be seen that the time derivatives of both in- and outflow signals have
different accelerative and decelerative phases compared to the acceleration derived
from the applied pressure differential. The initial acceleration peak for the flow
derived acceleration occurs earlier compared to the pressure differential while the
second accelerative phase occurs later. More importantly according to the pressure
differential the first acceleration phase starts at 0.8[s] of the previous cycle and does
not end untill approximately 0.25[s] of the current cycle corresponding to a duration
of 0.45[s]. For the flow derived acceleration the duration of the first accelerative
phase is only 0.2[s]. Additionally, a clear difference exists even between the in- and
outlet flow with respect to the first decelerative phase which seems unlikely to
occur, given that the flow phantom is rigid, has no compliant parts and the fluid
being incompressible. As mentioned before, It is unclear how to preprocess the
pressure signals to satisfy the balance of momentum without modelling the physics
involved one way or another. Therefore, as BCs for the numerical simulations, the
signals from Fig. 2.11 and 2.12 above have been utilised. It is expected that these
descrepancies can be compensated to an extent due to the posed BCs of the
numerical simulations but will result in different results compared to the

measurement data.
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2.4.4. Fluid density

The fluid flowing through the mock aortic circuit is described as a blood analogous
fluid with a reported viscosity. Numerical simulation of the flow phantom requires
a measurement or an estimate of the density of this mixture which is unreported.
The fluid consists of a mixture of water and glycerine which at 23°[C] results in a
dynamic viscosity of u = 4.4[cP]. It is mentioned that the mixture is 40[%]
glycerine and 60[%] water by volume. A density model by Volk and Kahler [45] is
used, which is fitted to within an error margin of 0.07[%] with respect to measured
densities from literature. Therefore, it is estimated that the density of the fluid used

in the mock aortic circuit was approximately p = 1112.7 [Kg m™3] .

2.5. Simulation Results

2.5.1. Pressure-BC scenario

Pressure and flow are only shown for boundaries where that specific quantity was
not used as a BC. Therefore, inlet Asc pressure and the flow on all other boundaries
are the outcomes of the simulation. Before proceeding to the pressure results it
should be noted that this simulation diverges during the 2" cycle for reasons that
will become clear further on. Therefore, this strategy was not suitable for simulating

this setting.

Pressure curves for the pressure-BC case are shown below in the top graph of fig.

2.14. for the first simulation cycle.
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Fig. 2.14 - (top) pressure curves from simulation showing the discrepancies with

respect to measurements. (bottom) Accelerative/decelerative phases derived from

simulation pressure and flow measurements in good agreement.

The ascending aortic pressure is of the same order of magnitude as the measured

data but displays a different pattern with respect to the first half of the cycle. The

maximum pressure peak from simulation occurs earlier but is larger in magnitude

after which the pressure is lower for most of the remainder cycle. The bottom graph

of fig. 2.14 shows fluid acceleration indicators analogous to fig. 2.13 above but

including the pressure data derived from simulation instead of measurements. The

pattern for fluid acceleration derived from the flow results agrees well with that of

the pressure differential between the Asc and Dsc boundary. This implies that the

pressure differential between these 2 boundaries is mainly governed by the inlet
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flow rather than the imposed pressures. It is not possible to arrive at a simulated
inlet pressure similar to the measured pressure given the imposed pressure
conditions at the remaining outlets downstream. Additionally, no indication is
provided to which measurements are coherent with each other. Under the
assumption that the used modelling conditions represents the physical experiment,
it can only be inferred that an incoherence between measurements exist. Therefore,
regarding the measurements, it can only be concluded that the measured pressure
differential between the Asc and Dsc boundaries is incoherent with the measured

flow at the Asc.

The flow signals can be used to explain the non-convergence of the simulation. Fig.

2.15 below displays the flow through all outlets for the first cycle.
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Fig. 2.15 - Flow comparison between simulation (solid lines) and measurements

(dashed lines) indicating big discrepancies for all boundaries.
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Positive flow indicates flow out of the domain. Simulation data is denoted by a
subscripted ‘s’ and depicted using solid line, while measurement data is denoted by
a subscripted ‘m’ and depicted by dashed lines. Flows from measurement are
periodic by design and approach zero for all supra-aortic branches. However, the
flow from simulation is not periodic and at the end of the cycle, flow enters the
domain from the Lsa vessel and leaves the domain from the Dsc vessel downstream

even when no flow is provided at the Asc inlet.

A cross-section of the 3D velocity field is shown in fig. 2.16.

Velocity
Contour 1

Fig. 2.16 - A fluid jet enters domain through Lsa boundary in absence of inlet

flow

Att = 1.024[s] astrong jet is visible, directed back into the flow phantom domain
eventually impacting the wall of the aortic arch. The pressures imposed at the
outlets cause a net acceleration of fluid along the path between the Lsa and the Dsc
over a single cycle. For this to happen in the physical setup, fluid from the outlets

would have to flow back into the flow phantom without any driving force. In this
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case, the pump is the only driving force which cannot drive the flow between the
Lsa and Dsc vessel. Hence, these signals cannot be coherent with the physics within

the mock aortic circuit.

As the imposed BC signals are periodic, it is expected that the flow is increased
more over subsequent cycles. It was indeed observed that during the 2" cycle the
simulation diverges as the flow between the Lsa and Dsc grows exponentially.
Before diverging around 0.6[s] into the 2" cycle, the velocity through the Lsa
boundary is approximately 1.8[m/s] into the interior of the domain, which
corresponds to a Reynolds number of approximately Re=4000[-]. For clarity of the

graphs the 2" cycle of pressure and flow have been omitted.

2.5.2. Flow-BC scenario

This simulation strategy lead to a successful convergence and simulation was
stopped after the 2" cycle due to periodicity of the result. Due to imposing flow
BCs on all boundaries except the Dsc, the flow at the Dsc boundary is fully pre-
determined. A figure has been omitted as the inlet and outlet flow graphically
overlap. The RMS-difference between simulation and measurements for the Dsc
flow is RMS =9.86-1077[m3-s~1] with a normalized RMS of NRMS =
0.43[%]. Although minor, This discrepancy was caused by not re-enforcing balance

of mass for the measurements after making a Fourier approximation for periodicity.
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Fig. 2.17 below displays the pressure at the boundaries from simulation on the left

and the measured pressures as reference on the right.
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Fig. 2.17 - Pressure from simulation(left) and from measurements(right). Little
spread exists between the simulated pressures while the inlet pressure is higher

and earlier compared to measurements.

The most remarkable difference between the simulation and measured results, is
the spread between the pressures of the individual boundaries. For the simulation,
the mean over time of the maximum pressure difference between any 2 outlet
boundaries, is approximately 141[Pa]. This includes the Dsc boundary not
displayed in the graphs below. For the measurements, this mean value amounts to
approximately 487[Pa]. This is especially apparent when comparing the peak
pressures excluding the Dsc boundary. The difference between the Lsa and Lca
boundary is approximately 1000[Pa] for the measured data. For the simulated data
the maximum peak pressure difference occurs between the Rsa and Lca boundaries

and is approximately 90[Pa] which is an order of magnitude smaller.
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These results imply that, given the provided boundary flow signals, the measured
pressures do not correspond with the physics present within the flow phantom. As
an example, consider the Lca and Lsa vessels again. It seems unlikely that peak
pressure differentials of order of magnitude O (Ap)=1000[Pa] would exist between
te Lca and Lsa boundary. The Lca and Lsa vessel are of equal length, have equally
long paths back to the pump and connect to the aorta at sites with approximately
only 1[cm] distance between them, making them geographically very close. It can
be seen from the measured flow graphs in Fig. 2.15 above, that the flow through
the Lca and Lsa vessels is very similar. This implies that either there should be no
pressure differential between both vessels or significant amounts of flow should
appear between the Lca and Lsa vessels. As was considered before, the latter case
is highly unlikely due to the fact that the only driving force in the system is the
pump at the inlet. Furthermore, the pressure differential between these 2
geographically close vessels has the same order of magnitude as the one between
the inlet and all other outlets. It is thus very likely that the pressure was measured

with a significant error.

An important result of the preceding exercise, is that failing to reproduce
measurement results using numerical simulation, or failing to produce any
simulation results at all, does not automatically imply that the applied modelling
approach is wrong. Numerical simulation of experimental setups or patient specific

measurements can provide an additional tool to either validate measurements or
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highlight data inconsistencies that should not be physically possible. Therefore it
remains important to quantify the quality of measurement data and apply
corrections where necessary besides investigating the appropriateness and accuracy

of the numerical model.

2.6. Discussion
Comparing the pressure-BC and flow-BC case, it is perhaps unsurprising that the
pressure-BC strategy is unsuccessful. The case being simulated is a rigid flow
phantom with only one means of storing energy, namely through kinetic energy.
Kinetic energy is fully determined by the velocity associated to a certain mass.
Therefore velocity or flow would be the only state variable were this model to be
reduced to a state-space description. For the flow-BC case, the velocity is fully
predetermined and all BCs are periodic in nature. Hence at the end of a cycle, the
initial state of kinetic energy is reached and therefore the initial state of the entire
system. The only new information this system provides is the pressures at the inlet
and supraaortic vessels which can almost be considered as a post-processing

exercise.

For the pressure-BC case, pressure differentials exist between outlets which
indirectly prescribe the acceleration of fluid between outlets. The acceleration
caused by local pressure gradients, cause a change in the local fluid velocity and
thus a change in Kkinetic energy. This means that, unless the energy added and

subtracted to the system is periodic over time, it can not be guaranteed that pressure
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and flow are periodic over time. In other words, a strong coupling exists between
the pressure and flow in a system. The coherence between pressure and flow signals
can be observed by considering the energy flux attached to them. It is however not
straightforward to correct measurement results a priori based on these observations.
Even if a correct estimate of the energy flux over a boundary is known, should it be
the pressure or the flow measurements that are corrected? Additionally, a precise
estimate of viscous losses needs to be available to impose the balance of energy. A
better approach seems to be to optimise the coherence between pressure and flow

at the moment of data-collection.

It was noted previously that a turbulence model was chosen which is inappropriate
for the current setting. The Smagorinsky-lilly model was shown in numerous
studies to perform well for homogeneous isotropic turbulence [46, 47] for which
the constant Cs = 0.17 was determined by Smagorinsky [48]. This is not the case
for cardiovascular flows as often transitional flow regimes are encountered.
Additionally, in laminar regions of the flow, as potentially in the supra-aortic
vessels or flow near the vessel wall, this model is overly dissipative. However these
consideration seems unlikely to explain the magnitude of the differences observed
from simulation with respect to the focus of the study. The overly dissipative effect
of the simulation more likely has a stabilizing effect on the simulation, giving the
analysis the best possible chance at attaining stability. A full analysis of turbulence

models for cardiovascular simulations is out of the scope of the current project.

46



Chapter 2

Additionally, it should be noted that patient-specific flow simulations need to
include one additional level of complexity, namely vessel compliance. By including
vessel compliance, local pressure becomes an additional state variable. Besides
kinetic energy, potential energy can be stored due to elasticity of the wall and it no
longer holds that the flow-BC strategy fully determines the energy contained by the
system. Hence, it becomes important to know the pressures applied over the domain
to determine the change in energy within the domain. Guaranteeing conservation of
energy over a cycle, necessitates coherence of pressure and flow over the

boundaries of the domain.

Due to the uncertainty in measurements and often the unknown link between
different signals measured under different conditions or at different times, it is
challenging to directly prescribe pressure and flow for simulations from
measurements in a correct manner. The uncertainty of measurment signals can only
be augmented by improving measurement accuracy. However, the signal coherence
problem can also be overcome by modelling the conditions upstream and
downstream of the region of interest, which is to be adressed in chapter 3. Data
aqcuisition for these types of boundary models, should then focus on obtaining data
usable for fitting the parameters used for these models. Boundary conditions posed
in this manner are less susceptible to measurement errors over time and signal

incoherence.
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3. Windkessel Boundary

conditions for Fluent
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3.1. Introduction
The chapter is intended to introduce the concept of using physical models as BCs
as opposed to the direct measurement data usage strategies explored in chapter 2.
Making use of BC models addresses some of the coherence issues between pressure
and flow at boundaries, described in chapter 2. The use of additional physical
models is part of the multi-scale modelling approach which will be further explored
in Chapter 4. As such the goal of this chapter is to provide tools for the following
chapters as well as provide a numerical analysis regarding the conditions under

which this model should be used.

For the current chapter, the computational aspects for the Windkessel (WK)-model
are described as part of the integration within Fluent (ANSYS, Canonsburg,
Pennsylvania, US). For the remainder of the thesis, this model is used as the BC
model for distal boundary termination. After introduction of the model, a
description is given of the implementation within Fluent. This is followed by
verification of the model including time-convergence studies for pulsatile flow
characteristic of arterial flow. An extensive review regarding the practice of
validation and verification for computational fluid dynamics is available

Oberkampf and Trucano [49] for the interested reader.

Lastly it should be noted that the WK-model was released as a ready-to-use ACT

extension for fluent. It was distributed as a free open-source add on the ANSYS

App store.
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3.2. Windkessel models
Windkessel models are often used to impose downstream boundary conditions
representing the distal vasculature. Historically the name of these types of models
derives from a pressure storage vessel used in fire engines at the time. This class of
lumped-parameter models can be constructed from 0D-components which will be
discussed below. Otto Frank [50] proposed the original 2-element WK-model
consisting of a compliance element and a peripheral resistance (Fig. 1a) to model
the afterload of the heart. As such it can be used to account for the compliance and
resistance in the entire cardiovascular system using only 2 parameters.
Improvements of this model led towards the 3- and later the 4-element WK-models
in which the additional effects of impedance and fluid inertia were added in

different configurations.

A comprehensive review on 0D-models for cardiovascular models, including the
windkessel models can be found in Westerhof et al. [51], while the article by Shi et
al. [52] provides a more detailed review regarding 0D and 1D-modelling.A choice
was made to implement the 2- and 3-element WK-models, depicted in fig. 3.1, due

to their relatively simple structures:

P (1) Poue(t) P;, (t) P,(t) Py (t)
qin(t) qn(t) Four(t) qin(t) qn(t) Tour(t)

(e R ——0 o— z R l——o

—C

g

| R.() ! | B:(t)
(a) ° L a® (b) L ge()

Fig. 3.1 - (a) 2-element WK-element, (b) 3-element WK-element.
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More detailed and accurate models exist capable of describing the pressure and flow
in parts of the cardiovascular system. However, the loss in detail within these
compartments of the model is acceptable as the primary goal is to provide realistic
boundary conditions to the upstream vessel in the form of either pressure or flow.
Additionally, a large advantage of these WK-models is that only 2 or 3 parameters
need to be estimated from clinical data while retaining low computational cost for
model evaluation. To obtain the 3-element windkessel model from the 2-element
windkessel model, an impedance element, Z, is added. This resistance has been

introduced to match the input impedance to that of the connecting vessel upstream.

Differential equations for the 2- and 3-element WK models are given in egs. 3.1-
3.2 respectively. The different variables are denoted as the inlet flow Q;,, the
pressures at the inlet, compliance and outlet denoted by P;,, P. and P,,;
respectively, the compliance C, the peripheral resistance R, and the vascular
impedance Z. An impedance element was added to the 2-element WK-model to
provide impedance matching at the interface between models. The 2-element WK-
model can therefore easily be derived from the 3-element WK-model, by setting the
impedance to zero. For the remainder of the discussion, all derivations are based on

the 3-element WK-model.

Cd(Pi _Pc)_l_Pi _Pout

Eq. 3.1
T o (Eq.3.1)

Qin =
d(Pin - QinZ _Pc) +Pin - QinZ_Pout

Eq. 3.2
pr 7 (Eq. 3.2)

Qin =C
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3.3. 0D-Components
The WK-model equations can be represented as a set of 0D-element equations.
Modelling the cardiovascular system using 0D-methods, requires representation of
the main characteristics of the full 3D-model. These characteristics are the viscous
losses in the system, the fluid inertia of the transported blood and the blood vessel
compliance. Viscous losses can be represented using a resistance element,
dissipating energy. Examples of this kind of dissipatory effects are wall friction or
turbulent effects. Mainly, in larger blood vessels inertial energy is stored or released
due to accelerating or decelerating a mass of fluid and is represented by an inertance
element. Additionally, Blood vessels can expand and contract, storing or releasing
potential energy in the form of a driving pressure. This effect is called vessel

compliance and is accounted for by compliance elements.

Element Equation

—

Resistance/Impedance

Ap(t) = q(H)R (Eq. 3.3)

o YTV o aq
Ap(t) = La(t) (Eq. 3.4)

Inertance

[l o
: a(t) = Co-(Up)(®) (Eq. 3.5)

Compliance

Table 3.1 - 0D-modelling components and their mathematical description as a
function of pressure, Ap and flow q.
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The previously described characteristics can be translated to 0D-elements relating
pressure over an element Ap and flow through an element g. Table 3.1 presents the

equations from which to build most 0D-models.

R represents the resistance, L represents the fluid inertance and C represents the
vessel compliance. If the resistance is frequency dependent R is referred to as an
impedance. For ease of notation, the pressure differential Ap will simply be denoted
as p throughout the remainder of the thesis unless noted otherwise. It is possible to
derive egs. 3.3-3.5 from a 1D-description of the Navier-Stokes equation which has

been omitted for the current discussion.

3.4. Numerical Implementation
Numerical implementation of 0D-boundary conditions presents a set of challenges.
Firstly, multiple temporal discretisation schemes exist under fluent which need to
be available for the 0D model and computable in a parallel computing environment.
Secondly, multiple choices exist for coupling pressure and flow at the interface
between 3D and 0D models and need to be implemented but which are independent
of the choices available within Fluent. And lastly, the model needs to be made
accessible through graphical and text-based user interfaces (GUI and TUI

respectively) to be of value to the scientific community.

3.4.1. Temporal Discretisation

An expression of temporal derivative terms in the WK equations (egs. 3.1-3.2)

needs to be found in terms of pressure and flow at discrete points in time. Often an
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exact description of these terms does not exist and must be approximated. Taylor
expansions can be used to approximate derivative terms using the definition of a
derivative known from elementary calculus. A Taylor expansion of a function f(x)

of order n is defined as:

n

@)
Flx) = Zf @) ¢~ )i+ 0((x— )i+ (Eq. 3.6)

1!
i=0

In which f® (a) implies the i"-derivative of f(a) while the last term on the right-
hand side represents the truncation error. Depending on the way the Taylor-series
is approximated, backward, forward and central difference expressions can be
derived for various derivative terms. For consistency, the temporal derivative
schemes within Fluent are maintained within the windkessel model. The used
derivative schemes are a first and second order backward difference scheme (BDF1

and BDF2 respectively) which are the most commonly used schemes for these types

of models:
ot PO _fOSEm oo (Eq. 3.7)
dt h
.- d];(tt) _3f) —4fCe ;:) + f(t —2h) +o(h?)  (Eq.3.8)

The derivative approximations in egs. 3.7-3.8 depend only on values at preceding
timesteps allowing them to be solved. Both equations can be represented by a

general equation and picking appropriate values for the a-coefficients:
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Sor d];(tt) L aof () +af —hh) FafE=2h) g

The general discretised equation for the windkessel model implemented under

Fluent can be derived by substituting eq. 3.9 into eq. 3.2:

0 = (2~ 2) Pul® = 0 (02)
+ (%) (Pin(t — At) = Qi (t — AD)Z
+ P.(t — AY)) (Eq. 3.10)
+ (CA—atz) (Pin(t — 2At) — Qi (t — 2A0)Z

+ P.(t — 2At)) + (C )P © + "“t( )

To re-iterate, the 2-element windkessel model can be derived by setting Z=0. The

BDF1 discretisation is obtained by setting ay = 1,a; = —1and @, = 0. The BDF2

discretisation is obtained by setting a, =

NIW

,a; =—2and a, = -

3.4.2. Coupling

Coupling pressure and flow between models, is most commonly done explicitly or
semi-implicitly, depending on the time during model calculation when information
is exchanged. Explicit coupling at the boundary considers variables at the

connecting boundary to be evaluated at the previous time step given by:

q3p(t, 1) = pwi(t — L, icng) (Eq. 3.11)

Pwi (6, 1) = qzp(t — 1, ieng) (Eq. 3.12)
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I indicating the iteration number and ieng indicating the final iteration. ieng Has been
used to reflect the fact that the solver for the 3D geometry can be considered
iterative despite the coupling being non-iterative at the boundary. The semi-implicit

coupling can be written similarly as:

qsp(t, 1) = pui(t, D) (Eq. 3.13)

Pwi(t, i) = q3p(t,i—1) (Eqg. 3.14)

The windkessel pressure is determined at beginning of an iteration step using the
flow from the previous iteration step. Within an iteration loop there is an explicit
dependence of the windkessel pressure with respect to the 3D flow which is the
reason for referring to this scheme as semi-implicit. A fully implicit coupling would
require the equations of the both the 3D-model and WK-model to be solved
simultaneously or the computation of an infinite iteration loop, which is not possible

using a segregated solver approach.

At any point in time, the windkessel pressure needs to be prescribed as a static
pressure. However, at backflow through a pressure outlet, Fluent (at the time of
writing) is only capable of prescribing the total pressure instead of the static
pressure at a BC. This means that at backflow the pressure at the boundary is
prescribed as the static pressure produced by the windkessel model, plus the
dynamic pressure determined by the inflow over the boundary from either the

previous time-step or the previous iteration.

56



Chapter 3

3.4.3. Software Implementation

The 2- and 3- element windkessel models have been implemented as an extension
to Fluent using the ANSYS Application Customization Toolkit (ACT). Three
processes are necessary for this extension to function: model evaluation, a user

interface and a communication interface between the both.

Model evaluation has been implemented as a user defined function (UDF). UDFs
are compilable scripts of computer code written in C and/or C++, capable of adding
custom functionality not readily available in Fluent. The UDF consists of a set of
functions to compute the flow through a boundary and subsequently prescribe a
pressure boundary corresponding to the WK-model previously described.
Additionally, effort was spent making these functions applicable in a parallel
computing environment. While the model itself is not computationally expensive
this parallelisation is required for the parallel functionality of simulations under

Fluent.

A graphical user interface, displayed in fig. 3.2, has been created using the scheme

programming language and is interpreted by the fluent environment:

B windkessel Model

v | Enable Windkessel Model
List of Windkessel models
number zone R(kg m4 s-1) C(kg-1 m4 s2) Z(kg m4 s-1) P nit(Pa) Q int(m3 s-1) Pc(Pa) Pout(Pa) remove
outlet ¥ | 1.45e+08 1.45e-08 1.1e+07 0 0 0 0

OK| | Intialze | | Add | | Apply | | Cancel | | Help

Fig. 3.2 - Depiction of the graphical user interface for a single outlet.
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It allows for definition and initialisation of the windkessel models as well as
selection of the coupling-scheme. Additionally, a text-based user interface is
available that can be used when it is required to automate simulations using Fluent
journal scripts, manage additional settings and to communicate values and
messages back to the user. The interface as a complete package automates the
correct communication between the UDF and the Fluent front end, the definition of

the WK models and initialisation.

Communication of variables and parameters between the interface and the UDF is
accomplished using RP variables. RP variables can be transmitted from the scheme

environment to the UDF environment and vice versa.

3.5. Analytical Model
An analytical model is used for the verification of the iterative model in Fluent.
Verification is important as it is the process required to guarantee that a model
works as intended. Additionally, validation is often required to assure that the
model correctly represents the required physical behavior. Model validation is only
possible in the presence of validation data from the system being modelled. For

example, from medical data or in-vitro laboratory set-ups.

An analytical relation between the pressure and flow of the windkessel model can

be derived via the frequency domain and under the assumption that the input signal
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can be represented by a finite Fourier series. Derivation of the inlet pressure

function is demonstrated below for a simple harmonic input function Q;,,:

Qin = a, cos(wyt) + by, sin(wyt) (Eg. 3.15)

With a,, and b,, some arbitrary coefficients, angular frequency w, and time t.
Firstly, the Fourier transform from eq. 3.16 below can be used to derive a transfer
function from eq. 3.2 given in eq. 3.17. Secondly, the input flow can be transformed
to the frequency domain to complete the pressure description of all components in

the frequency domain:

F(w) = F{f(t)} = f f(He @tdt (Eq. 3.16)
P, R — iwCR?
Q' (((;)3 = Wk3((1)) = ﬁ +7Z (Eq. 3.17)

Qin(@) = 7 (a0(8(w — o) + 8(w + y)))

(Eq. 3.18)
by,
+ <T (6(w —wy) —0(w+ a)o))>

Where §(t) is the dirac-delta function. The windkessel transfer functions describe
the characteristic impedance. Combining egs. 3.17-3.18 and subsequently using the
inverse Fourier transform defined in eq. 3.19, the time domain solution for the inlet

pressure of the 3-element windkessel can be derived, given in eg. 3.20:

1 [
f() =FYF(w)} = . J f®)e“tdw (Eq. 3.19)
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a
P;,(t, wy) = k—n (kicos(wgt) + k;, sin(wyt))
3

, (Eg. 3.20)
+ k—n (kqy sin(wgyt) — k,cos(wyt))
3

kl =R + k3Z; kz = (UCRZ; k3 = 1 + ((UCR)Z;

Avrbitrary functions can be approximated as a Fourier series according to:

)-I—Zb sm(

Note that this is a linear combination of the harmonic inflow function from the

f) = —O a,,cos ( (Eq. 3.21)

starting point. Therefore, a general result is obtainable for the pressure at the
windkessel outlet from a linear combination of the pressure solution given by eqg.
3.20:

= ao(R a(R+2) i Pm< 27Tn) 0520

n=1

3.6. Verification
The Fluent implementation is verified against the analytical model at various time-
step sizes to determine the modelling error due to the implementation of the WK
model. Conditions for the verification experiment are taken to be similar to those
in a small section of the aorta. Therefore, an inviscid fluid through a small section
of axisymmetric pipe of length [ = 5[cm] and radius R = 1[cm] is assumed. BCs
include a volume flow BC at inlet, a windkessel pressure BC at outlet and a no-slip

condition at the vessel wall. Fluid density equals p = 1056[kg - m~3]. The
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windkessel model represents a lumped model of the entire circulation and can be
tuned from a general assumption of the average blood pressure, average flow and

time constant of the system, leading to:

R[Kg -m™*-s71] Z[Kg-m*-s71] C[Kg~1-m*-s?)
1.414-108 1.414 - 107 1.286-1078
Table 3.2: windkessel parameters used for verification
The procedure for the analytical model is implemented under MATLAB but does
not contain the description of the pipe. Due to the absence of viscosity the pipe
segment can be separately modelled as an inductor with inductance L = % =

1.681-10°[Kg - m™*-s™2]. The pressure drop over the inductance is only a

function of the flow through it and can be calculated a-posteriori according to:

Ap; =L (?) (i b, cos (21;nt) - i a, sin (21;nt)) (Eg. 3.23)

n=1 =1

While different variations of the described time-scheme and solvers were tested,
the results below were performed using the BDF2-scheme and the SIMPLE solver.
Shown in figure 3.3 is the outlet pressure for both the analytical model and the
simulation data, given a sinusoidal inflow with an amplitude of 5- 107°[m3 - s71]
at a time-step size At = 1072[s]. While the results from the implicitly coupled
model simulation closely follow the analytical model, the explicitly coupled model
experiences a time-delay equal to the simulation time-step size. This is expected as

the flow BC for the windkessel model, originating from the outlet of the pipe,
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experiences the same time-delay. However, this does introduce a simulation error

as will be shown below.

«10% Outlet Pressure for At=0.01

T T T T T
——©— Analytical Inlet
— === 3D Explicit
— @ = 3D Implicit

e
3y

Pressure[Pa]
o

-0.5

1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
timels]

Fig. 3.3 - Time-delay of the explicitly coupled model simulation(red) with respect

to the analytical model(black) and implicitly coupled model(blue).

Shown in fig. 3.4 is the normalised maximum error for several time-step sizes with
respect to the analytical model. On the left of fig. 3.4, the error is normalised with
respect to the root-mean square (RMS) value of the analytical model pressure. At a
time-step of At = 1073[s] the error of the explicitly coupled model becomes
smaller than the 1% threshold while the implicitly coupled model is below this
threshold regardless of the time-step size in this range. The error produced solely
by the windkessel model can be obtained by correcting the explicitly coupled model
results for the time-delay. It can then be seen that the error resulting from the

windkessel model alone is comparable with the error from implicit coupling.
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Absolute Pressure normalised Error Pressure drop normalised Error
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Fig. 3.4 - Pressure error compared to the analytical model, normalised to RMS of pressure(left),
normalised to RMS of 3D pressure drop (right). WK-model indicates results of explicit simulation

corrected for time-delay.

Additionally, it appears that the error for the implicit coupling method might
converge to a minimum value. Upon closer inspection it was found that the limiting
factor for the decrease in error in this case was the convergence norm for the
residuals of the 3D simulation, which was set at 10~5[—]. From these results it
could wrongfully be concluded that a time-step size of At = 1073[s] is sufficient,
regardless of the used coupling method. The problem in determining the time-step
size using the previous results, lies in the choice of pressure reference. Reporting
the error in terms of the absolute pressure scale of the problem is a common
practice. However, this choice of pressure reference is arbitrary and does not
properly reflect the scale of the driving forces within the 3D geometry of the

problem. Therefore, for the simple pipe problem presented, a better reference is the
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pressure differential over the length of the pipe. Shown on the right of fig. 3.4 is the
simulation error normalised to the RMS value of the pressure differential over the
pipe. It demonstrates for the explicit coupling, that even at a time-step of At =
1073[s] an error of 20% can result and none of the considered time-steps satisfy
the 1% threshold. While for this specific case the velocity in the 3D geometry is
unaffected, this error can become significant when multiple pressure outlets are

present, possibly affecting the flow distribution between outlets.

The same analysis process has been repeated for a pulsatile flow profile to arrive at
a more relevant conclusion for real-world applications and is shown in fig. 3.5. Note
that the pressure differential between the in- and outlet is of order of magnitude

0(10?%) while the average pressure is of the order 0(10%).

5 %1074 Flow %104 Pressure
16 A = = = — Inlet
— = = Outlet
T2t & 1.4} ]
n i
m: 8
< :
o [al
1
0 1 1 1 1 1 1
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
timels] times]

Fig. 3.5 - Analytical model results for pulsatile flow (left) and corresponding in-,

outlet pressure(right).

Comparing the error of the pulsatile inflow to that of the sine inflow, fig. 3.6,

demonstrates the relevance of the pressure reference choice more clearly.
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Fig. 3.6 - Pressure error compared to the analytical model, displayed for sine and pulsatile inflow

BCs. normalised to RMS of pressure(left), normalised to RMS of 3D pressure drop (right).

The error for the pulsatile flow appears smaller than that of the sine profile, when
taking the RMS of the pressure as a reference and comparing equal coupling
schemes (fig 3.6, left). However, the inverse is true, when taking the RMS of the
pressure differential as a reference (fig. 3.6, right). This is due to the average
pressure of the pulsatile flow being higher, yet the RMS value of the pressure
differential driving the flow, is smaller. Aside from these differences, the results for
this relatively short pipe segment are comparable between the sine- and pulsatile-
inflow cases. The idea of using pressure differentials as reference is extensible to
the multiple-outlet case. As an example, the reference pressure can be the minimum
pressure differential, taken pairwise between all flow and pressure boundaries. This

ensures that a maximum error between all boundary conditions can be guaranteed.
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3.7. Simulation periodicity
It should be noted that the results shown above are from the final cycles of
simulations with a total simulation time of ~10[s]. This relatively long simulation
time is necessary to arrive at periodicity of the pressure curves for each consecutive

cycle but can be avoided by prescribing appropriate initial conditions.

At the start of the simulation, the compliance present in the system needs to be
charged to an appropriate average value. Initial values for pressure and flow were
estimated, at in- and outlet from the analytical model implementation for the current
time-step, previous time-step and the before previous timestep t,, t, — 1 and t, —
2 respectively. These values were used as initial conditions at the boundaries and
approximate initial pressure and flow fields were determined using Fluent’s built-
in hybrid initialization. Starting from any initial conditions not satisfying the
conditions at the last cycle of the model, the time required to arrive at an acceptable
periodicity is related to the Windkessel RC-time. Fig. 3.7 demonstrates this by
plotting the equation of a charging capacitor, as the RC-predicted average in eq.
3.24, against the analytical average pressure over a 1[s] time frame. Both curves
overlap for all practical purposes. It can be derived that the average pressure
changes less than 5% after 3 RC-times and 1% after 4.62 RC-times. At a time-
constant of ~2[s] the solution is converged from the 6™ or the 10" cycle

respectively.

t
Py () = (}?‘fgz) <1 — e_(R+Z)'C> (Eq. 3.24)
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Pressure Development
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Fig. 3.7 - Average Windkessel pressure predicted from RC-model vs. derived from

analytical model (left). Zoom of Analytical Inlet and Outlet pressure of last cycle(right).

In conclusion, a time-step size of At = 1073[s] is deemed sufficient to obtain an
acceptable level of accuracy for the implicit coupling method. For the explicit
coupling, a time-step size of At = 107*[s] could be considered acceptable in

practice at an error of 1.65% for the sine profile inflow.

3.8. Discussion
The 2/3-element WK models have been implemented as an ACT package under
fluent, at the disposal of the scientific community. Verification of the model has
demonstrated the accuracy of the windkessel model and the implemented coupling
conditions including the global requirements for the numerical simulation using
CFD. Additionally, a case was made to scale relative errors by the pressure
differential as opposed to the absolute pressure as this provides a better reference

for the scale of the problem.
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Although for explicit coupling a time-step size of At = 107*[s] is suggested for
sufficient accuracy, sizes of this magnitude or smaller are not useful in practice, due
to large mesh size requirements combined with the long total simulation time
common for hemodynamical simulations. The error threshold of 1% can be
considered overly stringent depending on the specific case. Lastly, due to the
similarity of the results between the sine- and pulsatile-inflow cases and the reasons
mentioned above, the error of the pulsatile flow was not explored at the smallest

time-step size.
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4. Multiscale-model coupling

stability
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4.1. Introduction
The analysis of a simulation driven by clinically derived measurements from
chapter 2 highlighted the importance of two aspects. Firstly, the importance of
coherence between measured pressure and flow signals at the boundary and
secondly an appropriate choice of boundary condition types. Using additional
physical models to impose BCs for a simulation simplifies the enforcement of
pressure and flow coherence at the boundaries and allows for more freedom
regarding the choice of boundary condition type. This brings us within the domain
of multiscale-models. It is well known that numerical errors and instabilities can
arise for modelling approaches due to numerical discretisation, integration and
differentiation schemes. However, Model-coupling can lead to similar numerical
errors and instabilities. The focus of this chapter is on the numerical coupling
schemes used in the coupling of multiple fluid dynamics models and the stability

considerations that accompany these coupling schemes.

Numerous approaches exist to numerically combine and couple models which fall
into the categories of monolithic modelling approaches and partitioned modelling
approach. For cardiovascular flows, these two approaches are often addressed in
FSI contexts where a structural model is coupled to a fluid model. In a monolithic
approach the modelling equations of separate models are fully coupled by solving
all equations simultaneously as described in [53, 54, 55]. The main advantages of
this approach are their robustness and accuracy. However, a detailed understanding

and consistent implementation of the equations of each model involved is required
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and existing numerical code often needs to be heavily modified. Often these
requirements are too restrictive in a practical setting and few commercial codes of

this type exist at the current time.

In a partitioned modelling approach, models are considered separately. Models are
coupled by imposing equivalence of state variable at common coupling interfaces
between models [55, 56, 57]. No knowledge is required of the numerical
implementation as long as the required boundary conditions are known. A
partitioned approach therefore allows combining existing numerical codes, non-
consistent modelling descriptions among different numerical codes and is less
susceptible to implementation difficulties related to changes in the separate sub-
models. Essentially, the models coupled to one-another can be considered to be
black-box models. Advancements in partitioned approaches potentially have a
wider range of application. Therefore, this approach is highly preferred in the
current context due to the availability of advanced numerical solvers within the

ANSYS software suite for different types of physics and models.

Within the context of partitioned modelling approaches for transient simulations
the most commonly applied coupling conditions at coupled boundaries include
explicit and implicit iterative schemes. A study by Moghadam et al. [58]
investigated several coupling techniques noting the improved stability and
convergence rate of (semi-)implicit coupling schemes. Similar conclusions were

drawn regarding FSI couplings and the reader is referred to the review article by
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Fernandez [59] (which itself refers to [60, 61]) . However, for the lumped parameter

coupling of Moghadam, a more consideration of the stability is lacking.

Stability of these methods can be analysed using various techniques. The current
chapter will focus on analysing the conservation of mass, momentum and energy
for sets of coupled 0D models of increasing complexity in order to assess stability
of the model. A study by Formaggia [62] considers stability from an energy
standpoint within complete 3D and 1D domains from a theoretical point of view.
The current study seeks to explore the stability following a similar path only
regarding the interface conditions of 0D models and to take a closer look and some
of the mechanisms involved. Model coupling principles applicable to complex
models are often demonstrable on simple test models which are better suited for
obtaining a qualitative understanding of the processes involved. Additionally, these
models are easier to implement, less computationally expensive and sometimes

analytical solutions are available.

At the start of this chapter a harmonic oscillator model is used to introduce energy
conservation for OD fluid dynamics models. As this model is a non-dissipative
closed-loop model and an analytical solution can be derived, this model lends itself
to studying the energy conservation properties of different numerical schemes and
different coupling conditions. An analytical solution is derived which is used as

validation for both a monolithical and a partitioned 0D modelling approach. The
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monolithic model is used to consider the effects of numerical discretisation while

the partitioned approach is used to study the effect of coupling schemes.

Thereafter a 0D model of an arterial bifurcation is utilized to explore the stability
properties of more commonly encountered models in hemodynamics. This includes
dissipative effects and intends to look at the stabilizing effect of dissipators in

potentially unstable modelling systems.

4.2. Harmonic Oscillator Model
The concept of stability is introduced for a model problem known as an LC-
Oscillator. This type of circuit is well-known in the field of electronics and can be
used for harmonic signal generation or as a band-pass filter. Its name derives from
the LC-circuit depicted on the right of fig. 4.1 consisting of a capacitor and an

inductor.

Flexible membrane

Fig 4.1 - Harmonic Oscillator for a fluid(a) consisting of elastic membrane compliance and

connecting pipe modelling fluid inertia. (b) equivalent electrical analogue LC-circuit.

The equivalent harmonic oscillator in the fluid domain, can be thought of as two

chambers separated by a flexible membrane but connected through a separate pipe,
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depicted on the left of fig. 4.1. The membrane and chambers serve as a compliance
in the system storing elastic energy. Depending on the direction in which this
membrane is stretched, one of the chambers will hold a larger volume than the other,
the membrane will exert a force on the fluid chambers and a pressure differential
exists between them. This pressure differential causes fluid to flow from one
chamber to the other, converting elastically stored energy into kinetic energy by
moving fluid through the connecting pipe. Storing kinetic energy is the function of
an inertance in this context, hence the mass of fluid flowing through the connecting
pipe serves as an inertance. No viscous losses are modelled within the system and

the system is therefore an ideal LC-Oscillator.

An ideal LC-oscillator has several advantageous properties as model problem for
energy conservation. Firstly, as mentioned before, there are no dissipative elements
and the system is otherwise isolated. Therefore, any energy stored initially on either
the inertance or the compliance will remain within the system. Secondly, unless
there is no initial pressure differential exists and the fluid is at rest, an LC-oscillator
will have a transient behaviour for any point in time. Lastly, an analytical solution
for this model exists under some assumptions for the inflow, because of the
simplicity of this system. This makes it straightforward to compare numerical

schemes and determine the numerical error with respect to a known solution.

The model can be constructed from the compliance and inertance elements

introduced for the windkessel discussion, i.e. egs. 3.4-3.5, and modelled
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monolithically. In the context of the model coupling discussion, these elements can
also be considered as separate sub-models and thus modelled as partitioned models.
Both the monolithical and the partitioned modelling approach are implemented as
state-space models for the current study with the states of the models and sub-

models being either pressure p(t) or flow q(t).

In the partitioned approach, the models are coupled at pressure nodes P; and P, in
fig. 4.1b. Recognising that the flow and pressure differential experienced by each
element are of equal magnitude, the pressure differential and flow can be defined
asp = p; —p, = p,and g = q;, respectively, with flow in the direction from node
1 to node 2. Kirchhoff’s voltage law dictates that around a closed loop the algebraic
sum of potential should be zero. Therefore, it must hold that p, = —p. . These state
variables fully describe the system, with the equations and their corresponding signs

given by egs. 4.1-4.2. Note that the state-variables do not depend on themselves.

p(t) = LT (Eqg. 4.1)
. op(®)
q(t) = _CT (Eq.4.2)

4.2.1. Analytical model
The equations for the LC-Oscillator, satisfy an initial value problem of 2"-order. A
derivation of the general solution is presented below. Taking the time derivative of
by egs. 4.1-4.2 and combining both equations, a set of 2"%-order differential

equations with constant coefficients can be derived:
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d’qt) 1

= ——a(®) (Eq. 4.3)
d*p(t 1
dptg ) __ —p(®) (Eq. 4.4)

From differential calculus it is known a particular solution exists for this problem,
presented in eq. 4.5. Substituting this result back into either eq. 4.3 or 4.4, the same

characteristic equation can be derived having 2 particular solutions for A, presented

in eq. 4.6.
Q= Cielt (Eq 45)
2 At 1 At
A Cie = —ECie (Eq 46)

Any linear combination of the particular solutions also satisfies the set of

differential equations and the general solution is then given by:

1 1
y LC _lx/ﬁ
il ity
@(t) = Cie VIC + Cye VIC (Eq. 4.8)

In which ¢(t), is the solution for either p(t) or q(t). This leaves the coefficients
C; and C, to be determined requiring assumptions on the initial conditions. A
straightforward choice for the initial conditions, is an initial pressure stored on the
compliance p.(0) = —P, and zero initial flow through the inductance, q(0) = 0.
Starting from ¢(t) as a solution for g(t), eq. 4.9 can be derived from the initial

flow condition while eq. 4.10 can be derived using eq. 4.1:
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i\/% (C,—Cy) =P, (Eq. 4.10)

The unique solution satisfying these equations, indicates that C; and C, are complex

conjugates and we see that eq. 4.8 is satisfied by:

P, L —i P, t
q(t) = —— (el\/ﬁt —e Wﬁt) = 2 sin (—)

Substituting this result back into equation 4.1 gives the solution for p(t) completing

(Eg. 4.11)

the system. The general solution is presented in eqs. 4.12-4.13 including the phase
6. Changing the phase 6 of the solution satisfies egs 3.4-3.5, the relationships for
inertance and compliance respectively, but does not directly satisfy the initial

conditions posed before.

¢
p(t) = Pycos (\/T_C+ 0) (Eq. 4.12)
) = — 22 sin (—=+ 6)
= ——sin (——
q \ﬁ JLC (Eq. 4.13)
C

4.2.2. Monolithic Numerical Model
The numerical model is solved using a time-stepping approach for a state-space
description. Starting from a known state ¢, at time t,, the value of a state variable

@ at time t can be found by integrating the change of the state variables over time:
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td
o(t) = <p(to)+f aQ,

dt
at (Eq. 4.14)

Numerically evaluating this equation requires discretisation of the derivative and
subsequently of the integral. Additionally, eq. 4.14 holds for a vector of state-
variables @(t). For the model under consideration, the state-space equations are
simply given by rewriting eq. 4.1-4.2 as a function of the time derivatives of the

state variables.

4.2.2.1. Numerical schemes
A discretised expression for the derivative of a function, can be defined using the
previously introduced Taylor expansion in chapter 3. This expansion can be used

to derive time-discretisation schemes to help solve the state-space models.

n

0)
f(x) = Z ! 1§a) (x—a) +0((x —a)*) (Eq. 4.15)

=0

Along the curve of a function, the same point x is approachable from two initial
positions x,, namely from a forward point x, = x — Ax or a backward point x, =
x + Ax. To obtain 1%-order discretisation schemes, the 1%-order Taylor expansion
of a function can be used. Depending on the point from which the function is

approximated this expansion is given by egs. 4.16 and 4.17 below:

@ty = At) = @(to) + d(pd(f‘)) (£At) + 0(At?) (Eq. 4.16)
@(to) = p(to £ At) + W(Mt) +0(At?)  (Eq.4.17)
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Where the last term on the right-hand side represents the truncation error. egs 4.16-
4.17 can subsequently be rewritten into its form known from elementary calculus.

This leads to the forwards- and backwards-Euler derivative methods:

. p(to +At) —p(ty)  de(t) _ de(to)
Forwards lim = ~

= = O(At? Eqg. 4.18
Euler At—0 At dt dt + ( ) (Eq )

_@(to +At) —p(ty) _ de(t)
lim =
At—0 At dt

Backwards (Eq. 4.19)
et = —d¢(t;: 49 L o)
the forwards- and backwards-Euler are sometimes referred to as explicit and
implicit derivative approximations, respectively. These derivative descriptions are
effectively one-sided limits of the derivative which only exists if the left and right
limit converge to the same value. A more accurate approximation of the derivative
is a central difference-based technique obtained by combining egs. 4.16 and 4.17 to
approximate the limit equation for the derivative:
lim @(to + At) — @(to)

At—-0 At

Central (Eq. 4.20)
difference 1 <d<p(t0) do(t, + At)

3
=\t >+O(At)

Note that the truncation error is of 3" order due to the 2" order terms cancelling
out when the taylor expansion from eq. 4.15 is taken as the starting point. The 15-
order central-difference equation approximates the derivative from both the left

sided and right sided limit, e.g. the backward- and forward-Euler approximations.
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All 3 methods presented approximate ¢(t) only as function of the values at the
previous and current timestep. The current analysis could be repeated for higher
order schemes but this out of the scope of the current study. It will be shown in the
next section that the central differencing scheme has superior properties regarding
model coupling and the conservation of energy compared to the forwards and
backwards Euler methods. However, before we can arrive at this step, the time-

integral in eq. 4.14 needs to be evaluated for the state variables.

4.2.2.2. Time advancement
Equation 4.14 can be solved by choosing one of the schemes presented in egs. 4.18-
4.20. Within a time interval, integrating the state-variables from time ¢ to t + At,
the discrete derivative is essentially constant. The derivative itself can potentially

be updated iteratively within a timestep but eq. 4.14 is solved according to:

t+At

d d
o(t + M) = o(0) + d—‘” dt = () +d—‘fm (Eq. 4.21)

t

For the selected state variables, the 3 numerical schemes of the system can be

rewritten in general form from egs. 4.1-4.2:

dg 1

==7 ((1—0)p(t+ Ar) + 6p(D)) (Eq. 4.22)
dp 1
=="¢ ((1 —0)q(t+ At) +0q(D)) (Eq. 4.23)

Where 6 is either O,% or 1 for respectively backward Euler, central difference and

the forward Euler schemes. In order to solve this system a state-space description

approach is followed according to:
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-

‘;—’: (t) = A%(t) + Bi(t) (Eq. 4.24)

y(t) = CX(t) + Du(t) (Eq. 4.25)

Where X(t) is the state vector, i (t) is the input vector, A4 is the system matrix, B is
the input matrix, y(t) is the output vector, € is the output matrix and D is the
feedforward matrix, As the state variables at the next time steps are unknown a-
priori an additional step is required combing egs. 4.22-4.23 to rewrite the derivative
as a function of the previous time step only. The system of equations can be

rewritten and rearranged in matrix form as follows:

(1-6)At 6At
T (A +a0y LT (")
(1-06)At L p(t + At) _ oAt 1 p(t) (Eq. 4.26)
C C
Myo(t + At) = Ma9(t)
Hence, a solution to the system exists of the form:
d—0 (MM, -1)—s —
- =~ - & J = Eq. 4.27
40 . p(t) = Ap(t) (Eq. 4.27)
The system matrix A is then given by:
3 1 (6 — 1At C )
A= e —Dr+ CL( L (-1a) (Ea428)

It is straight forward to verify that a particular instance of matrix A follows the

form below for the 3 numerical schemes:
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1
0 1
Explicit A= 1 (Eq. 4.29)
- 0
C
. 1 —At C
Implicit e — Eqg. 4.30
P A At2+CL(L —At) (Eq. 4.30)
1
Central- 1 — EAt C
Difference - +CL\ -—L - EM

As the model has no inputs or useful outputs besides the state variables themselves,
matrices B, C and D are not defined. The time advancement is now simply given by
fulfilling eq. 4.21 for the state vector and substituting egs. 4.28. In short, this implies
that the derivative of the state vector is computed and used in a 1%%-order Taylor
approximation to estimate the states at the next time step, with the end result

presented in eq. 4.32.

p(t+At) = (1) + d(Zit) At = (I + AAL) ¢(t) (Eq. 4.32)

This description was chosen to adhere to the general form of ordinary differential
equation solvers and allows for replacement of the presented descriptions by readily

available ODE-solvers (as for example present in Matlab).

4.2.3. Energy Conservation
For a lumped-parameter OD-system represented by the state variables pressure p(t)
and flow q(t) there is no implicit notion of mass or momentum conservation within
the system. These conservation laws can be re-introduced by making appropriate

assumptions. However, it is more interesting to consider the conservation and flow
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of energy across the system boundaries. Therefore, it is required to consider a 0D
energy transport equation. As it will be shown subsequently, the dissipation and
storage of energy for a system can be related to the pressure and volume flow within

the system and jointly represented by the energy transported.

The change of energy of a system AE can be related to the work imposed on a
system. It is known from thermodynamics that the change of energy of a system is
equal to the mechanical work imposed on the system plus the heat added to the
system over time. No heat can be added or removed for this specific case since it is
assumed that all components are isothermic and no dissipation occurs. The change

of energy then follows as:

a_dv_p (Eg. 4.33)

dt  dt — 4%
Where the amount of work per unit time is defined to be the power P. In the absence
of body forces, energy can only flow in over the boundaries of the sub-systems.

Therefore, if the work imposed on the boundaries of a system is known, the energy

change within that system is also known.

The total amount of work can be derived for a fluid traveling along a segment of
pipe. Work is defined as the force F acting through a distance s and can be applied
infinitesimal fluid parcels. The distance dS;,,(eq. 4.34) a fluid parcel passes per time

increment and the force acting on this fluid element dF;,,(4.35) are equal to:
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ds,, = vdt (Eq. 4.34)
d

dr, = L dqa (Eq. 4.35)
dz

To find the work exerted on the entire pipe, the work on separate fluid parcels has
to be integrated over the volume within the pipe. Following the definition of work

in eqg. 4.36 below, it can be shown that this volume integral can be approximated

by:

w= [ pas= [ ([ 22 doan)vac

= f(pin - pout)AO vdt

(Eg. 4.36)

Therefore, the time derivative of work combined with the equality q = vA,

simplifies to:

dW_dE_A t)q(t (Eq. 4.37)

Eq. 2.58 implies that the energy change of this type of fluid system is equal to the
flow q through that system along or against a potential field Ap. A certain amount
of potential energy flows in and out over the boundaries of a system and gets

converted into a different form of energy or dissipated into heat.

The amount of energy stored or dissipated by a system, otherwise known as the
change in total energy of that system, can be found by integrating eq. 4.37 over
time. Using the equations for the OD-components egs. 3.3-3.5, energy dissipation

and storage equations can be derived on a component level:
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t t
Resistance AE, = | pqdt = f Rq*dt (Eq. 4.38)
to to
L
Inertance E, = qu (Eq. 4.39)
. C
Compliance Ec = EPZ (Eq. 4.40)

4.2.3.1.  Analytical model
At this point, analytical descriptions of pressure and flow are known from egs. 4.12-
4.13 in addition to a description of the energy storage and dissipation of our 0D
components. Analytical energy equations can therefore be derived separately for

the compliance and inertance components as well as the total energy of the model:

PéC t
E.(t) = Tsm2 (\/? +0) (Eq. 4.41)
PéC t
Ec(t) = Tcos2 (\/T_C + 0) (Eq. 4.42)
E,=E.+E = Pi—c<sin2 (\/%_C + 9) + cos? (\/%_C + 9))
. pic (Eq. 4.43)
L=

N |

In which E} is the energy stored in the inertance, E. is the energy stored in the
compliance and E; is the total energy contained in the LC-oscillator. Note that the
energy of the total system is constant and equal to the initial energy stored on the
compliance due to the choice of initial conditions. The magnitude of the energy

stored on the separate components together is thus equal to the initial energy on the
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compliance. However, both signals are out of phase as when the capacitor is fully

charged no energy is stored on the inertance and vice versa.

4.2.3.2. Numerical model

For the analytical solution of the system, the conservation of energy was analyzed
by considering the energy stored by each separate component. In a more complex
coupled 3D-nD model it is more challenging to determine each separate element of
energy storage or dissipation and detailed knowledge about the system is required.
Another method of analyzing the storage of energy is to consider the flow of energy
across the boundaries of the system. As the solution of the system is already
calculated, deriving the energy contained in the system is purely a post-processing
step. However, the conservation of energy should follow the same integral
presented in Eq. 4.14, substituting ¢ by E.

tdE(t)
dt

E(t) = E(ty) + j dt (Eq. 4.43)

to

The energy derivative in eq. 4.43 can be rewritten as a function of pressure and flow

using equation 4.37. Utilizing the chain rule for differentiation, eq. 4.43 becomes:

t d d
E() =E(to) + J (q(t) % +p(t) %) dt  (Eq. 4.44)

It is important to recognise that due to discretisation of the system of differential
equations, a number of variables will be constant during one time-step. By solving

the problem as a system of equations, this qualitative understanding is somewhat
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obscured. As an example, eq. 3.4 describes the differential equation of the inductor
in which an expression is found for the flow derivative through this component.
Regardless of the discretisation used for this component, numerically advancing
from one time point to the next, the pressure and thus the flow derivative, remains
constant within a time-step. However, the flow does not remain constant during the
time step as the fluid is accelerated or decelerated from one time-step to another.
Therefore, the flow changes linearly between the beginning and end of the time-
step. This is a result of integrating using eq. 4.21 Under this assumption it can be
demonstrated that the energy at time t for the discretised inductor using an explicit

approach becomes:

E (tn) = EL(to) + f

to

tn d d
<q(t) —pd(f") +p(t) —‘Zi(tt)> dt

n
tit1 dq(t)
Explicit = EL(to) + z p(t) f — (Eq. 4.45)
i=0 ti

(Q(ti+1)2+ q(t) s — )

n

=E (to) + Z p(t)

i=0

As the pressure is constant during a time-step, the pressure derivative is equal to
zero in the numerical solution, eliminating the first term of the integral in the 1%
equation. Consecutively, the pressure is evaluated explicitly, hence at the lower
limit of the integral. Lastly, the flow integral over a time-step can be calculated
exactly using the trapezium rule as the flow increases linearly over the time step.
Hence, the change in energy is a function of the average flow over the time interval,

times the initial pressure at time t,.
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Similarly, for the implicit approximation, the change in energy is the average flow
over the interval times the pressure at time t. Both descriptions are inconsistent with
the definition for continuous functions provided in equation 4.37. However, the
central difference approach dictates that the change in energy is given by an average
of the flow over the interval times the average of the pressure over the same interval.
Even though the pressure and flow curves might approximate the differential
equations, the central difference description is mathematically consistent and

conservative with respect to the energy in the system.

(Q(ti+1)2+ q(ty)) (tis1—t;)  (Eq.4.46)

n
Implicit E (t,) = E (o) + Zp(tHl)
i=0

S (p(ti+1)2+ pe) (@) £ () (eq aa)
i=0

Central  E(t,) = E.(ty) + 2
difference i

For the compliance, similar considerations hold with the end results presented in

eqs 4.48-4.50.
Explicit Bote) = Bole + Y aep PP oy (g aag)
i=0
Implicit Bo(t) = Bole) + Y a PP oy (g aa)

i=0

Contral  Eo(t,) = Eu(ty) +z(p(ti+1)+p(ti))(q(ti+1)+q(ti)) (ti—t)  (Eq.450)
difference i=0 2 2

424, Monolithic Simulation & Results
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For the type of OD systems described, only resistors, compliances and inertances
are present. In addition, the flow and pressure for every component is known. It is
preferable in this case, to analyse the balance of energy directly from the state
variables. An LC-oscillator is simulated with a compliance of C = 1.5915-
107°[Kg~1-m*-s?] and an inertance L = 1.5915- 107[Kg - m™* - s72]. These
values have been chosen to get pressure and flow at similar order of magnitude as
in the large arteries while having an oscillation frequency of 1[Hz]. The time-step
size is chosen to be At = 10~2[s] with a total simulation time of ¢t = 5[s] in order
to generate enough numerical error for the effects to be visible. The number of

iterations for the implicit and central-difference methods was setat N = 10[—].

Fig. 4.2 depicts the pressure and flow over time for each numerical method used.
For the forward-euler method, both pressure and flow are amplified over time.
Given an initial excitation of the model, by providing an initial pressure on the
compliance, the state variables will continue to increase indefinitely over time. For
the backward-euler method, both pressure and flow diminish in magnitude over
time and eventually all signals dampen out. The central-difference method curves
overlap with those of the analytical model. However, pressure and flow diverge
with respect to the analytical solution over time but with an order of magnitude
0(100) times smaller compared to the forward-Euler method. Considering the
timescales involved, the relatively coarse time step and the required accuracy, the
error between the analytical model and the central difference scheme is negligible

for all practical purposes.
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Numerical Scheme comparison for Pressure and Flow
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Fig. 4.2 - LC-Oscillator pressure(left) and flow(right) demonstrating

increase/decrease over time.

Additionally for this system to be periodic, as predicted by the analytical system,
the state variables have to return to their initial conditions once every period. Fig
4.3 left shows the trajectories through state-space, better demonstrating that only

the central difference scheme satisfies a return to the initial conditions.

It could be concluded from the pressure and flow curves that the forward-Euler
method is non-conservative and therefore unstable, the backward euler method is
non-conservative and stable and only the central difference scheme is both stable

and conservative.
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Total Energy
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Fig. 4.3 - (Left)Trajectories of Pressure vs. flow, time direction indicated by
arrows. (Right) System’s Total energy stored, demonstrating energy conservation

and model stability for numerical schemes.

Intuitively, this concept is more apparent from the state-space trajectories.
However, visualisation of this space is only possible because this space is 2-
dimensional and analysing pressure and flow curves by eye is impractical for larger

systems.

A less ambiguous measure to analyse the stability of the system is therefore the total
energy of the system and its time derivatives. The right graph of fig. 4.3 shows the
total energy of the LC-oscillator for the different numerical schemes. Energy is
generated by the backward-Euler method, is approximately conserved for the
central difference method and is dissipated by the forward-Euler method. Note that

the change in energy in itself does not permit conclusions about the stability of

91



Chapter 4

arbitrary systems as energy can be introduced externally or dissipated by any
resistances present. However, no energy should be generated autonomously upon
perturbation of a system from steady-state. Since this system is isolated and non-
dissipative, no energy should be generated without external introduction of energy,

in order for the system to be stable.

Lastly, the equivalence of state descriptions in egs. 4.39-4.40 was compared against
the time integral description of eqs. 4.45-4.50. The error normalised to the initial
energy E.(t,) is of order of magnitude 0(10713)[%] which is effectively
negligible. This equivalence might not seem surprising as the state description of
energy for each component was derived from the time integral equation. However,
it shows that the energy transfer of the components cannot simply be calculated
from integrating the change of energy from eq. 4.37. The two components in this
model, the compliance and inertance, share the same state-variables. Therefore, if
the energy transfer during a time-step is calculated from eq. 4.37, the flow from one
component to the other is always exactly equal and there is no change in total
energy. This in turn means that no energy can be lost or gained over any boundary
during a time-step which is untrue due to numerical discretisation. Therefore, the

numerical energy transfer across a boundary is dependent on the type of boundary.

4.2.5. Partitioned Model Coupling

The same reasoning can be applied to coupling separate sub-models. For this

purpose, the LC-oscillator is subdivided into the two smallest possible sub-models.
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One compliance model and one inertance model. Each sub-model then receives
boundary conditions from the other sub-model at each iteration or each time-step.
Due to this coupling the partitioned models only depend on source inputs from the
other model and not on the states themselves. The state-variables are redefined as
the compliance pressure P.(t) and the inertance flow q; (t) with the models still
following egs. 4.1-4.2, although they are now evaluated in isolation. This makes it
straight-forward to calculate the energy of each sub-model directly from their state-
variables and makes it possible to retain the differential equations previously

introduced.

4.25.1. Coupling Schemes
Compartmentalisation of parts and connecting them at their respective coupling
interfaces, is an artificial operation. Using a partitioned solver approach,
compartments exchange information at their coupling interface. Different coupling
schemes are considered in this chapter in order to pose boundary conditions for the
coupled sub-models. For continuous functions the most intuitive choice at time t
are boundary conditions that satisfy the exact solution at time t. However, for
discrete models using an iterative approach requires integration over time of the

form presented in eq. 4.14, reiterated below:

td
() = p(to) +f wit) dt (Eq. 4.14)

g, dt
Similarly, to the considerations presented for the numerical schemes discussion, the

choice of coupling scheme affects the approximation of the integral and thus the
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conservation of energy. The coupling schemes considered in this chapter can be

classified as explicit, implicit and central-differenced schemes.

To introduce the coupling schemes, consider two models, arbitrarily assigned
model 1 and 2. Pressure and flow need to be defined at the coupling interface of
both models. Model 1 provides pressure BCs for model 2, while model 2 provides
flow BCs for model 1. It is important to recognise that these BCs are coupled since
they need to be consistent with both models, simultaneously. However, at the
interface, the state variables are not known a priori and need to be approximated.
Shown in fig. 4.4 are the two explicit coupling methods considered, which are

referred to as fully explicit and a semi-explicit and the coupling between models.

Model
Model

to,tn  ti,% 1 t,in 1o,y to,in  ti, 2 1 ti,in o,

Explicit Semi-Explicit
Fig. 4.4 - (Left) fully explicit BCs derived from previous time-step, (right) Semi-
explicit, One BC derived from previous one BC derived from estimate at current

time step.

For the fully explicit coupling, All BCs for the current time-step, are derived from
values at the previous time-step (eq. 4.51). During the iterations within a time-step
the solutions of both models are therefore uncoupled. For the semi-explicit coupling
(eg. 4.52), one of the models approximates a solution for the current time step using

a BC from the previous time-step.
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p;(t, i) = f(qr(t — At,iy))

Explicit (6, D) = g(p,-(t _ At iN)) (Eq. 4.51)
Semi p;(t, 1) = f(qu(t — At, iy)) (Eq.452)
mi- LA

Exeplicit Qi (t, D) = g(p;(t.io)) |

This solution at the current time-step is used to pose a BC for the connected model
at the current time-step which can be considered as an implicit BC. Combining an
explicit and an implicit BC, leads to a stronger coupling which is the reason for
referring to this model as semi-explicit. Both coupling methods only update the BCs
at the first iteration of each time-step. It is assumed that both models can be iterative

in nature, with i indicating the iteration number irrespective of the BCs being

updated iteratively or not.

The change in total energy over time will be demonstrated after introducing the
remaining coupling schemes considered. Weakly-implicit and strongly-implicit

coupling can be defined for the implicit coupling methods again with the coupling

shown in fig. 4.5.:

Model

Model

to,in  t1,00 1 ti,in  ta,ip to,in 1,1 i ti,in  ta, o
Weakly-Implicit Strongly-Implicit

Fig. 4.5 - (Left) weakly-Implicit coupling derived from previous iteration, (right)
Strongly-Implicit coupling, One BC derived from previous iteration while one BC

derived from current iteration.
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Compared to the explicit coupling, the boundary conditions are updated at each
iterative step instead of just at the beginning of each time-step. The weakly-implicit
coupling utilises the solution information from the previous iteration or time-step
for both boundary conditions. For strongly-implicit coupling, a leapfrogging pattern
like that of the explicit coupling exists. Each iteration, one model has a BC posed
from values at the previous iteration, the solution of this model is updated. The
other model then receives boundary conditions at the current iteration from this
updated solution. Both coupling methods are expressed in egs. 4.53-4.54. Note that
the order depends on which model is evaluated first each time step, but that the

effect of the order on the end solution should be negligible.

pj(t, D) = f(qe(t,i—1))

. Eq. 4.53
\Il\r/T?SIki::)i/t a6, ) = g(pj(t,i — 1)) (Eq. 4.53)
stronal p;(t,0) = fq(t,i — 1)) 0050

rongly- ] . ”
Impl?ci{ qr(t, i) = g(pj(t, l)) q

Finally, two central-difference(CD) coupling schemes were considered, again
classified as weakly and strongly coupled. Shown in Fig 4.6 is the coupling

between the models for both schemes.

Model
Model

to,in  Tiyo 1 tyin  ta,d to,in  Ti,yo iy tiyin  tayo

Weakly-CD Strongly-CD
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Fig. 4.6 - (Left) fully explicit BCs derived from previous time-step, (right) Semi-
explicit, One BC derived from previous one BC derived from estimate at current

time step.

The boundary conditions are now a central-differenced average of both the solution
at the previous and the current time step. Identical to the implicit methods, the
difference between the weakly and strongly coupled methods is the evaluation of
the pressure at the current time step. Both Central-differenced coupling methods

are expressed in egs. 4.55-4.56.

p;(t,i) =f <q'<(t At, lzv)+qk(tz—1)>

Weakly-CD (Eq. 4.55)
(D) = < — At, LN) +pj(ti— ))
pi(t,) = <QR(t At, lzv) + qr(ti— 1)>
. (Eq. 4.56)
S ly-C .
trongly-CD WD) =g <p] (t — At, 112\,) +p;(t, L))

In summary, if we consider the last iteration of a model solution to be the most
accurate approximation at the current time step, A coupling constant k can be
introduced similarly to the numerical scheme constant 8. The coupling for the
source terms then becomes as give in eq. 2.57 with x = 0 implying implicit
coupling, k =1 implying implicit coupling and x = 1/2 meaning central-
differenced coupling. Note that in the event of semi-explicit coupling, one model
will follow and implicit-coupling approach while the other will follow an explicit

coupling approach.
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U (t) = (1 — )t + At) + ku(t) (Eq. 4.57)

4.2.5.2. Energy Conservation
It was discussed previously, that the change of energy of an isolated model, can be
calculated from the flow of work over its boundaries. The conservation of energy
due to coupling schemes will be demonstrated for the fully explicit coupling using
the same principle. It is assumed that no energy is generated or dissipated internally
in the sub-models. The BCs are taken as the pressure and flow at the previous time
step, which implies treating the derivatives of the model explicitly according to egs.
4.22-4.23. Returning to the integral in eq. 4.14, note that the boundary conditions

are constants during a time-step and the integral is effectively approximated by:

At (Eq. 4.58)

t'=t

ft+At d(p(t’) dt, - d(p(t')
‘ dt’ —odt

However, during a time-step the pressure and flow of the continuous systems
change, which is neglected by this approximation. Returning to the LC-circuit under
consideration, it can be shown that the energy change during a time-step is not
arbitrarily zero. The energy change of the inertance model, the compliance model

and the total coupled system are given as:

dE, _AE; _ (q(t + A1) + q(1)
== p(t) . (Eq. 4.59)
ﬁ ~ ﬂ =—q(t) (p(t +An) + p(t)) (Eq. 4.60)

dt =~ At 2
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AE;  AE, N AE;  p(t)q(t + At) — q(®)p(t + At)

Eq. 4.61
At At At 2 (Ed )

As the change of energy for this isolated system is none-zero, energy can be
generated or dissipated during a time-step. This is not a property of the systems
considered but rather of the way in which boundary conditions are posed and is
equally true for imposed time-profiles. For the central-differenced coupling
schemes, the integral in eq. 4.14 is approximated as:

do(t) + do(t + At)

t+Atd /
= A Eqg. 4.62
ft T at 5 t (Eq. 4.62)

If the underlying system changes linearly from one time-step to the next, eq. 4.62
becomes an exact evaluation of the integral. The change in energy for the inertance,
compliance and the total system can now be evaluated analogously, and the results
of this process are reported in table 4.1 below. It is assumed that the inertance model
is the first model to be evaluated at each time-step and all values are taken at the
final iteration of a time-step. For ease of notation, the current time-step is denoted

simply as t; while the previous time-step is denoted as t.

AE, AE, AEq
At At At
Explicit p(ts) (Q(t1) '; Q(to)) —q(to) (P(Q) '; p(fo)) p(to)q(ty) ; q(to)p(ty)
Sem_“_ AN CICY : a(to)) PN : pe) P —q)pe)
Explicit
Implicit () (q(t) er q(ty)) ae) (p(t) er p(to)) _p(to)a(ty) ; q(to)p(ty)
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Central- (p(t) +p(te)) (q(t1) + q(to) _ (p(t) + p(to)) (q(t) + q(to)] 0

Difference 2 2 2 2

Table 4.1 - Energy change per time-step for Inertance ag,/at, Compliance aE. /At

and total system aE,./At.

There are several noteworthy things about these relations. Firstly, note that values
at the current time-step are independent of the calculation method, e.g iterative or
non-iterative. Only the final value at the end of an iterative loop influences the
energy balance per time step. Therefore, both implicit methods have the same
change in energy per time step, which also holds for both central-differenced
methods. Secondly, note that the change in total energy of the system for the fully
explicit and the implicit coupling schemes are equal in magnitude but opposite in
sign. Hence if energy is generated during a time-step for one scheme, it is dissipated
for the other. Thirdly, the only arbitrarily conservative coupling scheme is the
central-differenced coupling in which the change of total energy per time-step is
zero. Lastly, for the semi-explicit coupling method, the generation or dissipation is
proportional to the difference in energy flow between the current and the previous

time step.

4.2.5.3. Simulation Results
The LC-oscillator is simulated under the same conditions as before, with a
compliance of € = 1.5915-107"°[Kg~!-m*-s?], an inertance L = 1.5915 -
107[Kg - m~* - s72], a time-step size of At = 10~2[s] with a total simulation time

of t = 5[s]. Additionally, the number of iterations per time-step was set at 15. At
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this number of iterations, the difference in energy change derived from the state
variables as compared to the energy change derived from energy flow approached

machine precision for all methods involved.

Fig. 4.7 demonstrates the cumulative change in total energy using the relations from

table 4.1.:
Model coupling E, Magnified sub-plot
0.15 : . : 0.03 : . .
= © = Analytical
0.125 + —€— Explicit
Semi-Explicit .
——@— Implicit 0.025
0.1¢ Central-Diff
= 00751 ] % 0.02
0.015
0.01 + : :
0 0.25 0.5 0.75 1
timels] time|s]

Fig. 4.7 - (Left) Total energy change due to partitioned model coupling for
various schemes, (right) Plot magnification demonstrates cyclic energy
conservation of semi-explicit scheme for periodic signals.

The maximum error, normalised to the initial energy E.(t,), between the state-
derived total energy and the cumulative total energy was again of order of
magnitude 0(10713)[%] for all coupling methods. Therefore, the state-derived and
cumulative methods are considered equivalent. For the central differenced scheme,
the total energy is plotted using the state-derived method. This allows considering

any numerical errors which is not possible using the term from table 4.1 being zero.
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Only the central-differenced scheme fully conserves energy. As was noted before,
this is a result of the linear time-integration between points. The fully explicit
coupling scheme generates energy which in turn leads to additional energy being
generated next time step and is therefore unstable. The inverse is true for the
implicit coupling scheme which dissipates energy, approaching zero total energy as

time increases.

For the semi-explicit method, energy is conserved over one cycle of the system.
This can be explained by the periodicity of the flow and pressure and the symmetry
of the total energy change term aE,/at. For every time-step where the flow and
pressure change a certain amount, a time-step exists where flow and pressure
change an opposite amount. Hence, any erroneous addition of energy gets

compensated by an equal dissipation of energy elsewhere in the cycle.

4.3. Vascular Bifurcation Model
Stability of a system can now be related to the energy balance over time of that
system. In the harmonic oscillator system, no energy can be physically dissipated
as there are no resistances present. However, the vascular system is more complex
containing sources and sinks of energy. Energy is added to the system by the heart,
by generating pressure causing blood to flow into the large blood vessels. The large
blood vessels are distensible, and flow is assumed to be inertia dominated. Here,
Blood coming from the heart is stored as potential and kinetic energy in the form
of pressure and flow respectively while viscous dissipation is minimal. Eventually,

the blood is transported to the microvasculature where the average flow is lower,
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the vessel diameters are smaller, but the total wall surface of all vessels combined
is large. Most viscous dissipation occurs in the microvasculature causing a pressure

drop before the blood returns to the heart via the venous system.

As has been shown in the previous section, partitioned evaluation of models can
cause energy to be generated or dissipated at the coupling interface. In a system
containing resistances, this coupling energy can be compensated for but requires
the introduction of dissipation into our systems. As an example, A 0D-model of a

simplified vascular bifurcation is used shown below in figure 4.8.

(\)\\r'l\' 1
—>

wk1 |l

wk2  —|

Q\\'/\'Z

Fig. 4.8 - OD-bifurcation model consisting of 3 vessels each consisting of a

resistance and inertance coupled to 2 windkessel models.

This model has similar dimensions to those experienced in large blood vessels like
the aorta and is subjected to similar flows. The inertance L; and resistance R; per
unit length of tube, under the assumption of simple laminar flow are given below
and for simplification no compliances are present within the geometry. Lastly at the

bifurcation, all vessels are simply coupled together without compensating for the
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complex 3D behaviour occurring at the bifurcation. While these assumptions are
not representative for the physical conditions, they are sufficient to demonstrate the
concepts. More complex relationships for resistance, inertia and compliances can

be substituted in at relatively little loss of generality.

' p

I =
i TL’T‘l-Z (Eq. 4.63)
,_ 81

R; = _nr4 (Eq. 4.64)

4.3.1. Numerical Model
The bifurcation itself consists of 3 vessels each consisting of a resistance and an
inertance and is again modelled using a state-space description as was done for the

harmonic oscillator:

dx
— = 4%+ B (Eg. 4.65)
y = Cx% + D (Eq. 4.66)

The states of the model consist of the flow through the inertances Q; 4, Q;, and Q;5
while the inputs of the model are the windkessel pressures P, 1, Pyk2 and the time-

derivative of the input flow:

Qin PWkl

- - P

X = (ka1>, u = dvékz (Eq 467)
kaZ d;n

With system- and input- matrices given by:
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) 0 0 0
A= 0 —R, Rs | (Eq 468
(L + Ly) + (1 — 0)(R, + Ry)At (0 R, _;3) (Eq. 4.68)

0 0 (Ly+L3)+(@—-6)R,+R3)At

B=[-1 1 Ls + (1 — 0)R4At (Eq. 4.69)
1 -1 L, + (1 — 0)R,At

This is sufficient to calculate the change of states of the bifurcation model and
additionally provide inlet flows for the windkessel models. Therefore, the output

vector, output matrix and feedforward matrix are given by:

7=(gm) =G o ) 2= o o) Eem

The windkessel model can be written as a state-space description given eq. 3.1 and

3.2 with a single state P_;, an input Q,,; and output Py :

1 R,

X =P, U= A= B =

X =Pt = Quii R,C, + (1 — 0)At RC, +(1—6)At  (Eq.4.71)
5} == Pwkl C - 1 D - Zi

Where, R;, Z; and C; are the windkessel’s peripheral resistance, impedance and

compliance respectively.

4.3.2. Energy sources and dissipation
To calculate the inflow of energy at the inlet, the pressure at inlet is required.
Similarly, to the considerations in the harmonic oscillator circuit, it is important to
note that during a time-step, all inertances experience a constant pressure while the
flow changes from q;(t) to q;(t + At). Therefore, over a timestep an average flow
Is experienced at the outlet boundaries and the inlet pressure is given in egs. 4.72-

4.73. Note that the pressure contributed by the resistances of the bifurcation itself
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are taken at time ¢ . This is due to consistency of the pressure-flow relationship for
resistances (eq. 3.3) since pressure and flow from the model are an approximation
of the continuous system.:

inn
dt

Pin (t) = Pmid(t) + L1 (t) + RlQin(t) (Eq- 4-72)

Pria(®) = (1 — 1)~ WK“2+ A | KPWI;(U s QDZWK ®

Puic() = (Doyir () + Puiz @) + (R2Q,01 (8) + R3Q,,,, ()  (Eq. 4.73)

d d
Qpwi® = Lz %(w + L3 % ®

In the bifurcation model, pressure is constant while flow changes. Energy inflow

over the boundary each time-step is therefore equal to:

(qin(t + At) + Qin(t)) At

Eq. 4.74
5 (Eq. 4.74)

AEi(t) = Pin(0)

Lastly, Resistances and impedances dissipate energy depending on the path they
are included in as the other connected elements can change the pressure and flow
on individual paths. Therefore, dissipation has to be considered separately for every
dissipator in the system. All dissipators included those in the bifurcation model are
in paths with changing flow but constant pressure. Hence their energy dissipation
is equal to eq. 4.75. Dissipators present in the windkessel experience constant flow
at their boundaries while the compliance changes the pressure at the centre and inlet

nodes leading to the dissipation term in eq. 4.76.

(4r(t + A0 +4:(0) (Eq. 4.75)

Bifurcation AER(t) = Pr(t) 2
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(Pr(t + A0 +p:(D) (Eq. 4.76)

Windkessel AER(t) = qr(t) >

4.3.3. Model parameters
An initial base system is used to demonstrate the instability consisting of 3 vessels
as depicted in Fig. 4.8 above. The main assumptions include that the compliance of
the bifurcation is captured within the windkessel compliances. This is consistent
with rigid vessel assumptions for 3D hemodynamics simulations. Additionally, it is
assumed that the pressure drop of the vascular system is mainly attributed to the
windkessel resistance and impedance. Hence, the total windkessel resistance is

equal to the ratio of average pressure to average flow.

The inlet vessel has a length of 30[cm], with both outlet vessels after the bifurcation
having a length of 10[cm]. The radius of the inlet vessel is chosen to be 1[cm] while
both outlet vessels have a 0.77[cm] radius. Fluid density was setto p = 1056[Kg -
m~3] and kinematic viscosity n = 3.5 - 10~3[m?s~1]. These parameters are in the
same order of magnitude as those encountered in the aorta up till the bifurcation of
the iliac arteries. Windkessel total resistance was estimated from assuming an
average pressure of 12.5[kPa] at a stroke volume of 80[ml - s~1] . A very rough
estimate of input impedance Z; is 10% of the value of peripheral resistance R;. The
Compliance was then estimated from assuming an RC constant of 2[s]. To create
an asymmetry between the 2 outlets, the total resistance of Windkessel model 1 is
decreased by 20% while that in the windkessel model 2 was increased by 20%.

Without this asymmetry the flow fraction to each outlet vessel is equal and no
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pressure differential exist between them. The only determinant of the flow through
the bifurcation in that case is the inlet flow which is predetermined and leads to
identical solutions irrespective of the chosen coupling method. Compliance is equal
in both windkessel models. A summary of the resulting parameters can be found

below in table 4.1.

Parameter value Parameter value
(Bifurcation) (Bifurcation)
Lyi[kg-m™] 1.0084 - 10° Ri[kg-m™*s™1] 2.6738-10°
Ly[kg-m™*] 1.6807 - 10° Ry[kg-m~*s71] 7.4272-10°
Li[kg-m™*] 1.6807 - 10° R3lkg -m™*s™1] 7.4272-10°
Parameter value Parameter value
(Windkessel) (Windkessel)
Zi[kg-m*s71] 2.1818 - 107 Zy[kg -m™*s71] 2.2728-107
Rpilkg -m=*s™] 2.1818- 108 Rpalkg -m=*s71] 2.2728-108
Cilkg-m=*s~1] 6.6667 - 1077 Cylkg - m™*s™1] 6.6667 - 1077

Table 4.1 - Model parameters of the bifurcation and the coupled windkessel
models.

The model is partitioned into a model containing the bifurcation and one model
containing both windkessel models. Input flow of the model is equivalent to the
realistic flow pulse described in Fig. 3.5 for the windkessel chapter. Time-step size
is set at At = 1072[s] and a Central-difference approach is utilised for the
numerical scheme of both partitioned models implying 8 = 0.5[—]. This minimizes
the energy losses due to the numerical evaluation at each time-step allowing an
analysis in which the only energy losses are due to dissipation and the chosen

coupling method.
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4.3.4. Coupling Instabilities
In real-world systems, any net energy that flows into the system is either dissipated
by dissipators like resistances and impedances or is stored onto compliances and
inertances as potential and kinetic energy respectively. The numerical system has
additional energy sources and at the boundaries due to coupling making the
effective pressure and flow at these boundaries appear higher or lower to the system.
Both the implicit and explicit coupling can therefore become unstable for similar
reasons, namely the accumulation of numerical energy. However, the energy
introduced through explicit coupling accumulates over time, whereas the energy
within implicit coupling can accumulate within an iteration cycle. Instabilities for

both methods will be demonstrated below.

4.3.4.1. Explicit coupling instability
In order for the coupling energy to accumulate over time, the energy generated at
each time-step should be higher than the energy that is dissipated at each time-step.
Briefly revisiting the harmonic oscillator model, it is important to remember that
energy is used in this context as an accounting tool. In the numerical system, the
boundary condition either introduces an excess pressure onto the inertance or an
excess flow onto the capacitance. Indirectly this increases the amount of mass
passing through the inertance and increases the amount of fluid stored on the
compliance, effectively increasing both the mass and pressure within the system.
Each time-step the energy associated with this pressure and flow travels in a single
path without being dissipated, namely the LC-loop. Any energy that was previously

generated by the coupling, in turn generates more energy at the next time-step.
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An equivalent harmonic oscillator circuit can be recreated from the bifurcation
model. In order to do so the system needs to be isolated at its boundaries. This can
be done by specifying zero flow at inlet while letting resistance values R,,; approach
infinity. A closed path is created between the two compliances of the windkessel
models. If the impedance and resistances within the bifurcation are set to zero, the
energy within this closed path is able to accumulate over time. This last condition
is sufficient but not required and as will be shown, all that is required is that the
energy that gets generated is not sufficiently dissipated leading to a net energy
accumulation. It can be demonstrated that even more realistic cases can become

unstable.

If the impedance of the windkessel model is set below a certain threshold,
eventually the amount of energy generated by model coupling will surpass the
energy dissipated over all dissipators in the system. To demonstrate this, the outlets
of the model are shortened to half the original length and the value of the windkessel
impedances is set to zero. This creates a shorter path, halving the inertance and
resistance between both windkessel models but doesn’t change the characteristics
of the shortened geometry. The input flow is changed to be a single pulse inflow of
q(t) =1-107*[m3s1] at t = 0.1[s] which is an equivalent volume of fluid of

1[ml]. After the initial impulse the inflow is 0.

110



Chapter 4

Fig. 4.9 below shows the pressure differential across both outlets and the flow

between both outlets for the implicit, explicit and central-differenced coupling

methods.
3 . . 1 x 10~ ' ‘ ‘
21
_ 05+ -
F 1 / A A | .
= w
<A
2 0f 1 = 0 v
- \{/ v Z
A -1t | =
= 05
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Fig. 4.9 - Pressure(left) and flow(right) for the bifurcation model for different
coupling methods. Pressure and flow are generated or dissipated for the explicit

and implicit methods respectively.

Since there are no sources present except for the inlet flow, fluid should leave the
model via the peripheral resistances at the windkessel outlets until pressure is no
longer stored on the resistances, i.e. p=0[Pa]. The pressure and flow magnitude
increase with each cycle for the explicit method while they decrease for the
remaining coupling methods. However, the implicit coupling method diminishes
pressure and flow faster than the central-differenced method. An additional
numerical wave of energy exists, a source for the explicit method and a sink for the

implicit method, as was seen for the harmonic oscillator
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Fig. 4.10 below depicts the difference between the energy generated by the coupling
method and the energy dissipated by all dissipators in the system, on the left side of
the figure. Both the implicit and central difference method diminish in total energy
over time, implying that the dissipation of energy is larger than the generated
coupling energy. The difference between the central-difference and implicit
coupling is obscured by the scale of the graph which is mainly relevant to difference
in accuracy between coupling methods and not for the stability. Furthermore, a
change in total energy of the system is not purely due to the additional coupling
energy. The right side of fig. 4.10 depicts the difference in total dissipated energy
between the explicit and central-difference coupling and between the implicit and
central-difference coupling. The explicit method dissipates less energy up until
approximately the first 2.25[s] of the simulation after which both the implicit and
explicit method dissipate more energy than the central-difference method. This is
because a change in flow or pressure through a path including dissipators, also
changes the total dissipation. Furthermore, the implicitly coupled system is
effectively half a time-step ahead of the central-difference coupled system while

the explicitly coupled system is half a time-step behind.
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Fig. 4.10 - (left) Total energy of the system demonstrating the energy generation of the explicitly
coupled models, (right) Total energy dissipated for explicit/implicit coupling compared to central-

difference coupling, demonstrating coupling influence on dissipation.

After having considered the zero-impedance model it can be shown that the
bifurcation model can become unstable for none-zero values of the impedance. For
this the impedance is multiplied with a factor f,, an impedance ratio with a range
between O and 1. For the arterial system the RC time is approximately 2[s] or
smaller. Since there is no input flow, the system should reach an equilibrium after
6[s] and therefore a simulation time of 10[s] should be sufficient. . This assumption
also approximately holds for human physiological pulse signals as long as the pulse
is cyclic. Fig. 4.11 demonstrates the difference in stability depending on the value
of Z;. The approximate smallest value in this graph for the impedance for which the

model is still stable is a value of f, = 0.025.

Zi" = f,Z; initial (Eq. 4.77)
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Fig. 4.11 - Total energy as a function of time. Separate curves indicate different impedance values

with red curves indicating unstable models, blue curves indicating stable models.

A more precise value of this cut-off was estimated manually to be f, = 0.0237. At
this value the total resistance between the two capacitors is equal to approximately
R = 2.035-10%[kg - m~*s~1]. This value is an order of magnitude smaller than
the impedance, implying that this resistance threshold can never be reached solely
by changing the value of the resistances in the bifurcation itself. This threshold can

only be reached for f, < 0.037 for having 0 resistance inside the bifurcation.

To test the assumption that the resistance in the path between the two capacitors
needs to be below this threshold, another experiment is performed in which f,
assumes 2 values namely f, = { 0.03, 0.04}. The inertances remain unchanged. For

the higher value of f, = 0.04, zero resistance inside of the bifurcation should not
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lead to instability. For the lower value of f, = 0.03, a factor f, is introduced to set

the resistances inside of the bifurcation to a fraction of the initial resistance value:

R" = frR; mitial (Eq. 4.78)
The threshold resistance R.. is reached for f. = 0.268. Fig. 4.12 below

demonstrates that indeed the threshold for stability is passed for f,. = 0.268 at f, =

0.03.
4 Total Energy, f. = 0.03 variation of f,
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Fig. 4.12 - Total energy as a function of time for f, = 0.03. Separate curves indicate
different values, red curves indicating unstable models, blue curves for stable models.

Green line depicts stability at f, = 0.03 and zero resistance in bifurcation domain.

A range of other values of £, is provided to show the stability properties for higher
and lower values of resistance. The green dashed line provides demonstrates the
simulation is stable regardless of the resistance inside of the bifurcation model at

f, = 0.04. Lastly it should be noted that the total energy does not approach 0 at the
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end time. This means that some residual energy will exist in the model although

this energy is negligible for all practical purposes.

This result indicates that any combination of resistances and impedances leading to
an R, resistance below the threshold will lead to an instability. It is expected that
this value is related to the peripheral resistance of the windkessel element, but more
work is required to establish a general condition utilizing all model parameters.
Peripheral resistance influences how much fluid can flow onto the compliance for
flow into the windkessel model and also determine how much fluid flows back into
bifurcation at windkessel backflow, including numerically generated energy.

The stability condition for this particular model is given in eq. 4.79. This instability
does not consider the accuracy of the model nor the implications of the instability.
Energy added over time, might not be noticeable with respects to the simulation
results and depend on the total duration of the simulation and the time-step used.
For the current simulation a set time step of At = 1072[s] was used. A smaller
time-step reduces the coupling energy generation or dissipation and thus makes the
model more stable. This is in-line with expectations regarding the convergence
behavior regarding explicit couplings.

R, >2.035-10°  Stable

R, <2035-10° Unstable 0" *79)

Reclkg -m™*s Y| =R, +R;+Z; + Zz{

This study explains a number of practical observations often encountered in 3D
simulations of the vascular system. The most prominent assumption is that the

impedance reduces wave reflections and therefore aids in the stability of the model.
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This is partially true, since waves reflected back across coupling borders aid in
either the numerical generation and dissipation of energy for the explicit and
implicit coupling respectively. However, in addition a numerical wave is created
just by the coupling conditions itself. Under the right conditions in a 3D setting, a
model can be perfectly stable given a certain windkessel impedance but might
become unstable for failing to include viscous resistance or even dissipation from

turbulence.

A condition that was examined but not described is that a reduction in compliance
aids in creating instability. The principal reason for this, is that a larger compliance
dampens the flow that comes in by storing more fluid flow at a lower pressure. A
lower pressure means that generated or dissipated coupling energy is lower than it
would have been otherwise and vice versa. Additionally, a smaller compliance
increases the frequency of the flow wave travelling between 2 windkessel
terminations. Similarly, relationship exists for inertances whereby a larger inertance
has a destabilizing on the full model due to coupling conditions. However, more

work is required to establish formal relationships.

4.3.4.2.  Implicit coupling instability
It is often established that implicit evaluation of a model is unconditionally stable.
This is not the case regarding partitioned model coupling. As was mentioned before,
energy can accumulate within the full partitioned model within an iteration cycle
during a single time-step. To see this, a different narrative will be used compared

to the energy narrative used so far. Instead each model will be rewritten as a single
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equation to return the outputs as function of the inputs simultaneously.
Additionally, for simplification of the procedures a fully implicit scheme is used
for both the numerical scheme of the partitioned models as well as the coupling

conditions.

The starting point of this discussion is the model consisting of the outlet vessels
only with a possible flow inlet source at the centre. This simplification is made
because the flow through the inlet vessel is fully determined a priori. Equations for
all three partitioned models, the bifurcation and the two windkessel models, can be
rewritten such that terms which are constant during a time-step and those that are
allowed to vary during a time-step, are separated. For the 2 outlet vessels in the
bifurcation, the continuous function for pressure from the windkessel model up

until the inlet node can be written as:

dq;(t
Pin () = Pyii(t) = q;(6) z R; + qdi )z L; (Eqg. 4.80)

In the bifurcation model each outlet only contains a single resistor and inertance
making it possible to drop the summation signs. Pressure at the outlets is prescribed
by the windkessel models and are therefore a source term for this model. After
discretisation using backward-euler discretisation from eq. 4.19 for the derivative

term, eq. 4.80 results in an expression for the flow.

qi(t + A) = Kyj(Pi (t + AL) — Py (¢ + AL)) + Ko3q,(8)
At L (Eq. 4.81)
K . = —’ K D e———
UTRAt+L; TP RAt+ L
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For reading clarity it is assumed that all functions are evaluated at the next time-
step t + At unless indicated otherwise for the remainder of the discussion. Using
the conservation of flow at the inlet node, the pressure at the inlet can be written as

a function of the inlet flow, pressure at the outlets and the flow at the inlets:

- Qin + 2i(K1iPuwii—K2:9: (D)
mn Z] Klj

(Eq. 4.82)

This expression can be substituted back into eq. 4.81 to obtain an equation of the

partial flows from which the inlet pressure has been eliminated:

q; = Ksi| qin + Z Ky j(Pyj — Puki) | + C1i + Cy; (Eq. 4.83)
Jj

Kii
Ky = 5 Kflj, Cy = —KyZ Kija;(©), Coi = Kzq:(t)  (gq. 4.84)
j

Note that g;,, is fully predetermined and that C,; and C,; only depend on the flow at
the previous time-step. As such these values do not change during a time step and
can be grouped in a single constant C5p,. If only the 2-outlet case is considered, the
K-constants that remain for the pressure can be grouped into a single K constant

K;p, leading to:
q;(t + At) = K3p (Pwkj(t + At) — Py (t + At)) + C3p,;  (Eq. 4.85)

KKy, _
Ksp = ———— C3p; = K3iqin(t + At) + Cy; + Cy; (Eq. 4.86)
K11 + K
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Eq. 4.86 can be used to provide flow boundary conditions for the windkessel model
but is a function of the windkessel pressure at the next time-step t + At which is
unknown a priori. A similar procedure can be followed for the windkessel model of

which the derivation is omitted, and the result given by:

Pwii(t + At) = Ky ;q; (t + At) + Kyper,i Cwier Kz i Cuiez

(Eq. 4.87)
= Ky,iqi(t + At) + Cyp
_ At(Ry; +Zi) + RypiCiZi
Wit At + R,,C;
K oo feiCc o —RpiGiZi (Eq. 4.88)
WKLLT At + R, G MR T At + R,,C
Cwicr = Pwii (D), Cowrz = q;(t)

In order to couple these equations, the strongly-implicit coupling scheme from Eq.
4.54 is used. While the starting order of the models is relatively unimportant,
assume for bookkeeping purposes that a single iteration consists of first evaluating
the 3D model, obtaining an estimate of the windkessel flow at time t + At after
which an estimate of the windkessel pressure is found at the current time-step.
Assuming the pressure and flow at the next iteration are better estimates of the
correct pressure and flow, the difference between iterations of these quantities can
be regarded as the error at that iteration. This eliminates all C-constants from the
system as they do not depend on the iteration number. Therefore, subtracting eq.
4.85 and 4.87 at subsequent iterations and substituting these equations into one

another results in:
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q;(t + At,n)—q;(t + At,n — 1) = g4, (¢t + At,n)

(Eq. 4.89)
= Kap (Kui, 20, (t + At — 1) = Ky i1t + At,n — 1))

pi(t + At,n) —p;(t + At,n — 1) = ¢, ;(t + At,n)

(Eq. 4.90)
= Kwk,iKsp (sp,j(t +At,n—1) —g,;(t + At,n — 1))

This implies that the error at the current time-step of any quantity is dependent on
the introduced K-constants and the error of those quantities at the previous iteration.
Omitting the indication of the time-step and considering the 2-outlet case, this can

be written in system form as:

gq,l(n) - K (_Kwk,i Kwk,j) gq,l(n_l)
£q,2(N) P\ Kk —Kwk,j/ \&g2(n—1)

(Eq. 4.91)
= Agqeq(n—1)
<€p,1(n)> _k ( Kk, _Kwk,i) <€q,1(n - 1))
gp,Z(n) 3D _KWk,] KWk,] 3q,2 (n - 1) (Eq 492)

=A,5,(n—1)

Note that Agp:—(qu)T. This system is stable within an iteration loop, if the

solution approaches a finite value for lim implying that ¢, ; approaches zero. For
n—-oo

the flow error this can be rewritten in system form as:

lim g5(n — k) = lim (Aq)"25(K) (Eq. 4.92)

It can be shown that the matrix in eq. 4.92 can be rewritten in limit form as a

function of the matrix A,,:
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. n . _ n-1
Jim (4:g)" = Jim (=107 (Koo (Ku + Ku)) A
(Eq. 4.93)
= lim (-1)" K" A,

n—->oo

Derivation has been omitted as this involves a lengthy manipulation of equations.
It should be noted that for real systems, all parameters are positive and that the
values in A, are finite and constant within a time-step. In order for the limit in eq.
4.93 tot be finite the K -term has to be smaller than 1. In other words, K; takes the
roll of an amplification factor which must be smaller than 1 for the value of all
quantities to converge to a stable value. In the case where K, = 1, the model can be
considered unstable for practical purposes as none of the quantities will converge
to a stable value. Due to the anti-symmetry of A,, and A,, the exact same result

can be obtained for pressure.

Also note that the change of a quantity, ¢, ; for either pressure or flow, changes sign
with every iteration step due to the factor (—1)™"1. If the system is stable, the
quantity will therefore experience a diminishing oscillation around the final value
while an unstable system will experience an amplifying oscillation around that same

value. The stability criterion for the 2-outlet case can be summarised as:

Ks>1 Unstable
Ks= Kap(Kwi; + Kwij){Ks = 1 Stable Oscillation  (Eq. 4.94)
Ky <1 stable

Lastly, it is possible to generalise this system from a bifurcation to a k-way junction.

This can become relevant in practical cases as 3-way junctions or approximations
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thereof can occur in the human vascular system. The process for arriving at a
resulting set of equations is completely analogous to that presented for the
bifurcation but requires modifications to egs. 4.85, 4.86, 4.89 and 4.90, presented

below:
qi(t +At) = Z Ksp,ij (Pwkj(t + At) — Pyyi(t + At)) + Csp (Eq. 4.95)
j

KKy
K3D,ij = Zj Klj

(Eq. 4.96)

‘Sq,i(t + At, n) = Z K3D,ij (Kwk,qu,j(t + At,n - 1) - KWk,igq,i(t + At,n - 1)) (Eq 497)
j

&pj(t +At,n) = Ky, Z <K3D,ij (sp,j(t +At,n—1) — g, (t +At,n — 1))) (Eq. 4.98)

J

For the windkessel pressure equation no changes are necessary. The resulting
equations can be reassembled into a system according to €,(n) = A.4&,(n — 1).
However, it is not straight-forward to find a general amplification factor as was
done for the bifurcation case as interaction effects between boundaries exist. No
general analytical amplification factor was found during this study. Some
interactions can dissipate numerical energy while others can generate energy
leaving the sign of the conservation of energy undetermined. It is possible to assess
the stability of this system numerically because 4., from eq. 4.93 is constant during
a time-step and only relies on the physical parameters of the model. For the limit of
n — oo , all entries of (A.,)" should remain finite in order for the system to be

stable.
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Lastly, a resemblance can be seen between the terms in the summation of egs. 4.97-
4.98 for k-boundaries and egs. 4.89-4.90 for just 2 boundaries. This resemblance
indicates that the total error amplification can be imagined to be a sum of the errors
between pairwise paths. The K factors are constant within a time-step hence the
error can grow along certain paths within the geometry while along others it can
only diminish. Therefore, the stability can potentially be analysed from a standpoint
of an error amplification of the energy passing along sections of the geometry.
However, this would require an analysis from an energy point of view which has

not been carried out for the current study.

4.4. Discussion
This chapter started-off examining the conservation behaviour of a conservative
ideal LC-model with respect to its numerical discretisation demonstrating the well-
known stability behaviour of backward and forward difference methods.
Consecutively for this 2-element model it was shown that partitioned coupling
approaches between both elements result in stability behaviour that is very similar
to the behaviour seen for numerical discretisation choices. Various coupling
schemes were analysed, and a central-difference based scheme was introduced

resulting in an energy conservative coupling.

Although, the used modelling approach is a OD approach and thus inherently

different from a final volume-based method, the coupling conditions and iterations

schemes used can be applied in any partitioned approach. As such it is expected
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that the same stability behaviour would hold for coupling between 3D geometries

and 0D lumped parameter boundaries.

Subsequently, a more realistic 0D geometry of a bifurcation was considered to
introduce physical dissipation within the model and additionally to introduce the
concept of an open-loop system in which energy can be added or removed. For this
model it was ultimately demonstrated that the model is stable for an explicit
coupling when the numerical energy generation is smaller than the physical energy
dissipation. The numerical energy generation rate is dependent on the time-step and
the physical values for compliance and inertance while energy dissipation is only
dependent on the resistances and impedances in the system. However, the exact
relation for energy generation rate as a function of these parameters has not been

established in the current study.

It should be noted that even if the entire model is dissipative in nature overall, it is
not implied that this model is accurate. In order for the model to be accurate the
discrepancy in energy flows between compartments needs to be rectified by
enforcing a numerically conservative coupling which is dependent on the used time-
integration scheme of the solvers. Simply adding additional dissipation or removing
energy through the posed boundary conditions does not rectify a non-conservative

coupling.

Translation of these analyses to 3D methodologies requires additional attention. For

inviscid flows in 3D geometries, the stability can be examined solely by considering
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the numerical energy generation at the boundaries. However, for flows containing
internal physical dissipation, as in viscous dissipation at walls or turbulent effects,
the preceding analysis is less straightforward as those dissipators need to be
included in the analysis adding to the computational cost. In this case considering
the numerical energy generation only at the boundaries can however still provide
information on the probability of encountering an instability. If the net effect at the

boundaries is a dissipative effect the model is unable to become unstable.

Lastly, an alternative stability analysis approach was taken to demonstrate the
possibility of an implicit coupling instability, by analysing an error amplification
factor. Within a timestep energy can be dissipated through physical effects but this
effect is limited from iteration to iteration. Additionally, a smaller time-step further
limits the physical dissipation. For a lumped-parameter bifurcation, it is possible to

analytically determine an amplification factor.

While this might be more complicated for a 3D geometry it is to be expected that a
reasonable stability estimate could still be derived by constructing a reduced order
0D or 1D model of the geometry for this purpose. For a K-outlet geometry this
amplification factor cannot be derived analytically but numerical approximation
using 0D approximations would not lead to significant computational cost as the
number of vessels connecting to a single junction in the cardiovascular system

generally remains low.
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Additional work is required to assess the validity and practicality of this approach
for 3D techniques. Additionally, the stability analysis of the implicit coupling
utilized the analysis of an amplification factor a more elegant approach would be to
consider the energy amplification between iterations as a summary measure.
However, the main recommendation of the current chapter is to invest more effort

to develop conservative couplings given a time integration scheme in future.
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5. Simplified Wave-Propagation
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5.1. Introduction
Up till this point a number of conclusions can be drawn from previous chapters.
Chapter 2 addressed the data requirements and simulation strategies for directly
prescribing flow and pressure from patient-specific data. It was shown that this is
generally an unsuccessful strategy. The windkessel model from chapter 3, being
one of the simplest and most commonly used models in hemodynamics, was used
as an example for providing boundary conditions for 3D geometries using a
multiscale approach. Numerical energy generation or dissipation were then
considered due to the coupling between a 0D representation of a section of the
vascular system, a vascular bifurcation, and a set of windkessel models in chapter
4. Additionally, this chapter provides a rational for the results from chapter 2. The
data from measurements was not consistent with different physical effects
encountered and no effort was made to make the data posed at the boundaries

energy conservative.

By representing the vascular bifurcation in chapter 4 as a lower dimensional 0D
representation some of the physical 3D characteristics of the system get
misrepresented. Misrepresentation of these effects did not affect the analysis of
coupling energy as it has been shown that gain or loss of energy in a model with
minimal numerical losses can be attributed solely to the coupling conditions
regardless of the actual model. Additionally, the bifurcation geometry was assumed

to be rigid, containing only inertances and resistances.
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Failing to include these physical characteristics affects the accuracy of the model
with regards to the real-world physical system. One of the biggest and most
common simplifications made, is to assume a rigid 3D-geometry. In chapter 2 this
was achieved by having no compliances in the bifurcation model and as a result
lump all system compliance into the windkessel models. The disadvantage of this
approach is that the wave-propagation inside of the 3D-geometry is effectively
infinite meaning that any flow or pressure change anywhere in the domain
immediately effects all other locations in the domain as was discussed in the
introductory chapter. In the case of aortic arch simulations this completely foregoes
the main function of the vessel, namely, to store blood volume at a certain pressure

in order to gradually transport and distribute it elsewhere in the body.

A significant part of the function of the large arteries stems from the distensibility
of these vessels which gives them compliance. In order to integrate compliance into
3D Fluid dynamics simulations, it is necessary to incorporate movement of the
vessel wall. When considering a single blood vessel, the blood exerts forces on the
wall, either through static pressure or dynamic pressure caused by the movement of
fluid. These forces drive the expansion of the wall and until the wall is exerting an
equal and opposite amount of force on the fluid. By doing so the vessel stores elastic
energy within the vessel wall material. Additionally, by expanding the wall, that
vessel accommodates an additional amount of fluid. When a pressure differential

exists with respect to neighbouring parts of vascular system, i.e. the pressure in the
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vessel is higher than the pressure downstream, fluid stored in the blood vessel can

flow out of the vessel again.

Numerically this requires another coupling between multiple models known as
fluid-structure interaction (FSI). Required are at least two models, namely a fluid
dynamics model for blood flow and a solid mechanics model for the wall. The study
by Reymond et al. [63] discusses the importance of including FSI effects and
compares Compliant 3D models vs. rigid 3D models vs. 1D models, concluding
significant differences in hemodynamical indicators like wall-shear stress.
Historically, the compliance in the windkessel model or other lumped parameter
models has often been used to compensate for not representing FSI effects [64, 65]
but this approach can still be found in some more recent studies [66, 67, 68]. This
lumps all compliance effects onto the distal vasculature foregoing the pressure and
flow wave propagation present in vasculature. This approach is warranted for
smaller diameter vessels where compliance effects are less influential on the clinical

outcome as in the simulation of FFR for instance [69, 68].

Potentially more model interactions can be added i.e. boundary conditions models
or rheological models introducing more interaction effects. Interaction effects due
to coupling are a bigger concern in a partitioned modelling approach as compared
to a monolithic modelling approach where all model components are evaluated
simultaneously. Each model coupling potentially generates or dissipates its own

numerical energy, potentially destabilising the model at best leading no accuracy
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errors between the model and the real system. An example is the added mass effect
in FSI where partitioned model coupling introduces numerical instabilities [70, 71].
In partitioned modelling approaches with implicit couplings, iterations are required
to calculate approximate solutions of pressure and flow at the next time-step for
each model. These estimates are then used to compute similar solutions in the
coupled models which again serve as boundary conditions for other models. Hence
every interaction effect potentially increases the number of iterations required
during a time-step due to coupling. This makes partitioned modelling of fluid-
structure interaction computationally increasingly expensive depending on the
complexity of the model and potentially unstable. Additionally, due to the complex

behaviour it is cumbersome to automate this procedure.

An alternative to modelling the full fluid structure interaction system was
introduced in the thesis work by Brown [72]. The general concept is to model the
propagation of pressure and flow waves by having a compressible fluid instead of
distensible walls. The storage of mass now occurs through compression of the fluid
instead of increasing the volume. Elasticity of the wall is now captured in the
elasticity of the fluid by having a constitutive equation relating density to fluid
pressure. Because of this it is possible to handle all computations by a single solver,
in the case of this study ANSY'S Fluent. A big advantage of this approach includes
a static mesh, making this method more robust in practice and making it easier to
guarantee the accuracy of the solution. Additionally, this removes the need for a

coupling infrastructure between partitioned solvers. Designing appropriate physical
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coupling conditions is often more straightforward than the implementation of said
methods. As an example, Fluid dynamics solvers are often designed within a
Eulerian frame of reference, i.e. all quantities are described with respect to their
position in space. Solid mechanics solvers are often written from a Lagrangian
standpoint, i.e. a frame of reference that follows the material being deformed.
Therefore, methods are required to map the solution from the fluid dynamics solver
onto the domain of the structural mechanics solver and vice versa. This imposes
requirements on the mesh of both solvers near the coupling boundary and
communication of quantities between both solvers which might use completely

different file storage methods or not be available to the level of detail required.

Designing software coupling interfaces for solvers that are not written for that
specific purpose is a non-trivial procedure making a single solver approach more
attractive. Rather than developing a monolithic solver from the ground up, a
straightforward way of having a single solver approach is to include additional
physics within a pre-existing solver. The compressible fluid method explored by
Brown [72] could potentially provide this functionality. However, discrepancies in
terms of results were observable between the compressible method and a full 3D 2-
way FSI approach. This chapter focusses on characterising the wave propagation
behaviour of both models and a third 1D model in order to suggest improvements

to the compressible fluid model.
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5.2. Wave propagation comparison
In the study of Brown [72], a compressible fluid model was used to add the effect
of wave propagation In this part of the study, part of their analyses will be revisited.
Analysis of the model comprised of two parts. The first part was verification that
the compressible fluid model had the desired modeling effect compared to the
physical system, results from the numerical 3D compressible fluid model were
compared to an analytical 1D wave propagation model. For this analysis, a straight
distensible tube of 20[cm] in length was modelled, coupled to a single windkessel
model. Two important outcomes arose from the first part of this analysis. It was
firstly remarked that using the 2-element windkessel as opposed to the 3-element
windkessel could give rise to significant oscillations in the solution for both the
numerical as well as the analytical model. When these oscillations were only
apparent in the numerical solution, viscosity was increased at the start of the
simulation to dampen spurious oscillations due to start-up effects after which it was
gradually reduced until equal to average blood viscosity. After dampening a
discrepancy remains which was attributed to the fact that the models are
functionally different due to the 3D model containing viscosity while the 1D model

is effectively inviscid.

In the current study it is argued that the discrepancy is due to functional differences
between these models which excludes viscosity. For this purpose, the experiment
Is repeated after giving the details of both the 1D model implementation and the

compressible fluid-based model.
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5.3. 1D Wave-propagation

5.3.1. 1D-Fluid Theory

The aim of this section is to arrive at a 1D description of fluid flow through a
straight compliant vessel after which this 1D vessel will be coupled to outlet
windkessel conditions. Deriving the equations for a 1D tube requires simplification
of the 3D characteristics of the flow and a number of assumptions. The fluid
dynamics are governed by the Navier-Stokes equations which describe the
conservation of mass and momentum. Additionally, other conservation laws can be
added as for instance the law of energy conservation depending on the level of detail
and accuracy required to model a system of interest. The Navier-Stokes equations

in vector notation for Newtonian incompressible flow are given by:

ov >
p (E +(¥- V)ﬁ) =—-Vp+uV?o+f (Eq.5.1)

V-v=0 (Eq. 5.2)

In which p is the fluid density, v is the fluid velocity, p is the pressure, u is the

dynamic viscosity and f are additional volume forces, for instance gravity. A
derivation of the Naiver-Stokes equations can be found in most introductory
textbooks on fluid dynamics. Both mass and momentum are transportable quantities
and as such their balance equations can be derived using Reynolds transport

theorem over an arbitrary control volume:
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d fﬂ dV—fﬂang+H v - ndl Eq.5.3
at £ = T EV'N (Eq.5.3)
14 14 r

This theorem says that the change of any transportable quantity € in a volume V, is
equal to the change of that quantity in the volume due to sources or sinks and the
influx of that quantity over the border. Since the Reynolds transport theorem should
hold for an arbitrary control volume it should also hold for an infinitesimal volume
leading to eq. 5.1-5.2. After derivation of the 3D Navier-Stokes equations it is
possible to derive a 1D version by making several assumptions including negligible
circumferential flow and axisymmetric geometries as was done by Barnard et al.
[73] .However, Hughes&Lubliner [74], formed the 1D balance equations for mass
and momentum for axial flow along a pipe shaped control volume. This analysis
foregoes the assumption of axisymmetry and some of the results here will be re-
stated for clarity. The resulting 1D Reynolds transport theorem, for an arbitrary

control length of tube, is re-stated below for the control volume depicted in fig. 5.1:

o .0, [
%(58)+E(5(svz))—L sda+£ ew,dl (Eq. 5.4)

In which, S is the surface of the cross-section of the tube, C is the bounding curve
of S on the outer-surface of the pipe, w,, is the velocity of the pipe relative to the
fluid and any quantity with an overline indicates the average of a quantity with
respect to cross-section S. It was assumed that fluid can flow over the luminal

surface of the vessel. It will be assumed for the remainder of the text that the luminal
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surface is impermeable, and no fluid can flow across it making w, = 0.

Additionally, ¢ is the material derivative given by:

§=—+71vVe (Eq. 5.5)

Fig. 5.1: Control volume adapted from Hughes& Lubliner [74]

The conservation of mass can be given by substituting e = p, with p the density of

the fluid. For incompressible flow this reduces the equation of mass to:

(as+65172)—0 Eq. 5.6

Or in words, the change in cross-sectional area is equal to the net inflow of fluid at
either section of the pipe. Similarly, the momentum equation can be derived for this
setting by substituting € = v,. If it is assumed that transverse flow, or radial flow
in the axisymmetric case, and external body forces are negligible, the 1D

momentum equation reduces to:
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With % the directional derivative with respect to the outward wall normal. It can

be shown using dimensional analysis for pulsatile flow through large arteries that
viscous forces are negligible and that the flow is inertia dominated. For frictionless
flow and neglecting the no-slip condition at the wall, flow v, = v, and eq. 5.7
reduces simply to:

. 1dp
v, = 9z (Eqg. 5.8)

Both equations 5.6 and 5.8 can be rewritten in terms of flow g and pressure p

resulting in the following system of equations:

dSop Odq
%E + PP (Eq. 5.9)
dqg . Op
—4+S—=0 Eq. 5.10
P3¢ 7 (Eq. 5.10)

Egs. 5.9-5.10 are the 1D equations for the propagation of flow and pressure. Often

for the ease of solving the system the equations are linearized by assuming small

deformations for which Z—Z = (, Is the compliance of the vessel and S= S, with

both approximately constant. Compliance C, is a relationship between the pressure
and the cross-sectional area of the tube and depends primarily on the material
properties and geometry of the vessel wall. What the exact functional relationship
for the compliance should be, will be left unaddressed until after the full model

development.
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5.3.2. Analytical model

An analytical model of egs. 5.9-5.10 can be found using a transformation to Fourier
space. By combining egs. 5.9-5.10 both equations can be rewritten in terms of only
one of the quantities, either pressure or flow. As an example, this can be done by
taking the derivative with respect to time of eq. 5.9 and the derivative with respect
to axial coordinate z of eg. 5.10 and combining the resulting equations to eliminate
the flow. This results in a 2"-order equation for pressure eq. 5.11. A similar

procedure can be performed to eliminate the pressure instead resulting in eq. 5.12.

%p  0%p
0%q 0%q
COLO F = ﬁ (Eq 5.12)
Inwhich L, = % and C, = 2—;, the inertance and compliance per unit length in axial

direction. The model represented by these two equations is well known in the field
of electronics and is called a transmission line model. An infinitesimal segment of
a lossless transmission line model can effectively be modelled by an inertance and
a compliance as given in fig. 5.2. Both equations 5.11 and 5.12 can be recognised

to be in the form of 1D wave equations.
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p(x,t) plx + 8x,t)
q(x,t) q(x + éx,t)
L
— C
RAG!
° qc(t)

Fig. 5.2 - Lumped parameter model for infinitesimal 1D-segment of transmission

line model

A solution to 1D wave equations of this form was described for vibration of a string
by d’Alembert [75]. It states that the general solution is a function of a superposition
of a set of forward and backward traveling waves. Hence for pressure and flow this
gives:

p(z,t) =pT(z—ct) +p~(z+ ct) (Eq. 5.13)

q(z,t) =qt(z—ct) + g (z + ct) (Eq. 5.14)

In which the positive superscripts for pressure and flow indicate forward traveling
waves, negative superscripts indicate backward traveling waves, z is the axial
position along the domain and c is the wave velocity. Initial conditions have been
neglected for the current formulation. Recall from chapter 3, the possibility to
represent any signal by a Fourier decomposition of infinite order as was done using
eq. 3.21. This implies that any signal can be represented as a superposition of sine
and cosine functions. Using egs. 5.13-5.14 it is possible to come to a numerical
solution of pressure and flow, which will be demonstrated for a single harmonic

denoted by P,(z,t) and Q,,(z, t) respectively. Employing a convenient scaling for
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the axial and temporal coordinates z and t respectively the forward pressure and

flow waves can be written as:

p*(z—ct) = P, cos(kz — wt) + Ps cos(kz — wt) (Eq.5.15)

qt(z—ct) = Q. +cos(kz — wt) + Qs rcos(kz — wt) (Eq.5.16)

In which w = 2rnf[—] is the angular frequency in time and k = w/c[—]
representing the angular frequency in space. A similar decomposition can be made
for the backwards traveling wave and combined with egs. 5.13-5.14. However, an
additional relationship exists between pressure and flow governed by the

characteristic impedance. For a lossless transmission line, this relationship reduces

Ly p* 2
o= |—m=—=—— Eqg. 5.17
° .}Co g (Fa-540

This allows for rewriting the Fourier coefficients in the pressure equation p* as a

to:

function of those in the flow equation g™:

P,(z,t) = L—, ({Qu1cos(kz — wt)+Q, ,sin(kz — wt) }
¢ (Eq. 5.18)

_ {Qw‘3cos(kz + wt)+Q, 45in(kz + wt) })

Qu(z,t) = {Qucos(kz — w)+Q,, ,sin(kz — wt) }
(Eqg. 5.19)
+ {Q(‘,Scos(kz + wt)+Q, 45in(kz + wt) }

This is a system of 2-equations with 4 unknowns, namely the Fourier coefficients

for flow. It is possible to obtain 4 equations by employing the proper boundary
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conditions similar to those in the 3D case. At inlet, flow boundary conditions are

prescribed similarly according to a Fourier description:

Qw(0,t) = Qo () = Qo cos(wt) + Qossin(wt) (Eq. 5.20)

For this to hold with respect to eq. 5.19 and through the symmetry relations for sine

and cosine functions, it can be shown that this implies that:

Qoc = Qw,l + Qw,3 (Eq. 5.21)

Qos = Qw,4 - Qw,z (Eq. 5.22)

At the end of the tube at axial position L, a windkessel model is connected under
an assumption that the flow can be represented by a similar decomposition as eq.

5.20:

Quw(L,t) = Q.(t) = Q¢ cos(wt) + Qpssin(wt) (Eg. 5.23)

Under this condition it is possible to use the result of chapter3, eg. 3.20 as an outlet
boundary condition for pressure. It can be seen that eq. 3.20 can be recast in similar

form to the flow boundary condition of eg. 3.20:

P,(L,t) = P, cos(wt) + P ssin(wt) (Eq. 5.24)

Similar to the flow boundary condition, eq. 5.24 can be combined with eg. 5.18 and
the symmetry relations for sine and cosine resulting in another set of two equations
which have been omitted. This system of 4 equations with 4 unknowns can be

written in matrix form as:
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Qw,l

(H-K'6F)Q=0 Q= g“"z
- - w,3

Qw,4

H= \/Z(C(_)S (kL) sin (kL) —c.os (kL) —sin (kL)) (Eq. 5.26)
C'\sin (kL) —cos (kL) sin(kL) —cos (kL)

__(cos (kL) sin(kL)  cos (kL) sin (kL)
N (sin (kL) —cos (kL) —sin (kL) cos (kL))

(Eq. 5.25)

(Eq. 5.27)
R 1 —RCw
-1 _
S N CTADE (RCw ) (Eq.5.28)
Z

1 + E ZC(U
G = 7 (Eg. 5.29)

—ZCw 1+

The general solution can then be recovered by a superposition of the solution for
different harmonics according to an infinite Fourier series. This solution is referred
to as the analytical due to the fact that it provides an exact solution to the wave
equations presented, given that the boundary conditions can be described exactly
using a Fourier series. In practice for this to hold in a numerical system this means
that the inflow signal has to be representable by a finite Fourier series. This is the
reasoning behind choosing a pure sine function as the inflow boundary condition
for verification of the windkessel model. It should be noted that the system does not
provide an analytical solution of the hemodynamical system being modelled by the
wave equations. Several simplifications have been made which do not hold in

practice which will be shown further on.
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In summary, a 1D model provides a description of pressure and flow by eq. 5.18-
5.19 provided that the angular frequency w and wave velocity c are given. The
Fourier coefficients can then be computed at every instance in time for every
angular frequency using egs. 5.25-5.29. And lastly a general solution can then be
found by superposition of the solution for all harmonics according to the Fourier
series presented in eq. 3.21. The angular frequencies to consider can simply be
chosen to be the first n-harmonics of a function. This implies that the base harmonic
for biological signals is of the order of the period of a single heartbeat or 0(w) =
2m[—]. Several choices can be made for the wave velocity which depends on the
system including both the fluid dynamics as well as the solid mechanics model.
However, the choice for both the compliance as the wave velocity is only relevant
for creating an equivalence between the compressible and the distensible system

represented by a conventional FSI simulation.

5.4. Compressible fluid model
As mentioned before the compressible fluid model stores and releases mass based
on the density of the fluid as opposed to storing or releasing fluid by expanding or
contracting the vessel, i.e. displacing the vessel wall. As such it can be noted that
the distensible system and the compressible have the following relationships for

linear elasticity and small deformations:
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Cross-sectional Area Density
Distensible 0A 5 =
! ! A(Z, t) = AO +—_d}5(Z, t) p(Z' t) Po
op
compressible Az, t) = A _ p , _
P (z0) 0 p(Z,t) = po +a—ﬁdp(z,t)

In which an overbar indicates the average of that quantity over the cross-sectional
area and dp(z, t) is the change from the reference pressure p,. By assuming small
deformations, the compliance of the systems is approximately constant and not
dependent on the pressure itself. In order to have equivalent mass in both systems,
it can be recognized that it must hold that:
104 10dp
——— = (Eg. 5.30)
It can be derived using the definition of linear momentum and Newton’s second
law of motion that the speed of sound in an isotropic material is equal to equation
5.31 in which K is the bulk modulus. It should be noted that the equality on the

right, follows from the definition of the bulk modulus as being the derivative of

pressure with respect to volume for a material:

K dp
c= |—= |=— (Eq. 5.31)
p dp

If this equation is substituted back into the equations for the density of the

compressible system and the area of the distensible system, we find that:
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compressible _ 1
p(z,t) = po =— ((2,t) —po) (Eq. 5.32)

distensible Ap 1
Az, t) — Ay = (p—c—2> (p(z,t) — po) (Eg. 5.33)
0

In other words, the wave velocity of the compressible system can be related to the

compliance of the distensible system according to:

4o 1 (Eq. 5.34)
c = = g. 5.
PoCo LyCy

These equations are straightforward to implement under ANSYS fluent as UDF.

However, these relationships only hold under the assumption that the compliance
and thus the wave velocity, is effectively constant. The UDF consists of
specification of the density of a fluid, as a function of the reference density p, at
the reference pressure p, given the current pressure at a location. This is fully
governed by eq. 5.32 and 5.34 but in order to try to create an equivalence between
both systems an expression for the compliance is required. Note that the method
used here differs slightly in the equation of state compared to Brown’s
implementation [72]. The method used by Brown utilizes an ideal gas obeying the
ideal gas law, specifying the temperature and molar mass of the gas and
necessitating incorporation of the energy equation within the solver. In the current
study the equation of state is determined from the wave-velocity and pressure
directly without calculating the temperature field as it is not a variable of interest.
The compressibility of the fluid is an artificial addition to the behaviour of a fluid

that should in fact be incompressible in reality.
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A modification of the windkessel model was required for operation under fluent
with a compressible gas model. This is due to the fact that mass- and volume-flow
are no longer equivalent in the compressible gas model. The windkessel model
works under the assumption that flow is defined to be volumetric flow and therefore
the mass flow over the outlet boundary has to be converted to an equivalent volume

flow:

p
Awk = ——q3d (Eq. 5.34)
Po

54.1. Structural model
All vessel wall mechanics are assumed to follow pure linear elasticity. The main
wave effect being modelled is a transversal wave as opposed to a longitudinal wave.
Considered below in fig. 5.3 is an infinitesimal wall segment under a thin walled
assumption under plane strain. This implies that the radial stress o, is negligible.
Additionally, it is assumed that the wall is axially constrained according to ¢,, = 0,

i.e. no deformation in axial direction

Circumferential Plane Longitudinal Plane

Fig. 5.3 - Infinitesimal vessel section and forces acting upon it.
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The radial acceleration of an infinitesimal wall section can be determined as a
function of the corresponding radial displacement. In order to do so, a balance of
force can be considered combined with Newton’s second law stating mii,. = ), F;,
with m the mass, ii,- the acceleration in radial direction and Y; F; the sum of all forces
acting on the wall section. Therefore, as an approximation, each infinitesimal wall
section is considered to be a separate mass with an average acceleration. In the
longitudinal/axial direction, the transverse wave behavior without any sources can

be modelled using the following wave equation [76]:

2 2
d“u, , 07U,

= Eqg. 5.37
3¢ ct 572 (Eq )

With u, the radial displacement and c; the transversal wave speed. This is under
the assumption that this thin-walled membrane follows isotropic linear elastic wave
propagation neglecting angular momentum and the added mass effect. The added-
mass effect is caused by the effect of the acceleration of the wall onto the fluid
itself. A pressure is exerted on the wall by the fluid but in order for the wall to be
able to move in radial direction an amount of fluid near the wall needs to move with
the wall. Hence the pressure on the wall accelerates both the wall and an additional
mass of fluid, which will be neglected for now. Referring to fig. 5.3, the total force

on the wall consist of the pressure exerted by the fluid p, combined with shear
forces at point 1 and 2, F,,; ;- and F,,, ;- respectively. It can be shown that the shear

stresses in a point are proportional to the shear modulus and shear strain according

to:
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ou,
0z

Ty =GV =G (Eqg. 5.38)

With, 7., the longitudinal shear stress in radial direction, G the shear modulus and
v, the corresponding shear strain. Hence the sum of all forces on the wall

considered so far can be summarized as

%u, ou, ou,
= rdgh — G

(psrdhdz) 7., ol

=psrdepdz + G

rdph  (Eq.5.39)

It is important to remember that r is a reference radius to which a small deformation
occurs. This remains approximately valid for larger deformations by allowing this
reference radius r, to change over time. Since eq 5.39 should hold for an
infinitesimal volume, dividing by the volume of the wall and the wall density results
in:

0%u,  ps +£62ur
ot?  psh  pg 0z2

(Eq. 5.40)

Hence, for purely plane strain the transversal wave speed in absence of the pressure

source is governed by eq. 5.37 as:

= |— (Eq. 5.41)
However, as mentioned this neglected the forces in circumferential direction as well
as the added mass effect. In circumferential direction, a similar analysis can be

performed to find g44. For a linear elastic material, the strain in longitudinal

direction is given by:
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1
&,=0= E(O'ZZ — v(0¢¢ + arr)) = 0,, = U0y (Eq. 5.42)
In which E is the young’s modulus of the wall material andd the poisson ratio.
Similarly, the strain in circumferential direction can be derived resulting in a

relationship between circumferential stress and strain according to:

r+uw)d¢p—rdp u, 1
Epp = ‘;ﬂodd) = T_g = E (1 - 192)O'¢¢ (Eq. 5.43)

Part of the circumferential stress acts in radial direction on the wall element.
Therefore, the force in radial direction as a result of the circumferential stress is

approximately equal to:

_ (dd d¢
Fy ¢r = —0pgSin (7) hdz ~= —04¢ 7hdz (Eq. 5.44)

Combining equations 5.44 and 5.43, adding this additional force on both sides of
the wall element, to the momentum eq. 3.39 and dividing again by the wall volume
a general equation for the wall displacement can be found. For completeness, the
added mass is added as an additional inertia term with a factor M,,. Often, as in the
work of Causin [70] , the Timoshenko factor is used for correction of the shear
strain in the wave equation with the result given below in eq. 5.45

0%u,

0%u, Eh
(psh + Ma)? - krh57 = (Pf -

m ur) (Eq. 5.45)

Using this formulation, the wall displacement is described fully by the solid model,
in which the effect of fluid movement has been modelled as an augmented mass

onto the solid. Eq 5.45 has the same form as a 1D-wave equation with a forcing
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term on the right-hand side but has not considered the added mass. The added mass
will be considered further on in the text. For linear elasticity the shear modulus is
related to the Poisson ratio and the Young’s modulus according to:

E

“=2a-9

(Eq. 5.46)

If the effects of inertia, added mass and longitudinal shear forces are neglected eq.
3.45 can be rewritten as the quasi static relationship between pressure and radial

wall displacement. This effectively results in the radial displacement given a static

pressure. With the relationship that w, = \/A/m —/Ay/m, eq. 5.45 can be

rewritten as

_(rPa=9) N
A=m g tTh) ® Ay + 2mryu, (Eq. 5.47)

In order to provide a wave velocity for the compressible fluid approach and a
compliance for the 1D model, an expression is required for the derivative of the
area with respect to the pressure. This derivative is given in eq. 5.48. The zeroth-
order approximation of eq. 5.48, in which the pressure dependent term is neglected,

leads to a compliance that is consistent with the Moens-Korteweg equation.

=— =2
C=5,=%" Eh Eh

Y r2(1 = 9)\°  13(1—092)
Py +
(Eq. 5.48)
2mry° (1 - 92)

Eh
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For the experimental results that follow, the approximate compliance of Eq. 3.48

has been used and the wave velocity associated with this is simply given by:

= Eh Eqg. 5.49
€= 2ppad(1 —v?) (Eq.5.49)

5.4.2. Simulation & results
To compare the 3D compressible fluid method and the 1D wave propagation
method a marginally longer pipe is taken as in Brown in order to amplify some of
the differences. The methods from Brown and the current study were first verified
against each other to ensure they provide similar results. For this the parameters of

the test cases were set identical to those by Brown, shown in Table 5.2:

Tube Windkessel

parameters Parameters

Initial Radius a, = 1072[m] Impedance Z=11-10"[kgm *s71]

Domain length L=2-10"1[m] Compliance C=145-10"8%[kg~1 m* s?]

Material Resistance R =1.45-108[kgm™*s~1]

Properties

Vesselwall h=8-10"%[m] Derived

thickness parameters

Young’s modulus E = 10°[Pa] Wave Speed c =7.06[m/s]

poison ratio v = 0.49[—] Inertance  per L' =3.34-10°kg m™5]
unit length

Fluid density p =1.05-10% [kgm=3] | Complianceper | C' =5.97-10"°[kg~* m? s?]
unit length

Table 5.1 - Base Simulation settings for the fluid structure interaction simulations

At the inlet of the tube a sinusoidal inflow is used of amplitude 5 - 10~*[m3s~1]:
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Qin(6)[m3 s71] = 5-10*sin (2mt) (Eq. 5.50)
Both the 3-element and the 2-element methods were compared approximately by
overlaying the pressure graphs from both studies. Fig. 5.4 below demonstrates the
pressure for both studies for the 3-element windkessel as the 2-element windkessel
IS no longer discussed in the remainder of the study. Results from both

implementations are considered equivalent on the basis of these graphs.

PlmmHg)

Analytical tube coupled to three element Windkessel, Pressure as a function of time.

T
——z=0m
z=0.05m
z=0.lm

: /\ \ /\ /\ Y /\ \ f—rgl
-50 / \\/ \\v// \/f \g/f \:\\v_/

Pressure (mmHg)

-100 — — — — — |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Tmne (s)

Fig. 5.4 - Analytical 1D-model solutions, (Top) Pressure at 5 positions for the
current study and (bottom) as adapted from Brown, demonstrating both

implementations produce equal results.

For the comparison between the 3D compressible fluid and the 1D model it was
concluded by Brown that most discrepancies between the methods were attributable

to the viscosity included in the 3D model as opposed to the inviscid assumption in
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the 1D model leading to a maximum error of 3.55% normalised to the maximum

pressure. It was concluded that therefore both methods were in good agreement

The numerical experiment is repeated but with a tube length of 30[cm]. This is still
a reasonable length to perform 3D numerical simulation but is slightly better suited
to distinguish wave propagation effects from numerical or methodical errors. As
the geometry becomes longer, wave propagation effects between one end of the
tube and another become more apparent due to the time it takes waves to travel. All

other parameters have remained equal.

Depending on the initial conditions of the model, start-up effects are to be expected
due to the windkessel model that’s coupled as an outlet BC. This was discussed in
chapter 2. For the 3D model these start-up effects can be avoided, if the velocity
and pressure are described exactly equal to the periodic signal solution. An estimate
can be provided based on the average pressure and flow, but this does not change
the time required to reach periodicity of the solution. Due to the frequency-based
solution method for the 1D analytical model, this model is only capable of
representing periodic signals, as demonstrated in fig. 5.4. An obvious choice is to
run the 3D simulation until periodicity and then compare the final cycle of the 1D
and 3D models. However, it should be noted, that it is possible introduce start-up
effects from starting at O initial pressure and flow in the 1D model. Simply by pre-
and appending the inflow signal Q;,(t) by Q;, = 0 ,for a sufficient length of time.

A choice has been made to prescribe it as:

154



Chapter 5

{ 0 0 <t<10[s]
Qin(t) ={5-107*sin (2nt) 10 <t < 20[s] (Eq. 5.51)
0 20 <t < 30[s]
This choice makes the inflow signal periodic and allows the system a time of 20[s]
in total for the windkessel model to return to the O pressure and flow conditions
after the sinusoidal period of the flow has stopped. By having this sudden start at
10[s] of the sinusoidal flow signal, high frequencies are introduced into the system.
As the computational cost of the 1D model is limited, the number of harmonics was
arbitrarily limited to the first 500 harmonics of the signal. The inflow signal that
results from this procedure was then also used as the Inlet boundary condition for
the 3D model. The 3D model assumes an inviscid flow in order to eliminate any
functional differences between the 1D and the 3D model due to viscosity.
Additionally, a semi-explicit coupling between the 3D compressible region and the

windkessel model was utilized.

Fig. 5.5 below demonstrates pressure resulting from the 1D-model and the start-up
effects similar to that seen in the windkessel discussion. During the influx of the
first cycle, the average flow is none-zero which charges the windkessel compliance.
Periodicity is then reached from approximately the 7" cycle at t=17[s]. The
maximum amplitude of the pressure appears higher at the outlet of the tube
compared to the inlet. While this seems counter-intuitive, it is important to note that

the only the pressure gradient drives the acceleration and deceleration of the fluid
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1D-Analytical Pressure

_ 10 11 12 13 14 15 16 17 18 19 20
timel[s]

Fig. 5.5 - 1D-analytical pressure from initial conditions p=0, q=0. Pressure at 4
locations in axial direction.

and that the outlet pressure of the tube is fully determined by the flow through the

windkessel model. At the outlet the flow can still be accelerating while at the

beginning of the tube the flow has already started decelerating and so the pressure

of the windkessel model can still increase while that of the outlet is decreasing. For

reference the pressure of the 3D and the 1D model at inlet and outlet are provided

in fig. 5.6:

Inlet 1D
Outlet 1D
Inlet 3D
— — — Outlet 3D

x10% Pressure: 3D vs 1D

1.5

time|s]

Fig. 5.6 - 3D/1D pressure from initial conditions p=0, g=0. Pressure at inlet and

outlet
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At first glance these pressures are in good agreement, hence start-up effects can be
included in the 1D-analytical model. However, a similar argument as in chapter 2
can be made that the scale of the pressure, dictated by the windkessel model, can

obscure the notable characteristics of the system.

The left graph of fig. 5.7 depicts the absolute pressure at in- and outlet for both the

1D-analytical and 3D-compressible methods.

Pressure differential

«10¢ Absolute Pressure

1 4000
P = = = Inlet 1D
/ \ = = = Outlet 1D
Y N\ Inlet 3D
0.5¢ y) h \ \ Outlet 3D | 2000
g A\
—_— \ 3
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[ '\ 2
\)
N\
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9
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Fig. 5.7 - (Left) Absolute pressure of 1D and 3D-compressible methods for the

final cycle, (right) Pressure differential over full length of tube for both methods.

First, the difference with respect to the maximum pressure during the final cycle is
calculated, according to the method by Brown [72]. For the inlet the maximum
difference was calculated to be approximately 11.44[%] whereas at outlet it was
1.91[%]. It was noted during analysis that this difference was susceptible to the
coupling method employed but the extent was not quantitatively assessed. The right

graph of fig. 3.6 represents the pressure differential over the full length of the tube
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for both methods by subtracting the outlet pressure. Pressure differentials are
responsible for acceleration and deceleration of flow or deformation of vessel walls
and are therefore more indicative of the pressure scale of the problem. The
maximum difference between the 1D and 3D methods with respect to the maximum
pressure differential of the 1D case is 31.72[%] occurring at approximately 9.7[s].
Even if the absolute pressure is similar to that of real-world cases this is a significant
difference. However, this error is mainly caused due to the difference in time

characteristics of the signal rather than the magnitude of the signal.

It can be seen that the pressure differential of the 3D-compressible case is much
more asymmetric than that of the 1D-model which can be explained qualitatively.
Initially, when fluid is flowing in through the outlet, the pressure in the 3D-
compressible case is lower. Fluid close to the inlet is compressed and accelerates.
The compressibility dampens the imposed pressure during influx. Locally, this
means that a mass of fluid starts travelling along the tube with a higher density and
thus a larger inertia. Eq. 5.34 indicates that because of this the wave speed decreases
locally. In fig. 5.7 it can be seen that the absolute pressure at inlet of the 3D method
lags behind because of this. Eventually, the decelerative phase of the cycle is
reached and the inverse process happens. The mass of fluid that was previously
accelerated needs to be decelerated. Due to the inertia fluid near the outlet is not
immediately decelerated and can still flow into the windkessel model. At the inlet,
the flow is fully predetermined and the density decreases, reducing the inertia

locally and increasing the wave velocity. This type of non-linearity is difficult to
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model by taking a frequency-based approach to the solution of the 1D wave-
equations. However, this is considered to be an effect due to functional differences

between models, instead of numerical errors as indicated by Brown. [72]

Lastly, it should be noted that even a maximum difference or error around but below
5% can be considered significant. To exemplify this, the pressure is depicted in fig.
5.8 below for the compliant 1D case and the rigid 1D case. The rigid 1D case has
been created by setting the Young’s modulus of the wall above E = 1.805 -
10°[Pa]. At this Young’s modulus and a time resolution of At = 1073[s], the wave
speed increases to ¢ = 300[m/s] and any pressure or flow waves traverse the
domain instantly within the time-resolution time-step. As a safety margin the
Young’s modulus was taken to be E = 102[Pa]. Fig. 5.8 displays the absolute
pressure and pressure differential for the compliant system considered and the rigid
equivalent. In absolute sense, the maximum difference with respect to the rigid
system for absolute pressure is 19.35[%] at inlet while for the pressure differential
this difference is 8.53[%]. Firstly, this implies that the effect of adding FSI is
approximately only 4 times bigger than a 5[%] error while keeping all other
parameters equal. Hence, while it might be concluded that the absolute pressure
agrees reasonably well between models, the magnitude of the effect is not that large.
Secondly, the difference in pressure differential between the compliant 1D model
and the rigid 1D model is a lot smaller than the difference between the 3D

compressible model and the 1D-compliant model.
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Fig. 5.8 - 1D-analytical absolute pressure(left) and pressure differential along the tube(right) for
compliant walled (Cm) and rigid walled tube (Rg) indicating functional difference for including

FSI. Pressure differential for the Rigid case is symmetric over period.

How does this sit within the context of human physiology and pathophysiology?
Stage 1 hypertension is defined to be a systolic blood pressure between 130-
139[mmHg] whereas a normal systolic blood pressure is around 120[mmHg]. This
is approximately an 8% to 16% difference in pressure implying that a 5% error in
pressure estimates can be relevant to some clinical applications. Stage 2

hypertension is defined to be at a systolic blood pressure upwards of 140[mmHg].

The inflow for this case is not realistic and therefore the experiment is repeated one
last time with an inflow with a more realistic pulsatile inflow. The average flow has
been normalized to 80[ml/s] corresponding to an average human stroke volume. At
P=0[Pa], the compliance of the entire artery modelled by the 1D domain is equal to
Cip = 1.737 - 107 %[kg~! m* s?]. The compliance of the windkessel is reduced by

this amount to keep the total compliance of the system constant. Additionally, the
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impedance of the Windkessel is set to that of the characteristic impedance of the
vessel to minimize wave reflections (taken from Brown, eq. 3-29) Z =
1.1-107[kg m~* s~1]. Pressure and flow waveforms under these conditions are

depicted in Fig. 5.9.
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Fig. 5.9 - 1D model Pressure(left) and flow(right), comparing a rigid walled
blood vessel to a compliant blood vessel. Average pressures are lower for the

compliant system and outlet flow is delayed

For the rigid walled vessel, inflow and outflow are equal to the prescribed inflow
and therefore these curves have been omitted from fig. 5.9. The maximum
difference in pressure between the rigid and the compliant 1D model is 19.55[%] at
outlet during peak systole. This percentual elevation in pressure due to neglecting
vessel compliance would be comparable to the elevation seen in stage 2
hypertension. Lastly, fig. 5.10 depicts the volume change of the vessel which is
calculated by integrating the sum of the inflow and outflow over time per cycle. It
can be seen that, approximately 13[ml] of fluid is stored within the 3D region which

is released into the windkessel model at a slower rate compared to the rigid walled

161



Chapter 5

case. This is approximately 16% of the stroke volume imposed while the

compliance of the 1D region is around 11% of the total system compliance.
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Fig. 5.10 - Volume change of the 1D region of the 1D Model. Volume increases
up till 0.23[s] implying 13[ml] fluid storage after which the stored volume is

gradually released over the rest of the cycle.

5.5. Conventional FSI
The previous section has introduced methods to introduce compliance into a fluid
dynamics system using a compressible fluid without necessitating full modelling
and coupling of a wall structure. In the preceding study by Brown [72], the 1D
model was used to verify the functionality of this 3D compressible fluid model.
However, both methods function under different assumptions with the 1D model
not being capable of representing the non-linearities involved. Additionally, the

compressible fluid model assumed a constant wave velocity disregarding local
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changes in compliance and inertance. In order to better characterize the error of the
model with respect to the real-world scenario, data would have to be available.
Instead the accuracy will be compared to a conventional FSI standard which will
be referred to as the 2-way FSI due its 2-way coupling between the structural model
and the fluid dynamics model. This model is used as a golden standard after which
the compressible model would have to be modelled to provide the same

functionality.

5.5.1. 2-Way FSI
In order to understand which model, the 1D model or the compressible fluid model,
is closer to the real behavior it would be necessary to compare both models to
experimental data of wave propagation through tubes. In order to quantify the
pressure and flow fields at different locations this would require a complex set-up
of sensors along the length of the tube as was done in the work of Bessems et al.
[77] and Giannopapa et al. [78] . In the current study, the approach is taken to
compare both models to a 3D 2-way FSI model of a long tube. This allows for
examining pressure and flow in every point where needed and can be considered

the gold standard towards comparing FSI within the ANSY'S software collection.

Both monolithic and partitioned FSI approaches exist under ANSYS. However, at
the time of writing the partitioned approach offers more versatility compared to the
monolithic approach. In partitioned FSI involving solid and fluid mechanics, a fluid
dynamics solver and a structural mechanics solver are coupled with each solver

being referred to as a participant. Following this approach, a dedicated solver can
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be used for the fluid and the solid structure, which often implies that many more
models are available to describe different types of physics. In this case ANSYS
Fluent is used for the fluid dynamics part of the solver whereas ANSY'S mechanical
is used to compute the transient structural mechanics. Fluent uses a finite volume
approach written from a Eulerian point of view, whereas Mechanical utilizes a finite
element approach written from a Lagrangian point of view. More effort is required
to write monolithically coupled systems of equations and a monolithic approach
often comes at a higher computational cost. Commercially, an incentive to build a
monolithic solver might be required which means these solvers tend to be either
limited in scope or non-existent making it more interesting to improve on existing

techniques.

In order to couple models, it is necessary to specify coupling conditions at the
interface between both models. In the case of blood vessels this interface is where
the blood comes in contact with the vessel wall. At the coupling interface, the
movement of the fluid should be equal to that of the wall while the forces exerted
by the fluid should be equal to those exerted by the wall. Since the flow is inviscid,
only the normal stress with respect to the wall is important. These are known as the

kinematic and dynamic conditions and for an inviscid fluid in radial coordinates are

given by:
L Eq. 5.52
u-n= T (Eq. 5.52)
pr = fs (Eq. 5.53)
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Fig. 5.11 - (left) coupling schematic of different coupling participants involved, (right)
Different loops involved in simulation with yellow colour indicating processes managed

by system coupling box and green processes handled by partitioned solvers.

Fig. 5.11 depicts the 3-way model coupling. Coupling the Fluent fluid dynamics
and Mechanical structural mechanics model is done using the system coupling box
software. The system coupling box manages the transfer of data between models
by mapping forces from the fluid model onto the structural model while mapping
the structural displacement onto the mesh movement of the fluid model. System
coupling box also handles the coupling iteration loop between models whereas the
separate partitioned models find iterative solutions to their pressure, deformation
and flow fields as normal. Similarly, to the windkessel discussion, model coupling
can be classified as explicit, semi-explicit, weakly implicit and strongly implicit.
The system coupling box has no option at the present time to perform central
differenced coupling. Lastly, the windkessel model is coupled through Fluent which

adds another coupling interaction within the model.
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For this study, models were evaluated using a computational cluster using Univa
Grid Engine as a cluster manager. Due to a bug in the system coupling box at the
time, only a certain number of maximum iterations of the full model could be run
after which the system coupling box would produce an error making it impossible
to continue the simulation. When a GUI is available a work around exists in which
the simulation can be stopped and restarted from that point. For automated
execution on a cluster using a GUI is impractical and it was necessary to write a set
of scripts to reserve the necessary computational resources and manage automati