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Executive summary

In recent years, the use of Computational Intelligence techniques is growing
in the engineering design: methods as Evolutionary Optimization Algorithms
as well as Arti�cial Neural Networks are becoming more common and better
known.

The research on Evolutionary Algorithms (EAs) is already established:
many important journals and international conferences are devoted to this
topic. This research changed its behaviour in the years: at the beginning
the focus was on the creation of a general algorithm able to solve all the
problems. Since the demonstration and the publication of the No Free Lunch
Theorem for Evolutionary Optimization [1], the nature of the research is
drastically changed: in fact, this theorem demonstrates the impossibility of
implementing the best algorithm.

The new research trend can be divided into two main parts: on one
hand, many researchers are devoting e�orts in the implementation of e�ective
algorithms for the solution of multi-objective and many-objective problems,
i.e. problems in which there are more than one con�icting targets that should
be solved at the same time. On the other hand, the trend is focused on the
implementation of ad-hoc algorithms for the e�ective solution of a speci�c
problem [2]. This second trend is less popular because it requires a highly
multi-disciplinary approach to the research: both algorithmic experts and
experts on the problem physics should interact. For what concern antenna
design, the use of Evolutionary Optimization algorithms is very popular, due
to the high non-linearities and the presence of many local minima [3]. Among
all the antenna, the design of re�ectarray is highly suitable for Evolutionary
Optimization: in fact, for achieving special performance in terms of radiation
pattern, no deterministic solutions are available.

Evolutionary Optimization algorithms are widely applied also in electri-
cal engineering system. In [4] the Particle Swarm Optimization is used for
designing the electricity distribution network: in particular, it is exploited
for �nding the optimal capacitor allocation in a network with high wind
generators. In [5] the Genetic Algorithm has been applied in the optimiza-

13



14 RINGRAZIAMENTI

tion of a permanent magnet synchronous generator: in this case, the system
performance are calculated by means of an analytical model during the op-
timization and, only at the end of the process, the FEM software is used for
assessing the solution.

The aim of this thesis is to analyse the entire optimization system, con-
sidering all its parts and understanding their e�ects on the �nal result of the
optimization. This activity is rarely performed in literature and in the most
of the cases, Evolutionary Algorithms are considered black boxes. This often
lead to results that are not as performing as they can be.

The thesis is divided in four main chapters: after an Introduction, in
Chapter 2 the optimization system is analysed and its parts are shown as
well as their interactions. The idea is to understand the possible system
architecture that can be used for di�erent problem.

The third chapter is focused on Evolutionary Optimization Algorithm
and, in particular, on Social Network Optimization. This algorithm has
been designed, implemented, improved and tested in my PhD program. The
analysis of the algorithm represents an activity that can be done on all the
EAs and that is very useful for being able to have the better performance
of the algorithm in di�erent applications. Among the analyses performed,
two of them should be underlined: the parametric analysis that has been
correlated with a theoretical explanation of the convergence proprieties of
the algorithm, and a deep comparison among di�erent algorithms.

In particular, the comparison is done among seven EAs, two random
algorithms, and four standard local optimization algorithms. Twelve di�erent
benchmarks have been used in this study.

In the following two chapters, the optimization systems for two di�erent
applications have been analysed: in both the system performance should be
calculated with numerical methods, as Finite Element Methods. The direct
optimization on FEM models is hardly applicable, so di�erent approaches
have been tests.

The �rst analysed problem is an high frequency electromagnetic system:
the optimization of a re�ectarray designed for having scanning capabilities.
This problem is characterized by a very high number of design variables (148)
and the objective function is highly non-linear.

The problem optimization has been approaches with an analytical model,
and at the end of the process the �nal solution has been assessed with a
commercial FEM software.

This problem presents more performance parameters that should be op-
timized at the same time: for facing this, all of them have been summarized
in a single cost value by means of a linear combination. The coe�cients of
this combination have been investigated, as well as the feasibility function
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used for managing the boundary of the search space.
Moreover, an analysis of the parameters of Social Network Optimization

has been performed and, eventually, a comparison among a large set of EAs.
The second analysed problem is a low-frequency magnetic problem in

which the design af a die mold is analysed.
Two di�erent FEM software have been used: the �rst one is faster and

less accurate. With this software a deep analysis on the search space has
been performed and it results in an adaptive approach that is able to provide
very good results.

The second software is Comsol Multiphysics, that is much more accu-
rate, but the computational time required for the calculation of the system
performance is very high. With this second software, the use of surrogate
model is investigated, and the results compared with the �rst FEM software.
With both the two FEM models, all the EAs used in this thesis have been
compared.





Chapter 1

Introduction

Optimization is a key aspect of the design of engineering systems. It can
be faced with di�erent approaches accordingly to the system nature and its
complexity: in many cases the divide et impera approach is enough for having
an optimal or quasi-optimal solution of the problem. This fails completely
when the interaction among the part of the systems is very strong.

This re�ects the de�nition of complexity: a system is de�ned complex
when there are some emergent proprieties or behaviour often created by the
mutual interaction among its parts. Complex systems are very hard to be
solved and often their solution cannot be achieved deterministically [6].

Another common design method is the trial and error : it is very often
used in complex systems because the reiterated tentative design takes into
account all the interacting parts of the systems as a whole. The main di�-
culty of this approach is due to the fact that it takes a lot of time and the
�nal solution is often sub-optimal.

The complex models used for simulating engineering systems, that provide
the capability to assess accurate phenomena, require a fast and e�ective op-
timization process, which objectives range from geometric and performance
optimization up to joint optimization involving also the economic aspects.

Among all these approaches, those involving multiple goals are the most
interesting because they allow to have an overview of the �nal object. How-
ever, they are the most complex ones since they often result in multiple
equivalent sub optimal solutions. The involvement of con�icting goals makes
necessary to identify appropriate objective functions to take into account
most of the design requirements. In this context, advanced computational
intelligence algorithms can be used to �nd out the optimized design, involv-
ing a large number of physical and geometric parameters, and to maximize
the performance of electrical machines and energy-harvesting devices. These
procedures are population-based iterative techniques which basically perform

17
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an indirect synthesis by evolving the parameters of interest to identify one
optimal solution in the design space, through properly de�ned single and
multi-objective �tness functions [7].

The most popular evolutionary algorithms, i.e. Genetic Algorithm (GA)
[8] and Particle Swarm Optimization (PSO) [9] have been combined in the
last decade with a broad range of other soft computing techniques, like, for
example, arti�cial neural networks [10], fuzzy systems [11], giving birth to a
large discipline of hybrid methods which constitute the so-called Computa-
tional Intelligence.

In recent years, many other optimization algorithms have been imple-
mented in order to have performances better than GA and PSO. These two
algorithms de�nes the two most important classes of EAs: the Darwinian
algorithms, that emulates the species evolution, and the Swarm Intelligence
algorithms, that emulates the behaviour of groups of particles [12].

Figure 1.1: Classi�cation of the main EAs.

Figure 1.1 shows the classi�cation of the algorithms: the Darwinian
algorithms includes Genetic Algorithms (GA), Stud-GA, the Evolutionary
Strategies (ES), the Genetic Programming (GP) and Biogeography Based
Optimization (BBO), while Swarm Intelligence algorithms includes Parti-
cle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Social
Network Optimization (SNO), Arti�cial Bee Colony (ABC), and Fire�y Al-
gorithm (FA). Di�erential Evolutionary (DE) is not a biologically inspired
algorithm.

Among the numerous algorithm, it is important to remember the Bio-
geography Based Optimization (BBO) [13] that has been also applied in the
�eld on antenna optimization [14,15]. Di�erential Evolution (DE) is another
EA that shows very good performance in many problems [16], even if it is
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not very widely applied because often its results are a�ected by a high stan-
dard deviation for non-separable problems [17]. Estimation of Distribution
Algorithms (EDAs) have shown very good performances both in standard
benchmarks [18] and in antenna optimization [19].

Performance improvements can be achieved properly modifying some op-
erators of GA and PSO. An example of it is the Stud-Genetic Algorithm
that outperforms the basic GA on a large set of benchmarks [20]. Modi�ca-
tions of the PSO have been widely applied in literature, like the Meta-Swarm
PSO [21].

Other variations of the PSO regard the type of problems that is can face:
for example, in [22] a speci�c implementation for discrete problems have been
tested. PSO has been also modi�ed for solving binary problems [23,24].

Among all the antenna con�gurations, re�ector antennas have been ex-
ploited for the high demand of radar and satellite communication, where
a point-to-point connection was needed and, consequently, a high gain was
required. There are many shapes of re�ectors in literature: curved, planar,
corner but the most utilized are the parabolic [25].

In order to reduce the space required by the re�ector, especially in aerospace
applications, Re�ectarray Antennas have been introduced: in fact, they have
low weight, low pro�le and the possibility to be easily folded [26].

Re�ectarray Antennas (RAs) consist in a planar array made up of dif-
ferent re-radiating elements illuminated by a feed source (typically a horn
antenna) placed in central or o�set position. In these antennas, changing
one or more geometrical parameter of each patch it is possible to control the
phase of the re-radiated �eld changes and to obtain the desired radiation
pattern. They can be designed to radiate a shaped, contoured or multiple
beam [27,28].

A recent problem in re�ectarray antenna design is to improve their scan-
ning capabilities, i.e. the possibility to modify the direction of the radiation
pattern main beam. This can be achieved with di�erent approaches, like
active re�ecting elements or with a re-orientation of the feeder [29].

For what concern antenna design, the use of Evolutionary Optimization
algorithms is very popular, due to the high non-linearities and the presence
of many local minima [3]. The optimization of beam-scanning re�ectarray
has been faced with di�erent optimization techniques: for example, in [30] a
bi-focal re�ectarray antenna has been designed with a multi-objective imple-
mentation of PSO.

Evolutionary Optimization algorithms are widely applied also in electri-
cal engineering system. In [4] the Particle Swarm Optimization is used for
designing the electricity distribution network: in particular, it is exploited
for �nding the optimal capacitor allocation in a network with high wind



20 Introduction

generators.
In smart grid context, the optimization becomes even more important. In

fact, the optimization can be related to single building energy management
[31], communication systems [32], demand management [33], load forecasting
[34], and many other applications.

Also in the �eld of electrical machines, the application of Evolutionary
Optimization Algorithms gives very good performance. In [35] the Particle
Swarm Optimization has been applied to the optimization of a permanent
magnet linear generator, simulated by means of an analytical model.

In [5] the Genetic Algorithm has been applied in the optimization of a per-
manent magnet synchronous generator: in this case, the system performance
are calculated by means of an analytical model during the optimization and,
only at the end of the process, the FEM software is used for assessing the
solution.

In literature, a large space is also devoted to the application of existing
algorithms to design problems: in this case, the attention is focused on the
results of the optimization in terms of system performance or on the compar-
ison of di�erent existing techniques. For example, in [36] di�erent variations
of the Di�erential Evolution are tested in antenna problems, showing the
high optimization capabilities of the algorithm.

In order to increase the reliability of the results of the optimization, more
complex systems are tested. In [37] and [38] a new combination between Evo-
lutionary Algorithms and surrogate models is tested for achieving a proper
trade-o� between accuracy of the result and total computational time re-
quired. In [39] the trade-o� between computational time and accuracy is
achieved with di�erent surrogate models, while in [40] the ensemble approach
is used.

Computational intelligence techniques have been widely applied in recent
years both to power systems and to robotics. For example, Biogeography-
Based Optimization (BBO) for emission dispatch problems [41], real-coded
GA for reactive power control and smart grid optimization [42], multi-objective
PSO for navigation of robots [43]. Moreover, some search-based optimiza-
tion techniques have been also applied to manage battery SoC and generator
delivered power in hybrid electric vehicles [44], but still limited examples can
be found for electrical machine design, e.g. Di�erential Evolution (DE) [45]
and Genetic-Swarm hybrid algorithms [46]. All these methods are mainly
based on iterative procedures with a strong stochastic base, and their perfor-
mance must be evaluated in terms of speed of convergence and computational
burden. In fact, these techniques are suitable when the device structure is
complex, as is the case of electrical machine design, which often requires time-
consuming and non-linear FEM simulations. To address this issue, surrogate
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models are used to speed-up global evolutionary search [47].
Many attempts have been made using Computational intelligence tech-

niques both in power systems and, more recently, in robotics. For exam-
ple, Biogeography-Based Optimization (BBO) for emission dispatch prob-
lems [41], real-coded GA for reactive power control and smart grid optimiza-
tion [42], multi-objective PSO for navigation of robots [43].

Most of these techniques have been used to optimize complex con�gura-
tions of various electric motors and generators, giving birth to a particularly
broad and detailed literature. For example, in [48] a multiobjective approach
is proposed to have higher power density and space utilization in planar mo-
tors; in [49] evolutionary algorithms are used for optimizing the design of
permanent magnet motors with di�erent winding con�gurations and cooling
systems; in [50], a novel automated design procedure is applied to the opti-
mization of synchronous reluctance machines. All these methods are mainly
based on iterative procedures with a strong stochastic base, e.g. Di�erential
Evolution (DE) [45], Particle Swarm Optimization (PSO) [51, 52], and hy-
brid algorithms [46], and their performance must be evaluated in terms of
speed of convergence and computational burden. In fact, these techniques
are suitable when the device structure is complex, as in the case of elec-
trical machine design, which often requires time-consuming and non-linear
FEM simulations. To address this issue, surrogate models are often used to
speed-up global evolutionary search [47, 53, 54]. A special attention is paid
to the study of linear machines and in particular the optimization of Tubular
Linear Generator (TLG), which are taking place in many energy harvesting
applications [55�57]. The optimization of the produced power is crucial in
such a type of problems which require the solution of di�erent interacting
physical domains.

In this context, the optimization of Antennas Arrays is often faced with
EAs [58]. For example, Genetic Algorithms (GA) have been widely applied to
antenna optimization [3], both in binary problems and in real-value problems
[59]. Also Particle Swarm Optimization (PSO) [60] has been widely used
in antenna optimization in its basic implementation [61�63] or with some
variants as Meta-Swarms [21], Black-Hole PSO [64] and others [65,66]. Most
of the problems faced with PSO are real-value problems: in fact, its operators
have been designed and are suitable for this kind of problems. There are
some modi�cations of PSO that have been introduced to deal with binary
problems [23, 24]. They are often indicated by bPSO, but their application
is not so wide as for GA.

Since optimization is an important tool for system design and it is widely
applied in many �elds, some preliminary applications of SNO and some parts
of this thesis have been already published. In [67] a comparison between
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SNO and other EAs is performed and then the former is applied to the task
allocation problem in a Wireless Sensor Network. A preliminary analysis on
that problem has been presented in one of the most important conferences on
Evolutionary Computation [68]. For what concerns the analysis of working
principle of the algorithm, a book chapter has been published [69]. SNO
has been tested on the problem of parameter matching for Photovoltaic �ve
parameters model [70]. In [71] SNO has been applied to the optimization of
a Tubular Permanent Magnet Linear Generator, and it has been preliminary
compared with Genetic Algorithm and Particle Swarm Optimization on the
TEAM25 problem. Finally, several conference papers have been presented
on the use of SNO in antenna applications. In these, the analytical model
presented in this thesis has been iteratively improved and its accuracy has
been increased with respect to the FEM software [72,73].

This thesis is structured as follows: Chapter 2 contains a critical analysis
of the optimization system. Chapter 3 presents the implementation, the anal-
ysis and the assessment of Social Network Optimization. In Chapter 4 the
optimization of a beam-scanning re�ectarray has been investigated analysing
many parts of the entire process, and in Chapter 5 a standard electromagnetic
benchmark, the TEAM25 problem, has been addressed with advanced evo-
lutionary techniques, analysing the e�ect of di�erent FEM software. Finally,
in Chapter 6 some conclusions are drawn.



Chapter 2

Optimization Systems

The optimization system is the structure composed by several elements that
is used to solve e�ciently an optimization problem.

The optimization problems are mainly composed by three elements:

• some design (or decision) variables: they are the set of geometrical or
physical parameters that can in�uence the behaviour of the systems
that should be optimized. There are three main types of design vari-
ables: real variables can assume any vale within a range; discrete or
integer variables cannot have fractional part; binary variables can as-
sume only one of the two values {0, 1};

• a set of constraints, that makes only a part of the search space feasible.
The constraints can be equality or inequality. The simplest inequality
constraints are the ones that de�nes the lower and upper limits for the
design variables;

• the objective function, that calculates the performance of the analysed
system and return some performance parameters.

The optimization problems can be linear or non-linear, depending on
the de�nition of the objective function. For linear problems there are some
speci�c techniques that have been implemented: these algorithms exploit the
linearity of the problem for �nding the optimal set of design variables (global
optimum of the objective function) [74].

For what concern non-linear problems, algorithms used to solve them are
classi�ed under the name of non-linear programming (NLP) [75,76].

A generic NLP is based on a transition rule: it de�nes how the candidate
solutions (the tested feasible points) moves into the search space.

23



24 Optimization Systems

There are two sub-classes of NLP algorithms: the point-based, in which
at each iteration only one candidate solution is tested, and the population-
based, in which a set of solutions are tested in the same iteration [77].

The point-based algorithms are based on an initial guess (x0) that is
moved into the search space by means of the transition rule. Due to high
in�uence of the initial guess, these algorithms should be started many times
for a proper identi�cation of the global best of the objective function (multi-
start algorithms). The main characteristics of these algorithms are:

• Local search: the search area is highly in�uenced by the starting guess;
thus, it is possible to state that the optimization is performed only
in a sub-part of the entire search domain. Due to this reason, these
algorithms are often blocked in local minima of the function.

• Low memory required: due to the fact that only one solution is stored
at each time, the required memory is very low.

• No parallelism is possible for a single trial: while analysing only one
trial (start) of the algorithm, at each iteration only one point is evalu-
ated, and it is not possible to parallelize the iterations.

• For these algorithms it is often possible to develop an easy theory for
their working mechanism.

On the other hand, population-based algorithms are based on an initial
population of candidate solutions (x0) that is evolved in the search space
creating at each iteration a new population. Due to the presence of many
points in the initial population, these algorithms are much less a�ected by
the speci�c selection of the initial population. Their main characteristics
are [76]:

• They can be considered global optimizer because they can optimize in
one trial in the entire search space. This is also achieved by the intro-
duction of stochastic operators in the optimizer, thus given an initial
population, di�erent runs of these algorithms give di�erent results.

• High memory required: at each iteration a population of candidate so-
lutions should be stored in the memory; for high-dimensional problems
(that often requires also high dimensional populations) this fact can be
a limitation.

• They are suited for parallel processing. This is due to two reasons: the
�rst one is related to the presence of a population of individuals that
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should be evaluated at each iteration. These can be easily parallelized
[68]. The second one is an implicit parallelism of population-based
algorithms [78,79].

• There are no easy theories that can explain the working principles of
population-based algorithms. The convergence is generally proven by
using a set of tests on standard benchmarks.

It is important to remember the No Free Lunch Theorem, that states
that all the algorithms perform the same if averaged on all the possible
functions [1]. This theorem can be bypassed because no one is interested in
all the possible objective problems, but only in a narrow class.

However, this theorem originated a new research �eld: in fact, instead of
�nding the best generic algorithm (that is demonstrated not existing), the
research has been focused on the customization of the algorithms, often using
heuristics.

This customization is particularly interesting in Evolutionary Optimiza-
tion Algorithms (EAs) because they have three very important advantages
with respect to point-based algorithms:

• They naturally provide more than one single �nal solutions: this as-
pect is fundamental in multi-objective optimization but can be really
important in the practical use of the algorithm because they provide to
the designer a set of di�erent (quasi) optimal solutions among which se-
lecting the �nal design. This is very important when some performance
indexes cannot be easily inserted in the objective function.

• EAs are very �exible in their use: they have no requirements in terms
of derivability or continuity of the function; moreover, they can deal
easily with constraints.

• The operator of EAs can be easily customized for the speci�c opti-
mization problems (see the applications of Genetic Algorithm to the
Travelling Salesman Problem [80]).

An interesting use of EAs is related to hierarchical optimization: di�er-
ent levels of optimization can be designed exploiting the best features of
population-based and point-based optimization. An example of this applica-
tion can be the use of EAs for �nding feasible parts of the research domain
for highly constrained problems and then apply point-based algorithms for
�nding the optimal solution.

Another interesting application of the combined use of EAs and point-
based algorithms is the research of interesting parts of the domain with EAs
and then a �ne-tuning of the solution with point-based algorithms.
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A practical and e�ective use of EAs is composed by the three following
steps:

1. A �rst run for analysing the main features of the objective function
This is aimed to �nd the best algorithm that can optimize the system
and the best way for dealing with constraints or more performance
parameters.

2. Performing the so-called improvement runs that are aimed to improve
the design of the optimization system in all its detail.

3. A �nal run for �nding the �nal optimal solution and then this solution
should be analysed.

Figure 2.1 shows a possible schematization of optimization system archi-
tecture. Its two pillars are the optimization problem and algorithm. Both
have several elements that should be designed to improve the overall system
performance.

These two pillars interact by means of two connections: one from the
algorithm to the problem composed by the box domain condition and the
variable decodi�cation; the second one from the problem to the algorithm
and it is composed by the cost function evaluation.

The part composed by the optimization problem, the box domain condi-
tion, the variable decodi�cation and the cost function is called in this thesis
objective function.

Figure 2.1: Schematization of a possible optimization system architecture.



2.1 Optimization problem 27

In the following of this chapter the optimization environment is analysed
with much more details: the two main blocks (the optimization algorithm
and the problem) will be inspected and then their relation is analysed.

2.1 Optimization problem

The optimization problem is one of the two most important elements of the
optimization system. It is the function that solves the real system: the
input is a set of design variables d and the output is a set of performance
parameters p:

p = f(d) (2.1)

The optimization problem can be divided in more parts, all a�ecting
the optimization process. The �rst one is the system simulator used for
solving the physical system: it can be an analytical model implemented in a
programming language, a numerical model (such as Finite Element Method
models), an experimental setup, or a surrogate model.

Each one of them have several impacts on the optimization process. The
accuracy of the model with respect to the real system is a key feature that
should be considered: the optimizers can �nd a �nal solution that has not
good performance in the real system because the accuracy for that solution
is low.

In this framework it is important to keep into considerations the hy-
pothesis of the adopted models: in some cases these can be added into the
optimization system as constraints; in others, they can be neglected in a �rst
step and then considered by the designer selecting from the �nal population
of the algorithm the most interesting and feasible solution.

The accuracy is very important also for surrogate models: in this case also
the sampling points distribution used for the creation of the model is critical
because it in�uences a lot the model capability to be accurate in evaluating
the candidate solution of the optimizer. The surrogate models are analysed
in the last section of this chapter.

Another aspect that should be considered is the computational time re-
quired by the model because it is indicative of the total optimization time. In
fact, the computational e�ort of the optimizer is often negligible with respect
to the one required for the evaluation of the candidate solutions. Due to this
reason, in this thesis the number of objective function calls has been always
selected as termination criterion for the search.

The model can also in�uence the non-linearities of the optimization func-
tion, but this is a very hard aspect to be considered since it depends on the
speci�c problem analysed.
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The optimization problems often contain several constraints in the so-
lution. Di�erent constraints can be found in the optimization problems:
equality constraint or inequality. The �rst type is often hard to be directly
approached, thus in many cases it is reduced to an inequality constraint
relaxing the requirement.

The simplest type is a limitation on the upper and lower bound of the
design variable. This constraint, called box constraint, is almost present in
every engineering problem and it can be easily managed because the opti-
mization algorithms very often works with a prede�ned limits of their op-
timization variables. All the possible set of design variable within the box
domain is called search space.

The second type of constraint regards limitations of some functions of
design variable (e.g. combination of them): this is another common type of
constraint. It can be managed in the optimization system in two di�erent
ways: the simplest approach is to associate a cost component to the viola-
tion of the constraint (penalty approach). Another way is to design speci�c
algorithm operators for creating at every iteration feasible solutions: the ap-
plicability of this approach is highly in�uenced by the type of optimization
algorithm and by the speci�c constraint.

The third type of constraint are limitations on speci�c outputs of the
system (e.g. imposing the passing band of a �lter in the minimization of its
in-band ripple). In this case the problem can be approached creating more
cost components (multi-objective approach) or with multi-layer optimization.

In general, it is always better to select the design variables such that the
number of constraints is reduced, if the problem allows it.

The output of an optimization problem is a set of performance parame-
ters: they can contain one or more objectives and, if constraints are present,
their violation level.

This set of parameters is then given to the cost function that process it
for returning to the optimization algorithm the cost value to be minimized.

2.2 Cost function

The cost function is one of the two interfaces between the optimizer and the
optimization problem: it translates the performance parameters into one or
more cost values. Mathematically it is expressed as:

c = g(p) (2.2)

If the output is only a single cost value, the problem is a single-objective
optimization, otherwise it is called multi-objective optimization. Often, if the
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number of costs to be optimized is greater than 4 or 5, the problem is called
many-objective.

In this thesis, the attention is focused only on single-objective prob-
lems, even if all the EAs have been implemented in literature also for multi-
objective and many-objective problems.

Single-objective algorithms can optimize also several con�icting objec-
tives at the same time with a scalarization approach: a weighting factor is
considered, and the �nal cost is a weighted sum of the di�erent objectives.

A proper de�nition of the cost function can be used for dealing with the
constraints. This is called penalty approach because the solutions in which
one or more constraint are violated have a second cost term.

This second cost term can be either constant or proportional to the viola-
tion level: this last case is the most common because the optimizer is pushed
toward the feasible region of the search space.

It is important to design properly the penalization term for avoiding two
possible conditions: the �rst one is when a feasible solution have a higher cost
than an unfeasible one. The second condition is the creation of signi�cant
local minima that are not present in the original function.

The cost function can take into account also the multi-layer optimization,
in which the optimizer �rstly solves a part of the problem and then a second
one. Even in this case, it is important to avoid that bad scaling of the two
problems lead to undesired arti�cial local minima.

2.3 Optimization algorithm

The optimization algorithm is the second fundamental pillar of the opti-
mization system: it is an iterative process that modi�es a set of solutions for
�nding the global best of the function. It solves the following problem:

xopt = arg min
x∈D

(F (x)) (2.3)

where x is the set of optimization variables, F is the objective function and
D is the optimization variables domain. The problem here considered is
unconstrained because in this formulation the constraints are included in the
objective function cost de�nition.

The algorithms di�ers one from the other by the number of candidate
solutions at each iteration (point-based for 1 candidate solution at time,
population-based for more), and by the transition rule, that is the transfor-
mation of the candidate solutions from an iteration to another.

Figure 2.2 shows a possible schematization of a generic optimization al-
gorithm. This schematization can be valid both for point-based and for
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Figure 2.2: Schematization of a generic optimization algorithm.

population-based algorithms, even if the �gure presents the typical nomen-
clature of population-based algorithms.

There are three very important operators in the algorithm: the transition
rule that is the real heart of the algorithm. The population evaluation is
the interacting part between the optimization algorithm and the objective
function. Finally, the population selection is the operator that keeps the
population size constant: in fact, at each iteration, it selects from the initial
population and the new population the solutions that will belong to the next
iteration population.

An important aspect of this last operator is the concept if elitism: in fact,
many optimization algorithms keep the best solution found from an iteration
to the following one.

The other important elements of the optimization algorithm that should
be decided for designing the optimization systems are the algorithm param-
eters, the number of objective function calls and the optimization variables
(see Figure 2.1).

The algorithm parameters are all the coe�cients that tune the function-
ing of the operators. In EAs, they are very important because they highly
a�ect the convergence capabilities of the algorithm. Among them, the most
important one is the population size, i.e. the number of individuals that
survive at every iteration.

The population size tunes the trade-o� between exploration (the capa-
bility of the algorithm to introduce in the population new information: it
corresponds to the capability of inspecting a large part of the search space)
and the exploitation (the capability of the algorithm to use the available
information to improve the candidate solutions).

The algorithms works with the optimization variables that in general
are di�erent from the design variables of the problem. This di�erence is
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very important for avoiding the need of scaling all the algorithm parameters
accordingly to the search space size. Moreover, this gives some degrees of
freedom in the codi�cation of the problem: more details on this are provided
in the next Section.

The optimization variables can be real, integer or binary. The most known
EA, the Genetic Algorithm, has been �rstly implemented with binary opti-
mization variables. By means of a proper translation between the optimiza-
tion variables and the design variables it is possible to solve real or integer
problems also with binary algorithms, even if it can be ine�cient.

There are many speci�c binary or real algorithms, even if in most of
the cases for an algorithm both the two implementation have been tested
(Genetic Algorithms is a good example of this, even if also Particle Swarm
Optimization, native for real value, has been implemented and used with
binary variables).

Few algorithms are speci�cally designed for integer variables: in most of
the cases they are speci�c implementations of Genetic Algorithms in which
the operators are speci�cally designed for the optimization problem for cre-
ating always feasible solution.

2.4 Problem codi�cation

The problem codi�cation is the selection of the design variables and their
relations with the optimization variables.

The problem codi�cation is one of the most important aspects in the
optimization system design: it a�ects the non-linearities of the function, the
number of optimization variables, their type, and the number of constraints.

Within the problem codi�cation framework there is the variable decodi�-
cation procedure, i.e. the translation from optimization to design variables.

Distinguishing the two kind of variables is important for several reason.
Firstly, in this way it is possible to solve problem with a speci�c type of
variables (integer or real, for example) with an algorithm that works with
another type (mainly binary or, in some cases, real).

In this way, it is possible to solve integer problems with algorithm that are
not speci�cally designed for them, increasing the �exibility of Evolutionary
Optimization.

Another important aspect of the decodi�cation procedure is the di�eren-
tiation between the objective function search space S and the optimization
variable domain D. In fact, for real variable algorithms, S is usually the
range [0, 1]. This makes the algorithm parameters valid for many optimiza-
tion problems.
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2.5 Box domain condition

This function is in charge to keep the optimization variables the search space
S, mainly taking into account the lower and upper limits for the design vari-
ables. For what concern the other constraints, they are often and successfully
managed within the cost de�nition with a penalty approach.

There are several approaches to the solutions that are outside the box
boundary domain. The �rst one considers the boundary as an impenetrable
wall. If one or more components of the candidate solution exceed the limit,
they are curtailed in the search space S and all the other components are not
altered. This kind of feasibility boundary is very useful if the optimal solution
can be close to the search space limits; On the other hand, the exploration is
reduced. An exempli�cation of this boundary condition is shown in Figure
2.3(a).

The mathematical formulation of this boundary condition is the following:

x̃i =


Li, xi < Li
Ui, xi > Ui
xi, otherwise

(2.4)

where x̃i is the i-th component of the modi�ed candidate solution, xi is the
candidate solution, Ui is the upper bound for the i-th component and Li is
the lower bound.

Another approach is to model the boundary as an elastic bound. If one
or more components of the candidate solution exceed the bound, they are
re�ected inside the domain accordingly to the following rule:

x̃i =


Li + |Li − xi|, xi < Li
Ui − |Ui − xi|, xi > Ui
xi, otherwise

(2.5)

(a) Rigid wall. (b) Elastic wall.

Figure 2.3: Example of feasibility check: rigid and elastic wall conditions.



2.5 Box domain condition 33

(a) Eliminating wall. (b) Closed search space.

Figure 2.4: Example of feasibility check: eliminating wall and closed search space.

In this condition, the exploration is slightly increased; however, the ca-
pability of �nding the best on the search space limits is drastically reduced.
This boundary condition is schematized in Figure 2.3(b).

Another possibility is to eliminate the solutions that goes outside the
search domain, then a new random solution is created in the domain. In this
case the exploration is drastically increased, even if the convergence can be
worsened for the algorithms that works with trajectories, like the Particle
Swarm Optimization. In fact, this boundary condition completely destroys
the trajectory. Its mathematical formulation is:

x̃i =


r, xi < Li
r, xi > Ui
xi, otherwise

(2.6)

where r is a random value inside the search domain.
Figure 2.4(a) shows this condition.
Then, it is possible to de�ne the search domain as it is a closed surface,

and the boundary can be written in the following way:

x̃i =


Ui − (Li − xi), xi < Li
Li + (xi − Ui), xi > Ui
xi, otherwise

(2.7)

This condition (shown in Figure 2.4(b)) is rarely used, but it can improve
the optimization if the design variables refer to periodic elements (angles for
example).

Finally, there is the possibility to implement the transparent wall: in this
condition the solution that exceed the boundary is accepted but the cost
value is highly penalized.
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2.6 Surrogate models

Surrogate models are part of the problem simulators in the objective function
evaluation. It is interesting to analyse them and their application to Opti-
mization Systems because they can a�ect the convergence of the optimizer.

The aim of the application of them in optimization is to reduce the com-
putational time of the optimization problem evaluation when simpler models
are not available or not enough accurate [38].

In these conditions it is possible to refer to the original optimization
problem as real cost function, that di�ers from the cost function obtained
with the surrogate model.

Surrogate models are based on a set of samples evaluated on the real
optimization problems: these are used for creating a mathematical function
that should approximate as well as possible the original cost function.

Given anm-dimensional problem, it is possible to de�ne as target function
the real relation between input and output (objective function), that can be
found by a time expensive simulator or to experiments:

y = F (x) (2.8)

where x ∈ Rm is the input containing, for example, a set of values for
the design variables, y ∈ R is the target value, assumed to be scalar, and
F : Rm → R is the target objective function.

In order to train the surrogate model it is required to have a set of input
values, that can be sampled from the problem domain1:

xS =


x1

x2

...
xn

 (2.9)

with xS ∈ Rn×m.
To each of these points, the target value can be obtained with the target

function:

y
S

=


y1
y2
...
yn

 =


F (x1)
F (x2)
...

F (xn)

 (2.10)

This can be written shortly as:

y
S

= F (xS) (2.11)

1The bold de�nition of the variables refers to point in m-dimensional spaces, while the
underline symbol represent a vector of values.
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where y
S
∈ Rn×1.

The sample dataset is formed by all the couples

(xi, yi) ∀i = 1...n (2.12)

The surrogate model is a function F̂ : Rm → R that reproduces the
behaviour of F at least in the sampling points and that is able to give an
acceptable value for any xj 6∈ xS.

Several surrogate models are available in literature, like the Response
Surface Model (RSM), the Kriging, and the Arti�cial Neural Networks [81].

The Response Surface Methodology is based on a polynomial approxi-
mation of the target function. Typically, the second order polynomial is
selected, because it is a good compromise between the computational cost
and the reliability [81].

The Ordinary Kriging has the great advantage that it is the only method
that returns not only an estimation value, but also an indicator of the quality
of the estimation [81].

Neural Networks are global approximation techniques and, thus, can be
used to reproduce functions [82]. In the basic application they do not returns
any indicator of the quality of the results, but using ensemble methods it is
possible to extract them [83].

The selection of the surrogate model takes into account, the number of
sample required to have a proper training, the capability of the model to
provide also a con�dence level of the estimation, and the capability of the
model to �t highly non-linear function [84].

In this thesis, the Ordinary Kriging has been investigated and adopted: in
fact, the training of this model is relatively fast and, even with few training
points, it gives reasonable results. Moreover, the con�dence level of the
estimation can be used to improve the sampling strategy.

2.6.1 Ordinary Kriging

The Ordinary Kriging, or Gaussian Process approximation, is a surrogate
model �rstly developed in the environment of geostatic literature [85].

It is a function estimator based on a weighted sum. It incorporates a
covariance function in the estimation of the prediction value [86].

Given the target function F , the sample dataset formed by the couples
(xS, yS), and the value of the prediction point x0, a generic weighted sum
method can be formalized as [86]:

y0 =
n∑
i=1

wiyi = wTy
S

(2.13)
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The speci�c feature of the kriging model is that it uses not only the
location of the sample points but also the similarity between these points,
represented by a covariance structure [86]. The speci�c covariance structure
present in the ordinary kriging is composed by the covariance matrix, xS,
and the covariance vector, c0.

Given a predetermined covariance function C : R → R, it is possible to
express the covariance matrix of a vector of sampling points xS [86]:

C
1

=


C11 C12 ... C1n

C21 C22 ... C2n

... ... ... ...
Cn1 Cn2 ... Cnn

 (2.14)

where Cij = Cov(xi,xj) = C(|xi − xj|). The covariance matrix is sym-
metric, in fact:

|xi − xj| = |xj − xi| (2.15)

Moreover, all the diagonal values Cii are null:

Cii = Cov(xi,xi) = C(|xi − xi|) = C(0) (2.16)

With a similar approach, it is also possible to de�ne the covariance vector
between the sample points and the prediction point [86]:

c0 =


C10

C20

...
Cn0

 (2.17)

where Ci0 = Cov(xi,x0) and the covariance function is the same of before.
These two covariance structures allow to evaluate the weights w required

by the Kriging [86]: [
w
λ

]
=

[
C

1
1

1T 0

]−1 [
c0
1

]
(2.18)

where λ is the Lagrange multiplier and 1 is a vector in Rn containing all 1s.
Inverting the partitioned matrix [87], it is possible to �nd the explicit

value of the Kriging weights and of the Lagrange multiplier:

w = C−1
1
c0 −

C−1
1

1 · 1TC−1
1
c0

1TC−1
1

1
+

C−1
1

1

1TC−1
1

1
(2.19)

λ =
1TC−1

1
c0

1TC−1
1

1
+

1

1TC−1
1

1
(2.20)
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Figure 2.5: Covariance functions

Thus, the prediction value y0 can be easily computed using Eq. 2.13,
while the prediction variance can be calculated as:

σ2
0 = σ2 −

[
w λ

] [ c0
1

]
(2.21)

where σ2 is the estimated variance of the covariance function.
There are many di�erent covariance functions, that impact on both the

prediction values and variance. All of them contain three parameters:

• the nugget e�ect, νsv, that represent an estimation of the error at the
sampling points;

• the range value, rsv, that represents the distance over which the points
are not autocorrelated;

• the still value, ssv, that is the limit value of the variogram when the
distance is greater that the range.

Figure 2.5 shows some covariance functions (for their de�nition, see [88]);
for all of them the range parameter has been set to 0.7.

It is possible to see that all the functions, for values greater than 0.7
have a similar behaviour. The function that most di�er from the other is
the exponential function because it has a smoother transient towards the
asymptotic value. Among the selected functions, it is possible to see that the
gaussian one is the only with a sublinear behaviour for h→ 0.
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Figure 2.6: Target function, sampling points and estimated function and 95 %

con�dence interval.

Figure 2.6 shows an application of Ordinary Kriging to a simple 1-D
target function:

F (x) = x3 + 0.3x2 − 15x (2.22)

The sampling points are represented with red circles in the Figure. The
green line is the target function, while the blue one is the estimated function.
The red lines represent the values of the con�dence range at 95%.

The estimated function �ts exactly the target function in the sampling
points: in these, also the con�dence range goes to zero.

It is possible to see that the estimated function is completely unreliable
outside the sampled range (in this case, this is clear in the left part of the
search space).

2.6.2 Surrogate models in optimization

As can be easily argued, a critical aspect of the surrogate models use is
the number of samples required for the training: the higher this number, the
higher the accuracy, but with a growing computational load, due to sampling
and training the model [85,89].

Several approaches can be used to combine the optimization algorithm
with the surrogate models. It is important to take into consideration that
also the problem formulation can be important in the possibility to apply
surrogate models in the optimization process [90].
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Figure 2.7: The surrogate model is created using a prede�ned number of sampling

points and then it is used for the optimization process.

A basic approach is shown in Figure 2.7: a set of sampling points are
evaluated on the accurate problem simulator (it can be also a real experi-
mental setup) and with these points a surrogate model is then trained. At
each iteration of the optimization algorithm, only the surrogate model is used
to evaluate the objective function.

This approach has the great disadvantage: the model accuracy is not
checked during the optimization process. In order to overcome this problem,
the model can be updated during the optimization process.

In [91] an iterative process is implemented: for instance, an initial set
of sampling points is used to compute a �rst surrogate model. This model
is used during a �rst optimization process and then the optimal solution
obtained is evaluated on the accurate simulator and it is added to the training
set of the surrogate model (see Figure 2.8). This process is repeated several
times.

This process has a high accuracy but it requires longer time: it can be very
e�ective while using local optimization techniques, but with Evolutionary
Optimization Algorithms its e�ectiveness reduces drastically. In fact, most
of the algorithm exploration capability is lost due to the lower surrogate
model accuracy far from the previously localized minima.

In [85] the authors propose a combined method with two surrogate mod-
els: a global one that is used to reproduce the trend of the function and it
is used by the global optimizer to update its population, and a local model,
associated with a local optimizer, is used to better exploit the information
around the candidate best solution. In this scheme, there is only a sam-
pling operation (that is the most costly in terms of computational time): the
global model is constructed using all the sampling points, while the local
model uses only a subset of these points. There are two feedback lines from
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Figure 2.8: The surrogate model is created using a prede�ned number of sam-

pling points and then updated iteratively using the optimal solutions found by the

optimizer.

the optimization process to the sampling: at each iteration, both the infor-
mation coming from the optimal solution of the local search and part of the
population are used to sample new points. The �ow chart of this method is
shown in Figure 2.9.

This last system is interesting because the process of updating the sur-
rogate model is done during the optimization process, but it has the main
defect of increasing the computational time related to the creation of the two
models and of running two optimization processes. Moreover, it is limited
due to the presence of the local optimizer that, in many cases, has more
requirements on the type of cost function.

An e�ective way for combining surrogate models with optimization algo-
rithms is an integrated approach in which the model is updated during the
optimization process. Moreover, it is possible to think to modi�cations of the
algorithms to better exploit the surrogate model features [37]. For example,
in [92] the update of the global and personal best parameters of the PSO has
been customized for taking into consideration the con�dence level.

Figure 2.10 shows an example of combined interaction between the op-
timizer and the surrogate model. This system is based on two connections
between the optimization algorithm and the objective function environment:
in the �rst relation, the population of the algorithm is used for selecting
the sampling points for the creation or the update of the surrogate model.
The second one is the evaluation of the population on the updated surrogate
model.

This process is repeated in the iterations; thus the surrogate model is
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Figure 2.9: Local and global optimization algorithms are used in combination

with two surrogate models.

Figure 2.10: Scheme of the surrogate model optimization with high interaction

between optimizer and surrogate model.
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updated at every iteration: it keeps its accuracy in the exploration, but it
can be also used for exploring new areas of the cost function.

Two fundamental aspects have to be set in this scheme: the initial number
of training points and the selection criterion during the iterations. For this,
it is possible to exploit the variance given by the Ordinary Kriging.

As rule of thumb, the selection should prefer solutions that possibly can
be the optimum of the function; solution with high variance can be selected;
and �nally, enough exploration should be kept for having a proper de�nition
of the entire function.



Chapter 3

Social Network Optimization

Social Network Optimization (SNO) is an Evolutionary Optimization Algo-
rithm (EOA) developed during the research project of this PhD program:
this algorithm has proven its performance in many problems of di�erent na-
ture.

Several papers have been published in international journals and confer-
ences, based on this algorithm and its applications: for instance, in [93] has
been applied to microwave circuit design, and a preliminary comparison be-
tween SNO and other EAs is provided. In [71] the algorithm has been applied
to low-frequency electromagnetic optimization, in particular it has been com-
pared with GA and PSO on the TEAM25 problem and then it is applied on
the optimization of a Tubular Permanent Magnet Linear Generator. More
details on these applications are provided in this thesis. The algorithm has
been applied in [70] for parameter selection for power production forecasting
with a physical model. Finally, in [94] the algorithm has been applied to
Wireless Sensor Network optimization, and on this application a comparison
with other EAs is provided.

Among the conference papers on SNO, one of the most relevant is [68]
because it has been presented of the most important IEEE conference about
Evolutionary Computation.

The structure of the algorithm makes it a very �exible tool: in fact, its
features are ready for multi objective optimization, for an e�ective combina-
tion with surrogate models, and for many other advanced applications.

The algorithm has been implemented both for real-variable problems (i.e.
problems in which the design variables are codi�ed as real numbers) and for
binary problems (i.e. problems in which the design variables can be codi�ed
using only 0 and 1).

In this chapter a detailed and comprehensive analysis of this algorithm is
provided: the chapter starts with a description of Online Social Networks, the

43



44 Social Network Optimization

inspiration of the algorithm: this analysis is aimed to show the main feature
of social networks and the methods commonly adopted for their modelling.
Then the algorithm will be described in detail: the �rst description shows
the operators and the data structures of SNO; while the real value and the
binary implementations are detailed in the two last sections of this chapter.

3.1 Introduction to Online Social Networks

This Section is aimed to provide a brief overview on Online Social Network.
This is basically a review that contains some important concepts of social
websites that have been then implemented in the optimization algorithm.
This introduction is not designed to describe completely and accurately all
the models for Online Social Networks, that requires too much space and it
is out of the scope of this thesis.

This Section contains �rstly a general description, and then it is focused
on the mathematical models adopted for emulating the evolutions of social
networks. These are very important because have been used for designing
the operators of SNO.

3.1.1 Description of Social Networks

Social Networks are websites for networking and content sharing [95]. Gen-
erally speaking, they are structures composed by entities that are linked
together. Depending on speci�c type of social network, the social entity
can be an individual (e.g. in Facebook or Twitter), corporations (e.g. in
LinkedIn or TripAdvisor), collective social units, or organizations. The type
of connection depends on the Social Network and can by friendship, common
interests, beliefs or �nancial exchange [96].

The most important role of a social network is the di�usion of ideas, opin-
ions and behaviours. There are di�erent models that are used to describes
how ideas spread in Social Networks: two of the most common are the simple
contagion and the complex contagion. These models are based on the studies
of disease di�usion [97].

In the �rst model it is assumed that a single contact between two people
is able to completely transmit the behaviour. As consequence of this, the
ideas spread more rapidly in networks; the number of redundant connections
required to di�use a speci�c behaviour is reduced. In the second model it
is assumed that a person requires multiple contacts to modify its behaviour.
In this second case, ideas spread better in networks with more redundant
connections [98].
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The interconnections between people required by the ideas di�usion mech-
anism can have di�erent natures and, thus, di�erent speci�c features. In
particular, each individual has some preferred and stronger connections with
a limited amount of other social network members [96]. These preferred in-
teraction channels are the basic features that drives the creation of groups.
Groups are fundamental structure of the entire society and, thus, this is also
valid for Social Networks [99].

In Social Networks groups can have di�erent features. The three most
important types of groups are the singletons, the giant component and the
middle region. The analysis of groups is often developed by market analyser
for identifying the key individuals that can in�uence a large amount of the
network [100].

The singletons are zero-connection nodes: they do not participate actively
in the social network and they are a limit case of groups. On the other hand,
the giant components are large or very large groups that are connected each
other by paths in the social network: they are very important for ideas
di�usion and for marketing because the ideas spreads in the giant components
at high speed due to the high number of connections. Finally, the middle
region is the remaining one: it consists in various isolated communities that
do not interact with the rest of the network. Generally, they are characterized
by the presence of the so-called stars : a single charismatic individual linked
to other users that have few connections with the rest of the network [101].

Another important feature of Online Social Network regards the actors
that appears in the information exchange. In fact, in common interpersonal
relations, the interaction happens by a direct communication between people,
while in a Social Network it is mediated by the Online Community. The ex-
change of information between the website and people is reciprocal and, very
important, the source of the information is cited only in terms of credibility
of the information [102].

This last aspect is fundamental in any networks and, more speci�cally,
in social networks: in fact, it concerns the topic of the trust and of trust
networks. Trust is the basic feature in a recommender system where it is
present a set of users and a set of items. The most important goal of a
recommender system is to estimate the rate value given by a user on a speci�c
item, non already rated, using the data of known rating of the same user and
of other users [103]. More details on trust and trust networks are provided
in Section 3.1.3.

Dealing with a Social Network means considering three aspects of the
information. These are the content (what), the social dimension (who), and
the temporal dimension (when). These three aspects are fundamental to
understand the correlation among news and the spread of ideas [104].
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Due to the fact that the process of ideas di�usion in Social Network is less
mediated, it is possible to see the formation of echos chambers, facilitated by
the process of increased polarization in the population [104].

3.1.2 Modelling of Social Networks

Modelling of Social Networks is a very complex aspect, also due to the dy-
namic evolution of the websites. There are some basic features that are
common to all the social networks. Many models of Social Networks are
extracted from epidemic models, in which the ideas are considered as an
infection [105].

Firstly, we can consider a Social Network as a set of users in the domain
of a social media [96]:

S = {u1, u2, ..., um} (3.1)

where S is the Social Network with m members and uu is a generic member
of it. Each user can be described as a set of further simple information.

It is possible to de�ne several connection types between people that can
be modelled in di�erent ways. These can be classi�ed accordingly to two
criteria. The �rst one is the reciprocity of the connection: some connections
are reciprocal (as the friendship on Facebook) and other not (like the relation
follower - followed on Instagram). The second one is the importance of the
relation: some of them are stronger and, thus, ideas can spread in an easier
way.

The basic modelling of groups is based on the concept of related list: a
set of users Lu ⊆ S is generally connected to a person u ∈ S and u 6∈ Lu; if
any v ∈ Lu is connected with u:

Lu = {v|v ∈ S ∧ Euv = 1} (3.2)

where Euv represents a connection between u and v. This very general de�-
nition does not imply the reciprocity of the connection.

Each connection in the friend list can be weighted in order to take into
account, by means of an appropriate measurements value, the strength of
the connection. It is important to notice that the weights of the connections
can be asymmetric: in fact, it is possible to �nd a set of two users u1 and
u2 such that the connection between u1 and u2 is strong while the opposite
connection is weak [96].

This model of Social Network can be represented as a directed graph,
where the nodes are individuals and the edges indicate social relationships
[105]. Figure 3.1 shows an example of small social network (m = 7) repre-
sented as a direct unweighted graph.
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Figure 3.1: Modelling of a small social network as a direct graph.

For understanding the evolution of Online Social Network, it is important
to analyse the formation and the evolution of groups; in particular, it is
possible to study the features that in�uence a person to join a speci�c group,
the growth of the group itself and how groups can change during time.

The group evolution can be modelled de�ning and evaluating the prob-
ability that an individual u joins a group G as function of the number k of
connected people that are already in the group:

pu,k = P(u ∈ G(t+ 1)|u 6∈ G(t) ∧ k = ||G(t) ∩ Lu||) (3.3)

where t represents a discrete time instant.
The analysis of Social Networks shows that the probability pu,k has a s-

shaped behaviour with the number of friends k. In fact, for small numbers
of k having one more friend in the community has a strong e�ect, while for
larger k this e�ect tends to zero, even if the curves continues to increase [99].

For what concern the classi�cation of groups in singletons, middle region
and giant components, an analysis of social networks performed in [101]
shows that the number of singletons is reduced almost linearly during time,
the middle region has a constant size and the giant component grows.

It is possible to develop more complex models of the relations present
in Social Networks. For example, in [104] the authors propose to use three
overlapped networks: in homogeneous networks, where the users can be mod-
elled as nodes of the same type, the three proposed layers are the friendship
network, the di�usion network, and the credibility network.

In this model, friendship networks represent the social connections be-
tween users, di�usion network the idea propagation paths, and the credibility
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network creates the supporting or the opposition interaction between users.
Di�usion networks represent a model of the ideas spread among the Social

Network. This process can be represented with a quite simple threshold
model, in which each individual has an activation function that measures
the e�ect of the idea contamination from its neighbours [105]. The general
assumptions of this model are [106]:

• the process is progressive, an active node will be active forever;

• the threshold values are random, that takes into account the lack of
knowledge about users' personality in the model;

• the activation functions are monotone increasing, that is, a node be-
comes more infected when a larger set of its neighbours are infected.

The ideas di�usion in Social Network leads to a very important phe-
nomenon: the echo chambers. It is a speci�c information path that amplify
an idea: in particular the source of information receives back their idea and
they are further convinced by this echo. The echo path should be enough
long to make the information di�erent enough to be unrecognizable by the
initial source.

Echo chambers can be modelled using the probability density function
of users' polarization for a speci�c idea [107]. Each user can be neutral,
polarized or partially polarized. This is represented by a polarization level
πu ∈ [0, 1] for each user u, such that πu = 0 means that the user is completely
neutral and πu = 1 means that the user is completely polarized.

The following one is an example of a simple sigmoid polarization function:

fπ(x) =
ξπ(x)− ξπ(0)

limx→+∞ (ξπ(x))− ξπ(0)
(3.4)

where

ξπ(x) =
1

1 + e−ηu·(x−θu)
(3.5)

where θu is the threshold level of the user u and ηu is the polarization attitude
of the same user. This de�nition of the polarization function allows to tune
the parameters θu and ηu for modelling the di�erences between individuals;
moreover, the polarization function is always between 0 and 1.

For the case of θu = 0.5 and ηu = 8 the polarization function is shown in
Figure 3.2.

The polarization of a user evolves in time accordingly to the polarization
of their friends. Calling lu the number of friends of the user u it is possible
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Figure 3.2: Polarization function for the user u with θu = 0.5 and ηu = 8.

to model the evolution of polarization as:

πu(t+ 1) = fπ

(
πu(t) +

1

|Lu|
∑
v∈Lu

πv(t)

)
(3.6)

where fπ is the polarization function and represents the non-linear behaviour
of humans' polarization.

There are two important aspects that can a�ect the ideas sharing: the
visibility and the e�ect on content popularity. The �rst one is critical because
depends a lot on the speci�c rules decided by the social network sites. For
example, in Flickr and in Facebook, posts that have received many likes are
more visible. Moreover, also the type of content can a�ect its visibility [95].

3.1.3 Trust networks

Trust is a fundamental aspect in online relation because the communication
channel is limited. All the non-verbal part of the communication is eliminated
and also the verbal part is highly mediated. In online marketing, this aspect
is even more important because the consumer hasn't the opportunity to try
the product [108]. The online marketing is just an example of how important
is trust in computer mediated processes.

The de�nition of trust is not unique. In [109] the trust is interpreted as
reliability trust, de�ned as follows:

trust is the subjective probability by which an individual, A, ex-
pects that another individual, B, performs a given action on which
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its welfare depends.

In [110], the authors note that this de�nition is not perfect, due to the
fact that it is possible to have high trust levels without entering in a situation
of dependence on that person [108].

Another de�nition of trust is reported in [111]:

Trust is the extent to which one party is willing to depend on
something or somebody in a given situation with a feeling of
relative security, even though negative consequences are possible.

In this de�nition, there are present some aspects, like the reliability of
the trusted part, the utility and the risk attitude [108].

There are two kind of trusts: the �rst one is the referral trust ; the second
one is the functional trust. The second one is related to a speci�c activity,
while the �rst one is related to the capability of the trusted person to give a
good recommendation [112].

In some speci�c occasions, trust can be transitive: this means that it
is possible to create an indirect trust between two people that have never
been in contact. In this process, some trusted people are required to give a
recommendation. In this case, it is possible to de�ne a trust network [113].
The model of trust transitivity is based on a threshold activation function.

In trust networks there are some speci�c trust paths. In general, these
paths end with a functional trust (usually the �rst) [112]. In the case of Social
Network, it is possible to have a trust network without a speci�c functional
scope. This leads to an higher possibility of creation of echoes chambers.

3.2 Social Network Optimization description

The basic ideas of Online Social Network that inspire SNO have been anal-
ysed above. These features have been included in the algorithm with a certain
amount of simpli�cation in order to keep low the computational time required
to run the algorithm.

In this Section the algorithm is described: �rstly, the basic data structures
contained in it, and then the implemented operators. The implementation of
some operators is a�ected by the problem type, in particular if it is real-valued
or binary: the speci�c di�erences are analysed in two separate sections.

3.2.1 Social Network Optimization data structures

The basic data structure of SNO is the social network. It is the virtual space
in which the interactions take place and, thus, in which people exchange
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ideas and opinions. It contains the two basic elements: the users, that is the
population of the algorithm, and the posts, that are the structures that drive
the interaction between users:

S = {{uu}, {ps}} (3.7)

In real Social Networks users write posts to express their opinion and
read posts of other users. This iteration is the basic evolution mechanism of
the population in SNO and it is described later.

The population size of the algorithm is the number of users in the Social
Networks.

All the users interacting on the Social Network share their opinions on
some topics. Each user is also characterized by a list of friends and a reputa-
tion value for all the other users. These two structures are used for driving
the interaction between groups.

The user can be represented in mathematical terms as:

uu = {ou,Lu, {ruv}} (3.8)

where ou is a vector containing the set of all the user opinions, Lu is the
friend list of the user u, and ruv is the reputation from the user u to the user
v.

The posts are what the users write to express their opinions. The main
element of a post is the status, ss, that is the content in which the user
expresses its opinion. In order to take into account the three aspects of the
news in Social Networks, the what, the who, and the when [104], in addition
to the status itself there are three information associated: the �rst one is the
name (the ID) of the user that have posted it (us), the time in which it is
posted tu and a visibility value (vs):

ps = {ss, us, ts, vs} (3.9)

The status is the optimization variables that is mapped to the design
variables of the optimization problem. Figure 3.3 summarize the composition
of the data structures of SNO.

The interaction takes place on two di�erent kind of networks: the �rst
one is a friend network, represented by the �end list of each user, and the
second is a trust network represented by a trust matrix.

These two networks are signi�cantly di�erent. The friend network is
symmetric, the connections are particularly strong, and the evolution of this
network depends on events in the real word. On the other hand, the trust
network is not symmetric, i.e. trust is not reciprocal, the connections are
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(a) User composition (b) Post composition

Figure 3.3: Composition of the two main data structures of SNO.

weaker that the friendship connections, and the evolution of this network
depends only on online relations.

The data structure described above evolves in time thanks to the algo-
rithm operators described in the following.

3.2.2 Social Network Operators

The algorithm operators are designed to evolve the population: in particular,
they regulate the personal growth, the creation of a post from the user's
opinions, and the evolution of the friend and trust networks.

The most important operator is the one devoted to the evolution of the
user, in particular the creation of the personal growth as function of the time
history of the growth itself and of the contagion of the ideas.

The operator implemented emulates the assumption of a complex conta-
gion [98], that guarantees a better tradeo� between exploration of the domain
and the exploitation of the acquired knowledge.

In the most general case, this operator can be represented in the following
way:

cu(t) = I (cu(t− 1), cu(t− 2), ..., cu(t−∆tmax), au(t)) (3.10)

where I is the function that models how the ideas are spread in Social Net-
works. The vector au(t) is the attraction point, and represents the impact of
the idea contagion on the user u.

The speci�c I function depends on the type of problem, real-value or
binary. In both these implementations it has been chosen to set ∆tmax = 1
to accelerate the algorithm convergence. Figure 3.4 schematize the growing
process. The green blocks are part of the user data structure, the red ones
are the operators and the purple one is an additional data created in each
iteration.
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Figure 3.4: Schematization of the personal evolution in SNO.

Figure 3.5: Schematization of the basic interaction between SNO and the opti-

mization problem.

The status is created starting from the users' opinions. The operator used
to create it is called linguistic transposition, because it re�ects the di�culties
in expressing a speci�c idea. The linguistic transposition operator Λ depends
on the linguistic error λ that changes with time and di�ers from an individual
to another:

su(t) = Λ(ou(t),λu(t)) (3.11)

The implementation of the linguistic transposition operator Λ depends on
the type of design variable and is de�ned in the following sections. The status
is a time function because the opinions evolve, and the linguistic transposition
varies. This is important because it reduces the stagnation of the algorithm:
in fact, even if the opinions do not vary with the algorithm iterations, the
status is every iteration di�erent thanks to the linguistic transposition.

The status is then mapped to the design variables of the optimization
problem. The performance of the system with the con�guration speci�ed
by the status are calculated and mapped back to a single performance value
that is the post visibility.

The process is described in Figure 3.5, where the opinions are the ones
obtained at the end of the process of Figure 3.4, the blue elements are part
of the post data structure and the orange block is the optimization problem.
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Figure 3.6: Schematization of the process of reputation update and creation of

trust network.

The lines connecting the post and the optimization problem are dashed
to remember that they represent a mapping operation.

The visibility values of the entire population are used to update the rep-
utations. This operation transfers global information among the entire pop-
ulation. They are �rstly normalized for eliminating biasing due to the �tness
function creation:

ṽs =
vs −mini vi

maxi vi −mini vi + ε
(3.12)

where ε is a small value chosen to avoid problems when all the visibility
values are equal.

It is important to notice that this normalization is a�ected by the def-
inition of the visibility starting from the problem performance parameters:
localized high values of visibility reduce the trust variability and thus the dy-
namic evolution of the trust network. This e�ect is not highly detrimental for
the algorithm because the evolution of all the other structures is independent.

Then the trust values are modi�ed accordingly to the normalized visibil-
ities:

∆rij = ṽi − ṽj (3.13)

The trust network is created by means of a threshold function. It is
possible to notice that the evolution of the trust values is asymmetric, i.e.
∆rij 6= ∆rji and thus the trust network is asymmetric. The entire process of
trust update and trust network creation is schematized in Figure 3.6. Only
the trust values are used in the following iterations, while the trust network
is created ex novo each time.

The evolution of the friend network is driven by di�erent operators than
the trust network. The creation of new friendship relations depends on the
number of common friends, while the elimination of one of these relation on a
uniform distribution with probability pd. This probability has been modelled
as a constant value and it is considered user-independent. The speci�c "social
attitude" of the single user is neglected.

The probability that two users u ∈ P and v ∈ P|v 6= u ∧ v 6∈ Lu becomes
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Figure 3.7: Schematization of the process of evolution of friend network.

friend is function of the number of common friends:

pf = ff (||Lu ∩ Lv||) (3.14)

The function ff is a sigmoid function, in the algorithm the following one
has been implemented:

ff (x) = arctan

(
x2

π

)
(3.15)

Figure 3.7 shows the schematization of the process of evolution of friend
lists. The friendship function block contains both the creation and the dis-
ruption of friend connections.

Among the friends and the trusted connections, some opinions are se-
lected as sources of in�uence for creating the attraction point au(t). The
in�uencing information are selected among the available posts, accordingly
to the visibility value (rank-based selection). The two in�uencing ideas are
merged adopting a uniform crossover operator: each element of the vector is
taken from one of the two in�uencing ideas accordingly to a random variable.

The entire process of selection of the in�uencers and creation of the at-
traction point is shown in Figure 3.8.

The last operator that should be described is the selection of the posts
shown by the Social Network. This process is very important because gives
a �rst reduction of the available information and allows the ideas to con-
taminate the social network for longer time: in fact, it is possible that good
posts are visible for long time, increasing the exploitation capabilities of the
algorithm. This operation makes the algorithm ready for multi objective
implementation.

The selection of the visible posts is done accordingly to the visibility val-
ues. During the implementation phase of the algorithm, several possibilities
have been taken into account: random selections, elitism mechanism, ran-
dom with elitism, elitism with some low-level solutions, and others. Each
operator a�ects both the exploration and the exploitation capabilities of the
algorithm.
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Figure 3.8: Schematization of the process of selection of the in�uencers and

creation of the attracting point.

Figure 3.9: Schematization of the process of evolution of the post visible in the

Social Network.

At the end of the preliminary tests, the pure elitism strategy has been
adopted: in fact, the linguistic transposition gives to the algorithm enough
exploration and with random selection the convergence process becomes too
slow.

The evolution of the stored posts is the following: after the creation of
a new status and the evaluation of the visibility, the new post is included
in the batch of visible posts. After the selection of the in�uencers, the best
posts are kept in memory and made available for the following iteration.

The entire process of post evolution is shown in Figure 3.9
Figure 3.10 shows the entire overview of the algorithm operators and their

interactions with the data structures.
Figure 3.11 shows the �ow chart of SNO, in which the iterative nature of

the algorithm is clear. In the �ow chart, in all the logical blocks the operators
applied are highlighted.
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Figure 3.10: Overview on all the operators of SNO.
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Figure 3.11: Flow chart of SNO, in all the logical blocks the operators used are

highlighted.
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3.3 Real-value implementation of SNO

The general principle of Social Network Optimization can be applied in di�er-
ent ways according to the type of optimization problem, i.e. if the optimiza-
tion variables can assume real or binary values. The optimization variables
are related to the design variables by means of the process of mapping de-
scribed before (see Figure 3.5).

In this Section, the real-value de�nition of the complex contagion formula
and of the linguistic transposition is �rstly described. Then, an analytic
analysis on the complex contagion operator is presented. Finally, the e�ect
on performance of all algorithm parameters is analysed empirically.

In a real-value problem it is usually assumed that the optimization vari-
ables can range between 0 and 1. This assumption avoid scaling problem of
the algorithm operators, but does not limit the algorithm generality because
the mapping process can associate the optimization range to any range in R.

Thus, it is possible to �x the box domain for both the opinions and the
statuses:

ou,i ∈ [0, 1] ∀i (3.16)

su,i ∈ [0, 1] ∀i (3.17)

The complex contagion operator can be expressed by the following equa-
tion:

ou(t+ 1) = ou(t) + α[ou(t)− ou(t− 1)] + β[au(t)− ou(t)] (3.18)

Another operator that has not completely de�ned before because it is af-
fected by the problem type, is value of the linguistic error λu(t) (see Equation
3.11. In real-value SNO it is implemented in the following way:

λu,i = µa · rN · ri (3.19)

where rN is a random variable extracted from a normal distribution N (0, 1),
ri is a random binary variable that assume value 1 with probability µr and
µa is a algorithm parameter.

The linguistic transposition operator Λ is de�ned in the following way:

Λ(ou(t),λu(t)) = ou(t) + λu(t) (3.20)

For understanding the converging behaviour of the algorithm and for
having a better knowledge in the selection of the algorithm parameters, it is
important to analyse the complex contagion operator implemented in SNO.
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3.3.1 Analysis of the complex contagion operator

It is possible to make a study of the complex contagion operator, as it has
been done in [114] for Particle Swarm Optimization. The results here re-
ported have been partially published in [69].

By examining equation 3.18, it is clear that the evolution of each opti-
mization variable is independent from the others. This has two consequences.
Firstly, the working principles of Social Network Optimization are not af-
fected by the size of the problem under investigation, but only on the type
of the objective function. Secondly, the behaviour and the stability of the
algorithm can be analysed considering only one variable.

Considering only one optimization variable means rewriting equation 3.18
in a scalar way:

ou(t+ 1) = ou(t) + α[ou(t)− ou(t− 1)] + β[au(t)− ou(t)] (3.21)

where the term au(t), that depends on the speci�c optimization function has
been considered constant [114].

In order to analyse this equation, it is possible to split it in two parts
introducing a new variable c(t):

cu(t+ 1) = ou(t+ 1)− ou(t) (3.22)

Expressing all the values at time t+ 1 as a function only of the time t:

ou(t+ 1) = ou(t) + αcu(t) + β [au − ou(t)] (3.23)

cu(t+ 1) = αcu(t) + β [au − ou(t)] (3.24)

The term βau represents the steady state condition of this equation and
it will be called p in the following.

It is possible to rewrite the two equations in matrix form:[
ou(t+ 1)
cu(t+ 1)

]
=

[
1− β α
−β α

]
·
[
ou(t)
cu(t)

]
+

[
p
p

]
(3.25)

The behaviour of this model is driven by the matrix eigenvalues:

λ1,2 =
−(β − α− 1)±

√
(β − α− 1)2 − 4α

2
(3.26)
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Stability analysis

Analysing the stability is an important study for the understanding of the
optimization capability of the algorithm itself [115]. It is not strictly required
that at each iteration the behaviour is stable, but over long run the stability
is required for the most of the step to guarantee that, if the attracting point
is the global optimal solution, the algorithm is able to reach that solution.

The stability of the system is function of the eigenvalues, in particular it
is required that:

max (|λ1|, |λ2|) < 1 (3.27)

This analysis is performed distinguishing the case in which the eigenvalues
are complex conjugate and the case in which they are real numbers.

Complex eigenvalues: the eigenvalues are complex if

(β − α− 1)2 − 4α < 0 (3.28)

The eigenvalues are complex conjugate, thus their modules are equal:

|λ1| = |λ2| =
√
Re(λ1/2)2 + Im(λ1/2)2 (3.29)

Using the de�nition of the eigenvalues of Equation 3.26 the stability con-
dition is:

[−(β − α− 1)]2 + [4α− (β − α− 1)2]

4
< 1 (3.30)

Doing some maths, it is possible to obtain the stability condition for
complex eigenvalues: {

(β − α− 1)2 − 4α < 0
α < 1

(3.31)

In this system, the �rst equation represents the condition for having com-
plex eigenvalues, while the second is the real stability condition. This system
is still valid also for time varying coe�cients in the attraction equation [116].
Figure 3.12 shows the graphical representation of the system behaviour: the
yellow part represents the stability condition and the blue part the condition
for having complex eigenvalues. The intersection is the e�ective stability
condition.

Real eigenvalues: this condition is given by:

(β − α− 1)2 − 4α > 0 (3.32)

The stability condition is the same seen before:

max (|λ1|, |λ2|) < 1 (3.33)
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Figure 3.12: Stability condition for complex eigenvalues: the yellow part repre-

sents the stability condition and the blue part the condition for having complex

eigenvalues. The intersection is the e�ective stability condition.

This case is slightly more complicated because it is necessary to evaluate
the eigenvalue with the largest module. Thus, it is �rstly analysed the sta-
bility condition when the �rst eigenvalue has a larger module and then the
stability condition for the second eigenvalue.

The condition for having the module of the �rst eigenvalue larger than
the second one is:∣∣∣∣∣−(β − α− 1) +

√
(β − α− 1)2 − 4α

2

∣∣∣∣∣ >
∣∣∣∣∣−(β − α− 1)−

√
(β − α− 1)2 − 4α

2

∣∣∣∣∣
(3.34)

This inequality is satis�ed when:

β − α− 1 < 0 (3.35)

The stability condition for the �rst eigenvalue is the following:∣∣∣∣∣−(β − α− 1) +
√

(β − α− 1)2 − 4α

2

∣∣∣∣∣ < 1 (3.36)

Doing some maths, it is possible to �nd the solution of the inequality:{
α < 1
β > 0

(3.37)



3.3 Real-value implementation of SNO 63

Figure 3.13: Stability condition for real eigenvalues, when the �rst is greater in

module: the blue area represents the conditions in which the eigenvalues are real,

the red is when the �rst eigenvalue has a greater module and the yellow area the

stability condition. The intersection is the solution of the system.

Thus, the complete system for representing this stability condition is the
following: 

(β − α− 1)2 − 4α > 0
β − α− 1 < 0
α < 1
β > 0

(3.38)

where the �rst inequality express the condition for having real eigenvalues,
the second one is for having |λ1| > |λ2| and the last two conditions are related
to the stability of the system.

Figure 3.13 shows a graphical representation of the stability system in this
condition. The blue area represents the conditions in which the eigenvalues
are real, the red is when the �rst eigenvalue has a greater module and the
yellow area the stability condition. The solution of the system is the area
surrounded by the green line.

Then, it is necessary to analyse the case with real eigenvalues when the
module of the second one is grater than the �rst. The equation expressing
this last condition is:

β − α− 1 > 0 (3.39)
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Figure 3.14: Stability condition for real eigenvalues, when the second one is

greater in module: the blue area represents the conditions in which the eigenvalues

are real, the red is when the second eigenvalue has a greater module and the yellow

area the stability condition. The solution of the system is the area surrounded by

the green line.

In this case, the stability condition is the following:∣∣∣∣∣−(β − α− 1)−
√

(β − α− 1)2 − 4α

2

∣∣∣∣∣ < 1 (3.40)

Solving the inequality, it is obtained the following condition:{
α < 1
2α− β + 2 > 0

(3.41)

That means that the �nal system for this condition is:
(β − α− 1)2 − 4α > 0
β − α− 1 > 0
α < 1
2α− β + 2 > 0

(3.42)

Figure 3.14 shows the conditions in this case. The blue area represents
the conditions in which the eigenvalues are real, the red is when the second
eigenvalue has a greater module and the yellow area the stability condition.
The solution of the system is the area surrounded by the green line.
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The overall stability of the system is the union of the three calculated
solutions. It is possible to represent it graphically, as in Figure 3.15. The
parameters should be inside the coloured area to have a stable behaviour of
the population of the algorithm.

Figure 3.15: Overall stability of the operation, union of the three stability con-

ditions.

In the next section, the attraction operator will be analysed for what
concern the type of trajectories of the Social Network users in the space of
the solutions.

Trajectory analysis

From the attraction equation 3.18 written with the matrix form of Equation
3.25, it is possible to �nd the type of trajectories in the plane of the solutions.
This analysis is important to understand the impact of the operators on the
exploration and exploitation capabilities of the algorithm.

It is possible to �nd four type of solutions according to two criteria:
oscillations and zigzagging. This means that the four types of trajectories
are oscillating, non-oscillating, zigzagging and zigzagging with oscillations.

These trajectories are driven by two elements [114]:

• trajectories are oscillating if the eigenvalues are complex values;

• trajectories are zigzagging when the real part of at least one of the
eigenvalues is positive.



66 Social Network Optimization

The condition for the oscillation has been already analysed before, when
the condition for having complex eigenvalues has been analysed:

(β − α− 1)2 − 4α < 0 (3.43)

The oscillating behaviour is shown in Figure 3.16. The blue part repre-
sents the oscillations, while the light blue is the non-oscillating region. The
grey triangle is the stability region, that is independent from the behaviour
of the population: in fact, it is possible to have an oscillating or static (i.e.
non oscillating) convergence and an oscillating or static divergence.

Figure 3.16: Behaviour of the population of SNO: the blue part represents the

oscillations, while the light blue is the non-oscillating region. The grey triangle is

the stability region.

The second possible trajectory type criterion is the zigzagging. Zigzagging
appears when at least one of the eigenvalues has a real negative part. This
condition can be analysed in two cases: the �rst case is when the eigenvalues
are complex, the other one is when the eigenvalues are both real. This
mathematical consideration re�ects the fact that oscillatory behaviour and
zigzagging can be combined.

When the eigenvalues are complex, the condition on zigzagging is ex-
pressed as:

− (β − α− 1) < 0 (3.44)

So, the �rst zigzagging condition:{
(β − α− 1)2 − 4α < 0
α− β + 1 < 0

(3.45)
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Figure 3.17: Behaviour of the population of SNO: the red part represents the

zigzagging, while the yellow is the non-zigzagging region. The grey triangle is the

stability region.

On the other hand, when eigenvalues are real, it is possible to analyse the
smaller one:

− (β − α− 1)−
√

(β − α− 1)2 − 4α < 0 (3.46)

Performing some calculations, the second zigzagging condition is ob-
tained: {

(β − α− 1)2 − 4α > 0
α > 0

(3.47)

Figure 3.17 shows the condition of zigzagging behaviour: the red part
represents the zigzagging, while the yellow is the non-zigzagging region. The
grey triangle is the stability region.

Finally, it is possible to combine the information of oscillations and zigzag-
ging to have the complete four behaviours of the population. Figure 3.18
shows it: the four behaviours are identi�ed by the colours (grey for static,
blue for oscillating, yellow for zigzagging and green for both zigzagging and
oscillating), while the stability area is the highlighted triangle in the centre
of the domain.

3.3.2 Parametric Analysis

In the previous Section, a theoretical analysis of the attraction formula has
been done: the goal of that analysis is to give a better understanding on the
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Figure 3.18: Complete trajectory behaviour as function of the parameters α and

β. The four possible behaviours are highlighted with colours, the stability area has

stronger colours.

meaning of the parameters. Nonetheless, the �nal choice of the free algorithm
parameters should be done with a parametric analysis [76].

The parametric analysis is performed in order to de�ne the "optimal"
value of the algorithm parameters that drive the most important operators.
In particular, in this analysis three operators are investigated: the complex
contagion function, the growing function and the linguistic transposition.
These are the most important operators because they drive the trade-o�
between exploration and exploitation.

In addition to the parameters of these operators, also the impact of the
population size is investigated. Table 3.1 shows all the parameters tested,
their range value and the number of samples in the range. The parameters
are grouped because the parametric analysis has been done with two vary-
ing parameters per time. In this way their cross-in�uence is investigated,
obtaining as output a cost surface.

The optimal value of the parameters is related with the speci�c objec-
tive function that is optimized. In this parametric analysis, four objective
functions have been used to explore a set of di�erent features. They are:

• Ackley function, it is a multimodal function that presents many small
local minima on a general trend with concave shape. This function
generally requires a good amount of exploitation in the optimization
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Parameter name Symbol Min value Max value Samples

Number of design variables N 5 100 20
Population size m 5 250 50
In�uence inertia α -2 2 150

In�uence attraction β -2 6 150
Linguistic error rate µr 0 1 100

Linguistic error amplitude µa 0 1 100

Table 3.1: Parameter analyzed, range and number of samples.

algorithm.

f(x) = 20 + e1 − 20 · e−0.2
√∑

(xi−x0)2/N − e
∑

cos (2π(xi−x0)/N (3.48)

where N is the length of x and x0 = −7. This function is de�ned in
the domain:

− 15 ≤ xi ≤ 15 (3.49)

• Griewank function, that is characterized by a trend as a quadratic
function with many local minima.

f(x) = 1 +
∑

(xi − x0)2/4000−
∏

cos
xi − x0√

i
(3.50)

where x0 = 150. Its domain is:

− 600 ≤ xi ≤ 600 (3.51)

• Schwefel-226 function, that is an odd function characterized by two
important minima far one from the other.

f(x) = 418.9829 ·N +
∑

xi · sin
√
|xi| (3.52)

where N is the length of x. Its domain is:

− 512 ≤ xi ≤ 512 (3.53)

• Multidimensional Sinc function (Caridinal Sine, Sinc-N). This is a mul-
timodal function with very small local minima. Generally, it requires a
well-tuned trade-o� between the exploration required to �nd the global
minimum attractor and exploitation to converge quickly toward the
minimum.

f(x) = 1−
∏
|sin [π · (xi − x0)]| (3.54)

where x0 = 3. Its domain is:

0 ≤ xi ≤ 10 (3.55)
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For having a statistical reliability and for reducing the impact of the
intrinsic stochastic behaviour of the algorithm, 50 independent trials have
been performed for each parameter combination.

In the second and third tests, the number of design variables has been
�xed to 20 and the number of objective function calls to 5,000, while for
the �rst test the number of design variables is an analysed parameter and
the objective function calls have been modi�ed linearly, �xing 5,000 with 20
design variables.

The �rst tests have been done on the optimal population size changing
the problem size. The results obtained are shown in Figure 3.19.

(a) Ackley function. (b) Griewanck function.

(c) Schwefel 226 function. (d) Sinc-N function.

Figure 3.19: Parametric analysis on the population size as function of the number

of design variables of the problem.

The SinN function is not interesting because the algorithm reaches the
same value for the most of the test done.

It is possible to see two di�erent behaviours for Ackley/Griewank and
Schwefel-226 functions: in the �rst two, the optimal population size is always
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very low because it increase the exploitation, while for the third function
the optimal value is in the range 50-100 individuals: a large population, in
fact, increases the exploration capability of the algorithm and the amount of
information introduced in the �rst initialization.

For what concerns the trend of modi�cation of the population size with
the problem size, for all the three functions the best population size grows
increasing the problem size.

Figures 3.20,3.21, 3.22, and 3.23 show the results of the parametric analy-
sis on the complex contagion operator parameters, α and β. In these �gures,
in the background the interaction formula analysis results are shown, in par-
ticular the green triangle is the stability area and the grey lines shows the
divisions between di�erent population behaviour. The blue area is the best
result, while red ones are high cost point.

These results are very interesting: it is possible to see, especially in Figure
3.22, that for α < −1 or β < 0 the algorithm reaches the worst results.
Another important aspect is that the convergence area overcomes sometime
the stability limit: this is due to the fact that the analysed formula has some
less features with respect to the real one.

There is a limit in the convergence that is not highlighted by the previ-
ously proposed analysis: it is due to the limitations of the search domain.
In fact, the population oscillates with very high amplitude, and, thus, they
exit the search domain. In this condition, the feasibility check changes the
algorithm behaviour avoiding the convergence.

The converging area is common for Ackley, Griewank, and Sinc-N func-
tions (Figures 3.20,3.21, and 3.23) while it is slightly di�erent for Schwefel
function (Fig. 3.22). This shows the great di�erences between these func-
tions.

Analysing the convergence of Sinc-N function, it is possible to notice that
there are two converging zones: a �rst one that is in the zigzagging and oscil-
lating part, that ensures good exploration for the overshooting, and a second
one in the static behaviour: in this case the exploration is guaranteed by the
very low inertia of the system that makes the movement of the population
very fast. It is possible to say that in this last case the behaviour of SNO
becomes more similar to a GA.

The best point of convergence of Schwefel-226 (Figure 3.22)is an inter-
esting point because it guarantees also good results for the other functions,
even if they are not optimal.

From this analysis two possible set of parameters have been extracted.
The �rst one is the optimal point for Ackley and Griewanck functions, while
the second one is the optimum for Schwefel-226 function. In the following
parametric analysis both these combinations have been tested. The �nal
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Figure 3.20: Parametric analysis on the complex contagion operator parameters,

α and β. In the background the results of the analysis are reported. Results for

Ackley function.

Figure 3.21: Parametric analysis on the complex contagion operator parameters,

h and ω0. In the background the results of the analysis are reported. Results for

Griewanck function.
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Figure 3.22: Parametric analysis on the complex contagion operator parameters,

h and ω0. In the background the results of the analysis are reported. Results for

Schwefel-226 function.

Figure 3.23: Parametric analysis on the complex contagion operator parameters,

h and ω0. In the background the results of the analysis are reported. Results for

Sinc-N function.
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selection is discussed in the next chapter, with the comparison among algo-
rithms.

The second operator analysed is the linguistic transposition. This has two
parameters, the linguistic error rate and amplitude. These are coupled, thus
they have been analysed together. The combination of these two parameters
tunes the equivalent of the mutation in SNO. They are the main driver for
the introduction of completely new information in the algorithm population.

The results with the �rst set of α and β are shown in Figure 3.24. As
highlighted also for the previous parametric analysis, the Schwefel-226 has a
very di�erent behaviour with respect to the other functions.

(a) Results on Ackley function. (b) Results on Griewank function.

(c) Results on Sinc-N function. (d) Results on Schwefel-226 function.

Figure 3.24: Parametric analysis on the linguistic transposition parameters, error

rate and error amplitude.

For all the functions, the values obtained for very high mutation rates
represent the results of a random search in the domain.

For Ackley and Sinc-N function (Figures 3.24(a) and 3.24(c)), the optimal
results are obtained for low values of linguistic error rate and amplitude, but
for null values the results are non optimal. Moreover, in these functions, the
results decay quite quickly when the mutation is increased too much. This
behaviour is more evident for Sinc-N function.
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On the other hand, for Griewanck (Fig. 3.24(b)) function the algorithm
works very well also for null mutation. This is due to the concave average
shape of the function. Here, the decay of the performance increasing the
mutation is lower than for the other functions.

The results for Schwefel-226 function (Fig. 3.24(d)) are completely di�er-
ent. The algorithm works better for very low or null mutation, even if this is
not relevant because the reached value is much higher: this shows that the
algorithm is not able to reach convergence. For this function, it is very inter-
esting the peak reached for linguistic error amplitude around 0.1. This is due
to the peculiar shape of the Shcwefel-226 function: in fact, this function has
a local minimum on the boundary of the domain, thus a diverging results as
the one obtained with a large linguistic error amplitude gives better results
than a simple random search localized in a central region of the domain.

(a) Results on Ackley function. (b) Results on Griewank function.

(c) Results on Sinc-N function. (d) Results on Schwefel-226 function.

Figure 3.25: Parametric analysis on the linguistic transposition parameters, error

rate and error amplitude.

Figure 3.25 shows the results of the parametric analysis on the linguistic
transposition using the second set of parameters α and β.

As expected, the optimal results for Ackley and Griewank functions (Fig-
ures 3.25(b) and 3.25(a)) are worsened, while for Schwefel-226 function (Fig-
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ure 3.25(c)) the improvement is very important: in fact the optimal value is
reduced from 1870 of the previous test to 436.

For Sinc-N function (Figure 3.25(d)) the optimal result is the same as
before, but the optimal zone is shifted. The parameter values are more similar
to Ackley and Griewank functions, even if the optimal area is smaller.

3.4 SNO performance and comparison with other

algorithms

In this Section, the performance of SNO on some standard benchmarks for
Evolutionary Optimization are analysed and compared with the results of a
set of other algorithms.

3.4.1 Genetic Algorithm

The Genetic Algorithm (GA) is the most popular among Evolutionary Op-
timization algorithms. His �rst implementation is suited for binary prob-
lems [78]. Then, many other implementations have been introduced; in
particular, many implementations for real-valued problems have been de-
veloped [59].

The Genetic Algorithm is based on three operators: the selection, the
crossover and the mutation [117].

The selection operator is devoted to extract a certain number of individ-
uals from the population. Several criteria can be used: the random selection
can be used for increasing the population diversity; the roulette wheel selec-
tion can be used to select individuals with probability proportional to the
�tness. The individuals can be also selected proportionally to their rank in
the population (rank-based selection).

An important selection operator is the stud selection that at every itera-
tion extract the best individual of the population. The use of this operator
often is explicitly indicated in the name of the algorithm: the resulting algo-
rithm is the stud-genetic algorithm (SGA) [20].

The second operator is the crossover, that is devoted to creating the new
population recombining the existing information in the population. Several
variations of this operator have been tested in literature: from the single point
crossover, to the uniform or arithmetic crossover for the real-value problems.
Many other crossover operators have been implemented for solving some
speci�c problems [76].

Finally, the last operator of GA is the mutation: this is devoted to intro-
ducing new information in the population with some random modi�cations
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of the population. Also in this case, many possible rules can be used [118].

3.4.2 Di�erential Evolution

The Di�erential Evolution (DE) is an algorithm that is not biologically in-
spired. It has been introduced in [119] for solving continuous optimization
problems with the aim to handle non-di�erentiable, nonlinear and multi-
modal cost functions. Moreover, it has been designed to be easy for the
user (robustness of the choice of the parameters) and suitable for paralleliza-
tion [119].

The algorithm has been applied to a wide range of problems obtaining
very good results [120].

The algorithm is based on the vector-based mutation: this operator has
the objective to create the new population starting from the existing one
[121].

As �rst step, two individuals of the population are selected (all the selec-
tion possibilities can be used) and the di�erence vector is calculated. Then a
third individual is selected, and it is moved in the search space by a quantity
that is proportional to the di�erence vector [121]:

xi(t+ 1) = xr1(t) + F · (xr2(t)− xr3(t)) (3.56)

For improving the potential diversity of the population, crossover or mu-
tation operators can be applied [121].

3.4.3 Biogeography Based Optimization

The Biogeography Based Optimization (BBO) is a biologically inspired al-
gorithm recently developed [13]. This algorithm is a variation of the GA in
which the crossover operator has been modi�ed for having an higher conver-
gence rate.

This modi�cation often leads to an early convergence in many multimodal
problems: for solving this problem a modi�cation has been introduced in [122]
modifying the selection operator and introducing the cataclysm when the
population stagnates. In this thesis, this modi�cation has been used and it
is referred as mBBO.

Another modi�cation has been here tested for solving the problem of the
early convergence: in this case the mutation operator has been modi�ed and
its impact has been increased. This second modi�cation is called nBBO.
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3.4.4 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) is another well-known population-
based evolutionary algorithm implemented for real-value problems [123].

This algorithm has been widely studied and applied [124]. His perfor-
mance is highly dependent on the speci�c selection of the parameters and,
with respect to GA, it is characterized by an higher convergence rate that in
some cases leads to a premature stagnation in local minima [125].

In this algorithm, each particle (individual of the population) moves in
the search space according to three criteria: an inertia, an attraction to the
global best position found by the population and the attraction towards his
personal best.

Also for this algorithm, several variations have been implemented for re-
ducing the early convergence: in particular, the population is often clustered
for having another attraction term, the group best [126].

Some other variations have been tested introducing repulsion terms: these
are very useful for avoiding early stagnation, but it can bring the algorithm
to instability [64].

3.4.5 Random Search and Random Walk

These two algorithms are not always considered Evolutionary Algorithms
because the operators that creates the new population is completely random.

The random search is a completely random algorithm in which the point
are selected independently in the search space [76].

On the other hand, the random walk is a point-based algorithm in which,
starting from a random position, the candidate solution is moved with ran-
dom direction and step size in the search space. In this algorithm, an elitism
is considered: in fact the point position is updated only if the new �tness
value is better than the old one [76].

3.4.6 Point-based algorithms

In the comparison, also three typical point-based methods have been tested:
the Quasi-Newton algorithm (QN) [127], the Simplex algorithm (SPX) [128],
and the Steepest Descend algorithm (SD) [129].

These algorithms are usually employed for local search due to their high
sensitivity to the initial point of the search. For managing this problem, at
each independent trials the starting guess is selected randomly.



3.4 SNO performance and comparison with other algorithms 79

3.4.7 Numerical resuls

All the numerical results are based on a set of standard mathematical bench-
marks [130]. These functions have di�erent features in order to analyse the
behaviour of the algorithms in di�erent conditions. Details of these functions
can be found in the Appendix A.

Many of these functions are multi-modal, with di�erent local minima size
and location in the search domain; two functions that emulates the penalty
de�nitions; and other are non derivable or non-continuous.

Adopting this set of functions, Social Network Optimization has been
�rstly assessed and then compared with the other algorithms.

Social Network Optimization

The behaviour of SNO in di�erent conditions can be analysed observing
the convergence curves on the di�erent mathematical benchmark functions.
For each objective function, 50 independent trials have been performed with
termination criterion 5,000 function calls.

Figure 3.26(a) shows the convergence on Ackley function, and Figure
3.26(b) on Griewank function: here, the very small standard deviation of the
results obtained by SNO can be appreciated.

(a) Ackley function. (b) Griewank function.

Figure 3.26: Convergence curves of the 50 independent trials of SNO. Each grey

line is the convergence of one single trial, while the blue thick line is the average

convergence.

On the two Penalty functions (reported in Figures 3.27(a) and 3.27(b))
it is possible to clearly see the two di�erent convergence rates: the �rst part
of the convergence is related to the penalty area of the function, while the
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second part is the one devoted to the �nding of the minimum within the
non-penalized area.

Figure 3.27(c) shows the convergence on the Quartic function: here the
behaviour of the algorithm is very regular due to the simple shape of the
function. The convergence on the Rastrigin function (Figure 3.27(d)) is quite
slow, but the algorithm is never blocked in one of the many local minima of
this function.

Figure 3.27(e) shows the convergence curves on the Rosenbrock function:
here, there are two groups of convergence that correspond to the two almost
�at parts of the function.

The convergence on Schwefel-12 function (Figure 3.27(f)) is quite low,
even if it is positive that the algorithm does not stack on the local minima,
but the convergence is going on for all the optimization time.

Figure 3.28(a) shows the convergence on the Schwefel-221 function, while
Figure 3.28(b) Schwefel-222 function: here, the similarity of the trials is
impressive, showing the robustness of SNO.

Figure 3.29(a) shows the convergence on Schwefel-226 function: here the
initial very fast convergence is followed by a much slower rate in the last part
of the optimization time.

On Sinc function, shown in Figure 3.29(b) , it is possible to see that the
convergence of the single trials are often blocked in the local minima of the
function.

In the Sinc-N function (Figure 3.29(c)), all the independent trials are able
to begin the convergence toward the global minimum: this is an impressive
result because this function is characterized by a very large almost �at area.

Finally Figures 3.29(d) and 3.29(e) show the convergence on the Sphere
and the Step functions.

Analysing these convergence curves, it is possible to see the general good
behaviour of SNO, that is able to reach very good results in many functions.

In the following, these results are compared with the ones of the other
optimization algorithms.

Comparison

Two groups of comparison have been done: the �rst one is among Evolution-
ary Algorithms, while the second one is between SNO, the random algorithms
and the point-based algorithm.

For each algorithm, the termination criterion has been set to be 5,000
objective function calls. For having a statistical reliability 50 independent
trials have been done. The objective functions are all de�ned with 20 design
variables.
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(a) Penalty1 function. (b) Penalty2 function.

(c) Quartic function. (d) Rastrigin function.

(e) Rosenbrock function. (f) Schwefel-12 function.

Figure 3.27: Convergence curves of the 50 independent trials of SNO. Each grey

line is the convergence of one single trial, while the blue thick line is the average

convergence.
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(a) Schwefel-221 function. (b) Schwefel-222 function.

Figure 3.28: Convergence curves of the 50 independent trials of SNO. Each grey

line is the convergence of one single trial, while the blue thick line is the average

convergence.

For what concern the point-based algorithms, the initial guess has been
extracted randomly from the search domain at each trial: for multimodal
function, the �nal result is highly a�ected by the initial guess.

For the comparison, the number of objective function calls can be consid-
ered as the most interesting termination criterion: in fact, each optimization
algorithm has a di�erent computational cost due to its internal operators,
but the most of the total computational time is due to the evaluation of the
cost function.

For what concern the computational complexity of the algorithm, it can
be calculated as function of the population size N , the number of iterations
I, and the number of design variables of the problem (M). It is important
to notice that the speci�c selection of the operators of the algorithms highly
impact the computational complexity of the algorithms. For more details on
the single operators, see [76].

Table 3.2 contains the computational complexity of the evolutionary al-
gorithms implemented: the �rst column represent the computational com-
plexity as function of I, N , and M , while the second column contains the
same information as function of the number of the objective function calls,
remembering that:

C = N · I (3.57)

Tables 3.3 and 3.4 shows the average value obtained by all the algorithm.
For each function (row) the best result is indicated in bold, while for each
algorithm (column) the number of wins and a score value have been calcu-
lated.
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(a) Schwefel-226 function. (b) Sinc function.

(c) Sinc-N function. (d) Sphere function.

(e) Step function.

Figure 3.29: Convergence curves of the 50 independent trials of SNO. Each grey

line is the convergence of one single trial, while the blue thick line is the average

convergence.
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Algorithm Computational complexity
DE I ·N C
GA I ·N C

mBBO I ·N ·M C ·M
nBBO I ·N ·M C ·M
PSO I ·N C
SGA I ·N · logN C · logN
SNO I ·N · logM C · logM

Table 3.2: Computational complexity of the EAs as function of the number of

iterations I, the population size N , the number of design variable M and the

number of objective function calls C.

The score used is calculated according to the following formula:

Sa =
ra −min(r)

max(r)−min(r)
(3.58)

where Sa is the score for the a-th algorithm; ra is the result of the a-th
algorithm, min(r) is the best result achieved by one of the algorithms and
max(r) the worst one.

This score takes into account the fact that the good feature that an algo-
rithm should have is the capability of having a competitive performance on a
large set of objective functions; in fact, for a general application of EAs, this
feature is more important than the capability of being the best in a narrow
set of functions.

Analysing Table 3.3, it is possible to notice that the DE is the algorithm
that is able to achieve the maximum number of wins; however, the DE per-
formance are generally low on the other functions. For this reason, the �nal
score is higher than the one of SNO.

In fact, SNO is very competitive on a large set of objective function, with
very good results also when it is not the best algorithm among all.

Also the nBBO has a good score, due to the fact that its performance are
quite good in all the function, even if never the best: this can be explained
by the high mutation in this algorithm that makes it very robust to local
minima.

GA and PSO have intermediate results: it is interesting to notice that
GA is able to be the best algorithm on two objective function, in particular
on Schwefel-12 that is a very hard function.

Finally, the score of mBBO and SGA are quite high, due to the very low
performance scored in several functions (on Penalty 2 the SGA is very far
from the global minimum).



3.4 SNO performance and comparison with other algorithms 85

DE GA mBBO nBBO PSO SGA SNO
Ackley 0.02 2.4 2.84 1.73 3 0.98 0.99

Griewank 0.24 1.63 2.1 1.15 1.27 1.07 1.17
Penalty1 0.02 0.56 1.18 24.9 5.32 108.21 0.19
Penalty2 0.23 2.73 10.96 301.41 11.23 5684.38 1.43
Quartic 7·10−8 18·10−5 12·10−4 6·10−4 16·10−5 3·10−3 5·10−5

Rastrigin 40.63 71.59 15.3 34.47 143.11 11.35 8.91

Rosenbrock 17.38 23.17 66.59 30.97 19.36 71.81 40.96
Schwefel-226 1581.49 2809.33 257.25 766.72 3452.93 1057.17 863.5
Schwefel-12 4123.59 264.29 3757.51 900.5 287.08 3988.65 1443.91
Schwefel-222 0.03 2.8 2.82 1.22 5.01 0.15 1.12
Schwefel-221 6.22 4.52 28.7 11.95 13.29 38.47 10.36

Sinc 0.93 0.97 0.97 0.98 0.94 0.98 0.93

Sinc-N 0.69 0.73 0.45 0.42 1 0.73 0.09

Sphere 7·10−5 0.18 0.35 0.04 0.07 0.03 0.05
Step 0.18 67.62 130.48 20.98 33.44 29.36 20.1

Num. wins 9 2 1 0 0 0 3
Score 0.17 0.41 0.58 0.29 0.45 0.6 0.16

Table 3.3: Comparison between SNO and other EAs. All the functions have 20

design variables, the termination criterion is set 5,000 objective function calls, and

the reported value is the average of 50 independent trials.

RS RW QN SPX SD SNO
Ackley 15.27 8.98 17.72 17.75 17.71 0.99

Griewank 218.96 39.69 10·10−3 156.78 0.02 1.17
Penalty1 7·107 19·104 12·107 31·107 13·107 0.19

Penalty2 18·107 23·105 16·107 7·107 17·107 1.43

Quartic 15.24 0.65 3·10−6 45.23 5·10−6 5·10−5

Rastrigin 268.62 116.56 337.88 364.06 355.74 8.91

Rosenbrock 1638.52 238.38 66.27 1141.72 122.28 40.96

Schwefel-226 5242.55 5160 3922.16 4293.32 3688.32 863.5

Schwefel-12 11·103 3781.69 61.1 18·103 7236.99 1443.91
Schwefel-222 1279.3 16·103 15·1011 92.86 8·1011 1.12

Schwefel-221 64.28 32.82 44.82 63.38 3.58 10.36
Sinc 0.97 0.95 0.96 0.98 0.94 0.92

Sinc-N 1 1 1 1 1 0.09

Sphere 61.47 11.64 11·10−13 35.22 11·10−14 0.05
Step 23·103 4532.28 8·104 11·103 8·104 20.1

Num. wins 0 0 3 0 2 10
Score 0.73 0.3 0.55 0.75 0.49 0.01

Table 3.4: Comparison between SNO and other algorithms. All the functions

have 20 design variables, the termination criterion is set 5,000 objective function

calls, and the reported value is the average of 50 independent trials.
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In Table 3.4 the comparison between SNO and the random algorithms
and the point-based algorithms is provided. Also in this case the number of
wins and the score are reported.

It is possible to see that SNO outperforms all the other algorithms es-
pecially on multimodal functions. In fact, on single modal functions (like
Quartic, Rosenbrock and Sphere), the point-based algorithms are the best.

An interesting case is that that Quasi-Newton algorithm and Steepest
Descend are able to achieve very good results also on Griewanck function:
this function is multimodal, but the oscillations have a very high frequency;
the step size of these algorithms is able to jump the local minima.

Comparing the Random Search with the Random Walk, the results of
this last algorithm are always better: this is the e�ect of the elitism that is
present in it.

Figure 3.30: Comparison of the convergence curves on the Ackley function.

Figure 3.30 shows the comparison of the convergence curves of all the
algorithms. The �gure is divided in two parts: the left one is for EAs, while
the right side for the other algorithms. For making clearer the comparison,
the convergence curve of SNO is reported twice.

Comparing SNO and DE, it is possible to see that the initial convergence
is similar but when the convergence of SNO slows down, the one of DE
continues.

It is interesting the very fast convergence of the random walk: however,
this convergence lead to a local minima and the algorithm is not able to reach
good results.

Figure 3.31 shows the comparison on the Griewank function. The be-
haviour of DE is interesting because it reaches the �nal results of most the
algorithm at the middle of the time and then it is able to make another
convergence step. In this function the initial convergence of GA is very fast,
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Figure 3.31: Comparison of the convergence curves on the Griewanck function.

reaching a very good result in 1/4 of the available time.

Figure 3.32: Comparison of the convergence curves on the Penalty1 function.

Figures 3.32 and 3.33 show the convergence curves on respectively Penalty
1 and Penalty 2 functions. In both the functions it is possible to see again the
very fast convergence of GA; the point-based algorithms have performance
that are comparable or lower than random search due to the multimodal
shape of the function.

The Quartic function (Figure 3.34) is a single-model function, thus the
derivative-based algorithms are very e�ective in the optimization. It is inter-
esting to see that DE is better to outperform the derivative algorithms also
in this function.

In Rastrigin function (Fig. 3.35) SNO is the best algorithm: the shape
of the function with the very large local minima is able to drastically slow
down the convergence of DE. In this function also the SGA achieve very good
results.
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Figure 3.33: Comparison of the convergence curves on the Penalty2 function.

Figure 3.34: Comparison of the convergence curves on the Quartic function.

Figure 3.35: Comparison of the convergence curves on the Rastrigin function.
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Figure 3.36: Comparison of the convergence curves on the Rosenbrock function.

The Rosenbrock function is a single-modal function, thus the derivative-
based algorithms are able to perform well (Figure 3.36). It is interesting the
very good behaviour on this function of both GA and PSO.

Figure 3.37: Comparison of the convergence curves on the Schwefel-12 function.

Figure 3.37 shows the convergence on Schwefel-12 function. Two inter-
esting behaviours can be notices: �rstly, the very good performance of GA
and PSO that are able to �nd a very good minimum (it is a local on: the
minimum value of the function is 0, while the best value reached by the two
algorithms is higher than 250). Secondly, is peculiar the convergence of Quasi
Newton algorithm that outperforms all the EAs (his �nal value is 61).

The results on the Schwefel-221 function (Figure 3.38) show a good be-
haviour of the SD algorithm that is able to outperform SNO and to have
results very competitive with respect to all the EAs. Among them, the SGA
shows a very slow convergence, while the standard GA achieve the best result.

Figure 3.39 shows the convergence on Schwefel 222 function. Here is
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Figure 3.38: Comparison of the convergence curves on the Schwefel-221 function.

Figure 3.39: Comparison of the convergence curves on the Schwefel-222 function.

Figure 3.40: Comparison of the convergence curves on the Schwefel-226 function.
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Figure 3.41: Comparison of the convergence curves on the Sinc function.

Figure 3.42: Comparison of the convergence curves on the Sinc-N function.

very interesting the behaviour of the random algorithms (both RS and RW
are able to achieve good results, even if they are much worse than the ones
of the EAs) and of the Simplex Algorithm, that is the most performative
point-based algorithm.

In the Schwefel-226 function (Figure 3.40) SNO, SGA and nBBO shows
a very similar behaviour, and the nBBO is slightly better than them.

The results of the Sinc function (Figure 3.41) are not signi�cant at all
because none of the algorithms is able to have a convergence toward the real
minimum (0 cost value), but all of them are blocked in a very high local
minimum.

In the Sinc-N function (Figure 3.42), all the EAs but PSO are able to
start the convergence toward the global minimum. From other tests on this
function, it has been noticed that, if an algorithm starts the convergence,
it is able to reach the optimum point. The other algorithms are completely
blocked in the small local minima.
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Figure 3.43: Comparison of the convergence curves on the Sphere function.

The Sphere function is a single-modal function, thus the derivative-based
algorithms are able to reach the minimum (Figure 3.43). The �nal value
they reach is comparable with the numerical error of the evaluation of the
function.

The behaviour of DE is very interesting because its convergence rate is
very high and very stable.

Figure 3.44: Comparison of the convergence curves on the Step function.

Finally, Figure 3.44 shows the results on the Step function. This function
is characterized by a set of �at area, thus the derivative-based algorithms are
not able to begin the convergence.

For what concern the EAs, it is interesting the convergence of the nBBO
that at the beginning of the convergence period behaves like the DE.

The preliminary results presented in this chapter validate the performance
of SNO and show its global reliability.



Chapter 4

Beam Scanning Re�ectarray

Re�ectarrays (RAs) are antennas structures originally aimed to improve di-
rectivity. They consist of a low pro�le planar array of printed radiating
elements illuminated by a primary feed source [131].

Usually these antennas are characterized by a �at re�ector: this solu-
tion reduces the production costs and the antenna volume (important aspect
especially in aerospace applications). Moreover, with respect to parabolic re-
�ectors, it is possible to have more customizable solutions, such as conformal
re�ectors [132].

The planar re�ector consists of several patches with di�erent geometri-
cal parameters, that a�ects their re�ection proprieties, such as the re�ection
phase shift and the attenuation in the module of the �eld. A proper selec-
tion of the geometrical parameters and electromagnetic response of all the
patches can be used for obtaining the desired antenna performance [133].
The improved design methods for antenna and the improved computational
capabilities enlarged the applicability of RAs.

The re�ectarray design consists in two phases: the design and assessment
of the single patch, and then the design of the entire re�ector [133].

The introduction of new applications of RAs makes crucial the application
of optimization algorithms: in fact, the traditional deterministic techniques
(like the design of a pencil-beam antenna) are no more su�cient. Moreover,
the design and optimization of a RA is an highly dimensional and multimodal
problem, thus the use of Evolutionary Algorithms becomes very important
[134].

93
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Figure 4.1: Example of radiation pattern of a helix antenna. The origin of the

reference system is the position of the antenna, while the colours are representative

of magnitude of the radiated �eld in dB.

4.1 Introduction to antenna

Antennas are system devoted to carry electrical signals by means of radiation.
With respect to transmission lines, antennas do not require any guiding lines:
in fact, the transmission of information is performed by means of free-space
electromagnetic waves [25].

It is possible to divide antennas into four classes: electrically small anten-
nas, resonant antennas, broadband antennas, and aperture antennas. This
last type is characterized by a high gain, that increases with frequency, and
moderate bandwidth. Re�ectarrays belong to this last class of antennas [25].

4.1.1 Radiation pattern and antenna performance pa-

rameters

The radiation pattern of an antenna is the graphical representation of the
radiation proprieties of the antenna itself, in particular the variation with
respect to the observation angles θ and φ. Figure 4.1 shows a radiation
pattern obtained with the antenna tool of Matlab for a helix antenna. The
origin of the reference system is the position of the antenna, while the colours
are representative of magnitude of the radiated �eld in decibels (dB).

The radiation pattern, thus, is representative of the electric �eld received
in a sphere with a �xed radius r. Due to the fact that the radius is arbitrary,
the plot is often normalized with respect to the maximum �eld value. The
radiation pattern function F (θ, φ) is a complex-valued function, and thus it
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Figure 4.2: Proprieties of a radiation: main beam, side and back lobes and

beamwidth.

is represented its module, very often in decibels (dB) [25].
There are some important radiation pattern proprieties. It is composed by

several lobes : the main beam is the lobe containing the direction of maximum
radiation. All the other lobes are side lobes, if they are oriented in a di�erent
direction with respect to the main beam, or back lobes if they are in the
half-space opposite to the main beam [25].

A measure of how well the power is concentrated in the main beam is
the side lobe level (SLL), i.e. the ratio between the pattern value of the
maximum side lobe with respect to the pattern value in the main beam [25].

Another important feature of the radiation pattern is the beamwidth, i.e.
angle between the �rst two nulls around the radiation pattern.

Figure 4.2 shows the main radiation pattern proprieties that are used in
the following for characterizing the antenna performance.

4.1.2 Introduction to radiation analysis

The radiation pattern evaluation is a key aspect in aperture antenna design:
it should be calculated with high accuracy for having a reliable forecasting
of the actual radiation of the real antenna.

One of the most accurate technique is the solution via Finite Element
Methods. This system, called also full wave, has the disadvantage that for
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Figure 4.3: Schematic view on the antenna system: both the o�set feeder and

the re�ector are depicted.

medium-large re�ectarrays the calculation time becomes an issue: it can last
for several hours, thus it is not feasible for iterative design processes [135].

Other techniques have been implemented for reducing the time required
by the computation of the radiation pattern.

One of the simplest methods is the array theory, that can be used for
calculating the radiation pattern, as used in [136] and in [137]. This method
is very fast, even if the performance is not very accurate for re�ectors in
which the distribution of the patches is not very regular.

Another method that can be used is the aperture �eld method [135]: the
calculation of the radiation pattern with this method is slightly slower, but
the accuracy is higher. Moreover, in this method it is possible to take into
account more information, like the di�erent re�ection behaviour of the patch
as function of the incidence angle of the �eld.

The selected method, that will be shortly described in the following of
this Section, is the aperture �eld. An analysis of the accuracy of it is provided
in Section 4.4.3.

4.1.3 Aperture Field Method

Here the aperture �eld method is brie�y described. For a more detailed
analysis of this method it is possible to refer to [138].

The geometry considered is composed by a feeder and a planar re�ector
(see Figure 4.3). Each element of the planar re�ector is identi�ed by its
position assuming a reference system located in the plane of the re�ector
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and centred with respect to the antenna:

~rmn =


xmn
ymn
0

 (4.1)

The distance between each patch and the centre of the array is:

rmn =
√
x2mn + y2mn (4.2)

The feeder location is identi�ed with spherical coordinates: in this way,
the radial coordinate df is representative of the amount of energy radiated
outside the re�ector, and the tilting angles represent the position of the o�set
feeder that is oriented towards the centre of the array.

Due to the fact that generally the feeder is tilted only with the θ coordi-
nate, its vector position is:

~rf =


−df sin θf

0
df cos θf

 (4.3)

Thus, the distance between the feed and each patch is:

rfmn =
√
x2mn + y2mn + z2f (4.4)

The two important elements that are used for the evaluation of the radia-
tion pattern are the radiated �eld from the feeder and the re�ection properties
of each patch that is characterized by the two parameters qE and qH .

In order to evaluate the �eld received by the re�ector, it is required to
evaluate the angles φFmn and θF,mn of each patch, seen from the feeder:

φF,mn = arccos

(
xmn + df sin θf√

(xmn + df sin θf )2 + y2mn

)
(4.5)

θF,mn = arccos

(
d2f + |~rmn − ~rf |2 − r2mn

2df
√

(xmn + df sin θf )2 + y2mn

)
(4.6)

The �eld received by each patch, expressed in spherical coordinates in
the feeder reference system, is:

EF =

(
EF
θ

EF
φ

)
=

 j
k0

2πrfmn
e−jk0rfmn · cosqfe θF,mn · cosφF,mn

−j k0
2πrfmn

e−jk0rfmn · cosqfh θF,mn sinφF,mn

 (4.7)
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where qfe and qfh are the two parameters that characterize a feed horn.
Then, this �eld projected in Cartesian coordinates of the feeder reference

system is:

EF =

 EF
x

EF
y

EF
z

 =

 cos θmn cosφmnE
F
θ − sinφmnE

F
φ

cos θmn sinφmnE
F
θ + cosφmnE

F
φ

− sin θmnE
F
θ

 (4.8)

Finally, it is possible to calculate the �eld in the reference system of the
re�ector:

ER
mn =

(
ER
mn,x

ER
mn,y

)
=

(
cos θfE

F
x − sin θfE

F
z

−EF
y

)
(4.9)

The �eld calculated is the one that each patch receives as input from the
feeder. Then it is possible to calculate the re�ected �eld. For doing it, the
geometrical characteristics of the patch (design variable of the antenna design
problem) should be considered, since they a�ect the re�ection coe�cient.

For a given patch length Lmn, it is possible to calculate the re�ection
proprieties (amplitude SMN and phase φmn). Thus, the re�ected �eld from
each patch is:

amn =

(
ER
mn,x · Smnejφmn

ER
mn,y · Smnejφmn

)
(4.10)

The combination of the radiated �elds of all the patches is:

ER(θ, φ) =

(
ER
x

ER
y

)
=

( ∑Nx

m=1

∑Ny

n=1 amn,x · ejk0(u·xnm+v·ynm)∑Nx

m=1

∑Ny

n=1 amn,y · ejk0(u·xnm+v·ynm)

)
(4.11)

Finally, this �eld is rotated in the θ,φ reference system:

E(θ, φ) =

( −jk0rff
2πrff

(ER
x cosφ+ ER

y sinφ)
−jk0rff
2πrff

(−ER
x cos θ sinφ+ ER

y cos θ cosφ)

)
(4.12)

The radiation pattern of an antenna is the module of the radiated �eld
and generally it is expressed in decibels.

4.2 Beam Scanning Re�ectarray

An important aspect that has been recently investigated in literature is the
possibility of having a scanning capability (the possibility to direct the main
bean in di�erent angles) with re�ectarrays.

This capability is often achieved with mechanical systems, but it is gen-
erally slower and more expensive with respect to system like active planar
arrays.
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Figure 4.4: Side view of a scanning beam re�ectarray: the feed moves along a

circular arc, and changing its position also the direction of maximum radiation

varies.

Some tests have been performed in literature for creating an electrical
scanning changing the re�ection proprieties of the patches with a bias elec-
trical circuit [139]. This type of design is very �exible because the variation
of the re�ection phase of the patches can be adjusted changing the bias-
ing voltage, but it requires quite complex feeding circuit, especially in large
re�ectors.

For simplifying the biasing circuit, some authors tested PIN diode patches
that can have only two re�ection states [140]. In this case the feeding circuit
is easier, but the re�ection performance that can be achieved are lower.

Another method for beam scanning is steering the feeder and having a
�xed re�ector designed for having good re�ection proprieties with di�erent
scan angles. This system, shown in Figure 4.4, is much simpler because it
does not require a complex biasing system for the re�ector, but the radiation
pattern worsen quickly when the scan angle increase.

There are no optimal deterministic solutions for this problem, thus it has
been here solved with Evolutionary Optimizer.

4.2.1 Antenna description

The antenna system is composed by a feed (a horn antenna) and a planar
re�ector. The surface of the RA is divided in a proper number of square
unit cell, with size lower than or equal to λ0/2, where λ0 is the wavelength
computed at the design frequency f0.
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Figure 4.5: Variation of the phase (top) and amplitude (bottom) of the re�ection

coe�cient provide by each unit cell, as a function of the size d of the square patch.

Inset: sketch of the unit cell.

Here, the considered re�ector is made of a dielectric substrate with rel-
ative dielectric constant µr = 2.55 and height h = 0.8mm. The feed is a
standard horn, located at a distance F = 10.8λ0 from the centre of the re-
�ectarray, and it can move along an arc, covering the angular range that
corresponds to have a beam scanning between -40◦and +40◦.

Each unit cell includes a square patch (see inset in Figure 4.5, whose size
d is used to control the phase and the amplitude of the re�ection coe�cient
S11 provided by the cell itself. Their variation with d is plotted in Figure
4.5. S11 is computed with the well-known full-wave commercial simulator
CST Microwave Studio, carrying on a full-wave simulation of the unit-cell
embedded in a periodic structure and for normal incidence.

The feed has a radiation pattern that can be approximated with a cosine
one with qe = qh = 7.7:

f(θ, φ) = cosqe(θ) cos?qh(φ) (4.13)

The analysed antenna is composed by 24 × 24 patches, and thus the
re�ector size is 12λ0.



4.3 Optimization procedure 101

Figure 4.6: Optimization scheme for the re�ectarray: for constraints on the

computational time the full wave simulation cannot be inserted in the optimization

loop.

4.3 Optimization procedure

The optimization procedure is designed starting from the scheme presented
in the Optimization System chapter, and it has been adapted for facing an
important constraint of this speci�c problem: the full wave analysis (the
accurate simulator of antennas) requires many hours for each simulation,
thus it is not possible to use it inside the optimization loop. Moreover, the
optimization process is characterized by 148 design variables and it is almost
impossible to train an e�ective surrogate model.

Due to this reason, the calculation of the radiation pattern during the
optimization process is done by means of the aperture �eld method. This has
been tested with several cases presented in di�erent international conferences
and the results obtained were quite reliable [67, 73].

Figure 4.6 shows the optimization scheme. The algorithm, during its run,
exploits the radiation pattern calculated by the aperture �eld method, that
is then used to calculate the cost value. Only at the end of the optimization
process the full wave simulation is run and the obtained results are validated.

The optimization loop should be tested in order to properly select the
algorithm parameters and the objective function. Moreover, the aperture
�eld method should be assessed, and its performance compared with the full
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wave simulator.

4.4 Designing the process

The �rst element of the optimization process that should be designed is the
free variables.

The antenna behaviour is characterized by the length of the patches and
by the so-called beam deviation factor. The symmetries of the system are
completely exploited for reducing the number of design variables.

Each of these design variables is obtained from a corresponding optimiza-
tion variable with a proper scaling. The algorithm has a very high �exibility
in creating new patterns with the patches.

Here, the number of design variables is 148. In fact, the antenna has 576
patches, but the application of the symmetries reduces this number to 144.
In addition to these variables, for each scan angle the beam deviation factor
is introduced, i.e. the angular di�erence between the feeder angle from the
vertical line and the main beam direction [141].

The calculation of the radiation pattern takes 1.73s on Intel Core i7 for
the 24× 24 antenna, that corresponds to 23.8h for the entire optimization.

For a proper design of the optimization process, several tests have been
done: �rstly, a basic analysis on the cost function is done for taking into
account properly all the performance parameters of the system. Secondly,
an analysis on the feasibility function is proposed for understanding its im-
pact on the optimization procedure. Thirdly, the aperture �eld method is
assessed: in particular, two di�erent implementations of the same method
are compared with the full wave analysis. Finally, an analysis on SNO pa-
rameters has been performed.

4.4.1 Cost function de�nition

The �rst analysis that has been done regards the cost de�nition. In fact,
the problem is intrinsically multi-objective and it is faced by means of the
scalarization method.

For each of the scanning angles, the antenna requirements are the maxi-
mum main beam half width, the maximum SLL as function of the angle θ,
and the direction of the main beam.

The �rst two requirements can be imposed with a mask, i.e. the maximum
level that the optimal radiation pattern can have for every θ and φ.

From the mask de�nition and the third requirement, several cost functions
can be identi�ed:
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• The integral of the radiation pattern exceeding the mask:

c1(d) =

∫∫
err(θ, φ)dθdφ (4.14)

where err is the error, de�ned by means of the Heavyside function H:

err(θ, φ) = 103 · [E(θ, φ)−M(θ, φ)] ·H [E(θ, φ)−M(θ, φ)] (4.15)

• Maximum error between the mask and the radiation pattern:

c2(d) = max
θ,φ

(err(θ, φ)) (4.16)

• The scan angle error:

c3(d) = ∆θs =

(
θs − θs,a

π
· 180

)2

(4.17)

where θs is the desired scan angle and θs,a is the actual one. This cost
function is very focused and it can be used for improving the others.

The costs c1 and c3 can be scaled for making the results more readable.
The scaling procedure does not a�ect the optimization procedure.

The integral error between the mask and the radiation patter is a very
common cost value, but it cannot sense precisely the scan angle error and
detect clearly the presence of narrow high peaks in the radiation pattern. Due
to this reason, it is convenient to combine this cost value with the other two
cost functions, for having a numerical value of the performance that is more
coherent with the desired system behaviour. These three cost de�nitions can
be combined with the scalarization method usually implemented for multi-
objective problem [142].

This application can be considered multiobjective at two levels: in fact,
a �rst level can be identi�ed for each scanning angle. In this level the three
performance values previously identi�ed can be combined in a single cost
value that represents the e�ectiveness at that precise scan angle.

The second level is the compression of the four data of the scan angles
into the �nal cost that should be returned to the optimizer. This second
level is also important because the type of coordinates used in the radiation
pattern evaluation makes the optimizer more sensible to errors concentrated
in the central region of the radiation pattern. This results in the fact that
the optimization of low scan angles is usually faster than the optimization of
larger scan angles.



104 Beam Scanning Reflectarray

Case number λ1 λ2 λ3 λ4
1 1 1 1 1
2 1 1.25 1.25 1.5
3 1 1.25 1.5 2
4 1 1.25 2 4
5 1 1.25 2 10
6 1 1.25 2 15

Table 4.1: Value of the Lagrange multipliers for the six scalarization tests per-

formed.

At the �rst level of scalarization, only the scan angle error and the radi-
ation pattern integral error have been used: in fact, from early tests, it has
been shown that the maximum error can worsen the optimization because it
can give misleading values when the error is very close to the main beam.

Thus, the single beam cost can be calculated with the following equation:

cs(d) = c1(d) + λc3(d) (4.18)

where λ is the lagrangian multiplier.
Seven di�erent values of the lagrange multiplier λ have been tested and

the results are shown in Figure 4.7. The Figure shows the average value
of 8 independent trials (central dot) and the bars represent the standard
deviation. The red curve is the angular error, while the blue one is the
radiation pattern error.

It is possible to see that the best results are obtained for the scan angle
θs = 20◦. This is due to the fact that the central scan angles are easier to te
obtained.

From Figure 4.7 it is possible to select the best value that minimizes the
error and the standard deviation. The selected value is 102.

A second analysis has been performed on the scalarization from the four
costs of the single scan angle to the �nal optimization cost.

The �nal cost is:

C = λ1c10 + λ2c20 + λ3c30 + λ4c40 (4.19)

where λi are four Lagrange multiplier and c10, c20, c30 and c40 are the cost of
the four scan angles.

Six tests have been performed with the values of the Lagrange multipliers
summarized in Table 4.1. The importance of the higher scan angles has been
increased their directivity of them is usually lower.



4.4 Designing the process 105

(a) Results for θs = 10◦ (b) Results for θs = 20◦

(c) Results for θs = 30◦ (d) Results for θs = 40◦

Figure 4.7: Analysis of scalarization factor λ for the four scan angles.

Figure 4.8 shows the radiation pattern of the four scan angles in the six
cases. It is possible to make a graphical analysis of the radiation patterns
for understanding which set of λs is the best one.

Analysing the results for θs = 40◦, it is possible to notice that the �rst
four cases have a very big main beam. An opposite trend can be notice for
θs = 20◦.

The sixth case is very detrimental for the low scan angles, much less
e�ective than the case # 5 that, especially for θs = 10◦ has performance
comparable to the other cases.

Due to the fact that in this application it is required to have similar
performance for all the scan angles, the set of Lagrange multipliers of the
5-th case can be considered the best choice.
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(a) Results for θs = 10◦

(b) Results for θs = 20◦

(c) Results for θs = 30◦

(d) Results for θs = 40◦

Figure 4.8: Radiation patterns for the four scan angles in the six tested cases.
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Figure 4.9: Comparison among the di�erent convergence curves obtained with

the four box boundary conditions. The curves are in semilogarithmic scale.

4.4.2 Box boundary conditions

The box boundary condition has been analysed because it can change the
convergence proprieties of the algorithm. In particular, in the antenna prob-
lem they can highly in�uence the convergence due to the fact that a physical
propriety of the patches, the re�ection angle, is characterized by a periodic
behaviour.

In particular, the four di�erent functions seen in Chapter 2 (impenetrable
wall, elastic wall, eliminating wall and close search space) have been here
tested on the antenna problem. Several independent trials have been done
with 50,000 objective function calls. Figure 4.9 shows the convergence curves
with the four tested feasibility functions.

Here, it is possible to notice that the eliminating wall has a much worst
convergence since the early iterations: this type con condition highly a�ects
the �nal solution. In fact, the best solution obtained with this condition have
no patches with length equal to the minimum or the maximum: in this case,
the feasibility condition is reducing the number of solutions that can be easily
reached by the optimizer. Moreover, this problem requires a good amount of
exploitation, especially in the central part of the optimization time.

The closed search space has an intermediate behaviour, but the conver-
gence is slower than the two best conditions, even if is the domain that
correspond more to the physical behaviour of the variables.
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Box condition Mean Standard deviation Best result
Impenetrable wall 191.41 19.75 164.14

Elastic wall 201.08 52.76 159.1

Eliminating wall 2566.66 527.95 1452.67
Closed space 291.09 62.12 219.96

Table 4.2: Comparison of the results with the four feasibility function tested. The

results are obtained with 12 independent trials and with 50,000 objective function

calls.

This behaviour can be understood analysing the idea-di�usion operator:
in fact, the continuous oscillation of the individuals from one side to the
other of the domain creates an alternate attraction on the other individuals
resulting in a slower convergence.

The other two conditions are characterized by a very similar convergence.
Similar considerations can be drawn analysing the numerical results that are
shown in Table 4.2.

4.4.3 Assessing the model

Another important test that should be conducted is the assessment of the
reliability of the aperture �eld method with respect to the full wave simula-
tion.

For doing so, an antenna geometry has been selected and it has been
simulated with three methods.

In the �rst simulation, the standard aperture �eld method has been used,
without considering the incidence angle. This is the method used in the
previous tests. As said before, it is simple, but it has shown a good accuracy
with respect to the full wave also in other optimization problems in literature.

The second method implements the aperture �eld method too, but in
this case the incidence angle has been considered. In this case, the re�ection
curves of the patch are function of two variables: the size of the element and
the angle between the patch and the feed.

Finally, the third method is the full wave analysis with CST Studio. This
is the more accurate analysis because it takes into account the blocking e�ect
of the feed and all the coupling e�ects due to the di�erent size of adjacent
patches.

Figures 4.10 and 4.11 shows the behaviour of the patch as function of the
length and of the incidence angle θ.

Analysing the angles, a second resonance (that can be recognized by a
drop in the module and a jump in the phase) appears for high incidence



4.4 Designing the process 109

Figure 4.10: Patch characterization of the re�ection module as function of the

incidence angle θ (in dB).

Figure 4.11: Patch characterization of the re�ection phase as function of the

incidence angle θ (in degrees).
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Figure 4.12: Geometry used for analysing the di�erences between the models.

angles when the patch becomes larger.
The �nally adopted geometry is shown in Figure 4.12. The patch size in

the �gure is proportional to the real patch size.
The �rst comparison has been done analysing the di�erent re�ection pro-

prieties of each patch. It is important to consider that, while for the single-
entry model the re�ection characteristics of the patches are the same for all
the scan angle, with the double-entries model they vary because the incidence
angle is di�erent.

Figures 4.13 and 4.14 shows the di�erence of re�ection losses and phase
between the two models. The di�erences of the losses (Fig. 4.13) are quite low
and concentrated in few patches, while the di�erences in phase (Fig. 4.14)
are much more consistent. As it was expected, the greater di�erences are
concentrated on the patches with higher size, especially the ones on the
boundaries.

Figure 4.15 shows the main cuts of the radiation patterns on the E plane:
the green one has been calculated with the FEM model, i.e. it can be con-
sidered the most accurate. The blue line is the radiation pattern of the
double-entries model and the red one the single-entry model.

There are signi�cative di�erences between the two simpli�ed models, and
they present bot an error with respect to the FEM result.

Generally speaking, the radiation pattern of the double-entries model is
less reliable with respect to the full wave simulation, while the single-entry
model is generally more accurate, showing that the assumption done in that
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Figure 4.13: Di�erences of the re�ection losses of each patch among the two

simulation models.

Figure 4.14: Di�erences of the re�ection phase of each patch among the two

simulation models.
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Figure 4.15: Comparison between the radiation patterns obtained with the three

models.

model (plane wave) is good.
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4.4.4 Algorithm parameters selection

Finally, the last aspect that should be considered in the design of the op-
timization process, is the proper selection of the algorithm parameters that
are able to guarantee a good optimization convergence.

The performed test are devoted to identify the best set of algorithm pa-
rameters, analysing in particular the number of iterations (that is directly
connected through the objective function calls with the population size), two
combinations of attraction parameters (ω0 and h) and three combinations of
linguistic transposition parameters (error rate and error amplitude). Table
4.3 shows the test performed and the combination of parameters for each
test. The number of objective function calls have been set to 50,000 in all
the proposed tests.

Test Iterations Attraction parameters Linguistic parameters
T1 200 0.8 & 0.3 0.015 & 0.1
T2 500 0.8 & 0.3 0.015 & 0.1
T3 1000 0.8 & 0.3 0.015 & 0.1
T4 2000 0.8 & 0.3 0.015 & 0.1
T5 200 1 & 0.5 0.05 & 0.1
T6 500 1 & 0.5 0.05 & 0.1
T7 1000 1 & 0.5 0.05 & 0.1
T8 2000 1 & 0.5 0.05 & 0.1
T9 200 1 & 0.5 0.04 & 0.4
T10 500 1 & 0.5 0.04 & 0.4
T11 1000 1 & 0.5 0.04 & 0.4
T12 2000 1 & 0.5 0.04 & 0.4

Table 4.3: Test performed for identifying the best algorithm parameters.

The combination of parameters has been determined on some preliminary
tests on Schwefel-224 function, that has shown the optimization behaviour
more similar to the speci�c antenna problem.

Firstly, the set of parameters of T1, T2, T3, and T4 have been used in
the optimization. In all of them, the main operator parameters are the same,
but the population size is changed. Table 4.4 shows the results of these tests,
and Figure 4.16 shows the convergence curves.

From Table 4.4, it is possible to notice that a very critical aspect in these
optimization is the generally high standard deviation of the results, which
may be due to preliminary stagnation of the algorithm in local minima. The
result with 500 iterations is the best case for both the mean results and the
standard deviation, while with 1000 iterations the best results is optimal.
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Test Mean Standard deviation Best result
T1 565.24 186.86 317.64
T2 200.54 29.67 154.14
T3 226.83 126.59 131.01

T4 812.93 405.16 239.14

Table 4.4: Results of the tests on SNO: average �nal value, standard deviation,

best results - Tests T1, T2, T3, and T4.

An analysis of these results can be done observing the convergence curves
of Figure 4.16, remembering that the graph is plotted in semi-logarithmic
scale. As it is expected, the number of iterations drives the initial convergence
rate of the algorithm.

Figure 4.16: Results of the tests on SNO: convergence curves - Tests T1, T2, T3,

and T4. The four colours represent the four tests, the thinner lines the convergence

of each trial and the thick lines the average convergence.

The test T1 shows a convergence rate that is still high at the end of the
optimization process, demonstrating that the algorithm has not reached the
minimum value. On the other hand, in the test T4, with high number of
iteration and so low population size, all the solutions stop the convergence
around the half of the optimization time: this is probably due to a combina-
tion of low exploration and low information in the initial population.

In the other two tests (T2 and T3) the average value is approximately
the same, but the test T3 shows a faster initial convergence that leads for
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many solutions to an early convergence in local minima. Instead, the test
T2 has a lower initial convergence rate but all the solutions show the same
convergence pro�le. At the end of the optimization the convergence is almost
reached.

Tests T5-T8 are characterized by a new set of attraction parameters that,
in the early tests, shows a good behaviour in terms of capability of the particle
to jump from a minimum to another. The linguistic error rate has been
slightly increased because these jumps reduce the exploration of completely
new regions of the solution space.

Table 4.5 shows the results of these tests, and Figure 4.17 shows the
convergence curves. Analysing the numerical results, it is possible to notice
that the standard deviation is here much more correlated with the population
size. As seen also before, the intermediate population sizes gives the best
results.

Test Mean Standard deviation Best result
T5 325.51 22.01 293.28
T6 235.89 32.19 190.63
T7 297.98 172.52 169.14

T8 1042.78 746.17 295.47

Table 4.5: Results of the tests on SNO: average �nal value, standard deviation,

best results - Tests T5, T6, T7, and T8.

Figure 4.17 shows that the convergence rate has been increased also with
less iteration and the test T5 shows a generally very good behaviour. On
the other hand, the behaviour with 2000 iterations (test T8) shows a huge
dispersion of the results.

The tests T6 and T7 have a very similar behaviour. The much higher
standard deviation of test T7 is due to couple of solutions that reaches a
local minimum in the early stages of the optimization.

The tests T9-T12 has been done increasing the linguistic error in order
to improve the exploration capabilities of SNO with the new set of param-
eters. Table 4.6 shows the results of these tests, and Figure 4.18 shows the
convergence curves.

As can be noticed in Table 4.6, the convergence of the trial with 1000
iterations (T11) is signi�cantly worse than the others, while with the other
combination of parameters the standard deviation is very low. In general,
with higher mutation rate the convergence is worsened and the �nal cost
value is higher.

Figure 4.18 shows the convergence of this last four tests: the convergence
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Figure 4.17: Results of the tests on SNO: convergence curves - Tests T5, T6, T7,

and T8.

Test Mean Standard deviation Best result
T9 593.19 72.69 479.46
T10 383.67 48.12 336.64
T11 1009.22 123.11 772.56
T12 778.51 322.69 324.36

Table 4.6: Results of the tests on SNO: average �nal value, standard deviation,

best results - Tests T9, T10, T11, and T12.

is generally faster for all the tests. The trial with 2000 iterations shows a
very early convergence on a local minimum.

Generally speaking, this last group of tests is drastically less e�ective with
respect to the others.
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Figure 4.18: Results of the tests on SNO: convergence curves - Tests T9, T10,

T11, and T12.

4.5 Social Network Optimization results

After having analysed the results obtained with several set of parameters of
SNO, it is possible to focus the attention on the best set of parameters.

In this case the parameters of test T2 have been selected for running
the algorithm. The choice has been driven by the very low average result
and also by the low standard deviation. The parameters of test T3 have
been discarded because, even if the best result is very well performing, the
standard deviation is too high.

The convergence curves of 36 independent trials are shown in Figure 4.19.
Each line is a single trial, while the blue thick line is the average convergence.
The results show a very good convergence and reliability of SNO.

The geometry of the best solution is shown in Figure 4.20. It is interesting
to see the regularity of the pattern: this is a good feature because the plane
wave model (the one used in the optimization) is more reliable.

Less regular is the geometry on the corners: this is very common because
these patches have lower impact on the �nal radiation pattern due to the
much lower intensity of incident �eld that they receive from the feeder.

The radiation patterns obtained by the Aperture Field method are shows
in Figure 4.21 In this Figure, it is possible to see that most of the radiation
pattern exceeding the mask is concentrated in the main beam, especially for
high scan angles.
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Figure 4.19: Convergence curves of SNO in 36 independent trials. The blue thick

line is the average convergence.

Finally, Figures 4.22 and 4.23 validates this results by comparing the
radiation pattern computed with the full wave analysis and the aperture
�eld methods respectively.

The bandwidth of this kind of antenna is low, as for all the re�ectarray:
in fact, the gain computed with a full-wave simulation is reduced of 2dB with
1GHz of frequency shift.
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Figure 4.20: Optimal geometry obtained by SNO.

Figure 4.21: Radiation patterns in E- and H- plane for all the four scanning

angles.
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Figure 4.22: Results of the full wave simulation on the E-plane.

Figure 4.23: Results of the full wave simulation on the H-plane.
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4.6 Comparison with other algorithms

The performance of di�erent algorithms has been then compared. The
adopted algorithms are the traditional algorithms (GA, PSO, SGA), the DE,
and the two modi�cations of BBO (mBBO and nBBO).

For all the algorithms the termination criterion has been set 50,000 objec-
tive function calls. The population size and the value of the algorithm param-
eters has been set accordingly to a parametric analysis on the Schwefel-224
function. For all the algorithms, 24 independent trials have been performed.

Algorithm Mean Standard deviation Best result
PSO 26823.4 6314.18 13603.59
GA 6124.97 1329.65 4224.91
SGA 873.38 1778.9 234.97
DE 196.57 67.49 125.13

nBBO 402.39 106.84 269.46
mBBO 539.64 106.72 335.32
SNO 195.95 27.65 154.14

Table 4.7: Comparison between SNO and other optimization algorithms.

The results are shown in Table 4.7. It is possible to notice that the
results of GA and PSO are much worse than the other algorithms. The
SGA, nBBO and mBBO have comparable results, but their optimal results
are less competitive than DE and SNO.

The best results are achieved by DE, followed by SNO. The di�erence
between these algorithms is very low, but the standard deviation of SNO is
much lower. meaning better reliability and stability of the obtained results.

Figures 4.24 and 4.25 show the comparison among the convergence curves
of the algorithms. In the �rst �gure the more traditional algorithms have
been compared with SNO, while in the second the most performing algo-
rithms have been analysed.

From Figure 4.24 it is possible to notice that PSO and GA have a very
small initial convergence and, then, they stuck in local minima. On the
other hand, SGA has a higher exploitation capability, with a very fast initial
convergence. Even if this convergence rate drastically drops at the half of
the optimization period, the solutions are still converging.

Analysing deeply the curves of SGA, it is possible to notice that the
average value is biased by a single trial that perform more than an order of
magnitude worse than the others meaning lower reliability of this algorithm.

Figure 4.25 shows the comparison among DE, nBBO, mBBO, and SNO.
The results of all these algorithms are very good. For what concern DE, the
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Figure 4.24: Comparison among algorithms: convergence curves - 1. GA, PSO,

SGA, and SNO.

Figure 4.25: Comparison among algorithms: convergence curves - 2. DE, nBBO,

mBBO, and SNO.
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initial convergence is much faster than for the other algorithms, especially
SNO that becomes competitive after the half of the optimization period.

Therefore, it is clear that SNO, in this speci�c electromagnetic problem, is
able to reach the same performance of DE but its reduced standard deviation
makes is reliable for this computationally intensive problem.





Chapter 5

TEAM 25 Problem

The TEAM 25 problem is one of a set of benchmarks introduced for testing
the electromagnetic analysis models 1. Among these problems, the TEAM 25
is an optimization problem.

The system is a die press with an electromagnet for orientating the mag-
netic powder, that creates an anisotropic permanent magnet. The aim of
this problem is to obtain the shape of the die molds for having a speci�c
magnetic �ux inside the powder.

It consists in the optimization of the induction magnetic �eld inside a die
press. It has been widely used in literature for making a comparison among
optimization algorithms [143, 144]. It is a quite small problem that can be
solved in reasonable time, thus it is well suited to testing the performance of
the algorithm.

The problem presents only 4 design variables, but it has been proven
in [145] that the cost function has a noisy shape, creating issues in deter-
ministic algorithms. This application has been already published in [71] as
preliminary test and as assessment of SNO compared with GA and PSO.

The problem should be solved with low-frequency FEM software. One of
the most accurate of them is Comsol Multiphysics. The computational time
required to run a single simulation is relatively high: in fact, each solution of
the problem requires, as average, �ve minutes: this means that for a simple
optimization with 2,500 objective function calls the total required time is
almost two hours.

In this chapter, the optimization of this problem is faced in three di�erent
ways: �rstly, a simpler, faster but less accurate software is used (FEMM4.2).
With this, many tests on the algorithm and on the search space have been
done.

1https://www.compumag.org/wp/team/, visited 15/06/2019
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Secondly, the problem has been faced directly with Comsol, in order to
conduct a comparison among di�erent algorithms has been performed.

Thirdly, using this accurate FEM simulator, a surrogate model bases on
the Ordinary Kriging has been exploited in order to reduce the computational
load without reducing the accuracy of results.

5.1 Problem description

The system, shown in Figure 5.1, is composed by an iron core, a part of the
electromagnet, made of iron (light grey in the picture); two die molds devoted
to properly create the radial magnetic �ux distribution, made of iron (darker
greys in the pictures); a cavity, in which the magnetic powder is inserted
(light blue in the picture); and two copper coils for creating the magnetic
�eld (orange in the picture). The white parts of the picture are �lled with
air.

(a) Complete geometry. (b) Zoom of the die mold.

Figure 5.1: Geometry of TEAM25 problem.

The iron is characterized by its B-H curve, shown in Figure 5.2. The
dots represent the points speci�ed in the problem settings; the interpolation
as well as the extrapolation has been done linearly.

The copper has electric conductivity equal to σ = 5.998 · 107 S/m.
The magnetic permittivity of the air is µr = 1.049. Each coil is composed by
17479 turns and the �owing current is 0.2433A.
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Figure 5.2: Iron B-H curve.

As described in [54], the model is assumed as two-dimensional. The
symmetries of the system (dashed lines in Figure 5.1) can be exploited to
reduce the computational e�ort. The boundary conditions of the systems
are a magnetic insulation condition on the external boundary and on the
horizontal symmetry line (blue dashed line in Figure 5.1, Dirichlet boundary
condition), and a perfect magnetic conductor on the vertical symmetry line
(green dashed line in Figure 5.1, Neumann boundary condition).

The design variables, accordingly to the de�nition of the TEAM problem
25, are four dimensions of the die press: L1, L2, L3, and L4. They are
depicted in Figure 5.3.

The objective is to obtain a speci�c magnetic induction �eld (Bx and By)
on an integration line placed in the cavity. This line has been approximated
with a set of N = 10 points, as shown in Figure 5.1(b).

The requested magnetic �eld (target) is:

Bx0 = 0.35 cos θ (5.1)

By0 = 0.35 sin θ (5.2)

where θ is the angle depicted in Figure 5.3.
The cost function that has to be minimized is:

C = 103 ·
N∑
i=1

(|Bxpi −Bx0i|+ |Bypi −By0i|) (5.3)

where Bx and By are the components of �ux density computed on the sam-
pling points.
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Figure 5.3: Detail of the geometry of the TEAM25 problem with highlighted the

design variables.

The search space is de�ned with a box domain of the design variables:

5 ≤ L1 ≤ 9.4
12.6 ≤ L2 ≤ 18
14 ≤ L3 ≤ 45
4 ≤ L4 ≤ 19

(5.4)

The optimization variables, indicated as Xi, i = 1...4, correspond to the
design variables normalized in the range [0, 1].

5.2 Optimization with FEMM4.2

The �rst set of tests have been performed with the free FEM simulator
FEMM4.2: this software is much faster than Comsol: in fact, it requires
�fteen minutes to perform 2,500 objective function calls, instead of COSMOL
that requires two hours.

The optimization scheme is depicted in Figure 5.4: as mentioned, the
problem is characterized by 4 optimization variables; 2,500 objective function
calls have been used as basic termination criterion.

The only constraint of the problem is the box domain: the wall boundary
condition has been used. As seen before, the design variables are the physi-
cals dimensions of the object: each of them corresponds to an optimization
variable.
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Figure 5.4: Schematization of the optimization system used with FEMM4.2 soft-

ware.

The FEMM4.2 software is used for calculating the cost value in the op-
timization loop, while Comsol has been used at the end for assessing the
obtained solution.

The problem is single objective and the cost value is the mean absolute
error between the x- and y- component of the B �eld and their reference
values.

The �rst test performed is the sensitivity analysis on the population size
of SNO. In fact, as it has been shown in the previous chapter, the population
size of an algorithm is a key parameter for having a good convergence.

Secondly, the size of the search space is inspected: �rstly, some trials have
been done for identifying the best action for improving the convergence of
the algorithm, then an adaptive approach has been used.

Thirdly, several EAs have been compared on this problem, and, �nally,
the solution obtained by SNO is analysed with Comsol.

5.2.1 Analysis of SNO population size

For what concerns the analysis of SNO, the population size has been selected
as parameter to be inspected due to its importance in the convergence of the
algorithm.

Six values of population size have been tested: for each test some indepen-
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Algorithm Mean Standard deviation Best result
10 148.91 39.36 62.8
25 112.7 56.05 29.98

50 82.64 52.47 30.38
100 101.1 42.41 51.39
125 111.01 41.13 62.92
250 137.51 21.66 97.21

Table 5.1: Results of SNO with di�erent population size: average value, standard

deviation and best results of 12 independent trials

(a) Average convergence. (b) Convergence of best solution.

Figure 5.5: Results of SNO with di�erent population size. Average and optimal

convergence of 12 independent trials.

dent trials have been performed with termination criterion 2,500 objective
function calls.

The results obtained are summarized in Table 5.1, where the average
results, the standard deviation, and the best results are reported.

Figure 5.5 shows the average convergence curves. From these curves, it
is possible to see that the convergence with 50 individuals is able to proceed
much better than the others. Then, there is a group of solutions (25, 100
and 125 individuals) for which the average results is similar, even if the
convergence with 25 individuals is much faster.

Figure 5.5(b) shows the convergence of the best trial. In this graph, it
is possible to see that the results with population size 25 and 50 are very
similar, even if the �rst one reaches the best results in less time.
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5.2.2 Analysis of the search space

Here, an analysis on the search space has been done starting from the results
obtained from the sensitivity analysis on the population.

Figure 5.6: Value of the optimization variables of all the solutions found by SNO

in the sensitivity analysis on the population. Each grey area corresponds to a

design variable (from left to right) and each vertical line is a di�erent population

size. The colour is proportional to the �tness (lighter the better).

Figure 5.6 shows the value of the optimization variables of all the solutions
found by SNO in the sensitivity analysis on the population. Inside each
design variable column (grey areas) the results are shifted accordingly to
the population size from the left (lower population size) to the right (higher
population size). In this way, each variable has 72 dots grouped in columns
of 12. The colour of the dots is proportional to the cost value, where the red
indicates the higher cost and the yellow the lower cost.

From this plot, is possible to analyse the selected range of the variables:
in fact, the optimal solutions are concentrated only in some part of the search
space.

In particular, the normalized variables X1 and X4, are concentrated in
the upper part of the space. For X4, it is possible to notice that the best
solutions are all in the upper part of the domain, while for X1 the good
solutions are more distributed (the two best solutions have X1 very close to
0.45).

For X2 and X3 the good solutions are very concentrated in a narrow part
of the search space. For the X3 variable, they are packed on the boundary of
the search space: this can mean that probably relaxing the lower boundary
on the design variable L3 the results can be improved.

A new allowed space has been tested on L3: in particular, the lower
boundary has been enlarged down to 12, 6mm, that is the minimal value
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(a) Convergence curves. (b) Optimization variables values.

Figure 5.7: Optimization with the enlarged range for L3 variable. In the conver-

gence curves, the blue thick line is the average value, while the dashed line is the

previous best result. In the design variable plot, the black line is the previous limit

on L3 variable.

that can be accepted due to the physical conformation of the system.

The results of this optimization are shown in Figure 5.7. In the �gure the
convergence of 12 independent trials and the �nal values of the optimization
variables are shown. In the convergence curves, the black dashed line is the
level of the minimal value obtained with the standard range.

Analysing the convergence curves, only one trial has been able to pass
the optimal value obtained before, and other three solutions are very close
to that limit.

It is possible to see that there are three very di�erent levels of �nal solu-
tions, that probably correspond to local minima of the cost function.

Figure 5.7 shows also the value of the design variables of the 12 optimal
solutions found by this new optimization run. As done before, the colour is
proportional to the cost value, where yellow means lower cost. The black line
on the X3 variable represents the old limit of the search space.

Only one of the independent trials has been able to �nd an optimal solu-
tion that overcome the previous limit on L3, but that solution is the one with
the best cost value (the solution that improves the previous best result).

A new test has been then conduced for analysing the impact on the op-
timization convergence of the search space: in fact, for all the variables the
allowed range has been reduced eliminating the parts that in the �rst tests
have not produced good solutions. In particular, the considered ranges are
now:
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6.76 ≤ L1 ≤ 9.4
12.6 ≤ L2 ≤ 16
12.7 ≤ L3 ≤ 20
10 ≤ L4 ≤ 19

(5.5)

These new ranges of the optimization variables (X3 is represented with the
new lower boundary tested in the previous run) correspond to the following:

0.4 ≤ X1 ≤ 1
0 ≤ X2 ≤ 0.61
0 ≤ X3 ≤ 0.3
0.4 ≤ X4 ≤ 1

(5.6)

12 independent trials have been done with these new optimization variable
ranges. The convergence curves and the value of the 12 optimal solutions
found are shown in Figure 5.8.

(a) Convergence curves. (b) Optimization variables values.

Figure 5.8: Convergence curves and optimization variables with the new smaller

ranges for the design variables.

In the convergence curves, the black dashed line represents the best so-
lutions found with the �rst optimization run. In this case, the optimization
convergence is much more stable, showing that the reduction in the design
variables range is able to eliminate the local minima that a�ects badly the
�rst optimization.

In this case, most of the solutions are able to perform better than the
best solution found before.

In the design variable plot (Figure 5.8(b)) the new ranges are shown with
the grey rectangles. The �nal values of the optimization variables X2 and X3
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are much more concentrated with respect to the previous runs. The black
line in the X3 range represent the original limit on this variable.

In this optimization, most of the solutions are outside the �rst limit on
the X3 optimization variable (black line), but they are not bounded by the
new lower level, meaning that probably the minimum of the unconstrained
function is now in the search domain. In particular, all the best solutions are
outside this limit.

A new optimization test has been performed for understanding the dif-
ferent importance of the reduction of the ranges with respect to lowering the
limit on L3: an optimization with a reduced range on the design variable
considering the �rst lower limit of L3.

The results are shown in Figure 5.9 where both the convergence curves
and the �nal values of the optimization variables are shown.

(a) Convergence curves. (b) Optimization variables values.

Figure 5.9: Convergence curves and optimization variables with the new smaller

ranges for the design variables.

In Figure 5.9(a) a zoom of the lower part of the convergence curves is
shown: here, it is possible to see that several solutions are able to overcome
the best result of the base case optimization.

Summarizing the outcome of this analysis:

• Decreasing the lower limit on L3 gives to the optimizer the possibility
to improve the best solution found in the standard test. However, only
one of the trials has been able to improve the base case result;

• Reducing the variability range on the optimization variables with the
new lower limit on L3 is the best condition: in fact, in this case also
the average convergence is below the result of the base case;
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Case Search domain L3 Lower limit Average Best Improvements
1 Original Original 112.7 29.98 0
2 Original New 103.30 21.52 8.3%
3 Reduced New 23.22 15.47 75%
4 Reduced Original 42.09 29.93 50%

Table 5.2: Comparison between the test performed on the variable ranges: average

and best value over 12 independent trials and percentage of trials better than base

case (case 1).

• Reducing the variability with the initial lower value of L3 improves the
algorithm capability to �nd good solutions: in fact, in this case 7 out
of 12 solutions outperform the base case.

From this analysis, the best action for improving the optimization capabil-
ities, for this problem, results in reducing the range focusing the search in
good area of the search domain.

Table 5.2 shows a numerical comparison between the analysed case: the
four cases di�er for the search domain (limitation of the search domain with
respect to the basic case), and for the lower limit on L3 (original or lowered).

The comparison is performed analysing the average and the best result
over 12 independent trials, and the percentage of trials that are able to
outperform the best results of the base case (case 1).

Analysing the obtained result is possible to see that the best solution is
mainly in�uenced by the lower limit on L3: in fact, the best solution of case
1 and case 4 have approximately the same value. On the other hand, the
other two cases are able to �nd a much better solution.

The reduction of the search domain in�uences the standard deviation of
the solutions: this can be seen by the di�erence between the best and the
average cost, that in the cases 3 and 4 is much lower than for the other two
con�gurations.

This means that the cost function has several important local minima and
the reduction of the search domain excludes some of them from the search
space.

According to the results obtained in these tests, a new optimization strat-
egy has been tested with an adaptive modi�cation of the optimization vari-
ables.
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5.2.3 Adaptive range optimization

In these optimizations, a multi-step approach has been applied for exploiting
the results obtained before: in particular, the progressive elimination of the
local minima can be used for reducing the total optimization time keeping
very good results.

The procedure adopted in this Section exploits the multiple independent
trials: in fact, the total number of iterations is divided into groups and at
the end of each group of iterations the information found by all the trials is
exploited for reducing the search domain of the following trial.

Figure 5.10: Schematization of the adaptive range procedure: the search domain

is modi�ed iteratively exploiting the output of the independent trials.

Figure 5.10 shows the schematization of the adaptive range optimization
procedure: the �rst set of independent trials is performed on the original
search domain. Then the optimal solutions are analysed and from this infor-
mation the new search domain is computed.

The computation of the search domain is done in the following way: the
lower bound is obtained subtracting the standard deviation of the obtained
solutions from the best solution of the trials. Similarly, the upper bound is
the sum of the standard deviation and the best solution of the trials.

In the Team 25 Problem optimization, the original search domain is the
one with lowered bound of L3 variable.

This procedure is aimed to achieve two results: the �rst one is a reduc-
tion of the optimization time, the second one is a reduction of the standard
deviation of the solution obtained. This last is important for giving to the
designer the possibility to selecting from a set of solution with a similar cost
value.

Moreover, the procedure here introduced can be further used for analysing
in detail the most important local minima of the function: for this applica-
tion, not only the best solution of the trials should be used for creating the
new search domain but all the solution with di�erent location in the search
domain.
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It is interesting to notice that, with this procedure, the trials are not
completely independent: in fact, from a combination of all the solutions the
new search domain is computed.

The �rst test on this procedure is done using 2,500 objective function
calls, i.e. the same number of iterations used in all the previous run. The
adaptive range optimization objective function calls are divided into two
blocks: the �rst one with 1,500 calls and the second one with 1,000. Figure
5.11 shows the results of this optimization, both in terms of convergence
curves and search domain.

Figure 5.11(a) shows the convergence curves of the 12 trials. Two possi-
bilities are compared: in blue there are the results of a standard optimization
while in green the results of the adaptive range are depicted. The thick lines
are the average convergence, while the thin ones represent the single trials.

(a) Average convergence. (b) Convergence of best solution.

Figure 5.11: Comparison of convergence curves.

In the green lines there are some discontinuities that represent the restart
of the optimization at 1,500 objective function calls.

Figure 5.11(b) shows the search domain of the two runs of the adaptive
range optimization: the light grey is the original domain, while the darker
one the domain of the second run. The dots are the �nal solutions, and the
colour is proportional to the cost value (the lighter the better). The black
line on the L3 variable is the original lower bound of the search domain.

Analysing these results, it is possible to see that the adaptive range opti-
mization improves drastically the average convergence, while the best solu-
tion is approximately the same.

The search domain in the second optimization run is very small, especially
for the X3 optimization variable: this means that the solutions of the �rst
optimization run have value of X3 very similar to the others.
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A second test is performed reducing the total number of objective function
calls: 1,500 calls have been done, divided in a group of 1000 and another one
of 500.

(a) Average convergence. (b) Convergence of best solution.

Figure 5.12: Comparison of convergence curves.

The results are shown in Figure 5.12. In this optimization run, the im-
provements of the adaptive range regard not only the average result but also
the best one. Nonetheless, the capabilities of this technique are not com-
pletely exploited.

(a) Average convergence. (b) Convergence of best solution.

Figure 5.13: Comparison of convergence curves.

For trying to exploit at most the capabilities of the proposed technique,
another run has been performed with 1000 total independent trials divided
in a run of 750 and a second one of 250. The results of this optimization
are shown in Figure 5.13, where it is possible to see that the results are not
much better than the standard optimization.
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(a) Average convergence. (b) Convergence of best solution.

Figure 5.14: Comparison of convergence curves.

(a) Average convergence. (b) Convergence of best solution.

Figure 5.15: Comparison of convergence curves.

Test
Objective
function calls

Average results Best results
New Reference New Reference

1 1500 + 1000 21.32 105.12 16.36 16.37
2 1000 + 500 28.19 130.15 18.98 39.09
3 750 + 250 71.07 139.62 43.25 40.20

4 250 + 750 28.54 128.95 20.93 33.08
5 100 + 400 + 500 17.88 126.01 16.25 25.62

Table 5.3: Numerical comparison among the results obtained in the �ve di�erent

con�gurations for adaptive search domain.
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For this reason, another trial with 1000 calls have been done dividing the
calls in a run of 250 and then another one with 750.

In this case, shown in Figure 5.14, the results obtained are much better
because EAs are very fast to identify interesting area in the search domain.
Thus, the �rst run is able, at least for few trials, to �nd good searching
areas. Then, the second run exploits this information for �nding a very
strong optimal solution.

For further exploiting this feature of EAs, a trial with three adaptation
of the domain is performed. In this case, 1000 objective function calls have
been divided in a �rst run of 100 calls, the second one with 400 and the third
with 500.

Figure 5.15 shows the results in this case. It is possible to see that the
�rst reduction of the domain is much lower with respect to the other cases,
thus the exploration is not avoided too much.

All the results obtained in the previous run are summarized in Table 5.3,
where it is possible to appreciate the signi�cant improvement of the adaptive
search space, especially for the average result.

5.2.4 Comparison between EAs

The optimization base case has been used for a comparison among EAs.
For this comparison, 12 independent trials have been done as good trade-o�
between computational time and statistical reliability. The results of the
comparison are shown in Figure 5.4, where the mean value, the standard
deviation and the best result are reported for all the algorithms.

Algorithm Mean Standard deviation Best result
PSO 125.86 73.77 33.79
GA 194.09 41.8 117.18
SGA 190.54 41.82 130.18
DE 49.59 26.32 30.27

nBBO 128.81 53.37 39.09
mBBO 129.34 44.77 63.06
SNO 108.93 53.21 29.98

Table 5.4: Comparison between SNO and other optimization algorithms.

From the data of the table, it is possible to see that the DE achieves the
best mean value signi�cantly better than the other algorithms - and the best
standard deviation. For what concerns the optimal solution, the results of
PSO, DE, nBBO and SNO are close one to the other, and SNO is the best
one.
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The same results can be observed from the convergence curves of Fig-
ure 5.16.

(a) Average convergence. (b) Convergence of best solution.

Figure 5.16: Comparison of convergence curves.

Analysing the convergence curves of the best solution, it is possible to see
that both PSO and SNO are able to reach the best result very soon, while
DE is slightly slower. However, all these three algorithms are able to reach
the convergence before the half of the available time.

Figure 5.17 shows all the convergence of the independent trials of DE and
SNO. The convergence of DE is characterized by a set of smaller steps: in
this way, all the solutions have a very similar behaviour. On the other hand,
SNO is characterized by some solutions that makes a bigger step toward the
optimal solution.

(a) DE convergence. (b) SNO convergence.

Figure 5.17: Comparison among the convergence curves of all the trials of DE

and SNO. The thicker line is the average convergence.
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While here DE seems much more performing with respect to SNO, in
the following it will be seen that, with a more accurate FEM simulator, the
results of SNO improve.

5.2.5 Analysis of the solution found by

The best solution obtained by SNO in the optimization with FEMM4.2 has
been inspected. This solution is the optimal one found in the set of trials
used in the comparison between EAs.

The geometry obtained by the optimizer is shown in Figure 5.18, and in
Table 5.5 shows the optimal values of the optimization and design variables.

Figure 5.18: Geometry of the optimal solution found by SNO in the optimization

with FEMM4.2.

Optimization variable Value Design variable Value
X1 0.4542 L1 6.9984
X2 0.2267 L2 13.8242
X3 0.0000 L3 14.0000
X4 0.6759 L4 14.1389

Table 5.5: Optimal values obtained by SNO: design and optimization variables.

The values of X3 in Table 5.5 shows the behaviour analysed before: in
fact the optimal solution is on the boundary of the optimization domain.
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This solution has been analysed both with FEMM4.2 and with Comsol
for understanding the di�erences between the two simulators. The results
are shown in Figure 5.19 where the values of the B �eld have been calculated
with Comsol (blue line) and with FEMM4.2 (red line).

It is possible to see that the y- component of the induction �eld is very
accurate, while in the x- component the FEMM4.2 solution has a quite large
error when evaluated with the other commercial simulator.

This di�erence can be appreciated also analysing the corresponding cost
value: evaluating this solution with FEMM4.2 the cost value is 29.98, while
with COSMOL it is 80.94.

Figure 5.19: Values of the �eld of the optimal geometry calculated with Comsol

(blue line) and FEMM4.2 (red line).

5.3 Optimization with Comsol Multiphysics

The same optimization problem has been them optimized also using Comsol
Multiphysics. This is a FEM software that is able to solve many simulation
problems. The AC/DC module has been exploited in modelling the TEAM25
geometry and its physical proprieties.

As done for FEM2.4, only one fourth of the geometry is represented and
the boundary conditions have been implemented for obtaining the correct
results (Dirichlet and Neumann boundary conditions).
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All the materials proprieties have been set as done for FEMM4.2 simula-
tor, in particular the non-linear relation B-H of the iron and the magnetic
permeability of the magnetic powder in the cavity have been taken into ac-
count. The �eld is produced inserting in the simulator a current in the coils.

For what concern the mesh, free triangular elements have been used in the
simulation. The solver is a stationary one, and the results on the integration
line are obtained with a post-processing of the results. No additional points
are included in the initial geometry because they induce an high distortion
of the mesh.

The geometry is created with the LiveLink module of Comsol that makes
possible the interaction directly with Matlab, and the same module is used
for gathering the �eld values after the solution of the problem.

The time required by the solution of the problem with Comsol is much
higher than the one needed by FEMM4.2: in fact, with this simulator two
hours are required to perform a trial with 2,500 objective function calls.

5.3.1 Optimization with SNO

The �rst optimization of TEAM25 with Comsol have been performed with
SNO. 2500 objective function calls have been used as the termination crite-
rion and the population size of the algorithm has been set to 25 individuals.

The convergence curves of 10 independent trials are shown in Figure 5.20,
where the thin lines represent each single trial and the blue thick one the
average convergence.

The convergence curves of SNO are one very close to the other, showing
that the function is quite regular. The largest convergence happens in the
�rst 1000 objective function calls, while in the remaining optimization time
is devoted to a �ne tuning of the solution.

Comparing this convergence curves with the ones of FEMM4.2 (Figure
5.17(b)) it is possible to see that with Comsol solver the problems seems much
more regular: in fact, the convergence is more uniform and all the solutions
are one close to the other, while the other convergences are characterized by
three attraction points.

On Figure 5.21, it is possible to see that the y- component of the �eld is
able to follow in a very good way the reference value, excepted for a slight
error for high values of θ angle: this variation is highly in�uenced by the
edge in the geometry that induces a tiny deformation in the �eld. The x-
component of the �eld is less accurate, even if the di�erence is very low.

Finally, Figure 5.22 shows the induction �eld in the geometry: in this
plot, it is clear the e�ect of the edge in the geometry.
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Figure 5.20: Convergence curves of 10 independent trials of Social Network Op-

timization. The thick line is the average convergence.

Figure 5.23 shows the distribution of the design variables of the 10 �nal
solutions of SNO. As done in the previous plots, the colour is proportional
to the cost where lighter points means better solutions.

The grey area is the allowed search space: in this optimization, the origi-
nal limit on the L3 variable has been taken into consideration, thus the search
space is considered as slightly reduced with respect to the maximum allowed.

This can be seen comparing these results with the ones of Figure 5.7, in
which it is possible to see that, at least for variable 1 and 4, there are two
identi�ed local minima.

Also in this simulations, the X3 variable is characterized by good results
on the edge of the search space, thus a new simulation with the enlarged
search domain has been performed.

Figure 5.24 shows the convergence curves of the new optimization with
the enlarged search domain. Each independent trials is drawn with the grey
line, the average convergence of these is the blue line, while the red line is the
average convergence of the standard optimization (it is the same of Figure
5.20).

From this Figure, it is possible to see that, in this case, the convergence
is drastically worst, mainly in the mid of the optimization time. The �nal
average result is worst and the standard deviation is much higher.

Figure 5.25 shows the design variables of the independent trials, shown
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Figure 5.21: Results of the �eld in x- and y- direction for the best solution

achieved by SNO with Comsol. In green the reference value, in blue the actual

one.

Figure 5.22: Module of the B �eld in the system computed by Comsol.
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Figure 5.23: Final values of the design variables in the 10 independent trials with

Comsol: the colour is proportional to the cost, lighter the better.

with the same method used before.
It is interesting to notice that the optimizer does not overcome the pre-

vious limit on the X3 variable (the black horizontal line): this means that
the optimal solutions found are all within the previous search domain. This
explains also the results shown in the convergence curves: the search domain
is larger, thus the convergence is harder, while no better solutions are in the
new search space.

5.3.2 Comparison between EAs

After the analysis on the results obtained by SNO, a new comparison between
EAs has been done using Comsol. For all of them, 10 independent trials have
been performed using as termination criterion 2,500 objective function calls.

Table 5.6 shows the results of all the optimizers: in particular, the mean
value, the standard deviation and the best results are computed on 10 inde-
pendent trials.

The DE achieve the best mean value with a very low standard deviation.
SNO is only slightly worst than DE on the average value, but its optimal
result is the best one among all the optimization algorithms.

It is interesting to see that on the mean value only SNO and DE ob-
tain comparable results; on the other hand, analysing the best trial, four
algorithms (SNO, DE, PSO, and nBBO) achieve comparable results.
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Figure 5.24: Convergence curves of 10 independent trials with the new range for

L3 (grey lines), average convergence (blue line) and average convergence for the

standard optimization (red line).

Figure 5.25: Final values of the design variables in the 10 independent trials with

the new L3 range: the colour is proportional to the cost, lighter the better.
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Algorithm Mean Standard deviation Best result
PSO 52.03 10.37 26.57
GA 172.93 28.7 130.11
SGA 153.23 42.78 75.76
DE 28 6.06 22.57

nBBO 76.48 49.56 22.9
mBBO 96.74 43.62 49.06
SNO 32.93 10.35 21.57

Table 5.6: Comparison between SNO and other optimization algorithms: mean,

standard deviation and best results of 10 independent trials.

(a) Average convergence. (b) Convergence of best solution.

Figure 5.26: Comparison of convergence curves.

Figure 5.26 shows the average convergence curves and the convergence of
the best trial for each algorithm. Analysing the average convergence curves,
it is possible to see that SNO and DE have a similar behaviour: for a set of
iterations SNO is slightly better than DE, and then the condition is inverted
at the end of the optimization, thus con�rming the issue could be anticipated
by the well-known No Free Lunch theorem.

The convergence of the best trial is slightly di�erent: PSO shows the
best convergence at the beginning, while SNO is the slowest in the �rst 500
objective function calls.

Figure 5.27 shows the convergence curves of the �rst 4 top algorithms:
DE, SNO, nBBO, and PSO.

Comparing these convergence curves, SNO and DE show the most uni-
form behaviour: in fact, PSO is able to achieve a very good solution only
with one trial while all the others are concentrated on another local minimum.
In the PSO convergence it is possible to notice a local minimum with cost
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(a) DE. (b) PSO.

(c) nBBO. (d) SNO.

Figure 5.27: Comparison among the convergence curves of all the trials of DE,

PSO, nBBO, and SNO. The thicker line is the average convergence.

around 200 in which two solutions are stacked for most of the convergence
time.

The behaviour of nBBO is characterized by a very high standard devia-
tion: the best solution is obtained very soon in the optimization time, while
for most of the others the convergence is very slow. In this case there is one
solution that is stacked in the local minimum identi�ed by the PSO curves.

Figure 5.28 shows the distribution of the design variables of the �nal
solutions of all the algorithms. Each grey area is a design variable, while
the vertical lines are the optimization algorithms. As before, the colour is
proportional to the cost value (lighter the better).

Analysing this Figure, the correlation between the variables is clear: in
fact, the cost value of a solution is almost driven by the third design variable.
Only in a second step, the others are considered. For understanding this, it
is possible to compare the values of SNO and SGA: they have solutions with
comparable values of X1, X2 and X4, but the cost is signi�cantly higher due
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Figure 5.28: Comparison of the �nal values of the optimization variables for all

the algorithms. The design variables are identi�ed by the grey areas. Each vertical

column represent an optimization algorithm; the colour is proportional to the cost

(the lighter the better).

to the di�erence on the third design variable. On the other hand, PSO and
SNO di�ers mainly for the other variables and they have similar values on
the third design variable. nBBO is the only algorithm that reaches exactly
the lower boundary on X3.
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5.3.3 Application of surrogate models

The last test done on this benchmark problem is the application of surrogate
models. In particular the Ordinary Kriging [85] has been used due to its
simplicity and its capability to return a con�dence value.

The method used for the integration between the optimizer and the sur-
rogate models is the one shown in Figure 5.29.

Figure 5.29: Comparison between the convergence curves with di�erent sampling

percentage - �rst update algorithm. The thick lines are the average convergences,

while the thin ones are the best trial for each case.

Here, two criteria for updating the sampling points have been tested: in
fact, this is the key feature for tuning the trade-o� between optimization
time and result accuracy. The �rst criterion is selecting a speci�c percentage
of the solutions, sorted accordingly to the cost value. In the second criterion,
the sort is performed using the value minus the standard deviation.

Figure 5.30 shows the convergence curves with the �rst selection crite-
rion: the thick lines are the average convergence, while the thin ones the
best trial out of 12. The results show that, even if the average result is dras-
tically higher, the best trial is comparable with the one with 100% of real
objective function calls. This means that this method reduced too much the
exploration capabilities of the algorithm.

In order to improve the exploration, also the standard deviation has been
taken into account in the sampling process for updating the Ordinary Krig-
ing model: in particular, the best solutions has been considered using, as
criterion:

sort(y − s) (5.7)
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Figure 5.30: Comparison between the convergence curves with di�erent sampling

percentage - �rst update algorithm. The thick lines are the average convergences,

while the thin ones are the best trial for each case.

The convergence curves, in this case, are shown in Figure 5.31; also in
this �gure, both the average result (thick lines) and the best trial (thin lines)
are shown.

The average convergence is drastically improved with respect to the pre-
vious case, in particular for 32% and 40% of sampling.

The best trial is slightly less performing with respect to the standard op-
timization, but the time improvement is considerable: with 40% of sampling
the required time is the 56% of the original time, while with 32% of sampling
the required time is 44%.

The di�erence between the sampling percentage and the time saving cor-
responds to the time required for training the surrogate model. This overhead
time is less impactive when the computational time for sampling is higher.

Figure 5.32 shows the x- and y- components of the B �eld on the sampling
points, and their comparison with the reference.

It is possible to compare this Figure with Figure 5.21, that shows the �eld
for the solution with 100% of sampling, and with Figure 5.19, that shows the
performance of the solution obtained with FEMM4.2.

It is clear that the two solutions obtained with Comsol are comparable
and their error is much lower with respect to the solution with FEMM4.2.
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Figure 5.31: Comparison between the convergence curves with di�erent sampling

percentage - second update algorithm. The thick lines are the average convergences,

while the thin ones are the best trial for each case.

Figure 5.32: Comparison between actual �eld components and reference for the

solution obtained with 40% of sampling.
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5.4 Results discussion

In this Chapter the optimization of a low frequency electromagnetic appli-
cation has been investigated by means of two di�erent FEM software: the
simpler and faster FEMM4.2 and the more accurate Comsol.

The lower time required by the �rst software allows several tests on the
optimization process: the optimal population size of Social Network Opti-
mization is analysed and a comparison between di�erent algorithms have
been performed.

Moreover, several tests have been done on the search space because the
optimal solution is on the boundary of the search space. Here, a new approach
with an adaptive range has been proposed and tested successfully.

The optimal solution obtained by FEMM4.2 is very good, but it shows a
non satisfactory behaviour when it is evaluated by means of Comsol, so this
last software has been used directly in the optimization.

Finally, another approach has been investigated for reducing the compu-
tational time, i.e. the use of the Ordinary Kriging surrogate model. The
combination of Comsol and the surrogate model shows a good trade-o� be-
tween results accuracy and the computational load requested, thus con�rming
the validity of the proposed approach.

Part of the analysis here shown has been developed in the optimization
process of a Tubular Permanent Magnet Linear Generator, that has been
published in [71].





Chapter 6

Conclusions

In this thesis, the design of a novel evolutionary approach for the optimiza-
tion of complex electromagnetic systems has been studied in most of its
components.

The whole optimization system architecture has been based on two pil-
lars: the optimization algorithms and the optimization problem. These two
interact by means of two connections: the �rst one, from the optimizer to
the problem, is composed by the box boundary condition management and
the design variables mapping, while the second one is composed by the cost
function.

All these parts of the optimization system work together and highly a�ect
the �nal result of the process.

For what concerns the optimization algorithm, the �rst choice is the type
of algorithm that should be used: this selection depends on the problem itself
(linear problems, multimodal problems, ...), on the type of optimization vari-
ables that are most useful (real valued or binary values), and on the number
of objective functions (single-objective, multi-objective, many-objective).

For multimodal problems, a good choice are Evolutionary Optimization
Algorithms (EAs) that are able to provide a global search in the entire search
domain: they are able to easily face non-linear problems and they are also
widely applied for multi-objective application.

For a proper optimization process, the algorithm should be selected and
analysed: in fact, in many cases the algorithm operators can be adapted to
the speci�c peculiarities of the problem; in all the cases, these algorithms
behaviour depends on some user-de�ned parameters. The most common of
them is the population size.

The selection of the algorithm parameters should take into account the
trade-o� between two important factors: the capability of the algorithm to
explore the search domain and the capability to exploit available information
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to �nd the optimal solution.
In this thesis, Social Network Optimization has been used as reference

algorithm. This choice is motivated by two important factors: the develop-
ment of the algorithm has been performed in this research work, thus the
algorithm operators and the parameters e�ects are well known. Secondly,
this algorithm shows a very good behaviour in many applications in which it
has been tested.

The algorithm working principles have been deeply investigated and two
di�erent approaches have been used for understanding the parameters e�ect
on the algorithm performance: �rstly, some analytical models have been
used to investigate the population behaviour as a function of the parameters,
and then a deep parametric analysis has conducted done with a numerical
approach.

The reported results show that the numerical behaviour of the algorithm
corresponds within some limits to the analytical models; an important feature
has been discovered with this numerical analysis: the two most in�uencing
parameters have their optimal values in the same area for di�erent objective
functions. This is a very important peculiarity because it increases the range
of this algorithm applications.

Social Network Optimization has been then compared with other opti-
mization algorithms on a set of 15 mathematical benchmarks that are com-
monly used for assessing evolutionary algorithms. Some of the algorithms
used in the comparison are EAs while other are point-based methods. The
results of these tests show a very good stability of SNO performance on
di�erent problems.

Finally, two di�erent electromagnetic problems have been used for test-
ing the entire optimization scheme design: the design of a beam-scanning
re�ectarray and the design of an electromagnetic die mold.

In both these applications SNO has been used as the main algorithm for
testing di�erent designs of the optimization scheme.

For what concerns the re�ectarray problem, the optimization scheme has
been analysed in the following aspects:

• The de�nition of the cost function has been deeply investigated because
the antenna has several performance parameters that are included in
a single cost value. The scalarization parameters should be properly
chosen: they drastically a�ect the �nal optimal solution.

• The function that guarantees the box boundary conditions has been
investigated: the traditional wall condition shows the best performance,
while the closed search space results in a lower convergence rate because
it creates useless oscillations in the population.
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• The aperture �eld method used for calculating the radiation pattern has
been assessed with respect to the same method but with a more com-
plex patch characterization and with respect to a commercial �ll-wave
simulator. The results show that the simple aperture �eld method, in
which the patch is de�ned by only its length, is enough accurate for
performing the optimization process.

• Di�erent SNO parameters have been analysed; in particular, the e�ect
of the population size has been considered. The results are that a large
population size guarantees a more constant convergence rate, but it
requires a huge computational e�ort. On the other hand, a small pop-
ulation size guarantees a very fast convergence at the beginning that
may lead to a premature convergence on local minima. The character-
ization of these two behaviours is important because it can be used as
heuristic technique for de�ning the optimal population size.

After this analysis of the optimization scheme, the results of SNO have
been analysed and compared with the ones of other EAs. From this compari-
son conduced over 24 independent trials, SNO resulted to have a performance
comparable with DE, but with lower mean value and with a much smaller
standard deviation, thus con�rming it as a reliable optimization approach.

The second problem analysed is a di�erent electromagnetic design prob-
lem and it has been �rstly faced using a free FEM simulator, performing
several tests on the optimization scheme:

• The optimal population size of SNO has been analysed: the results
shows the same behaviour seen in the �rst problem, but with smaller
populations.

• The solutions found by SNO in the sensitivity analysis on the popu-
lation size have been analysed for understanding the search space of
the problem. In particular, the optimal solutions are very often on
the boundary of one of the design variables. For this reason, a new
optimization test has been run with an enlarged search space: the op-
timal solutions improves, but the problem appears to be more complex
because an higher number of solutions are in a local minima.

• With the aim of improving the optimization performance, a di�erent
approach has been used for the search domain de�nition: the domain
is modi�ed iteratively at the end of smaller optimization runs. In this
way the exploitation capabilities of the algorithm are increased and
the performance are improved both in terms of optimal and average
solutions found.
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Additionally, a commercial FEM software has been used for the same
optimization problem: the well-known Comsol Multiphysics that is very ac-
curate, but the computational time required is 8 times higher. With this
software a comparison among the EAs has been performed, showing again
the very good results of SNO.

Finally, the optimal solution obtained by SNO with FEMM4.2 have been
analysed with Comsol: it results that, even if the cost value computed with
FEMM is very low, the same solution has a very high error when analysed
with the more accurate FEM simulator.

For solving this problem, and for �nding a trade-o� among the required
computational time and the accuracy, a surrogate model has been introduced
in the optimization scheme.

Here, the surrogate model is the Ordinary Kriging: it has been selected
because its formulation is easy and it can be trained with an analytical ap-
proach. Moreover, the output of this model is the expected value and the
con�dence level: this last value can be very useful for selecting iteratively
during the optimization procedure the new sampling point from the algo-
rithm population in order to guarantee the accuracy of the model.

By using the surrogate models approach it has been possible to achieve
comparable results with respect to the standard optimization with Comsol
in about 30/40% of the required time. The results obtained in this simula-
tion are very accurate because at each iteration the best individual of the
population is evaluated with Comsol.

The results obtained in these two electromagnetic applications show that,
for achieving highly performing results with EAs, a proper design of the op-
timization system should be found. This is highly a�ected by the speci�c
problem, but there are several common features to all of them and the pro-
posed optimization apporach was found to be suitable to properly address
these aspects.



Appendix A

Benchmark functions

In this appendix the �tness functions used to test the algorithms will be
explained.

These �tness functions are often used in literature [76]. For all of them, it
is possible to have the same formulation with an arbitrary number of design
variables. In the test performed in the thesis, 20 design variables have been
used, so they are function:

f : R20 → R (A.1)

The pictures of the 2-D version of the functions have been elaborated
with a Intel-i7 computer.

Ackley function

The Ackley function (Figure A.1) is a multimodal function characterized by
a concave trend with a medium-frequency oscillation on it. Its mathematical
formulation is:

f(x) = 20 + e1 − 20 · e−0.2
√∑

i (xi−x0)2/M − e
∑

i cos (2π(xi−x0)/M (A.2)

where M is the length of x and it represent the number of design variables.
x0 = −7 is the position of the function global minimum.

The Ackley search domain is:

− 15 ≤ xi ≤ 15 (A.3)
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Figure A.1: Ackley function

Griewank function

The Griewank function (Figure A.2) is a multimodal benchmark character-
ized by an high frequency oscillation around a parabolic trend.

It is mathematically de�ned as:

f(x) = 1 +
M∑
i=1

(xi − x0)2/4000−
M∏
i=1

cos
xi − x0√

i
(A.4)

where x0 = 150 and its domain is:

− 600 ≤ xi ≤ 600 (A.5)
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(a) Entrie search domain (b) Zoom around the global optimum

Figure A.2: Griewank function

Penalty 1 function

This function, shown in Figure A.3, emulates the behaviour of a penalty
de�nition of a constrained function: the function value drastically grows out
of a speci�c region that emulates the feasible part of the search space. The
function is multimodal in all its domain.

This function is characterized by a very high di�erences in its values in
the domain, challenging some selection operators.

The function can be expressed as the sum of two terms, where g(x) it the
penalization term:

f(x) = g(x) + h(x) (A.6)

g(x) =
M∑
i=1


100(xi − x0 − 10)4 (xi − x0) > 10
100(−xi − x0 − 10)4 (xi − x0) < −10
0 −10 < (xi − x0) < 10

(A.7)

h(x) = 10 sin2
[
π

(
1 +

x1 − x0 + 1

4

)]
+

(
1 +

xM − x0 + 1

4
− 1

)2

· π
30

+

+
M−1∑
i=1

[
1 +

xi − x0 + 1

4
− 1

]2
·
(
1 + 10 sin2

[
π

(
1 +

xi+1 − x0 + 1

4

)])
π

30

where x0 = 7 its the global function minimum.
Its search domain is:

− 50 ≤ xi ≤ 50 (A.8)
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(a) Entrie search domain (b) Zoom around the global optimum

Figure A.3: Penalty 1 function

Penalty 2 function

This second penalty function (Figure A.4) have de�nition similar to Penalty
1, but the penalization term is much more relevant, the feasible region is
smaller, and the function non-linearities higher.

f(x) = g(x) + h(x) (A.9)

g(x) =
M∑
i=1


100(xi − x0 − 5)4 (xi − x0) > 5
100(−xi − x0 − 5)4 (xi − x0) < −5
0 (xi − x0) = 5

(A.10)

h(x) =
1

10
sin2 [3π (x1 − x0)] + (xM − x0 − 1)2 ·

(
1 + sin2 [2π (xM − x0)]

)
+

+
M−1∑
i=1

(xi − x0 − 1)2 ·
[
1 + sin2 [3π(xi − x0)]

]

where x0 = −10 is the global minimum. Its domain is:

− 50 ≤ xi ≤ 50 (A.11)
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(a) Entrie search domain (b) Zoom around the global optimum

Figure A.4: Penalty 2 function

Quartic function

The Quartic function (Figure A.5) is a single-modal function de�ned as:

f(x) =
M∑
i=1

i · (xi − x0)4 (A.12)

where x0 = 0.4 is the function minimum. The Quartic domain is:

− 1.28 ≤ xi ≤ 1.28 (A.13)

Figure A.5: Quartic function
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Rastrigin function

The Rastrigin function (Figure A.6) is a multimodal function with a low-
frequency oscillation. It de�ned as:

f(x) =
M∑
i=1

(xi − x0)2 − 10 cos [2π(xi − x0)] (A.14)

where x0 = −π is the global minimum. Its domain is:

− 5.12 ≤ xi ≤ 5.12 (A.15)

Figure A.6: Rastrigin function

Rosenbrock function

The Rosenbrock function (Figure A.7) is a single-modal function generally
adopted for testing derivative-based algorithms for its �at region. It is de�ned
as:

f(x) =
M−1∑
i=1

(x(i+ 1)− xi)2 + (xi − 1)2 (A.16)

Its domain is:
− 2.048 ≤ xi ≤ 2.048 (A.17)



167

Figure A.7: Rosenbrock function

Schwefel-226 function

The Schwefel-226 (Figure A.8) is a multimodal function with no general
trend. The gloabl minimum is close to the search domain boundary and
quite far from the other good local minima. It is de�ned as:

f(x) = 418.9829 ·M +
M∑
i=1

xi · sin
√
|xi| (A.18)

Its domain is:
− 512 ≤ xi ≤ 512 (A.19)

Figure A.8: Schwefel-226 function
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Schwefel-12 function

The Schwefel-12 (Figure A.9) is a single modal function de�ned as:

f(x) =
M∑
i=1

i∑
j=1

xj − x0 (A.20)

where x0 = 10 is the position of the global minimum. Its domain is:

− 65.536 ≤ xi ≤ 65.536 (A.21)

Figure A.9: Schwefel-12 function

Schwefel-222 function

The Schwefel-222 (Figure A.10) is de�ned as:

f(x) =
M∑
i=1

|xi −X0|+
M∏
i=1

|xi −X0| (A.22)

where and x0 = 1.
Its domain is:

− 10 ≤ xi ≤ 10 (A.23)
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Figure A.10: Schwefel-222 function

Schwefel-222 function

The Schwefel-221 (Figure A.11) is a uni-modal function de�ned as:

f(x) = max |xi − x0| (A.24)

where x0 = −20. Its domain is:

− 100 ≤ xi ≤ 100 (A.25)

Figure A.11: Schwefel-221 function
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SincN function

The SincN function (Figure A.12) is one of the two possible de�nition of the
cardinal sine. It is a multi modal function in which there is a very large �at
area and a quite narrow minimum.

Its formulation is:

f(x) = 1−
M∏
i=1

|sin [π · (xi − x0)]| (A.26)

where x0 = 3 is position of the global minimum.
Its search domain is:

0 ≤ xi ≤ 10 (A.27)

Figure A.12: SincN function

Sinc function

The Sinc function (Figure A.13) is the second de�nition of the candinal sine.
It is characterized by an axial symmetry and a set of important local minima.

Its mathematical formulation is:

f(x) = 1− sin |x− x0|
|x− x0|

(A.28)

where x0 = 5 and the search domain is:

− 20 ≤ xi ≤ 20 (A.29)
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Figure A.13: Sinc function

Sphere function

The Sphere function (Figure A.14) is a convex function de�ned as:

f(x) =
M∑
i=1

(xi − x0)2 (A.30)

where x0 = 1. Its domain is:

− 5.12 ≤ xi ≤ 5.12 (A.31)

Figure A.14: Sphere function
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Step function

The Step function (Figure A.15) is a discontinuous function in which the
derivative, when it is de�ned, it is always zero. Its formulation is:

f(x) =
M∑
i=1

(⌊
xi − x0 +

1

2

⌋)2

(A.32)

where x0 = −25. Its domain is:

− 100 ≤ xi ≤ 100 (A.33)

(a) Entrie search domain (b) Zoom around the global optimum

Figure A.15: Step function
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