
A Text Segmentation technique
based on Language Models

Phil Lodovico Riccardo Ranzato
Student Id: 899960

Advisor: Prof. Marco Brambilla

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano

This thesis is submitted for the degree of
Master of Science in Computer Science and Engineering

December 2019

I would like to dedicate this thesis to my family and friends,
who always make me feel loved.

Ringraziamenti

Ringrazio il professor Marco Brambilla per avermi guidato e supportato nella stesura di
questo lavoro.

Ringrazio anche il Politecnico di Milano e tutti i professori che sono stati in grado di
farmi appassionare alle materie da loro trattate e che mi hanno guidato in questo percorso.

Ringrazio inoltre la mia famiglia per avermi fornito la possibiltà di finire gli studi.
Ringrazio i miei amici dell’università con cui ho affrontato questa avventura e a cui

auguro ogni bene futuro. Grazie di avermi aiutato nel momento del bisogno e di aver
rallegrato questo periodo della mia vita.

Ringrazio in modo speciale i miei amici al di fuori dell’università, grazie per avermi
supportato (e sopportato) in qualsiasi momento.

Da ultima, ma prima per importanza, ringrazio la persona a me più cara, Sara Signorile,
la persona che più mi è stata vicino e che mi ha dato la forza nei momenti difficili, grazie alla
tua comprensione, al tuo supporto, grazie di tutto.

Senza di voi niente di ciò sarebbe stato possibile,
Grazie

Abstract

In an era in which huge amounts of data are generated every day, it becomes necessary to be
able to manipulate them in order to obtain valid and usable information. Processing natural
language has always been a central topic of artificial intelligence, both for the fundamental
role that covers language in everyday life and for the enormous potential it offers. This thesis
aims to analyze the potential of a recent model of language representation called BERT, in
particular in a subset of the so-called Natural Language Processing, called Text Segmentation.
Text Segmentation covers a fundamental role in Natural Language Processing since it can be
integrated with a vast multitude of other functions belonging to Natural Language Processing,
such as Text Summarization or image analysis. BERT has proved to be a very powerful tool
that allows obtaining discrete results even with a small amount of data for medium segments,
while, for rather large and generic segments, the results are scarce. For this reason, the
approach of this thesis is based on the use of BERT to be able to segment the text according
to two different scenarios: data coming from news articles, characterized by segments of
average length, and data coming from books, whose chapters appear to be segments of
considerable size.

Abstract

In un’era in cui ogni giorno vengono generate ingenti quantità di dati, diventa necessario
riuscire a manipolarli in modo da ottenere delle informazioni valide e utilizzabili. Processare
il linguaggio naturale è sempre stato un argomento di centrale interesse dell’intelligenza
artificiale, sia per il ruolo fondamentale che copre il linguaggio nella vita di tutti i giorni, sia
per le enormi potenzialità che offre.

Questa tesi si pone come obiettivo quello di analizzare le potenzialità di un recente
modello di rappresentazione del linguaggio chiamato BERT, in particolare in un sottoinsieme
del cosiddetto Natural Language Processing (elaborazione del linguaggio naturale), chiamato
Segmentazione del Testo. La Segmentazione del Testo copre un ruolo fondamentale nel
Natural Language Processing, poiché può essere integrata a una vasta moltitudine di altre
funzioni appartenenti al Natural Language Processing, come al Text Summarization (riassunto
del testo) o all’analisi di immagini.

BERT si è dimostrato essere uno strumento molto potente che permette di ottenere
discreti risultati anche con un’esigua quantità di dati per segmenti medi, mentre, per segmenti
piuttosto grandi e generici, i risultati sono scarsi. Per questo motivo, l’approccio di questa
tesi si basa sull’utilizzo di BERT per poter segmentare il testo secondo due diversi scenari:
dati provenienti da articoli di news, caratterizzato da segmenti di lunghezza media, e dati
provenienti da libri, i cui capitoli risultano essere segmenti di dimensione notevole.

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Context and problem statement . 1
1.2 Proposed solution . 2
1.3 Structure of the thesis . 3

2 Background 4
2.1 Text Mining . 4

2.1.1 Differences between supervised and unsupervised tasks 5
2.1.2 Bag of Words . 5

2.2 Train and test sets . 6
2.2.1 Cross-Validation . 6

2.3 Neural Network . 7
2.4 Fine-Tuning . 8

2.4.1 Fine-Tuning Techniques . 8
2.5 Transfer Learning . 8

2.5.1 Transfer Learning Categories . 9
2.6 Recurrent Neural Network . 10

2.6.1 Bidirectional Recurrent Neural Network 11
2.7 Pre-trained language representation . 12
2.8 BERT . 12

2.8.1 Introduction . 12
2.8.2 BERT Architecture: The Transformer 13
2.8.3 BERT Unsupervised Prediction Tasks 16
2.8.4 BERT Attention Patterns . 18

Contents vii

2.8.5 BERT Training . 20

3 Related Work 21
3.1 Text Segmentation . 21
3.2 Text Segmentation Levels . 22
3.3 Attention-Based Neural Text Segmentation 22

4 Methodology 24
4.1 Main Idea . 24
4.2 Objectives and research goals . 24
4.3 Glossary . 25
4.4 Solution proposed . 26

4.4.1 Demonstrating BERT Results . 26
4.4.2 Configuration . 26
4.4.3 Data Preparation . 29
4.4.4 BERT Training . 29
4.4.5 Results Analysis . 30

5 Implementation 32
5.1 BERT Results Demonstration . 32
5.2 Data Quantity Evaluation . 33
5.3 Hyper-Parameters Fine-Tuning . 37
5.4 Data Collection and Exploration . 40

5.4.1 News Articles . 40
5.4.2 Books . 41

5.5 Pre-Processing . 41
5.5.1 News Articles . 41
5.5.2 Books . 43

5.6 BERT . 44
5.7 Validation and Result Analysis . 45
5.8 Libraries . 46

5.8.1 Tensorflow . 46
5.8.2 Scipy . 46
5.8.3 Scikit-learn . 47
5.8.4 Bokeh . 47

Contents viii

6 Experiments and results 48
6.1 Dataset . 48

6.1.1 Sentences Coupling . 48
6.1.2 Validation . 49

6.2 News Articles Experiments . 50
6.2.1 Experiment Art1 . 50
6.2.2 Experiment Art2 - Balanced . 51
6.2.3 Experiment Art3 - Distribution-Wise 51
6.2.4 Experiment Art4, Art5 and Art6 - Mono Category 52
6.2.5 Experiment Art7 - Validation with New Data 53
6.2.6 Experiment Art8, Art9, Art10 and Art11 - Different Balancing . . . 54
6.2.7 Experiment Art12 - Cased Model 55
6.2.8 News Articles Experiment Comparisons 55

6.3 Books Experiments . 59
6.3.1 Experiment Ch1 - Balanced . 59
6.3.2 Experiment Ch2 - Distribution-Wise 60
6.3.3 Experiment Ch3 and Ch4 - Validation with New Data 62
6.3.4 Experiment Ch5, Ch6, Ch7 and Ch8 - Different Balancing 63
6.3.5 Experiment Ch9 - Cased Model 64
6.3.6 Chapters Experiments Comparison 64
6.3.7 Paragraphs Experiment P1 and P2 68

6.4 Comparison with Related Works . 69

7 Conclusion 70
7.0.1 Summary of the Results . 70
7.0.2 Contributions . 71
7.0.3 Future Work . 71

Bibliography 72

List of Figures

2.1 Unrolled recurrent neural network [9] . 11
2.2 Bidirectional recurrent neural network [15] 11
2.4 Multi-Head Self-Attention . 15
2.5 Next Word Attention Pattern . 18
2.6 Probability Vector Before and After Training 20

3.1 Types of Segments in Text Segmentation [13] 23

4.1 Proposed solution workflow . 26
4.2 Configuration Phase Workflow . 27
4.3 Data Quantity Workflow . 27
4.4 Hyper-Parameters Fine-Tuning Workflow 28
4.5 Data Preparation Phase Workflow . 29
4.6 BERT Training Phase Workflow . 30
4.7 Results Analysis Phase Workflow . 31

5.1 BERT Accuracy with Different Amount of Data 35
5.2 Training Time with Different Amount of Data 36
5.3 F1-Score with Different Amount of Data 36
5.4 BERT Hyper-Parameters . 37
5.5 Hyper-Parameters and BERT Accuracy 38
5.6 Hyper-Parameters . 38

6.1 Number of Sentences Distribution in Articles 52
6.2 BERT Accuracy and Validator Precision per Experiment 56
6.3 All Estimators per Experiment . 56
6.4 Validator Total Predictions per Experiment 57
6.5 WinDiff-Like Plot per Experiment . 57
6.6 Comparison Between Cased and Uncased Model 58

List of Figures x

6.7 Books Distribution . 61
6.8 BERT Accuracy and Validator Precision per Experiment 65
6.9 All Estimators per Experiment . 66
6.10 Validator Total Predictions per Experiment 66
6.11 WinDiff-Like Plot per Experiment . 67
6.12 Comparison Between Cased and Uncased Model 67
6.13 Comparison Between Cased and Uncased Model 68

List of Tables

5.1 Hyper-Parameters Values Estimated . 37
5.2 Ranking Based on Time, BERT Accuracy and BERT F1-Score 39
5.3 News Articles Structure After Pre-Processing 43
5.4 Resulting Book Structure . 43
5.5 General Structure of the Dataset . 44

6.1 Results of Experiment Art1 . 50
6.2 Results of Experiment Art2 . 51
6.3 Results of Experiment Art3 . 52
6.4 Results of Experiments Art4, Art5 and Art6 53
6.5 Results of Experiment Art7 . 53
6.6 Percentages of Experiments Art8, Art9, Art10 and Art11 54
6.7 Results of Experiment Art8, Art9, Art10 and Art11 54
6.8 Results of Experiment Art12 . 55
6.9 Experiments News Articles Scenario Summary Table 55
6.10 Results of Experiment Ch1 . 60
6.11 Books Distribution Reference Values . 61
6.12 Results of Experiment Ch2 . 62
6.13 Results of Experiment Ch3 and Ch4 . 63
6.14 Percentages of Experiments Ch5, Ch6, Ch7 and Ch8 63
6.15 Results of Experiments Ch5, Ch6, Ch7 and Ch8 64
6.16 Results of Experiment Ch9 . 64
6.17 Experiments Books Scenario Summary Table 65
6.18 Comparison Results of Experiment P1 and P2 68
6.19 Estimators on Attention-Based Neural Text Segmentation 69

7.1 Mean Results for each Scenario . 70

Chapter 1

Introduction

1.1 Context and problem statement

Unstructured data, especially text, images and videos contain a wealth of information.
However, due to the inherent complexity in processing and analyzing this data, people often
refrain from spending extra time and effort to get out of structured datasets to analyze these
unstructured sources of data, which can be a potential gold mine 1.

Nowadays the number of internet users is in constant growth and it is estimated equal
to 4.42 billion users. Everyday tasks like using Google Translate, Word Processors like
Microsoft Word or personal assistants such as OK Google, Siri, Cortana, and Alexa rely on
the understanding of the human language. The difficulty behind these tasks comes from the
complexity and the nature of the human language itself.

The rules that dictate the passing of information using natural languages are not easy
for computers to understand. Some of these rules can be high-leveled and abstract: such as
rhetoric figures or the use of sarcasm; or some of these rules can be low-leveled: the use
of the character “s” to signify the plurality of items. Comprehensively understanding the
human language requires understanding both the words and how the concepts are connected
to deliver the intended message.

While humans can easily master a language, the ambiguity and imprecise characteristics
of the natural languages are what make the understanding of the language difficult for
machines to implement. Improving the computer’s ability to understand language leads to
better integration of everyday tools. As consumers become more familiar with NLP and
time-saving benefits, they will probably be able to adopt natural language processing at home
and in the office for other tasks.

1https://towardsdatascience.com/a-practitioners-guide-to-natural-language-processing-part-i-processing-
understanding-text-9f4abfd13e72

1.2 Proposed solution 2

In this context, several methods have been proposed to address the problem of distinguishing
what a user said and processing what a user meant. To converse with humans, a program
must understand syntax, semantics, morphology, and pragmatics. The branch of artificial
intelligence that deals with the interaction between humans and computers using the natural
language is Natural Language Processing. Used to get computers closer to a human-level
understanding of language, the ultimate objective of NLP is to read, decipher, understand,
and make sense of the human languages in a manner that is valuable 2. Most NLP techniques
rely on machine learning to derive meaning from human languages. Computers are great at
working with standardized and structured data, but they lack the same intuitive understanding
of natural language that humans do. Since humans don’t communicate with "structured
data", they can’t understand the real meaning behind the language, but the application of
Deep Learning has enabled programmers to write programs capable to perform things like
language translation, semantic understanding, and text summarization. Until recently, much
of the Natural Language Processing was done using Recurrent Neural Networks (RNNs) and
Long-Short Term Memory (LSTMs).

1.2 Proposed solution

The goal of this thesis is to propose a deep evaluation of the newest method to identify
and extract natural language rules. This method of pre-training language representations
is called BERT, Bidirectional Encoder Representations from Transformer, which obtains
state-of-the-art results on a wide array of Natural Language Processing (NLP) tasks. The
proposed work focuses on evaluating its capabilities against non-trivial tasks, comparing the
results obtained with previous architectures. In this context, BERT outperforms previous
methods because it is the first unsupervised, deeply bidirectional system for pre-training
NLP. Unsupervised means that BERT was trained using only a plain text corpus, which is
important because an enormous amount of plain text data is publicly available on the web in
many languages. Pre-trained representations can also either be context-free or contextual,
and contextual representations can further be unidirectional or bidirectional. The analyses
proposed focuses on plain texts from two different sources: books and articles. In the first
case, the approach collects data on books to create a chapter-based structure for each book.
Then, this pre-processed data follows the classic text mining steps to create a dataset of a
couple of sentences to be fed to BERT. For the same purpose, the approach of the second
scenario retrieves the articles to create an article-based structure from which a couple of
sentences will be chosen to set up the second dataset.

2https://becominghuman.ai/a-simple-introduction-to-natural-language-processing-ea66a1747b32

1.3 Structure of the thesis 3

Since BERT is a pre-trained language model, the aim of these datasets is only to fine-tune the
BERT model. BERT is fine-tuned to be able to distinguish whether a sentence is the start of
a new chapter or a new article. The same approach can be used to identify any other logical
divisions in large text collections.

1.3 Structure of the thesis

The structure of the thesis is as follows:

• Chapter 2 defines and explains the background knowledge and concepts that are related
to the work that has been performed for this thesis.

• Chapter 3 presents the past works that are related to this thesis in the problem they try
to answer and the solution they propose.

• Chapter 4 contains a high-level description of the employed methods that are used in
this thesis.

• Chapter 5 describes the source codes and implementations of the used methods.

• Chapter 6 presents the results of the experiments and discusses these outcomes.

• Chapter 7 concludes this report by summarizing the work, doing a critical discussion
and advises the possible future work.

Chapter 2

Background

This chapter introduces the theoretical background necessary to properly understand the rest
of the thesis.

2.1 Text mining

The amount of data that can be found over the internet is increasing at an exponential rate
day by day. One of the most used types of data, that is flowing over the internet, is the textual
one in the form of digital libraries, repositories and other textual information such as blogs,
the social media network, e-mails, books, and articles.
Determine appropriate patterns and trends to extract valuable knowledge from textual data is
a challenging task that requires time and effort. Text mining is a process to extract interesting
and significant patterns to explore knowledge from textual data sources.
Text mining is a multi-disciplinary field based on information retrieval, data mining, machine
learning, statistics, and computational linguistics [5]. Several text mining techniques like
summarization, classification, and clustering, can be applied to extract knowledge. Text
mining deals with natural language text which is stored in a semi-structured and unstructured
format [22]. For a text mining process, or in general, a data mining process, several main
phases are defined. These steps are addressed by the CRISP-DM model that aims to make
large data mining projects, less costly, more reliable, more repeatable, more manageable, and
faster.
The CRISP-DM model identifies six phases:

1. Business Understanding: this initial phase focuses on understanding the project objec-
tives and requirements from a business perspective, and then converting this knowledge
into a data mining problem definition.

2.1 Text Mining 5

2. Data Understanding: after an initial data collection, this aims to get familiar with the
data, to identify data quality problems, to discover first insights into the data, or to
detect interesting subsets to form hypotheses for hidden information.

3. Data Preparation: the data preparation phase covers all activities to construct the final
dataset (data that will be fed into the modeling tool(s)) from the initial raw data. Data
preparation tasks are likely to be performed multiple times, and not in any prescribed
order.

4. Modeling: various modeling techniques are selected and applied, and their parameters
are calibrated to optimal values. Typically, there are several techniques for the same
data mining problem type.

5. Evaluation: before proceeding to the final deployment of the model, it is important to
more thoroughly evaluate the model, and review the steps executed to construct the
model, to be certain it properly achieves the business objectives.

6. Deployment: the creation of the model is generally not the end of the project. Usually,
the knowledge gained will need to be organized and presented in a way that the
customer can use it.

2.1.1 Differences between supervised and unsupervised tasks

Within the field of machine learning, there are two main types of tasks: supervised and
unsupervised. The main difference between the two types is that supervised learning is done
using a ground truth: a prior knowledge of what the output values for the samples should be.
Therefore, the goal of supervised learning is to learn a function that, given a sample of data
and desired outputs, best approximates the relationship between input and output observable
in the data. On the other hand, unsupervised learning does not have labeled outputs, so its
goal is to infer the natural structure present within a set of data points. Hence, supervised
learning is done in the context of classification, while unsupervised learning most common
tasks are clustering, exploratory analysis, and dimensionality reduction.

2.1.2 Bag of Words

In Natural Language Processing tasks, a common way to represent text data is Bag-of-Words.
It is a way of extracting features from the text for use in machine learning algorithms. In this
approach, for each observation are used tokenized words to find out the frequency of each
token. Each sentence is treated as a separate document, and a list of all words from all the

2.2 Train and test sets 6

documents is made, excluding the punctuation. Then, the next step is creating the vectors.
Vectors convert text that can be used by the machine learning algorithm. The process of
converting NLP text into numbers is called vectorization in machine learning. Different ways
to convert text into vectors are used:

• Counting the number of times each word appears in a document

• Calculating the frequency that each word appears in a document out of all the words in
the document like TF-IDF [18].

These vectors are measures of presence of words or weights.

2.2 Train and test sets

In Machine Learning, the aim is to try to create a model to predict the test data. So the
training data are used to adjust the parameters of the model to fit the model. The validation set
is applied for hyper-parameter tuning (regularization, early stopping, drop-off, learning rate)
to reduce variance, improving the generalization capacity of your model. The validation data
is not seen by the model during training. Test data is used to provide an unbiased evaluation
of a final model. Like the Validation set, the Test set, also called the holdout set, is not seen
by the model. All the three sets’ data should come from the same distribution

2.2.1 Cross-Validation

Cross validation (CV) is one of the techniques used to test the effectiveness of machine
learning models, it is also a resampling procedure used to evaluate a model if data are limited.
To perform a CV, a portion of data is kept aside to be used, when the training is completed,
for testing and validating purposes. Several Cross-Validation techniques are used:

• Test-Train Split approach: in this approach, the complete data are randomly split into
training and test sets, ideally split the data into 70:30 or 80:20.

• K-Fold Cross-Validation: this approach is generally preferred since it results in a less
biased model compared to other methods. In k-fold cross-validation, the training data
is randomly split into k mutually exclusive subsets (the folds) of approximately equal
size. Then use as training data k−1 of the subsets and then tested on the subset left
out. This procedure is repeated k times and in this fashion, each subset is used for
testing once. Averaging the test error over the k trials gives an estimate of the expected
generalization error [6].

2.3 Neural Network 7

• Leave-One-Out Cross-Validation: LOOCV can be viewed as an extreme form of k-fold
cross-validation in which k is equal to the number of examples. In LOOCV, one
example is left out for testing each time, and so the training and testing are repeated k
times. It is known [10] that the LOOCV procedure gives an almost unbiased estimate
of the expected generalization error.

2.3 Neural Network

Artificial Neural networks, or ANNs, are processing devices (algorithms or actual hardware)
that are loosely modeled after the neuronal structure of the mammalian cerebral cortex but
on much smaller scales.

Definition 1 (Neural Network) a computing system made up of a number of simple, highly
interconnected processing elements, which process information by their dynamic state re-
sponse to external inputs [3].

Neural networks are typically organized in layers, which are made up of a number of
interconnected nodes containing an activation function. Patterns are presented to the network
via the input layer, which communicates to one or more hidden layers where the actual
processing is done via a system of weighted connections. Most ANNs contain some form of
learning rule which modifies the weights of the connections according to the input patterns
that it is presented with.
A category of ANNs uses back-propagation as a kind of learning rule. Back-propagation
stands for backward propagation of error. With the back-propagation, Learning is a supervised
process that occurs with each cycle or epoch through a forward activation flow of outputs, and
the backward error propagation of weight adjustments. Backpropagation performs gradient
descent in order to achieve a global minimum. The global minimum is that theoretical
solution with the lowest possible error. Indeed, in most problems, the solution space is quite
irregular which may cause the network to settle down in a local minimum which is not the
best overall solution. Since the nature of the error space cannot be known a priori, neural
network analysis often requires a large number of individual runs to determine the best
solution. Most learning rules have built-in mathematical terms to assist in this process which
controls the speed and the momentum of the learning. The speed of learning is actually the
rate of convergence between the current solution and the global minimum. Momentum helps
the network to overcome local minima in the error surface and settle down at or near the
global minimum.

2.4 Fine-Tuning 8

2.4 Fine-Tuning

Fine-tuning is the process in which the parameters of a trained model must be adjusted very
precisely while trying to validate that model taking into account a small data set that does
not belong to the train set. That small validation data set comes from the same distribution as
the dataset used for the training of the model. Hence, fine-tuning means taking weights of a
trained neural network and use it as initialization for a new model being trained on data from
the same domain.
Basically, fine-tuning is used for situations where the dimension of data or computation time
or maybe computation capacity are not enough to train a whole network from scratch. In this
way, usually the last layers of a pre-trained network are replaced with new ones. The first
layers have already found the needed good features and last layers try to classify: for this
reason, the last layers might be replaced in order to fit the current labels.

2.4.1 Fine-Tuning Techniques

1. A common practice is to truncate the last layer (softmax layer) of the pre-trained
network and replace it with a new softmax layer that is relevant to the current problem.

2. Another effective technique is using a smaller learning rate to train the network. Since
the pre-trained weights are expected to be quite good already as compared to randomly
initialized weights, there is no need to distort them too quickly and too much. A
common practice is to make the initial learning rate 10 times smaller than the one used
for scratch training.

3. It is also a common practice to freeze the weights of the first few layers of the pre-
trained network. This is because the first few layers capture universal features like
curves and edges that are also relevant to our new problem. We want to keep those
weights intact. Instead, we will get the network to focus on learning dataset-specific
features in the subsequent layers.

2.5 Transfer Learning

Transfer Learning or Domain Adaptation is related to the difference in the distribution of
the train and test set. Insufficient training data is an inescapable problem in some special
domains. The collection of data is complex and expensive making it extremely difficult to
build a large-scale, high-quality annotated dataset. Transfer learning relaxes the hypothesis
that the training data must be independent and identically distributed (i.i.d.) with the test data,

2.5 Transfer Learning 9

which motivates the use of transfer learning against the problem of insufficient training data.
In transfer learning, the training data and test data are not required to be i.i.d., and the model
in the target domain does not need to be trained from scratch, which can significantly reduce
the demand for training data and training time in the target domain.

Definition 2 (Transfer Learning) Given a learning task Tt based on Dt , and we can get the
help from Ds for the learning task Ts. Transfer learning aims to improve the performance
of predictive function ft (·) for learning task Tt by discover and transfer latent knowledge
from Ds and Ts, where Ds ̸= Dt and/or Ts ̸= Tt . In addition, in the most case, the size of Ds is
much larger than the size of Dt , Ns ≫ Nt [19].

It is something broader than Fine-tuning, which means that it is known apriori that the train
and test come from different distribution and the objective is to tackle this problem with
several techniques depending on the kind of difference, instead of just trying to adjust some
parameters
In the real world, there are many examples of transfer learning: learning to ride a motorbike
might help to ride a car or learning to recognize an apple might help to recognize a pear.
The study of Transfer learning is motivated by the fact that people can intelligently apply
knowledge learned previously to solve new problems faster or with better solutions.

2.5.1 Transfer Learning Categories

Based on the definition of transfer learning, it is possible to distinguish the relationships
between traditional machine learning and various transfer learning settings. Transfer Learning
can be categorized under three main sub-settings: inductive transfer learning, transductive
transfer learning, and unsupervised transfer learning, based on different situations between
the source and target domains and tasks.

Inductive Transfer Learning In this setting, the target task is different from the source
task and the source and target domains can be the same or not [7]. Some labeled data in the
target domain are required to induce an objective predictive model ft (·) to be used in the
target domain. Moreover, it is possible to further categorize according to different situations
of labeled and unlabeled data in the source domain:

1. A lot of labeled data in the source domain are available. This aims at achieving high
performance in the target task by transferring knowledge from the source task while
multitask learning tries to learn the target and source task simultaneously.

2.6 Recurrent Neural Network 10

2. No labeled data in the source domain are available. In this case, the inductive transfer
learning setting is similar to the self-taught learning setting. In the self-taught learning
setting, the label spaces between the source and target domains may be different, which
implies the side information of the source domain cannot be used directly [17].

Transductive Transfer Learning In this setting, the source and target tasks are the same,
while the source and target domains are different. No labeled data in the target domain
are available while a lot of labeled data in the source domain are available. Moreover,
according to different situations between the source and target domains, it is possible to
further categorize into two different cases:

1. The feature spaces between the source and target domains are different, Xs ̸= Xt .

2. The feature spaces between domains are the same, Xs = Xt , but the marginal probability
distributions of the input data are different, P(Xs) ̸= P(Xt).

The latter case of the transductive transfer learning setting is related to domain adaptation for
knowledge transfer in text classification [8].

Unsupervised Transfer Learning In the unsupervised transfer learning the target task is
different from but related to the source task. The unsupervised transfer learning focus on
solving unsupervised learning tasks in the target domain, such as clustering, dimensionality
reduction, and density estimation [4], [21]. In this case, there are no labeled data available in
both source and target domains in training.

2.6 Recurrent Neural Network

Recurrent Neural Networks (RNNs) add an interesting twist to basic neural networks. A
vanilla neural network (one that uses Back-propagation) takes in a fixed size vector as input
which limits its usage in situations that involve an input with no predetermined size. RNNs
are designed to take a series of inputs with no predetermined limit on size.

RNNs can take one or more input vectors and produce one or more output vectors
and the outputs are influenced not just by weights applied on inputs like a regular neural
network, but also by a hidden state vector representing the context based on prior inputs
and outputs. This effective way of leveraging the relationships between one input and its
surrounding neighbours is called Parameter Sharing. So, the same input could produce a
different output depending on previous inputs in the series. In summary, in a vanilla neural

2.6 Recurrent Neural Network 11

Figure 2.1 Unrolled recurrent neural network [9]

network, a fixed size input vector is transformed into a fixed size output vector. Such a
network becomes “recurrent” when you repeatedly apply the transformations to a series of
given input and produce a series of output vectors. They are networks with loops in them,
allowing information to persist.

2.6.1 Bidirectional Recurrent Neural Network

Bidirectional recurrent neural networks (BiRNNs) connect two hidden layers running in
opposite directions to a single output, allowing them to receive information from both
past and future states. BiRNNs are trained with similar algorithms as RNNs since the
two-directional neurons do not interact with one another. Unlike standard recurrent neural
networks, BiRNNs are trained to predict both the positive and negative directions of time
simultaneously. BiRNNs split the neurons of a regular RNN into two directions, one for
the forward states (positive time direction), and another for the backward states (negative
time direction). By employing two-time directions simultaneously, input data from the past
and future of the current time frame can be used to calculate the same output. Which is
the opposite of standard recurrent networks that requires an extra layer for including future
information.

Figure 2.2 Bidirectional recurrent neural network [15]

2.7 Pre-trained language representation 12

2.7 Pre-trained language representation

There are two existing strategies for applying pre-trained language representations to down-
stream tasks: feature-based, like using tasks-specific architectures that include the pre-trained
representations as additional features; or fine-tuning, like introducing minimal task-specific
parameters, and then training on the downstream tasks by simply fine-tuning the pre-trained
parameters. Both these approaches share the same objective function during pre-training,
where they use unidirectional language models to learn general language representations.

2.8 BERT

2.8.1 Introduction

Google’s BERT language representation model, which stands for Bidirectional Encoder
Representations and Transformers, is designed to pre-train deep bidirectional representations
from an unlabeled text by jointly conditioning on both left and right context in all layers.
The pre-trained BERT representations can be fine-tuned with just one additional output layer
to create state-of-the-art models for a wide range of tasks, such as question answering and
language inference, without substantial task-specific architecture modifications. Some BERT
key ideas are the use of the transformer architecture and the unsupervised pre-training. Using
a transformer architecture means that BERT is a sequence model that forgoes the sequential
structure of RNNs for a fully attention-based approach; while being an unsupervised pre-
trained model means that its weights are learned in advance through two unsupervised tasks,
that are the masked language modeling and the next sentence prediction. Thus, BERT does
not need to be trained from scratch, but starting from the pre-trained model, its weights are
fine-tuned. Bert is not like traditional attention models that use a flat attention structure over
the hidden states of an RNN, but uses multiple layers of attention, and also incorporates
multiple "attention heads” in every layer. BERT major contribution is to have generalized a
deep bidirectional architecture. Like OpenAi GPT [16], as activation function BERT uses
gelu, rather than relu.

BERT is the first fine-tuning based representation model that achieves state-of-the-
art performance on a large suite of sentence-level and token-level tasks, outperforming
many systems with task-specific architectures (neural or not neural, based on a sentence or
paragraph embeddings).

2.8 BERT 13

2.8.2 BERT Architecture: The Transformer

BERT Architecture consists of a multi-layer bidirectional Transformer encoder. The BERT
Transformer uses bidirectional self-attention that learns contextual relations between words
(or sub-words) in a text. The Transformer includes an Encoder, that reads the input, and a
Decoder, that produces a prediction for the task.

Difference between Transformer Encoder and Decoder: bidirectional Transformer is
often referred to as a “Transformer encoder” while the left-context-only version is referred to
as a “Transformer decoder” since it can be used for text generation.

The Transformer is a model that uses attention to boost the speed with which these
models can be trained [20]. It is like a black box that, given a sentence A, returns a sentence
B. Taking a look at a simple architecture this black box can be seen as a group of encoders
that feed a group of decoders.
These encoders are all identical in structure, but with different weights. Each of these
encoders is broken down into two sub-layers: the first layer is a self-attention layer, a layer
that helps the encoder look at other words in the input sentence as it encodes a specific word,
its outputs are fed to a feed-forward neural network (the exact same feed-forward network is
independently applied to each position); the second layer is a Feed-Forward Neural Network
layer. The decoder has the same structure plus another middle-layer: the Encoder-Decoder
Attention layer, which helps the decoder focus on relevant parts of the input sentence.
The Transformer Architecture requires to add a classification layer on top of the encoder
output, to multiply the output vectors by the embedding matrix transforming them into the
vocabulary dimension and to calculate the probability of each word in the vocabulary with
softmax.

Input Representations

Input representation can unambiguously represent both a single text sentence or a pair of
text sentences (Question, Answer) in one token sequence. For a given token, its input
representation is constructed by summing the corresponding token, segment and position
embeddings. There are two types of special tokens: CLS and SEP.
The CLS token, which stands for Classification, is the first token of every sequence. The final
hidden state (output of Transformer) corresponding to this token is used as the aggregate
sequence representation for classification tasks. Ignored for non-classification tasks.
The SEP token, which stands for Sentence Pairs Separator, is BERT’s way to indicate the
separation between two sentences packed together into a single sequence.

2.8 BERT 14

Each input word is then turned into a vector using an Embedding Algorithm, flowing through
its own path in the decoder.

The Encoder

An encoder receives a list of vectors as input, processing the list of vectors by passing these
vectors into a self-attention layer. After flowing through the encoder, then these vectors go
into the feed-forward neural network, and then the Feed-Forward Neural Network sends out
the output upwards the next encoder (Figure 2.3a 1).

(a) Encoder (b) Self-Attention Vectors

Self-Attention Layer Self-attention associates each word with its real meaning, connecting
pronouns with the word to which they refer, for example. This layer allows looking at other
positions in the input sequence to gain a better encoding for each word.
Calculating Self-Attention:

1. This layer creates three vectors from each encoder’s input vectors, the embeddings
of each word. These three vectors are the Query Vector qi, the Key Vector ki and the
Value Vector vi (Figure 2.3b). These vectors are created by multiplying the embedding
by three matrices trained in the training process and they are abstractions useful for
calculating attention.

2. For each word, it calculates the score against each word of the input sequence. This
score determines how much focus to place on the other parts of the input sentence for
the word. The calculation is done by taking the dot product of the query vector with
the key vector of the word to be scored.

3. Divide the scores by the square root of the key vector-dimension dk.
1http://jalammar.github.io/illustrated-transformer/

2.8 BERT 15

Figure 2.4 Multi-Head Self-Attention

4. Pass the result through a softmax operation that normalizes the scores to have only
positive scores that sum up to 1. Clearly, the word i at the i-th position will have the
highest softmax score.

5. Multiply each value vector by the softmax score. The intuition is to focus on the word
wanted by keeping intact its values while multiplying irrelevant words by tiny numbers
to cut their importance.

6. Sum up the weighted value vectors. This produces the output of the self-attention layer
(at i-th position).

However, the actual implementation makes calculation in matrix form. Calculate Query Q,
Key K and Value V matrices by multiplying a matrix X (of embeddings) with the trained
matrices W Q, W K , WV . Using matrices, the step 2 through 6 can be condensed into one
formula

so f tmax
(

Q×KT
√

dk

)
V = Z

A further improvement is the Multi-Headed Attention (Figure 2.4 2) that improves
performance of the attention layer in two different ways: expanding model ability to focus
on different positions and giving the attention layer multiple representation sub-spaces, by
creating multiple sets of Q-K-V matrices. BERT Transformer uses eight attention heads,
meaning that for each encoder it has eight sets.

Each set is initialized randomly and after training each set is used to project input
embeddings into different subspace. The feed-forward layer is not expecting 8 matrices, but
one matrix made of a vector for each word, thus these matrices are condensed into one matrix
and then multiplied by an additional weights’ matrix W 0. The Transformer handles the order

2http://jalammar.github.io/illustrated-transformer/

2.8 BERT 16

of words in the sentence by using a positional encoding added to each input embedding.
Each of these follows a pattern, that the model learns, determining the position of the word.
Adding these values provides meaningful distances between embedding vectors.

The Residuals

Each sub-layer, like self-attention layer and FFNN layer, in each encoder has a residual
connection around it, followed by a layer-normalization step .

The Decoder

The encoder starts by processing the input sequence, then the output of the last encoder is
transformed into a set of attention vectors K and V. These vectors are used by each decoder
in its encoder-decoder attention layer. Until a special symbol (indicating that the transformer
decoder has completed its output) is reached, the output of each step is fed to the bottom
decoder and to the next (like the encoder). Self-Attention in decoder Works slightly different:
in the decoder, the self-attention layer is only allowed to attend earlier positions in the output
sequence. This is done by masking future positions before the softmax step in the self-
attention calculation. The encoder-decoder attention layer works just like the Multi-Headed
Self-Attention with one main difference: it creates Queries matrix Q from its below-layer
and takes the Keys and Value Matrix from the output of the encoder stack.

The Final Linear and Softmax Layer

The Decoder output is in the form of a vector of floats, that are turned into word by the Linear
Layer, which is followed by the softmax layer. The Linear Layer is a simple fully connected
neural network that projects the vector produced by the stack of decoders, into a much larger
vector called logits vector, with the size of the vocabulary. Softmax Layer turns the scores
produces by the linear layer into probabilities (all positive and all add up to 1). The cell with
the highest probability is chosen and the word associated is produced as the output.

2.8.3 BERT Unsupervised Prediction Tasks

Masked Language Model

BERT improves the fine-tuning based approach by proposing a new pre-training objective: the
Masked Language Model. Masked Language Model, also known as MLM, randomly masks
some of the tokens from the input, and the objective is to predict the original vocabulary

2.8 BERT 17

id of the masked word based only on its context. Unlike left-to-right language model pre-
training, the MLM objective allows the representation to fuse the left and the right context,
which allows to pre-train a deep bidirectional Transformer. In this MLM is also introduced
the next sentence prediction task that jointly pre-trains text-pair representations. These
pre-trained representations eliminate the needs of many heavily engineered task-specific
architectures. BERT is the first fine-tuning based representation model that achieves state-of-
the-art performance on a large suite of sentence-level and token-level tasks, outperforming
many systems with task-specific architectures.

Bidirectional conditioning would allow each word to indirectly see itself in a multi-
layered context (thus, traditional models are trained only left-to-right or right-to-left). To
have a bidirectional training, BERT masks some percentage of the input tokens at random,
and then predicts only those masked tokens (referred to as a Cloze 3 in literature). The final
hidden vectors corresponding to the mask tokens are fed into an output softmax over the
vocabulary, as in a standard Language Model. BERT only predicts the masked words rather
than reconstructing the entire input. This allows to obtain a bidirectional approach. Before
feeding word sequence into BERT, 15% of the words in each sequence are replaced with a
MASK token. This 15% is divided into an 80% that uses MASK token, a 10% with random
words and a 10% that uses the original words, this choice comes from different reasons:

• If the MASK tokens are used 100% of the time the model would not necessarily
produce good token representations for non-masked words. The non-masked tokens
were still used for context, but the model was optimized for predicting masked words.

• If the MASK tokens are used 90% of the time and random words 10% of the time, this
would teach the model that the observed word is never correct.

• If the MASK tokens are used 90% of the time and kept the same word 10% of the time,
then the model could just trivially copy the non-contextual embedding.

But this approach comes with some disadvantages: using MLM means having a mismatch
between pre-training and fine-tuning since the MASK token is never seen during fine-tuning,
to mitigate this disadvantage, masked words are not always replaced with the actual MASK
token, but the training data generator chooses 15% of tokens at random; only 15% of tokens
are predicted in each batch, thus more pre-training steps may be required for the model to
converge.

3Cloze test: a test of reading comprehension that involves having the person being tested supply words
which have been systematically deleted from a text

2.8 BERT 18

Next Sentence Prediction

BERT pre-trains a binarized next sentence prediction task that can be trivially generated
from any monolingual corpus. On the pre-training, each couple of sentences is labeled with a
variable IsNextSequence. In the BERT training process, the model receives pairs of sentences
as input and learns to predict if the second sentence in the pair is the subsequent sequence in
the original document. This is done with [CLS] and [SEP] tags. The prediction follows these
steps: the entire input sequence goes through the Transformer model, then the output of the
[CLS] token is transformed into a 2×1 shaped vector, using a simple classification layer
(learned matrices of weights and biases) and the last step is the calculation of the probability
of IsNextSequence with softmax. When training the BERT model, Masked LM and Next
Sentence Prediction are trained together, with the goal of minimizing the combined loss
function of the two strategies.

2.8.4 BERT Attention Patterns

In all the patterns, BERT essentially learned a sequential update pattern (explicitly encoded
in architectures such as Recurrent Neural Networks).

Definition 3 (Attention) positive combinations across neurons, greater when the number of
neurons increases.

Attention to Next Word This pattern appears over multiple layers of the model, emulating
the recurrent updates of an RNN. All the attention is focused on the next word in the input
sequence, except at the delimiter tokens. Figure 2.54 provides a visual example of the next
word attention pattern. The SEP token disrupts the next-token attention pattern since its
attention is directed to the CLS: this pattern operates primarily within each sentence. This
attention pattern enables BERT to capture sequential relationships.

Figure 2.5 Next Word Attention Pattern

4https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-
60a16d86b5c1

2.8 BERT 19

Attention to Previous Word Most of the attention is directed to the previous token in the
sequence. Some attention is also dispersed to other tokens, especially the SEP tokens. This
pattern is related to a sequential RNN, in particular, a forward RNN.

Attention to Identical/Related Word Attention is paid to identical or related words,
including the source word itself, dispersing attention over many different words.

Attention to other Words Predictive of Word Attention is paid to identical or related
words in the other sentence. Particularly helpful for next sentence prediction task, since it
helps to identify relationships between sentences.

Attention to Delimiter Tokens Attention seems to be directed to other words that are
predictive of the source word, excluding the source word itself. The attention of the word
that will predict is on the word to be predicted and vice-versa. The query vectors match the
SEP key vector along with the same set on neurons. The result is the SEP-focused attention
pattern.

Bag of Words Attention pattern Most of the attention is directed to the delimiter tokens,
either the CLS token or the SEP tokens. A way for the model to propagate sentence-level
state to the individual tokens. Thus, in this pattern, attention is divided evenly across all
words in the same sentence.

BERT is essentially computing a Bag-of-Words embedding by taking an almost un-
weighted average of the word embeddings (value vectors). A clear pattern is that, for each
query, a small number of neurons dominate the calculation of the attention scores:

• When query and key vector are in the same sentence, the product shows high values at
these neurons.

• When query and key vector are in different sentences, the product is strongly negative
at these same positions.

• When query and key are both from the same sentence, they tend to have values with
the same sign along the active neurons, resulting in a positive product.

• When the query is from one sentence and the key is from another, the same neurons
tend to have values with opposite signs, resulting in a negative product.

So thanks to its sentence-level embeddings added to the input layer, BERT has achieved its
own Concept of Sentence. Queries and Keys acquire sentence-specific values thanks to CLS
and SEP tokens (sentence-level embeddings).

2.8 BERT 20

Figure 2.6 Probability Vector Before and After Training

2.8.5 BERT Training

Since the training is done on a labeled training dataset, it is possible to compare its output
with the actual correct output. The size of the vector to be used is equal to the size of the
output vocabulary, having a position for each word of the vocabulary (one-hot encoding).

Loss Function The goal is to have a probability distribution indicating the correct output.
To compare two probability distribution one can simply subtract one from the other using
the well known cross-entropy (H(p,q) = Ep − log(q)) or the Kullback–Leibler divergence
(H(p,q) = H(p)−DKL(p||q), where H(p) is the entropy of p). Each probability distribution
has to be represented by a vector of the size of the vocabulary and for each word in the
output vocabulary, there has to be the highest probability at the cell associated. Each set of
probabilities ends with a last output distribution called <eos> (Figure 2.6 5).

After the training, the expected probabilities will be different. There are different ways to
proceed:

• Greedy Decoding: since the model produces the outputs one at a time, it selects the
highest probability word, throwing away everything else.

• Beam Search: hold the two top words, run two more times the model, each time
assuming the first output position is each of them. The word producing fewer error in
both configurations is kept.

5http://jalammar.github.io/illustrated-transformer/

Chapter 3

Related Work

This chapter explains the existing works in the literature that have been the basis or have
influenced the making of this thesis. A lot of studying has been done in Natural Language
Processing and, in particular, the focus of the thesis is concerned in a branch of Natural
Language Processing called Text Segmentation. In the following sections, the foundations of
this field are presented in addition to the meaningful studies that have been the basis of this
work.

3.1 Text Segmentation

Text segmentation is a method of splitting a document into smaller parts, which are usually
called segments. It is widely used in text processing. Each segment has a relevant meaning.
Those segments are categorized as word, sentence, topic, phrase or any information unit
depending on the task of the text analysis [13]. As introduced above, Text Segmentation is
the task defined as the process of segmenting a chunk of text into meaningful sections based
on their topical continuity. Text segmentation is one of the fundamental Natural Language
Processing (NLP) problems which finds its use in many tasks like summarization, passage
extraction, discourse analysis, Question-Answering, context understanding, and document
noise removal.

Previous methods for this task require manual feature engineering, huge memory require-
ments and large execution times. The complexity of text segmentation varies with the type of
text and writing styles. In some cases, context is a very important signal for the task, while
in other cases, dependence on context may be minimal.

Multiple supervised and unsupervised methods have been proposed to tackle this com-
plexity. Many unsupervised methods are heuristic, while ad-hoc methods need huge memory,
have large execution times, and do not generalize well across multiple text types. Supervised

3.2 Text Segmentation Levels 22

methods require labeled data and often the performance of such systems comes at the cost of
hand-crafted highly tuned feature engineering.

To identify topic boundaries in order to segment a document, there are many approaches
which may be used in conjunction. The boundaries might be apparent from paragraphs or by
words commonly used to introduce a new subject [14].

It is also possible to identify topic changes by analysing the lexical properties in a text. A
difference in the lexical cohesion inside a text might indicate topic changes. Another cue
used to identify topics is the usage of words: a significant vocabulary change may occur
when there is a change of topics [11].

Text segmentation can make use of word embedding generating a low dimensional vector
representation of words in a document. This approach allows for a more expressive and
efficient representation by building low dimensional vectors while maintaining the contextual
similarity of words [12].

3.2 Text Segmentation Levels

In 2018, I. Pak and P.L. Teh [13], proposed an evaluation on the metrics used in several
studies on text segmentation, aggregating the results in Figure 3.1.

The proposed work falls within the sentence slice.

3.3 Attention-Based Neural Text Segmentation

In 2018, Badjatiya et al. [2] proposed a method that models the text segmentation problem
as a binary classification problem. The formal definition of the problem is the following:
given a document, the problem is defined with respect to the i-th sentence in the document,
as follows.

Given: a sentence si with its K sized left-context {si−K, ...,si−1} (i.e., K sentences before
si) and K sized right-context {si+1, ...,si+K} (i.e., K sentences after si). Here K is the context
size.

Predict: whether the sentence si denotes the beginning of a new text segment.
This study proposes a neural framework to use the context for learning distinctive features
for sentences that mark the beginning of the segment.

The neural model proposed by this study consists: of a data pre-processing layer that
provides instances of word embeddings in the form Si; of a CNN architecture to obtain rich
feature representations for each sentence in the left-context, mid-sentence as well as the
right-context, generating sentence embeddings; of a BiLSTM network on a smaller sequence

3.3 Attention-Based Neural Text Segmentation 23

Figure 3.1 Types of Segments in Text Segmentation [13]

that consists of only the main sentence and its neighbours (Stacked BiLSTMs with Attention).
To obtain a unified rich feature representation, they use Attention Bidirectional Long-Short
Term Memory Network (Attention-BiLSTM) on top of the sequence T Si, obtained by the
CNN architecture.

The resultant context embeddings obtained from a shared encoder for the left-context
and right-context and the embedding form id-sentence obtained from separate but similar
encoder are passed to a dense fully connected layer followed by a softmax layer.

Chapter 4

Methodology

This chapter presents the main idea of the thesis, together with a high-level view of the logical
steps taken along the work done. In order to present the work performed as completely as
possible, the main idea of the thesis, the objectives, and the research questions are presented
below. Furthermore, it is presented a glossary, containing the keywords used, in order to
make the reading clearer. Finally, all the logical steps are explained at a high level, with
corresponding inputs and outputs.

4.1 Main Idea

The main idea of the proposed work relies on the assumption that it is possible to use
the above explained BERT to perform text segmentation tasks. BERT has been proved
to outperform previous methods on a wide array of Natural Language Processing (NLP)
tasks with almost no task-specific network architecture modifications or data augmentation.
The outperforming results obtained by BERT come from trivial tasks, such as sentence
and sentence-pair classification, grammatically correctness of sentences, contradiction
or entailment of sentence pairs and questions and answers relations between couples of
sentences.

The proposed work aims to discover how well the pre-training language representations
method BERT performs on a non-trivial task, in particular against Text Segmentation,
evaluating its performance against different scenario with different level of complexity.

4.2 Objectives and research goals

The research starts with the purpose of answering the following questions:

4.3 Glossary 25

• How to use BERT to perform Text Segmentation tasks?

• Is BERT able to achieve effective results?

• Do BERT’s performance indexes reflect reality?

• How is it possible to evaluate its performance?

The main goal of this thesis is to verify if BERT’s state of art results are reflected in a
much more real and non- trivial scenario, as Text Segmentation is.

4.3 Glossary

In order to ease the reading, it is helpful to define some of the terms that will be used
throughout the rest of this work.

Transformer: an attention mechanism that learns contextual relations between words
(or sub-words) in a text.

Epoch: one cycle through the full training dataset.

MRPC: Microsoft Research Paraphrase Corpus, Sentence (and sentence-pair)
classification tasks: given a pair of sentences, classify them as paraphrases or not
paraphrases.
Example: true if sentence B is a paraphrase for sentence A.

CoLa: Corpus of Linguistic Acceptability, evaluating grammatically correctness.

GLUE: General Language Understanding Evaluation, is a collection of resources for
training, evaluating and analyzing natural language understanding systems.

HPFN: Hyper-Parameters Fine-Tuning, a technique to evaluate which is the configuration
of hyper-parameters that leads to better results.

Configuration: set of key-value pairs indicating the BERT hyper-parameters.

Data Quantity: amount of data used during BERT’s model training.

Validator: plain text to make a real-world validation of BERT’s model.

Experiment: an experiment is a sub-group of a scenario, in which data have been
manipulated differently with respect to other experiments.

Scenario: use-case datasets on which the experiments were conducted.

4.4 Solution proposed 26

4.4 Solution proposed

This section illustrates a high-level workflow of the solution proposed. All the logical steps
are shown in Figure 4.1, moreover, these steps are illustrated aside, in order to give an
overall description of each phase, together with its input and outputs. This section aims to
give an exhaustive illustration of the steps done, in order to fully understand the following
explanations.

Figure 4.1 Proposed solution workflow

4.4.1 Demonstrating BERT Results

This section proposes to prove that the technology used is really BERT by Google, obtaining
similar results on tasks proposed by them. Among all the tasks on which BERT obtained
state-of-art results, it was decided to reproduce MRPC, a task based on the GLUE dataset.

4.4.2 Configuration

This phase aims to obtain the best configuration between the quantity of data and hyper-
parameters to be used during BERT training, as can be seen in Figure 4.2. Thanks to
this phase it was possible to identify which was the best starting setup for all subsequent
experiments. The two main variables of interest were the accuracy of BERT, the training
time and the F1-Score estimated by BERT. In the following, both phases that make up this
phase are explained individually.

4.4 Solution proposed 27

Figure 4.2 Configuration Phase Workflow

Data Quantity Evaluation This sub-phase aims to evaluate the best trade-off between
time spent and other performance indexes obtained from BERT training, evaluating the
results obtained with different amounts of data. Among all the parameters evaluated, the
most important one considered is BERT accuracy. The dataset used as input was created
using data from the Harvard Dataverse Database and have been manipulated in order to
obtain a format approved by BERT, but no additional pre-processing was done on these data.
This phase consists of two main steps, summarized in Figure 4.3.

Figure 4.3 Data Quantity Workflow

• BERT Training: BERT was trained multiple times for each data quantity, using the
default configuration suggested by the official documentation. Each Training iterations
was done using the same dataset, but with a different sample for each iteration.

4.4 Solution proposed 28

• Results Evaluation: after the training, it was possible to study a clear evolution of the
variables involved. Thanks to this study it was possible to choose the best amount of
data to use based on different parameters, in particular time and accuracy.

Hyper-Parameter Fine-Tuning This sub-phase can be seen at the same level as the one
above, as neither has priority over the other. The purpose of this phase is to evaluate the
configurations of the hyper modifiable parameters of BERT that are more efficient, leading to
a better result. Thanks to this step it was possible to choose the most accurate hyper-parameter
configuration, that is to say, that would allow reaching the highest accuracy in the prediction
stage. This phase consists of two main steps, summarized in Figure 4.4.

Figure 4.4 Hyper-Parameters Fine-Tuning Workflow

After the decision about which parameters to tune and which values to use, these two
main steps were followed:

• BERT Training: BERT was trained multiple times for configuration, using the data
quantity obtained by the previous step. The decision to evaluate first the data quantity
analysis comes from the fact that as the amount of data used for training increases, the
time spent also increases. Therefore it was decided to first find the amount of data that
produced the best results in the shortest possible time. Each Training iterations was
done using the same dataset, but with a different sample for each iteration.

• Results Evaluation: after the training, it was possible to study a clear evolution of
the configurations involved. Thanks to this study it was possible to choose the best
configuration to use based on different parameters, in particular time and accuracy.

4.4 Solution proposed 29

4.4.3 Data Preparation

The data preparation phase, summarized by the Figure 4.5, takes as input raw data, of two
different types, and transforms them into a format that can be understood and used by BERT
in order to fine-tune its last layer and predict as best as possible in the respective scenario.
The output format will be described exhaustively in the next chapter.

Figure 4.5 Data Preparation Phase Workflow

• Data collection: is the very first step, in which data are gathered from two sources.
Two different scenarios have been studied: data coming from plain text, representing
books and data coming from Harvard Dataverse representatives of news articles. There
is no manipulation in this phase, data are collected as they are.

• Data exploration: data are studied to find characteristics and potential problems; once
again no manipulation of data has been performed.

• Data Pre-Processing: consists of all the actions that have to be done to clean and
prepare the data.

After this last phase, data have been cleaned and they are ready to be fed to BERT.

4.4.4 BERT Training

In this section, the goal is to provide a high-level view of BERT’s fine-tuning, highlighting the
logical steps that allowed to obtain structured results. This phase can be considered the most
important of all the others, as it allows to obtain a fine-tuned model, adapted to the needs of
prediction linked to the experiment in question. As we will see later, this model is able to
predict the start of a new segment of text quite efficiently. it is important to remember that
the task of segmenting the text is not trivial and consequently the results are to be considered

4.4 Solution proposed 30

acceptable even with a consistent margin of error. Having said this, the explanation of the
steps leading to the completion of BERT’s fine-tuning follows.

Figure 4.6 BERT Training Phase Workflow

As can be seen from Figure 4.6, in order to obtain a valid predictive model, the following
logical steps have been followed:

• Train and Test Division: this sub-phase receives the processed data from the previous
phase and subdivides them into train and test set according to the K-Fold Cross
Validation paradigm. This results in K sub-iterations for each iteration, each time with
different trains and tests. In this way, more realistic results are obtained.

• Model-Tuning: this is the crucial step in all the proposed work. The BERT model
is fine-tuned, according to the best configuration found after the Hyper-Parameters
Fine-Tuning. The output of this phase is determined by the BERT estimator, which
computes important variables such as Accuracy, F1-Score, Precision and others.

• Prediction: once the BERT model is fine-tuned, the other crucial step of the work
carried out, i.e. a real-world validation, begins. This phase consists in predicting the
beginning of a new segment of text using as input an entire text, which has obviously
followed all the steps of Data Preparation previously described. As output is obtained
a list of values reflecting the belonging or not to the previous text segment.

4.4.5 Results Analysis

This phase shows how the results predicted by the fine-tuned BERT model are processed. As
Figure 4.7 shows, this phase gets the results of the predictions in input and aggregates them,
mediating the results by experiment and by sub-experiment. This way they get aggregated

4.4 Solution proposed 31

results that can be viewed to get a clear view of how the experiments performed behaved.
Only thanks to this phase it is possible to draw conclusions on how the evolution of the
experiments has improved or worsened the fine-tuning of the BERT model.

Figure 4.7 Results Analysis Phase Workflow

Chapter 5

Implementation

In this chapter, it is illustrated in detail the entire development and implementation, going
through all the stages:

1. BERT Results Demonstration

2. Data Quantity Evaluation

3. Hyper-Parameters Fine-Tuning

4. Data Collection and Exploration

5. Pre-Processing

6. BERT

In the end, the libraries used in the implementation are shortly presented.

5.1 BERT Results Demonstration

The starting point of the work carried out was to repropose the official results obtained by the
creators of BERT. In order to do so, it was decided to reproduce the tasks known as MRPC
(Microsoft Research Paraphrase Corpus) among those proposed. MRPC refers to a Sentence
(and sentence-pair) classification tasks. This task was replicated using the BERT pre-
trained model version named uncased_L−12_H−768_A−12. This model offers characteristics
as follows:

• Layers: 12, 768 Hidden

• Heads: 12

5.2 Data Quantity Evaluation 33

• Parameters: 110M

There are several versions of BERT pre-trained model, ranging from cased and uncased
versions, base and large versions and multi-lingual and language-specific versions. Currently,
it is not possible to reproduce BERT−Large with a GPU of 12GB-16GB of RAM, because the
maximum batch−size that can fit in memory is too small. The results proposed in the paper
of BERT [20] are trained on a single Cloud TPU which has 64GB of RAM. This limitation
affected also the choice of the model used in this thesis. The technology used to reproduce
all the proposed work is Google Colaboratory, that offers (at time of writing) free GPU with
the following characteristics:

• GPU: 1xTesla K80, with 2496 CUDA cores

• RAM: 12GB

• Disk: 320GB

Given these hardware limitations all the BERT−Large pre-trained models can’t be used,
hence, the model used in all the experiments was the one proposed above, unless different
specifications.

BERT pre-trained model version used in this demonstration corresponds to the BERT−

Base model version and in this example, it was fine-tuned with GLUE Data, as the official
implementation does. Since the data contained in GLUE MRPC are only 3600, it is possible
to fine-tune BERT pre-trained model in minutes. This task was chosen to be reproduced for
this very reason: given the limited amount of data used to fine-tune the pre-trained BERT
model, it is possible to reproduce accurate results even with one of the smaller capacity
hardware. In Listing 5.1 and 5.2, it is possible to see that the results obtained by this thesis
reflect the official results proposed by the creators of BERT.

1 ***** Eval r e s u l t s *****
2 e v a l _ a c c u r a c y = 0 .845588
3 e v a l _ l o s s = 0 .505248
4 g l o b a l _ s t e p = 343
5 l o s s = 0 .505248

Listing 5.1 Official Results

1 ***** Eval r e s u l t s *****
2 e v a l _ a c c u r a c y = 0 .8455882
3 e v a l _ l o s s = 0 .4693081
4 g l o b a l _ s t e p = 343
5 l o s s = 0 .4693081

Listing 5.2 Reproduced Results

5.2 Data Quantity Evaluation

The purpose of this section is to identify the optimal amount of data to perform the subsequent
steps of the proposed work. It is important to stress the importance of this step, as it allows

5.2 Data Quantity Evaluation 34

to observe how the accuracy of the pre-trained model evolves based on the time spent in
fine-tuning, thus enabling to choose the best amount of data to use for subsequent experiments
to have an average accuracy value optimal. Hyper-parameters used for these evaluations are
the default ones, proposed in the official implementation and defined as follows:

• Batch-size: 32

• Learning Rate: 2e-05

• Train Epochs: 3

• Warm-up Proportion: 0.1

• Max Sequence Length: 128

These variables will be commented and explained in detail below in 5.3. Each amount
of data has been executed on BERT’s model a total of 5 times, to obtain a more precise
estimate. At each iteration, the model is fine-tuned from scratch, in order to avoid the use
of a more precise model. It was decided to store BERT’s model estimation in JavaScript
Object Notation (JSON). This notation has been used to store variables in key-value pairs, in
order to describe each iteration, with named attributes and associated value. An example of
JSON file used to store BERT’s evaluations is presented in Listing 5.3, representing a nested
structure in which the main item is named with the data quantity used, followed by variables
inside it.

1 {
2 " 10000 " : {
3 " i t e r a t i o n " : 2 . 0 ,
4 " b e r t _ a c c u r a c y " : 0 .8287000060081482 ,
5 " b e r t _ p r e c i s i o n " : 0 .8294247388839722 ,
6 " b e r t _ f 1 _ s c o r e " : 0 .8285113573074341 ,
7 " b e r t _ r e c a l l " : 0 .8276000022888184 ,
8 " b e r t _ a u c " : 0 .828700065612793 ,
9 " b e r t _ l o s s " : 0 .7328279614448547 ,

10 " b e r t _ t p " : 4 1 3 8 . 0 ,
11 " b e r t _ t n " : 4 1 4 9 . 0 ,
12 " b e r t _ f p " : 8 5 1 . 0 ,
13 " b e r t _ f n " : 8 6 2 . 0 ,
14 " t ime " : 1803 .0
15 }
16 }

Listing 5.3 Data Quantity JSON Example

5.2 Data Quantity Evaluation 35

How BERT Training was performed will be explained in Section 5.6.
The discriminating variable of choosing the best amount of data was the Accuracy of

BERT.

Figure 5.1 BERT Accuracy with Different Amount of Data

Different amount of data have been tested, ranging from very little quantity to higher
ones, for a total of 10 different data quantities: 50, 250, 500, 1250, 2500, 5000, 7500, 10000,
15000, 20000. The whole procedure took approximately 15 hours of training. As can be
seen from Figure 5.1, the accuracy computed by BERT drastically decreases using a smaller
amount of data than 5000. For amounts of data greater than 7500, BERT Accuracy value
remains stable at around 83%, while fine-tuning Time increases as it can be seen below on
Figure 5.2.

In addition, other variables were considered in the choice of the amount of data to be
used along with the subsequent steps of the work done, such as:

• Time: this variable has been evaluated to find the best trade-off between Time and the
resulting BERT Accuracy. Since each experiment is performed multiple times, a very
high execution time would have involved unmanageable times. As it can be seen in
Figure 5.2, the Time variable grows linearly as the training data grow, leading to an
unmanageable time of execution.

5.2 Data Quantity Evaluation 36

• F1-Score: in order to realize a real-world validation, this variable includes two other
fundamental variables, namely precision and recall. This variable is fundamental since
it reflects the performance of the model against the Validator. It is possible to see the
evolution of the F1-Score estimated by BERT in Figure 5.3. The trend shown in this
Figure is similar to the one of Figure 5.1, so it reflects the Accuracy of the model.

Figure 5.2 Training Time with Different Amount of Data

Figure 5.3 F1-Score with Different Amount of Data

To conclude this phase, as optimal amount of data, it was chosen to train BERT’s model
with 7500 data, resulting in an acceptable fine-tuning time and BERT accuracy.

5.3 Hyper-Parameters Fine-Tuning 37

5.3 Hyper-Parameters Fine-Tuning

This section should be viewed as completely from the previous section 5.2, as together with
the data quantity analysis, it allows to obtain the best setup for the proposed model. By
evaluating different hyper-parameter configurations it is possible to establish which values
result in a more precise model and which, instead, worsen the performance.

Hyper-Parameters that can be manipulated on the pre-trained BERT model are shown in
Figure 5.4:

1 b a t c h _ s i z e
2 max_seq_ leng th
3 epochs
4 l e a r n i n g _ r a t e
5 warmup_propor t i on

Figure 5.4 BERT Hyper-Parameters

These hyper-parameters can take real values, so it was impossible to test all the possible
configurations that these hyper-parameters could take. Consequently it was decided to vary
the hyper-parameters as shown in Table 5.1, resulting in 150 different configurations, all of
them repeated 5 times.

Variable Value1 Value2 Value3 Value4 Value5 Value6

batch_size 32
max_seq_length 128
epochs 1 3 5 7 9
learning_rate 2e-06 2e-05 5e-05 7e-05 2e-04 2e-05
warmup_proportion 0.001 0.01 0.05 0.1 0.2

Table 5.1 Hyper-Parameters Values Estimated

It was not possible to vary two hyper-parameters, batch_size and max_seq_length, since, as
previously mentioned, the value of these two parameters depends on the hardware character-
istics of the machine used, i.e. a different value of these two hyper-parameters involves the
exhaustion of machine resources. Indeed, some tests were done with a batch_size equal to
16, resulting in the same averaged value of accuracy but with a doubled time of fine-tuning,
hence to avoid time consumption, this value was removed from the configurations. In fact,
the time spent in this procedure is even greater than the one of the analysis on the amount of
data, being 15 days, 23 hours and 15 minutes.

5.3 Hyper-Parameters Fine-Tuning 38

Figure 5.5 Hyper-Parameters and BERT Accuracy

Figure 5.5 shows averaged BERT accuracy for all the values referenced in Table 5.1.
This can give an idea on which configuration could be the best, but an important variable
not considered is fine-tuning Time, as stressed above. This variable has been considered in
Figure 5.6, that displays all the configurations and respective fine-tuning time and accuracy.

Figure 5.6 Hyper-Parameters

As it can be seen from Figure 5.6, epochs growing affects fine-tuning time, as expected,
while accuracy isn’t growing.

5.3 Hyper-Parameters Fine-Tuning 39

Another thing that can be inferred is that for smaller values of epochs there is not a drastic
drop in accuracy, but rather it can be seen that the major discriminant is the learning rate. In
fact, higher values of learning_rate correspond to a very low accuracy, both for a high and low
epoch value.

In order to choose the best configuration that will be the basis for all the following work,
it was decided to use BERT Accuracy as the discriminatory variable. This is not the unique
solution, in fact, another analysis was carried out using a ranking to evaluate which was the
best configuration to use. Several ranking strategies have been proposed, all based on vector
similarity.

Re f _Vector(Time,BERTAccuracy,BERT F1Score) = [0,1,1]

A Reference vector of the form above has been built and for each configuration has been
computed a vector of the following form:

Con f iguration_Vector(Time,BERTAccuracy,BERT F1Score) =

[
1
4
∗ Time−min(Time)

max(Time)
,
1
2
∗BERTAccuracy,

1
2
∗BERT F1Score] (5.1)

For each configuration has been compared the distance against Reference_Vector. As it
can be seen from formulas, each vector is composed of 3 different variables, such as Time,
Accuracy and F1-Score, for the configurations this vector is adjusted by weights. Different
similarity functions have been used to generate a ranking, as in Table 5.2.

configuration
euclidian
distance

cosine
similarity

manhattan
distance

minkowski
distance

final
rank

32.0_3.0_2e-06_128.0_0.05 0 0 6 0 1
32.0_1.0_2e-06_128.0_0.001 1 1 0 2 2
32.0_1.0_2e-06_128.0_0.05 5 2 5 7 3
32.0_3.0_2e-06_128.0_0.1 2 3 11 1 4
32.0_1.0_2e-06_128.0_0.2 11 4 7 13 5
32.0_1.0_2e-06_128.0_0.01 6 5 3 8 6
32.0_3.0_2e-06_128.0_0.2 3 6 12 4 7
32.0_1.0_2e-05_128.0_0.001 7 7 4 10 8
32.0_3.0_2e-06_128.0_0.01 4 8 13 6 9

Table 5.2 Ranking Based on Time, BERT Accuracy and BERT F1-Score

5.4 Data Collection and Exploration 40

The best configuration with this ranking strategy is the one with the attributes shown in
Listing 5.4.

1 b a t c h _ s i z e = 32
2 max_seq_ leng th = 128
3 epochs = 3
4 l e a r n i n g _ r a t e = 2e−06
5 warmup_propor t i on = 0 . 0 5

1 BERT Accuracy = 0 .821840
2 BERT F1−Score = 0 .825373
3 Time = 826 .4 (s)

Listing 5.4 Ranking Configuration

However, it was decided to use only BERT Accuracy to be the discriminator variable
because the ranking was biased by the choice of the weights. Doing so resulted in a more
impersonal choice and a different best configuration. Ranking only with Accuracy of BERT,
the best resulting configuration proved to be that in Listing 5.5, that shows a greater fine-
tuning Time with respect to the previous configuration, however acceptable.

1 b a t c h _ s i z e = 32
2 max_seq_ leng th = 128
3 epochs = 3
4 l e a r n i n g _ r a t e = 2e−06
5 warmup_propor t i on = 0 . 0 1

1 BERT Accuracy = 0 .828800
2 BERT F1−Score = 0 .831677
3 Time = 1355 .4 (s)

Listing 5.5 Best Configuration

This configuration of Hyper-Parameters will be used for all the following experiments
presented in this thesis.

5.4 Data Collection and Exploration

After having defined the basis for the following phases, the next step is to select data to build
ad-hoc scenarios for a Text Segmentation task. It was decided to choose two different sources
of data: Books and News Articles.

5.4.1 News Articles

The first scenario that this work will analyze exploits News Articles coming from Harvard
Dataverse1 and, in particular, the dataset of news articles used can be downloaded manually
from a persistent link2. The manual download presents some difficulties, because of the huge
dimension of the file. To overcome these problems, they can be downloaded in seconds using
the Google Colaboratory GPU.

1https://dataverse.harvard.edu
2https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/5XRZLH

5.5 Pre-Processing 41

However, the JSON objects have more information fields than required for the thesis
purpose, such as the article’s source name, keywords, publish date and many others. Since
this thesis is not interested in these other JSON fields, they will be removed during Section
5.5.

5.4.2 Books

There aren’t many sources of digitized books as one can think. Among the most complete
collection of books, there are Project Gutenberg3, with books in plain text or in electronic
publication (epub) format, the Internet Archive Books4 and Oxford Text Archive5.

Since books in epub format have no standard structure, being written in HyperText
Markup Language (HTML), it was decided to use plain text books from the above listed
sources.

Using plain text books introduce a considerable complexity because this format is not
structured. In this context, the goal of this thesis is to find when a new Text Segment is
introduced, so, in order to have a reference, it was decided to understand when a new chapter
begins, having as input a list of sentences.

5.5 Pre-Processing

The objective of this section is to present how data downloaded in Section 5.4 are transformed
into a format suitable to fine-tune BERT pre-trained model.

This section is divided accordingly to the two sources of data, Books and News Articles,
since, being different data structures, this phase assumes different characteristics.

5.5.1 News Articles

This dataset, given its large size, is downloaded directly into the machine offered by Google
Colaboratory and is manipulated here in order to obtain a form that can be easily managed.
The starting format is very easy to handle: the JSON format allows easy access to data,
allowing easy manipulation.

Each JSON object is defined with a long list of fields, that are not object of interest for
the work proposed in this thesis. In order to lighten these objects, many fields are discharged.

3http://www.gutenberg.org
4https://archive.org/details/internetarchivebooks
5http://ota.ox.ac.uk/catalogue/index.html

5.5 Pre-Processing 42

The following snippet presents the starting JSON object and how it is lightened by
keeping only necessary fields, highlighted with bold formatting.

1 {
2 { ’ _id ’ : ’2 d61667465722d706f6c6963652 ’ ,
3 ’ a u t h o r s ’ : [’ Example Author ’] ,
4 ’ category ’ : ’ world ’ ,
5 ’ c a t e g o r y _ a g g r e g a t e ’ : ’ world ’ ,
6 ’ c a t e g o r y _ p r o b a b i l i t y ’ : 0 . 8 1 7 5 1 ,
7 ’ g r o u n d _ t r u t h ’ : F a l s e ,
8 ’ keywords ’ : [’ keyword1 ’ , ’ keyword2 ’] ,
9 ’ l anguage ’ : ’ en ’ ,

10 ’ p i p e l i n e d ’ : F a l s e ,
11 ’ p u b l i s h _ d a t e ’ : ’2018−08−28 ’ ,
12 ’ s c r a p e _ d a t e ’ : ’2018−09−08 ’ ,
13 ’ sou rce ’ : ’ h t t p s : / / www. example . com ’ ,
14 ’ source_name ’ : ’ Example ’ ,
15 ’ t a g s ’ : [’ ’] ,
16 ’ t e x t ’ : ’ example t e x t ’ ,
17 ’ t i t l e ’ : ’ Example T i t l e ’ ,
18 ’ u r l ’ : ’ h t t p s : / / www. example . com / ex amp le _ l i nk ’ } ,
19 }

Listing 5.6 News Article Starting JSON

After this field cleaning the resulting JSON is composed of only three fields, in particular,
the field named text contains the whole article. In order to allow the creation of a dataset
suitable for the targeted Text Segmentation task, it is necessary to split the text of these
articles into lines, since the purpose is to understand whether a sentence belongs to a new or
the same News Article.

As mentioned above, the following phases include the needed pre-processing steps to
obtain an appropriate structure to build the dataset.

• Sentence Split: for each article, with the help of a regular expression, punctuation is
identified and sentences are divided accordingly.

• Identifier Assignment: finally, the id of the article is substituted with an easier to read
ID, created by the concatenation of characters and values, in order to ease the following
manipulation.

Resulting article structure is shown in Table 5.3. This structure is saved as a DataFrame
object using Pandas library.

5.5 Pre-Processing 43

article_id article_num sentence_num category text

a9s3 9 3 sport Sentence3
a9s4 9 4 sport Sentence4

Table 5.3 News Articles Structure After Pre-Processing

5.5.2 Books

Books, that have been downloaded as plain text from different sources in Section 5.4, are
compressed into a unique archive. Then, in order to create a unique document, all these
books are concatenated into one single structure, giving an identifier to each book.

In this way, a list of books is stored, ready to be further processed. The objective in this
scenario is to identify whether a text segment belongs to a new or the same chapter in the
book. In order to do this identification, it is necessary to split the books into chapters.

The Data Cleaning Pipeline consists of three main phases, below described.

• Sentence Split: for each book present in the raw list of books, with the help of a regular
expression, punctuation is identified and sentences are divided accordingly.

• Chapter Division: then each book consisting of a list of sentences, is scanned to find
where a chapter begins, using another regular expression.

• Identifier Assignment: finally, an identifier is assigned to each sentence, in order to
ease the following manipulation. This identifier is created by concatenating the book to
which the sentence belongs, the chapter to which the sentence belongs and the number
in order of succession of the sentence.

Table 5.4 shows the resulting structure after the pre-processing of the book scenario. This
structure is saved as a DataFrame object using Pandas library.

book chapter sentence_num sentence_id sentence

23 4 5 b23c4s5 Sentence5
23 4 6 b23c4s6 Sentence6
23 4 7 b23c4s7 Sentence7

Table 5.4 Resulting Book Structure

It was decided to not go deeper with further text mining phases since BERT itself in the
fine-tuning performs all the needed tasks, like tokenization and lemmatization.

5.6 BERT 44

5.6 BERT

In order to reproduce a Text Segmentation task using BERT pre-trained model, the dataset
used must be structured in a form that BERT can understand. The general dataset structure
suitable for BERT is presented in Table 5.5.

id1 id2 sentence1 sentence2 new_segment

b135c13s1038 b210c25s513 example Text1 example Text2 1
b267c9s108 b267c9s117 example Text1 example Text2 0

Table 5.5 General Structure of the Dataset

How the scenario-specific dataset is made will be exhaustively explained in the following
Chapter.

After this assumption, the first following steps is to download the dataset, previously
stored on the well-known platform BitBucket 6. Along with the dataset used to fine-tune
BERT pre-trained model, it is also downloaded a file used for real-world validation, that
consists of a full book or list of news articles, depending on the scenario.

Configuration When both the dataset and the validator file have been loaded, the subse-
quent step is to set up the best configuration obtained from Section 5.3 and to set the number
of folds to be used for the K-Fold Cross Validation. Another variable to set is the pre-trained
model to be used. Unless specified differently in the single experiment, the model used is the
one mentioned above, BERT model uncased_L−12_H−768_A−12.

Training The library used to handle all the model lifecycle is bert library from tensorflow

and tensorflow_hub, where the model is stored. With this library it is possible to call functions
that format the dataset couples of sentences into an input example that BERT can understand,
that call the tokenizer from the module_hub, that convert these input examples into features,
that create the model and the estimator and, finally, that fine-tune the model with an additional
training (Listing 5.7).

1 t r a i n _ I n p u t E x a m p l e s = t r a i n . a p p l y (
2 lambda x : b e r t . r u n _ c l a s s i f i e r . Inpu tExample (gu id = None ,
3 t e x t _ a = x [DATA_COLUMN_1] , t e x t _ b = x [DATA_COLUMN_2] ,
4 l a b e l = x [LABEL_COLUMN]) , a x i s = 1)
5 t o k e n i z e r = c r e a t e _ t o k e n i z e r _ f r o m _ h u b _ m o d u l e ()

Listing 5.7 Extract of BERT Functions

6https://bitbucket.org

5.7 Validation and Result Analysis 45

5.7 Validation and Result Analysis

The last phase is a real-world validation with a validator file, whose sentences are processed
in subsequent couples to predict whether or not they belong to the same segment. These
predictions are then evaluated and variable such as Precision, Accuracy and others are stored
in JSON format for each iteration. In Listing 5.8 it is possible to see all the variable stored at
each iteration.

The object name corresponds to the quantity of data used. Different quantities, based on
the experiment, are used in K-Fold Cross Validation and refers to the total quantity of data.
The amount of data used in training is the 80% of that value.

1 {
2 " 9375 " : {
3 " i t e r a t i o n " : 3 . 0 ,
4 " b e r t _ a c c u r a c y " : 0 .8138666749000549 ,
5 " b e r t _ p r e c i s i o n " : 0 .7908163070678711 ,
6 " b e r t _ f 1 _ s c o r e " : 0 .8162190318107605 ,
7 " b e r t _ r e c a l l " : 0 .8433079719543457 ,
8 " b e r t _ a u c " : 0 .8144364356994629 ,
9 " b e r t _ l o s s " : 0 .4472725987434387 ,

10 " b e r t _ t p " : 7 7 5 . 0 ,
11 " b e r t _ t n " : 7 5 1 . 0 ,
12 " b e r t _ f p " : 2 0 5 . 0 ,
13 " b e r t _ f n " : 1 4 4 . 0 ,
14 " p r e d i c t i o n _ r i g h t " : 1 6 . 0 ,
15 " p r e d i c t i o n _ t o t a l " : 4 5 . 0 ,
16 " p r e d i c t i o n _ t h r e s h o l d _ 1 " : 1 6 . 0 ,
17 " p r e d i c t i o n _ t h r e s h o l d _ 3 " : 1 8 . 0 ,
18 " p r e d i c t i o n _ t h r e s h o l d _ 6 " : 1 9 . 0 ,
19 " v a l _ a c c u r a c y " : 0 .9147286821705426 ,
20 " v a l _ p r e c i s i o n " : 0 .35555555555555557 ,
21 " v a l _ f 1 _ s c o r e " : 0 .4923076923076923 ,
22 " v a l _ r e c a l l " : 0 . 8 ,
23 " v a l _ t p " : 1 6 . 0 ,
24 " v a l _ t n " : 3 3 8 . 0 ,
25 " v a l _ f p " : 2 9 . 0 ,
26 " v a l _ f n " : 4 . 0 ,
27 " t ime " : 1271 .0
28 }
29 }

Listing 5.8 Example Of Validator Results

To evaluate the performance, different variables have been used, like Precision , Recall,
F1−Score and Accuracy.

Variables named as prediction_threshold_x correspond to the number of correct predictions
in the x-neighbourhood of the real new segment.

5.8 Libraries 46

Other variables computed are the following:

Precision =
T P

T P+FP
Recall =

T P
T P+FN

Accuracy =
T P+T N

T P+T N +FP+T N
F1−Score =

2∗Precision∗Recall
Precision+Recall

Where:
T P (true positive): segments predicted to belong to a new segment and that belong to a

new segment.
FP (false positive): segments predicted as new segments that are not new segments.
FN (false negative): segments predicted as current segments that are new segments.
T N (true negative): segments predicted to belong to the current segment and that belong

to the current segment.
These variables are very helpful in the evaluations of the performances obtained by each

experiment and allow to make considerations about it.

5.8 Libraries

5.8.1 Tensorflow

Tensorflow 7 is the core open source library to help developing and training ML models.

5.8.2 Scipy

Scipy is a Python-based ecosystem of open-source software for mathematics, science, and
engineering. Among its core packages we used:

• NumPy 8, the fundamental package for scientific computing with Python.

• Matplotlib 9, a Python 2D plotting library.

• Pandas 10, which provides easy-to-use data structures, the pandas dataframe, that are
widely used.

7https://www.tensorflow.org
8http://www.numpy.org
9https://matplotlib.org/index.html

10http://pandas.pydata.org/index.html

5.8 Libraries 47

5.8.3 Scikit-learn

Scikit-learn 11 is an open-source library that provides useful tools for data mining and
machine learning tasks.

5.8.4 Bokeh

Bokeh 12 is an interactive visualization library that targets modern web browsers for pre-
sentation. Its goal is to provide elegant, concise construction of versatile graphics, and
to extend this capability with high-performance interactivity over very large or streaming
datasets. Bokeh can help anyone who would like to quickly and easily create interactive
plots, dashboards, and data applications.

11https://scikit-learn.org/stable/
12https://docs.bokeh.org/en/latest/

Chapter 6

Experiments and results

The goal of this chapter is to show how the methodology and the implementation, discussed
in the previous sections, have been put to the test in different experiments. Firstly, the used
dataset is presented and analyzed. Then, we focus on the variations of the proposed approach,
where several combinations of methods and different parameters are explored. Moreover,
the results are discussed and compared, in order to understand which is the best solution to
achieve the work objective.

6.1 Dataset

The dataset used is created by coupling sentences that are previously manipulated in order to
obtain a suitable format for fine-tuning BERT pre-trained model. These couples of sentences
are stored in a tar .gz archive, as suggested by the official implementation, uploaded on
BitBucket to ease the download from external URL. Same results could be obtained by
uploading directly the dataset into Google Colaboratory manually for each execution.

6.1.1 Sentences Coupling

In this context, the creation of the dataset takes place by coupling sentences coming from the
same or different text segment. In this way the size of the dataset can be decided a priori,
generating the pairs of established sentences.

It was decided to use different amounts of data in each of the experiments proposed
below, in order to obtain a more complete view of each possible configuration used. The
amounts of data used include the best amount of data obtained from the previous step, plus
additional amounts of data are evaluated, all using K-Fold Cross Validation as a re-sampling
procedure.

6.1 Dataset 49

Under this assumption, sentence pairs are produced by coupling a number of sentences
from the same text segment, together with the same number of pairs from a different segment.
In this way, a data structure is obtained consisting of pairs of the same segment to which
the new_segment label with value 0 is assigned, while for pairs coming from different text
segments, new_segment with value 1 will be assigned.

The resulting dataset has the form described in Table 5.5.
In order to ease the computation, only the identifier of the sentence is used as a discrimi-

nator to check whether or not two sentences belong to the same segment, adding the full text
of the sentence afterwards.

Hence, in order to generate X sentences pairs, X/2 pairs belonging to the same segment
are appended to X/2 pairs belonging to different segments. The dataset undergoes a shuffling
procedure and then a sampling based on the amount of data to be generated.

In this way, the archive is composed of as many folders as the amount of data to be used.
The origin of this operation comes from the fact that in this way the same data are always
used analyzing the same amount of data.

The dataset is then customized based on each experiment needs. The appropriate mod-
ifications, dictated by the characteristics of the experiment, are explained together with
it.

6.1.2 Validation

The real-world validation, as explained in 5.7, is constructed by extrapolating a portion of
data and saving it in Comma Separated Values (CSV) format consisting of a list of lines and
new_segment values that are equal to 1 when a new segment starts. The purpose of this file is
to provide a real-world use case to the fine-tuned model and to understand if the estimations
on the model reflect reality.

The validator file is declined differently according to the scenario:

• News Articles: the validator file is composed of 20 different articles concatenated
subsequently, for a total of about 400 sentences. These articles can be already used in
training or not, depending on the experiment.

• Books: the validator file is composed of a variable amount of chapters, coming from
different books and manipulated differently based on the experiment needs. The
number of these chapters is always between 10 and 20 with a variable number of
sentences in the order of magnitude of the thousand. This characteristic comes from
the nature of the text segment used since chapters are longer than news articles.

6.2 News Articles Experiments 50

6.2 News Articles Experiments

This section shows every experiment about the News Articles Scenario. All experiments
have been named as ArtX, where X is the identifier of the experiment, a scalar number in
ascending order.

Each experiment of this scenario was executed with a K-Fold Cross Validation K equal
to 5 and for different quantities of data, such 4000, 9375, 15000, 30000. These quantities of
data have been chosen under the considerations of Section 5.2 and are divided as 80% for
the training phase and 20% for the test phase. The reference Data Quantity is 9375 since it
results in 7500 data for the training phase.

In the following subsections, all the experiments of this scenario are exhaustively ex-
plained. Moreover, at the end of this section, a summary, that includes all the experiments, is
commented.

6.2.1 Experiment Art1

This experiment is the least elaborate one. The dataset used is the one explained in Section
6.1 with no further additions, news articles are divided into lines and the sentences are
coupled as they are. The dataset is built using a random sampling on 60000 couples, hence
the percentage of couples that belong to the same article will be probably different from
couples that belong to the different articles.

In this experiment, the BERT pre-trained model is fine-tuned with different quantity of
data, including four iterations with 50000 couples (40000 in training and 10000 in testing).
Results of this experiment can be evaluated in Table 6.1.

The validator file used is composed of 20 different articles, hence predictions right can
be at most 20. This particular file is long exactly 428 lines.

Data
BERT

Accuracy
BERT

F1-Score
Right

Predictions
Total

Predictions
Validator
Accuracy

Validator
Precision

Validator
F1-Score

Validator
Recall

4000 0.83300 0.83966 15.2 61.8 0.8801864 0.2478313 0.373339 0.76
9375 0.82656 0.83223 15.4 54.0 0.8993006 0.2866983 0.417374 0.77

15000 0.82740 0.83056 15.0 51.4 0.9034965 0.2916866 0.419889 0.75
30000 0.83566 0.83637 14.6 52.8 0.8983682 0.2772215 0.401644 0.73
50000 0.84182 0.84360 14.25 49.75 0.9038461 0.2866394 0.408685 0.7125

Table 6.1 Results of Experiment Art1

All of these values are averaged in a total of 5 iterations (except for the data quantity
5000).

6.2 News Articles Experiments 51

This experiment shows how the pre-trained BERT model behaves against a real-world
validation. Besides, BERT Accuracy, computed with its estimator, shows a quite high value,
even though real-world validation presents a high false positives value. The parameter
Validator Accuracy shows a very high value: this is due to all the correct predictions for
couples belonging to the same article (so the same text segment).

6.2.2 Experiment Art2 - Balanced

This experiment is characterized by a different composition of the dataset used in Experiment
6.2.1. This dataset is built by the same number of same article couples and different articles
couples. From now on, to ease the reading, this type of dataset composition will be called
Balanced.

Data
BERT

Accuracy
BERT

F1-Score
Right

Predictions
Total

Predictions
Validator
Accuracy

Validator
Precision

Validator
F1-Score

Validator
Recall

4000 0.83725 0.83951 14.6 54.8 0.8937063 0.2671505 0.390954 0.73
9375 0.82176 0.82351 14.6 49.2 0.9067599 0.2970651 0.422207 0.73

15000 0.83113 0.83256 14.2 51.8 0.8988344 0.2752260 0.396322 0.71
30000 0.83646 0.83813 15.4 50.8 0.9067599 0.3033113 0.434950 0.77

Table 6.2 Results of Experiment Art2

Results in Table 6.2 highlights that the balancing has no substantial effect on the model
performance, although a slight improvement in all the variables is present.

Although the improvement is slight, the datasets of the next experiments will be con-
structed according to a 50%-50% balance (unless specified differently in the experiment
description).

6.2.3 Experiment Art3 - Distribution-Wise

The following experiment’s dataset is built using balanced data and under additional pre-
processing. Before creating the sentence pairs, an analysis of the distribution of the lengths
of all the articles was conducted. Figure 6.1a shows a box plot that describes the length of
the articles in terms of the number of sentences. This box plot was used to reduce the number
of items that were used as a pool of sentences from which to extract the pairs, in particular,
all articles with fewer sentences than the value of the first quartile are removed.

To refer easily to this particular manipulation will be used the name Distribution-Wise.
Adding this particular processing results in a slight drop in performance as it can be seen in
Table 6.3. This article has been run also with 50000 data.

6.2 News Articles Experiments 52

(a) Box Plot (b) Box Plot values

Figure 6.1 Number of Sentences Distribution in Articles

Data
Quantity

BERT
Accuracy

BERT
F1-Score

Right
Predictions

Total
Predictions

Validator
Accuracy

Validator
Precision

Validator
F1-Score

Validator
Recall

4000 0.80575 0.80841 14.0 56.2 0.88764 0.24931 0.36743 0.7
9375 0.81952 0.82250 14.4 51.2 0.90116 0.28119 0.40439 0.72

15000 0.82213 0.82554 14.6 51.6 0.90116 0.28311 0.40786 0.73
30000 0.82290 0.82502 15.2 52.2 0.90256 0.29151 0.42130 0.76
50000 0.82580 0.82803 15.0 54.0 0.89743 0.27777 0.40540 0.75

Table 6.3 Results of Experiment Art3

6.2.4 Experiment Art4, Art5 and Art6 - Mono Category

The experiments that are described in this section share the same characteristics of the
previous example, except for the use of the data quantity 50000, hence they are presented
together.

Their peculiarity is the limitation of the pool of articles to the ones characterized by a
specific category: an attribute of the News Articles full dataset that was not removed.

• Experiment Art4: characterized by articles of the category Sports

• Experiment Art5: characterized by articles of the category Health

• Experiment Art6: characterized by articles of the category World

All these experiments have been validated on a validator made by articles of the same
category.

6.2 News Articles Experiments 53

Experiment
Data

Quantity
BERT

Accuracy
BERT

F1-Score
Right

Predictions
Total

Predictions
Validator
Accuracy

Validator
Precision

Validator
F1-Score

Validator
Recall

4 4000 0.75525 0.76360 17.6 82.8 0.85678 0.21499 0.34486 0.88
4 9375 0.75296 0.75593 17.0 81.2 0.85762 0.20987 0.33652 0.85
4 15000 0.77173 0.77471 16.6 83.0 0.85212 0.20009 0.32243 0.83
4 30000 0.77276 0.77339 17.0 81.6 0.85678 0.20856 0.33490 0.85

5 4000 0.71625 0.77836 18.2 157.4 0.63566 0.15477 0.25970 0.91
5 9375 0.77248 0.80708 18.0 106.0 0.76744 0.17321 0.28974 0.9
5 15000 0.79040 0.81824 17.8 89.8 0.80826 0.19836 0.32438 0.89
5 30000 0.79466 0.82244 17.8 93.4 0.79896 0.19090 0.31425 0.89

6 4000 0.81575 0.81862 17.2 47.0 0.91117 0.36730 0.51445 0.86
6 9375 0.81749 0.82026 17.8 42.2 0.92752 0.42253 0.57293 0.89
6 15000 0.82187 0.82381 17.8 37.8 0.93951 0.47110 0.61599 0.89
6 30000 0.82683 0.82771 18.2 41.2 0.93242 0.44325 0.59573 0.91

Table 6.4 Results of Experiments Art4, Art5 and Art6

Table 6.4 shows that some categories perform better than others. The number of Total
Predictions is extremely high in Experiments Art4 and Art5, while Experiment Art6 has very
good results in all of its parameters. These three experiments results should be worse than
other experiments, due to the difficulty of the task: predicting the start of a new article of the
same topic is more difficult than predicting one of different topics. Under this consideration,
Experiment Art6 is characterized by a more general category of articles with respect to the
other two experiments, labelled as world, hence with a more general dataset performs better
than the others.

6.2.5 Experiment Art7 - Validation with New Data

This section describes experiment Art7, that is characterized by an additional feature: articles
are divided on top of the dataset processing to be part of the dataset that fine-tunes the model
and of the validator file. Previously the articles that compose the validator file could have
been also part of the dataset. With this additional feature, it’s sure that the validator file
consists of data never used for the fine-tuning process.

Data
Quantity

BERT
Accuracy

BERT
F1-Score

Right
Predictions

Total
Predictions

Validator
Accuracy

Validator
Precision

Validator
F1-Score

Validator
Recall

4000 0.75950 0.76496 15.4 54.6 0.88412 0.28268 0.41342 0.77
9375 0.78283 0.78913 15.4 56.6 0.87883 0.27220 0.402120 0.77

15000 0.78627 0.79117 15.6 52.4 0.89100 0.29899 0.43194 0.78
30000 0.79253 0.79648 15.4 48.8 0.89947 0.31602 0.44798 0.77

Table 6.5 Results of Experiment Art7

6.2 News Articles Experiments 54

Table 6.5 shows a consistent drop in performance for the model, with lower BERT
Accuracy and worse predictions on the validator. BERT Accuracy is lower than expected, but
this is due to different sentences used for fine-tuning the model.

6.2.6 Experiment Art8, Art9, Art10 and Art11 - Different Balancing

These experiments share the same configuration of Section 6.2.5 but with a different balance
between sentences from the same article and from different articles. The percentages used
are presented in Table 6.6.

Experiment From the Same Article From Different Articles

Art8 80 20
Art9 60 40

Art10 40 60
Art11 20 80

Table 6.6 Percentages of Experiments Art8, Art9, Art10 and Art11

Using more sentences from the same article, Total Predictions are expected to be lower
than the opposite, and vice versa.

This consideration is confirmed in Table 6.7, were results of these experiments are shown.

Experiment
Data

Quantity
BERT

Accuracy
BERT

F1-Score
Right

Predictions
Total

Predictions
Validator
Accuracy

Validator
Precision

Validator
F1-Score

Validator
Recall

8 4000 0.80325 0.80806 15.8 47.6 0.90697 0.33261 0.46754 0.79
8 9375 0.81408 0.81746 15.2 45.8 0.90853 0.33216 0.46222 0.76
8 15000 0.81267 0.81612 16.0 44.0 0.91731 0.36416 0.50030 0.8
8 30000 0.82010 0.82171 15.0 37.8 0.92816 0.39698 0.51895 0.75

9 4000 0.80275 0.81704 16.4 65.4 0.86408 0.25412 0.38712 0.82
9 9375 0.80298 0.81756 16.6 57.8 0.88475 0.28773 0.42707 0.83
9 15000 0.81386 0.82218 16.0 54.0 0.89147 0.29653 0.43256 0.8
9 30000 0.81560 0.82593 15.6 57.6 0.88010 0.27254 0.40335 0.78

10 4000 0.79725 0.78792 14.0 36.8 0.92558 0.38128 0.49341 0.7
10 9375 0.79712 0.79107 14.6 33.0 0.93850 0.44272 0.55103 0.73
10 15000 0.81067 0.80038 14.8 31.8 0.94263 0.46643 0.57154 0.74
10 30000 0.81460 0.80829 13.8 30.8 0.94005 0.45139 0.54490 0.69

11 4000 0.75250 0.70201 10.2 16.2 0.95917 0.64394 0.56328 0.51
11 9375 0.76235 0.71090 9.2 16.2 0.95400 0.57218 0.50874 0.46
11 15000 0.77527 0.73438 10.4 18.0 0.95555 0.57875 0.54712 0.52
11 30000 0.77743 0.73831 10.6 18.6 0.95504 0.57134 0.54966 0.53

Table 6.7 Results of Experiment Art8, Art9, Art10 and Art11

6.2 News Articles Experiments 55

6.2.7 Experiment Art12 - Cased Model

This last experiment shares all the settings of Experiment of Section 6.2.5, with only one
substantial difference: a different pre-trained BERT model. The model used in this experiment
is the base version of the cased model, namely bert_cased_L−12_H−768_A−12/1.

Data
Quantity

BERT
Accuracy

BERT
F1-Score

Right
Predictions

Total
Predictions

Validator
Accuracy

Validator
Precision

Validator
F1-Score

Validator
Recall

4000 0.79450 0.79739 14.6 42.0 0.91524 0.34925 0.47215 0.73
9375 0.80960 0.81135 14.8 41.6 0.91731 0.35619 0.48068 0.74

15000 0.81327 0.81601 15.6 45.8 0.91059 0.34129 0.47449 0.78
30000 0.81603 0.81785 15.6 42.4 0.91938 0.36837 0.50025 0.78

Table 6.8 Results of Experiment Art12

Results of this experiment are available in Table 6.8 and reflects a general performance
improvement with respect to Experiment of Section 6.2.5. Another important information is
that the fine-tuning time is halved.

6.2.8 News Articles Experiment Comparisons

Summary of Experiments In order to recap each experiment setting, Table 6.9 is provided.

Experiment
50000
Data

Balancing
Same-New

Mono
Category

Distribution
Wise

Different Data
(Train/Validation) Model

Art1 ✓ Random ✗ ✗ ✗ Uncased
Art2 ✗ 50-50 ✗ ✗ ✗ Uncased
Art3 ✓ 50-50 ✗ ✓ ✗ Uncased
Art4 ✗ 50-50 ✓ ✓ ✗ Uncased
Art5 ✗ 50-50 ✓ ✓ ✗ Uncased
Art6 ✗ 50-50 ✓ ✓ ✗ Uncased
Art7 ✗ 50-50 ✗ ✓ ✓ Uncased
Art8 ✗ 20-80 ✗ ✓ ✓ Uncased
Art9 ✗ 40-60 ✗ ✓ ✓ Uncased
Art10 ✗ 60-40 ✗ ✓ ✓ Uncased
Art11 ✗ 80-20 ✗ ✓ ✓ Uncased
Art12 ✗ 50-50 ✗ ✓ ✓ Cased

Table 6.9 Experiments News Articles Scenario Summary Table

Accuracy Figure 6.2 shows BERT Accuracy and Validator Accuracy of each experiment,
in order to give a comparison between all experiments.

6.2 News Articles Experiments 56

Figure 6.2 BERT Accuracy and Validator Precision per Experiment

Besides BERT Accuracy, the other variable chosen is Validator Precision, since this
variable in this specific use-case is considered to be the most significant between Validator
performance indexes because it shows the relationships between Right Predictions and Total
Predictions. The importance of this relationship comes from the fact that a high value of
total predictions influences the value of right predictions.

Figure 6.3 All Estimators per Experiment

Comparison Between All the Variables From Figure 6.3 all the variables included be-
tween 0 and 1 are shown and it is also included the value of right predictions in percentage.
It is important to highlight that Experiment Art11 is characterized by the highest value of

6.2 News Articles Experiments 57

Validator Precision having the least value of Right Predictions. BERT Accuracy is stable for
each experiment, while the best values of Right Predictions is provided by the Mono-Category
experiments.

Total Predictions Figure 6.4 shows the total number of predictions. From this figure it
can be seen that Experiment Art11 is the one with the lowest number of Total Predictions,
reflected in its corresponding value of Validator Precision that is the highest between all the
experiments.

Figure 6.4 Validator Total Predictions per Experiment

WinDiff-Like Evaluation Another interesting evaluation can be seen in Figure 6.5, where
a windiff-like plot is shown. This figure represents how distant the prediction of the model is
with respect to the line of the start of the new segment, in this scenario a new article.

Figure 6.5 WinDiff-Like Plot per Experiment

6.2 News Articles Experiments 58

Figure 6.5 shows that each model predicts the same number of new segments using a
1-sentence threshold of tolerance, while, increasing this threshold, the number of correct
predictions increases.

Comparison Between Experiments Art7 and Art12 The last comparison that will be
offered is the comparison between the same experiment with different models. Figure 6.6
shows how the two models perform with the same setting and the same dataset.

Figure 6.6 Comparison Between Cased and Uncased Model

Figure 6.6 compares all the significant variables for experiment Art7 and Art12. As it
can be seen the Cased model performs slightly better that the Uncased version.

6.3 Books Experiments 59

6.3 Books Experiments

This Section explains each experiment about the Books Scenario. All experiments have been
named according to the following convention:

• Experiment concerning Chapters: all the experiments, which consider the chapters as
new segments, are named with ChX, where X corresponds to an incremental number.

• Experiment concerning Paragraphs: all the experiments, which consider the paragraphs
as new segments, are named with PX, where X corresponds to an incremental number.

Each experiment of this scenario was executed with a K-Fold Cross Validation K equal
to 5 and for different quantities of data, such 4000, 9375, 15000, 30000. These quantities of
data have been chosen under the considerations of Section 5.2 and are divided as 80% for
the training phase and 20% for the test phase. The reference Data Quantity is 9375 since it
results in 7500 data for the training phase.

For each experiment of this Scenario, a dataset with the following properties has been
used to train the pre-trained BERT model: sentence coupling has been accomplished by
assigning to each book a probability prob_book given by its size in terms of number of chapters,
then another probability prob_chapter is assigned to each chapter of each book. Therefore, the
probability of each sentence being chosen results to be defined as follows:

prob_sentence = prob_book ∗ prob_chapter

Under this assumption, the probability that a sentence, belonging to a book B and a chapter
C, is chosen increases the more B contains chapters and the more C contains sentences. This
particular addition has been introduced to avoid chapters formed by too less sentences.

In the following subsections, all the experiments of this scenario are exhaustively ex-
plained. Moreover, at the end of this section, a summary, that includes all the experiments, is
commented.

6.3.1 Experiment Ch1 - Balanced

This experiment’s dataset has been built using above described considerations. For this
particular experiment, are provided also five iterations with 50000 couples of data (40000 of
them used for training purposes and 10000 for testing).

Results of this experiment are shown in Table 6.10. Comparing these results with previous
scenario experiments, it can be seen how this scenario performs drastically worse.

6.3 Books Experiments 60

It is important to remind that this validator file consists of 13 chapters, for a total of 2875
sentences.

Data
Quantity

BERT
Accuracy

BERT
F1-Score

Right
Predictions

Total
Predictions

Validator
Accuracy

Validator
Precision

Validator
F1-Score

Validator
Recall

4000 0.56400 0.66611 1.4 232.4 0.91422 0.00567 0.01059 0.08
9375 0.58762 0.66655 1.8 224.2 0.91735 0.00764 0.01423 0.11

15000 0.59133 0.66663 1.2 263.8 0.90316 0.00460 0.00864 0.07
30000 0.60097 0.66665 1.4 239.0 0.91193 0.00588 0.01097 0.08
50000 0.60608 0.66667 2.4 276.0 0.89976 0.00880 0.01652 0.14

Table 6.10 Results of Experiment Ch1

This experiment presents an high value of Total predictions with a very low value of
Right predictions . These values are reflected by BERT parameters that show a very low value.

These worst results come from:

• A greater difficulty of the experiment due to the particular kind of data: a chapter is
composed by a greater number of sentences of an article, resulting in a more general
partition of the segments that influences negatively BERT performance.

• A worse quality of the data worsens BERT estimations. Book sentences in the books
could have such peculiarities that they cannot be contextualized if taken out of context.

In this experiment sentences that form the dataset are taken as they are, no additional
pre-processing (in addition to the split) was carried out on the data.

The following experiments will change these results by adding further pre-processing.

6.3.2 Experiment Ch2 - Distribution-Wise

Following the structure used for the scenario explained in Section 6.2, the second experiment’s
dataset is built under an analysis of the distribution of the data under different facets:

• Books length in terms of chapters: as it can be seen in Figure 6.7, the collection of
books used to build the dataset is characterized by books around the 12 chapters, but
with several outliers.

• Chapters length in terms of sentences number: Figure 6.7 shows that the number of
sentences in each chapter is characterized by a diversified distribution, with many
outliers, due to the fact that the books, to which the chapters in question belong, did not
have a clear distinction of chapters and through regular expressions it was not possible
to identify a pattern of division of the chapters.

6.3 Books Experiments 61

Figure 6.7 Books Distribution

• Sentences length: phrases that are too short or too long can negatively affect the
fine-tuning of the BERT pre-trained model.

The reference values of Figure 6.7 can be seen in Table 6.11, where the quartiles together
with the minimum and the maximum values are collected.

25% 50% 75% mean std

Books Length in Chapters 3 10 23 16,06 17,09
Chapters Length in Sentences 4 127 423 376,23 693,52

Sentences Length 37 81 148 107,42 99,14
Table 6.11 Books Distribution Reference Values

After this analysis it was decided to remove:

• Books with fewer chapters than the 25 percentile and with more chapters than the 75
percentile, in order to bypass possible mistakes due from the regular expression.

• Chapters with fewer sentences than the 25 percentile and with more sentences than the
75 percentile, since with too many or too fewer lines the text segment loose coherence.

6.3 Books Experiments 62

• Sentences too short or too long to provide a more general dataset in fine-tuning.

This additional pre-processing activity has had beneficial effects on the results obtained
in training, demonstrating a general increase in all the estimating variables, in particular for
the BERT estimates, that shows a 10% growth with respect to the previous experiment, as
Table 6.12 shows.

Data
Quantity

BERT
Accuracy

BERT
F1-Score

Right
Predictions

Total
Predictions

Validator
Accuracy

Validator
Precision

Validator
F1-Score

Validator
Recall

4000 0.72800 0.73607 2.6 29.8 0.93126 0.09013 0.12346 0.20
9375 0.74784 0.75419 1.2 23.4 0.93784 0.05123 0.06562 0.09

15000 0.76053 0.77076 2.2 27.8 0.93345 0.08148 0.10954 0.17
30000 0.75753 0.76463 1.8 21.0 0.94442 0.08612 0.10593 0.14

Table 6.12 Results of Experiment Ch2

Using the same methodology, a validator file of 17 chapters was built, corresponding to
547 sentences. This explains the lower number of Total Predictions.

6.3.3 Experiment Ch3 and Ch4 - Validation with New Data

In order to proceed in the same logical way of the Scenario 6.2, the data constituting the
validation file are now obtained from a portion of data detached from those that create the
dataset.

Just before the pairs of sentences are randomly matched, 10% of them are extracted and
used later in order to obtain a validator file constructed with new data compared to the data
used to create the training (fine-tuning) dataset.

The difference between these two experiments derives only from the validator file. In
experiment Ch3, the validator file is built by a random sample of a book in the portion of
data stored aside for the validation, while the validator file of the experiment Ch4 is built
by concatenating random chapters from different books (always in the validation portion of
the data), like the ones of the scenario of Section 6.2. Validator of Experiment Ch3 consists
precisely of a book of 20 chapters and of 4326 sentences, while Validator of Experiment Ch4
consists of 20 chapters and 1458 sentences.

Table 6.13 shows how these two experiments behave, giving the opportunity to see in
detail their difference.

In terms of BERT estimation, there is no significant difference between these experiments
and the previous, because, using at most 50.000 pairs of sentences, the maximum number of
sentences used is 100.000, a very low number compared to the total number of sentences

6.3 Books Experiments 63

Experiment
Data

Quantity
BERT

Accuracy
BERT

F1-Score
Right

Predictions
Total

Predictions
Validator
Accuracy

Validator
Precision

Validator
F1-Score

Validator
Recall

3 4000 0.73625 0.74629 1.2 24.0 0.94658 0.04311 0.05843 0.09
3 9375 0.74496 0.75246 0.6 19.4 0.95271 0.02727 0.03428 0.04
3 15000 0.75380 0.76015 1.2 24.0 0.94649 0.04110 0.05659 0.09
3 30000 0.75893 0.76632 0.6 16.8 0.96226 0.03131 0.03723 0.04

4 4000 0.72925 0.74177 6.8 66.0 0.95031 0.10349 0.15850 0.34
4 9375 0.74357 0.75246 8.0 65.8 0.95209 0.12164 0.18653 0.4
4 15000 0.74553 0.75378 8.4 67.8 0.95127 0.12406 0.19153 0.42
4 30000 0.75500 0.76373 8.6 72.0 0.94866 0.11966 0.18718 0.43

Table 6.13 Results of Experiment Ch3 and Ch4

(1.311.936 sentences). The validity of this experiment is however given by the use of
probabilities in the choice of the latter: since each sentence has a different probability of
being chosen to become part of a couple, the choice of couples could involve the same
sentences every time. However, in pairs of sentences, there are no duplicate pairs, as they are
removed when creating the dataset. In this way, the possibility of having the same data in
training and validation has been removed.

Instead, in terms of predictions, the two experiments differ significantly. This difference
comes from the different validator file, above described.

6.3.4 Experiment Ch5, Ch6, Ch7 and Ch8 - Different Balancing

All these experiments share the same setting used by Experiment Ch4 of the previous section.
The only difference is about the percentages of couples of the same chapter or not.

In the following table, the different percentages used are shown.

Experiment From the Same Chapter From Different Chapters

Ch5 80 20
Ch6 60 40
Ch7 40 60
Ch8 20 80

Table 6.14 Percentages of Experiments Ch5, Ch6, Ch7 and Ch8

Table 6.15 shows the different results obtained by each couple of percentages. From
this table it can be seen that moving away from a balanced percentage, BERT estimates
deteriorate considerably.

Total Predictions on the validator decreases as the percentages of couples from different
chapters increases; the same behaviour characterizes the Right Predictions. Another impor-

6.3 Books Experiments 64

Experiment
Data

Quantity
BERT

Accuracy
BERT

F1-Score
Right

Predictions
Total

Predictions
Validator
Accuracy

Validator
Precision

Validator
F1-Score

Validator
Recall

5 4000 0.62100 0.72340 13.0 368.2 0.75141 0.03847 0.07204 0.65
5 9375 0.70378 0.76319 10.0 175.8 0.87934 0.05724 0.10260 0.5
5 15000 0.69487 0.75335 9.8 198.4 0.86355 0.05184 0.09327 0.49
5 30000 0.71950 0.77000 9.8 158.2 0.89115 0.06195 0.10998 0.49
6 4000 0.74350 0.77237 8.8 89.0 0.93727 0.09970 0.16240 0.44
6 9375 0.74144 0.76205 8.6 90.4 0.93603 0.09499 0.15554 0.43
6 15000 0.74006 0.76394 9.2 109.4 0.92381 0.08967 0.14889 0.46
6 30000 0.75160 0.77117 8.8 93.8 0.93397 0.09394 0.15478 0.44
7 4000 0.74700 0.73736 5.6 43.0 0.96445 0.12979 0.17727 0.28
7 9375 0.73877 0.72750 6.2 51.4 0.95951 0.12169 0.17443 0.31
7 15000 0.73953 0.73112 8.2 53.2 0.96101 0.15439 0.22389 0.41
7 30000 0.74903 0.73747 6.8 50.0 0.96130 0.13712 0.19499 0.34
8 4000 0.63750 0.66256 1.2 14.0 0.97831 0.07612 0.06669 0.06
8 9375 0.64160 0.66406 1.6 13.2 0.97941 0.10172 0.08919 0.08
8 15000 0.67793 0.66484 3.0 20.0 0.97666 0.15325 0.15081 0.15
8 30000 0.69153 0.66968 2.6 17.0 0.97817 0.15354 0.14048 0.13

Table 6.15 Results of Experiments Ch5, Ch6, Ch7 and Ch8

tant consideration is that the validator performance indexes show better results the more
the percentages are balanced. All these four experiments share the same validator file of
Experiment Ch4.

6.3.5 Experiment Ch9 - Cased Model

As for the news articles scenario, a comparison is proposed between BERT’s cased and
uncased model. This experiment is the last dealing with chapters as text segment and its
results are presented in Table 6.16. In the comparison section, it is possible to see the
difference between the two equal experiments with different models.

Data
Quantity

BERT
Accuracy

BERT
F1-Score

Right
Predictions

Total
Predictions

Validator
Accuracy

Validator
Precision

Validator
F1-Score

Validator
Recall

4000 0.74900 0.75370 6.0 67.6 0.94811 0.08899 0.13714 0.3
9375 0.74698 0.75337 6.2 69.8 0.94687 0.08889 0.13815 0.31

15000 0.75040 0.75543 8.2 74.6 0.94632 0.11013 0.17352 0.41
30000 0.75536 0.75959 7.6 74.2 0.94578 0.10256 0.16152 0.38

Table 6.16 Results of Experiment Ch9

6.3.6 Chapters Experiments Comparison

Summary of Experiments In order to recap each experiment setting, Table 6.17 is pro-
vided.

6.3 Books Experiments 65

Experiment
50000
Data

Balancing
Same-New

Distribution
Wise

Different Data
(Train/Validation) Model

Ch1 ✓ 50-50 ✗ ✗ Uncased
Ch2 ✗ 50-50 ✓ ✗ Uncased
Ch3 ✗ 50-50 ✓ ✓ Uncased
Ch4 ✗ 50-50 ✓ ✓ Uncased
Ch5 ✗ 20-80 ✓ ✓ Uncased
Ch6 ✗ 40-60 ✓ ✓ Uncased
Ch7 ✗ 60-40 ✓ ✓ Uncased
Ch8 ✗ 80-20 ✓ ✓ Uncased
Ch9 ✗ 50-50 ✓ ✓ Cased

Table 6.17 Experiments Books Scenario Summary Table

Accuracy Figure 6.8 shows BERT Accuracy and Validator Accuracy of each experiment
of the Books Scenario, in order to provide a comparison between all the experiments in the
accuracy context.

Figure 6.8 BERT Accuracy and Validator Precision per Experiment

Besides BERT Accuracy, the other variable chosen is Validator Precision, since this
variable in this specific use-case is considered to be the most significant between Validator
performance indexes because it shows the relationships between Right Predictions and Total

6.3 Books Experiments 66

Predictions. The importance of this relationship comes from the fact that a high value of
total predictions influences the value of the right predictions.

Comparison Between all the Variables Figure 6.9 shows all the variables included be-
tween 0 and 1 and it is also included the value of right predictions in percentage.

Figure 6.9 All Estimators per Experiment

Total Predictions Figure 6.10 shows the total number of predictions. From this figure, it
can be seen that Experiment Ch8 is the one with the lowest number of Total Predictions.

Figure 6.10 Validator Total Predictions per Experiment

WindDiff-Like Evaluation Another interesting evaluation can be seen in Figure 6.11,
where a windiff-like plot is shown. This figure represents how distant the prediction of the
model is with respect to the line of the start of the new segment, in this scenario a new
chapter.

6.3 Books Experiments 67

Figure 6.11 WinDiff-Like Plot per Experiment

Figure 6.11 shows that each model predicts the same number of new segments using a
1-sentence threshold of tolerance, while, increasing this threshold, the number of correct
predictions increases.

Comparison Between Experiments Ch4 and Ch9 The last comparison that will be of-
fered is the comparison between the same experiment with different models. Figure 6.12
shows how the two models perform with the same setting and the same dataset.

Figure 6.12 Comparison Between Cased and Uncased Model

Figure 6.12 compares all the significant variables for experiment Ch4 and Ch9. As it can
be seen, unlike the previous scenario, the Uncased model performs slightly better than the
Cased version.

6.3 Books Experiments 68

6.3.7 Paragraphs Experiment P1 and P2

Experiment
Data

Quantity
Time

(s)
BERT

Accuracy
BERT

F1-Score
Right

Predictions
Total

Predictions
Validator
Accuracy

Validator
Precision

Validator
F1-Score

Validator
Recall

1 4000 573.2 0.73775 0.74831 27.0 52.2 0.89102 0.52063 0.60645 0.73
1 9375 1207.4 0.75210 0.75863 26.8 52.4 0.88916 0.51162 0.59960 0.72
1 15000 1869.2 0.74666 0.75521 26.6 59.2 0.86687 0.45760 0.55748 0.72
1 30000 3723.4 0.76010 0.76653 27.0 58.0 0.87306 0.46659 0.56891 0.73

2 4000 229.6 0.73825 0.74545 25.6 47.6 0.89660 0.54234 0.60678 0.69
2 9375 433.6 0.75051 0.75617 25.4 50.0 0.88792 0.50934 0.58428 0.69
2 15000 647.0 0.75013 0.75469 25.8 51.2 0.88669 0.50508 0.58556 0.70
2 30000 1215.2 0.76277 0.76844 26.8 56.2 0.87740 0.47717 0.57524 0.72

Table 6.18 Comparison Results of Experiment P1 and P2

These two experiments differ only in the choice of the model: Experiment P1 is executed
with the uncased version of BERT model, while Experiment P2 with the cased version.

The configuration shared between the two consists in having to indicate a segment of text
defined by a paragraph instead of a chapter.

There is no statistical evidence about the right length of a paragraph. For this reason,
these text segment can be seen more like a batch of sentences rather than real paragraphs.

Figure 6.13 Comparison Between Cased and Uncased Model

However, the dataset consists of a couple of sentences that have been processed exactly
like in experiments before, yet these couples are taken from batches of sentences of a variable,
random length between 6 and 12 sentences.

Like the dataset, the validator has undergone the same pre-processing process and it is
composed of 40 batches appended consequently.

6.4 Comparison with Related Works 69

Accuracy Precision F1-Score TP TN FP FN All

News Articles 0.89002 0 0 0 785 96 1 882
Chapters 0.87178 0.08333 0.04273 5 1518 50 174 1747

Table 6.19 Estimators on Attention-Based Neural Text Segmentation

In Table 6.18, the results about these two experiments are shown, in addition, Figure 6.13
graphically presents all their interesting variables.

From Table 6.18 and Figure 6.13 it is possible to establish that the cased model obtains
practically same results as the uncased model, but with half the time taken by the uncased
version of BERT model.

6.4 Comparison with Related Works

From the beginning, one of the objectives was to be able to establish whether the use of the
BERT pre-training model was characterized by comparable, or even better, performance of
solutions adopted so far, such as Attention-Based Neural Text Segmentation [2], in the area
of Text Segmentation.

For this reason, a comparison of the results obtained by both implementations on the
same dataset is proposed. Both scenarios proposed in the above experiments have been
implemented according to the approach in question.

This solution is characterized by an higher value of accuracy, even if the predictions are
scarce. From these results we can conclude that the method proposed in this thesis to find
new segments of text provides better results in terms of predictions despite a lower accuracy.

Table 6.19 shows the results obtained to provide a better description of the comparison
between the two solutions.

Chapter 7

Conclusion

This thesis proposes a fully-automatic method to segment texts in natural language. The ap-
proach consists in the application of a method of pre-training language representations, called
BERT (Bidirectional Encoder Representation from Transformer), in order to understand
when a new text segment starts in a flow of sentences. This approach allows partitioning a
text into meaningful units by detecting the start of new text segments.

7.0.1 Summary of the Results

Among the different configurations that this work has tested, the best performance have been
achieved by the experiments carried out on the News Articles Scenario. The difference in the
results between the different scenarios also lies in the different complexity of the same. the
length of the segments to be partitioned is a fundamental variable in the complexity of the
experiment itself, as shown by the results, in which the chapter scenario, characterized by the
greatest number of sentences per segment, provides the worst results. The other fundamental
variable that decides the complexity of the scenario is the quality of the data, better as regards
the scenario of the News Articles. Table 7.1 shows all the important variables averaged by
scenario. These data reflect the considerations written above.

Scenario BERT
Accuracy

BERT
F1-Score

Right
Predictions (%)

Validator
Accuracy

Validator
Precision

Validator
F1-Score

News Articles 80,24% 80,43% 76,41% 89,39% 32,80% 44,10%
Chapters 70,95% 73,22% 26,81% 93,42% 8% 11,36%

Paragraphs 74,98% 75,67% 65,94% 88,36% 49,88% 58,55%

Table 7.1 Mean Results for each Scenario

71

7.0.2 Contributions

With the huge amount of data available on the internet, the need to transform information
to capture its meaning is always higher. Thanks to the many Text Segmentation tasks it is
possible to manage this information to obtain usable and punctual content.

Text Segmentation can be used to improve many other Natural Language Processing
tasks, such as Text Summarization: breaking a document into sections before summarizing
will ensure that the summary includes all the topics that were covered in the document.

This work focuses on the usage of two different sources of data to understand the potential
of the pre-trained model BERT, that outperforms previous models in simple Natural Language
Processing tasks, but this approach can be extended to any source of data.

Furthermore, this method can be extended and improved in several ways, but the re-
sults obtained suggest that this could be a significant starting point for many other works
concerning Text Segmentation using BERT pre-trained model.

7.0.3 Future Work

If considered as a starting point, this work can be extended in many directions. First of all,
having the possibility to use more powerful hardware, it would be curious to try to use other
BERT models among those proposed, above all the most recent Whole Word Masking (May
31st, 2019), which is proposed in a Cased and an Uncased version.

It would also be interesting to evaluate the results of the use of human supervised data.
The fine-tuned model could be also used in addition to other models to perform different NLP
tasks, such as Text Summarization. Text Segmentation tasks can also be used to improve
other tasks by integrating image analysis or integrating with query systems for Information
Retrieval: performing query similarity measures against a sections of document as supposed
to the whole document; when displaying the search result, you can display the most relevant
portion of the document to the query [1].

Bibliography

[1] Arivazhagan, M., Srinivasan, H., and Srihari, S. N. (2007). A statistical approach to line
segmentation in handwritten documents. In DRR.

[2] Badjatiya, P., Kurisinkel, L. J., Gupta, M., and Varma, V. (2018). Attention-based neural
text segmentation. CoRR, abs/1808.09935.

[3] Caudill, M. (1987). Neural networks primer, part i. AI Expert, 2(12):46–52.

[4] Dai, W., Yang, Q., Xue, G.-R., and Yu, Y. (2008). Self-taught clustering. In Proceedings
of the 25th international conference on Machine learning, pages 200–207. ACM.

[5] Fan, W., Wallace, L., Rich, S., and Zhang, Z. (2006). Tapping the power of text mining.
Communications of the ACM, 49:76–82.

[6] Fushiki, T. (2011). Estimation of prediction error by using k-fold cross-validation.
Statistics and Computing, 21(2):137–146.

[7] Howard, J. and Ruder, S. (2018). Fine-tuned language models for text classification.
CoRR, abs/1801.06146.

[8] III, H. D. and Marcu, D. (2011). Domain adaptation for statistical classifiers. CoRR,
abs/1109.6341.

[9] Lioma, C., Larsen, B., Petersen, C., and Simonsen, J. (2016). Deep learning relevance:
Creating relevant information (as opposed to retrieving it).

[10] Luntz, A. C. and Brailovsky, V. L. (1969). On estimation of characters obtained in
statistical procedure of recognition.

[11] Malmasi, S., Dras, M., Johnson, M., Du, L., and Wolska, M. (2017). Unsupervised text
segmentation based on native language characteristics. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1457–1469, Vancouver, Canada. Association for Computational Linguistics.

[12] Naili, M., Chaibi, A. H., and Ben Ghezala, H. H. (2017). Comparative study of word
embedding methods in topic segmentation. Procedia Comput. Sci., 112(C):340–349.

[13] Pak, I. and Teh, P. (2018). Text Segmentation Techniques: A Critical Review, volume
741, pages 167–181.

Bibliography 73

[14] Pardo, T. A. S. and das Graças Volpe Nunes, M. (2003). Segmentaçao textual automática:
Uma revisão bibliográfica. Universidade de São Paulo-USP Universidade Federal de São
Carlos-UFSCar Universidade Estadual Paulista–UNESP (, 2003:21.

[15] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer,
L. (2018). Deep contextualized word representations. CoRR, abs/1802.05365.

[16] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Lan-
guage models are unsupervised multitask learners.

[17] Raina, R., Battle, A., Lee, H., Packer, B., and Y Ng, A. (2007). Self-taught learning:
Transfer learning from unlabeled data. Proceedings of the Twenty-fourth International
Conference on Machine Learning, 227.

[18] Ramos, J. et al. (2003). Using tf-idf to determine word relevance in document queries.
In Proceedings of the first instructional conference on machine learning, volume 242,
pages 133–142.

[19] Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C. (2018). A survey on deep
transfer learning. CoRR, abs/1808.01974.

[20] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., and Polosukhin, I. (2017). Attention Is All You Need. arXiv e-prints, page
arXiv:1706.03762.

[21] Wang, Z., Song, Y., and Zhang, C. (2008). Transferred dimensionality reduction. In
Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 550–565. Springer.

[22] Wirth, R. and Hipp, J. (2000). Crisp-dm: Towards a standard process model for data
mining. In Proceedings of the 4th international conference on the practical applications
of knowledge discovery and data mining, pages 29–39. Citeseer.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and problem statement
	1.2 Proposed solution
	1.3 Structure of the thesis

	2 Background
	2.1 Text Mining
	2.1.1 Differences between supervised and unsupervised tasks
	2.1.2 Bag of Words

	2.2 Train and test sets
	2.2.1 Cross-Validation

	2.3 Neural Network
	2.4 Fine-Tuning
	2.4.1 Fine-Tuning Techniques

	2.5 Transfer Learning
	2.5.1 Transfer Learning Categories

	2.6 Recurrent Neural Network
	2.6.1 Bidirectional Recurrent Neural Network

	2.7 Pre-trained language representation
	2.8 BERT
	2.8.1 Introduction
	2.8.2 BERT Architecture: The Transformer
	2.8.3 BERT Unsupervised Prediction Tasks
	2.8.4 BERT Attention Patterns
	2.8.5 BERT Training

	3 Related Work
	3.1 Text Segmentation
	3.2 Text Segmentation Levels
	3.3 Attention-Based Neural Text Segmentation

	4 Methodology
	4.1 Main Idea
	4.2 Objectives and research goals
	4.3 Glossary
	4.4 Solution proposed
	4.4.1 Demonstrating BERT Results
	4.4.2 Configuration
	4.4.3 Data Preparation
	4.4.4 BERT Training
	4.4.5 Results Analysis

	5 Implementation
	5.1 BERT Results Demonstration
	5.2 Data Quantity Evaluation
	5.3 Hyper-Parameters Fine-Tuning
	5.4 Data Collection and Exploration
	5.4.1 News Articles
	5.4.2 Books

	5.5 Pre-Processing
	5.5.1 News Articles
	5.5.2 Books

	5.6 BERT
	5.7 Validation and Result Analysis
	5.8 Libraries
	5.8.1 Tensorflow
	5.8.2 Scipy
	5.8.3 Scikit-learn
	5.8.4 Bokeh

	6 Experiments and results
	6.1 Dataset
	6.1.1 Sentences Coupling
	6.1.2 Validation

	6.2 News Articles Experiments
	6.2.1 Experiment Art1
	6.2.2 Experiment Art2 - Balanced
	6.2.3 Experiment Art3 - Distribution-Wise
	6.2.4 Experiment Art4, Art5 and Art6 - Mono Category
	6.2.5 Experiment Art7 - Validation with New Data
	6.2.6 Experiment Art8, Art9, Art10 and Art11 - Different Balancing
	6.2.7 Experiment Art12 - Cased Model
	6.2.8 News Articles Experiment Comparisons

	6.3 Books Experiments
	6.3.1 Experiment Ch1 - Balanced
	6.3.2 Experiment Ch2 - Distribution-Wise
	6.3.3 Experiment Ch3 and Ch4 - Validation with New Data
	6.3.4 Experiment Ch5, Ch6, Ch7 and Ch8 - Different Balancing
	6.3.5 Experiment Ch9 - Cased Model
	6.3.6 Chapters Experiments Comparison
	6.3.7 Paragraphs Experiment P1 and P2

	6.4 Comparison with Related Works

	7 Conclusion
	7.0.1 Summary of the Results
	7.0.2 Contributions
	7.0.3 Future Work

	Bibliography

