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ABSTRACT (English version) 

 

 

This thesis studies the financial markets, in particular the most important 

models applied in finance and assumptions on which they rest, with a critical look 

at the characters who created them. The historical starting point are the orthodox 

financial models, those that have as conceptual basis Louis Bachelier and the 

random walk. We review the models belonging to this theoretical trend, those of 

Fama (1970), Markowitz (1950), Sharpe (1964), Black and Scholes (1973). The 

hypotheses underlying the standard theory are analyzed, in particular the Normal 

distribution and the hypothesis of price independence. Mandelbrot fractal geometry 

is introduced as a recent tool for describing markets and the most reference model 

is presented (Calvet, Fisher and Mandelbrot 1997a), which is based on the concepts 

of long-tails and long-term dependence in the financial movements. The aim is to 

understand the models functioning and the underlying assumptions, as well as to 

provide a picture of the state of economic literature in this field. The investigation 

methodology follows a practical approach, not lost in excessive formalisms but uses 

real examples with graphs and figures, referring the more technical parts to the 

appendices. Finally, a possible agenda for the future is presented. 

 

 

Keywords: Modern Financial Theory, Random Walk, Efficient Market Hypothesis, 

CAPM, Portfolio Theory, Options, Fractal Geometry, Long-Tails, Long-Term 

Dependence, Multifractal Model of Asset Returns.  
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ABSTRACT (versione italiana) 

 

 

Questa tesi studia i mercati finanziari, in particolare i più importanti modelli 

applicati nella finanza e le assunzioni su cui poggiano, con uno sguardo critico ai 

personaggi che hanno contribuito a crearli. Il punto di partenza storico sono i 

modelli finanziari ortodossi, quelli che hanno come capostipite concettuale Louis 

Bachelier e il random walk. Si passano in rassegna i modelli appartenenti a questo 

filone teorico, quelli di Fama (1970), Markowitz (1950), Sharpe (1964), Black e 

Scholes (1973). Si analizzano le ipotesi alla base della teoria standard, in particolare 

la distribuzione Normale e l’ipotesi di indipendenza dei prezzi. Viene introdotta la 

geometria frattale di Mandelbrot come strumento recente di descrizione dei mercati 

e ne viene presentato il modello di maggior riferimento (Calvet, Fisher e 

Mandelbrot 1997a), che si basa sui concetti di code lunghe e dipendenza a lungo 

termine nei movimenti finanziari. Lo scopo è capire il funzionamento dei modelli e 

le ipotesi alla loro base, oltre che fornire una fotografia dello stato della letteratura 

economica in questo ambito. La metodologia di indagine segue un approccio 

pratico, non si perde in eccessivi formalismi ma utilizza esempi reali con grafici e 

figure, rimandando le parti più tecniche alle appendici. Infine, viene presentata una 

possibile agenda per il futuro. 

 

 

Parole chiave: Teoria Finanziaria Moderna, Random Walk, Ipotesi del Mercato 

Efficiente, CAPM, Teoria del Portafoglio, Opzioni, Geometria Frattale, Code 

Lunghe, Dipendenza a Lungo Termine, Multifractal Model of Asset Returns.  
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INTRODUCTION 

 

 

The systematic study of the financial markets began with Bachelier’s doctoral 

thesis Theorié de la Speculation in 1900. Before that date, markets were mostly 

characterized by investors that based their decisions on intuition and experience. 

This work starts from Bachelier’s framework and traces the history of the more 

important financial models until the Multifractal Model of Asset Returns by 

Mandelbrot (Calvet, Fisher and Mandelbrot 1997a), analyzing in particular the 

underlying assumptions and commenting on them. Since the finance world is 

extremely practical, in this investigation a concrete approach is adopted, with many 

links to real facts. The more technical parts, also in order not to overload the 

reading, are included in the final appendices.  

Chapter 1 is a historical excursus of modern financial theory. It describes the 

most important standard models, each linked to their inventors. Louis Bachelier 

built the theoretical framework of the models in this chapter with the introduction 

of the random walk, the financial equivalent of Brownian motion, which assumes 

that prices are independent and follow a Gaussian distribution. Later, researchers 

started from this base to elaborate concepts such as the Efficient Market Hypothesis 

(Fama) and models such as the CAPM (Sharpe), the portfolio theory (Markowitz) 

and the formula to evaluate options (Black and Scholes). Everyone relies on and 

assumes true the idea of random walk. At the end of the chapter you can find a 

practical case of application of the Normal distribution to the values of a stock 

market index and a discussion of the results.  

Due to the recent global financial crisis, some criticisms have been made of the 

historical building of finance and in particular of the assumptions on which it rests. 

In Chapter 2 the most criticized hypotheses are analyzed, that is the use of the 

random walk as a theoretical framework and the assumptions of investors 

rationality and prices continuity. 

The most famous opponent of orthodox finance is Benoit Mandelbrot, the 

inventor of fractal geometry.  
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Chapter 3 is an introduction to the topic of fractals, explaining how they relate 

to financial markets and providing the theoretical mathematical tools needed to 

understand this recent type of geometry. There are many images of fractal shapes 

and fractal cartoons are introduced, a technique of graphic construction of fractal 

shapes very suitable for the financial world. Particular attention is given to the 

concept of fractal dimension, which is the most important part of this geometry.  

Chapter 4 presents the fractal reference model for the description of financial 

markets, the Multifractal Model of Asset Returns. This model is based on three 

concepts. The first, long-tails, represents a new way of seeing markets, through the 

power laws and the mathematics of Levy’s stable distributions. The second, long-

term dependence, is a new concept within the financial world, where price changes 

have always been considered independent. The third, the trading time, is a different 

way of thinking to the normal clock time and is the key to integrate the first two. 

Within the chapter fractal cartoons are again used to present ideas also from a 

graphical point of view, including the final model which is also described by a 

mathematical perspective. 
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CHAPTER 1. 

A HISTORICAL EXCURSUS OF MODERN 

FINANCIAL THEORY 
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1.1 Louis Bachelier 
 

The first attempt to create a model capable of describing the financial markets 

was Bachelier’s Random Walk, who was the first to introduce the concept of 

probability into the capitals market within his doctoral thesis Théorie de la 

spéculation (Bachelier 1900). 

The thesis of Bachelier, a PhD student of the University of Paris (whose 

professor was the well-known Henry Poincaré), was not considered at the very first 

start by his contemporaries, mainly because in France uncontrolled speculation did 

not enjoy a good reputation and also finance in general was a subject far away from 

the classic intellectual interests in vogue at the Sorbonne. It was 50 years later that 

some economists took up the concepts and, based on his ideas, built the modern 

financial theory. Paul Cootner, an economist at MIT even called Bachelier «so 

exceptional for his work that it can be said that the study of speculative prices had 

its moment of glory when it was conceived». The socioeconomic context in which 

Bachelier developed his own study was that of a lively trade of government bonds, 

due to the fact that in the period after the French Revolution, the new republican 

government had issued a billion francs of perpetual bonds1 to compensate for the 

nobility, and these instruments had been hugely successful in terms of trading, so 

much so that, by 1900, the total value of domestic and foreign bonds in circulation 

was 70 billion francs2 and that therefore a very liquid futures, premium contracts 

and other derivatives market had developed in parallel. Bachelier wanted to find 

formulas to determine the price of these instruments, but to do so it needed to know 

how the prices of the underlying instruments (bonds) varied. He started from the 

following insights, taken from the first two paragraphs of Bachelier’s thesis:  

 

The influences which determine the movements of the Stock Exchange are 

innumerable. Events past, present or even anticipated, often showing no apparent 

connection with its fluctuations, yet have repercussions on its course. Beside fluctuations 

from, as it were, natural causes, artificial causes are also involved. The Stock Exchange 

acts upon itself and its current movement is a function not only of earlier fluctuations, but 

 
1 Without repayment of capital, but with permanent fixed coupons. 

2 It should be noted that the French Government’s budget for its expenditure was, at the same time, 

4 billion francs. 
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also of the present market position. The determination of these fluctuations is subject to 

an infinite number of factors: it is therefore impossible to expect a mathematically exact 

forecast. Contradictory opinions in regard to these fluctuations are so divided that at the 

same instant buyers believe the market is rising and sellers that it is falling. Undoubtedly, 

the Theory of Probability will never be applicable to the movements of quoted prices and 

the dynamics of the Stock Exchange will never be an exact science. However, it is 

possible to study mathematically the static state of the market at a given instant, that is to 

say, to establish the probability law for the price fluctuations that the market admits at 

this instant. Indeed, while the market does not foresee fluctuations, it considers which of 

them are more or less probable, and this probability can be evaluated mathematically. 

 

He developed his model thanks to an analogy that he noticed between the 

diffusion of heat through a substance and the trend of the value of bonds, with the 

hypothesis that, since it was impossible to evaluate individually all the effects of 

the single factors that impact on the valuation of the securities (as it is impossible 

to estimate in precise way how the single particles of matter spread), one could 

more simply consider the probability structure describing the overall system to 

obtain probabilistic predictions of future performances. According to Bachelier, the 

bond market was a balanced game (zero-sum game), in which financial assets prices 

make a series of random movements (random walk)3 that do not depend on past 

movements: price changes therefore form a sequence of independent and equally 

distributed random variables. 

To explain this one can compare the market trend to the launch of a coin (which 

is in fact a balanced game with two random outcomes), whose faces correspond to 

the two possible price directions, “positive variation” and “negative variation”. This 

comparison has a strong implication: suppose Mr. Finance and Mr. Economics 

decide to play the classic coin toss, and that at every launch the loser must give the 

sum of 1 euro to the winner and that obviously the two outcomes have equal 

probability (the coin is not tricked, so the game is fair). The expected value 

(mathematical expectation) of the game for both will tend to 0 after a sufficiently 

large number of launches, and this because at each launch will be equiprobable the 

output of one or other face, regardless of past outcomes: the coin indeed has no 

memory. If the bond market is a balanced game with the two possible outcomes 

corresponding to the two faces, in the vision of Bachelier, it will behave like the 

 
3 A mathematical treatment of the random walk model is available in Appendix 1. 
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coin, and it follows that also the market has no memory, therefore any change in 

prices is random and independent from all the previous ones. 

The fact that prices make a series of random movements allows to use the 

concept of random walk to describe its properties. As in the random walk we have 

to assume that we will find the drunk on average around the same point where we 

left him4, in the absence of new information that could alter the equilibrium between 

supply and demand, the price will fluctuate on average around the starting point 

although there may be larger or smaller random fluctuations. Two perspectives can 

be distinguished: an ex-ante, in which there is no information and in which therefore 

it is not possible to predict the future trend of the market, whose direction towards 

the top or down will be again equiprobable (such as the coin) and an ex-post, in 

which you become aware of the information and you can infer on any cause-effect 

relationships that will result in price changes (but, again, it is not possible to state 

with certainty which direction will be, because in this intellectual framework prices 

move according to the random walk) generating probabilistic statements to try to 

make a profit. 

Bachelier went further, noting that if you represented on a chart all the changes 

in the price of a bond in a sufficiently long period (at least one month), these are 

distributed according to a normal or gaussian distribution, in which there will be at 

the center of the bell the many small changes in prices and in the tails the few big 

changes. This discovery constitutes one of his most important insights, because it 

allows to have simple rules to calculate the probability of any variation5. 

 

 

 
4 The similarity between the random walk and the drunken man’s walk derives from an exchange of 

letters in the scientific journal «Nature», volume 72, July 27, 1905 and two following volumes. Karl 

Pearson asked if any reader could solve the following problem: «(…) a man starts from a certain 

point O and walks l meters in a straight line; then he turns any corner and walk for other l meters, 

again in a straight line. The man repeats the process n times. What is the probability of being at a 

distance between r and δr from the starting point O, after n movements?». The answer came from a 

scientist, Lord Rayleigh, to whom Pearson replied later, ironically: «Lord Rayleigh’s solution 

teaches us that in an open space the place where it is most likely to find a drunken man barely able 

to stand is near the point from which he started!». 

5 A mathematical description of the normal or gaussian probability distribution is available in 

Appendix 1. 
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1.2 Eugene Fama 
 

For many years, the work of Bachelier was not recognized and fell into 

oblivion. In 1956 his studies were cited in academia by a PhD student of Paul 

Samuelson at MIT, Richard J. Kruizenga, in his thesis put and Call Options: A 

Theoretical and Market Analysis (Kruizenga 1956). 

From that moment on, thanks to their practicality, Bachelier’s ideas began to 

circulate more and more insistently in the economic field, until they found a proper 

theoretical framework in the famous Efficient Market Hypothesis (EMH) (Fama 

1970) and in the assumption of rationality of the investors of Eugene Fama, which 

constitute the real basis of the modern financial theory. 

 

“Efficient market” means that securities prices always reflect all the 

information available at a given time, so at any time the price is the right one, or 

more correctly, the price summarizes the best current overall market hypothesis 

with regard to the likely yield of the security considering the information available. 

The most immediate consequence is that the market becomes impossible to beat 

and therefore the only way to get a profit (at least in the short term) is to anticipate 

its movements in a risky way (in a very banal way, if you believe that the FED will 

lower rates, you could invest in US government bonds) or to guess and be 

particularly lucky, as well explains the famous metaphor of the economist Burton 

Malkiel in his book “Walking on Wall Street” (Malkiel 1973): «A blindfolded 

monkey throwing darts at the WSJ pages could choose a portfolio of shares that is 

as good as a portfolio carefully chosen by experts»6. 

According to Fama there are three forms of market efficiency hypotheses:  

 

• weak form of efficiency: if the prices reflect all the information contained 

in the historical series of the prices 

 
6 The same point of view seems to have been adopted, a year later, by Samuelson, who in The 

Journal of Portfolio Management (Samuelson 1974) states, with no less sarcasm: «(...) a certain 

respect for the evidence of the facts obliges me to incline to the hypothesis that the majority of the 

portfolio managers would have to abandon the business - give to the repair of the hydraulic systems, 

teach ancient Greek or contribute to the PNL as executives of the company.». 
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• semi-strong form of efficiency: if the prices reflect all the information 

contained in the historical series of the same prices, plus any other public 

available information 

• Strong form of efficiency: if prices reflect all the information contained in 

the historical price series, any other public available information, as well as 

any private information 

 

As noted, strong market efficiency implies semi-strong market efficiency, 

which in turn implies weak market efficiency. All 3 imply (even if at different 

levels), as mentioned above, that it cannot be expected to allocate a portfolio with 

a higher expected return than the market for the same level of risk.  

Fama’s studies led him to believe that markets were efficient at least in a weak 

form. 

For a practical example of market efficiency, consider the following two cases 

(Mandelbrot 2004):  

 

(…) a skillful chartist believes he has identified a certain structure in the records of 

the old prices– in January, we say, prices always tend to rise. Can he be enriched by this 

information by buying in December and reselling in January? The answer is no. If the 

market is large and efficient, others will also see the trend, or at least the fact that he is 

exploiting it. Soon, when more operators anticipate recovery in January, more people will 

buy in December and after in November, to beat the trend to a recovery in December. At 

the end, the whole phenomenon will have spread over so many months that it will cease 

to be relevant; the trend will have faded, killed by the same fact of being discovered. 

 

(…) the CEO of a multinational corporation starts collecting his rights of option, 

knowing that the debt is a bomb that’s about to go off. How long can he take advantage 

of this inside information? In an efficient market, not for long. The operators will 

understand that the captain is abandoning the ship and imagine that something bad is 

going to happen. So, they’ll sell, too, and the stock will go down. 

 

The prices are then adjusted in the market every time thanks to the achievement 

of a new equilibrium between buyers and sellers and the following variation will 

have the same probability to go in one direction or in the other (balanced game); 

the price will always correspond to its fair value. 
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Rational investor means that he knows that the market price is “right” and that 

he then prepares forecasts of future market movements by pursuing a rational 

strategy. 

 

1.3 Harry Markowitz 
 

In 1950 Harry M. Markowitz drew up, in his doctoral thesis at the University 

of Chicago, the modern theory of the portfolio7 (Markowitz 1952) and took the first 

step in the practical application of Bachelier. The basic question was whether a 

systematic and simple way could be found to evaluate in which shares to invest to 

build a good portfolio. At that time John Burr Williams' book Theory of Investment 

Value (Williams 1938) was in vogue. Its thesis was the following: to forecast a 

share value one must consider the forecast of dividends adjusted by inflation rate 

and other factors that can alter the value. Markowitz was convinced that this method 

was simple, but not functional to the real world because investors do not consider 

only the potential profit (otherwise everyone would buy the shares of the same 

company, those with higher expected return), but also the risk, trying to diversify 

investments. 

Markowitz’s thesis was then that to describe a share two only measures are 

enough: the return and the risk. The return is the expected average prices of selling 

(i.e. the price at which the investor forecasts to be able to sell his security at a certain 

time) and it can be forecasted with classic instruments such as the fundamental 

analysis8, for example by estimating the corporate earnings growth. The risk is the 

standard deviation (or variance) and is predicted using the normal distribution 

properties, according to whom the returns of the share are (assumed to be) 

distributed.  

 
7 The modern portfolio theory is one of the three most innovative practical elements, together with 

the CAPM model and the Black-Scholes formula for the evaluation of options that will be examined 

in the follow-up, of the second half of the 20th century and orthodox financial theory in general. 

8 Fundamental analysis is one of the main approaches to analyzing listed assets; it seeks the fair 

value of a security and has a long-term perspective. It consists mainly of two types of analysis: a 

macroeconomic type trying to find links between macroeconomic variables and market prices, using 

econometrics, and a company-type analysis, specific to the company in question. 
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For example, if the expected return of company X for year t is 7% and if in 

year t-1 the shares had a volatility of less than 20% in 2 out of 3 cases, we are 

asserting that in year t there will be a return between -13% and 27% in 67% of the 

cases. 

To build an efficient portfolio of shares, it is not enough to include investments 

with higher profitability and lower risk, but it is also necessary to assess the level 

of correlation between the different securities: some shares could be related and 

tend to move in the same direction due to analogies of business or industry strategy, 

for example, and it would be a problem if an investor had a highly correlated 

portfolio that loses value at the same time. A portfolio is efficient if it produces 

maximum profit with the minimum risk9. For every given level of risk it is possible 

to build an efficient portfolio (therefore with the minimum possible risk) with a 

certain expected profitability, and if you plot all the efficient portfolios to vary the 

level of risk, you get a growing curve that takes the name of efficient frontier. The 

resulting function is monotonous increasing, which implies that you can increase 

the expected return only by increasing the risk. 

 

 

Figure 1. Efficient Frontier. From Financial Risk Management course of Politecnico di Milano. 

 
9 In the case of a portfolio consisting of only two securities a and b, the expected portfolio return 

shall be calculated as  , where  are the single expected returns and  are the 

weights of the securities in the portfolio. Instead, portfolio variance is calculated as

, where  are the single standard deviations and  is the 

correlation coefficient of securities a and b. 
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Portfolio theory thus provides a practical tool for the choice of investment 

capital allocation that a rational investor will make based on his degree of risk 

aversion: if Mr. Finance is very risk-averse he will choose a portfolio at the bottom 

left of the efficient frontier, which will ensure a low level of risk, but it is expected 

that he will lose some of the profits he could have made if he had been braver (or 

maybe just more greedy)10. 

Markowitz himself specified that his model may not always be adequate. He 

said indeed that it is not certain that the use of the bell-curve is justified because 

one cannot be certain of the normal distribution of all the shares and, secondly, 

building an efficient portfolio requires an accurate analysis of the expected future 

return of securities, otherwise the portfolio will also be inaccurate. A further 

problem for the years in which Markowitz developed his theory was to calculate 

the correlations between shares, because of the low and expensive computing power 

of technology at the time. 

 

1.4 William Sharpe 
 

This last problem was solved by William Sharpe in 1964, in an article that 

followed his doctoral thesis under the unofficial supervision of Markowitz himself 

(Sharpe 1964). 

Sharpe noted that if everyone allocated their savings according to the results of 

portfolio theory, you would have a single efficient portfolio in which everyone 

would invest, which is called market portfolio, and it would then be the market itself 

to make all the necessary calculations at all times, providing from time to time the 

optimal combination11. Moreover, at that point the single shares should be assessed 

only on the basis of their comparison with the rest of the market and with the main 

“antagonist”, that are the risk-free government securities (which are in fact the most 

 
10 Note that bonds with a (hypothetical) risk level of 0, the so-called risk-free securities, can also be 

considered in the construction of a portfolio, because if interest rates are sufficiently high, they could 

constitute a more efficient investment than certain shares. 
11 From here the concept of equity indexed fund born, such as the Exchange-traded Fund (ETF). 
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important investment alternative to the stock market). He introduced then the 

formula for pricing any type of asset, the Capital Asset Pricing Model (CAPM)12: 

 

 

 

which states that the expected return r of the security can be expected to be 

equal to the return of a risk-free asset (government risk-free bond) plus the product 

between the Beta Sharpe coefficient and a market risk premium (because the market 

is risky and requires additional return). The coefficient Beta represents the volatility 

of the share with respect to the market; the market risk premium is the return the 

market is expected to make more with respect to a risk-free title13. 

The model therefore shows that the more you decide to risk (that is the more 

you accept a high volatility of the share you want to buy) the more a high yield is 

expected. The formula then indicates what is the minimum return you would accept 

to take the risk of investing in that asset.  

The diffusion of this model is also due to the fact that it allows to “save” all the 

calculations of the correlations previewed from the model of Markowitz: if a 

portfolio counted 50 different shares, employing the Markowitz’s model we should 

in fact make 1325 calculations, while employing Sharpe’s only 5114. 

 

Some criticisms have also been made to the Sharpe model, the most important 

of which concerns the use, again, of the normal distribution to describe the shares 

prices and consequently for the calculation of the Beta parameter. If price changes 

were not distributed according to a gaussian, but for example according to a power 

law, the results would be inaccurate and potentially harmful; in particular, in such 

a case, an investor would build a portfolio with shares with a risk and return that 

would be very different from the estimated one. The problem is not so much the 

 
12 Only financial assets will be considered here. 

13 The coefficient Beta of Sharpe is mathematically defined like the relationship between how much 

it varies the stock with the market, that is the Covariance, and the Variance of the stock. 

14 The calculation of all expected returns, variances and correlations (with simple combinatorial 

calculation) in the first case was considered; the calculations of the market return and of the 

parameters Beta of Sharpe for every share in the second case was considered. 
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lack of accuracy in the calculations but the fact that the investor would be convinced 

that they are right and would act accordingly by exposing himself to great risks 

without his knowledge. 

 

1.5 Fisher Black and Myron Scholes 
 

Modern stock options are a relatively recent tool in the financial world, having 

been inaugurated in 1973 by the Chicago Board of Trade that established the 

Chicago Board Options Exchange (CBOE)15, but became immediately one of the 

most appreciated financial instruments: as noted by J. Finnerty in his article The 

Chicago Board Options Exchange and Market Efficiency (Finnerty 1978), in the 

first month of trading at the CBOE (May 1973) 34599 contracts were traded, while 

already in 1976 the average monthly trades became 1.5 million at the CBOE, to 

which are added 800000 at the American Stock Exchange16 for a total increase of 

6600%. Much of this success can certainly be attributed to the fact that they allow 

to recreate classical investment positions exposing a limited amount of capital and 

thus reducing the risk: one of the first contracts negotiated at the CBOE concerned 

options that they had as underlying Xerox17 shares and offered the opportunity to 

purchase 100 shares at 160 dollars within 3 months (the spot price of the shares was 

149 dollars) with a value of this option of $5.5 per share (Mandelbrot 2004). 

There have been many attempts by leading scholars to find a correct formula 

to evaluate the price of options (and premium certificates in general), from Sprenkle 

(1961) to Samuelson (1965), but all their results depended on arbitrary parameters, 

mostly related to the estimation of the price of the underlying to maturity, and 

therefore could not be considered universally correct. 

It was Fischer Black, with the help of Myron Scholes, who solved this problem: 

in 1973 their famous article was published (Black and Scholes 1973) explaining 

how the options could be priced without considering the final value of the security, 

 
15 Premium contracts similar to modern options existed instead already, as seen above, were one of 

the topics of Theorié de la Speculation of Bachelier. 

16 Known today as NYSE American. 

17 American manufacturer of printers and photocopiers. 
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but only the spot price of the share, its maturity and its volatility, that is considering 

the probability that the option would be exercised at maturity, which happens if the 

value of the underlying is within a precise range (the probability, therefore, that the 

option was in-the-money); so they created the famous Black-Scholes formula to 

evaluate a European call option18: 

 

 

 

The debut of the formula in the real world took place shortly after, by his own 

inventors, but did not guarantee positive results, as reported by Black in How we 

came up with the option formula (Black 1989): 

 

 Scholes, Merton and I, along with others, rushed to buy a bunch of these 

certificates [of the National General]. For once, we felt like we had done the right thing. 

Then a company called American Financial announced a bid for the National General 

[…]. This had the effect of significantly reducing the value of certificates. 

 

As highlighted in the original 1973 article, the model is only valid under certain 

“ideal conditions”: 

 

In deriving our formula for the value of an option in terms of the price of the stock, 

we will assume "ideal conditions" in the market for the stock and for the option:  

 

a) The short-term interest rate is known and is constant through time. 

b) The stock price follows a random walk in continuous time with a variance rate 

proportional to the square of the stock price. Thus, the distribution of possible stock 

prices at the end of any finite interval is lognormal. The variance rate of the return 

on the stock is constant.  

c) The stock pays no dividends or other distributions.  

d) The option is "European," that is, it can only be exercised at maturity.  

e) There are no transaction costs in buying or selling the stock or the option. 

f) It is possible to Borrow any fraction of the price of a security to buy it or to hold 

it, at the short-term interest rate.  

g) There are no penalties to short selling. A seller who does not own a security will 

simply accept the price of the security from a buyer, and will agree to settle with the 

buyer on some future date by paying him an amount equal to the price of the security 

on that date.  

 

 
18 For a more detailed discussion, see Appendix 1. 
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Under these assumptions, the value of the option will depend only on the price of 

the stock and time and on variables that are taken to be known constants. 

 

As can be seen, even the Black-Scholes formula assumes that prices move 

according to a random walk and that their distribution is normal19. 

Despite this, the formula spread worldwide, mainly due to its ease of use and 

its ability to give an economic value to the risk.  

 

All the instruments of orthodox finance analyzed so far are based on the initial 

work of a bulletin board of 1900 and, as in any building, an error in the foundations 

would make the whole structure unstable. 

 

1.6 Example of practical application of Normal distribution 
 

Let us now proceed with a practical example of using Normal distribution to 

describe the prices of financial securities. We take a sample of historical values with 

weekly time frame of the index S&P 500 from Monday 05/01/1970 until Friday 

28/12/201820 (weekly data have been taken because daily data are not provided) 

and, considering the weekly closing values, we carry out a natural logarithmic 

transformation (in order to make data more comparable and to eliminate the positive 

asymmetry due to the long time scale with its effects on prices, e.g. inflation) of 

these values. 

We proceed by calculating the differences between the adjacent logarithmic 

values, so as to obtain the changes in value (logarithmic) from one week to the next.  

Let us now assume that the price changes are, overall, a population distributed 

in a normal way: then we use as estimates of the population the sample average to 

estimate the population average, and sample variance to estimate population 

variance. We get the following values: 

 

 
19 The article says that the price distribution is assumed log-normal. The log-normal distribution is 

a probability distribution of a random variable X whose log X logarithm follows a normal 

distribution. In this case, the random variable X is the strike price, that is the price of the action at 

maturity, and the logarithm of X appears within the calculation of d1. 
20 https://it.investing.com/indices/us-spx-500-historical-data [22/09/2019]. 
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 = -0,0013 ,   = 0,000504 ,   = 0,022453 

 

At this point we choose a particular historical weekly variation, such as that of 

the week that led to the black Monday of 1987 (that from 12 to 18 October 1987), 

which is 0.130071 (also in logarithmic values).  

We calculate the number of standard deviations for which it differs from the 

mean value (from the center of the bell) calculating the value z-score, standardizing 

therefore the value of the variation:  

 

 

 

and we get z=5.85. 

The weekly change considered differs from the average value of 5,85 standard 

deviations. Knowing that the probability that a value differs by at least 5 standard 

deviations is about 1 out of 3,5 million, theoretically it follows that if the prices of 

the securities had normal distribution, a catastrophic event such as that of 1987 

should have happened less than once every 3.5 million weeks, less than a week in 

67308 years. At a practical level, however, an event at the ends of the tails similar 

to the one just analyzed has also occur in 1929, 1998 and, more recently, 2007, 

which brings the counting to four times in 78 years. 

Remember also that the time frame used was weekly and this could have 

damped some variations: in case of daily time frame in fact, even worse results 

could have achieved.  

This example demonstrates the inability of normal distribution to accurately 

approximate extreme events at the ends of the tails, while it is more accurate in 

periods of normal (low) volatility, when the values are in the center of the bell. 

 

In this first chapter we analyzed the general picture of orthodox financial 

theory according to the discoveries of its main characters, both from a theoretical 

point of view, with Bachelier and Fama, and from a practical point of view, with 

Markowitz, Sharpe and the Black and Scholes couple. The second chapter 

will analyze the underlying assumptions of this theory. 
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CHAPTER 2. 

CRITICISMS TO MODERN FINANCIAL 

THEORY  
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Over the years, there have been many criticisms of standard financial theory. 

We have already examined empirically how the assumption of normal distribution 

of prices is far from reality.  

The second chapter will go into more detail, analyzing what the “new” finance 

with its characters considers the wrong assumptions underlying the standard theory 

set out in the previous part. 

 

2.1 Prices follow a Brownian motion (random walk) 
 

The most important assumption introduced by Bachelier is certainly that of the 

random walk, which implies in particular the normal distribution of prices and their 

independence. 

Let us consider the following graphical example, referred this time to the Dow 

Jones index21: 

 

 

Figure 2. Dow Jones 1916-2003 daily logarithmic values. From Mandelbrot (2004). 

 

 
21 Share index that includes the 30 leading companies listed in NYSE. 
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Figure 3. Dow Jones 1916-2003 daily logarithmic variations. From Mandelbrot (2004). 

 

The first graph represents the daily values in logarithmic scale of the Dow 

Jones from 1916 to 2003, while the second represents the daily variations, always 

in logarithmic scale. Compare these two graphs with the following two, which 

represent for the same time period a computer-built example of what should have 

been the price recordings (in logarithmic scale, in order to compare very distant 

time periods) if they had been normally distributed: 

 

 

Figure 4. Computer-built diagram of normally distributed prices. From Mandelbrot (2004). 
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Figure 5. Computer-built diagram of normally distributed variations. From Mandelbrot (2004). 

It is immediately noticeable that, although the two daily price graphs may 

suggest a certain similarity, the two daily change graphs immediately refute the 

possibility that these prices will be distributed in a Gaussian way, as the volatility 

of the real index is much more pronounced than it should be to be able to use that 

distribution. To facilitate the vision, consider these other two graphs, representing 

the same previous concepts but directly expressing price changes in number of 

standard deviations rather than in logarithmic scale: 

 

 

Figure 6. Price variations in number of standard deviations (not Normal). From Mandelbrot (2004). 

 

 

Figure 7. Price variations in number of standard deviations (Normal). From Mandelbrot (2004). 
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         Variations in standard deviations of the real Dow Jones do not agree with the 

normal distribution, which considers, as seen in its treatment in Appendix 1, 

observation of values beyond the three standard deviations is almost impossible (as 

clearly shown in Figure 7 which is specially constructed on a normal distribution). 

The real values say that not only is it likely to exceed the 3 standard deviations, but 

that in times of severe market turbulence (the crisis of 1929 and 1987) it is easy to 

reach and exceed the 10 standard deviations, which would be statistically 

impossible to obtain if the assumption of normal price distribution were correct. As 

a more rigorous test it is also possible to consider the statistical measure of 

kurtosis22 (for normal distribution equal to 3), as done by Wim Schoutens (2003) 

with the S&P 500 index: the mathematician noted that the daily changes in the index 

between 1970 and 2001 had a kurtosis of 43.36. The values of S&P 500 in the years 

considered therefore have a kurtosis well beyond the value of the normal, and even 

if the values recorded during the collapse of October 1987 are excluded, kurtosis 

remains elevated, equal to 7,17. The observation of these facts thus leads to the 

rejection of the assumption of normal price distribution. 

Regarding the assumption of price independence, which is also necessary in 

order to study the markets in accordance with the random walk model, it is possible 

to cite the study by Ferson and Harvey (1991), which analyzed the stock exchanges 

of 16 of the world’s largest economies and found that, if an index moved in a certain 

direction in a given month, it became slightly more likely that it would continue the 

same trend in the following month; the academicians therefore found evidence of a 

certain form of short-term dependence. Also in the medium term, a study by Fama 

and French (1988) identified a dependence of stock prices: according to them, 

approximately 10% of the yield of a given asset over a period of eight years could 

be attributed to their performance over the previous eight years. The analysis of the 

real facts through the discussed researches, once again, does not allow to assume 

with full confidence the independence of prices and consequently, considering also 

 
22 The kurtosis is one of the standard measures to describe the shape of the curve of a distribution, 

and in particular the degree of height of the curve. A normal curve has a kurtosis equal to 3, while 

greater kurtosis describe higher curves in the center and with thicker queues. 
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the examples regarding the not normal distribution, prices do not seem to move in 

accordance with the random walk23. 

 

2.2 The agents are rational  
 

The second prerequisite for the importance of standard theory is undoubtedly 

the assumption of rationality of investors: when a person has a certain amount of 

information, he exploits that information to take the rational decision to bring as 

much wealth as possible. The definition before is true is we assume that the purpose 

of an investor is profit, and that is not emotionally conditioned, that is in its function 

of utility does not appear for example the utility of other economic entities.  

To investigate the way in which individuals make decisions, a new way of 

approaching the study of economic agents - behavioral economics - has developed 

in the last 50 years. This approach has its roots in Kahneman and Tversky’s 1979 

work, Prospect theory: Decision Making Under Risk. This discipline assumes that 

agents do not always take their decisions in a rational way, or at least not only based 

on maximizing their utility function and acting in a selfish way. Empirical 

simulations have been developed with the objective of dividing a monetary sum 

between two individuals to investigate such anomalies with respect to the classical 

hypothesis, such as the ultimatum game and the dictator game (Camerer and Thaler, 

1995): 

The ultimatum game has two participants, the Proposer and the Responder; the 

first is given an amount of money and is asked to donate a part to the second, who 

can only decide whether to accept or refuse. If the Responder accepts the offer, they 

both pocket the parts decided by the Proposer, if instead he refuses both will receive 

nothing. If the rational individual hypothesis were true, the Proposer should choose 

to donate the smallest unit of money possible, and the Responder should accept any 

positive sum: in this way both would maximize their own utility function as 

 
23 It should be noted that no further evidence is needed to support this claim as, in addition to the 

fact that Dow Jones represents the 30 most important blue chips listed in NYSE and can therefore 

be considered a good indicator of the overall market trend, no amount of positive examples can 

prove with certainty the correctness of a theory, but only one opposite example shows the 

incorrectness. 
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provided by the rationality hypothesis. The empirical results showed instead that 

Proposer’s average offer was between 30 and 40%, reaching even, in many cases, 

a 50-50 offer; offers lower than 20% were generally rejected. The previous results 

were obtained either with a small sum of 10$, or with a larger sum of 100$. 

The dictator game is instead a variant of the previous game, developed for the 

first time by Kahneman and Tversky (1986) and it has the objective of verifying to 

what extent the generous offers obtained in the ultimatum game are due to the 

generosity of the Proposer and how much instead to the fact that the Proposer 

himself was afraid of being refused a too low offer, and therefore fail to pocket 

anything. In this game, there are still two subjects, this time called the Allocator 

and the Recipient; the former receives a sum of money and can decide, again, to 

what extent dividing it with the latter, which, on the other hand, has no decision-

making power and must necessarily accept the offer that has been made to him. The 

simulation results showed that, in this game variant, the Allocator offers were lower 

than in the previous game, but still largely positive. This leads to the conclusion 

that the generous offers in the first game were caused by both factors mentioned 

above: agents may be generous to others, or they may be afraid that their offer will 

be rejected and not receiving anything. 

In both cases, therefore, it follows that not all observed subjects can be 

considered rational individuals, because either act not maximizing their own utility 

function (when they are generous to others) or incorporate into their own utility 

function also the utility function of the other individual (when they are afraid of 

being rejected the offer). 

 

2.3 Agents have rational expectations 
 

Another important assumption of Orthodox theory is that of rational 

expectations: individuals use the information available to them efficiently, without 

making systematic errors in the formation of expectations regarding economic 

variables. An agent may make errors of assessment, but the community as a whole 

cannot make the wrong predictions and therefore will have correct expectations. 

From this it follows that the individuals behave collectively in the same way, that is 
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to say with equal information they will have homogenous expectations with the 

same temporal horizons of reference, and it is therefore not possible the formation 

of financial bubbles. 

Marianna Grimaldi and Paul De Grauwe developed a model (Grimaldi and De 

Grauwe, 2003) with the aim of understanding why bubbles occur within the 

currency market. They developed their model by releasing the hypothesis of 

rational expectations and introducing a population of agents divided into two 

distinct classes which, while having access to the same information, use different 

forecasting models and thus can generate different expectations: fundamentalists, 

who make predictions based on the fundamental analysis, and chartists, who instead 

use technical analysis trying to extract knowledge from the past trend. The 

fundamental exchange rate is set to 0. Different shocks are then simulated at the 

initial equilibrium condition of the exchange rate (that is, noise is created in the 

available information) which generate different solutions of (new) equilibrium24 

that can be summarized in two types. The first where, due to slight shocks to the 

initial conditions, the equilibrium is reached at the fundamental exchange rate 

(Figure 8, horizontal section) and given the name of fundamental solution. The 

second where, due to strong shocks to the initial conditions, the equilibrium 

diverges from the fundamental one (Figure 8, oblique sections) and to which the 

name of bubble attractor is given. 

 

 
24 The simulations have been made by the authors for one hundred thousand time periods. 
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Figure 8. Exchange rate as function of initial conditions. From Grimaldi and De Grauwe (2003). 

 

The greater the initial shock, the further the new equilibrium will be from its 

fundamental value. The different nature of these two types of balance can also be 

seen in relation to the percentage of chartists present in the market. The weight of 

the chartists according to the initial conditions is shown in Figure 9 below 
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Figure 9. Chartists weight as a function of initial conditions. From Grimaldi and De Grauwe (2003). 

 

For small initial shocks, the weight of chartists stands slightly above 50%, that 

is when the value of the exchange rate stands at around its fundamental value, the 

fundamentalists and chartists are equally present in the market. For great initial 

shocks instead, the weight of the chartists reaches 100% and the fundamentalists 

leave the market; so, when the chartists take control of a sufficiently large part of 

the market, the exchange rate value converges to the bubble attractor. The bubble 

attractor is therefore an equilibrium value that is reached when the weight of the 

fundamentalists in the market becomes sufficiently irrelevant, or no longer able to 

trigger a reversion of the rate towards its fundamental value. In this case, since the 

exchange rate value differs from its fundamental value, a larger or smaller 

magnitude of bubble can occur (the magnitude depends on the initial shock).  

From the model one concludes therefore that the interactions of only two 

different classes of economic agents can generate a system not more linear, but 

chaotic, in which unexpected events occur (the bubbles) not justified by the 

fundamental values underlying the instrument. If in the real world there are at least 

two different classes of individuals, guided therefore by different economic 

dynamics of creation of expectations, the hypothesis of rational expectations must 

be rejected according to Grimaldi and De Grauwe. 
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2.4 Price change is continuous 
 

The last hypothesis of the standard theory which will be examined in this 

discussion is that of the continuous price change, or the fact that stock prices or 

exchange rates do not rise and fall by several points at once but move smoothly 

from one value to the next. The usefulness of price continuity lies in the fact that it 

thus becomes possible to use mathematical tools such as continuous functions and 

differential equations to describe stocks quotations.  

Mandelbrot (2004) rejected this assumption by pointing out that, for example, 

in the currency market, brokers often quote rounded prices, avoiding intermediate 

values, and this causes that in 80% of cases the quotations end 0 or 5. The same 

mathematician also argued that almost every day at NYSE there is an imbalance of 

orders for some title, that is a mismatch between supply and demand. On 8 January 

2004, Reuters' press service reported, for example, eight misalignments; in this 

case, some important news that came to the market had caused an imbalance 

between supply and demand because the purchase and sales orders no longer 

collided, as a result of which operators had to increase or reduce the quotes up to a 

point of equilibrium.  

 

In this second chapter of the thesis, the most important economic and 

mathematical assumptions underlying modern financial theory were examined and 

the main refutations in the literature were reported. The discussion will now 

continue by analyzing another piece of literature that helps describe financial 

markets, this is more recent and not yet fully covered: Mandelbrot’s fractal 

geometry. In particular, the third chapter will deal with a short mathematical 

description of this type of geometry, while in the fourth and last part these 

instruments will be applied to financial markets.  
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CHAPTER 3. 

THE FRACTAL GEOMETRY 
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3.1 Why the fractals? 
 

The term fractal and multifractal geometry was coined by its own inventor, 

Benoit Mandelbrot, in 1975, to name the new mathematical instrument capable of 

describing what is irregular and rough. Fractal, which derives from the Latin 

fractus, a past participle of frangere which means to break, indicates a model or a 

shape whose parts echo the whole: by extending a part, one finds a similarity, more 

or less accentuated, with the original figure. 

Since its discovery, this geometry has been used in a wide range of fields, from 

natural ones such as fluid dynamics, hydrology and meteorology to those created 

by man such as the internet transmission of digital images, the measurement of 

fractures in metals and the analysis of brainwave recorded in EEGs. The possibility 

of using this mathematics to describe the trend of the financial markets, was 

conceived by Mandelbrot (2004) thinking of a sector that might initially seem very 

different, that of the blowing of the wind.  

The wind is a classic example of the form of fluid current called turbulence, 

that is a sudden change in the air flow that can be caused by several factors, such as 

the upward currents or vortices. The following two figures show, respectively, a 

diagram of the variation of wind speed while turbulent currents with bursts are 

generated and a diagram of the course of the volatility of the stock market: 

 

 

Figure 10. Variation of wind speed. From Mandelbrot (1972). 
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Figure 11. Variations of the stock market. From http://schwert.simon.rochester.edu/volatility.htm. 

 

A certain similarity can be observed between the two graphs, in particular as 

regards the volatility of changes and the concentration of important events over 

time. Consider, for an example of turbulence in the financial markets, what 

happened on 27 and 28 October 1997, through the direct voice of the Division of 

Market Regulation of the SEC, the US Stock Exchange Supervisory Committee, in 

its report Trading Analysis of October 27 and 28, 1997 of 199825: 

 
On October 27 and 28, 1997, the nation’s securities markets Fell by a record absolute 

amount on then-record trading volume. On Monday, October 27, the Dow Jones 

Industrial Average ("DJIA") declined 554.26 points (7.18%) to close at 7161.15. This 

represented the tenth largest percentage decline in the index since 1915. October 27 was 

also the first time that the cross-market trading halt circuit breaker procedures had been 

used since their adoption in 1988. At 2:36 p.m., the DJIA had declined 350 points, thereby 

triggering a 30-minute halt on the stock, options, and index futures markets. After trading 

resumed at 3:06 p.m., prices fell rapidly to reach the 550-point circuit breaker level at 

3:30 p.m., thereby ending the trading session 30 minutes prior to the normal stock market 

close. 

 

[…] While the U.S. securities and futures markets initially opened sharply lower on 

the morning of October 28, prices quickly turned around to close dramatically higher on 

then-record volume trading. For example, while the DJIA declined 187.86 points (2.62%) 

by 10:06 a.m., share prices thereafter began to rise sharply. By 10:20 a.m., the DJIA had 

recovered to within 25 points of the previous trading session’s closing value, and by 10:25 

a.m. the DJIA was 50 points above the previous close. By 10:34 a.m., the DJIA had risen 

137.27 points (1.92%) from Monday’s close, and prices continued to rise in choppy 

trading for the remainder of the day. As a result, the DJIA ended the day up 337.17 points 

(4.71%) at 7,498.32.  

 
25 https://www.sec.gov/news/studies/tradrep.htm. 
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The air turbulence and turbulence in the financial markets are clearly different 

as regards the underlying causes of the phenomena, but according to Mandelbrot 

can be described from the same mathematical point of view, as well as two different 

events such as elliptical orbits and the value of options according to Black and 

Scholes are both described using normal distribution. Fractals can thus become a 

tool for analyzing financial markets. 

 

3.2 Notes on fractal geometry 
 

Nature is not regular: shapes such as circles and squares or concepts such as 

lines, planes and spheres are the result of a human elaboration, on all the treatise 

Euclid’s Elements, which gave body to the Euclidean geometry studied to this day, 

but these are almost never present naturally in the world. 

Nature is rather irregular: «the clouds are not spheres, the mountains are not 

cones, the coasts are not circles, a bark is not regular and the lightning does not 

travel in a straight line» to quote Mandelbrot’s manifesto book of 1982 The Fractal 

Geometry of Nature. 

A fractal is a set F that must enjoy properties similar to the following: 

 

• Self-similarity: F is the union of a number of parts which, enlarged by 

a certain factor, reproduce all F; in other words F is union of copies of 

itself at different scales. If the ratio according to which the parts echo 

the whole is the same in all directions, we are talking about self-similar 

fractals. If the ratio changes along different directions, for example the 

figure is reduced more in length than in width, we are talking about self-

affine fractals. If in several points the enlargement or the reduction 

follow different factors of scale, we speak of multifractals. 

• Fine structure: F reveals details at each enlargement. 

• Irregularity: cannot be described as a place of points that meet simple 

geometric or analytical conditions (the function describing them is 

recursive) 
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• Hausdorff dimension > Topological dimension: 

the characteristic of fractals, from which their name derives, is that, 

although they can be represented in a conventional space with two or 

three dimensions, their size is not integer (the concept of size will be 

further developed in a dedicated paragraph). 

 

Fractal geometry deals in detail with roughness26, going to identify regularity 

in what is irregular, that is finding the configurations that are repeated in order to 

analyze, quantify and manipulate them. Configuration can take many forms: a 

concrete repeating module or an abstract shape, for example the probability that a 

certain grid box will turn black or white. The frame can be reduced or enlarged, can 

undergo compressions or twists, or both, with equal or different scale factors. The 

way these iterations take place can be deterministic or random. 

 

3.3 Construction of simple fractals: Brown-Bachelier cartoons 
 

The simplest fractals can be built with three things: it starts from a classical 

object of Euclidean geometry, which is called initiator; then a shape, called 

generator, is necessary, which generally can be another geometric figure; finally, 

the fractal construction process is needed, called recursion rule. 

In the financial field, the simplest fractal that can be built is Brown-Bachelier 

cartoon: the result is a price chart in accordance with the characteristics of Brownian 

motion and therefore of Bachelier’s random walk, but built with fractal geometry.  

Below is represented step by step the method of construction: you draw a box 

of height and width equal to 1 (but representing it with dilated scale of width, to 

facilitate the visibility of the figures) and inside it a line is drawn starting from the 

bottom left corner and reaching the top right corner, that is from the position (0,0) 

to the position (1,1); the latter represents the trend line of the chart and it is the 

initiator, which in this case ensures a rising price trend. The next step is to draw a 

broken line, the generator, overlapping it on the initial straight segment, 

 
26 The use of the word “roughness” instead of “irregularity” derives from the speech of Benoit 

Mandelbrot at a TED conference in 2014. 
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manipulating its size so that the ends of the broken line match the ends of the trend 

line; in this case the generator is a broken 3-segment and up-down-up path type. 

The points where it changes direction are crucial factors for the result, as well as 

the number of segments that make it up. The recursion rule is to replace, step by 

step, the generator (that is the broken one) to every segment that is in the diagram, 

having the only foresight to always match the ends (in descending intervals to make 

it possible you need to turn the broken line). The process is repeated, and after a 

sufficient number of iterations an irregular and rough curve begins to be obtained, 

which begins to look like a price diagram, as the following figures show: 

 

 

Figure 12. Brown-Bachelier cartoon. From Mandelbrot (2004). 

 

The first line of figures represents the process of fractal construction, the 

second line is the enlarged final result and the third line shows how the final chart 

actually has price changes in accordance with Bachelier’s model.  

As realistic as the previous figures may seem, they were built by deciding a 

priori the type of variations that would have the prices: the generator was repeated 

in fact according to the same up-down-up path at each iteration. To make the result 

even more realistic, it is possible to add to the process an element of randomness, 

as provided for by the price independence in Bachelier’s model: the randomized 

structure is added by modifying the generator, letting it be the fate to decide, at each 

iteration, what order have the three segments of the broken line, generating different 
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combinations such as up-up-down, down-up-up or down-down-up. The following 

figures show such random construction process, but assuming only three variants 

of the generator (down-up-up, up-down-up and up-up-down): 

 

 

Figure 13. Brown-Bachelier cartoon with randomness. From Mandelbrot (2004). 

 

As before, the figures initially describe graphically the construction process 

(the first two lines), after which the enlarged final result and finally the graph of the 

price changes. It is interesting to note that the price diagram this time also includes 

negative changes, below the initial value, and that the general structure of the 

changes graph has remained almost unchanged from the first to the second case, 

result due to the fact that in agreement with the normal distribution assumed by 

Bachelier’s model, the prices never move beyond a certain number of standard 

deviations.  

The addition of a randomness factor within the fractal model allowed a result 

more similar to the real price diagrams. 

 

 

3.4 Image gallery 
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Examples of more complex, natural and artificial fractals will be proposed, as 

this will be a preliminary to the understanding of the fractal dimension paragraph, 

the central topic of all the fractal geometry, which will follow.  

The apparent complexity of fractal forms fascinated Leonardo da Vinci long 

ago, who in his studies of anatomy tried, without much success, to analyze the 

structure of human lungs, whose bronchi are one of the most fascinating examples 

of fractals in nature. Another classic example of natural fractals is the network 

created by the neurons in the brain, in which the self-similarity at different scales is 

clearly visible27. 

 

 

Figure 14. Human lungs. From the “anatomical studies” of Leonardo da Vinci. 

 
27 Current scientific literature states that the human body uses fractal geometry to create complex 

shape thanks to the simplicity of its recursion rules, which allows to optimize the available resources. 
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Figure 15. Neurons. From https://gds.it/speciali/scientist-tecnica/2017/06/28/-taggati-i-neuroni-in-
attivita-per-immortalare-i-i-pensieri-03f9e924-6bda-40ea-991d-4eeff3f3c10d/.   

 

Other natural objects structured according to fractal rules are the mountain 

ranges and the fern leaf, in which once again it is easy to identify the self-similarity: 

if the image as a whole is zoomed in somewhere, you get an enlargement that looks 

like the previous image. 

 

 

Figure 16. Mountain range. From https://footage.framepool.com/it/shot/121095720-mackenzie-
country-alpi-neozelandesi-nubinacciose-innevato. 

 

Figure 17. Fern leaf. From https://pixers.it/adesivi/foglia-di-felce-16186465. 
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With fractal mathematics it is possible to construct complex artificial structures 

of great mathematical interest, some of which are the solution of mathematical 

paradoxes that have long remained without an answer. Below are some of them, 

briefly analyzing also the related construction process. 

 

3.4.1 Sierpinski gasket 

The gasket takes its name from the Polish mathematician Waclaw Sierpinski 

who studied a set of bizarre shapes that compress curves of infinite length within 

figures of finite size.  

 

 

Figure 18. Sierpinski gasket. From Mandelbrot (2004). 

 

There are different construction processes of the gasket, but the simplest is the 

one highlighted in the figure above: it starts from the black triangle in the upper left 

(initiator) and a new triangle is constructed in which the triangle formed by the 

union of the midpoints of the sides is removed (generator). The process is repeated 

each time a new triangle is encountered (recursion rule). The result is a pitted 

triangle that takes the name of gasket, which is formed by copies of itself to scales, 

where the scale factor remains equal to each dimension; a fractal of this type, as 

seen above, is defined as self-similar.  
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3.4.2 Sierpinski tetrahedron 

The Sierpinski tetrahedron represents the three-dimensional case of the 

previous plane figure. For its construction, tetrahedra are used instead of triangles. 

The result is once again a fractal which repeats itself exactly on each scale without 

deformation, so it is also self-similar.  

 

 

Figure 19. Sierpinski tetrahedron. From Mandelbrot (2004). 

 

3.4.3 Cantor set 

It is a subset of the range [0,1] of real numbers introduced by German 

mathematician George Cantor. The Cantor set is recursively defined starting from 

the interval segment [0,1] and removing a central open segment from each interval 

at each step. At the first step the sub-interval (1/3,2/3) is removed from [0,1] and 

the interval remains at two intervals [0,1/3] υ [2/3,1]. At the second step a central 

open segment is removed in both of these ranges (one-third the length of the 

segment, as in the first step) and four even smaller intervals are obtained. The 

Cantor set consists of all the points of the starting interval [0,1] that are never 



50 
 

removed from this recursive process: in other words, the set that remains after 

iterating this process infinite times. Its peculiarity lies in the fact that it starts from 

a set of topological size equal to 1 and comes, after infinite iterations, to a set having 

a null topological dimension.  

 

 

Figure 20. Cantor set. From Mandelbrot (2004). 

 

The Cantor set is also found in similar versions in nature, for example in the 

emission spectrum of certain organic compounds. 

 

3.4.4 Koch curve 

The Koch curve is another self-similar fractal, in which the ratios of its parts 

do not undergo deformations with respect to the original figure. It is obtained 

starting from a segment of finite length, dividing that segment into 3 equal parts 

and replacing the central segment with two equal upward segments that form the 

two sides of an equilateral triangle. For each of the new segments that are formed, 

the process is repeated. A figure is obtained whose length increases by a ratio of 4 

to 3 with the previous one, having therefore an infinite length. 
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Figure 21. Koch curve. From Mandelbrot (2004). 

 

The peculiarity of this figure is due to the fact that, even if it is of infinite length, 

it is continuous; it is also not derivative at any point, as it is not possible to draw a 

tangent at a point. 

If instead of starting from the initial segment, you start from an equilateral 

triangle and apply the same procedure as before on each side, you get something 

similar to a snowflake, which takes the name of Koch snowflake. The singularity of 

this figure is that an infinite perimeter contains a finite area.  

 



52 
 

 

Figure 22. Koch snowflake. From Mandelbrot (2004). 

 

3.4.5 Random fractal curves 

Previous fractal figures are created in a non-stochastic way. If you add the case 

in recursive processes, you get more complex figures that can very realistically 

reproduce objects already present in nature. The following two figures are an 

example.  

 

 

 

 

Figure 23. Random fractal curve (1). From Mandelbrot (2004). 
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Figure 24. Random fractal curve (2). From Mandelbrot (2004). 

 

 

The first figure is a particular Koch curve created randomly: the initiator 

remains the same segment as before, but here, at each iteration, the middle third of 

the segment is replaced by a generator with the sides of the equilateral triangle that 

can be randomly turned upward or downward. By going through the process, you 

get a figure very similar to a coastline.  

The second figure has similarities with the Cantor set: you start with a square, 

divide it into 125 squares and choose a random number to darken. Then the process 

is repeated in each of the darkened squares. The result is an irregular cluster of black 

dots, which looks like a galaxy cluster diagram. 

 

3.4.6 Mandelbrot set and Julia set 

As a last graphical example of fractal two closely connected sets will be 

presented, the Mandelbrot set and the Julia set. The mathematical function that 

describes both of them, a feedback loop, is as follows:  
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The Mandelbrot set is obtained by fixing z0=0 and varying c in the complex 

plane. If the succession does not diverge to infinity, it is said that c belongs to the 

set; it is therefore the set of complex numbers c for which the succession is limited. 

If the boundary of the figure is represented on a screen, it assumes a fractal 

conformation (see the figure later) whose complexity increases with the 

enlargement applied. In summary, if you indicate with M the Mandelbrot set, it is 

defined by  

 

 

 

The Julia set Jc is obtained by fixing c and varying z0 in the complex plane. If 

the succession does not diverge to infinity, it is said that z belongs to the set. It is 

made up of all those points whose behavior is chaotic, that is to say as a result of 

small arbitrary disturbances, can change dramatically28. It is defined by 

 

, 

 

so for each complex number c you get a different Julia set. 

 

To represent such sets graphically, you can color with a dark shade on a 

computer screen the points that converge and assign a different color to the points 

that diverge to the infinite, with a shade that varies depending on how fast they do 

it. The following figures show the Mandelbrot set and two Julia sets, obtained 

respectively with c=0,285+0,013i and c=-0.835-0,2321i. 

 

 
28 Its complement in the complex plane is the Fatou set, which is then the set of those points whose 

behavior is more stable.  
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Figure 25. Mandelbrot set. From Mandelbrot (2004). 

 

 

Figure 26. Julia set (1). From Wikipedia. 

 

Figure 27. Julia set (2). From Wikipedia. 

 

The relationship between Mandelbrot and Julia set is as follows: 
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• if c is chosen inside the Mandelbrot set (in the black part, where it 

converges) then the corresponding Julia set Jc will be connected29 

• if c is chosen out of the Mandelbrot set then the corresponding Julia set 

is not connected 

• If c is chosen on the boundary of the Mandelbrot set then the 

corresponding Julia set is reduced to a skeleton that has no internal part, 

that is it has no area, but is still connected. 

  

3.5 The fractal dimension 
 

Several definitions of dimension have been introduced in the history of 

mathematics, over all the vector space and topological dimension. The dimension 

of a vector space is the number of linearly independent vectors that make up the 

base, that is the number of generators. It corresponds to the expectations of the 

common sense, for example a point has dimension 0, a straight line has dimension 

1, a plane has dimension 2 and a space has dimension 3. This first definition 

however is not suitable for example to describe curves that fold on themselves. To 

obviate this (and others) problems was formalized the concept of topological 

dimension30 that allows to describe figures and shapes that do not change 

topologically when a without tears deformation is carried out and is based on the 

concept that the dimension of a set equals the number of independent parameters 

necessary to describe a point on it; for example, the dimension of a plane is two 

because to describe a point on it two parameters are sufficient, that is the Cartesian 

coordinates. There are therefore different definitions of dimensions, due to different 

purposes and points of view. 

Imagine a ball of string, with a diameter of 10 cm and a thickness of string 

equal to a few millimeters and consider it from the point of view of a Euclidean 

vector space, that is the mathematical space to which we are commonly used to. If 

you look at it from far away it will look like a point, that is it will have a null 

 
29A set is called connected if it cannot be represented as the union of two or more open not empty 

and disjointed sets. 

30 A mathematical description of the topological dimension and how it can be calculated is available 

in Appendix 2. 
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dimension. If you get close enough to touch it, it takes on three-dimensional shape 

and dimension. If you look even closer, the filaments that make up the string seem 

to have a dimension of 1. By looking at these filaments under the microscope, you 

find that they are actually three-dimensional. If you had a sufficiently powerful 

microscope, you could look at atoms as one-dimensional points. On the other hand, 

if you measure the length of a coastline, you can obtain different measures that grow 

with the increase in the accuracy of the measure (think of the difference that can be 

obtained by measuring the coast of Italy on a map using a ruler whose minimum 

dimension is 1 mm rather than 1 cm). The dimension of an object therefore depends 

on the point of view from which you look at it, or on the instrument with which you 

measure it. The ways of conceiving the dimension previously analyzed are not 

suitable for describing these measures, and the concept of fractal dimension has 

therefore been introduced. 

The fractal dimension is a number that provides a statistical index of 

complexity, comparing how much detail in a fractal figure changes with the scale 

at which it is measured, and is a fractional number. This is the reason why the 

fractals have taken their name because they are forms or figures with a fractional 

dimension. The definition of fractal dimension is not unique, indeed there are 

several specific definitions. The most important are the correlation dimension, the 

Hausdorff dimension and the Minkowski-Bouligand dimension31. 

 

3.5.1 Correlation dimension 

It is linked to the concept of how many copies (c) of a d-dimensional object are 

needed to enlarge or reduce the same object of a times. For example, to double 

(a=2) a segment (d=1) you need two segments (c=2), to double (a=2) a sheet of 

paper (d=2) you need four sheets (c=4) to double up it twice in all directions. The 

generic formula that binds this relationship is therefore: 

 

c=ad. 

If you solve the previous equation for dimension d, you get: 

 
31 For self-similar fractals, all dimension types coincide. 
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where d is the correlation dimension. This dimension is one of the simplest and 

can therefore only be used with self-similar fractals. 

For the purposes of fractal geometry, it is more convenient to consider a as the 

inverse of the reduction or dilation ratio of the unit of measurement, and c as the 

number of units of measurement necessary to measure the figure. As an example, 

consider the calculation of the correlation dimension of the Koch curve in the 

following figure:  

 

 

Figure 28. Koch curve (2). From Mandelbrot (2004). 

 

If you measure with a ruler as long as 1/3 of the width of the object, that is as 

a section of the broken line of the first Koch curve in the figure, you get a measure 

of 4. 

If you redo the same procedure with a ruler this time equal to 1/9, you get a 

measure of 16, as in the second case; you notice then that the ratio is always 4 to 3. 

The correlation fractal dimension of the Koch curve is therefore  

=1,2618. This result means that the curve is larger than a one-dimensional line, but 
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smaller than a two-dimensional plane; intuitively it makes sense because, being the 

curve folded, it fills the space more than a segment, but less than a plane. 

 

3.5.2 Hausdorff dimension  

The Hausdorff dimension is especially important because it falls within the 

very definition of fractal, as seen above. For a figure to be considered fractal, its 

Hausdorff dimension must be strictly larger than its topological dimension.  

To define in a practical way the Hausdorff dimension of an X form, one must 

consider the number N(r) of maximum r radius balls necessary to completely cover 

X. Decreasing r, N(r) increases. If N(r) grows in the same way as 1/rd when r tends 

to 0, then it is said that X has dimension d 32. 

 

 

Figure 29. Balls of different radius in a curve. From Magnanini, R., Dispense per il corso Istituzioni di 
Analisi Superiore 1, Università degli Studi di Firenze. 

 

3.5.3 Minkowski-Bouligand dimension  

To calculate the Minkowski-Bouligand dimension of a fractal, the box-

counting method is used, i.e., you insert the fractal into a container (a portion of the 

plane if it is two-dimensional, a portion of space if it is three-dimensional) and the 

container is divided into cells of width ε; the number of cells necessary to fully 

cover the fractal is Nε. The dimension is obtained by progressively reducing the 

width of ε and comparing it with the increase of Nε: 

 

 
32 The figure shows how balls of different radius can fill the surface of a curve in space. 
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. 

 

If the limit does not converge, then we are talking about the upper and lower 

dimension of the cells that correspond respectively to the upper and lower limit 

above calculated. The Minkowski-Bouligand dimension is therefore well defined 

only if the upper and lower cell dimension exists and is equal. The higher dimension 

is also called Kolmogorov dimension. 

There is a relationship between Hausdorff dimension, upper dimension and 

lower dimension, and it is as follows: 

 

. 

 

The box-counting method will now be applied to measure the dimension, once 

again, of the Koch curve (Mandelbrot 2004):  

 

 

Figure 30. Box-counting on Koch curve. From Mandelbrot (2004). 

 



61 
 

From the figure you can see that, if you start by covering the figure with cells 

1/3 of the curve wide, 3 are necessary. If you reduce the cells 1/3 more (that is 1/9 

compared to the original curve), you need 12. Continuing in the same way, with 

cells 1/27 of the initial curve wide, the necessary cells become 48. 

The structure is regular, in fact at each step if the cell dimension decreases by 

1/3, the number of cells needed to cover the object increases by 4 times. Moving to 

the limits with the previous definition, you get a dimension of 1,2618 as in the case 

of the correlation dimension because, as mentioned before, the Koch curve is a self-

similar fractal and therefore all dimension definitions coincide.  
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CHAPTER 4. 

FRACTAL ANALYSIS IN THE FINANCIAL 

MARKETS
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This part of the discussion will cover the events that led Benoit Mandelbrot to 

discover the possibility that the financial markets have fractal characteristics, going 

on to analyze the various components that, in the final section of this part, they will 

converge within a fractal market description model33. 

In particular, the model will be based on three concepts: long-tails, long-term 

dependence and trading time.  

 

4.1 The long-tails 
 

Long-tails are a property of statistical distribution34. A long-tails distribution is 

characterized by a density function that allows values even very far from its average 

value. Graphically, it is characterized by a bell higher in the center and thicker in 

the tails than the classic Gaussian distribution and has therefore a greater kurtosis. 

In practice, this characteristic implies that extreme values are much more probable 

and have great importance within the sample, much more than in the case of a 

Normal. Long tails are generated by a power law relation35. 

As an initial example of power laws and long-tails, we consider three famous 

cases where distributions with these features have been found. 

 

4.1.1 Cauchy blindfolded archer 

Augustin-Louis Cauchy, a 19th century French mathematician, disagreed with 

the prevailing opinion of the era that consisted in the use of Normal distribution to 

describe almost all phenomena. Imagine an archer standing in front of a target 

hanging from an endless wall; the archer is blindfolded, so the result of the shot is 

random. Consider several long-sufficiently sets of shots.  

If the shots followed the distribution of the Gaussian curve, for the most part 

they would be very close to the target and in minimal part very far, and for each set 

it would be possible to calculate the average error and the standard deviation. The 

 
33 This part relies heavily on Mandelbrot’s original work, both in its mathematical form (Calvet, 

Fisher and Mandelbrot 1997a) and in its more literary form (Mandelbrot 2004). 

34 Tails represent the part of the distribution values far from the mean value, i.e. from the center of 

the curve. 

35 For an in-depth discussion of the power laws, see Appendix 3. 
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archer of Cauchy, on the other hand, lives in a world in which the errors are not 

slight: often the arrow ends hundreds of meters far from the target, or even travels 

almost parallel to the wall ending to kilometers of distance.  

In a Gaussian context after a number of shots the average result will have 

stabilized on a certain value and even the most wrong shots will give a negligible 

contribution to the sample; it will be practically impossible for the next shot to 

change the mean significantly. The case of Cauchy is different, because a very 

wrong shot could make a greater contribution than a slightly wrong previous 

hundred shots; the results in such a world never stabilize on a predictable value nor 

does the variation in results stabilize around an average value. Such a distribution 

is called Cauchy’s. 

Cauchy distribution is characterized by undefined expected value and variance, 

is a stable distribution and is a power law for sufficiently large values of its 

probability density function36. Its tails are therefore fat, and this implies that 

variability is wild: «errors are not sand grains, but are a combination of sand, 

pebbles, boulders and mountains»37. One extreme value can affect thousands.  

 

4.1.2 Zipf words 

George Kingsley Zipf was a Harvard teacher who wrote a book, Human 

Behavior and the Principle of Least Effort, in which he described the power laws 

as a relationship present not only in the social sciences (scientists already used them, 

for example, to relate the number of earthquakes with their intensity), but also in all 

kinds of human-related activities. In particular, he found an application in 

estimating the richness of vocabulary in a text. You proceed as follows: you choose 

a text and count how many times a word appears. After having sorted the words 

according to their frequency, the most common word is assigned the grade 1, the 

next the grade 2, and so on. You then draw the graph of the word frequencies 

according to their degrees. The resulting curve drops at the beginning vertiginously 

and then decreases more slowly, creating a hyperbola branch. By comparing curves 

 
36 Stable distributions will be analyzed later. 

37 Mandelbrot (2004). 
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relative to different texts, you can compare the richness of vocabulary of one to the 

other.  

Zipf also empirically wrote the equation to describe a similar relationship, 

which is now known as Zipf distribution (or even Zeta distribution)38: 

 

 

 

where P is the probability distribution function, x the degree, F a constant that Zipf 

estimated equal to 1/10 and 1/  the critical factor of the power law. This law is 

generic; if you consider it with reference to the count of the words in a text, the 

greater the value of  the richer is a vocabulary, that is, the curve that expresses the 

frequency of each word with respect to its degree drops more slightly, so that rare 

words appear more often than they would otherwise. In his example Zipf estimated 

that the value of  was equal to 1. It is also a stable distribution and being a power 

law it has also fat tails and presents a wilder variability than the Gaussian 

distribution. 

 

4.1.3 The distribution of Pareto income 

The Italian economist Vilfredo Pareto was fascinated by problems such as how 

to achieve wealth or how it is distributed within society and decided to measure the 

gap between rich and poor. He collected many data on wealth and incomes of 

different eras and countries and by analyzing these data discovered that, by 

reporting income level data on one axis and the number of people with that income 

on the other, similar figures were obtained for almost all places and centuries. 

Consider the following graph, taken from the most famous Pareto’s book39: 

 

 
38 Zipf distribution is the discrete case of Pareto distribution. 

39 Pareto (1905). 
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Figure 31. Income curve. From Pareto (1905). 

 

the income level is represented on the vertical axis, while the number of people 

on the horizontal axis. The hatched area represents the number of people with an 

income between m and p. It may be noted that society cannot be considered as a 

social pyramid, where the level of income increases or decreases in a linear way 

between the different classes; it is an asymmetrical curve, very wide in the right 

side where most people are located and very narrow in the left side where there are 

few people disproportionately rich. According to Pareto (1905) the external shape 

of the curve remains unchanged over time; it is a social law that occurs at the cost 

of social revolutions:  

 

It is not only the accumulation of inferior elements in a social stratum that harms 

society, but also the accumulation in lower strata of elect elements that are prevented from 

rising. When at one time the higher strata are filled with decayed elements and the lower 

states are filled with elective elements, social equilibrium becomes extremely unstable 
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and a violent revolution is imminent. One can, in some respects, compare the social body 

to the human body, which readily perishes when the elimination of toxins is prevented. 

 

The corresponding probability distribution is valid not only for income, but 

also for numerous other social laws and is called Paretian or Pareto distribution 

and in the simplest form, with respect to income, is: 

 

. 

 

P(x) indicates the percentage of persons with income above x, m is the minimum 

income in the analyzed society.  is the exponent of the power law, which Pareto 

estimated for incomes equal to 3/2. For example, if you want to know the percentage 

of people with more than 20 times the minimum income, just calculate 

=1.11%. 

If you report the income data on the logarithmic chart, you get a downward 

straight line: we are therefore still in the presence of a power law, which implies 

that even the distribution of Pareto has long-tails (on the left side, as shown in 

Figure 31) and this practically implies that the elite of the richest people possess 

most of the wealth of the planet (as we know to be true even today).  

The Pareto distribution is stable for 0< <2. 

 

4.1.4 Stable distributions to analyze the real world 

Previous cases allowed us to begin to see how long-tails, and therefore the 

power laws, describe more realistically the realities associated with human 

activities than the “classic” Gaussian distribution. Until the second post-war period, 

however, a common thread had not yet been found explaining why different 

distributions such as those of Cauchy, Zipf and Pareto had in common the fact of 

being power laws.  

Mandelbrot identified the link in the mathematics of Levy’s stable 

distributions, a topic already known in academia, but which had not yet found a 

practical application. Let’s see what it is.  



69 
 

A probability distribution is called stable (or even -stable of Levy) if the linear 

combination of two independent random variables with the same distribution also 

has the same distribution. A random variable is stable if its distribution is stable. 

Examples of this type are Gaussian’s, Cauchy’s, Pareto’s and Zipf’s. 

It is therefore a family of distributions that can be described with 4 parameters: 

 

• : is the stability parameter of the distribution and is a measure of the 

concentration (thickness) of the tails. 

• : is a measure of the degree of asymmetry of the curve. 

• c: scale parameter, determines the size of the overall probabilities. 

• : positioning parameter. 

 

 is the most important parameter, varies in the range (0;2] and is the same  

as that previously encountered in the three analyzed cases; it is in fact the exponent 

of the power laws: this is why stable distributions are useful to mathematically 

describe the reality, because they are able to easily describe the power laws and 

therefore the long-tails, which as we have seen often appear in the real world. As 

this parameter decreases, the thickness of the tails increases. In addition, all stable 

distributions, except Normal, are power laws for sufficiently large values. 

The mean and the variance are not defined respectively for  and for 

: in such a case the contribution of the tails can be so high that the two 

moments never stabilize around a value and they can therefore intuitively be 

considered infinite. 

The most important values of  are: 

 

• =1, which identifies the Cauchy distribution and Zipf distribution (in 

the case of words). 

• =1/2, indicating Levy distribution. 

• =3/2, which refers to the Pareto distribution (in the case of income). 

• =2, owned by the Normal distribution. 
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In addition, the subset  identifies a number of distributions called 

Pareto-Levy’s. They are the most useful distributions to describe the financial 

markets. 

 

 
Figure 32. Shape of some stable distributions. From Wikipedia. 

 

Another important peculiarity is that stable distributions are attractors for the 

sum of independent and identically distributed variables and this allows to integrate 

the central limit theorem40 for those variables that have : the sum of a 

sufficiently large number of variables of this type can be approximated with a stable 

distribution different from Gaussian as usually done. 

Stable distributions allow therefore to join mathematically, in a unifying 

concept, ideas apparently disconnected to each other, through the manipulation of 

four simple parameters and in particular of the parameter  that regulates the power 

laws. If the power laws are a “way” of seeing the world, this type of distributions 

constitute the instrument able to mathematically model them. 

 
40 The central limit theorem states that the sum or average of a large number of independent and 

equally distributed random variables is approximately normal, regardless of the underlying 

distribution. 
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4.1.5 The mystery of the cotton 

Summing up what we has been seen so far in this chapter, long-tails are a 

consequence of power laws, which have always been observed in many natural and 

social phenomena. Stable distributions allow to describe these concepts with a 

single mathematical tool of 4 parameters. But how do the financial markets relate 

to all this? 

Mandelbrot, thanks to a series of fortuitous circumstances, found that the 

income chart discussed above was very similar to the chart that correlated cotton 

prices in the US with their frequency over a very long period (more than one 

hundred years). In the cotton market there were series of small price movements 

together with a few huge movements (too large to fit into the Normal case) as well 

as the Zipf text contained a great amount of rare words and a few common words, 

and just as in the world there are entire areas of poor people and a few billionaires. 

The connection was the power-law distributions, so the long-tails. 

 Moreover, the variance behaved in a strange way, that is, it never stabilized on 

a single value, but it varied in an irregular way, it was indefinite. This suggested the 

use of stable distributions.  

By plotting changes in cotton prices and their frequency in logarithmic scale, 

Mandelbrot (2004) obtained the following diagram: 
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Figure 33. Frequency changes in cotton price in log scale. From Mandelbrot (2004). 

 

The horizontal scale shows the positive (sign +) and negative (sign -) 

logarithmic variations at different time scales: a indicates the daily variations from 

1900 to 1945, b indicates the daily changes from 1944 to 1958, c indicates the 

monthly changes from 1888 to 1940. The vertical scale shows their frequency.  

The resulting forms seem to be straight lines, and this is the confirmation of the 

presence of a power law41. By measuring the slope of these lines, the author found 

a value of -1,7 and therefore both the exponent of the power law and the stability 

parameter of the stable distribution associated with cotton were equal to =1,7 

(because as seen in the paragraph of stable distributions, it is the same ). The 

variations in cotton process were therefore halfway between the wild variations in 

Pareto income ( =3/2) and the slight variations in Gaussian ( =2).  

A first important result is that the variance of cotton price movements for such a 

parameter value is indefinite because <2, and therefore it is not possible to use 

orthodox finance instruments such as Markowitz’s portfolio theory to describe 

them. 

A second result is the presence of long tails which implies a wide variability 

and therefore discontinuity in the value of prices, as it was expected from the value 

 
41 As shown in Appendix 3. 
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of . Variations may be extreme, or at least more extreme than expected by 

standard models. In other words, the result of a single very bad day can erase the 

results of many other gone well. This is something to consider when deciding what 

to invest in. 

It can also be seen that the forms are completely similar even to different 

temporal scales, denoting self-similarity. Changes in prices are invariant at a time 

scale. This leads us back to fractal geometry, as it is able to describe shapes similar 

to themselves at different scales. In this case, however, the factor of scale is time, 

not space. It is possible therefore to apply a fractal scaling to the variations of the 

prices, as it will be shown in the final model. 

In conclusion, the first ingredient of the model are the long-tails of financial 

markets, caused by power laws that can be parameterized by stable distributions. 

The fractal scaling feature over time justifies the use of a multifractal model42. 

 

4.1.6 Brownian cartoons for the case of long-tails 

As last part of this chapter, we take again the Brown-Bachelier cartoons seen 

in the third part, but this time inserting the discontinuity caused by the long tails 

and obviously maintaining the fractal construction process (scaling). The following 

figure illustrates the construction process: 

 

 
42 Remember that a form is multifractal if the scale factor in which the parts echo the whole is 

different along different directions. 
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Figure 34. Cartoon with discontinuity. From Mandelbrot (2004). 

 

The initiator is, as in the original case, an ascending line starting from the point 

(0,0) and reaching the point (1,1)43. The generator consists of five inclined intervals, 

to which are added two vertical discontinuities that represent respectively a sudden 

collapse and a market boom, result of the thick queues. By going through the 

process as we know, you get the fractal cartoon in the middle. Finally, the graph of 

variations is shown.  

The result is a diagram showing a kind of invariance of scale and wild variation 

similar to that of cotton prices. The cartoon is beginning to be much more realistic, 

especially with regard to the graph of variations, where more or less long series of 

slight variations and stable market mix with sudden wild variations that result in 

collapses or boom. Indeed, that is exactly what happens in real financial markets. 

 
43 Remember that the scale of the width of the container is dilated to facilitate visibility, but it is a 

square. 
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4.2 The long-term dependence 
 

4.2.1 Dependence in hydrology 

The idea that financial markets may be dependent on long term came to 

Mandelbrot from the work that Harold Edwin Hurst did in Cairo to design reservoirs 

for storing Nile water. During the 20th century the British Empire wanted to map 

and control the Nile in order to exploit its economic potential. In previous centuries, 

the river alternated periods of flood with dry periods and the consequences were 

periods of prosperity or famine. The objective pursued by Hurst was to control this 

variability, within the framework of a project called century storage that aimed to 

accumulate the water needed to cope with the maximum possible drought. 

Until then, the engineers designing the dams assumed that the annual changes 

in the flow of water were statistically independent and with normal distribution, that 

is, as in the case of the launch of a coin. Hurst instead discovered that the statistic 

range44 of the Nile was much larger than it should have been if the assumption of 

independence had been true. The problem was not the individual flow values (once 

the original sequence was destroyed, the data was well matched to a bell curve), but 

the sequence with which they were presented: «Although many natural phenomena 

have an almost normal distribution, this is so only when the order of succession is 

ignored. When records of a natural phenomenon extend over long periods, both the 

average and the standard deviation vary considerably from one period to another. 

The tendency to present in groups makes the average and the standard deviation 

calculated over a small interval of years more variable than in random 

distributions»45. 

In particular, the range did not increase as a function of the square root of the 

observations as in the head or cross game, but as a power of ¾ of the standard 

deviation. There was a long-term dependence, so the sequence of data was 

important: if it rains for many years, the water level in a reservoir rises. If these 

rainy years are followed by a time of moderate weather, the tank remains full due 

 
44 The range is the simplest index of statistical variability and is given by the difference between the 

maximum value of a distribution and the minimum value.  

45 Hurst (1951). 
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to the effect of the previous years. If later a period of drought comes, the water level 

in the tank drops, but in each period will still contain more water than it would 

contain without the rainy years. Past events therefore continue to have a degree of 

dependence on future events.  

The formula that Hurst found is: 

 

 

 

where R indicates how large a reserve tank should be to avoid flooding or 

drought. R depends on the standard deviation of rainfall from one year to the next (

), on the number of years (N) and on the Hurst coefficient (H), in this case 

approximately equal to ¾, which will be examined in detail below. 

 

4.2.2 Dependence in finance 

Returning to the world of finance, Mandelbrot was the first to hypothesize the 

presence of long-term memory in the financial markets. A simple example of this 

(Mandelbrot 2004) is the reliance of IBM in 1982 on the process of building 

microprocessors and building software for the emerging personal computer, 

respectively to Intel and Microsoft, until then semi-unknown companies. The story 

is well known: Intel and Microsoft have grown enormously, while IBM had to 

divest some business units, but the stock prices of the three companies are still 

intertwined. The price of each one influences that of the others because the profits 

or losses of one influence the business of the others. An event 40 years ago, the 

birth of Intel and Microsoft under the initial auspices of IBM, still resonates today 

in the price of its shares.  

The standard model of Brownian motion, in which events are assumed 

independent of each other, states that a Brownian particle in the water moves away 

from the starting point according to the rule of square root of time (as in the game 

of coin, where in place of time the square root of the number of shoots is 

considered): a particle that moves for 25 seconds will move five times more away 

than one that travels for a single second. Applying this concept to finance 
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guarantees the possibility of finding a range in which an economic variable can 

most likely move. If the variable has a long-term dependency, it no longer oscillates 

within this interval (the hypothesis of independence is missing), but maybe if one 

day it increases, it will tend to increase for a while longer. In head or cross game, 

that would only happen if the coin was rigged.  

It is possible to describe this tendency to present a long-term memory through 

the H Hurst exponent already seen above. The concept is always linked to Brownian 

motion, but in this case the distance travelled is proportional to some power of the 

time that does not necessarily have to be ½. This power corresponds to H and can 

be any fractional value between 0 and 1. Because of this, Mandelbrot named this 

series of interdependent increments as fractional Brownian motion. 

The Hurst exponent quantifies the tendency of a time series to regress towards 

the mean or to tend towards a certain direction, then identifies its autocorrelation: 

 

• 0 < H < ½ indicates that the time series is anti-persistent, so the values 

will not deviate much from the initial value, i.e. after an increase is more 

likely to occur a decrease, rather than a further increase. 

• H = ½ is the standard Brownian exponent, in which the values of the 

time series are independent.  

• ½ < H < 1 indicates that the time series is persistent, in which values 

tend to continue in the same direction for a while, creating nonperiodic 

finite cycles.  

 

The following figures show, with extreme examples, how the random time 

series evolve as H changes: 
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Figure 35. Anti-persistent series, H=0,043. From http://analytics-magazine.org/the-hurst-
exponentnent-predictability-of-time-series/. 

 

 

Figure 36. Brownian series, H=0,53. From http://analytics-magazine.org/the-hurst-exponentnent-
predictability-of-time-series/. 
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Figure 37. Persistent series, H=0,95. From http://analytics-magazine.org/the-hurst-exponentnent-
predictability-of-time-series/. 

 

Current literature suggests that a high value of H is a symptom of a market in 

which the emotional behavior of the crowd, which tries to follow the trend, has 

strong consequences, such as the formation of speculative bubbles. H values close 

to ½ indicate a very random market, in which the standard market model works 

quite well. 

Peters (1991) found high values of H for technology companies such as Apple 

(0.75), Xerox (0.73) and IBM (0.72). More traditional companies like Texas State 

Utilities have more Brownian values (0.54).  

Another study (Garcin 2016) investigated H values for major currency pairs, 

finding values very close to 1/2 as GBP/EUR (0,505), USD/EUR (0,5) and 

CHF/EUR (0,505). Slightly less Brownian values were found instead in those pairs 

containing a weaker currency, such as SEK/EUR (0,511) and SDG/EUR (0,51).  

Fractal geometry can also be applied to long-term dependency, as the Hurst 

exponent is closely linked to the notion of fractal size (D). For self-similar time 

series, where , you have that . Fractals therefore allow to 

identify the presence of memory in the time series. For time series that identify 

instead multidimensional processes H and D are not so closely connected. In 

particular, the Hurst exponent describes the structure of the series for 
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asymptotically longer periods, while the fractal dimension for asymptotically 

shorter periods.  

Note that a peculiar property of the major part of long-term dependency 

processes is that there are always small apparent configurations, which may appear 

or disappear in a short time, but which do not represent a trend and therefore cannot 

be predicted. It is a fractal characteristic, because if you take as an example the 

figure above with the case of persistent series and you enlarge one of its parts, you 

get a figure that echos the whole one, but that represents a shorter period of time.  

 

4.2.3 The Rescaled Range Analysis (R/S) 

Summarizing what we have seen so far, the first two components of the 

multifractal model of financial markets are the discontinuity caused by the long-

tails of distribution and long-term dependency.  

The first is described by the coefficient , which represents both the exponent 

of the power laws and the stability parameter of the stable distributions; as seen, a 

low value of  indicates a more risky market, in which price fluctuations can be 

wilder, while a high value indicates a market more similar to that of the classic 

model based on the launch of a coin. 

The second is represented by H, the Hurst coefficient, which is a measure of 

the long-term memory of the time series, and it is the exponent of the fractional 

Brownian motion; a value of H equal to ½ represents the standard Brownian case, 

while higher values indicate persistence in the increments of motion and lower 

values indicate the opposite, that is anti-persistence. 

To distinguish the effect of these two parameters in a series and to calculate the 

Hurst exponent, Mandelbrot and Wallis (1969) have developed a non-parametric 

statistical test46 called Rescaled Range Analysis (R/S)47. 

The underlying idea is that the effect of long tails depends on the relative size 

of each event, while the dependency effect depends on the precise time sequence. 

If you destroy the ordered sequence by mixing the data, you eliminate any 

 
46 A non-parametric statistical test is a type of test that does not require assumptions about the 

distribution of the analyzed data. 

47 Resulting from Hurst’s previous work in hydrology. 
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dependency and only discontinuity remains visible. To complete the test, simply 

compare the two sequences. If there is a difference it means that the precise 

sequence had value and there is therefore a certain degree of dependence. If there 

is no difference, the degree of dependence is negligible. In both cases a measure of 

dependence is obtained, that is the value of H. In some cases, there is a dual 

relationship between the two parameters and you have that ; in the coin toss, 

for example, we know that H=1/2 and =2 because it is an independent standard 

Brownian motion with Gaussian distribution. 

In order to estimate the Hurst coefficient, the dependence of the rescaled 

range48 on the time period n of observation must first be estimated. A time series 

of total length N is divided into a number of smaller intervals of length n=N, N/2, 

N/4, …. The mean rescaled range (R/S value) is then calculated for each value of 

n. 

For a finite time series of length n with observed values X=X1, X2, … , Xn, the 

R/S value of the rescaled range is calculated as follows: 

 

1. Calculate the average of the values observed over the whole period; 

 

 

 

2. Create a series expressing the deviation from the mean of the observed 

value in each sub-time interval t; 

 

 

 

3. Calculate the cumulative series of previous deviations, Z; 

    

 
48 The rescaled range is a measure of statistical variability. Its purpose is to provide an assessment 

of how the apparent variability of a series changes with the length of the time period considered. 
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4. Calculate the range R; 

 

 

 

5. Calculate the standard deviation S; 

 

 

 

6. Calculate the rescaled range R(n)/S(n). 

 

To find the value of H, we use the following power law relation: 

 

 

 

where H is the Hurst exponent, a is a constant and n the length of the considered 

time period. 

Using a logarithmic transformation H can be estimated using the following 

regression as a function of log(n), where H represents the slope of the regression 

line: 

 

 

 

Mandelbrot (1972) states that R/S analysis is more appropriate than 

autocorrelation and variance analysis because it allows to consider distributions 

with infinite variance (stable distributions except Normal). Moreover, he claims 



83 
 

that time series have infinite memory and that R/S analysis can detect this 

characteristic49. 

 

4.2.4 Brownian cartoons with long-term dependence 

As previously done with the Brownian motion and with the long tails, also in 

this case you can use a fractal construction process to obtain a cartoon that considers 

the long-term dependence (Mandelbrot 2004).  In the graphs in Figure 38 the 

initiator is still a growing trend line and the generator is a broken line of type up-

down-up. In the case of the standard Brownian cartoon (i.e. the Brown-Bachelier 

cartoon of the third part) the width of each interval of the broken line was equal to 

the square root of the height, that is at the height elevated to ½. The exponent ½ is 

the Hurst coefficient. In fact, the standard Brownian motion has independent 

increases that are denoted by such values of H. 

 

 
49 Some criticisms have been made of the infinite memory assumption and the use of R/S analysis 

in general. For a report of these criticisms and some subsequent confutations see Nawrocki (2000). 
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Figure 38. Cartoons with long-term dependence as H varies. From Mandelbrot (2004). 

 

Of the three cases in the figure, in the first group the height of the range is equal 

to the width elevated to an exponent less than ½ and is therefore an anti-persistent 

time series, as you can see from the graph of the trend where the opposite 

increments always tend to compensate. The second group is the standard Brownian 
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case, in which H=1/2 and the increments are independent; it’s the Brown-Bachelier 

cartoon. In the third group the range height is equal to the width elevated at an 

exponent H>1/2 and the time series is therefore persistent, as shown by the graph 

of variations where you see that increments in the same direction tend to follow 

each other for a while. 

 

4.3 The trading time  
 

The last component of the model to be presented in the next chapter is the 

trading time. This concept is linked to the fact that in the financial markets the 

activity is concentrated in some periods, generating moments in which high 

volatility accumulates followed by times of low volatility. The trading time differs 

from the normal clock time because in some points undergoes a temporal 

acceleration and in others a slowdown. In particular, it is obtained by applying to 

the clock time a multifractal process, described below, which is able to imitate the 

volatility characteristic to gather in some periods. 

Examples of concentration of elements in some points are recurring in nature. 

The strong gusts of wind, for example, tend to concentrate for a limited time, then 

are substituted by light breezes. Apart from the concept of time, it is possible to find 

analogous behaviors in the distribution of the oil or gold deposits, with some zones 

having them in abundance and others having none at all. 

 

4.3.1 The multiplicative cascade 

The multifractal process that allows the transformation of clock time into 

trading time is called multiplicative cascade and is based on a long series of 

multiplications50. 

As an example of such a process (Mandelbrot 2004), it is useful to consider 

time as a form of matter. As such, we can replace the time with a gold field, for the 

purposes of explanation. Gold, as mentioned before, is not distributed uniformly 

 
50 The process is multifractal because, as seen in the third part, a multifractal has the characteristic 

of reproducing itself in different parts following different scale factors. In addition, Mandelbrot 

(1997) found that multifractals reproduce well both long tails and long-term dependency.  



86 
 

around the world, but is concentrated in some areas, as well as in financial markets 

the activity is concentrated in some periods. Suppose we take a map of South Africa, 

in particular a cross-section of the ground cut along an axis oriented from west to 

east. Let’s start with a low-resolution map, such as to divide the country into two 

areas, the western and the eastern. Approximately 60% of the gold fields are in the 

west, while 40% are in the east. If we look more closely and divide into two each 

part, we note that 60% of the western gold is in the west quarter, which therefore 

contains 36% of the total. In the second quarter there is therefore 40% of western 

gold, equal to 24% of the total. Continuing to look more closely, to divide the areas 

into smaller and smaller parts and to multiply in cascade the obtained values to get 

a percentage of the total, you get the following graph:  

 

 

Figure 39. Multiplicative cascade in case of gold distribution. From Mandelbrot (2004). 

 

It is a very irregular distribution, with some parts rich in gold and some very 

poor.  

If the form of subdivided matter is not gold, but time, the trading time is 

obtained, characterized by an acceleration in the peaks and a slowing down in the 

depressions of the graph. 
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4.4 Multifractal Model of Asset Returns (MMAR) 
 

In this last paragraph we will present the multifractal model for the description 

of the financial markets, as originally conceived by Mandelbrot (Calvet, Fisher and 

Mandelbrot 1997a).  

As anticipated, the MMAR is a set of three main components: it incorporates 

the effects of long tails and long-term dependency and uses the trading time to 

combine them. 

It will be described according to two perspectives: the simple one of the 

previously used cartoons and the one a little more complex of a rigorous 

mathematical model. The first is a simplified version of the second one, but it shares 

the same basic ideas. 

 

4.4.1 Multifractal Model of Asset Returns: the multifractal cartoon 

The multifractal cartoon is more complicated than the previous ones; it is a 

compound cartoon. It includes three generators: a parent generator and a mother 

generator that produce a new child generator that takes some characteristics from 

the former and some from the latter. Consider the following figure illustrating the 

construction process: 
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Figure 40. Multifractal cartoon. From Mandelbrot (2004). 

 

The axes are marked with the letters t, θ and P; t indicates the clock time, P the 

price of a financial asset and θ the trading time. 

The father takes the clock time and turns it into trading time, as we have seen 

earlier, by applying a multiplicative cascade. The mother instead takes the clock 

time and turns it into a price. The joint action of the two generates a child who takes 

the trading time from the father and converts it into a price according to the rules 

provided by the mother. The last step of the construction process is to use the child 

generator to get a fractal price diagram. The result, as you can see in the upper left 

of the figure, is a graph of variations that incorporates the effects of long tails 

(variability is wild) and long-term dependency (variability accumulates in some 

periods), obtained thanks to the use of the trading time.  
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4.4.2 Multifractal Model of Asset Returns: the mathematical model 

The MMAR is a continuous-time multifractal process that incorporates long 

tails and long-term dependency shown by many financial time series. It is built 

composing a fractional Brownian motion with a multifractal process of time 

deformation, which transforms the clock time into trading time (the multiplicative 

cascade). The deformation of time produces long memory in volatility and implies 

that the statistical moments of price returns vary like a power law, that is that they 

have long tails (Calvet and Fisher 2001).  

The model is characterized by a form of temporal invariance called 

multiscaling that applies to the moments of the prices distribution. This multiscaling 

property generates the multifractality of the model, as it is applied with different 

scale factors at different points. 

There are two assumptions: 

 

• Unlike long tails that characterize stable distributions as described in 

Mandelbrot (1963), the MMAR does not necessarily imply that 

variance is infinite. 

• Unlike the fractional Brownian motion (Mandelbrot and Van Ness 

1968), the MMAR shows long-term dependence in the absolute values 

of price increments (clustering effect), while price increments 

themselves may be unrelated. 

 

The construction of the model (Calvet, Fisher and Mandelbrot 1997a) is as 

follows.  

Let P(t) be the price of a financial asset at time t. We introduce the following 

notation: 

 

 

 

and we assume the following: 

 

• Assumption 1. X(t) is a compound process: 
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where  is a fractional Brownian motion with Hurst exponent 

H,  is the stochastic trading time and t denotes the clock time. 

• Assumption 2. The trading time  is the cumulative distribution 

function (CDF) of a multifractal measure defined in [0,T]. 

In particular,   is a multifractal process with continuous and non-

decreasing path and steady increments. 

• Assumption 3.  and are  independent. 

Trading time  plays a crucial role in the MMAR. We note first 

that  almost certainly since  by definition. The 

Assumption 2 requires that  is the CDF of a random self-similar 

measure, such as the multiplicative cascade. The trading time  

presumably makes the price X(t) multifractal, and we expect that 

 and , i.e. the time-scaling and prices-scaling functions 

are highly correlated. This intuition leads to the following theorem. 

 

Theorem. Under the assumptions [1] – [3], the X(t) process is 

multifractal, with scaling functions  and steady 

increments. 

 

The above construction allows to generate a large class of multifractal 

processes, therefore to generate multiple financial graphs with the hypotheses 

analyzed during this section. By applying the Montecarlo method and creating a 

sufficiently large number of random fractal price diagrams, statistical tests can be 

carried out in order to obtain useful information to try to understand the market51, 

although there is still a shortage of statistical methods applicable to models that are 

invariant both to scale and time52.  

 
51 The MMAR is therefore an alternative to more traditional models such as ARCH. 

52 The first application of this model was to the Deutsche Mark/US Dollar pair and gave good results. 

See Calvet, Fisher and Mandelbrot (1997b) for details. 
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CONCLUSION  

 

 

As stressed during this discussion, there is no doubt that the standard models 

describing how the markets work present many shortcomings, even conceptual 

ones. These can - at least - be reduced with the use of multifractal models, 

incorporating in particular the ideas of wild price changes (long tails) and long-term 

dependence. However, the application of fractal geometry to financial markets is a 

young and still incomplete science. For the future, the hope is that this trend will be 

taken forward and that we will be able to gain a deeper understanding of the 

markets, in such a way that money is kept more safe and that the economy can 

prosper more by anticipating and defusing in time the financial crises’ traps. To 

make this possible, research will have to focus on some aspects that, however, are 

still without an answer such as: 

 

•  and H. 

The two parameters expressing, respectively, the length of the tails and 

the degree of long-term memory do not yet have a univocal way to be 

calculated. The research carried out so far has found, for the same share, 

different values depending on the method employed.  

• Risk. 

The most commonly used risk measurement tool is the standard 

deviation of Gaussian distribution. This parameter has been used in a 

wide range of fields, from portfolio management (Markowitz) to risk 

management of banking activities (Value at Risk, VaR). If the Gaussian 

distribution is not suitable for describing markets, the use of such a 

measure of risk is harmful and should be replaced with something else 

that incorporates the evidence of wild variations and long memory. 

• Options. 
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The Black and Scholes formula incorporates the assumption of Normal 

distribution and therefore uses the standard deviation as a measure of 

risk. Here, too, the same reason of the previous point applies. 

 

At the current state of art the fractal geometry is more a help for not losing 

dramatically huge fortunes in times of wild volatility, rather than a tool to earn 

money in the market (Mandelbrot 2004). As a consequence, to date, the most 

rational behavior is to integrate the two visions of the financial markets, that of 

Bachelier (1900) and that of Mandelbrot (1963).  
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APPENDIX 1 
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I. Random walk 
 

A random walk is the formalization of the idea of taking successive steps in 

random directions and, mathematically, represents the simplest stochastic process 

(i.e. it is a Markov process53) of which the Wiener process is the most well-known 

representation. It is often approached to the Brownian motion, as the random walk 

is an example of a theoretical model within its intellectual framework.  

Here is proposed a representation as developed by Bachelier, in his Theorié de 

la Speculation of 1900 (Bachelier 1900). 

Be t a time variable and x the random variable that expresses the price of a 

financial security. 

Divide the time into very small intervals , then it is possible to consider that 

the price varies of the fixed quantity, and very small, . Suppose that, at any time 

t, the prices , which differ from each other of the 

quantity , have respective probabilities . 

Knowing the probability distribution at time t, you can easily know the one at 

. Suppose, for example, that the price  occurred at time t. At time  

the price could be  or  . The probability , that the price  occurred at 

time t, can be decomposed into two probabilities, at time . The price  

with probability  and the price  with probability . 

If  had occurred in , it would be because, in t, the price  or 

the price  would have occurred. The probability of the price  , at the time 

 would then be . That of the price  would be, at the same 

time, . That of the price  would then be , 

etc... 

During the time interval  the price  has, in some way, transmitted to the 

price , the probability ;  transmitted towards the price , the 

probability . 

 
53 A Markovian process is a random process in which the probability of transition, that is the 

probability of transition to a certain system state, depends only on the status of the immediately 

preceding system, and not by how it came to this state. It is characterized by absence of memory. 
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If , the change in probability is  from  towards 

 .  

«It can therefore be said that each price radiates, during a time element, a 

quantity of probability to its price neighbors proportional to the difference in their 

probabilities. The previous theory, by analogy with certain physical theories, can 

be called Probability Radiation Law» concludes Bachelier. 

The previous treatment is developed according to a change in the prices of a 

discrete quantity in the various t. For a treatment in the continuous case, you can 

use Fourier’s heat equation (see pp. 19-21 of Bachelier, 1900). 

 

II. Normal distribution 
 

The normal distribution, or gaussian, is a distribution of continuous random 

variable and it’s well known because it adapts well to the distribution of numerous 

natural phenomena and its mathematical use is simple.  

Its probability density function is: . 

It depends on only two parameters, the mean and the variance, and is indicated 

with . 

The mean value  represents the value of the data around which the function 

is symmetrically divided, while the variance  indicates the degree of dispersion 

of the sample data from the mean value.  takes the name of standard deviation. 

Growing values of  correspond to flatter bell curves. 
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Figure 41. Cumulative distribution function of a Normal. From Wikipedia. 

 

The following properties are valid: 

 

• It is “stable”, according to the expression coined by Paul Levy, that is the 

linear combination of a normally distributed variable, is also a normal 

variable and the sum of more normal random variables has also normal 

distribution. 

• For the central limit theorem, with n equally distributed and independent 

random variables, for  the sample average tends to be distributed 

as a normal variable. 

 

For ease of probability calculation, it is used to standardize the normally 

distributed variable X in another normal variable Z of mean 0 and variance 1, which 

is called standard normal variable. The random variable Z is defined as: 
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In this way you can use the probability tables, which display values for a 

standard normal variable. 

An interesting feature of the normal is that almost all data observations are 

within 3 standard deviations, i.e. in the range . As you notice from the 

image above the probability that the data will deviate from the mean for x standard 

deviations (with x=1,2,3) is: 

 

• 68.27% that data are observed within 1 standard deviation 

• 95.45% that data are observed within 2 standard deviations 

• 99.73% that data are observed within 3 standard deviations 

 

It follows that when using the normal to describe the distribution of financial 

securities prices, one expects abnormal events to occur in the distribution queues 

(such as financial crises) although they may exist, are so infinitely likely to occur 

that it is negligible. 

 

III. Efficient Market hypothesis (EMH) 
 

Below a mathematical model describing the complete reflection of information 

in the prices of any listed assets is represented, as set out by Eugene Fama in his 

doctoral thesis (Fama 1970): 

 

 

 

where 

= share j price in t, 

= share j price in t+1 (with reinvestment of each intermediate revenue flow 

from the security), 

= one-period percentage return defined as   , 

= information set taken fully reflected into the price of the security in t. 
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The tilde indicates that  and  are random variables in t, not previously 

known. 

 

The equation implies that, as written by Fama, «whatever expected return 

model is assumed to apply, the information in  is fully utilized in determining 

equilibrium expectations returns. And this in the sense in which  is “fully 

reflected” in the formation of the price ». The model therefore indicates that the 

expected price in t+1, given the information known in t, is equal to the price in t 

capitalized by a rate r (tilde) not yet known in t, but that depends only on the current 

price and the one in t+1, which varies with the variation of the information received 

in t. 

 

IV. Black-Scholes’ formula 

 

As already mentioned, the formula, which allows to calculate the value of a 

European type call option, is: 

 

 

 

where the first addend is the product between the today value S0 of the 

underlying asset (called spot price) and the probability N(d1) of a variable d1 

normally distributed; the second addend represents the product between the exercise 

price X (strike price) of the option (discounted to the present value with a 

continuously compound rate r) and the probability N(d2) of a variable d2 also 

distributed normally54. Formulas for calculating d1 and d2 are: 

 

 

. 

 

 
54 Note that d1 and d2 are normally distributed as price changes are assumed to be normal variables. 
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To find the corresponding value of a put option, you can use the put-call parity 

theorem, which relates the values of the two types of options knowing the spot price 

and the strike price referred to the underlying: 

 

. 
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APPENDIX 2 
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I. Topological dimension  
 

Let X be a topological space. An open cover {Ui} of X is a collection of open 

sets Ui whose union is all X. Its refinement is another open cover {Vj} such that each 

Vj is contained in at least one Ui. 

The topological dimension of X is the smallest integer n such that each open 

cover X has a refinement where each point is contained in at most n+1 sets. 

The following are two different ideas for calculating the topological dimension: 

 

• Poincarè idea: it is a recursive method applicable to any connected 

topological space. Placed, by convention, equal to zero the point 

dimension, a space has dimension n if the connection property can be 

destroyed “by subtracting” to space a subspace of dimension n-1. The 

line (with the usual topology) will thus have dimension 1, because you 

can “disconnect” it by eliminating a point; the plane will have 

dimension 2, because you can “disconnect” it by eliminating a line, and 

so on. 

• Lebesgue idea: we start from the observation that if you want to cover 

a straight line with open intervals of finite length, you have to make 

overlaps. However, given any such covering and eliminating any 

unnecessary intervals, it is always possible to ensure that each point of 

the line is covered by no more than two intervals. Repeating the same 

reasoning in the plan, using some disks instead of the previous intervals, 

we realize that it is not possible to limit to two the number of disks 

covering a generic point. In order to make the construction possible, it 

must be agreed that, somewhere, the number of overlapping disks rises 

to at least three. The general result affirms that in n-dimensional 

Euclidean space, covers consisting of open spheres of finite diameter 

and such that each point of space is covered by no more than k spheres, 

exist if k=n+1, so the dimension is n=k-1. 
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APPENDIX 3
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I. Power laws 
 

A power law is a mathematical relationship like:  

 

 

 

 is called scale exponent.  

 

a. In the probabilities  

Within the probability distribution field, a distribution that obeys the power law 

is called power law distribution.  

The peculiarity of these distributions is the invariance of scale, that is they do 

not change any scale you consider. Suppose income distribution follows a law of 

power. To say that distribution is scale invariant means that if every four individuals 

with an annual income of ten thousand euros exists one with an income of twenty 

thousand, then there will be one person who earns 2 billion for every four people 

who earn one. 

The power law relationship generates long-tails in the distribution. 

The scale invariance is a necessary and sufficient condition to be a power law, 

so vice versa if we know that a distribution is power law, we know that it is invariant 

to scale. In mathematical terms a distribution p(x) is invariant to scale if it is true 

that p(bx)=f(b)p(x), with f(b) multiplicative constant. 

Their generic form is , with  if L(x) is 

constant. 

For any value of  the distribution diverges when , therefore it is 

possible to impose a minimum value . Given the  exponent, when x is a 

continuous variable then the normalization constant C is given by: 

 

 

 

from which 
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which is the CDF of a power law distribution. 

An estimator for  can be found using the method of the maximum likelihood. 

 

 

Figure 42. Power law distribution with α=3. From Wikipedia. 

 

b. How to recognize a power law distribution 

A peculiarity of power law distributions is that if they are represented on log-

log scale they are straight lines, because with a logarithmic transformation the 

power law relation becomes linear, in fact: 

  

 

 

 

Figure 43. Power law distribution with α=3 represented in log-log scale. From Wikipedia. 
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It is possible therefore to approximately identify a power law also in visual 

way, passing to the logarithms and verifying if the resulting form is a straight line.  
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