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Abstract

The studies conducted by Aharonov, Berry and their collaborators in the last 50 years led

to the discovery of a new phenomenon in quantum physics �eld called superoscillations. The

surprising fact is that it seems to violate the well known principle of harmonic analysis, indeed

superoscillations can be thought as functions that can oscillate faster than their fastest Fourier

component.

One of the main purposes of this dissertation is to give a uni�ed overview of the various de�nitions

of superoscillating functions, which have been evolving, in the past few years in [6], [9], [8] and

[19], in order to adapt to the increasing level of generality required by the problem at hand.

We complement the discussion with plots to illustrate the phenomenon of superoscillations and

to display the superoscillation region and the region of fast superoscillation.

Furthermore, I discuss the persistence of the superoscillatory behavior when superoscillating

sequences are taken as initial values of Schr�odinger type equations. This leads to the study of a

general strategy to approach those problems, which is mainly focused on proving the continuity

of operators acting on entire functions.

Finally, I analyse in details the case of the quantum harmonic oscillator and, in order to take into

account singularities of the evolved datum, I consider a more general notion of superoscillation,

termed supershift. Thanks to this new de�nition it is possible to enlarge the superoscillatory

notion also to distributions and hyperfunctions.
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Sommario

Gli studi condotti da Aharonov, Berry e i loro collaboratori negli ultimi 50 anni hanno portato

alla scoperta di un nuovo fenomeno nel campo della �sica quantistica chiamatosuperoscillazioni.

Il fatto sorprendente �e che sembra violare il noto principio dell'analisi armonica, infatti le super-

oscillazioni possono essere pensate come funzioni che possono oscillare pi�u velocemente del loro

componente di Fourier pi�u veloce.

Uno degli scopi principali di questa tesi �e fornire una panoramica uni�cata delle varie de�nizioni

di funzioni superoscillanti, che si sono evolute, negli ultimi anni in [6], [9], [8] e [19], al �ne di

adattarsi al crescente livello di generalit�a richiesto dal problema in questione.

Completiamo la discussione con gra�ci volti ad illustrare il fenomeno delle superoscillazioni e a

visualizzare la regione di superoscillazione e la regione di superoscillazione rapida.

Inoltre, ho discusso la persistenza del comportamento superoscillante quando sequenze super-

oscillanti sono prese come valori iniziali di equazioni della tipologia di Schr�odinger. Questo porta

allo studio di una strategia generale per a�rontare questi problemi, che si concentra principal-

mente sulla dimostrazione della continuit�a di operatori che agiscono su funzioni intere.

In�ne, analizzo in dettaglio il caso dell'oscillatore armonico quantico e, per tenere conto delle

singolarit�a del dato evoluto, considero una nozione pi�u generale di superoscillazione, indicata con

supershift. Grazie a questa nuova de�nizione �e possibile estendere la nozione di superoscillazione

anche a distribuzioni e iperfunzioni.
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Chapter 1

Introduction

The interest for superoscillation phenomenon arose in the quantum physics �eld, thanks to the

studies of Aharonov and his collaborators on weak values, a notion that provides a di�erent way

to regard measurements in quantum physics.

One of the purposes of this introduction is to o�er a quick and basic overview of the back-

ground from quantum physics which generated the notion of superoscillations.

In quantum mechanics any system is described by its quantum state, that is a (usually

in�nite-dimensional) vector in a Hilbert space. It is a postulate of quantum mechanics that all

measurements have an associated operator (called an observable) such that it is a Hermitian

(self-adjoint) operator A : D(A) ⊂ H → H, where D(A) is the domain of A and H is a Hilbert

space. Furthermore, the observable's eigenvectors, also called eigenstates, form an orthonormal

basis spanning D(A), that means that any quantum state can be represented as a superposition

of the eigenstates of an observable.

The measurement is usually assumed to be ideally accurate, so the state of a system after

measurement is assumed to collapse into an eigenstate of the associated operator, mathematically

speaking we call measurement of a quantum state its projection on the eigenspace generated by

the eigenvectors of A. If the system was prepared in a speci�c eigenstate, then the measurement

will coincide with probability one with the associated eigenvalue, while if the system is in a

generic quantum state then one needs to repeat the measurements more times and the �nal

result will be a set of di�erent eigenvalues, each one with its probability.

Now, let us consider a large set of particles, then we can impose an initial condition and obtain
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2 CHAPTER 1. INTRODUCTION

the so-called pre-selected ensembles, after that we evolve the system according to Schr�odinger

equation and observe the obtained �nal state.

What I explained so far is a time asymmetric view of quantum mechanics. Let us notice that

the process of preparation is actually a kind of �ltering of results: only one quantum state of

many possible ones is chosen to begin with. Then, by introducing the concept of post-selection,

i.e. �ltering also the �nal results, the theory can be made time-symmetric.

In 1964 in a paper by Aharonov, Bergman, and Lebowitz [3], the authors showed that the

initial conditions of a quantum mechanical system can be selected independently of the �nal

conditions. Subsequently, despite of what it is traditionally believed, Aharonov, Albert and

Vaidman [1] showed that information can be obtained even if the system was not disturbed, i.e.

even if the measurement interaction is weakened. The outcomes of these weak measurements,

denoted in [1] as weak values, depend on both the pre- and the post-selection and can have values

outside the allowed eigenvalue spectrum. In this way Aharonov and his collaborators showed

that the weak values lead to a new phenomenon called superoscillations [2].

Let us consider a pre-selected initial state | ψin〉 and post-selected �nal state | ψfin〉, with

〈ψfin | ψin〉 6= 0. Assume that, between the two pre- and post-selected states, we measure a

non-degenerate Hermitian operator A. We assume also that, during the measurement, the time

evolution operator for the measured system and measuring device is e−(i/~)APd , where Pd is the

observable associated with the measuring device. Moreover, let us denote by φin(Qd) the initial

state of the measuring device, then, after the post-selection, the �nal state of the measuring

device when we consider a small Pd is (proceeding formally)

〈ψfin | e−(i/~)APd | ψin〉φin(Qd) ≈ 〈ψfin | 1− (i/~)APd | ψin〉φin(Qd)

= 〈ψfin | ψin〉 − (i/~)〈ψfin | A | ψin〉Pd]φin(Qd)

= 〈ψfin | ψin〉[1− (i/~)〈A〉wPd]φin(Qd)

≈ 〈ψfin | ψin〉e−(i/~)〈A〉wPdφin(Qd),

where

〈A〉w =
〈ψfin|A|ψin〉
〈ψfin|ψin〉

, (1.0.1)

is the formal de�nition of what Aharonov, Albert, and Vaidman called weak value of A. Let us

notice that the result of weakly measuring the operator A is not its expectation value, but rather
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〈A〉w, that can exceed the eigenvalue range (and even assume complex values).

Such behavior has important applications in several areas, including metrology, signal process-

ing, antenna theory and theory of super resolution in optics as it is discussed in [17]. Moreover,

in papers like [16], [14] and [13] Berry and his coauthors deeply investigate the phenomenon from

a more physical perspective.

From a mathematical point of view, we think to superoscillatory functions as a superposition

of small Fourier components with a bounded Fourier spectrum, that result in a shift by an

arbitrarily large a. In order to have a concrete example of a superoscillatory function let us

consider, the sequence of functions:

Fn(x, a) =
(

cos
(x
n

)
+ ia sin

(x
n

))n
(1.0.2)

where a ∈ R, a > 1. If we perform a binomial expansion, this sequence can be written as

n∑
j=0

Cj(n, a)ei(1−2j/n)x

for suitable coe�cients and thus we see that the wavelength in the expansion is always smaller

or equal to 1. However, it can be proven that Fn(x, a) can be approximated as eiax in a interval

of R whose width grows as n grows. The puzzling fact is that the wavelength of eiax can be any

a ∈ R, in particular it can be much larger than one.

This phenomenon is very general and holds for a wide range of functions and coe�cients. As

it is shown throughout this work, we can obtain a very large class of superoscillating function

just considering the evolution of Fn(x, a) through Schr�odinger type equations.

As avenues for further research one may consider evolution using di�erent type of equations,

for example Klein-Gordon, and the interest is always to establish the persistence and robustness

of the superoscillating behaviour in time.

As we have already pointed out the possible impact of this research for applications has

tremendous potential, as it has discussed in [17], and various laboratories are performing ex-

periments in order to validate the theoretical predictions of the theory which is in continuous

development. Of particular interest are the applications to the construction of super resolution

microscopes for the impact in biology and medicine.
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The thesis in organized as follows: in Chapter 2 I de�ne what a superoscillatory function is,

I present the prototypical superoscillation function and I �nally introduce the framework where

superoscillations are studied from a mathematical point of view; in Chapter 3 I analyse the

evolution of a superoscillatory initial datum through Schr�odinger type equations, wondering if

it is possible to obtain newly a superoscillatory function as result; �nally in Chapter 4 I present

the case of the Schr�odinger equation for the harmonic oscillator, this problem is of particular

interest due to the singularities appearing in the solution.



Chapter 2

Some basic results on

superoscillating sequences

This chapter is devoted to the study of the basic mathematical properties of superoscillating

sequences.

I start presenting, in Section 2.1, the development of the de�nition of superoscillating se-

quences, then in Section 2.2 I will focus on the prototypical superoscillating sequence Fn(x, a)

presenting the main preliminary results and discussing the size of the superoscillating region.

Finally, in Section 2.3, I will present the mathematical environment where superoscillating se-

quences are studied.

2.1 Superoscillating sequences

Let us de�ne the objects that will be the main characters through all the thesis.

De�nition 2.1.1. (Generalized Fourier sequence)

We call generalized Fourier sequence a sequence Yn(x) : R 7−→ C, such that, for all n ∈ N, is of

the form

Yn(x) :=

n∑
j=0

Cj(n) eikj(n)x (2.1.1)

where Cj(n) and kj(n) are real valued functions.

Remark 2.1.1. The sequence of partial sums of a Fourier expansion is a particular case of this

notion where Cj(n) = Cj ∈ R and kj(n) = kj ∈ R are multiples of a real number.

5



6 CHAPTER 2. SOME BASIC RESULTS ON SUPEROSCILLATING SEQUENCES

We can also consider generalized Fourier sequences dependent on a parameter a ∈ R+, for-

mally we have

Yn(x, a) :=

n∑
j=0

Cj(n, a) eikj(n)x. (2.1.2)

De�nition 2.1.2. (Superoscillating sequence 1)

Let a, α ∈ R+. A generalized Fourier sequence

Yn(x, a) =

n∑
j=0

Cj(n, a) eikj(n)x

is said to be a superoscillating sequence if:

i) |kj(n)| < α for all n and j ∈ N ∪ {0};

ii) there exists a compact subset of R, which will be called a superoscillation set, on which

Yn converges uniformly to eig(a)x where g is a continuous real-valued function such that

|g(a)| > α.

Remark 2.1.2. The usual Fourier sequence of a function is obviously not superoscillating because

it violates i).

Remark 2.1.3. (Superoscillating sequence 2)

More in general, one could substitute clause ii) in De�nition 2.1.2 with

ii)′ there exists an open subset U ⊆ R, which will be called a superoscillation domain,

on which Yn converges uniformly on any compact subset of U to the restriction to U of a

trigonometric polynomial function Y = P (eig(a)x), where P ∈ C[X,X−1] is a Laurent polynomial

(i.e a polynomial that may have terms of negative degree) with no constant term and |g(a)| > α.

Remark 2.1.4. It is clear that Remark 2.1.3 gives a notion slightly more general than De�ni-

tion 2.1.2. Indeed if Yn(x, a) is a superoscillating sequence in the sense of Remark 2.1.3 with

superoscillation domain U , then it is also a superoscillating sequence in the sense of De�ni-

tion 2.1.2 with superoscillation set any segment [a, b] ∈ U .

Moreover the second de�nition allows us to consider polynomial of trigonometric functions

instead of simply eig(a)x.
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It is possible to further extend the de�nition of superoscillating sequence to the case of several

variables. First of all we should de�ne a generalized Fourier sequence in several variables and

then we can de�ne what it means that it superoscillates.

De�nition 2.1.3. (Generalized Fourier sequence in several variables)

We call generalized Fourier sequence a sequence Yn(x) : Rm 7−→ C, such that, for all n ∈ N, is of

the form

Yn(x1, . . . , xm) :=

n∑
j=0

Cj(n)P (eikj,1(n)x1 , . . . , eikj,m(n)xm) (2.1.3)

where P ∈ C[X±1
1 , . . . , X±1

m ] is a Laurent polynomial, Cj(n) is a real valued function and kj(n)

is a map from N∗ to Rm.

De�nition 2.1.4. (Superoscillating sequence in several variables)

Let a, α ∈ R+. A generalized Fourier sequence in several variables is said to be a superoscillating

sequence if:

i) |kj,l(n)| < α for all n, j ∈ N ∪ {0} and l = 1, . . . ,m;

ii) there exists an open subset U ⊆ Rm, which will be called a superoscillation domain,

on which Yn converges uniformly on any compact subset of U to the restriction to U

of a trigonometric polynomial function Y = P∞(eig1(a)x1 , . . . , eigm(a)xm), where P∞ ∈

C[X±1
1 , . . . , X±1

m ] is a Laurent polynomial with no constant term and |gl(a)| > α for all

l = 1, . . . ,m.

Remark 2.1.5. De�nition 2.1.1 and De�nition 2.1.3 can be enhanced considering Cj(n) ∈ C

instead of Cj(n) ∈ R.

Once again, the de�nition of superoscillating sequence can be extended, in this case, to the

de�nition of super-shift. The main reason for which this de�nition is needed is the possibility

to generalize it from functions to distributions and hyperfunctions, but this purpose will be

discussed in details in the next chapters of the thesis (see in particular Section 4.3). Moreover,

the de�nition of supershift takes into account general functions, instead of only functions with

exponential form.
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De�nition 2.1.5. (Supershift for a family of functions)

Let T be a locally compact topological space and F = {ϕλ : T → C ; λ ∈ R} be a family of

C-valued functions on T indexed by R. A sequence ψ = {ψn(τ)}n≥1 of C-valued functions on T

is called supershift for the family F (or F admits ψ as supershift) if:

i) any entry ψn is of the form ψn =
∑n
j=0 Cj(n)ϕkj(n) with kj(n) ≤ 1 ∀n ∈ N∗ and 0 ≤ j ≤ n;

ii) there exists an open subset Ussh of T , called a F-supershift domain, such that the sequence

{ψn(τ)}n≥1, when τ ∈ Ussh, converges locally uniformly towards the restriction to Ussh of

a function ψ∞ which is a C-�nite linear combination of elements in F of the form ϕνk(∞)

with ν ∈ Z∗, where k(∞) ∈ R \ [−1, 1].

Remark 2.1.6. De�nition 2.1.5 would be equivalent if in requirement i) one asks for kj(N) ≤

α ∀N ∈ N∗, α ∈ R+, and, consequently, in requirement ii) k(∞) ∈ R \ [−α, α].

Remark 2.1.7. Remark 2.1.3 and De�nition 2.1.5 seems to be more di�erent than they actually

are. Let us notice that a Laurent trigonometric polynomial Y = P (eig(a)x) is a C-�nite linear

combination of elements of the form eiνg(a)x with ν ∈ Z∗. So if in De�nition 2.1.5 we have

F = {eiλx ; λ ∈ R}, asking that ψ∞ is a C-�nite linear combination of elements in F of the form

ϕνk(∞), is the same to ask that ψ∞ is a Laurent trigonometric polynomial Y = P (eiνk(∞)x).

As it is previously stated, this de�nition could be enlarged in order to include distributions

and hyperfunctions.

De�nition 2.1.6. (Supershift for a family of distributions (resp. hyperfunctions))

Let T be of the form [0, T ) × U , where U is an open subset in Rm−1
x (m ≥ 2) and T ∈ (0,∞].

Let F = {ϕλ : T → C ; λ ∈ R} be a family of C-valued distributions (resp. hyperfunctions) in

R × U with support in T . A sequence ψ = {ψn(τ)}n≥1 of C-valued functions on T is called

supershift for the family F (or F admits ψ as supershift) if:

i) any entry ψn is of the form ψn =
∑n
j=0 Cj(n)ϕkj(n) with kj(n) ≤ 1 ∀n ∈ N∗ and 0 ≤ j ≤ n;

ii) there exists an open subset Ussh = V ∩ T (where V is an open subset in R× U), called a

F-supershift domain, such that the sequence {ψn(τ)|V }n≥1 converges weakly in the sense

of distributions (resp. hyperfunctions) in V towards the restriction to V of a distribution
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(resp. hyperfunction) ψ∞ which is a C-�nite linear combination of elements in F of the

form ϕνk(∞) with ν ∈ Z∗, where k(∞) ∈ R \ [−1, 1].

2.2 The archetypical superoscillating sequence Fn(x, a)

2.2.1 Properties of Fn(x, a)

This section is devoted to the presentation of the properties of the archetypical superoscillating

sequence, already mentioned in the introduction, whose expression is:

Fn(x, a) =
(

cos
(x
n

)
+ ia sin

(x
n

))n
, (2.2.1)

where a > 1, n ∈ N, and x ∈ R.

Proposition 2.2.1. Consider the sequence (2.2.1). Then we have

(1) For every x0 ∈ R

lim
n→∞

Fn(x0, a) = eiax0 .

(2) The functions Fn(x, a) can be written in terms of their Fourier coe�cients Cj(n, a) as

Fn(x, a) =

n∑
j=0

Cj(n, a)ei(1−2j/n)x, (2.2.2)

where

Cj(n, a) :=
(−1)j

2n

(
n

j

)
(a+ 1)n−j(a− 1)j .

(3) For every p ∈ N the following relation

F (p)
n (0, a) =

n∑
j=0

Cj(n, a)

[
i

(
1− 2j

n

)]p
between the Taylor and the Fourier coe�cients of Fn(x, a) holds.

Proof. Point (1) follows from:

lim
n→∞

Fn(x0, a) = lim
n→∞

(
cos
(x0

n

)
+ ia sin

(x0

n

))n
= lim
n→∞

(
1 +

iax0

n

)n
= eiax0 ∀x0 ∈ R

(2.2.3)
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Point (2) is a consequence of the Newton binomial formula, as it is showed below:

Fn(x, a) =
(eix/n + e−ix/n

2
+ a

eix/n − e−ix/n

2

)n
=
(1 + a

2
eix/n +

1− a
2

e−ix/n
)n

=

=

n∑
j=0

(
n

j

)(
1 + a

2
eix/n

)n−j(
1− a

2
e−ix/n

)j

=

n∑
j=0

(
n

j

)(
1 + a

2

)n−j(
1− a

2

)j
ei(1−2j/n)x

=

n∑
j=0

Cj(n, a) ei(1−2j/n)x.

(2.2.4)

Let us notice that since (1− 2j/n) ≤ 1 ∀n ∈ N we have that the sequence (2.2.2) satis�es the

�rst requirement of de�nition De�nition 2.1.2 with α = 1.

Point (3) follows by taking the derivatives of

n∑
j=0

Cj(n, a) ei(1−2j/n)x

and computing them at the origin.

Let observe that we have pointwise convergence of Fn(x, a) → eiax as n → ∞ on all R.

Now the focus will be on uniform convergence in order to exploit also the second requirement of

De�nition 2.1.2 and prove that (2.2.2) is a superoscillating sequence.

Theorem 2.2.2. Let M > 0 be a �xed real number and a ∈ R. Then the sequence Fn(x, a)

converges uniformly to eiax on [−M,M ]. Thus Fn(x, a) is a superoscillating sequence.

Proof. We have to show that for every interval [−M ;M ] we have

sup
|x|≤M

|Fn(x, a)− eiax| → 0 as n→∞.

To this purpose, we will compute an estimate for the modulus of the function Fn(x, a) − eiax.

Let us set

w = Fn(x, a) and z = eiax,

and observe that the modulus and the angles associated with w and z are, respectively,

pw =
(

cos2
(x
n

)
+ a2 sin2

(x
n

))n/2
, θw = n arctan

(
a tan

(x
n

))
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and

pz = 1, θz = ax.

The Carnot theorem for triangles gives

|w − z|2 = 1 + p2
w − 2pw cos(θw − θz)

so that we obtain

|Fn(x, a)− eiax|2 = 1 +
(

cos2
(x
n

)
+ a2 sin2

(x
n

))n
− 2
(

cos2
(x
n

)
+ a2 sin2

(x
n

))n/2
cos
[
n arctan

(
a tan

(x
n

))
− ax

]
.

(2.2.5)

Let us set

E2
n(x, a) := |Fn(x, a)− eiax|2 (2.2.6)

and observe that for any x such that |x| ≤M we have

(
cos2

(x
n

)
+ a2 sin2

(x
n

))n
→ 1 as n→∞

and

cos
[
n arctan

(
a tan

(x
n

))
− ax

]
→ 1 as n→∞.

Using (2.2.5), we deduce that E2
n(x, a)→ 0. Note that E2

n(x, a), as a function of x, is continuous

on the compact set [−M,M ] for any n >
2M

π
so E2

n(x, a) has maximum. Set

ε(n, a) = max
x∈[−M,M ]

En(x, a).

It is now easy to see that ε(n, a)→ 0 as n→∞ and since

sup
|x|≤M

|Fn(x, a)− eiax| = ε(n, a)

the convergence is uniform in [−M,M ].

The next result however shows that on all R the sequence Fn(x, a) does not converge uni-

formly.
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Proposition 2.2.3. The sequence Fn(x, a) does not converge uniformly to eiax on R.

Proof. Uniform convergence on R would be equivalent to

sup
x∈R
|Fn(x, a)− eiax| → 0 as n→∞.

If x = 0 obviously Fn(0, a)− e0 = 0, however, if we consider the points xn = jπn for j ∈ Z \ {0}

we have

sup
x∈R
|Fn(x, a)− eiax| ≥ |Fn(xn, a)− eiaxn | = |(±1)n − eiaxn |

= |(±1)n − ei(ajπ)n| 6→ 0 as n→∞

if a ∈ R \ (Z \ {0}), indeed the angle ajπn keeps rotating of ajπ as n→∞, so the convergence

cannot be uniform.

If a ∈ Z \ {0}, we reason in the same way by taking xn = n
π

2
.

Thanks to this last results we proved not only that the sequence Fn(x) is a superoscillating

sequence, but also that it actually is a supershift as remarked below.

Remark 2.2.1. If T = R and F denotes the family of characters x ∈ R 7→ ϕλ = eiλx indexed by

λ ∈ R, then, one says that λ 7−→ {x 7→ Fn(x, λ)}n≥1 realizes a supershift for λ 7→ ϕλ, or also

that λ 7→ ϕλ admits λ 7→ {x 7→ Fn(x, λ)}n≥1 as a supershift.

Remark 2.2.2. In Theorem 2.2.2 the term

|Fn(x, a)−eiax|2 = E2
n(x, a)

is given by formula (2.2.5). We can give a �rst approximation of E2
n(x, a) by considering the

principal part of the in�nitesimum E2
n(x, a) for |x| ≤ M . If we can �nd two constants j and

β ∈ R+ such that

E2
n(x, a) = β

(x
n

)j
+ o
(x
n

)j
, as n→∞,

we can choose

E2
n(x, a) ≈ β

(x
n

)j
as n→∞,

as �rst approximation of E2
n(x, a).

With some computations we have

(E2
n(0, a))′ = 0 and (E2

n(0, a))′′ =
β

2
=

3

2
(a2 − 1),
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and so

En(x, a) ≈ x

n

√
3

2

(
a2 − 1

)
.

This proves that also E2
n(x, a)→ 0 uniformly over compact sets.

Let us consider now, the superoscillating sequence Fn(z, a) where the real variable x and the

real parameter a have been replaced with the corresponding complex counterparts. What we

have claimed so far in Theorem 2.2.2 and Remark 2.2.2 does not hold in this complex setting

and so we need the following lemma.

Lemma 2.2.4. Let a ∈ C, set α := max(1, |a|) and, for any z ∈ C, consider Fn(z, a) de�ned as

in (2.2.2) but with z, a ∈ C instead of x, a ∈ R.

Then, for any N ∈ N∗ and any z ∈ C, the following inequalities hold

|Fn(z, a)| ≤ e(|a|+1)|z|

|Fn(z, a)− eiaz| ≤ 2

3

a2 − 1

n
|z|2e(α+1)|z|.

(2.2.7)

Proof. In order to prove the �rst inequality (2.2.7), let

sinc : z ∈ C 7→ sin z

z
=

� 1

0

t cos(tz)dt

be the sinus cardinal function and recall that it satis�es |sinc(z)| ≤ e|Im(z)| ∀z ∈ C. One has then

the uniform estimates valid ∀N ∈ N∗, ∀z ∈ C

|Fn(z, a)| =
∣∣∣ cos

( z
n

)
+ ia sin

( z
n

)∣∣∣n =
∣∣∣ cos

( z
n

)
+ iaz sinc

( z
n

)∣∣∣n
≤ eIm(z)

(
1 +
|az|
n

)n
≤ exp(|a||z|+ |Im(z)|) ≤ e(|a|+1)|z|.

(2.2.8)

Let us now prove the second inequality in (2.2.7), that gives us an estimate on the error

|Fn(z, a)− eiaz| when z is complex.

Let us �rst state the following, thanks to Werner formula and Eulero identity, for any n ∈ N∗

∣∣∣ cos
( z
n

)
− cos

(az
n

)∣∣∣ = 2
∣∣∣ sin( (a− 1)z

2n

)
sin
( (a+ 1)z

2n

)∣∣∣
≤ |a

2 − 1|
2n2

|z|2 exp
( |a− 1|+ |a+ 1|

2n
|z|
)

≤ |a
2 − 1|
2n2

|z|2 exp
(α+ 1

n
|z|
)
,

(2.2.9)
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and, recalling that
∑k−1
l=0 a

2l+1 = a
1− a2k

1− a2
, we have

∣∣∣a sin
( z
n

)
− sin

(az
n

)∣∣∣ =
∣∣∣ ∞∑
k=0

(−1)k

(2k + 1)!
(a− a2k+1)

( z
n

)2k+1∣∣∣
=
|a2 − 1|
n2

|z|2
∣∣∣ ∞∑
k=0

(−1)k

(2k + 1)!

( k−1∑
l=0

a2l+1
)( z

n

)2k−1∣∣∣
≤ |a

2 − 1|
2n2

|z|2
∞∑
k=0

α2k−1

(2k − 1)!(2k + 1)

( |z|
n

)2k−1

≤ |a
2 − 1|
6n2

|z|2
∞∑
k=0

1

(2k − 1)!

(α|z|
n

)2k−1

≤ |a
2 − 1|
6n2

|z|2 exp
(α
n
|z|
)
.

(2.2.10)

The identity An +Bn = (A+B)
∑N−1
k=0 AkBN−1−k entails

|Fn(z, a)− eiaz| =
∣∣∣ cos

( z
n

)
− cos

(az
n

)
+ i
(
a sin

( z
n

)
− sin

(az
n

))∣∣∣
×
N−1∑
k=0

|Fn(z, a)|k
∣∣∣ exp

( iaz
N

)N−1−k∣∣∣ .
Then using (2.2.8), (2.2.9) and (2.2.10) we can prove the second inequality in (2.2.7)

|Fn(z, a)− eiaz| ≤ 2

3

|a2 − 1|
n2

|z|2 exp
(α+ 1

n
|z|
)N−1∑
k=0

exp
(
k(|a|+ 1)|z|+ N − 1− k

N
|a||z|

))
≤ 2

3

|a2 − 1|
n2

|z|2 exp
(
α+ 1)|z|

)
.

The following remark further clari�es the behaviour of the sequence Fn.

Remark 2.2.3. Consider a point x0 and an increment δx. The superoscillating sequence

Fn(x, a) :=
(

cos
(x
n

)
+ ia sin

(x
n

))n
is such that Fn(x0, a) → eiax0 and Fn(x0 + δx, a) → eia(x0+δx). This can also be seen in a
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di�erent way, which sheds some light on the behaviour of the superoscillatory sequence. Indeed,

Fn(x0 + δx, a) =
(

cos
(x0 + δx

n

)
+ ia sin

(x0 + δx

n

))n
=
(

cos
(x0

n

)
cos
(δx
n

)
− sin

(x0

n

)
sin
(δx
n

)
+ ia

[
sin
(x0

n

)
cos
(δx
n

)
+ cos

(x0

n

)
sin
(δx
n

)])n
=
{

cos
(δx
n

)[
cos
(x0

n

)
+ ia sin

(x0

n

)]
+ ia sin

(δx
n

)[ i
a

sin
(x0

n

)
+ cos

(x0

n

)]}n
=
{

cos
(δx
n

)
+ ia sin

(δx
n

) cos
(
x0

n

)
+ i

a sin
(
x0

n

)
cos
(
x0

n

)
+ ia sin

(
x0

n

)
}n[ cos

(x0

n

)
+ ia sin

(x0

n

)]n
=
{

cos
(δx
n

)
+ iãn sin

(δx
n

)}n[
cos
(x0

n

)
+ ia sin

(x0

n

)]n
where

ãn = a

[
cos
(
x0

n

)
+ i

a sin
(
x0

n

)][
cos
(
x0

n

)
− ia sin

(
x0

n

)]
cos2

(
x0

n

)
+ a2 sin2

(
x0

n

)
which can also be written as

ãn = a
1− i

2
a2−1
a sin

(
2x0

n

)
cos2

(
x0

n

)
+ a2 sin2

(
x0

n

) ;

since ãn → a as n → ∞, we re-obtain the previous result and we see that the modulus of the

limit function now grows as a grows. The amplitude of the superoscillations decreases when a

increases. We see that a = 1 is a �xed point while if a is large then we obtain large variations.

Figure 2.1: a = 4 and n = 50 Figure 2.2: a = 10 and n = 50

In order to better understand the properties of Fn(x, a), I compared in the �gure above the

cases in which a = 4 and a = 10, �xing n = 50.

In Fig. 2.1 and Fig. 2.2 I plot Fn(x) using a representation that will be employed extensively in

what follows. To display the oscillations, and to accommodate the exponentially large variation in
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the modulus of Fn(x), I plot log(|1+Re(Fn(x))|), so that the oscillations are visible as downward

spikes at the zeros of Re(Fn), that coincide with the zeros of log(|1 +Re(Fn(x))|). Let us notice

that pictures are very similar with Im(Fn(x)) rather than Re(Fn(x)).

2.2.2 On the superoscillating region of Fn(x, a)

To understand the superoscillating phenomenon of the prototypical sequence (expressed in for-

mula (2.2.2)) in greater detail it will be worth to de�ne and study the size of its superoscillatory

region.

Before starting, it is useful to point out that the material in this work is based on a precise

de�nition of superoscillation phenomenon in terms of the uniform convergence of sequences of

functions. Here I follow a di�erent approach with respect to the one in [15] where superoscillations

are not studied in terms of the uniform convergence of functions. In [15] the authors treat a

di�erent case by describing superoscillations with wavenumbers di�erent from a, in the region

away from the origin when n is large but �nite. Consequently, they consider the sequence

Gn(x, a) := (cosx+ ia sinx)n

that converges only at x = 0, and therefore does not �t in the current setting.

Let us start now the analysis on the size of the region where Fn(x) is a good approximation

of eiax. In order to do that I write Fn(x, a) in exponential form, involving the local wavenumber.

First of all, let us notice that (I will omit the dependence on a unless necessary)

Fn(x) = |gn(x)|n/2ein arg(gn(x)).

Where

gn(x) = cos(x/n) + ia sin(x/n),

|gn(x)|2 = cos2(x/n) + a2 sin2(x/n),

arg(gn(x)) = x/n.

Then let us recall that the local wavenumber is, roughly speaking, the number of waves per

unit distance and it is de�ned by:

k(x) = Im

[
∂

∂x
(log(Fn(x))

]
.
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It is possible to obtain a more explicit formula for k(x), as showed in the following computations:

∂

∂x
(log(Fn(x)) =

1

cos(x/n) + ia sin(x/n)
(ia cos(x/n)− sin(x/n))

cos(x/n)− ia sin(x/n)

cos(x/n)− ia sin(x/n)

=
ia+ 1

2 (a2 − 1) sin(2x/n)

cos2(x/n) + a2 sin2(x/n)
.

Thus

k(x) =
a

cos2(x/n) + a2 sin2(x/n)
. (2.2.11)

We can now rewrite Fn(x) using (2.2.11) as:

Fn(x, a) = |gn(x)|n/2ein arg(gn(x)) =
(

cos2
(x
n

)
+ a2 sin2

(x
n

))n/2
exp

(
in

� x

0

k(x′) dx′
)

=

=

(
a

k(x)

)n/2
exp

(
in

� x

0

k(x′) dx′
)
.

(2.2.12)

We call superoscillatory region, the region where the local wavenumber of Fn(x) is smaller

than 1.

As it is showed in Fig. 2.3, the wavenumber varies from the superoscillatory k(0) = a to the

slowest variation k(nπ) = 1/a. So, the superoscillatory region, within which |k(x)| > 1, delimited

in Fig. 2.3 by red lines, explicitly is:

|x| = xs < n arccot(
√
a).

Equation (2.2.12) shows that in the superoscillatory region Fn(x) is exponentially smaller (in

n) than in the region where |k(x)| ≤ 1.

However, the region where Fn(x) is a good approximation of eiax, that is, where the am-

plitude of the superoscillations is approximately constant it is de�ned to be the region of fast

superoscillations. Let us point out that this region is smaller than the region in which |k(x)| < 1.

To explore it, we expand Fn(x) near
x

n
= 0 (i.e. n → ∞) to get an approximation slightly

more accurate than Fn(x) ≈ eiax.

In particular we consider:

Fn(x) = en log((gn(x)) ≈ exp
(
n(log(g(0)) + nx

d

dx
log(g(0)) + nx2 d

2

dx2
log(g(0))

)
≈ exp(iax+

1

2n
(a2 + 1)x2) = e

1
2n (a2+1)x2

eiax as x/n→ 0.

(2.2.13)
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So, the region of fast superoscillations, delimited by green vertical lines in Fig. 2.3, is where

the coe�cient
1

n
(a2 − 1)x2 is smaller than 1, i.e. where:

|x| < xfs =

√
n

a2 − 1
.

Figure 2.3: Local wavenumber k(x) (2.2.11) when a = 4 and n = 50

Figure 2.4: Representation of Fn(x) when a = 4 and n = 50

It is clear both from the mathematical expression and from Fig. 2.3 and Fig. 2.4 that we are

handling nπ-periodic functions.

It is immediate to notice that both the superoscillating and fast superoscillating regions

become larger as n increases until they invade the entire real axis, indeed we proved in Proposi-

tion 2.2.1 the pointwise convergence of Fn(x)→ eiax on all R.

In order to better visualize the approximation phenomenon, I zoomed in x ∈ [−5, 5]. Here, I

consider n taking values from n = 20 to n = 100, and so the fast superoscillation region enlarge

from [−
√

20,
√

20] = [−4.5, 4.5] to [−10, 10]. I plot on the same graph Fn(x) for di�erent values

of n and its asymptotic function, namely eiax, and the max norm error E2
n(x, a) de�ned in (2.2.6)

(Fig. 2.8).
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Figure 2.5: Representation of Fn(x) when a = 4 and
n increases

Figure 2.6: Representation of the log-
arithm of max(E2

n(x, a))

Let us notice that if we consider a larger portion of the real axis including points well outside

the fast superoscillatory region, the convergence is no more assured. For example, let us consider

the largest superoscillatory region, that is [−100 arccot(
√

4), 100 arccot(
√

4)] = [−46.26, 46.26],

then we have an exponential growth of the error.

Figure 2.7: Representation of Fn(x) when a = 4 and
n increases

Figure 2.8: Representation of the log-
arithm of max(E2

n(x, a))

Naturally, a key component to the superoscillatory phenomenon is the extremely rapid oscil-

lation in the coe�cients Cj and since the regions of superoscillations are created at the expense

of having the function grow exponentially in other regions, it would be natural to conclude that

the superoscillations would be quickly �over-take� by tails coming from the exponential regions

and would thus be short-lived as far as n is �nite.
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2.3 Ap spaces

The superoscillating sequences we are studying are �nite sums of exponentials, and their complex

extensions is formally obtained by replacing the real variable x with the complex variable z. It

holds that the extensions are not simply holomorphic in a neighborhood of R, but they are

actually entire, so from now on the powerful theory of holomorphic functions can be used.

Before going ahead with that, I need to point out that since the exponentials that appear

in the superoscillating sequences are of the form eiλx, with |λ| ≤ 1, and x real, they have

frequencies bounded by 1, but we need to interpret this in di�erent way when one considers the

entire extension of such functions. Indeed, functions of the form eiλz are entire and of exponential

type and order 1 (see De�nition 2.3.1 and De�nition 2.3.2). Thus, we are naturally led to the

study of entire functions with growth conditions at in�nity.

The scope of this section is to present, without aiming of completeness, the spaces of entire

functions with growth conditions, the topology with which they are endowed (Section 2.3.1) and

some operators acting on these spaces (Section 2.3.2).

2.3.1 Basics on Ap spaces

I restrict the analysis to two special kinds of space of entire functions with growth conditions

Ap(C) and Ap,0(C), such spaces are classical, see e.g. [11], and their introduction goes back to

H�ormander.

Let f be a non-constant entire function of a complex variable z. We de�ne

Mf (r) = max
|z|=r

|f(z)|, for r ≥ 0.

De�nition 2.3.1. (Order)

The non-negative real number p de�ned by

p = lim sup
r→∞

ln lnMf (r)

ln r

is called the order of f .

If p is �nite then f is said to be of �nite order and if p = ∞ the function f is said to be of

in�nite order.
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De�nition 2.3.2. (Type)

In the case f is of �nite order we de�ne the non negative real number

σ = lim sup
r→∞

lnMf (r)

rp

which is called the type of f .

If σ ∈ (0,∞) we call f of normal type, while we say that f is of minimal type if σ = 0 and of

maximal type if σ =∞.

Constant entire functions are considered of minimal type and order zero.

De�nition 2.3.3. (Ap(C) space)

Let p be a positive number. The space Ap(C) is de�ned by

Ap(C) := {f ∈ H(C) : ∃ A > 0, B > 0 : |f(z)| ≤ A exp(B|z|p)}

and it is called the space of entire functions of order less or equal to p and of �nite type.

Remark 2.3.1. An Ap space of particular interest is A1, namely the set of entire functions such

that there exists A > 0 and B > 0 for which

|f(z)| ≤ AeB|z| ∀z ∈ C.

This space is called the space of entire functions of exponential type and it is denoted also with

Exp(C).

De�nition 2.3.4. (Ap,0(C) space)

Let p be a positive number. The space Ap,0(C) is de�ned by

Ap,0(C) := {f ∈ H(C) : ∀ε > 0, ∃Aε > 0 : |f(z)| ≤ Aε exp(ε|z|p)},

and it is called the space of entire functions of order less or equal p and of minimal type.

Remark 2.3.2. Also in this case, a space of particular interest turns out when we consider p = 1

and it is called the space of entire functions of infra-exponential type and it is denoted with A1,0.

Let us point out some important relations between the spaces I presented so far.
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Proposition 2.3.5. The following property holds

Ap,0 ⊆ Ap ⊆ Aq,0 ⊆ Aq ∀ p ≤ q.

Proof. First of all, let us prove that, for all p, Ap,0(C) ⊆ Ap(C). If ∀ε > 0, ∃Aε > 0 such that

|f(z)| ≤ Aε exp(ε|z|p) (i.e. f ∈ Ap,0) then, in particular, if we �x ε = B we can �nd an Aε that

we denote with A, such that |f(z)| ≤ A exp(B|z|p) (i.e. f ∈ Ap).

Furthermore, we have that Ap ⊆ Aq,0 for every p ≤ q. Indeed, given a f ∈ Ap(C), for any

ε > 0 consider a Rε > 0 such that B|z|p < ε|z|q in the open set |z| > Rε and then

|f(z)| ≤ A exp(B|z|p) ≤ A exp(ε|z|q).

On the compact set |z| ≤ Rε, we reason as before and we claim that f is bounded in that

set, so it admits a maximum C. Thus we have

|f(z)| ≤ C ≤ C exp(ε|z|q).

Considering Aε = max{A,C} we get the result.

Finally, this discussion leads to state: Ap,0 ⊆ Ap ⊆ Aq,0 ⊆ Aq . . . and so on.

To de�ne a topology on these spaces I need to introduce some tools from functional analysis

and topology, for a detailed treatment refer to [11][Section 2.1] and [12][Section 4.5].

De�nition 2.3.6. (Fr�echet space)

A topological vector space is called a Fr�echet space, when X is metrizable with a translation

invariant metric, complete and locally convex.

Intuitively, the combination of a vectorial structure with a topological one allows us to de�ne

a local topology near 0 and to translate it in every other point of the space. Since, here, the aim

is to generalize the concept of Fr�echet space in the way that follows, this property turns out to

be useful.

Theorem 2.3.7. Let

X1 ⊂ X2 ⊂ · · · ⊂ Xj ⊂ · · ·

be a sequence of Fr�echet spaces such that for every j ∈ N, Xj is a subspace of Xj+1 and the

topology on Xj is the topology induced from Xj+1, namely if W ⊂ Xj is an open set in Xj i�
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there exists Y ⊂ Xj+1 open in Xj+1 such that W = Y ∩Xj. Let

X =

∞⋃
j=1

Xj

and consider the sets W that satisfy: W ∩ Xj is an open, convex, balanced neighborhood of 0

in Xj for all j. Then X has a unique locally convex vector space topology whose open, convex,

balanced neighborhoods of 0 are precisely the sets W .

The topology determined in this way is called the inductive limit topology, and spaces of this

kind are called LF spaces (short for: inductive limits of Fr�echet spaces). Let us point out that

an LF space is almost never a Fr�echet space.

The fundamental property of the inductive limit topology that we use, is that important

concepts such as convergence and continuity in connection with the topology on X can be

referred to the corresponding concepts for one of the simpler spaces Xj .

Now, let us use this concepts in our framework, and let us de�ne the spaces that will play

the role of Xj spaces.

De�nition 2.3.8. (ABp space)

Let p and B be positive real numbers. The space ABp (C) is de�ned by

ABp (C) := {f ∈ H(C) : ∃ A > 0 : |f(z)| ≤ A exp(B|z|p)}.

Then we can induce a topology on ABp (C) through the de�nition of the following norm:

‖f‖B := sup
z∈C
{|f(z)| exp(−B|z|p)}.

‖ · ‖B de�nes a norm on ABp (C) so that (ABp (C), ‖ · ‖B) is a Banach space, and in particular a

Fr�echet space.

For any sequence {Bn}n≥1 of positive numbers, strictly increasing to in�nity, we can notice

that ABnp (C) ⊆ ABn+1
p (C) and that Ap(C) is given by the inductive limit

Ap(C) := lim
→
ABnp (C).

So we can induce in a canonical way an LF-topology onAp(C), as it is described in Theorem 2.3.7.

In this case, it can be proven that this topology is independent of the choice of the sequence

{Bn}n≥1. Thus given f and a sequence {fN}N≥1 in Ap(C), we say that fN → f in Ap(C) if and
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only if there exists n ∈ N∗ such that f, fN ∈ ABnp (C) for all N ∈ N∗, and ‖fN − f‖Bn → 0 for

N →∞.

On the other hand, the topology on Ap,0(C) is given by the projective limit

Ap,0(C) := lim
←
Aεnp (C).

where {εn}n≥1 is a strictly decreasing sequence of positive numbers converging to 0.

The following result is an immediate consequence of the de�nition of the topology in the

spaces Ap(C) for p > 0.

Proposition 2.3.9. Let f = {fN}N≥1 be a sequence of elements in Ap(C). The two following

assertions are equivalent:

• the sequence f converges towards 0 in Ap(C);

• the sequence f converges towards 0 in H(C) and there exists Af ≥ 0 and Bf ≥ 0 such that

∀N ∈ N∗,∀z ∈ C |fN (z)| ≤ Af e
Bf|z|p . (2.3.1)

Remark 2.3.3. Here H(C) is equipped with its usual topology of uniform convergence on any

compact subset.

Proof. The �rst assertion means that there exists B > 0 with limN→∞ ‖fN‖B = 0 which implies

that the sequence f converges to 0 in H(C).

Furthermore, since limN→∞ ‖fN‖B = 0, there exists N1 > 0 such that ‖fN‖B ≤ 1 for

N ≥ N1, and then |fN (z)| ≤ AeB|z|
p

with B and A = sup(Ã1, . . . , ÃN1 , 1) independent of N

(Ãj = ‖fj‖B = supC(|fj(z)|e−B|z|
p

) for j = 1, . . . , N1.

Conversely, assume that the second assertion holds and take B > Bf, so that, given ε > 0,

there exists Rε > 0 such that

∀N ∈ N∗, sup
|z|≥Rε

|fN (z)|e−B|z|
p

≤ Af e
(Bf−B)Rpε < ε.

On the other hand, since f converges to 0 uniformly on any compact subset of C, in particular

on D(0, Rε), there exists Nε ∈ N∗ such that for N ≥ Nε

sup
|z|≥Rε

|fN (z)|e−B|z|
p

≤ sup
|z|≥Rε

|fN (z)| < ε.

Therefore supN≥Nε ‖fN (z)‖B < ε and the sequence f converges to 0 in Ap(C).
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This result has two important consequences stated in the theorem and in the lemma below.

The �rst is a convergence result of Fn(z, a) that can be compared with its real counterpart stated

in Section 2.2, whereas the latter is a characterization of the coe�cients of entire functions with

growth conditions.

Theorem 2.3.10. For any a ∈ C, the sequence {z 7→ FN (z, a)}N≥1 converges to z 7→ eiaz in

A1(C).

Proof. It follows from estimates (2.2.8) that the sequence f = {z 7→ FN (z, a)}N≥1 satis�es the

estimates (2.3.1) with p = 1, Bf = |a| + 1 and Cf = 1. Lemma 2.2.4 implies on the other hand

that the sequence f converges towards z 7→ eiaz in H(C). The result is then a consequence of

Proposition 2.3.9.

Lemma 2.3.11. The function

f(z) =

∞∑
j=0

fjz
j

belongs to Ap if and only if there exists Cf > 0 and b > 0 such that

|fj | ≤ Cf
bj

Γ( jp + 1)
.

Proof. First suppose that f(z) ∈ Ap and let us prove that the estimate on the coe�cients fj

follows by the Cauchy formula. In fact, we have

f (j)(z) =
j!

2πi

�
γ

f(w)

(w − z)j+1
dw,

where the path of integration γ is the circle |w− z| = s|z|, where s is a positive real number and

z 6= 0. Then we have

|f (j)(z)| ≤ j!

(s|z|)j
max

|w−z|=s|z|
|f(w)| ≤ Cf j!

(s|z|)j
expB(1 + s)p|z|p

for all s > 0, where we have used the fact that f ∈ Ap and |w| ≤ (1 + s)|z|. The well known

estimate

(a+ b)p ≤ 2p(ap + bp), a > 0, b > 0, p > 0

gives

(1 + s)p ≤ 2p(sp + 1)
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for all s > 0. Hence we have

|f (j)(z)| ≤ Cf
j!

(s|z|)j
exp(B 2psp|z|p) exp(B 2p|z|p)

for all z ∈ C and s > 0. We now take the minimum of the right-hand side of the above estimate

with respect to s, i.e. the minimum of the function

g(s) :=
1

(s|z|)j
exp(B 2psp|z|p)

in (0,∞). The minimum is at the point

smin =
( j

2pBp

)1/p 1

|z|

so that we obtain

|f (j)(z)| ≤ Cf j!
(2pBp

j

)j/p
ej/p exp(B 2p|z|p)

So if we set

b := (2pB pe)1/p

we obtain

|f (j)(z)| ≤ Cf j!
bj

jj/p
exp(B 2p|z|p)

for all z ∈ C. Since fj =
f (j)(0)

j!
we have, by the maximum modules principle applied in a disc

centered at the origin and with radius ε > 0 su�ciently small,

|fj | ≤ Cf
bj

jj/p
exp(B 2pεp) ≤ 2Cf

bj

jj/p

= C ′f
bj

(j!)1/p
≤ C ′f

bj

Γ( jp + 1)

where the last inequality follows from (j!)1/p ≤ Γ( jp + 1).

The other direction follows from the properties of the Mittag-Le�er function (see Appendix A).

In fact

Eα,β(z) =

∞∑
n=1

zn

Γ(αn+ β)

is an entire function of order 1/α (and of type 1) for α > 0 and Re(β) > 0. So, in our case, f is

entire of order p.

Thanks to this important characterization and recalling that Γ(j + 1) = j!, we can de�ne:
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De�nition 2.3.12. (Aγ,β1 spaces)

We say that f ∈ Aγ,β1 (C) i� f ∈ A1 such that f : W ∈ C 7−→
∑∞
j=0 ajW

j and

|aj | ≤
γ

j!
βj ∀j ∈ N

2.3.2 Operators on Ap(C)

Let us now focus our attention on the operators acting on Ap(C) and Ap,0(C) and on the

properties of the dual spaces.

De�nition 2.3.13. (Analytic functional space)

Let Ω be an open subset of C. An analytic functional T : H(Ω) → C is a continuous linear

functional on the space of the holomorphic functions H(Ω).

The space of analytic functional on Ω is denoted with H′(Ω).

De�nition 2.3.14. (Fourier-Borel transform)

Let Ω be an open subset of C. The Borel-Fourier transform of an analytic functional µ ∈ H′(Ω)

is the function

µ̂(w) = µ(exp(−z · w)), w ∈ C.

Remark 2.3.4. It can be proven that the Fourier-Borel transform is an entire function of expo-

nential type, that is µ̂ ∈ A1(C). Thus, thanks to Proposition 2.3.5, µ̂ ∈ Ap(C) ∀p.

Let us denote by A′p(C) the strong dual of Ap(C), namely the space of continuous linear

functional on Ap(C) endowed with the strong topology, then one can extend the de�nition of

Fourier-Borel transform to µ ∈ A′p(C).

I can now state the following duality results which we will be useful in the sequel:

Theorem 2.3.15. Let p, p′ ∈ R, p > 1, p′ > 1 be such that 1
p + 1

p′ = 1. Then the following

isomorphisms

Âp(C)′ ∼= Ap′,0(C)

and

Âp,0(C)′ ∼= Ap′(C),

are algebraic and topological as well.
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The duality is realized as

µ ∈ A′p′(C) 7−→ µ̂ ∈ Ap,0(C)

That means that every holomorphic function with growth conditions, i.e. f ∈ Ap,0(C), is the

Fourier-Borel transform of an analytic functional on Ap′(C), namely µ ∈ A′p′(C).

In the extreme case p = 1, A1(C) is isomorphic to the space H(C) of analytic functionals,

and, similarly as above, the duality is realized as

µ ∈ H′(C) 7−→ µ̂ ∈ A1(C)

That is a rephrasing of Remark 2.3.4.

The last concept I want to introduce in this section is the de�nition of convolution operators

on Ap(C) spaces. This objects will turn out to be very used in the study of superoscillating

sequences.

De�nition 2.3.16. (Convolution between an analytic functional and an entire function)

Let µ ∈ H′(C) and f ∈ H(C), then their convolution is the function de�ned by

(µ ∗ f)(z) = µ(f)(z) := µ(ζ 7→ f(ζ + z)) z ∈ C.

There are some special cases of interest, for example the convolution of any analytic functional

with an exponential. In this case one can see that

(µ ∗ eiaζ)(z) = µ(ζ 7→ eia(z−ζ)) = eiazµ̂(a)

where µ̂(a) is the Fourier transform of µ at the point a. This fact is important because it has a

direct impact on superoscillating sequences, indeed if one considers any convolutor µ∗ acting on

H(C), we see that

µ ∗ Fn(z) =

n∑
j=0

Cj(n, a)ei(1−2j/n)zµ̂(1− 2j/n) =

n∑
j=0

C̃j(n, a)ei(1−2j/n)z,

where for all j

C̃j(n, a) = Cj(n, a)µ̂(1− 2j/n).

Before introducing another special class of convolutors on the space of entire functions, let

us state this preliminary de�nition.
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De�nition 2.3.17. (Carrier)

Let µ ∈ H′(C). A compact set K ⊆ C is a carrier of µ if for every neighborhood w of K, there

exists Cw ≥ 0 such that

|µ(h)| ≤ Cw sup
z∈w
|h(z)| ∀h ∈ H(C).

Now we are ready to introduce the class of in�nite order di�erential operators, which arise

when we consider an analytic functional µ carried by the origin. The reason for the nomenclature

of in�nite order di�erential operator stems from the fact that the Fourier-Borel transform of an

analytic functional carried by the origin belongs to the space Ap,0, and therefore its Taylor

expansion converges everywhere on C and its action can truly be considered as the action of a

di�erential operator of in�nite order. Speci�cally, we can give the following de�nition, see [18].

De�nition 2.3.18. (In�nite-order di�erential operator)

An operator of the form
∞∑
m=0

bm(z)
dm

dzm
(2.3.2)

is an in�nite-order di�erential operator, which acts continuously on H(C) if and only if, for every

compact set K ⊂ C,

lim
k→∞

k

√
sup
z∈K
|bk(z)| k! = 0. (2.3.3)

There are many instances when we can write a di�erential operator in the form (2.3.2), while

they do not satisfy condition (2.3.3). This is, classically, the case for the translation operator,

which can be de�ned as

τf(x) = f(x+ 1) = exp(d/dx)f(x) =

∞∑
m=0

1

m!

dm

dxm
f(x). (2.3.4)

While the operator appears to be expressed as an in�nite sum of derivatives, the function on

the right hand side of (2.3.4) does not converge, in general, and in fact makes no sense, except

in an intuitive way. To be precise, the translation is only a convolutor on the space, say, of

entire functions. Operators of this kind are quite important and therefore one may ask whether

they can be treated in a general way. This is guaranteed by Theorem 2.3.15, which can now be

rephrased as follows:
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Theorem 2.3.19. Let p, p′ be real numbers such that p ≥ 1, p′ ≥ 1 and

1

p
+

1

p′
= 1.

The space of convolutors on Ap is isomorphic (via Fourier-Borel transform) to the space Ap′,0

and conversely, the space of convolutors of Ap,0 is isomorphic to Ap′ .

Remark 2.3.5. Let us consider the di�erential operator de�ned as

U

(
t,
d

dz

)
=

∞∑
m=0

λ(t)m

m!

dm

dzm
,

which may act on holomorphic functions and let us denote by h(t, ζ) its symbol. By symbol of

a linear di�erential operator we mean, roughly speaking, its Fourier transform. It is the series

(or the polynomial) formally obtained replacing each partial derivative by a new variable. Then

h(t, ζ) is such that

h(t, ζ) =

∞∑
m=0

λ(t)m

m!
ζm.

Depending on the value of λ(t) this symbol may or may not de�ne an in�nite order di�erential

operator in the sense of De�nition 2.3.18. However, h(t, ζ) can be thought as the symbol of a

convolution operator for suitable choices of λ(t).

For instance, if λ(t) ≡ 1, then h(t, ζ) = eζ and therefore is the symbol of the translation of

the unit operator which is nothing but the convolution with the Dirac delta centered at z = −1,

see (2.3.4).

Moreover, the function eζ is clearly a multiplier operator on A1(C), where by multiplier

operator I mean an operator for which this property holds

T̂ f(ξ) = mT (ξ)f̂(ξ),

where m(ξ) is a C-valued function. In other words, the Fourier transform of Tf at a frequency ξ

is given by the Fourier transform of f at that frequency, multiplied by the value of the multiplier

at ξ. The convolutor T that eζ de�nes is the translation as indicated above.

If we now consider the symbol

h(t, ζ) =

∞∑
m=0

λ(t)m

m!
ζm
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it is easy to see that such operator de�nes, for suitable choices of λ(t) and t, a convolutor on

H(C), in fact the translation by λ(t). This is easily seen because h(t, ζ) is actually nothing but

exp(λ(t)ζ).

The previous reasoning can be summarized in the following scheme:

∞∑
m=0

λ(t)m

m!

dm

dzm︸ ︷︷ ︸
di�erential operator

−→
∞∑
m=0

λ(t)m

m!
ζm︸ ︷︷ ︸

symbol

−→ eλ(t)ζ︸ ︷︷ ︸
multiplier

−→ δλ(t)ζ or translation by λ(t)︸ ︷︷ ︸
convolutor

.

Remark 2.3.6. Theorem 2.3.19 shows that any continuous multiplier on Ap de�nes a continuous

convolutor on the space Ap′,0, and then a continuous di�erential operator on Ap′,0. This result

turns out to be very useful in the sequel.





Chapter 3

Evolution through Schr�odinger type

equations

Since superoscillations arise naturally in the context of quantum mechanics, it is important

to study the evolution of superoscillatory functions under Schr�odinger equation, which general

expression is stated below:

i
∂

∂t
ψ(t, x) = H ψ(t, x) ψ(x, 0) = ψ0(x).

The main question to address concerns the persistence of the superoscillatory behaviour when

superoscillating sequencess are taken as initial values of a particular Schr�odinger equation. In

other words, we wonder if the solution is again superoscillating according to de�nitions presented

in Section 2.1.

Depending on the expression of the Hamiltonian operator H the physical meaning of the

equation changes. In particular in this thesis I will treat the following cases:

• in Section 3.2 I consider H = − ∂2

∂x2
, that is the Schr�odinger equation for the free particle;

• in Section 3.3, I analyse the modi�ed Schr�odinger equation considering H = − ∂p

∂xp
;

• in Section 3.4 I present a generalization of the modi�ed Schr�odinger equation, examining

H = −
∞∑
p=0

ap
∂p

∂xp
;

• in Section 3.5 I consider H = −1

2

∂2

∂x2
−x , that is the Schr�odinger equation for the electric

�eld. Let us point out that in this case we introduce a potential V (x) = −x;

33



34 CHAPTER 3. EVOLUTION THROUGH SCHR�ODINGER TYPE EQUATIONS

• �nally, Chapter 4 is totally devoted to the study of the Schr�odinger equation for the har-

monic oscillator, so I consider H = −1

2

( ∂2

∂x2
− x2

)
, where V (x) =

1

2
x2 is the potential.

It is important to note that the persistence of superoscillations only occurs when one takes

the limit for n → ∞. If one �xes the value of n, persistence is only for a �nite time and

superoscillations are, for large n, exponentially weak, see Section 2.2 and [15].

In writing this chapter I refer to [10], [8], [9], [6], [4], [7], [5] and [13].

3.1 General strategy and continuity results

Before analysing each case in details in the following sections, I explain the general strategy that

it has been followed to address the question of persistence of superoscillation and I present the

common results that will be used later on.

General strategy:

1. We start considering the Schr�odinger equation in the real setting with initial datum ψ(0, x) =

Fn(x) (or any superoscillatory function). We denote the solution with ψn(t, x).

2. We can write the solution in the form

ψn(t, x) = U
(
t,
∂

∂x

)
Fn(x)

where U(t, ∂∂x ) is an operator which is formally de�ned by a series of derivatives.

It can be formally seen as an in�nite order di�erential operator (recall De�nition 2.3.18),

in fact, it is a convolution operator when considered on a suitable space of holomorphic

functions.

3. We complexify the variable x both in the operators and in the functions on which the

operators act. The key point here is that the real analytic functions on which the operators

act can be extended not simply to holomorphic functions in a neighborhood of the real axis

(as it would customarily happen) but in fact to entire functions satisfying speci�c growth

conditions on the whole C.

Once we are in the complex setting, in order to prove that these operators act continuously

on the space of the entire functions containing Fn(z), we can decide whether to apply the
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methods from the theory of Ap spaces and Fourier transform or to use the more limited

theory of holomorphic functions.

4. Continuity implies that we can calculate the limit limn→∞ ψn(z, t). One can then restrict

this result to the real axis and thus demonstrate that the superoscillatory nature of the

initial value Fn is preserved in the evolved solution ψn.

Remark 3.1.1. Let us explain what is the relationship between the continuity of U
(
t, ∂∂x

)
and

the parameter t.

We could prove the operator continuity in x both for every t �xed and uniformly with respect

to t. This leads, in the �rst case, to prove that ψn(t, x) superoscillates for each t in a subset of

R, whereas in the latter this leads to prove that ψn(t, x) superoscillates in a subset of R2.

In general we have two di�erent approaches to prove continuity. One was already presented

in Theorem 2.3.19, as remarked in 2.3.6.

The second possibility, presented in the following, is a direct method that avoids the use of

the Fourier transform and uses just the theory of holomorphic functions.

Theorem 3.1.1. Let λ(t) be a bounded function for t ∈ [0, T ] for some T ∈ (0,∞), f ∈ A1 and

let Uλ(t, ∂z) be the following operator

Uλ(t, ∂z) :=

∞∑
n=0

λ(t)n

n!
∂pnz .

Then, for p ∈ N, we have Uλ(t, ∂z)f ∈ A1 and Uλ(t, ∂z) is continuous on A1, that is Uλ(t, ∂z)f → 0

as f → 0 .

Proof. Let us consider the action of Uλ(t, ∂z) on f(z)

Uλ(t, ∂z)f(z) =

∞∑
n=0

λ(t)n

n!
∂pnz f(z)

=

∞∑
n=0

λ(t)n

n!
∂pnz

∞∑
j=0

fjz
j

=

∞∑
n=0

λ(t)n

n!

∞∑
j=pn

fj
j!

(j − pn)!
zj−pn

=

∞∑
n=0

λ(t)n

n!

∞∑
k=0

fpn+k
(pn+ k)!

k!
zk

(3.1.1)
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and now let us take the modulus

|Uλ(t, ∂z)f(z)| ≤
∞∑
n=0

|λ(t)|n

n!

∞∑
k=0

|fpn+k|
(pn+ k)!

k!
|z|k.

Using Lemma 2.3.11, on the coe�cients fpn+k we have the estimate

|fpn+k| ≤ Cf
bpn+k

Γ(pn+ k + 1)

and the Gamma function estimate (a+ b)! ≤ 2a+ba!b! gives

(pn+ k)! ≤ 2pn+k(pn)!k!

so we get

|Uλ(t, ∂z)f(z)| ≤
∞∑
n=0

|λ(t)|n

n!

∞∑
k=0

Cf
bpn+k

Γ(pn+ k + 1)

2pn+k(pn)!k!

k!
|z|k.

Let us now use the estimate Γ(a + b + 2) ≥ Γ(a + 1)Γ(b + 1) to separate the two series, so we

have

1

Γ(pn− 1
2 + k − 1

2 + 2)
≤ 1

Γ(pn+ 1
2 )

1

Γ(k + 1
2 )

and so

|Uλ(t, ∂z)f(z)| ≤ Cf
∞∑
n=0

((2b)p|λ(t)|)n

n!

(pn)!

Γ(pn+ 1
2 )︸ ︷︷ ︸

An

∞∑
k=0

(2b|z|)k

Γ(k + 1
2 )︸ ︷︷ ︸

Bk

.

Now observe that, due to the properties of the Mittag-Le�er function, the series in k, whose

terms are denoted with Bk, is smaller of Ce2b|z|, for some constant C > 0, as described in the

Appendix A. Now we have to show that the series in n is convergent. In fact, we have that it

has positive terms, denoted with An, so we study the asymptotic behaviour.

Let us recall the duplication formula for the Gamma function and its functional equation

Γ(pn)Γ(pn+ 1
2 ) = 21−2pn

√
πΓ(2pn)

zΓ(z) = Γ(z + 1)

so we have

An =
((2b)p|λ(t)|)n

n!

(pn)!Γ(pn)

21−2pn
√
πΓ(2pn)

=
((2b)p|λ(t)|)n

n!

(pn)!

21−2pn
√
π

Γ(pn+1)
pn

Γ(2pn+1)
2pn

=
((8b)p|λ(t)|)n

n!

(pn)!√
π

Γ(pn+ 1)

Γ(2pn+ 1)

=
((8b)p|λ(t)|)n

n!

(pn)!√
π

(pn)!

(2pn)!
.
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Using the Stirling formula m! ∼
√

2πm(m/e)m we get

An ∼
1√
π

((8b)p|λ(t)|)n

n!

[
√

2πpn(pn/e)pn]2√
2π2pn(2pn/e)2pn

∼ √p ((8b)p|λ(t)|)n

n!

√
n,

so the series is convergent. Setting

Gλ(t) :=

∞∑
n=0

An =

∞∑
n=0

((2b)p|λ(t)|)n

n!

(pn)!

Γ(pn+ 1
2 )

we obtain the estimate

|Uλ(t, ∂z)f(z)| ≤ Cf Gλ(t)C e2b|z|. (3.1.2)

This tells that Uλ(t, ∂z) takes A1 into A1, indeed it is enough to take, for each t ∈ [0, T ],

A = CfGλ(t)C and B = 2b in De�nition 2.3.3.

The continuity follows from the fact that for Cf → 0 we have Uλ(t, ∂z)f(z)→ 0.

Let us now notice that the last estimate (3.1.2) varies with t. In order to enhance those

results it is possible to prove also the uniformity with respect to t of the continuity of U(t, ∂z).

Lemma 3.1.2. Let T be a set of parameters and t ∈ T 7→ U(t, d
dW ) be the di�erential operator-

valued map

t ∈ T 7−→ U(t,
d

dW
) =

∞∑
j=0

bj(t)
( d

dW

)j
(with bj : T → C for j ∈ N) whose formal symbol

h : (t,W ) ∈ T × C 7−→
∞∑
j=0

bj(t)W
j

realizes for each t ∈ T an entire function of W such that

sup
t∈T ,W∈C

(|h(t,W )|e−B|W |
p

) = A < +∞ (3.1.3)

for some p ≥ 1 and B ≥ 0. Then U(t, d
dW ) acts as a continuous operator from A1(C) into itself

uniformly with respect to the parameter t ∈ T .

Proof. It follows from Lemma 2.3.11 that the coe�cient functions t 7→ bj(t) satisfy then uniform

(i.e. independent on t) estimates

∀ j ∈ N, ∀ t ∈ T , |bj(t)| ≤ C
bj

Γ(j/p+ 1)
= C

bj

j!
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for some positive constants C = C(U) and b = b(U) depending only on the �nite quantity A and

B in (3.1.3).

Let us consider f : W 7→
∑∞
`=0 a`W

` ∈ A1(C), then there are (see again Lemma 2.3.11)

positive constants γ and β such that

` ∈ N |a`| ≤ (γ/`!)β`.

Let us now focus on the action of U on such f . Following the same formal steps as in (3.1.1) one

has

∀ t ∈ T , U(t,
d

dW
)(f) =

∞∑
`=0

( ∞∑
j=0

(j + `)!

`!
bj(t)a`+j

)
︸ ︷︷ ︸

α`

W ` (3.1.4)

with coe�cients α` such that

|α`| =
∞∑
j=0

(j + `)!

`!
|bj(t)||a`+j | ≤ γ C

β`

`!

∞∑
j=0

(b β)j

j!
= K(b, C, β, γ)

β`

`!
. (3.1.5)

Therefore the formal identity (3.1.4) is in fact a true one for any W ∈ C, which shows that

U(t, d
dW )[f ] ∈ A1(C) for any t ∈ T , with

∀ t ∈ T , ∀W ∈ C, |U(t,
d

dW
)(f)| ≤

∞∑
`=0

|α`|W ` ≤ K(b, C, β, γ) eβ|W |.

We have proved that U(t, d
dW ) acts from A1(C) to A1(C). Let us now focus on the continuity.

Let f = {fN}N≥1 be a sequence converging to 0 in A1(C) which is equivalent to say that

sup(bfN + CfN ) < +∞ and that f converges to 0 in H(C), see Proposition 2.3.9. Then we have

∀N ∈ N∗, ∀t ∈ T , ∀W ∈ C |U(t,
d

dW
)(fN )(W )| ≤ Af e

Bf|W |

for some positive constants Af and Bf depending only on U and f. Let B1 > Bf and ε > 0. Let

R = Rε large enough such that

∀N ∈ N∗, ∀t ∈ T , ∀W ∈ C with |W | > R |U(t,
d

dW
)(fN )(W )|e−B1|W | ≤ ε.

Since U(t, d
dW )(fN )(W ) =

∑∞
`=0 aN,`W

` with |aN,`| ≤ (Cf/`!)b
`
f for some constants Cf and bf

independent on t ∈ T and on N and the sequence f converges to 0 in H(C), one can �nd N = Nε

such that

|U(t,
d

dW
)(fN )(W )| ≤ ε ∀N ≤ Nε, ∀t ∈ T , ∀W ∈ C with |W | ≤ R
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Hence the sequence {U(t, d
dW )(fN )(W )}N≥1 converges to 0 in A1(C), uniformly with respect to

the parameter t.

3.2 Schr�odinger equation for the free particle

In physics, a free particle is a particle that, in some sense, is not bound by an external force, or

equivalently not in a region where its potential energy varies. In quantum mechanics, it means

a region of uniform potential, usually set to zero.

In this section I consider the Schr�odinger equation that describes the behaviour of a free par-

ticle, when the initial value is the superoscillating sequence Fn(x) fully presented in Section 2.2:

i
∂

∂t
ψ(t, x) = − ∂2

∂x2
ψ(t, x) ψ(x, 0) = Fn(x).

In order to �nd out if the solution of this equation keeps to be superoscillating, I follow the steps

described in Section 3.1.

1. Let us starting �nding the solution of the di�erential equation.

Theorem 3.2.1. The time evolution through Schr�odinger equation for the free particle of

the spatial superoscillating sequence Fn(x), is given by

ψn(t, x) =

n∑
j=0

Cj(n, a)ei(1−2j/n)x−i(1−2j/n)2t.

Proof. To solve the Schr�odinger equation with Fn(x) as initial condition, we will work in the

space of the tempered distributions S ′(R) and use a standard Fourier transform argument.

Let us denote by ψ̂(t, λ) the Fourier transform of ψ. Taking the Fourier transform of the

Schr�odinger equation we obtain

i
∂

∂t
ψ̂(t, λ) = λ2ψ̂(λ, t)

and integrating we get

ψ̂(λ, t) = C(λ)e−iλ
2t,

where the arbitrary function C(λ) can be determined by the initial condition and therefore,
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using the fact that F(eimx)
S′
= 2πδ(x−m)

C(λ) = ψ̂(λ, 0) =

�
R

[ n∑
j=0

Cj(n, a)ei(1−2j/n)x
]
eiλxdx

=

n∑
j=0

Cj(n, a)

�
R
ei(1−2j/n)xeiλxdx

=

n∑
j=0

Cj(n, a)δ(λ− (1− 2j/n)).

So we obtain

ψ̂(λ, t) =

n∑
j=0

Cj(n, a)δ(λ− (1− 2j/n))e−iλ
2t.

Taking now the inverse Fourier transform we have

ψ(t, x) =

�
R

[ n∑
j=0

Cj(n, a)δ(λ− (1− 2j/n))e−iλ
2t
]
eiλxdλ

=

n∑
j=0

Cj(n, a)

�
R

[
δ(λ− (1− 2j/n))e−iλ

2t
]
eiλxdλ

=

n∑
j=0

Cj(n, a)e−i(1−2j/n)2tei(1−2j/n)x.

2. In this step we give an equivalent representation of the time evolution of ψn in terms of

the derivatives of the functions Fn(x).

Using the well known expansion of the exponential, the function ψn(t, x) can be rewritten

as

ψn(t, x) =

n∑
j=0

Cj(n, a)e−i(1−2j/n)2tei(1−2j/n)x

=

∞∑
m=0

(it)m

m!

n∑
j=0

Cj(n, a)(1− 2j/n)2mei(1−2j/n)x

=

∞∑
m=0

(it)m

m!

n∑
j=0

Cj(n, a)
d2m

dx2m
ei(1−2j/n)x

=

∞∑
m=0

(it)m

m!

d2m

dx2m

n∑
j=0

Cj(n, a)ei(1−2j/n)x

=

∞∑
m=0

(it)m

m!

d2m

dx2m
Fn(x).
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3. We are now led to study the operator formally de�ned by

U2

(
d

dx
, t

)
:=

∞∑
m=0

(it)m

m!

d2m

dx2m

and the spaces of functions on which it acts continuously. To this purpose, we extend

U2

(
d
dx , t

)
to an operator which may act on holomorphic functions, i.e. we consider opera-

tors of the form

U2

(
d

dz
, t

)
=

∞∑
m=0

(it)m

m!

d2m

dz2m

whose symbol is, recalling the notation used in Remark 2.3.5, h(ζ2, t).

It is obvious to see that h(ζ2, t) does not de�ne a multiplication operator on A1(C) because

it grows at in�nity too fast. The appropriate space for which h would be a multiplier and

therefore the appropriate space for which h would induce a convolution operator is A2(C).

In particular, as an immediate application of Theorem 2.3.19 and Remark 2.3.6, we have

that for any value of t, the operator U2

(
d
dz , t

)
acts continuously on the space A2,0(C).

Moreover if we recall Theorem 3.1.1 and we consider λ(t) = it and p = 2 we have that

U2( ddz , t) acts continuously, for any t, on the space A1(C). This result is weaker than

the previous one, since we should consider as input for the operator entire functions with

stronger growth conditions at in�nity.

Furthermore, we can enhance this result using Lemma 3.1.2, where we consider bj(t) =

(it)m

m!
and T = R. We notice that the symbol h realizes for each t ∈ R an entire function

of z such that

sup
t∈R,z∈C

(|h(t, z)|e−B|z|
p

) = A < +∞ (3.2.1)

for p = 2 and for some B ≥ 0. Then all the hypotheses of Lemma 3.1.2 are satis�ed and

it holds that U2(t, ddz ) acts as a continuous operator from A1(C) into itself uniformly with

respect to the parameter t ∈ R.

4. As a consequence of the previous step we can show that the superoscillatory phenomenon

persists for n→∞ according to each of the four de�nitions presented in Section 2.1.

Indeed, we can prove that ψn(t, x) superoscillates for all values of the time t (see De�ni-

tion 2.1.2 and Remark 2.1.3), but also that {ψn(t, x)}n≥1 is a superoscillating sequence
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in two variables (t, x) (see De�nition 2.1.4) and �nally we could prove that the sequence

{ψn(t, x)}n≥1 is a F-supershift for the family F = {ϕa(t, x) = eiax−ia
2t} (see De�ni-

tion 2.1.5).

In order to do that we need to state the theorem below.

Theorem 3.2.2. For a > 1, and for every x, t ∈ R we have

lim
n→∞

ψn(t, x) = eiax−ia
2t. (3.2.2)

Proof. The functions Fn(x) can be extended to an entire function in A1(C), and this space

is clearly contained in A2,0. Therefore it is enough to take the limit and recall that

Fn(x)→ eiax. (3.2.3)

So, since the operator is continuous, we obtain

ψ(t, x) = lim
n→∞

U2

(
d

dx
, t

)
Fn(x)

= U2

(
d

dx
, t

)
lim
n→∞

Fn(x)

=

∞∑
m=0

(it)m

m!

d2m

dx2m
eiax

=

∞∑
m=0

(−ia2t)m

m!
eiax

= eiax−ia
2t.

This theorem can be read in di�erent ways: we can interpret the convergence of Fn(x)

to eiax simply as uniform convergence on any compact set of R (see Theorem 2.2.2) and

conclude that the sequence ψn(t, x) superoscillates for each t with superoscillation domain

R and superoscillation sets any compact set in R.

On the other hand, we can interpret (3.2.3) in A1(C) (see Theorem 2.3.10) and recall that,

thanks to Lemma 3.1.2, U2(t, ddz ) acts continuously from A1(C) to A1(C) uniformly with

respect to t. Then, according to De�nition 2.1.4, we have that ψn(t, x) is a superoscillating

sequence with superoscillation domain R2, P∞(T,X) = TX, g1(a) = a2 and g2(a) = a.

Finally, in the same way, we have that ψn(t, x) is a F-supershift for the family F =

{ϕa(t, x) = eiax−ia
2t}, with super-shift domain R2.
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3.3 Modi�ed Schr�odinger equation

We now consider the Cauchy problem associated with a modi�ed version of the Schr�odinger

equation. The reason why this kind of problem is studied lies in the following observation.

If in (3.2.2) we �x x = 0, we obtain

lim
n→∞

ψn(t, 0) = lim
n→∞

∞∑
k=0

Ck(n, a)e−i(1−2k/n)2t = e−ia
2t.

This observation opens the way to construct a larger class of superoscillatory functions using

di�erential equations. In particular, one is naturally led to wonder if it is possible to compute

the limit

lim
n→∞

∞∑
k=0

Ck(n, a)ei(1−2k/n)px

when (1− 2k/n)2 has been replaced by (1− 2k/n)p, where p is an arbitrarily natural number.

This is indeed possible by replacing the Schr�odinger equation with a modi�ed version. In

order to state the results, it is convenient to distinguish the cases p even and p odd, because

di�erent di�erential equations are involved. In particular we have:

a) i
∂ψ(t, x)

∂t
= −∂

pψ(t, x)

∂xp
, ψ(x, 0) = Fn(x, a) if p is even.

b)
∂ψ(t, x)

∂t
=
∂pψ(t, x)

∂xp
, ψ(x, 0) = Fn(x, a) if p is odd.

c) −i · ip mod 2 ∂ψ(t, x)

∂t
=
∂pψ(t, x)

∂xp
, ψ(x, 0) = Fn(x, a) p ∈ N.

d) ip−1 ∂φ(t, x)

∂t
=
∂pφ(t, x)

∂xp
, φ(x, 0) = Fn(x, a) p ∈ N.

Let us notice that the case a) and b) can be summarized in the expression c), while equation d)

represents a slightly di�erent case.

As I did in Section 3.2 for the Schr�odinger equation for the free particle, I will follow the

four steps presented at the beginning of the chapter in order to prove that the solution of all the

modi�ed Schr�odinger equations listed above is again a superoscillating sequence.
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1. Let us solve the equations stated above.

Theorem 3.3.1. The time evolution through a modi�ed Schr�odinger equation of the spatial

superoscillating sequence Fn(x), is given by

a) ψn(t, x) =
∑n
k=0 Ck(n, a)ei(1−2k/n)xeit(−i(1−2k/n))p if p is even.

b) ψn(t, x) =
∑n
k=0 Ck(n, a)ei(1−2k/n)xet(−i(1−2k/n))p if p is odd.

c) ψn(t, x) =
∑n
k=0 Ck(n, a)ei(1−2k/n)xei·i

p mod 2t(1−2k/n)p p ∈ N.

d) φn(t, x) =
∑n
k=0 Ck(n, a)ei(1−2k/n)xeit(1−2k/n)p p ∈ N.

Proof. We will prove the result only for the case p even, the others are analogous.

The proof is totally similar to the one of Theorem 3.2.1, so I will skip some computations.

As before, we work in the space of the tempered distributions S ′(R). We start with the

equation

i
dψ̂(λ, t)

dt
= −(−iλ)p ψ̂(λ, t)

and, integrating, we obtain

ψ̂n(λ, t) = 2π

n∑
k=0

Ck(n, a)δ(λ− (1− 2k/n))ei(−iλ)pt,

and taking the inverse Fourier transform we have

ψn(t, x) =

�
R

[ n∑
k=0

Ck(n, a)δ(λ− (1− 2k/n))eit(−iλ)p
]
eiλxdλ

=

n∑
k=0

Ck(n, a)ei(1−2k/n)xeit(−i(1−2k/n))p .

2. This step is devoted to the rewriting of the solution ψn(t, x) and, again, it follows the same

passages as in the previous case. In particular we get

ψn(t, x) =

∞∑
m=0

(it)m

m!

dmp

dxmp
Fn(x, a).

Similar computations for p odd and p general lead to state that

a) Up

( d
dx
, t
)

=

∞∑
m=0

(it)m

m!

dmp

dxmp
if p is even.
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b) Up

( d
dx
, t
)

=

∞∑
m=0

(−t)m

m!

dmp

dxmp
if p is odd.

c) Up

( d
dx
, t
)

=

∞∑
m=0

(i · ip mod 2t)m

m!

dmp

dxmp
p ∈ N.

d) Ũp

( d
dx
, t
)

=

∞∑
m=0

(it)m

m!

1

imp
dmp

dxmp
p ∈ N.

3. We now notice that the operators listed above di�er only in terms of powers of the imaginary

unit i, this does not in�uence the continuity of the di�erential operator and the growth at

in�nity of its symbol. So, in this step, I will refer to a generic Up
(
d
dx , t

)
.

As a consequence of Theorem 2.3.19 we have that Up
(
d
dx , t

)
is continuous, when we replace

x by z, in the space Ap(C) for every t ∈ R.

Moreover, if we recall Theorem 3.1.1 and we consider a suitable λ(t) according to the

equation one is studying, we have that Up(
d
dz , t) acts continuously, for any t, also on the

space A1(C). Let us notice that the previous result is a bit stronger than this, since it

allows us to consider as input for the operator also entire functions that belong to Ap(C)

and not only to A1(C).

Furthermore, as before, we can enhance this result using Lemma 3.1.2, all its hypotheses

are satis�ed and it holds that Up(t,
d
dz ) acts as a continuous operator from A1(C) into itself

uniformly with respect to the parameter t ∈ R.

4. Thanks to step 3) we can now pass to the limit. Following the computation as in the step

4) of Section 3.2 and considering p even we have:

Theorem 3.3.2. For a > 1, and for every x, t ∈ R we have

lim
n→∞

ψn(x, t) = eit(−ia)peiax. (3.3.1)

Proof. Similarly to Theorem 3.2.2:

ψ(t, x) = lim
n→∞

ψn(t, x) = lim
n→∞

Up

(
d

dx
, t

)
Fn(x)

=

∞∑
m=0

(it)m

m!

dmp

dxmp
eiax

=

∞∑
m=0

((ia)pit)m

m!
eiax = eit(ia)peiax.
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Summing up for all cases:

a) ψ(t, x) = eit(−ia)p+iax if p is even.

b) ψ(t, x) = et(−ia)p+iax if p is odd.

c) ψ(t, x) = ei·i
p mod 2t(ia)p+iax p ∈ N.

d) φ(t, x) = eita
p+iax p ∈ N.

We can deduce exactly the same conclusions as before (substituting 2 with a general p). So

if the superoscillating sequence Fn(x) evolves through the modi�ed Schr�odinger equation,

the solution is again a superoscillating sequence, accordingly to each of the de�nitions in

Section 2.2.

We are now able to address the problem we presented at the beginning of this section, in partic-

ular, �xing x = 0 in (3.3.1), we have that the sequence

n∑
k=0

Ck(n, a)eit(−i(1−2k/n))p

is eit(−ia)p -superoscillating, for p even.

One may ask what happens if we use a di�erent initial datum for the modi�ed Schr�odinger

equation, speci�cally, if we use a datum of the form

n∑
k=0

Ck(n, a) e−i(1−2k/n)`x.

It can be proved that in this case, the solution is given by

ψn(x, t) =

n∑
k=0

Ck(n, a) e−ix(1−2k/n)`eit(−i(1−2k/n)`)p .

Moreover, for all t, we have

lim
n→∞

ψn(t, x) = eit(−i)
pap `eiax.

The limit is uniform for x in the compact sets of R.

Remark 3.3.1. This result shows that in this way we do not further enlarge the class of super-

oscillating sequences. If we want to �nd a more general limit function eig(a)x, then we have to

leave the kingdom of the di�erential equations as I present in the next section.
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3.4 Modi�ed Schr�odinger equation with series of derivatives

We will now consider a much more general situation in which the right hand side of the di�erential

equation to solve is an in�nite series of derivatives.

Let {ap} be a sequence of complex numbers and consider the convolution equation formally

de�ned by

i
∂ψ(x, t)

∂t
= −

∞∑
p=0

ap
∂pψ(x, t)

∂xp
. (3.4.1)

Let us notice that if ap ≡ 0 for every p > p̄ we obtain that
∑p̄
p=0 ap

∂p

∂xp
is simply a polynomial

of degree p̄ in
∂

∂x
.

1. The following theorem gives us the solution of (3.4.1) when we take Fn(x) as initial datum

(the hypotheses will be clearer afterwards).

Theorem 3.4.1. Let a ∈ R, a > 1. Consider a sequence of complex numbers {ap} such

that the function
∑∞
p=0 apz

p is holomorphic in ∆ρ = {z ∈ C : |z| < ρ} for ρ > a. Consider

the Cauchy problem for the generalized Schr�odinger equation

i
∂ψ(t, x)

∂t
= −G

(
d

dx

)
ψ(t, x), ψ(z, 0) = Fn(z, a), (3.4.2)

where

G

(
d

dx

)
=

∞∑
p=0

ap
dp

dxp
.

Then the solution ψn(t, x), is given by

ψn(t, x) =

n∑
k=0

Ck(n, a) e−ix(1−2k/n) eitG(−i(1−2k/n)).

Proof. Using the usual method we solve the equation in the space of the tempered distri-

butions S ′(R) and, with standard Fourier transform argument, we obtain the result.

2. Through the following computation we are able to write ψn(t, x) as a result of the action
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of a convolution operator on Fn(x).

ψn(t, x) =

n∑
k=0

Ck(n, a) e−ix(1−2k/n)eit
∑∞
p=0 ap(−i(1−2k/n))p

=

n∑
k=0

Ck(n, a) e−ix(1−2k/n)
∞∏
p=0

eitap(−i(1−2k/n))p

=

n∑
k=0

Ck(n, a) e−ix(1−2k/n)
∞∏
p=0

∞∑
m=0

(itap)
m

m!
(−i(1− 2k/n))mp

=

∞∏
p=0

∞∑
m=0

(itap)
m

m!

n∑
k=0

Ck(n, a)
dmp

dmp
e−ix(1−2k/n)

=

∞∏
p=0

∞∑
m=0

(itap)
m

m!

dmp

dmp
Fn(x, a).

3. In this step, we need to study the continuity of U∞

(
d

dz
, t

)
that can formally be written

as the in�nite product of the operators we have just considered in Section 3.3, i.e.

U∞

(
d

dz
, t

)
=

∞∏
p=0

( ∞∑
m=0

(itap)
m

m!

dpm

dzpm

)
=

∞∏
p=0

Up

(
d

dz
, apt

)
.

In order to understand if it is continuous, we �rst need to understand on which space it

actually operates.

This operator is associated with the multiplier given by the function

h∞(ζ, t) :=

∞∏
p=0

( ∞∑
m=0

(itap)
m

m!
ζpm

)
.

That can be written in the form

h∞(ζ, t) =

∞∏
p=0

exp(itapζ
p) = exp

(
it

∞∑
p=0

apζ
p

)
.

When {ap} is a sequence of complex numbers such that the function
∑∞
n=0 apζ

p is analytic

in the disc |ζ| < ρ, then, h∞ realizes, for each value of t ∈ R, an holomorphic function on

∆ρ ⊂ C.

More precisely, one has

∀(t, ζ) ∈ R×∆ρ, h∞(ζ, t) =

∞∑
j=0

( ∞∑
k=0

bj,kt
k
)
ζj =

∞∑
j=0

bj(t)ζ
j

where, for R > 0, the radius of convergence of the power series
∑∞
j=0

(∑∞
k=0 |bj,k|Rk

)
ζj

is at least equal to ρ.
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Therefore, this framework does not �t with the one needed in Theorem 2.3.19 or Lemma 3.1.2,

so in order to prove the continuity of U∞

(
d

dz
, t

)
, we need to expand these results.

First of all, let us consider the space

A1,ρ(C) := lim
←
Aρn1 (C) = {f ∈ A1(C) : ∀ε > 0, ∃Aε > 0 : |f(z)| ≤ Aεe(ρ−ε)|z|},

where {ρn}n≥1 is a strictly increasing sequence converging to ρ.

This space is called space of entire functions of exponential type less than ρ.

Now, we are ready to state the analogous in this framework of Theorem 2.3.19.

Proposition 3.4.2. Let ρ > 0 and let X be the space of entire functions of exponential type

less than ρ. Then X is isomorphic via Fourier-Borel transform to the space of functions

holomorphic in the disc ∆ρ.

As a consequence of this we have that:

Theorem 3.4.3. Let ρ the radius of convergence of
∑∞
n=0 apζ

p. Then the function h∞(ζ, t)

is a continuous multiplier on the space of functions analytic in the disc ∆ρ and the asso-

ciated operator U∞

(
d

dz
, t

)
acts continuously on the space A1,ρ(C).

We can also prove that the continuity is uniform with respect to t, as it was done in

Lemma 3.1.2 for the previous cases.

Theorem 3.4.4. We distinguish two cases based on ρ.

i) When ρ = +∞, the convolutor operator U∞

(
d

dz
, t

)
acts continuously locally uni-

formly with respect to t ∈ R from A1(C) into itself.

ii) When ρ ∈ (0,+∞) it acts continuously locally uniformly with respect to t ∈ R from

the space A1,ρ(C) into itself.

Proof. The proofs of both the assertions follow the lines of Lemma 3.1.2.

i) Let R > 0 and K ⊂ [−R,R] ⊂ be a compact subset of R. Let γ > 0, β > 0 and

f ∈ Aγ,β1 (in the sense of De�nition 2.3.12).
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Since, for any R > 0, h∞(ζ, t) is holomorphic in all R, one can check as in the proof

of Lemma 3.1.2 (compare to (3.1.5)) that, for any t ∈ K and j ∈ N,

∞∑
j=0

(j + `)!

`!
|bj(t)| |f`+j | ≤ γ

β`

`!

∞∑
j=0

( ∞∑
k=0

|bj,k|Rk
)
βj = KU (β, γ)

β`

`!
.

This is indeed enough to conclude as in the proof of Lemma 3.1.2 that U∞ acts

continuously locally uniformly in t from A1(C) into itself.

ii) Consider now the case where ρ ∈ (0,+∞). For any R > 0, the radius of convergence

of the power series
∑∞
j=0

(∑∞
k=0 |bj,k|Rk

)
ζj is now at least equal to ρ.

Repeating the preceding argument (but taking now β ≤ ρ−ε for some ε > 0 arbitrarily

small), one concludes that U∞ acts continuously locally uniformly in t from A1,ρ(C)

into itself.

4. Thanks to the continuity results obtained in step 3), we can compute the limit as n→∞.

Theorem 3.4.5. Let a ∈ R, 1 < |a| < ρ. For all �xed t we have

lim
n→∞

ψn(t, x) = eitG(ia)eiax,

and the convergence is uniform on all compact sets of R.

Proof. As usual, we recall that Fn(x)→ eiax and we pass to the limit for n→∞

ψ(t, x) =

∞∏
p=0

∞∑
m=0

(itap)
m

m!

dmp

dmp
eiax

=

∞∏
p=0

∞∑
m=0

(itap)
m

m!
(ia)mpeiax

=

∞∏
p=0

e(itap(ia)p)eiax

= eit
∑∞
p=0(ap(ia)p)eiax.

Finally, we can write

lim
n→∞

ψn(t, x) = eitG(ia)eiax.
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Once again we can claim that the superoscillatory behaviour is preserved.

Indeed, we can interpret the convergence of Fn(x) to eiax as uniform convergence on any

compact set of R and conclude that the sequence ψn(t, x) superoscillates for each t with

superoscillation domain R and superoscillation sets any compact set in R, in agreement

with De�nition 2.1.2 and Remark 2.1.3.

On the other hand, we can interpret the convergence in A1(C) (see Theorem 2.3.10). It is

clear that A1(C) ⊆ A1,ρ(C) for ρ > a, so recall that, thanks to Theorem 3.4.4, U∞

(
t,
d

dz

)
acts continuously from A1,ρ(C) to A1,ρ(C) uniformly with respect to t.

Adding the requests thatG is a real polynomial such that |G(ia)| ≥ 1 and supx∈[−1,1]G(x) <

1, we can conclude that ψn(t, x) superoscillates according to De�nition 2.1.4. Indeed,

we have that ψn(t, x) is a superoscillating sequence with superoscillation domain R2,

P∞(T,X) = TX, g1(a) = G(ia) and g2(a) = a.

Finally, we can also prove that ψn(t, x) is a F-supershift for the family F = {ϕa(t, x) =

eiax−iG(ia)t}, with super-shift domain R2.

Remark 3.4.1. By setting g(a) = G(ia) and by suitably choosing the coe�cients ap of the series

expressing G, we can obtain a very large class of superoscillating functions.

This is an impressive result: if so far we can draw superoscillatory sequence using only powers

of a, thanks to this we are now able to use many more functions.

3.5 Schr�odinger equation for the electric �eld

In this section we try to adapt the previous results also to the case of the Schr�odinger equation

for the electric �eld expressed below:

i
∂ψ(t, x)

∂t
= −1

2

∂2

∂x2
ψ(t, x)− xψ(t, x), ψ(0, x) = Fn(x).

As one can immediately notice, this equation present an addition with respect to the previous

ones. In fact, this equation present a non-zero potential V (x) = −x.

1. Let a > 1. Then the solution is given by

ψn(t, x) =

n∑
k=0

Ck(n, a) e−it
3/6e−i(1−2k/n)t((1−2k/n)+t)/2ei((1−2k/n)+t)x. (3.5.1)
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I will not provide the proof of this result, since it is not interesting within the scope of this

thesis.

2. In this step I write the solution (3.5.1) in terms of convolution operators. Indeed, consid-

ering the series expansion

e−i(1−2k/n)t((1−2k/n)+t)/2 =

∞∑
m=0

1

m!
(−i(1− 2k/n)t((1− 2k/n) + t)/2)m,

we observe that the functions

ψn(t, x) = e−it
3/6eitx

n∑
k=0

Ck(n, a) e−i(1−2k/n)t((1−2k/n)+t)/2eix(1−2k/n)

can be written in the following way (when passing to the complex variable z)

ψn(t, z) = e−it
3/6eitzU(t, ∂z)Fn(z, a),

where

U(t, ∂z) =

∞∑
m=0

(−it/2)m

m!
(t+ ∂z)

m∂mz .

3. Due to the peculiarity of the form of U(t, ∂z), any of the results stated in Section 3.1 can

be used to prove that U(t, ∂z) is a continuous operator, so the following tailored theorem

is needed.

Theorem 3.5.1. The operator

U(t, ∂z) =

∞∑
m=0

(−it/2)m

m!
(t+ ∂z)

m∂mz

acts continuously from A1 into itself.

Proof. We have

U(t, ∂z)f(z) =

∞∑
m=0

(−it/2)m

m!
(t+ ∂z)

m∂mz

∞∑
j=0

fjz
j
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and

U(t, ∂z)f(z) =

∞∑
m=0

(−it/2)m

m!
(t+ ∂z)

m∂mz

∞∑
j=0

fjz
j

=

∞∑
m=0

(−it/2)m

m!

m∑
`=0

(
m

`

)
tm−`∂`+mz

∞∑
j=0

fjz
j

=

∞∑
m=0

(−it/2)m

m!

m∑
`=0

(
m

`

)
tm−`

∞∑
j=`+m

fj
j!

(j − `−m)!
zj−`−m

=

∞∑
m=0

(−it/2)m

m!

m∑
`=0

(
m

`

)
tm−`

∞∑
k=0

fm+`+k
(m+ `+ k)!

k!
zk.

With similar computations, as we did in Theorem 3.1.1, we get

|U(t, ∂z)f(z)| ≤ Cf
∞∑
m=0

(|t|/2)m

m!

m∑
`=0

(
m

`

)
|t|m−`

∞∑
k=0

bm+`+k

Γ(m+ `+ k + 1)

2m+`+k(m+ `)!k!

k!
|z|k,

and therefore

|U(t, ∂z)f(z)| ≤ Cf
∞∑
m=0

(b|t|)m

m!

m∑
`=0

(
m

`

)
|t|m−`(2b)` (m+ `)!

Γ(m+ `+ 1
2 )

∞∑
k=0

(2b|z|)k

Γ(k + 1
2 )
.

Now observe that, thank to the duplication formula and to the functional equation of the

Gamma function zΓ(z) = Γ(z + 1) we have

(m+ `)!

Γ(m+ `+ 1
2 )

= 4m+` (m+ `)!

2
√
π

Γ(m+ `)

Γ(2(m+ `))

= 4m+` (m+ `)!

2
√
π

Γ(m+`+1)
m+`

Γ(2(m+`)+1)
2(m+`)

= 4m+` (m+ `)!√
π

(m+ `)!

(2(m+ `))!
,

but since
(n!)2

(2n)!
≤ 1 we get

(m+ `)!

Γ(m+ `+ 1
2 )
≤ 4m+`.

So the estimate of the operator becomes

|U(t, ∂z)f(z)| ≤ Cf
∞∑
m=0

(b|t|)m

m!

m∑
`=0

(
m

`

)
|t|m−`(2b)`4m+`

∞∑
k=0

(2b|z|)k

Γ(k + 1
2 )

and, observing that, due to the properties of the Mittag-Le�er function (see Appendix A),

the series in k is smaller of Ce2b|z|, for some constant C > 0, we have

|U(t, ∂z)f(z)| ≤ Cf
∞∑
m=0

(4b|t|)m

m!

m∑
`=0

(
m

`

)
|t|m−`(8b)`Ce2b|z|
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but, noting that the series in ` is nothing that a binomial expansion of (|t|+8b)m, we �nally

get

|U(t, ∂z)f(z)| ≤ C Cf e
4b|t|(|t|+8b)e2b|z|

and so we get the statement.

Let us point out that the last estimate is not uniform with respect to t.

4. Finally, we can compute the limit:

lim
n→∞

ψn(t, x) = e−it
3/6e−iat(a+t)/2ei(a+t)x.

Let us notice that in this case we can prove that the evolved solution ψn(t, x) superoscil-

lates only accordingly to De�nition 2.1.2 and Remark 2.1.3, so it is a superoscillation in

the unique variable x, with g(a) = (a + t) and, as usual, superoscillation domain R and

superoscillation set any compact subset of R.

Since we do not have any uniform continuity result we cannot say that ψn(t, x) is a su-

peroscillating sequence in the two variables (t, x) (it can also be foreseen looking at the

algebraic expression of the solution).

Despite this, we can claim that ψn(t, x) is a F-supershift for the family

F = {ϕa(x) = e−it
3/6e−iat(a+t)/2ei(a+t)x},

with super-shift domain R.



Chapter 4

The case of the harmonic oscillator

In this chapter I will study the evolution of superoscillations under Schr�odinger equation for the

quantum harmonic oscillator.

The mathematical strategy I will apply is the same presented in Section 3.1, but in this case

we need more tools than the ones used before, due to the presence of a non-null potential as in

the case of electric �eld, see Section 3.5.

In particular, the Hamiltonian considered to describe an harmonic oscillator is:

H (t) = − ~2

2m

∂2

∂x2
+

1

2
mω2(t)x2 − f(t)x.

From a physical point of view, this Hamiltonian represents a harmonic oscillator of mass m

and time-dependent frequency ω(t) under the in�uence of the external time-dependent force f(t).

For the sake of simplicity, in the sequel we will re-scale the variables in order to solve the

Cauchy problem for the quantum harmonic oscillator, stated below:

i
∂ψ(t, x)

∂t
=

1

2

(
− ∂2

∂x2
+ x2

)
ψ(t, x), ψ(0, x) = Fn(x, a). (4.0.1)

This chapter is organized as follows: in Section 4.1 I present (and then use) the tools needed

to solve the equation (exploiting step 1 of the general strategy); after that, in Section 4.2, I

study the continuity of the operator arising in the solution, in order to prove that the superoscil-

latory behaviour of the initial datum persists (step 2, 3 and 4); I �nally conclude this chapter

with a particular focus on the singularities in the quantum harmonic oscillator evolution (see

Section 4.3).

55
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4.1 Solve the equation

In this case it is no more e�ective to solve the di�erential equation in the space of tempered

distributions S ′, so we need to invoke the Green's function.

The Green's function G(t, x, 0, x′) is such that we can write the solution of a Cauchy problem

with initial datum ψ0(x) as

ψ(t, x) =

�
R
G(t, x, 0, x′)ψ0(x′)dx′.

In our case, where the Cauchy problem is (4.0.1) the Green's function is the locally integrable

function in (0,∞)× R× R expressed by

G(t, x, 0, x′) := (2πi sin t)−1/2e(2xx′−(x2+x′2) cos t)/(2i sin t). (4.1.1)

So, formally, we can already write the solution, but we are allowed to make this step e�ective

only if the integral converges.

In order to settle the approach to non-absolutely convergent integrals on the half-line R+∗

(R+∗u represents an half-line in C passing through u) or R through the principle of regularization,

we need to explain what regularization of formal Fresnel-type integrals on R+∗ or R means.

Let us introduce the framework.

Suppose that T is a set of parameters. Let G : (t, Z) ∈ T × C 7−→ G(t, Z) be a function which

is entire as a function of Z for each t ∈ T �xed.

Let also φ be a non-vanishing real function on T that will play the role of a phase function.

Let �nally χ be a real number such that χ > −1.

In order to give a meaning to the formal integral

� ∞
0

(x)χe−iφ(t)x2

G(t, x) dx (4.1.2)

we distinguish the cases where φ(t) > 0 and φ(t) < 0.

In the �rst case (φ(t) > 0), we substitute x ↔ e−iπ/4Z and we obtain this (for the moment

formal) expression:

� ∞
0

(x)χe−iφ(t)x2

G(t, x) dx = e−i(χ+1)π/4

�
R+∗eiπ/4

Zχe−φ(t)Z2

G(t, e−iπ/4Z) dZ

=

�
R+∗eiπ/4

Zχe−φ(t)Z2

F+(t, Z) dZ

(4.1.3)



4.1. SOLVE THE EQUATION 57

where R+∗eiπ/4 is the bisector of the �rst quadrant and F+(t, Z) := e−i(χ+1)π/4G(t, e−iπ/4Z) for

any t ∈ T and Z ∈ C.

In the second case (φ(t) < 0), we use the substitution x↔ eiπ/4Z and we rewrite (4.1.3) as
� ∞

0

(x)χe−iφ(t)x2

G(t, x) dx = ei(χ+1)π/4

�
R+∗e−iπ/4

Zχeφ(t)Z2

G(t, eiπ/4Z) dZ

=

�
R+∗e−iπ/4

Zχeφ(t)Z2

F−(t, Z) dZ

(4.1.4)

where R+∗e−iπ/4 is the bisector of the fourth quadrant and F−(t, Z) := ei(χ+1)π/4G(t, eiπ/4Z)

for any t ∈ T and Z ∈ C.

The following lemma gives the conditions to satisfy in order to make the Fresnel integral

convergent.

Lemma 4.1.1. Let T , φ, χ as above and F : T × C→ C such that F (t, ·) ∈ Aq,0(C) uniformly

in t, for some q ∈ (1, 2]. Then, for any u = eiθ with θ ∈ (−π/4, π/4), the integral

�
R+∗u

Zχe−|φ(t)|Z2

F (t, Z) dZ (4.1.5)

is absolutely convergent and remains independent of u. It equals in particular its value for u = 1.

Proof. The absolute convergence follows from the estimates

∀ε > 0, sup
t∈T ,Z∈C

(|F (t, Z)|e−ε|Z|
q

) < +∞, (4.1.6)

together with the fact that if u = eiθ, Re((tu)2) = t2cos(2θ) > 0 for t > 0.

The fact that the integrals do not depend of u follows from residue theorem.

In view of this lemma, the regularization of an integral of the Fresnel-type such as (4.1.2)

consists in the successive two operations:

i) �rst transform the formal expression (4.1.2) into one of the representations (4.1.3) or (4.1.4)

according to sign(φ(t));

ii) then invoke Lemma 4.1.1 (provided the required hypothesis are satis�ed) and consider the

regularization of (4.1.2).

Remark 4.1.1. In order to give a meaning (if possible of course) to the formal integral expression

�
R
xχ e−iφ(t)x2

G(t, x) dx



58 CHAPTER 4. THE CASE OF THE HARMONIC OSCILLATOR

one splits it as

� ∞
0

|x|χ e−iφ(t)x2

G(t, x) dx+

� ∞
0

|x|χ e−iφ(t)x2

G(t,−x) dx

and proceed as above for the two formal expressions involved into this formal decomposition.

Proposition 4.1.2. Let G ∈ A2,0(C) and χ > −1. Then, for all ω ∈ R∗

lim
ε→0

� ∞
0

|x|χ eiωx
2

e−εx
2

G(x)dx

exists and coincides with the integral regularized under the approach described above.

Proof. For the proof I refer the reader to [19].

We are now ready to use the Green's function to solve the following Schr�odinger equation,

where the initial datum is simply ψ(0, x) = eiax.

Proposition 4.1.3. Let a ∈ R. Then the solution of the Cauchy problem

i
∂ψ(t, x)

∂t
=

1

2

(
− ∂2

∂x2
+ x2

)
ψ(t, x), ψ(0, x) = eiax (4.1.7)

is

ψa(t, x) = (cos t)−1/2e−(i/2)x2 tan te−(i/2)a2 tan teiax/ cos t. (4.1.8)

Proof. Using the Green function expressed in (4.1.1) we get

ψa(t, x) = (2πi sin t)−1/2

�
R

exp
(2xx′ − (x2 + x′2) cos t

2i sin t

)
eiax

′
dx′

= (2πi sin t)−1/2 exp
(
− x2 cos t

2i sin t

)�
R

exp
(2xx′ − x′2 cos t+ iax′(2i sin t)

2i sin t

)
dx′,

and rewriting

2xx′ − x′2 cos t− 2ax′ sin t

2i sin t
= −i (x− a sin t)2

2 sin t cos t
+ i

(x′ cos t− (x− a sin t))2

2 sin t cos t
,

we obtain

ψa(t, x) = (2πi sin t)−1/2

× exp
( i x2cotan t

2

)
exp

(
− i(x− a sin t)2

2 sin t cos t

)
×
�
R

exp
( i(x′ cos t− (x− a sin t))2

2 sin t cos t

)
dx′.
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We now perform a change of variable and, applying Lemma 4.1.1 and Proposition 4.1.2 with

χ = 0 and F (t, Z) ≡ 1, we can use the regularized integral

�
R
eiαx

2

dx = lim
β→0+

�
R
e−x

2(β−iα) dx =
( iπ
α

)1/2

. (4.1.9)

Performing a change of variables y = x′ cos t− (x− a sin t) and considering α = (2 sin t cos t)−1

�
R

exp
( i(x′ cos t− (x− a sin t))2

2 sin t cos t

)
dx′

=

�
R

1

cos t
exp

( iy2

2 sin t cos t

)
dy

=
1

cos t
(2πi sin t cos t)1/2,

from which one �nally obtains

ψa(t, x) = (2πi sin t)−1/2 exp
( i x2cotan t

2

)
× exp

(
− i(x− a sin t)2

2 sin t cos t

)
× 1

cos t
(2πi sin t cos t)1/2.

And then with standard computations we have

ψa(t, x) = (cos t)−1/2e−(i/2)x2 tan te−(i/2)a2 tan teiax/ cos t.

For any a ∈ R, we can interpret the evolution of the initial datum x ∈ R 7→ eiax through

the Cauchy Schr�odinger equation (4.1.7) also in the sense of distributions, that means that

Proposition 4.1.3 can be enhanced as follows.

Corollary 4.1.4. Let T = (0,+∞)×R. The solution of the Cauchy problem (4.1.7) is a C-valued

distribution µa ∈ D′(T ,C) with singular support
π(2N + 1)

2
× R.

Remark 4.1.2. Let us recall that the singular support of a distribution µ is the set of points

where µ cannot be accurately expressed as a function in relation to test functions with support

including that points.

Proof. The proof is a simple consequence of Proposition 4.1.3.

Indeed, since (t, x) ∈ (0,+∞) × R 7−→ (cos t)−1/2e−(i/2)x2 tan te−(i/2)a2 tan t is a locally inte-

grable function, the initial datum x ∈ R 7→ eiax evolves through the Schr�odinger equation (4.1.7)

as a distribution ϕa (in fact de�ned by a locally integrable function).
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The singular support of µa is actually
π(2N + 1)

2
×R, due to the fact that tan t is not de�ned

in this set of points.

Now, using the previous results, we can solve the original Cauchy problem (the one with

initial datum ψ0(x) = Fn(x)), both in classical sense and in the sense of distributions.

Theorem 4.1.5. The solution of the Cauchy problem

i
∂ψ(t, x)

∂t
=

1

2

(
− ∂2

∂x2
+ x2

)
ψ(t, x), ψ(0, x) = Fn(x, a) (4.1.10)

is

ψn(t, x) = (cos t)−1/2 exp(−(i/2)x2 tan t)

×
n∑
k=0

Ck(n, a) exp
( ix(1− 2k/n)

cos t

)
exp(−(i/2)(1− 2k/n)2 tan t).

(4.1.11)

Proof. We observe that the initial datum Fn(x, a) is a linear combination of the exponentials

eix(1−2k/n), then formula (4.1.11) follows from Proposition 4.1.3.

Corollary 4.1.6. Let T = (0,+∞) × R. The solution of the Cauchy problem (4.1.10) is a C-

valued distribution µn ∈ D′(T ,C) with singular support
π(2N + 1)

2
× R.

In particular, µ(n)
D′
=
∑n
k=0 Ck(n, a)µ1−2k/n.

As always we have a solution in two variables, that means that we need a 3-dimensional plot

to represent it, otherwise we can �x a variable and represent slices of function.

Below I follow the second approach and in Fig. 4.1 I �x di�erent values of x and I plot

log(1 + |Re(ψn(x, t)|) for a = 2 and n = 20, with a focus on the singularity point
π

2
, while in

Fig. 4.2 I consider x varying in the interval [−5, 5] and I �x the value of t both far and close to

π

2
.
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Figure 4.1: log(1 + |Re(ψn(x, t)|), when a = 2, n = 20 and x �xed.

Figure 4.2: log(1 + |Re(ψn(x, t)|), when a = 2, n = 20 and t �xed.
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4.2 Continuity of the operator

We start performing the second step of the general strategy.

In order to write ψn(t, x) in terms of a di�erential operator applied to Fn(x), we �rst observe

that the exponential e−(i/2)(1−2k/n)2 tan t can be expanded in series as

e−(i/2)(1−2k/n)2 tan t =

∞∑
m=0

[−(i/2)(1− 2k/n)2 tan t]m

m!

and that the following identity holds

(− cos2 t)m
∂2m

∂x2m
eix(1−2k/n)/ cos t = (1− 2k/n)2meix(1−2k/n)/ cos t.

Those observations and some additional computations give that formula (4.1.11) is indeed

ψn(t, x) = (cos t)−1/2e−(i/2)x2 tan t
∞∑
m=0

1

m!

( i
2

sin t cos t
)m ∂2m

∂x2m
Fn(x/ cos t).

So we can de�ne:

U

(
d

dx
, t

)
:=

∞∑
m=0

1

m!

( i
2

sin t cos t
)m d2m

dx2m
�H1/ cos t , (4.2.1)

where the symbol � stands for the composition of operators and H1/ cos t is the dilation

operator acting on entire functions de�ned, for α ∈ C, as Hα : f 7→ f(α(·)).

Now we are ready to perform step 3, that is the study of the continuity of the operator U we

have just found.

In this section we consider this problem under two di�erent points of view: in Section 4.2.1

we follow the lines of the previous cases, while in Section 4.2.2 we look at the operator like a

Fresnel-type integral operator and we prove its continuity in this framework. The aim of all these

discussions is to show, in Section 4.2.3, the persistence of superoscillatory behaviour under the

Schr�odinger equation for the harmonic oscillator.

4.2.1 Classical results

First of all, let us notice that U is a composition of two operators:

Ũ

(
d

dx
, t

)
:=

∞∑
m=0

1

m!

( i
2

sin t cos t
)m d2m

dx2m
and H1/ cos t . (4.2.2)
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H1/ cos t is clearly a continuous operators from Ap(C) to Ap(C), for any p. So we can focus

only on the continuity of Ũ , since the composition of continuous operators is again a continuous

operator.

We start using the theory of Ap spaces and Fourier transform, in particular we invoke Theo-

rem 2.3.19. Thanks to this result one can prove that the complexi�ed version of Ũ

(
d

dx
, t

)
, i.e.

Ũ

(
d

dz
, t

)
, is continuous on the space A2,0 for any value of t (for a more detailed treatment I

refer the reader to step 3 of Section 3.2).

Moreover, we can reach similar conclusions also restricting our tools and using only the theory

of holomorphic functions. In particular, we can apply Theorem 3.1.1 with λ(t) =
( i

2
sin t cos t

)
and p = 2 and conclude that Ũ

(
d

dx
, t

)
acts continuously also from A1(C) to itself.

Both the above continuity results hold for every t, but they do not treat the issue of the

uniform continuity with respect to t. In order to take into account also this feature we apply

Lemma 3.1.2 with bj(t) =
1

m!

( i
2

sin t cos t
)m

and T = R.

4.2.2 Continuity of Fresnel-type integral operators

We could talk also about the continuity of Fresnel-type integral operators involved in the process

to �nd a solution for the equation.

In order to do that we need a preliminary lemma (Lemma 4.2.1), that is an extension of

Lemma 3.1.2 and an ad-hoc continuity theorem for the Fresnel-type integral (Theorem 4.2.2).

Lemma 4.2.1. Let T be a set of parameters and t ∈ T 7→ U(t, Z) be a di�erential operator-

valued map

t ∈ T 7−→ U(t, Z) =

∞∑
j=0

bj(t, Z)
( d

dZ

)j
(with bj : T × C→ C holomorphic in Z for j ∈ N) whose formal symbol

h : (t, Z,W ) ∈ T × C× C 7−→
∞∑
j=0

bj(t, Z)W j

is such that

∀ ε > 0, sup
t∈T ,(Z,W )∈C2

(( ∞∑
j=0

|bj(t, Z)| |W |j
)

exp(−ε |Z|q −B |W |p)
)

= A(ε) < +∞ (4.2.3)

for some q > 1, p > 1 and B ≥ 0. Then U(t, Z) acts as a continuous operator from A1(C) into

Aq,0(C) uniformly with respect to the parameter t ∈ T .
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Proof. As in Lemma 3.1.2 the proof is structured in two steps: before one proves that U(t, Z)

acts from A1(C) into Aq,0(C), and then one treats the continuity.

The function

h : (t, Z,W ) 7−→
∞∑
j=0

( ∞∑
k=0

bj,k(t)Zk
)

︸ ︷︷ ︸
bj(t,Z)

W j =

∞∑
k=0

Zk
( ∞∑
j=0

bj,k(t)W j
)

(4.2.4)

is well de�ned since bj(t, Z) is holomorphic in Z, and it is an entire function of two variables (Z

and W ), this also justi�es in (4.2.4) the application of Fubini theorem.

Cauchy formulae in C× C shows that for any t ∈ T , for any j, k ∈ N,

|bj,k(t)| = 1

4π2

∣∣∣ �
|Z|=rz,|W |=rw

h(t, Z,W )
dZ

Zk+1
∧ dW

W j+1

∣∣∣
≤ A(ε) inf

rz>0

eεr
q
z

rkz
× inf
rw>0

eBr
p
w

rjw

= A(ε)
(1

k

)k/q
×
(1

j

)j/p
(εqe)k/q(Bpe)j/p

≤ Cη
1

Γ(k/q + 1)Γ(j/p+ 1)
(ηd)kbj

(4.2.5)

for each η > 0, with constants Cη, β and b independent on the parameter t.

Let now f = {fN}N≥1 be a sequence of elements in A1(C) which converges to 0 in A1(C).

All di�erential operators

Uk(t) :=

∞∑
j=0

bj,k(t)
( d

dW

)j
(k ∈ N)

act continuously on A1(C), as seen Lemma 3.1.2. Moreover, recalling (3.1.4) and (3.1.5), one

has that for any f ∈ Aγ,β1 (C) (see De�nition 2.3.12), we can plug in (3.1.5) the estimates (4.2.5)

and obtain ∀t ∈ T , ∀k ∈ N, ∀` ∈ N that the coe�cients α̃` of Uk(t)(f)(W ) satisfy:

α̃` ≤ γ C
∞∑
j=0

Cη
1

Γ(k/q + 1)Γ(j/p+ 1)
(ηd)k bj

β`+j

`!

≤ γ C̃η
(ηd)k

Γ(k/q + 1)
E1/p,1(β b)

β`

`!
,

where

E1/p,1(ξ) :=

∞∑
j=0

ξj

Γ(j/p+ 1)
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is the entire (with order 1/p and type 1) Mittag-Le�er function (see Appendix A). One has

therefore for such f ∈ A1
γ,β(C) that ∀t ∈ T , ∀k ∈ N, ∀W ∈ C,

|Uk(t)(f)(W )| ≤ γ C̃η E1/p,1(β b)
eβ|W |

Γ(k/q + 1)
.

Taking now W = Z we have that ∀t ∈ T , ∀W ∈ C,

∞∑
k=0

|Uk(t)(f)(Z)| |Z|k ≤ γ C̃η E1/p,1(β b) eβ|Z|
∞∑
k=0

(η b |Z|)k

Γ(k/q + 1)︸ ︷︷ ︸
E1/q,1(η d |Z|)

.

Since the Mittag-Le�er function E1/q,1(η d |Z|) has order q > 1, the estimates above (uniform in

the parameter t as well as in the function f ∈ A1
γ,β(C)) show that the di�erential operator acts

from A1(C) into Aq,0(C), for any t ∈ T .

In order to prove that U(t, Z) acts continuously one just needs to repeat here the end of the

proof of Lemma 3.1.2.

Now we have all the tools needed to prove the continuity of Fresnel-type integral operators

on our spaces.

Let T be a set of parameters and t ∈ T 7−→ U(t, Z) be a di�erential operator-valued map

that satis�es all the hypotheses in Lemma 4.2.1. Let also φ be a non-vanishing real function on

T and χ > −1.

It follows from the estimates (4.2.3), together with Lemma 4.1.1, that the regularization

approach described in Section 4.1 allows to de�ne the operator

t 7−→
� ∞

0

Zχ e−iφ(t)Z2
∞∑
j=0

bj(t, Z)
( d

dZ

)j
(·) dZ.

One needs to consider for the moment these operators as acting on entire functions of the complex

variable Z. The discussion is with respect to the sign of φ(t).

• When φ(t) > 0,

� ∞
0

Zχe−iφ(t)Z2
∞∑
j=0

bj(t, Z)
( d

dZ

)j
(·)dZ

= e−i(1+χ)π/4

� ∞
0

yχe−φ(t)y2
( ∞∑
j=0

bj(t, e
−iπ/4Z)

(
eijπ/4

( d

dZ

)j
�He−iπ/4

)
(·)
)

(y)dZ.

(4.2.6)
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• When φ(t) < 0,

� ∞
0

Zχe−iφ(t)Z2
∞∑
j=0

bj(t, Z)
( d

dZ

)j
(·)dZ

= ei(1+χ)π/4

� ∞
0

yχeφ(t)y2
( ∞∑
j=0

bj(t, e
iπ/4Z)

(
e−ijπ/4

( d

dZ

)j
�Heiπ/4

)
(·)
)

(y)dZ.

(4.2.7)

Theorem 4.2.2. Suppose that the parameter space T is a topological space and that φ is con-

tinuous. Consider functions Bj : T × C × C → C (j ∈ N) which are entire in the two complex

entries and such that

∀ε > 0, ∃A(ε), ∃Bε ≥ 0 such that ∀t ∈ T , ∀Z ∈ C, ∀Y ∈ C, ∀W ∈ C,
∞∑
j=0

|Bj(t, Z, Y )| |W |j ≤ A(ε) eε|Z|
q+Bε|Y |q+B|W |p ,

(4.2.8)

for some p > 1, q ∈ (1, 2] and B > 0. Then the operator

� ∞
0

Zχ eiφ(t)Z2
( ∞∑
j=0

|Bj(t, Z, Y )|
( d

dZ

)j
(·)
)
dZ

(understood through the process of regularization) acts continuously locally uniformly in t from

A1(C) into Aq,0(C).

Proof. It is enough to consider T as a neighborhood of a point t0 in which φ(t) ≥ ε0 > 0 (since

φ is continuous).

Let f = {Z 7→ fn(Z)}n≥1 be a sequence of elements in A1(C) that converges towards 0

in A1(C), which means (see Proposition 2.3.9) that all fn belong to some AC,b1 (C) for some

constants C, b > 0 independent on N (namely fn =
∑
` an,`Z

` with |an,`| ≤ Cb`/`!). It is clear

that the operator

H =

∞∑
j=0

Bj(t, e
−iπ/4Z, Y )

(
eijπ/4

( d

dZ

)j
�He−iπ/4

)
involved in the integrand of (4.2.6) is governed by estimates of the form (4.2.8).

For each n ∈ N∗ the function that we obtain applying this operator to fn is

H(fn) (t, Z, Y ) ∈ T × C× C

7−→
∞∑
j=0

Bj(t, e
−iπ/4Z, Y )

(
eijπ/4

( d

dZ

)j
�He−iπ/4

)
(fn)(Z).

It follows then from Lemma 4.2.1, taking into account estimates (4.2.8), that H(fn) ∈ Aq,0(C)

whether it is considered as an entire function in the complex variable Z or it is considered entire
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in Y . This means that for each ε > 0, there exists Ã(ε) ≥ 0 (depending on T , Aε, the Bj , b and

C, but not on the n) such that

∀(t, Z, Y ) ∈ T × C× C, |H(fn)(t, Z, Y )| ≤ Ã(ε) eε|Z|
q+Bε|Y |q .

Take in particular ε < ε0, so it holds φ(t) ≥ ε0 > ε. Then the function

Y ∈ C 7−→
� ∞

0

yχ e−φ(t)y2H(fn)(t, y, Y ) dy

is in Aq,0(C) since it is estimated as

∣∣∣ � ∞
0

yχ e−φ(t)y2H(fn)(t, y, Y ) dy
∣∣∣ ≤ Ã(ε)

(� ∞
0

yχ e−ε0y
2

eεy
q

dy
)
eBε|Y |

q

∀ Y ∈ C

(remember that q ∈ (1, 2] and then the integral is convergent). It remains to show that the

sequence {
Y 7−→

� ∞
0

yχ e−φ(t)y2H(fn)(t, y, Y ) dy

}
n≥1

converges to 0 in Aq,0(C). It is enough (see Proposition 2.3.9) to prove that it converges to 0 in

H(C), in other words we should prove the convergence uniformly on any closed disk D(0, r) in

C.

Fix ε < ε0 and η > 0. Choose then Rη >> 1 such that

∀ n ∈ N,
∣∣∣ � ∞
Rη

yχ e−φ(t)y2H(fn)(t, y, Y ) dy
∣∣∣

≤ Ã(ε)
(� ∞

0

yχ e−ε0y
2

eεy
q

dy
)
eBε|Y |

q

≤ η e−Bεr
q

eBε|Y |
q

≤ η ∀ Y ∈ D(0, r).

On [0, Rη], one uses the uniform convergence of f towards 0 on any compact set, hence of

H[f ] on any compact set, to conclude that for n ≥ Nη >> 1, one has

∣∣∣ � Rη

0

yχ e−φ(t)y2H(fn)(t, y, Y ) dy
∣∣∣ ≤ η ∀ Y ∈ D(0, r).

Note that our estimates show that the convergence towards 0 in Aq,0(C) thus obtained is

uniform in t ∈ T .

Let us apply this theorem in our setting, where the Fresnel integral operator is de�ned

through the Green's function. In particular we have that the solution of the Cauchy problem we
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are examining in this chapter (4.1.7) is

ψa(t, x) = (2πi sin t)−1/2

�
R

exp
(2xx′ − (x2 + x′2) cos t

2i sin t

)
eiax

′
dx′

= (2πi sin t)−1/2 exp
(
i
cotan t

2
x2
)

×
�
R

exp
(
i
cotan t

2
(x′)2

)
exp

(
− i x x

′

sin t

)
exp(iax′) dx′.

So the Fresnel integral operator we want to study is:

t ∈ (0,+∞) \ πN∗/2 7−→
�
R

exp
(
i
cotan t

2
Z2
)

exp
(
− iY Z

sin t

)
(·) dZ.

In order to write it in a suitable form for Theorem 4.2.2, we perform a change of variables

Z ↔ | sin t|Z on [0,+∞) and split accordingly to ω = ±1, so we obtain

t ∈ (0,+∞) \ πN∗/2 7−→ | sin t|
�
R

exp
(
i
sin 2t

4
Z2
)

exp(−i ω sign(sin t))Y Z)�Hω| sin t|(·) dZ.

(4.2.9)

Set now

T = (0,+∞) \ πN∗/2 ,

φ : t ∈ T 7−→ − sin(2t)

4
,

χ = 0 ,

Bj : (t, Z, Y ) ∈ T × C× C 7−→

{
exp(−i ω sign(sin t))ZY )�Hω| sin t| if j = 0

0 otherwise.

(4.2.10)

Theorem 4.2.2 applies here with p = 1 and q = 2 and the two operators (4.2.9) act continu-

ously from A1(C) to A2(C) (locally uniformly with respect to the parameter t ∈ T ).

Note again that where the Fresnel-type integral operators (4.2.9) are applied to Z 7→ eiaZ

(a ∈ R), are semi-convergent and their values as semi-convergent integrals coincide with the

values that are obtained by regularization in Section 4.1.

4.2.3 Persistence of superoscillations

We have presented so far four methods one can apply in order to prove the continuity of the

operator involved in the solution: three of these are the classical ones presented in Section 4.2.1

and the fourth is the one discussed in Section 4.2.2.

Now we are ready to perform the �nal step of the strategy summarized in Section 3.1: the

computation of the limit when n approaches +∞.
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Proposition 4.2.3. Let T = (0,+∞) \ π(2N + 1)

2
. For any n ∈ N, let ψn(t, x) be the solution

of (4.1.10), then

lim
n→∞

ψn(t, x) = (cos t)−1/2 exp(−(i/2)(x2 + a2) tan t+ iax/ cos t),

for any t in T .

Proof. Thanks to our continuity results we can compute the limit below as follows

ψ(t, x) := lim
n→∞

ψn(t, x) = (cos t)−1/2e−(i/2)x2 tan t Ũ

(
t,
d

dx

)
lim
n→∞

Fn(x/ cos t)

Let us de�ne F (x) := eiax. Then, by Theorem 2.2.2, Fn(x/ cos t) converges uniformly to

F (x/ cos t) on the compact set |x| ≤M , where M > 0, for every �xed t in T , so we have

ψ(t, x) = (cos t)−1/2e−(i/2)x2 tan t Ũ

(
t,
d

dx

)
F (x/ cos t)

= (cos t)−1/2e−(i/2)x2 tan t
∞∑
m=0

1

m!

( i
2

sin t cos t
)m d2m

dx2m
eiax/ cos t

= (cos t)−1/2e−(i/2)x2 tan t
∞∑
m=0

1

m!

( i
2

sin t cos t
)m(

ia/ cos t
)2m

eiax/ cos t

= (cos t)−1/2e−(i/2)x2 tan t
∞∑
m=0

1

m!

(
− i

2
a2 tan t

)m
eiax/ cos t,

= (cos t)−1/2 exp(−(i/2)(x2 + a2) tan t+ iax/ cos t).

As always, we can interpret this theorem in di�erent ways and, as consequence of that, we

can prove that ψn superoscillates according to all the versions of the de�nition of superoscillation

presented in Section 2.1.

For instance, if we consider the convergence of Fn(x/ cos t) to eiax/ cos t simply as uniform

convergence on any compact set of R, as we did in the proof, we conclude that the sequence

ψn(t, x) superoscillates for each t ∈ T = (0,+∞) \ π(2N + 1)

2
with superoscillation domain R

and superoscillation sets any compact set in R.

On the other hand, we can interpret Fn(x/ cos t)→ eiax/ cos t in A1(C) (see Theorem 2.3.10)

and recall that, thanks to Lemma 3.1.2, Ũ(t, ddz ) acts continuously from A1(C) to A1(C) uni-

formly with respect to t ∈ T . Then, according to De�nition 2.1.4, we have that ψn(t, x) is a super-

oscillating sequence in two variables with superoscillation domain U := T ×R, P∞(T,X) = TX,

where T = eig1(a) tan t
2 and X = eig2(a) x

cos t , g1(a) = a2 and g2(a) = a.
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Finally, we can also prove that the sequence of functions
{∑n

j=0 Cj(n, a)(ψ1−2j/n)|U

}
n≥1

is, for any a ∈ R \ [−1, 1], a supershift for the family F = {(ψa)|U ; a ∈ R}, see (4.1.8), with

F-supershift domain U ⊂ R2.

Since we have considered the solutions also as C-valued distributions µn ∈ D′(T ,C) (see

Corollary 4.1.6), we can claim that the superoscillatory behaviour persists also in the sense of Def-

inition 2.1.6. Indeed, let us recall that µa ∈ D′(T ,C) is the distribution expressed by the locally

integrable function (cos t)−1/2e−(i/2)x2 tan te−(i/2)a2 tan t, with singular support
π(2N + 1)

2
× R

(see Corollary 4.1.4).

Now, let F = {(µa)|U ; a ∈ R} be a family of distributions and let {(
∑n
j=0 Cj(n, a)µ1−2j/n)|U}n≥1

be a sequence. Then, thanks to the continuity of the Fresnel integral proved in Theorem 4.2.2

we can conclude that the sequence above converges weakly in the sense of distributions in U to

the restriction of U of the distribution µa ∈ D′(T ,C).

Remark 4.2.1. Let us point out that the superoscillations are ampli�ed by the potential and the

analytic solution blows up for t = π/2. Moreover, even when a ∈ (−1, 1), the harmonic oscillator

displays a superoscillatory phenomenon since the solution contains the term exp(−(i/2)(x2 +

a2) tan t + iax/ cos t), which increases arbitrarily as t approaches π/2. This is a peculiarity of

the case of the harmonic oscillator.

In Fig. 4.3 I plot log(1 + |Re(ψn(5, t)|) �xing a = 2 and I zoomed near
π

2
, while in Fig. 4.4

I plot log(1 + |Re(ψn(5, t)|) �xing a = 0.2. In both cases I try to display the convergence

phenomenon towards the asymptotic function, starting from small n = 20 and reaching n = 45.

Due to computational limitations, I cannot test greater values of n.

Looking at the plots we can notice that the convergence happens in both cases, when a > 1

ψn(x) move close ψa(x) from above, instead when a < 1 they move close ψa(x) from below.

This is not the only e�ect due to the presence of singularities in the solution, indeed given

k ∈ N and x0 ∈ R, it is impossible to interpretα 7→ ( n∑
j=0

Cj(n, a)µ1−2j/n

)
about ((2k+1)π/2, x0)


n≥1

(4.2.11)

(when a ∈ R \ [−1, 1]) as supershift for a 7→ (µ1−2j/n)about ((2k+1)π/2, x0) (all maps being consid-

ered here as distribution-valued about ((2k+1)π/2, x0)). In order to interpret (4.2.11) as a super-
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Figure 4.3: a = 2.

Figure 4.4: a = 0.2.

shift for a 7→ (µa)about ((2k+1)π/2, x0), one needs to consider the map a 7→ (µa)|about ((2k+1)π/2, x0)

as hyperfunction (in t) times distribution (in x)-valued instead of distribution-valued in (t, x).

4.3 Singularities in the quantum harmonic oscillator evolu-

tion

Before starting with the analysis of the singularities a�ecting the solution founded so far, it is

worth to present a quick overview on the theory of hyperfunctions, since these objects turns out

to be useful in Section 4.3.2.

4.3.1 Elements of hyperfunction theory

The aim of this section is to give a basic understanding of the hyperfunction theory, I refer the

reader who is willing to go deeper inside the topic to see [20].

The birth of the hyperfunction theory goes back to the late 1950s, when the Japanese math-

ematician M. Sato needed to construct a space of generalized functions which would be the
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�analytic� equivalent of Schwartz's distributions. His inspiration came from some work in the-

oretical physics which showed the necessity of dealing with boundary values of holomorphic

functions.

Let us recall that with boundary value we mean the following: f has a boundary value,

denoted with f(x+ i0), in the sense of distributions if ∀ϕ ∈ D((a, b)) the limit

lim
ε→0+

� b

a

f(x+ iε)ϕ(x) dx = 〈f(x+ i0), ϕ〉

exists.

The aim is to generalize the concept of distribution so that this limit always exists.

Let us consider an open set Ω ⊂ R; an open set U ⊂ C such that Ω is a closed subset of U ,

is said to be a complex neighborhood of Ω. Let us consider the complex vector space H(U \Ω),

its subspace H(U) and their quotient H(U \ Ω)/H(U).

Figure 4.5: Representation of U and Ω in Gauss plane.

We will de�ne a hyperfunction f(x) as an equivalence class f(x) = [F (z)] in this quotient.

Any function F (z) in the equivalence class is said to be a de�ning function for f(x). More

precisely, if f(x) = [F (z)] = [G(z)] then F,G ∈ H(U \ Ω) and F −G ∈ H(U).

Let us notice that the quotient H(U \ Ω)/H(U) depends a priori on the choice of the open

set U ⊂ C, but it can be shown that this is not the case., in fact for any U, V ⊂ C

H(U \ Ω)

H(U)
' H(V \ Ω)

H(V )
.
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De�nition 4.3.1. (Space of hyperfunctions)

Let Ω be an open set in R. The vector space of hyperfunctions on Ω is de�ned as

B(Ω) =
H(U \ Ω)

H(U)
, (4.3.1)

where U is any complex neighborhood of Ω.

Remark 4.3.1. Let F ∈ H(U \ Ω) and denote by f = [F ] the hyperfunction f de�ned by the

quotient (4.3.1). If the function F is holomorphic at every point of Ω, then f is the zero

hyperfunction (due to Liuville's theorem). Note, however, that it is not possible to speak about

the value of a hyperfunction at a given point, so it is not correct to think of f(x) = 0 as a

numerical value.

Before giving some examples of hyperfunctions, it is convenient to de�ne some elementary

operations on them, besides the operation of sum and multiplication by a complex number that

are naturally implied by the vector space structure.

Note that, since a hyperfunction is determined by the equivalence class of a function F ∈

H(U \ Ω), we can set U \ Ω = U+ ∪ U− with U± = U ∪ {±Imz > 0} and F = (F+, F−),

F± ∈ H(U±) so that the hyperfunction f can be represented by the pair (F+, F−).

De�nition 4.3.2. (Multiplication of a hyperfunction by a real analytic function)

Let φ(x) be a real analytic function on Ω and let f = [F ] ∈ B(Ω).

We de�ne φ(x)f(x) = [φ(z)F (z)] where φ(z) is an analytic continuation of φ(x).

De�nition 4.3.3. (Di�erentation)

We de�ne

dn

dxn
f(x) =

[ dn
dzn

F (z)
]
.

It is possible to de�ne the notion of de�nite integral for hyperfunctions: let f be a hyperfunc-

tion de�ned on a neighborhood of the interval [a, b] and let f be real analytic in a neighborhood

of each of the two endpoints of the interval. Let F = (F+, F−), be a de�ning function for f : by

de�nition both F+ and F− can be analytically continued to some neighborhoods of the points

a and b. Let γ± ⊂ U± be piece-wise smooth arcs connecting the points a, b, then (see Fig. 4.6)

� b

a

f(x) dx =

�
γ+

F+(z) dz −
�
γ−
F−(z) dz.
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Figure 4.6

The de�nition is not a�ected by the choices we made.

De�nition 4.3.4. (Integration)

Let F (z) ∈ H(U \Ω) be a de�ning function for a hyperfunction f(x) supported in K ⊂ R, where

U is any complex neighborhood of K. Let γ ⊂ U be a closed, piece-wise smooth curve encircling

once K. We will assume γ oriented counterclockwise. We de�ne

�
R
f(x) dx = −

�
γ

F (z) dz.

Using Cauchy's integral theorem, it is immediate to verify that the notion is independent of

the choices of F , U and γ.

Remark 4.3.2. Let us recall that the Cauchy principal value is a method for assigning values to

certain improper integrals which would otherwise be unde�ned. In particular, if integrand f has

a singularity at the �nite number b, the Cauchy principal value is de�ned as follows

lim
ε→0+

[� b−ε

a

f(x) dx+

� c

b+ε

f(x) dx

]
where b is a point at which the behaviour of the function f is such that the integral from a to b

or from b to c diverges and a, c ∈ [−∞,+∞]. In particular let us notice that the principal value

of
1

x
can be consider as a map acting on functions on D(R), then thanks to the Cauchy principal

value method we can describe the e�ect of p.v.

(
1

x

)
on u ∈ D(R) as

p.v.

(
1

x

)
u(x) = lim

ε→0+

[� −ε
−∞

u(x)

x
dx+

� ∞
ε

u(x)

x
dx

]
.

It can be proven that p.v.

(
1

x

)
belongs to D′(R), i.e. it is a distribution.
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Let us present some examples of hyperfunction.

Remark 4.3.3. Dirac delta hyperfunction

The Dirac delta can be de�ned as the hyperfunction

δ(x) =

[
− 1

2πi

1

z

]
Since

1

z
is holomorphic on C \ {0}, δ(x) = 0 on R \ {0} so its support is the origin. Let φ(x) be

a real analytic function, then the chain of equalities

�
R
φ(x)δ(x) dx =

1

2πi

�
γ

φ(x)

z
dz = φ(0)

proves, thanks to Cauchy formula, that the δ hyperfunction behaves like the δ-distribution. In

particular, considering φ(x) ≡ 1, we have

�
R
δ(x) dx = 1.

Moreover, we also have

d

dx
δ(x) =

[
1

2πi

1

z2

]
and, in general,

dn

dxn
δ(x) =

[
− (−1)n n!

2πi

1

zn+1

]
.

Remark 4.3.4. Unit hyperfunction

Consider now the following hyperfunctions:

ε(z) =

{
0 if Imz > 0

1 if Imz < 0
ε̄(z) =

{
0 if Imz > 0

−1 if Imz < 0.

The hyperfunction associated to ε is de�ned on R and it can be seen as the unit hyperfunction

1 if we think of a hyperfunction as the di�erence of boundary values of holomorphic functions.

We obviously have [ε] = [ε̄].

Remark 4.3.5. A function F holomorphic on U \ Ω de�nes a hyperfunction f = [F ] that can be

realized as the boundary value of F as follows. Let us set

F (x+ i0) = [F · ε], F (x− i0) = [F · ε̄].

We have

f(x) = F (x+ i0)− F (x− i0).



76 CHAPTER 4. THE CASE OF THE HARMONIC OSCILLATOR

Remark 4.3.6. If F is any function that is holomorphic everywhere except for an essential sin-

gularity at 0 (for example e1/z), then f = [F ] is a hyperfunction with support 0 that is not a

distribution.

Instead, if f has a pole of �nite order at 0 then f = [F ] is a distribution, so when f has

an essential singularity then f looks like a "distribution of in�nite order" at 0. (Note that

distributions always have �nite order at any point).

The �rst is indeed the case we are analysing, recalling Corollary 4.1.4, (t, x) ∈ (0,+∞)×R 7−→

(cos t)−1/2e−(i/2)x2 tan te−(i/2)a2 tan t is holomorphic everywhere in R2 except for the countable set

of essential singularities at
2N + 1

2
π × R.

Since we have a de�nition of di�erentiation on the space of hyperfunctions, we can talk about

di�erential equations and di�erential operators.

Lemma 4.3.5. Let Ω be an open interval in R and let f ∈ B(Ω). Then
dn

dxn
f = 0 if and only if

f is a polynomial of degree less than n.

Proposition 4.3.6. Let Ω be an open interval in R and let g ∈ B(Ω). Then the ordinary

di�erential equation

dn

dxn
f = g

has a hyperfunction solution f on Ω unique up to polynomials of degree less than n.

Proof. Let us consider a representative G ∈ H(U \Ω) of g; it is not reductive to suppose that U ,

U+ and U− are simply connected. By the monodromy principle (let us recall that the monodromy

theorem makes possible to extend an analytic function to a larger set via curves connecting a

point in the original domain of the function to points in the larger set) there exists F ∈ H(U \Ω)

such that
dn

dxn
F = G on U \Ω). It is clear that f = [F ] is a solution to the di�erential equation.

The uniqueness up to polynomials of degree less than n follows by Lemma 4.3.5.

More generally, let us consider the operator

P

(
x,

d

dx

)
=

m∑
i=0

ai(x)
di

dxi
(4.3.2)

where ai ∈ A(Ω) (space of real analytic functions) for i = 0, . . . ,m, am(x) 6≡ 0 and let f =

[F ] ∈ B(Ω). Let U be an open set to which all the ai can be holomorphically extended, and let
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F ∈ H(U \ Ω). We de�ne

P

(
x,

d

dx

)
f =

[
P

(
z,

d

dz

)
F

]
where P

(
z,

d

dz

)
is the complexi�ed version of P

(
x,

d

dx

)
. It is easy to check that this de�nition

does not depend on the choice of the open set U , the de�ning function F and the extensions

ai(z) of ai(x).

We have the following result about the existence of hyperfunction solutions to the di�erential

equation

P

(
x,

d

dx

)
f = g. (4.3.3)

Theorem 4.3.7. For any g ∈ B(Ω) there exists a solution f ∈ B(Ω) to the di�erential equation

(4.3.3).

Proof. The proof is similar to the one of Proposition 4.3.6.

Now we wish to consider di�erential operators more general than (4.3.2). As it is well known,

every di�erential operator on distributions is a �nite sum of convolutions with the Dirac delta

and its derivatives. On the other hand, one of the great advantages of the hyperfunctions is that

they allow the use of a larger class of di�erential operators in which in�nitely many derivatives

can be considered. More generally, we can consider the operator

P

(
x,

d

dx

)
=

∞∑
i=0

ai(x)
di

dxi
(4.3.4)

where {ai(x)}i∈N is a sequence of functions. In order for this operator to act on a hyperfunc-

tion f = [F ] supported at the origin, we need to ensure that when F (z) is holomorphic in a

neighborhood of {0}, then

P

(
z,

d

dz

)
F =

∞∑
i=0

ai(z)
di

dzi
F (z) (4.3.5)

is holomorphic in U , so that we can de�ne

P

(
x,

d

dx

)
f =

[
P

(
z,

d

dz

)
F (z)

]
.

The series on the right-hand side of (4.3.5) converges under suitable growth conditions on

the coe�cients ai(z), that turn out to be the ones such that make the operator an in�nite order
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di�erential operator (recall De�nition 2.3.18). That means that for every compact set K ⊂ C,

lim
i→∞

i

√
sup
z∈K
|ai(z)| i! = 0. (4.3.6)

So, it turns out that a hyperfunction on a compact set K is nothing but a locally analytic

functional on K. It is then natural to compare distributions and hyperfunctions. Since there is

a canonical injection i : A(R) ↪→ C∞(R) with dense image, there is also an injective dual map

i∗ : (C∞)′(R) ↪→ A′(R) preserving the supports (where (C∞)′(R) represents the set of compactly

supported distributions, usually denoted with E ′(R)).

Remark 4.3.7. Let K be a compact set in R and let U be any complex neighborhood of K. We

have the following isomorphism

B[K] ∼=
H(U \K)

H(U)
.

Indeed, let Ω ∈ R be any open set containing K, then f can be represented by an element in

B(Ω) by extending it to zero outside K.

Thanks to the previous remark, we can claim the following:

Theorem 4.3.8. Let K be a compact set in R. Then we have

A′(K) ∼= B[K].

In particular, it is possible to show that the following formal inclusions

A ↪→ L1
loc ↪→ D′ ↪→ B

hold.

4.3.2 Application to the case on harmonic oscillator

Let θ(t, x) ∈ D(T ,C) be a test function with support in a small neighborhood of
(π

2
, x0

)
. We

want now to study the e�ect of the distribution µa on such a test-function. Since the support of

θ(t, x) contains the singular point
(π

2
, x0

)
, we cannot describe the e�ect of µa through a function

in L1
loc.

For this purpose, let us then consider instead θ
(π

2
− t, x0

)
that has support in a small

neighborhood of (0, x0).
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We start by writing formally

〈µa, θ〉 =

=

�
R2

[
1√

2πi sin t
exp

( ix̂2cotan t

2

)�
R

exp
( iz2cotan t

2

)
exp

(
− ix̂z

sin t

)
(eia(·)) dz

]
x̂=x

θ(t, x) dt dx,

translating by
π

2
in t and recalling that sin(π/2− t) = cos t and cos(π/2− t) = sin t, we obtain

〈µa, θ〉 =

= −
�
R2

[
1√

2πi cos t
exp

( ix̂2tant

2

)�
R

exp
( iz2tant

2

)
exp

(
− ix̂z

cos t

)
(eia(·)) dz

]
x̂=x

θ(π/2− t, x) dt dx.

Let us notice that this expression makes sense, indeed we can express the e�ect of µa on

a test-function with support in (0, x0) by the function in L1
loc founded before and represented

between squared brackets above.

Now, let us de�ne ξ(t, x) = θ(t, x)
1√
2πi

exp
( ix2cotan t

2

)
, then we have

〈µa, θ〉 = −
�
R2

[
1√
cos t

�
R

exp
( iz2tant

2

)
exp

(−ix̂z
cos t

)
(eia(·)) dz

]
x̂=x

ξ(π/2− t, x) dt dx.

Substituting z ↔
√

cos t z we obtain

〈µa, θ〉 = −
�
R2

[�
R

exp
( iz2 sin t

2

)
exp

( −ix̂z√
cos t

)
(eia(·)) dz

]
x̂=x

ξ(π/2− t, x) dt dx.

And performing another substitution, i.e. x↔
√

cos t x, we have

〈µa, θ〉 = −
�
R2

[ �
R

exp
( iz2 sin t

2

)
e−ix̂z (eia(·)) dz

]
x̂=x

ξ(π/2− t, x)
√

cos t dt dx.

Finally, we can de�ne ξ̃(u, x) = −
√

cos t ξ(π/2− t,
√

cos tx0) and rewrite the previous expression

as

〈µa, θ〉 =

�
R2

[ �
R

exp
( iz2 sin t

2

)
e−ix̂z (eia(·)) dz

]
x̂=x

ξ̃(u, x) du dx. (4.3.7)

In order to compute the value of the Fresnel integral between squared brackets we use the same

trick we used in Proposition 4.1.3, that means that we rewrite the exponent as

iz2 sinu

2
− ix̂z + iaz = 2

i(z sinu/2− (x̂− a)/2)2

sinu
− 2

i((x̂− a)/2)2

sinu
.
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We can now rewrite (4.3.7) in the following way

〈µa,θ〉 = lim
ε→0+

�
R2

[ �
R
eεz

2

exp
( iz2 sinu

2

)
e−ix̂z eiaz dz

]
x̂=x

ξ̃(u, x) du dx

= lim
ε→0+

�
R2

[ �
R
eεz

2

exp
(
iz2 sinu

2
− ix̂z + iaz

)
dz

]
x̂=x

ξ̃(u, x) du dx

= lim
ε→0+

�
R2

[ �
R
eεz

2

exp
(

2
i(z sinu/2− (x̂− a)/2)2

sinu
− 2

i((x̂− a)/2)2

sinu

)
dz

]
x̂=x

ξ̃(u, x) du dx

= lim
ε→0+

�
R2

exp
( i(x− a)2

2 sinu

)[ �
R
eεz

2

exp
(
i
(
z

sinu

2
− x̂− a

2

)2 2

sinu

)
dz

]
x̂=x

ξ̃(u, x) du dx

= lim
ε→0+

�
R2

exp
( i(x− a)2

2 sinu

) 2

sin t

[ �
R
eεz

2

exp
(
iy2 2

sinu

)
dz

]
ξ̃(u, x) du dx,

where in the last equality we performed the change of variables y ↔ z sinu

2
− (x− a)

2
.

Then using Lebesgue dominated convergence theorem we can exchange the limit with the

�rst integral and, then, we can apply the well know regularization (4.1.9) and �nally obtain

〈µa, θ〉 =

�
R2

exp
( i(x− a)2

2 sinu

) √ 2iπ

sinu
ξ̃(u, x) du dx.

Let us use now the change of variables v ↔ 2 sinu about u = 0, here v ≈ 2u and we can write

〈µa, θ〉 =

�
R2

exp
( i(x− a)2

v

) √1

v
θ̃(v, x) dv dx,

where θ̃(v, x) :=
√
iπ ξ̃(2u, x) is a test-function supported in (0, x0).

Though such expression makes sense when a ∈ R (since
∣∣ exp(i(x− a)2/v)

∣∣ = 1 for any point

(v, x) ∈ Supp(ξ̃)), it does not make sense anymore when a ∈ C.

Lemma 4.3.9. Let U(Y ) (Y ∈ C) be a di�erential operator of the form

∞∑
k=0

[Ak(Y, d/dZ)

k!
(·)
]
Z=0

(d/dv)k, (4.3.8)

(where Ak ∈ C[[Y, d/dZ]] for any k ∈ N), considered as acting from the space of entire functions

of the variable Z to the space C[Y ][[d/dv]].

Suppose that there exist p ≥ 1 and q ≥ 1 and B,D ≥ 0 such that

sup
k∈N,Y ∈C

(|Ak(Y,W )| exp(−B|W |p −D|Y |q)) < +∞. (4.3.9)
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Then, for any b ≥ 0, there exists A(b) ≥ 0 such that

∀C ≥ 0, ∀f ∈ AC,b1 (C), sup
k∈N
|Ak(Y, (d/dZ))(f)(0)| ≤ C A(b) eD|Y |

q

. (4.3.10)

In particular, for any f ∈ AC,b1 (C), U(Y )(f) remains an in�nite order di�erential operator of

the form ∑
k≥0

αk(Y )(f)(d/dv)k

with coe�cients satisfying (independently of f ∈ AC,b1 (C))

∑
k∈N

k! |αk(Y )(f)| exp(−B|Y |q) = C A(b) < +∞.

Remark 4.3.8. Before proving this result, let us make some clari�cation about the notation and

the statement itself.

With the notation C[[Y, d/dZ]] I denote the set of formal di�erential operator of in�nite order

both in Y and
d

dZ
, instead C[Y ][[d/dv]] stands for the set of formal in�nite order di�erential

operators in
d

dv
depending on the parameter Y .

Moreover, let us notice that condition (4.3.9) means that the formal symbol of Ak belongs to

Ap(C) as a function of W and to Aq(C) as a function of Y . Analogously, (4.3.10) assures that

the function Y ∈ C 7→ Ak(Y, d/dZ)(f)(0) is in Aq(C).

Proof. The coe�cients of Ak as a polynomial in d/dZ satisfy

∑
k,j∈N, Y ∈C

|ak,j(Y )| ≤ C0
bj0

Γ(j/p) + 1
eD|Y |

q

for some absolute constants C0 and b0 (see Lemma 2.3.11).

As in the proof of Lemma 3.1.2, one concludes that for any f ∈ AC,b1 (C) and any k ∈ N, one

has uniform estimates

|Ak(Y, (d/dZ))(f)| ≤ C A(b)eb0b|Z| eD|Y |
q

for some positive constant A(b). Evaluating at Z = 0, one gets the required estimates.

In particular we obtain that |αk(Y )(f)| = |Ak(Y, d/dZ)(f)| are the coe�cients of the resulting

di�erential operator that turns to satisfy the condition (2.3.3) and then to be an in�nite order

di�erential operator.
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One can then complete the discussion in Section 4.1 and Section 4.2 into the following com-

panion proposition.

Proposition 4.3.10. Let T = (0,+∞)×R. For any a ∈ R, let ϕa ∈ D′(T ,C) be the evolved dis-

tribution from the initial datum x ∈ R 7→ eiax through the Cauchy Schr�odinger equation (4.1.10).

Let F = {ϕa ; a ∈ R}, where each ϕa is considered as a hyperfunction in T .

Then, for any a ∈ R \ [−1, 1], the sequence {
∑n
j=0 Cj(n)ϕ1−2j/n}n≥1 is a F-supershift of hyper-

functions over the F-supershift domain T .

Proof. Let θ ∈ D(R2
t,x,C) with support a small neighborhood V of the point (π/2, x0), x0 ∈ R,

and θ̃ the test-function with support (0, x0) ∈ V \ (π/2, 0) that corresponds to it through the

successive transformations exhibited at the beginning of the section. One has for any a ∈ R,

〈ϕa, θ〉 =

=

�
R

� ∞
0

[
exp

( i
v

(Y − a)2
)]

Y=x

θ̃(v, x)√
v

dv dx

− i
�
R

� ∞
0

[
exp

(
− i

v
(Y − a)2

)]
Y=x

θ̃(−v, x)√
v

dv dx

=

�
R

� ∞
0

([ ∞∑
k=0

ik

k!

(Y − a)2k

v1/2+k

]
Y=x

θ̃(v, x)− i
[ ∞∑
k=0

(−i)k

k!

(Y − a)2k

v1/2+k

]
Y=x

θ̃(−v, x)
)
dv dx.

(4.3.11)

For any k ∈ N, the distribution v−1/2−k
+ ∈ D′([0,+∞),R) can be expressed as

v
−1/2−k
+ =

2k∏k
`=1(2(k − `) + 1)

(
− d

dv

)k
(v
−1/2
+ )

in the sense of distributions in D′([0,+∞),R).

Furthermore, for any k ∈ N we have

(Y − a)2k eiaZ =
(
Y + i

d

dZ

)2k

(eiaZ).

Let us denote with M the number resulting from the product
∏k
`=1(2(k− `) + 1). Then, one

can reformulate formally (4.3.11) as

〈ϕa, θ〉 =

∞∑
k=0

(2i)k

k!M�
R

〈[(
Y + i

d

dZ

)2k

(eia(·))
]
Y=x

(0)
( d
dv

)k
(v
−1/2
+ ), θ̃(·, x)− i(−1)kθ̃(−·, x)

〉
dx.

(4.3.12)
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Lemma 4.3.9 applies to the two operators

U1(Y ) =

∞∑
k=0

1

k!

1

M

[
(2i)k

(
Y + i

d

dZ

)2k

(·)
]
Z=0

(d/dv)k

U2(Y ) =

∞∑
k=0

1

k!

1

M

[
− i(2i)k

(
Y + i

d

dZ

)2k

(·)
]
Z=0

(d/dv)k
(4.3.13)

with p = q = 2.

These two operators act then continuously (locally uniformly with respect to the parameter

Y ) from A1(C) into the space of in�nite order di�erential operators in d/dv (depending on the

parameter Y ∈ C).

Such di�erential operators can be considered as hyperfunctions on Rv, indeed it can be

proven that the coe�cients respect condition (2.3.3). Since v
−1/2
+ is a hyperfunction in the real

line R, the two H(R)-valued operators f ∈ A1(C) 7−→ U1(Y )(f) � v−1/2
+ and f ∈ A1(C) 7−→

U2(Y )(f) � v−1/2
+ are well de�ned and depend continuously (locally uniformly with respect to

Y ) on the entry f ∈ A1(C).

The conclusion follows then from the fact that Fn(x) → eiax in A1(C) (as showed in Theo-

rem 2.3.10) and from the evaluation of 〈ϕa, θ〉 when a ∈ R and ϕa is considered as an element

in D′(T ,C) (acting on θ ∈ D(T ,C)) which can be also interpreted a hyperfunction on T .





Appendix A

The Mittag-Le�er function

The Mittag-Le�er function is de�ned by the power series:

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
, α ∈ C, Re(α) > 0.

The series converges in the whole complex plane for all α ∈ C, Re(α) > 0. For all Re(α) < 0

it diverges everywhere on C \ {0}. For Re(α) = 0 the radius of convergence is R = eπ|Im(α)|/2.

The most interesting fact is that for Re(α) > 0 the Mittag-Le�er function is an entire function

of �nite order. Indeed using Stirling's asymptotic formula

Γ(αk + 1) =
√

2π(αk)αk+1/2e−αk(1 + o(1)), for k →∞

so that for

ck =
1

Γ(αk + 1)

for α > 0, according to the de�nition of order stated in De�nition 2.3.1, we have

lim sup
k→∞

k ln k

ln 1
|ck|

= lim sup
k→∞

k ln k

ln |Γ(αk + 1)|
=

1

α

and, this time according to the de�nition of type (recall De�nition 2.3.2),

lim sup
k→∞

(
k1/ρ k

√
|ck|
)

= lim sup
k→∞

(
k1/ρ k

√
1

|Γ(αk + 1)|

)
= (e/α)α.

This means that for each α ∈ C such that Re(α) > 0 the Mittag-Le�er function is an entire

function of order ρ = 1/Re(α) and of type σ = 1.

This function provides a generalization of the exponential function because we replace k! =

Γ(k + 1) by (αk)! = Γ(αk + 1) in the denominator of the power terms of the exponential series.
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A useful generalization that was widely used in the computations of this thesis is the two-

parametric Mittag-Le�er function

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, α, β ∈ C, Re(α) > 0.

The function Eα,β(z) for α, β ∈ C and Re(α) > 0 is an entire function of ρ = 1/Re(α) and of

type σ = 1 for every β ∈ C. In other words, we have the following estimates

Eα,β(z) ≤ C exp(|z|1/Re(α)) ∀z ∈ C.
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