
POLITECNICO DI MILANO

Scuola di Ingengeria Industriale e dell’informazione

Dipartimento di Machine Design

Corso di Laurea Magistrale in Ingegneria Meccanica

Damage identification in composite panels based on a
Bayesian approach and surrogate models

Relatore: Prof. Claudio Sbarufatti
Co-relatore: Prof. Francesco Cadini

Tesi di Laurea Magistrale di:
Fabio Nichetti Matr. 898993

Anno Accademico 2018-2019

Contents

Ringraziamenti XI

Abstract XIII

1 Introduction 1

2 State of the art 5
2.1 Introduction . 5
2.2 An overview of structural health monitoring 5

2.2.1 Data-driven approach . 6
2.2.2 Model-based approach . 7

2.3 Uncertainty quantification in SHM 7
2.4 SHM: current studies . 8

3 Gaussian Processes 11
3.1 Introduction . 11

3.1.1 Bayesian Modelling . 12
3.2 Introduction to polynomial curve fitting 13
3.3 Introduction to statistics . 16

3.3.1 Probability . 16
3.3.2 Bayes’ theorem . 18
3.3.3 Bayesian probability . 19

3.4 Linear regression models . 20
3.5 Bayesian linear regression . 23

3.5.1 Parameter distribution . 23
3.5.2 Predictive distribution . 24
3.5.3 Equivalent kernel . 25

3.6 Gaussian processes . 27
3.6.1 Linear regression revisited 27
3.6.2 Gaussian processes for regression 28
3.6.3 Learning the hyperparametres 30
3.6.4 Incorporating explicit basis function 30
3.6.5 Effect of hyperparmeters: GP in practice 31

4 Artificial Neural Network 35

III

4.1 Introduction . 35
4.2 The artificial neuron: single perceptron 35
4.3 The feed-forward multi-layer perceptron (MLP) 38
4.4 Learning in multi-layer perceptron 41

4.4.1 The error back-propagation 42
4.4.2 Issues in ANN learning . 43
4.4.3 ANN structure definition 43
4.4.4 The momentum coefficient 43
4.4.5 Generalization and overfitting 43

4.5 Uniqueness of solution and ANN committees 45

5 Markov chain Monte Carlo 47
5.1 Rejection sampling . 49
5.2 Importance sampling . 50
5.3 Markov Chain Monte Carlo . 51
5.4 Markov chain definitions . 51
5.5 Metropolis-Hastings algorithm . 53

6 Case studied 57
6.1 Introduction . 57
6.2 Metropolis-Hasting Markov Chain Monte Carlo: likelihood calcula-

tion and adaptive proposal . 57
6.3 Composite FE model . 61
6.4 Kriging training . 68
6.5 ANN committee training . 69
6.6 Application to impact damage . 72

7 Conclusion 83
7.1 Summary of the algorithm and results 83
7.2 Future development . 84

References 85

Figures

3.1 (a) shows four function drawn from a prior distribution, while (b)
shows the posterior distribution after two points have been observed.
Dashed lines are four samples from the posterior distribution, the
solid one the the mean. The shaded region still represents twice the
standard deviation. 12

3.2 The blue points are the observed training points drawn from sin(2πx)
in green with addition of a noise in the form of µ(0, σ2), x is the
observed input variable and its correspondent target is t. 13

3.3 The error function is the sum of the square of the length of the green
line (mismatch between real observed data and y(x,w). 14

3.4 Example of linear regression with a polynomial of first order as basis
function. 15

3.5 Over fitting results in a function passing exactly through data points,
but with very high oscillation among them. 15

3.6 Over fitting results in a function passing exactly through data points,
but with very high oscillation among them. As we can see as the
number of training point passes from N = 15 to N = 100 the over
fitting effect is neutralized. 16

3.7 In this figure the simple example of the two boxes is shown. 16
3.8 A simple example in which two variables are rapresented. 17
3.9 On the right polynomials basis functions, Gaussian basis function in

the middle while on the left there is sigmoid basis function 21
3.10 Graphical distribution of the variable t for a given x (one input vari-

able only) in which the mean is given by y(x,w) and the standard
deviation is given by the precision β, for which we have β−1 = σ2 . 22

3.11 Example of predictive distributions as the number of training points
increases. Note that the standard deviation increases a lot far from
the training points, while reduces near them. 25

3.12 Plots of functions y((x),w). 26
3.13 Example of a kernel function contained from a sigmoid basis function.

Note that it is a localized function even if x′ is non local. 26

V

3.14 GP regression of a sinusoid. The green curve is the sinusoidal function,
in blue there re the training points, the red line is mean of the Gaussian
Process, and finally the shaded region is plus minus two standard
deviation. 30

3.15 A Gaussian process prediction. 32
3.16 Effect of having an high length scale. 33
3.17 Effect of having a low length scale. 33
3.18 Effect of having a very low length scale. 34

4.1 Rapresentation of a biological neuron. 36
4.2 Structure for a (a) biological and (b) artificial neuron. 37
4.3 Structure for multi-layer perceptron. 39
4.4 Schematic representation of convergence to minimum error (a) and

divergence (b) during the weight optimization problem. The adop-
tion of a low learning rate allows for smaller weight step, thus slower
converence, While the second figure shows that divergence may occur. 44

4.5 Fitting of a dataset generated from a sinusoidal function with additive
noise. (a) A linear curve provides a poor fitting. (b) A cubic curve
provides the best fitting. (c) A 10th order polynomial over-fits data. . 44

4.6 Error trend of the validation set during the training process. As we
can see after a certain number of iteration the error starts to grow,
which means that overfitting is taking place, thus the learning process
must be stopped. 45

5.1 Illustration of the function f(z) and the probability distribution p(z). 48
5.2 In rejection sampling samples are drawn from a proposal distribution

q(z) and rejected if they fall in the gray area. The remaining samples
are distributed as p(z) which is the normalized distribution of p̃(z). . 49

6.1 Example of the strain field induced in a composite panel, as a conse-
quence of a delamination. 58

6.2 Metropolis-Hasting algorithm acceptance criterion. 60
6.3 Case in which it is shown a delamination in the panel and the first

sample. 60
6.4 Metropolis-Hasting algorithm adaptive proposal algorithm. 61
6.5 The red x are the points in which strains are measured as a function

of the delamination radius un a tensile load. 63
6.6 (a) ε11 trend for various y distances and for different damage of the

fiber, while (b) shows ε22 trend for various y distances and for different
damage of the fiber. 63

6.7 Sensors position on the panel. 64
6.8 (a) Panel in which the inner circle is the impact zone, the external one

is the delamination induced zone, (b) cohesive layer modeling. 65
6.9 (a) FE adaptive mesh, (b) external ply resulting ε11 strain field, (b)

external ply resulting ε22 strain field. 66

Figures

6.10 Delamination positions used to generate the training data set. 67
6.11 (a) Scatter plot of the test delaminations of sensor 4 , (b) Scatter

plot of the test delaminations of sensor 5. The dotted green line is
the fitting line, while the dotted magenta lines represent the 95%
confidence interval. 68

6.12 ANN structure. 69
6.13 RMSE versus hidden units. 70
6.14 (a) Scatter plot of the test delaminations of sensor 4 , (b) Scatter

plot of the test delaminations of sensor 5. The dotted green line is
the fitting line, while the dotted magenta lines represent the 95%
confidence interval. 71

6.15 Markov chains of the three damage parameters using Kriging surrogate
model. 72

6.16 (a) x coord. distribution, (b) y coord. distribution, (c) radius distri-
bution with noise level of 1%, the red dotted line is the true value,
Kriging surrogate model is used. 73

6.17 Markov chains of the three damage parameters with noise level of 2%,
using Kriging surrogate model. 74

6.18 (a) x coord. distribution, (b) y coord. distribution, (c) radius distri-
bution with noise level of 2%, the red dotted line is the true value,
Kriging surrogate model is used. 75

6.19 (a) x coord. error distribution, (b) y coord. error distribution, (c)
radius error distribution, the red dotted line is the 95% percentile,
Kriging surrogate model is employed. 76

6.20 (a) x coord. dispersion, (b) y coord. dispersion, (c) radius dispersion,
the red dotted line is the 95% percentile, Kriging surrogate model is
employed. 77

6.21 (a) x coord. error distribution, (b) y coord. error distribution, (c)
radius error distribution, the red dotted line is the 95% percentile,
ANN surrogate model is employed. 78

6.22 (a) x coord. dispersion, (b) y coord. dispersion, (c) radius dispersion,
the red dotted line is the 95% percentile, ANN surrogate model is
employed. 79

6.23 (a) Error percentile trend along the y coordinate for different noise
level and delamination dimensions considered using Kriging surrogate
model, (b) dispersion percentile trend along the y for different noise
level and delamination dimensions considered using Kriging surrogate
model. 79

6.24 (a) Error percentile trend along the y coordinate for different noise
level and delamination dimensions considered using ANN committee
surrogate model, (b) dispersion percentile trend along the y for dif-
ferent noise level and delamination dimensions considered using ANN
committee surrogate model. 80

VII

6.25 (a) Error percentile trend along the x coordinate for different noise
level and delamination dimensions considered using Kriging surrogate
model, (b) dispersion percentile trend along the y for different noise
level and delamination dimensions considered using Kriging surrogate
model. 80

6.26 (a) Error percentile trend along the x coordinate for different noise
level and delamination dimensions considered using ANN committee
surrogate model, (b) dispersion percentile trend along the x for dif-
ferent noise level and delamination dimensions considered using ANN
committee surrogate model. 81

6.27 (a) Error percentile trend of the radius r for different noise level and
delamination dimensions considered using Kriging surrogate model,
(b) dispersion percentile trend along the radius r for different noise
level and delamination dimensions considered using Kriging surrogate
model. 81

6.28 (a) Error percentile trend of the radius r for different noise level and
delamination dimensions considered using ANN committee surrogate
model, (b) dispersion percentile trend along the radius r for differ-
ent noise level and delamination dimensions considered using ANN
committee surrogate model. 82

Tables

6.1 Panel features. 62
6.2 Panel properties. 62
6.3 Damage feature. 64
6.4 Bounds and step size of the discretized parameter space. 67
6.5 Time required to compute an entire Markov chain. 78

IX

Ringraziamenti

Ringrazio il Professor Sbarufatti ed il Professor Cadini per i loro consigli, per l’
aiuto e disponibilitá forniti durante questi mesi.
Ringrazio i miei genitori per la comprensione e supporto ricevuto insieme a mia
sorella Sara per essermi sempre stata vicina anche da lontano.
Ringrazio mia nonna perché continua a sorridere e a preoccuparsi per me. Un
ricordo particolare per tutti i nonni, per avermi insegnato tanto e che continuano
a vegliare su di me ogni giorno.
Un ringraziamento speciale ad Angelo & Tizi sempre pronti a sostenermi e con-
sigliarmi.
Ringrazio i miei amici, compagni di universitá e la mia squadra che mi hanno in-
segnato quanto sia importante fare gruppo.

XI

Abstract

The aim of this thesis is to develop an integrated damage identification system,
able to carry out an automated diagnosis of a delamination induced in a composite
structure. The design of a structural health monitoring system implies to manage
information coming from a pattern of permanently installed sensors and damage
diagnosis means to identify the damage parameters (e.g damage position and ex-
tension). In order to achieve this goal an inverse problem must be solved, since it
is necessary to get back to the damage parameters starting from the measure of
strains. The outputs of the diagnostic phase are needed as input to the prognostic
one, in order to retrieve information about the residual useful life of the system.
Prognosis is probabilistic in nature, this implies that the diagnostic phase cannot
be deterministic but probabilistic as well. Bayesian approaches (such as the Monte
Carlo algorithm) have proven to be successful for the inverse problem solution, by
evaluating the posterior distribution a damage parameters vector, conditioned on
the observations of some signal features dependent on the damage, such as strains.
These strains are directly needed to compute the likelihood. Unfortunately, for
realistic cases, the evaluation of the likelihood for each sample ideally needs to
run a computationally expensive finite element model, making the computational
burden not compatible with real-time application. This problem is solved by using
surrogate models integrated in a Markov-Chain Monte Carlo algorithm (used as
Bayesian inference tool) in the form of Metropolis-Hasting, applied to a damage
identification of a composite panel affected by a delamination. An important char-
acteristic of the surrogates employed in this work is that they are ’statistical’ surro-
gate models, in particular artificial neural network committee and Kriging are used
to predict the strains as a function of the delamination position and dimension.
These surrogate models other than substituting the computationally-demanding
numerical model allowing a faster likelihood evaluation, contain information about
the uncertainty of the prediction since they are statistical. From a series of finite
element simulation it is possible to simulate various damage examples, than this
cases are learnt by surrogate models. Finally the Markov-Chain Monte Carlo algo-
rithm is implemented to estimate the probability density function of the damage
parameters.

XIII

Chapter 1

Introduction

Real-time structural health monitoring of structures is becoming more and
more an ambitious goal especially in fields which require an high level safety
and reliability such as the aerospace one. Real-time monitoring means cre-
ating a system able to asses autonomously the structural integrity of the
system in both damage identification (position and dimension of the dam-
age) and evaluation of the residual useful life (RUL). The former is know also
as structural health monitoring (SHM) and it is related to the diagnosis of
the damage, while the latter is the prognostic health monitoring (PHM). In
order to obtain a good prognosis of the structure life it is indispensable cor-
rectly to detect the damage, so it is the combination of the two which allows
real-time maintenance: through a permanently installed network of sensors
it is possible to evaluate the structure health and make predictions about
its residual useful life (RUL). In the aerospace industry composite materials
have become largely used for their high performances with respect to other
conventional materials employed, such as aluminum alloys. In particular,
their lightness is essential to reduce the weight of aircrafts with subsequent
reduction of fuel consumption. However the employment of composites rises
some maintenance and strength issues. As a matter of fact composite struc-
tures exhibits really high sensitivity to localized impact damage, which could
bring to a delamination (a detachment) of the plies involved in the impact.
This damage, unlike for metals, is barely visible, so very expensive Non-
Destructive Test must be run, increasing the maintenance time and costs.
As a result, industries have been putting significant efforts in order to create
a system able to automatically recognize whether in the structureis undergo-
ing a damage or not. Furthermore, a decay of the strength of the laminate,
in particular in compression [1], is present if subjected to a damage, which
makes the structure unsafe with possible catastrophic failure.
At the basis of the real-time monitoring there is a sensor network installed
permanently into the system, then the data retrieved by these sensors are
integrated into a Statistical Bayesian Model able to give information about

1

the presence of a damage, in particular to detect its position and size. This
part of the process is called diagnosis. Once the damage is localized in its
position and size, then these data are used as input into a damage propaga-
tion model to compute the residual useful life of the component.
The direct consequence of this procedure is the ability to pass from a time-
based maintenance to a condition-based maintenance, with a consistent re-
duction of related costs.
In the last decades SHM and PHM have been subjected to an extensive study
by the scientific community, in particular two main approaches have been de-
veloped: the data-driven approach and the model-based approach [2]. The
first method is based on information provided by real cases measurements,
then through a pattern recognition or machine learning tool it is possible to
build a statistical model, based also as an example on data gathered from an
experimental campaign. The second methodology is a physics-based model:
a mathematical or virtual model (such as a finite element model) which is
able to well represent the behaviour of the system is run and returns data
such as strains, which depend on the damage simulated, so that the goal
of the model-based approach is to search for the state of the system that is
more compatible with the sensors response.
To intuitively explain how SHM works, let us suppose to have a pattern of
sensors, such as strain gauges or optical fiber, on a panel subjected to a load,
and a damage occurs on it, for example a crack or delamination. Once the
damage appears, so that the strain measured by the sensors will change based
on the entity of the damage (position and dimension), the aim is to find the
position of the damage by reading only the strains. By using our intuition a
possible solution would be to run a series of FE simulations and extrapolate
the strain at each sensor position, until the result is similar to the one signed
by the gauges. To run these simulations we could follow a defined pattern
or just run them randomly, but in both cases it is very time consuming, and
the necessity of reducing the number simulations arises immediately, since
we want to keep the computational efforts low.
In order to do that, a Markov Chain Monte Carlo Metropolis Hasting algo-
rithm is introduced, which is able to start from a random point and then
it is able to ’walk’ toward the damaged location, minimizing the simulation
needed. The usage of the Markov Chain Monte Carlo Metropolis Hasting
algorithm is justified also by another need: in fact so far we have treated the
diagnostic/prognostic problem as deterministic (some studies can be found
here [3]), whereas in order to have a more useful estimation of the RUL
it is more appropriate to move from a deterministic field to a probabilistic
one, which means that the damage parameters (position an size) must be
expressed with their probability density function (pdf), ergo not only with
its most probable value but also with its uncertainty quantification (UQ).
This aspect is well recognized from the scientific community [4]. To solve the

Introduction

UQ problem Bayesian inference (BI) is employed under the form of Markov
Chain Monte Carlo. Then, these results can be projected into a prognostic
tool in order to obtain the RUL, but this topic is not covered by this thesis.
BI tools have been subjected to an extended campaign of studies by the sci-
entific community, some indications can be found here [5]. BI tools exploit
the concept of likelihood function, which will be clearer later, but for now let
us limit ourselves to say that BI compares the observed damage feature of
the structure (such as strains from sensors) with the simulation result of the
Markov Chain sample drawn. This means that for each sample of the chain,
a FEA must be run. Of course it is quite understandable that if number the
number simulations is high (thousands of samples), the computational time
will be very high, not matching the real-time monitoring requirements.
From here arises the necessity to find a method, or tool, able to drasti-
cally reduce the computational time required to know the possible system
response at each iteration of the chain. Previously used in the reliability
field [6], [7], surrogate modeling constitute the solution to this problem, be-
cause it is able to learn the system response for a given input, increasing
the computational speed. In this context machine learning in particular is
a well recognized method for a fast surrogate modeling. There are many
machine learning tools available nowadays such as: Linear Regression, Sup-
port Vector Machine, Artificial Neural Network (ANN), Gaussian Processes
(GP) and many others, enabling a faster likelihood estimation, thus offering
a probabilistic prediction together with a computational efficiency. In this
work a comparison in terms of performances between ANN (the most used
tool nowadays) and GP will be explored. So the final procedure arrangement
starts by training the surrogate model off-line, ANN or GP, where the data
needed for training it are gathered from a series of finite element analysis, in
which several delaminations are simulated. Thus it is possible to learn the
relation between strains registered by sensors and the damage location. This
model will be then used in a Markov Chain Monte Carlo Metropolis Hasting
algorithm to quickly compute the response of the system to the damage’s
location hypothesized (likelihood computing), and finally identify the most
probable location and size of the delamination.
In this work real-time structural health monitoring is applied to automati-
cally recognize a delamination in a composite panel, cause by a low velocity
impact. The thesis is organized as follow: in Chapter 2 an overview of the
state of the art is presented, then in Chapters 3, 4, 5 the methodology used to
solve the inverse problem are explained. Finally in Chapter 6 all the concept
introduced previously are applied to the case studied.

3

Chapter 2

State of the art

2.1 Introduction

The aim of this work is to provide an advanced diagnostic tool suitable for
mechanical components made of composite materials, which represent one of
the novelty aspect together with the type of implemented algorithm struc-
ture, based on surrogate modeling and Markov chain Monte Carlo algorithm.
The final goal is to localize the position of the component’s damage together
with the identification of its dimension: a panel made of carbon fiber rein-
forced plastic subjected to a circular delamination. Two different machine
learning algorithms have been studied to achieve this goal: Artificial Neural
Network (ANN) and Kriging (or Gaussian Processes (GP) with integrated
basis function) have been implemented and their performances compared.
Regarding SHM, important innovations have been achieved during the last
years, although there is a partial lack of works which regard composites and
GP. This Chapter is organized as follow: 2.2 recalls the usage of compos-
ite materials in the transport industry and addresses SHM as an innovative
maintenance framework with its new challenges. 2.3 explores the importance
of the uncertainty problem quantification for a diagnostic tool, since its out-
put is the input for the following prognostic phase, and finally 2.4 shows the
main methodologies used till now to address the problem of real-time SHM.

2.2 An overview of structural health monitoring

Over the last decays SHM has been a persuaded goal especially from the sci-
entific community and the aerospace industry, this can be noticed by several
publications such as [8]. As already mentioned SHM allows to avoid expen-
sive non destructive testing (NDT), and it is performed while the structure
is working (on-line). Permanently installed sensors provide continuous data
to the control unit, which is then capable to recognize the presence of a
damage. Worth of notice is that embedded sensors are an active part of the

5

structure, so their presence must be taken into account during the design
phase. The main advantage that distinguishes time-based monitoring from
conditioned-based monitoring (based on NDT) is that, if occurs any phe-
nomenon able to potentially cause a dangerous damage in the structure, it
can be detected at that very moment, without waiting the next inspection,
avoiding potential growth of the induced damage, independently on whether
it was a crack or delamination. Furthermore, the inspection based on expen-
sive NDT, occurs only in the situation in which sensors signal an anomaly
in the structure, with consequence saving of money and time with respect to
time-based maintenance, which may bring to unnecessary inspections. The
sensors evolve together with SHM, and over the time new sensors able to
guarantee lightness and low signal to noise ratio have been developed. A
comprehensive study of types of sensors and potential application of struc-
tural health monitoring can be found in [9], nevertheless a quick review of
the technologies available today are shown. Each sensor works on a basis
of a physical phenomenon such as deformation, vibration, electromagnetism,
temperature, light etc. Among those, the most used in the past is the classic
electrical stain gauge, in which a strain gauge is bonded to the structure’s
surface and there is a variation of the electrical resistance of the component as
the structure is deformed by a load. Although strain gauges are very common
for industry application, optical fiber sensors have been taking their place,
and are particular suited for composites, thus being more and more studied
by the scientific community [10]. Their main advantage is that a multitude
of sensors can be placed along the single fiber, reducing the complexity of
the electrical system [9], furthermore being less sensitive to electrical noise.
Moving on, let’s suppose to have a series of sensors permanently installed
inside the system, the main idea behind SHM is that any phenomenon that
modifies the operating condition of the structure, induces a variation of the
strain registered by the sensors. Than these information are processed in
order to be able to understand the healthy state of the structure, enabling
the identification of the damage in its position and dimension. This infor-
mation will be than the input for the prognostic phase (not covered in this
thesis). As mentioned the real challenge is to be able to correctly under-
stand the information provided by sensors, in order to extract quantitative
information about the damage location and dimension. To this aim two
main approaches are found by the scientific community: Data-driven and
Model-based approach.

2.2.1 Data-driven approach
A delamination in a panel could be situated anywhere, this implies that the
possible values of strain registered might be infinite, so we need to ’learn’
the possible response of the strain gauges, as a damage is induced inside
the system. Pattern recognition and machine learning algorithms are able

State of the art

to learn the relation between the damage position and dimension, and the
strain response of sensors, through a training process. Some examples of
machine learning algorithms used are provided by [11]. The machine learning
algorithms employed in this work are Artificial Neural Networks (ANN) and
Gaussian Processes (GP).
In order to train correctly the surrogate model a large database is required,
in the data driven approach this dataset comes from experiments or real
life measurements. The advantage of this method with respect a Model-
based one is that to extrapolate the training data there is no need to build a
numerical or analytical model, avoiding to introduce further uncertainty in
the damage diagnosis [12], but real measurements and experiments are not
always available due to unconceivable costs. An example of this method is
given by [13].

2.2.2 Model-based approach
The second methodology used to obtain the training database is the model-
based strategy. This method implies the availability of a mathematical model
(or numerical), able to well represent the behaviour of the system. In partic-
ular the model must be able to determine the strains at sensor’s locations,
in presence of a damage. Actually if we want to be precise the former model
might be included in the model-based approach, where the model is the sur-
rogate model itself. Once the model, or function, is available, it is just matter
of finding the damage position which is more likely according to the strain
registered by each sensor. To achieve this goal we can minimize the error (or
as we shall see maximization of the likelihood) between strain registered and
strain simulated by our model. Hence an inverse problem must be solved,
because we have to get back to the system state, starting from its output.
The main obstacle of this method is the model itself since the function and
its variables must be well defined. Nevertheless literature offers many exam-
ple such as [14]. The perfect mixing up of the two methods is represented
by finite element modeling (FEM) matched up with surrogate modeling, in
which through FEM a large database can be created off-line by running a se-
ries of simulations in which the position and dimension of the delaminations
is changed. Than through a machine learning algorithm (among the ones
already mentioned), the relation between strains and damage properties is
mapped.

2.3 Uncertainty quantification in SHM

As already mention we are interested in exploiting Bayesian inference (BI)
to account uncertainties related to not only the model, but also the mea-
surements, in order to reach an acceptable result in the prognostic phase.
Civil field gives numerous example about this topic such as [15], but a lack

7

studies regarding uncertainty quantification and classification with compos-
ite material (in particular carbon fiber reinforced plastic). In fact most of
the studies with this material regard the technology used to detect the dam-
age, such as frequency response method [16], carbon nanotubes [17] or optic
fiber, just to cite a few examples. Although Bayesian neural networks are
exploited by [11] and Kriging models are used by [18], there is no sign to
match them up with a MCMC, to detect the damage, so the employment of
this method for composites represent a part of novelty. Furthermore there
is an absence in the literature about estimation of the identification perfor-
mance based on the noise level in the measurement. As a matter of fact in
real life situations measurements are always affected by noise and as we shall
see based on the noise level, the system may be more or less accurate (and
precise) in finding the damage position and dimension. The development of
Bayesian inference approaches in conjunction with advanced MCMC meth-
ods and surrogate modeling remains relatively limited for model-based SHM
applications. [19] gives a good example of the general methodology followed
in this work but there, a very simple thin plate cracked component is used,
not a CFRP, and a performance analysis, in terms of precision and accuracy,
based on the noise level is missing. Finally GP and Kriging still have a lim-
ited application in SHM of complex aerospace components or panels, in this
thesis a deep understand if its performances with respect to ANN committee
has been explored.
Many studies, such as [25], exploit surrogates under a deterministic point
of view, but as we turn to a Bayesian framework all types of uncertainties
must be taken into account, including the prediction of the surrogate itself.
To overcome this issue, in this work, statistical surrogate models are used,
in particular ANN committee and GP are both able to provide mean and
standard deviation, or a mode and dispersion in the case the distribution is
not Gaussian, of the prediction.

2.4 SHM: current studies

As most of the SHM problems, the damage identification implies the solu-
tion of an inverse problem, consisting in the inference of damage parameters
(e.g. position and dimension) based on the effect they have on the measured
feature (such as the strain), from a practical point of view we have to make
inference by observing a set of strain measurements. In order to achieve this
purpose, machine learning algorithms have been largely used to map the re-
lation between the strain at the sensor location and the damage parameters:
[20] showed how a committee of neural networks can effectively detect a crack
in an aluminum panel, while [21] used a Kriging surrogate model to detect
a crack in a structure, just to show some examples. Although these cases

State of the art

proved that machine learning and pattern recognition can localize a damage
in a precise and effective way, the problem related to the uncertainty of the
prediction arises. As a matter of fact multiple source of uncertainty are in-
evitably present in this diagnostic framework, such as discrepancies between
the model and the reality and measurement noise [22]. This implies to pass
from a deterministic damage identification framework to a probabilistic one,
thus providing probability density functions (pdf) of the damage parame-
ters.
Bayesian methods provide a statistical framework for the identification of
damage in presence of uncertainties: Papadopoulos and Garcia (1998) pro-
posed a Bayesian methodology for comparing the damaged and un-damaged
structure state, surrogate based uncertainty [22] have been developed to an-
alyze the effect of the noise in measurements and to deal with discrepancies
between the model and the real case.
Among Bayesian frameworks Markov-Chain-Monte-Carlo (MCMC) sampling
has been largely used to estimate the posterior probability in the form of the
Metropolis-Hasting algorithm (MCMC-MH). Its strength involves the com-
putation of a simple likelihood function in which it is compared the strain
field coming from sensors with the one obtained from a model able to well
represent the deformation of the system in presence of a damage. However
MCMC-MH chain often requires the computation of the likelihood thousands
of time, which makes the problem not practical when a closed form (analyt-
ical) solution of the link between damage state and observed feature is not
available. In this case surrogate models, able to learn the link between the
strain at the sensors position and the damage location, allow to evaluate
quickly the likelihood, some example of an MCMC-MH algorithm coupled
with surrogate model can be found here [23], [24].
Many studies, such as [25], exploits surrogates under a deterministic point
of view, but as we turn to a Bayesian framework all types of uncertainties
must be taken into account, including the prediction of the surrogate itself.
To over come this issue in this work statistical surrogate models are used,
in particular ANN committee and GP are both able to provide mean and
standard deviation, or a mode and dispersion in the case the distribution is
not Gaussian, of the prediction.
This thesis explores the implementation of damage identification system
based on a network of strain observations and surrogate models, within a
MCMC Bayesian framework, applied to a composite CFRF panel subjected
to a delaminaton. Strains from multiple finite element (FE) simulations are
used to train the surrogate models off-line, thus enabling a quick likelihood
assessment in the MCMC-Metropolis-Hasting (MCMC-MH) algorithm. A
comparison between ANN and Kriging surrogate models is explored with a
final statistical analysis of the precision and accuracy of the damage identi-
fication system.

9

Chapter 3

Gaussian Process overview

3.1 Introduction

In this section Gaussian processes for regression are labeled. Gaussian pro-
cesses, or Kriging, are widely used supervised machine learning tools for
both regression and classification tasks. Supervised learning means learning
an input-output relation from empirical data, called training set, the differ-
ence between a regression or classification problem lies in the nature of the
output: regression has continuous outputs, while classification has discrete
outputs. An example of classification is digital image recognition ([26] gives
an example of GP employed for this purpose), while an example of regression
is mapping strain from a damage position, which is done in this work. The
input is usually denoted by x, while the target y. The vector x is in general
made up of more variables and so it can be seen as a vector nxm, where n is
the number of observations and m is number of input variables. The dataset
D containing n observations can be written as: D={(xi,yi) i=1,....,n}. As-
suming that the training of the algorithm has been performed, in order to
achieve our purpose, damage detection, we wish to make a prediction for a
new input point x∗, not included in the training set, thus we have to move
from a training set D to a sort of function f able to make prediction for
all possible new input values. This function f can be seen, as first step, as
a linear combination of other simpler basis functions. Two approaches are
available to choose the proper basis function to satisfy the supervised learn-
ing. The first is just limited to choose a class of function, such as linear,
quadratic or Gaussian, of the input. This approach has an intrinsic problem
related to the type of function chosen, in fact it has to well model the target
function, furthermore if we try to increase the flexibility of the class of func-
tion overfitting could appear. The second considers a prior probability on
each possible function, where higher probability are given to functions that
represent closely the target. This method has a problem related to the fact
that there is an infinite number of possible functions, so that it may seem

11

(a) prior (b) posterior

Figure 3.1. (a) shows four function drawn from a prior distribution, while (b) shows
the posterior distribution after two points have been observed. Dashed lines are four
samples from the posterior distribution, the solid one the the mean. The shaded region
still represents twice the standard deviation.

to not be possible to do calculations with this infinite set: however GPs are
able to address this problem. A Gaussian process, in fact, by definition is
a generalization of multivariate Gaussian probability distribution of random
variables which defines a Gaussian distribution over functions[27]. In a more
practical manner, the relationship we want to learn from a training dataset
is not represented by a single function but by a distribution of functions as
we shall see. It must be precise that this is a very rude abstraction of the
process. Deeper insight GPs for the interested reader may refer to: [28], [29].

3.1.1 Bayesian Modelling
In this Section an intuitive functioning of GPs (second method) is shown.
Let’s assume we have to solve a simple regression problem, mapping in one
dimension from an input variable x to an output f(x). In Figure 3.1(a) some
functions from a prior distribution (over functions) are drawn. This prior
rapresents our expectation of the types of function which may well represent
the data, before seeing them. In most of the cases no prior information are
available, so the mean of all the functions (which means the mean of the
distribution) is set to zero for any x (but the single function has not a zero
mean). In addition to the mean, we can also characterize the variability of
those functions by expressing the variance in each point, this implies that the
functions are Gaussian distributed. In Figure 3.1 the shaded region points
out twice the standard deviation (in that very case the prior variance is con-
stant, which means that it has a x independence). Let’s suppose now that we
have a training set made up two observation: D={(x1,y1),(x2,y2), and we
want to consider only realization of GP passing through these points exactly
(figure 3.1(b)). The solid black line represents the mean function of the dis-

Gaussian Processes

Figure 3.2. The blue points are the observed training points drawn from sin(2πx) in green
with addition of a noise in the form of µ(0, σ2), x is the observed input variable and its
correspondent target is t.

tribution of functions consistent with D (dashed lines). The most important
thing that has to be noticed, is that the standard deviation decreases to zero
as we approach the training points, while it goes back to the prior far from
those points. If the standard deviation of the Gaussian distribution of func-
tions decreases, it means that the uncertainty related to the prediction of a
new input x∗ becomes lower. The solution shown in Figure 3.1(b) is called
posterior distribution over functions. If more points were added, the mean
function would pass through all of them with the standard deviation which
goes to zero in the neighborhood of the point region. To be more precise it
is not mandatory that the mean function passes exactly through the points,
because it is possible (as we shall see) to make it pass just near the dataset
by adding an additive term called ’noise’.After this pictorial overview, we are
going to introduce GP from a ore mathematical point of view, the Chapter is
organized as follow: first an introduction to fitting problems with 3.2, than
in 3.3 some basic concepts about statistics are introduced. Linear regression
models are explored in 3.4, in section 3.5 we see the linear regression problem
under a statistical point of view, this lead directly to Gaussian processes in
section 3.6.

3.2 Introduction to polynomial curve fitting

A simple regression problem is presented in this Section, in order to introduce
the reader to some important concepts that will be subjected to further
development in the next Sections. Imagine that we have observed real values
of the input variable x and target, or output, variable t as shown in Figure
3.2, and we wish to make prediction of the value of the variable t for a new
input x∗. The available dataset is x = (x1,, xN)T with its target values,
t = (t1,, tN)T , is shown in Figure 3.2 (blue circles). Those points are

13

taken from a function sin(2πx) and, then a random Gaussian noise µ(0, σ2)
is added. This process is quite similar to what happens in a real case when
the measurements of a phenomenon is corrupted are by noise (such as the
electrical one). It must be clear that the main objective is not to learn the
exact target t, because it is corrupted by the noise, but the real objective
is to learn the unnoised underlying function sin(2πx). For the moment we
consider a very simple curve fitting, by using a polynomial function of the
form:

y(x,w) = w0 + w1x + w2x2 + ...+ wMxM =
M∑
j=0

wjxj (3.1)

where M is the order of the polynomial, and w0,,wM are scalar parameters
that can be group in a weight vector w. This function is a non linear function
of x but is a linear function of the unknown vector w, so these types of fitting
models are called linear models. In order to fit the dataset we have to find
the weight vector w. This can be achieved by minimizing an error function
which measure the misfit between the data points and y(x,w). A simple
example of this error function is given by the sum of squared errors between
the prediction y(xn,w) at the data points xn, and the target values tn, and
it is expressed as follows:

E(w) =
1

2

N∑
n=1

{y(xn,w)− tn}2 (3.2)

The squared is used in order to obtain a positive number. This error can be
equal to zero only if y(x,w) passes exactly through each training point (Figure
3.3 illustrates this concept graphically). w is chosen so that it minimize the
error function. Furthermore E is a quadratic function of w, thus its derivative
is a linear function of w, which implies that the solution w∗ is unique. The
final result will be y(x,w∗). The only thing we still have to do is to choose

Figure 3.3. The error function is the sum of the square of the length of the green line
(mismatch between real observed data and y(x,w).

Gaussian Processes

Figure 3.4. Example of linear regression with a polynomial of first order as basis function.

the order M of the polynomial function, which is known as model selection.
By using our intuition, it is easy to understand that for low values of M such
as M = 1, the linear model will fit the dataset with a straight line, so the
resulting error will be very high, as shown in Figure 3.4. This may lead us
to increase the order of the polynomial, but if M increases too much, then
we encounter the problem of over fitting, shown in Figure 3.5. Actually this
problem is strictly related to both the order M of the polynomial function
and the number of data points in the training set (e.g if M is higher than
the number of the dataset, for sure there will be over fitting). Figure 3.6
shows the difference in the fitting result between a smaller and larger dataset
with M = 9, we can say that the larger the data set is, the higher is the
order of the polynomial we can afford. A way to avoid over fitting is using
the regularization procedure, which means introducing in the error function
a further term proportional to the weights, but since this is not a thesis
related to machine learning this topic will not be explored. By now, it is
just enough to say that finding weights by minimizing the least square error,

Figure 3.5. Over fitting results in a function passing exactly through data points, but with
very high oscillation among them.

15

Figure 3.6. Over fitting results in a function passing exactly through data points, but with
very high oscillation among them. As we can see as the number of training point passes
from N = 15 to N = 100 the over fitting effect is neutralized.

means reaching the maximum likelihood (discussed in the next Chapter). A
great advantage of adopting a Bayesian approach is that, to avoid overfitting
or poor fitting, we do not have to take care about the number of parameters
M anymore.

3.3 Introduction to statistics

The aim of this Section is to introduce the reader to some fundamental con-
cepts about statistic and Bayesian mathematics since to understand Bayesian
inference and GP these concepts are of fundamental importance.

3.3.1 Probability
In the field of machine learning quantification of uncertainties plays a key
role. These can be motivated by noise measurements, limited availability
of data or uncertainty due to the model employed (for example a physics
based model). Furthermore the uncertainty of the surrogate model itself
plays a role for the final performance of the detection system. Probability
theory provides a consistent framework to deal with uncertainty. To make
probability theory more practical and less mathematical a simple example
is considered. Let’s consider to have two boxes of two different colors: red
and blue, and those boxes are filled with green balls and orange balls, in

Figure 3.7. In this figure the simple example of the two boxes is shown.

Gaussian Processes

Figure 3.8. A simple example in which two variables are rapresented.

particular, in the red one there will be two green balls and six orange, while
in the blue one only one orange ball and three green ones. Now imagine to
select randomly one of the boxes, and than to repeat this operation ten times
and taking track of how many times we select the red one rather than the
blue one. Let’s now suppose that we picked the red box 40% of the time,
and we picked the blue box 60% of the time, we can identify the color of the
boxes with the variable B. This variable can take (in this case) two possible
values: r if we pick the red box and b if we pick the blue box. We can also
introduce a random variable also for the ball’s color: F, this can take either
value g (green) or o (orange). The probability that an event can occur is
the fraction between the times the event occured out of the total number of
trials, thus the probability to pick up the red box 4/10 and the probability
to select the blue box is 6/10. The mathematical notation to write what just
explained is: p(B=r)=4/10 and p(B=b)=6/10. Note that the probability
must lie in the interval [0,1].
Let us now suppose that every time we picked up a box we also picked up
a ball inside it, with statistic we are going to be able to answer questions
such as: "what is the probability to pick up a green ball?", or "by knowing
we have just picked up an orange ball what is the probability that the box
chosen was the blue box?", but before we have to introduce the sum rule and
product rule. To derive these rules, let’s consider a more general case shown
in 3.8, which involves two random variable X and Y. X can take values xi
where i=1,....,M, and Y can take values yj with j=1,...,L. Now we sample N
times both variables, we can define nij as the number of time in which X=xi
and Y=yj. The probability that X takes the value xi and Y takes the value
yj is called joint probability, and its notation form is:

p(X = xi,Y = yj) =
nij

N
(3.3)

The probability that X takes the value xi, independently from the value
assumed by Y, is:

p(X = xi) =
ci

N
(3.4)

17

where ci is the overall number of times xi has been extracted.
By using equations 3.3 and 3.4, it is quite easy to understand that

p(X = xi) =
∑

j

p(X = xi,Y = yj) (3.5)

which known as sum rule of probability.
Than by knowing that X assumes the value X = xi, the probability that Y
takes the value Y = yj is written as: p = (Y = yj|X = xi) and it is called
conditional probability of Y = yj given xi. The conditional probability just
illustrated is given by:

p(Y = yj|X = xi) =
nij

ci
(3.6)

By using 3.3, 3.4, 3.6 we can derive:

p(X = xi,Y = yj) =
nij

N
=

nij

ci
∗ ci

N
= p(Y = yj|X = xi) ∗ p(X = xi) (3.7)

this is known as product rule of probability. From now on we will use a
simplified notation:

p =
∑
Y

p(X,Y) (Sum rule)

p(X,Y) = p(Y|X)p(X) (Product rule)

p(X,Y) is the joint probability of X and Y. From the product rule and by
exploiting the symmetry property p(X,Y) = p(XY,X) we can obtain the
following relationship:

p(Y|X) =
p(X|Y) ∗ p(Y)

X
(3.8)

which is called Bayes’ theorem, The term p(X) is often referred as a normal-
ization constant, in order to make the conditional probability of 3.8 equal
or lower than one. This theorem as we shall see plays a fundamental role
in Gaussian processes (an in achieve learning in general), and its application
allows to deal with uncertainties. The next Section will go into the heart of
the theorem, explaining the meaning of each term and introducing the reader
to Bayesian probability.

3.3.2 Bayes’ theorem
Going back to the example of the boxes filled with balls, we can give a better
interpretation of the Bayes’ theorem. Let’s now choose randomly a box, and
than pick up a ball. The major information we caught after having picked ten
times the random boxes in the previous section, is that the red one was chosen

Gaussian Processes

4/10 times and so we know p(B) which is called prior probability because it
is the probability available before knowing the ball’s color picked up. Once
the ball’s color is known we can use the Bayes’ theorem the compute p(B|F),
which is called posterior probability, because we can compute it only after
having observed the value assumed by F. Let us assume that the color picked
is orange and we want to compute the conditional probability p(B=r|F=o),
we use the Bayes’ theorem:

p(B=r|F=o) =
p(F=o|B=r)p(B=r)

p(F=o)
(3.9)

We already know that p(B=r) = 4
10
, to compute the prior the sum rule is

exploited:

p(F=o) = p(F=o|B=r)p(B=r) + p(F=o|B=b)p(B=b) =
9

20
. (3.10)

By using 3.9 is possible to conclude that the posterior probability p(B=r|F=o) =
2
3
. This result accords also with intuition, since the number of orange balls

is higher in the red box and we picked an orange ball, the probability that
the box chosen is the red one is higher than the blue one.

3.3.3 Bayesian probability
By now probability has been explained in terms of a sequence of events, but
this interpretation is useless for our purposes, in this Section we are going
to turn the concept of probability in a Bayesian field, in which probability
is able to quantify uncertainty. To have an idea of what we are talking
about, take as consideration an uncertain event, such as the rate of melting
of the polar ice, which is not a repeatable phenomenon as the case of the
two boxes. In this example we want not only to quantify the value of the
uncertainty related to the melting speed but also make a revision of our
believes when new evidences such as new measurements come out. After
this pictorial introduction the polynomial curve fitting shown in Section 3.2
is rediscussed under a Bayesian point of view, in particular we quantify the
uncertainty related to the computation of w. Remembering that in section
3.3.2 we discovered that the observation of the picked fruit (prior probability)
can heavily affect the posterior probability, we can use the same approach to
make inference of w. In that case the Bayes’ theorem takes the form:

p(w|D) =
p(D|w)p(w)

p(D)
. (3.11)

where we can incorporate our assumption about w through the prior prob-
ability p(w), the effect of the observed data set D = t1,, tN is expressed
by the likelihood function p(D|w) and it expresses how probable the data set

19

is for a given vector of parametres w. Recalling that p(D) is a normaliza-
tion factor in order to have a posterior equal or lower than one, the Bayes’
theorem can be seen as:

posterior ∝ likelihood× prior (3.12)

The denominator can found by integrating both sides of the equation in the
following way:

p(D) =

∫
p(D|w)p(w)dw (3.13)

We have already mentioned in Section 3.2 that the sum of squared errors used
as estimator to compute the weight vector w is actually the maximization
of the likelihood function. The maximum likelihood is an estimator in which
w is set to maximize the likelihood function p(D|w). In machine learning
literature the negative logarithm of the likelihood function is called error
function. Since the error function is monotonically decreasing, maximize
the likelihood means minimize the error (or sum of squared error). In the
next Section we will apply Bayesian inference also to the prediction on the
target variable t for a new input x∗, in order to find the posterior probability
distribution p(t|x∗).

3.4 Linear regression models

In Section 3.2 we have already discussed about regression but in that case
we used a polynomial of regressors, which however belongs to a broader
class called linear regression models. In these models we can take a general
linear combination of nonlinear functions of the input called basis functions,
recalling that this models are linear with respect to the weights and nonlinear
with respect to the input variable. In the following equation a simple linear
regression of both input and weights is presented:

y(x,w) = w0 + w1x1 + ...+ wDxD (3.14)

where D is the number of input variables. The model just presented has
significant limitation, in fact being a linear function of the input variable x,
it can only well fit linear input-output relationship. To overcome this issue
we consider a linear combination of nonlinear function of the input variable,
as shown below:

y(x,w) = w0 +
M−1∑
j=1

wjφj(x) (3.15)

where φj(x) are known as basis function, M is the total number of parameter
and w0 is called bias since it provides an offset. In order to simplify the the

Gaussian Processes

notation a further basis function φ0(x) = 1 is introduced, in this way we can
write:

y(x,w) =
M−1∑
j=0

wjφj(x) = wTφ(x) (3.16)

where w = (w0, ...,wM−1)T and φ = (φ0, ..., φM−1)
T , so they are both column

vectors containing all the weights and basis functions. By using nonlinear
basis functions y(x,w) can be nonlinear function of the input too. It is worth
noticing that in section 3.2 we had just one input variable x, and in that case
φ(x) = xj.
There are many common basis functions, such as the ’Gaussian’ basis func-
tion:

φ(x)j = exp{−(x− µj)
2s2

} (3.17)

where µj govern the mean of the function in the input space, and s is the
spacial scale.
Another may be the sigmoid basis function:

φ(x)j = σ
(x− µj)

s
(3.18)

or the logistic sigmoid:

σ(a) =
1

1 + exp(−a)
(3.19)

In the previous sections we mentioned that minimizing a sum-of-squared
error function means maximizing the likelihood under the assumption that
the model is affected by a Gaussian noise, it is now time to explain this
concept more in detail.
Let’s assume now that our observed target variable t is affected by a Gaussian
noise ξ with zero mean and precision (inverse variance β−1 = σ2) β and

Figure 3.9. On the right polynomials basis functions, Gaussian basis function in the middle
while on the left there is sigmoid basis function

21

y(x,w) is the uncorrupted function we want to learn, we can write:

t = y(x,w) + ξ (3.20)

Since the noise has a Gaussian distribution, also the target variable t has a
Gaussian distribution with mean y(x,w) and precision β, thus we can write:

p(t|x,w, β) = N(t|y(x,w), β−1) (3.21)

So we are interested in modeling the distribution of the output variables.
Now consider the dataset of inputs X = {x1, ...,xN} with its corresponding
target values t = {t1,, tN}, making the assumption that the data points
are drawn independently from the distribution 3.21, we obtain the following
expression for the likelihood function:

p(t|X,w, β) =
N∏
n=1

N(tn|wTφ(xn), β−1) (3.22)

It is now convenient to write likelihood function in the logarithm form:

p(t|x,w, β) =
N∑
n=1

lnN(tn|wTφ(xn), β−1) =

N
2
lnβ − N

2
ln(2π)− β

2

N∑
n=1

{tn −wTφ(xn)}2
(3.23)

To determine the optimal polynomial coefficients w∗ we can use the maxi-
mum likelihood criterion, which means maximizing 3.23 with respect to w.
In this way, the first two terms can be neglected, since there is no dependency
on w, furthermore we substitute the coefficient β

2
with 1

2
since this scaling

Figure 3.10. Graphical distribution of the variable t for a given x (one input variable only)
in which the mean is given by y(x,w) and the standard deviation is given by the precision
β, for which we have β−1 = σ2

Gaussian Processes

factor does not alter the position of the maximum with respect to w. Finally
instead of maximizing the log likelihood, we can minimize the negative log
likelihood, thus as far as we are looking for finding the vector w maximizing
the likelihood means minimizing the sum-of-square error function.
Setting at zero the gradient with respect to w we obtain:

0 =
N∑
n=1

tnφ(xn)T −wT (
N∑
n=1

φ(xn)φ(xn)T). (3.24)

Solving with respect to w we obtain:

w∗ = (ΦTΦ)−1ΦT t (3.25)

Φ is a N ×M matrix called design matrix composed by:

Φ =

φ0(x1) φ1(x1).... φM−1(x1)
φ0(x2) φ1(x2).... φM−1(x2)
. . .
. . .
. . .

φ0(xN) φ1(xN).... φM−1(xN)

 (3.26)

Once the vector w∗ has been found we can proceed and determine the pre-
cision parameter β, the maximization leads to the following result:

1

βML

=
1

N

N∑
n=1

{tn −wT
MLφ(xn)}2 (3.27)

3.5 Bayesian linear regression

We have seen that the model complexity such as the number of basis func-
tion, or better the number of weights, is led by the size of the of the data set
because just maximizing the likelihood may lead to over-fitting. So deciding
the model complexity plays a crucial role for the final result, and this can-
not be reached by simply maximizing the likelihood function. Treating the
linear regression under a Bayesian point of view can avoid the over-fitting
problem of maximum likelihood, and will lead also to an automatic method
for determining the model complexity using the training data alone.

3.5.1 Parameter distribution
The discussion begins with introducing a prior probability distribution over
the parameters w, and β is treated as a known constant. Since the likelihood
function p(t|w) in 3.22 is Gaussian, the conjugate prior over w is Gaussian
as well:

p(w) = N(w|m0,S0) (3.28)

23

where m0 is the mean and S0 is the covariance. The product between like-
lihood and the prior can give us the posterior distribution. Since the prior
distribution is Gaussian, the posterior will be Gaussian as well in the form:

p(w|t) = N(w|mN ,SN) (3.29)

where:
mN = SN(S−10 m0 + βΦT t) (3.30)

S−1N = S−10 + βΦTΦ (3.31)

To simplify the case under assumption, we can assume that the prior distribu-
tion over the weight vector is a zero-mean Gaussian, with precision parameter
α so that:

p(w|α) = N(w|0, α−1I) (3.32)

and the posterior distribution over w is given by:

mN = SN(S−10 m0 + βΦT t) (3.33)

S−1N = αI + βΦTΦ (3.34)

It is now time to compute the log of the posterior distribution, given by the
sum of the log likelihood function and the log of the prior:

lnp(w|t) = −β
2

N∑
n=1

{tn −wTφ(xn)}2 − α

2
wTw + cons (3.35)

The maximization of the log of the posterior distribution with respect to w
is equivalent to minimize the sum-of-square error function with the addition
of a quadratic term.

3.5.2 Predictive distribution
In real case application we are not interested in computing the value of w
but we want to make prediction of t for a new input value x∗, this implies to
evaluate the predictive distribution :

p(t|t, α, β) =

∫
p(t|w, β)p(w|t, α, β)dw (3.36)

where t is the target vector of the training set. It can be demonstrated that
the predictive distribution is:

p(t|x, t, α, β) = N(t|mT
Nφ(x), σ2

N(x)) (3.37)

Gaussian Processes

Figure 3.11. Example of predictive distributions as the number of training points increases.
Note that the standard deviation increases a lot far from the training points, while reduces
near them.

It means that the prediction of the target variable for a new input is a
Gaussian distribution characterized by a mean and a variance. The variance
σ2
N(x) is given by:

σ2
N(x) =

1

β
+ φ(x)TSNφx (3.38)

where 1
β
represents the noise on the data, while the second part of the equa-

tion represent the uncertainty associated with the parameter w. Figure 3.11
shows the predictive distribution of a Bayesian linear regression in which data
are drawn from a sinusoid. Data are fitted using a Gaussian basis function.
For each plot, the blue circles are the data points, the red line is the mean of
the Gaussian predictive distribution, the green one is the sinusoidal function,
and finally the red shaded region is one standard deviation. We can than
draw samples from the posterior distribution over w, and than plot y(x,w)
as shown in the Figure 3.12.

3.5.3 Equivalent kernel
By substituting eq. 3.30 in equation 3.16, we can derive the predictive mean
in the following form:

y(x,mN) = mT
Nφx = βφ(x)TSNΦT t =

N∑
n=1

βφ(x)TSNφ(xn)tn (3.39)

where SN is defined in 3.31. The mean of the predictive distribution at a
certain x can be seen as a linear combination of the target tn and the so

25

Figure 3.12. Plots of functions y((x),w).

Figure 3.13. Example of a kernel function contained from a sigmoid basis function. Note
that it is a localized function even if x′ is non local.

called equivalent kernel or smoother matrix defined as:

k(x,x′) = βφ(x)TSNφ(x′) (3.40)

Finally the the predictive mean can be computed as:

y(x,mN) =
N∑
n=1

k(x,x′)tn (3.41)

Note that the equivalent kernel is a function of the input training set xn, in
figure 3.13 a kernel function is computed from sigmoid basis function. One of
the most popular covariance function is the squared exponential covariance
function:

k(x,x′) = exp(−1

2
|x− x′|2) (3.42)

It can be shown that the squared exponential covariance function corresponds
to a Bayesian linear regression with an infinite number of basis function.

Gaussian Processes

3.6 Gaussian processes

In Section 3.4 we saw a linear regression in the form of y(x,w) = wTφ(x).
We have seen that a prior distribution over w induces a prior distribution
over functions y(x,w), then given a training data set, we than evaluate the
posterior distribution of both w and y(x,w), which than implies predictive
distribution p(t|x) for a new input x. We have also discovered kernel func-
tions, so from Gaussian point of view we define a prior over functions directly
and not over weights.

3.6.1 Linear regression revisited
The discussion starts with a quick review of a linear combination in the form:

y(x,w) = wTφ(x) (3.43)

where x is the input vector and w is the M -dimensional weight vector. We
then put a prior distribution over w in an isotropic Gaussian form:

p(w) = N(w|0, α−1I) (3.44)

where α−1 is the inverse variance (or called precision), that could be a non-
diagonal matrix

∑
p. The prior probability on w induces a probability over

y(x,w). We want now to compute the posterior probability using the infor-
mation provided by the training set x1, ...,xN and y1, ...,yN ; we denote with
vector Y the vector containing all target observed. Through eq. 3.43 we can
compute that vector as:

Y = Φw (3.45)

The design matrix Φ is a matrix with elements Φnk = φk(xn). Y is a lin-
ear combination of Gaussian distributed variables w so it is Gaussian as
well, thus it is completed described by its mean and covariance (since it is a
multiple input variable), by:

E[Y] = ΦE[w] = 0 (3.46)

cov[Y] = E[YYT] = ΦE[wwT]ΦT =
1

α
ΦΦT = K(x,x) (3.47)

where K is called Gram matrix or covariance matrix with elements:

Knm(x,x) = k(xn,xm) =
1

α
φ(xTn)φ(xm) (3.48)

where k(xn,xm) is the kernel function. In general there is no prior knowl-
edge available about w so the mean is set to zero, to define completely the
Gaussian process we need to determine the covariance matrix by comput-
ing the covariance between any two values of x through the kernel function

27

k(xn,xm), this function can be computed either by using the formula 3.48 or
can be directly on our choice, a typical choice of this function is the squared
exponential :

k(xn,xm) = exp
(
− 1

2
|xn,xm|2

)
(3.49)

It must be precise that if we choose the covariance function by our own, the
function y(x,w) will not be a function of the weights w anymore, but it
can be written as a Gaussian process with mean and covariance function as
already defined:

y(x) ∼ GP(m(x), k(xn,xm)) (3.50)

3.6.2 Gaussian processes for regression
To apply Gaussian processes to deal with regression, we have to take into
account noise in the observed data (as we have already seen in the Bayesian
linear regression):

tn = yn + εn (3.51)

where yn = y(xn), while εn is a random noise variable independent from the
observation and normally distributed as follow:

ε ∼ N(0, σ2
n) (3.52)

where σ2
n is the variance of the noise. Since it has a Gaussian distribution,

it induces a Gaussian distribution over the observations:

p(tn|yn) = N(tn|yn, σ2
n) (3.53)

Since we have multiple observations, the joint distribution of the target values
t = (t1, ..., tN)T conditioned on the values y = (y1, ..., yN)T is given by an
isotropic Gaussian distribution:

p(t|y) = N((t|y, σ2
nIN) (3.54)

where IN is the identity N × N . By definition of a Gaussian process the
marginal distribution of the observation p(y) is Gaussian with mean zero
and covariance matrix K

p(y) = N(0,K(x,x)) (3.55)

The marginal distribution p(t) but it must take into account the independent
Gaussian noise source, so probability takes the zero as mean but with a
change in the covariance function:

t ∼ N(0,k(x,x) + σ2
nI) (3.56)

Gaussian Processes

where each element of the covariance matrix is in the form:

cov(tn, tm) = k(xn,xm) + σ2
nδnm (3.57)

where δnm is equal to zero if n = m since the noise on the observations is
independent. So it can be written in the following form:

cov(t) = k(x,x) + σ2
nI (3.58)

Thus the squared exponential covariance function can be written as:

kt(xn, xm) = σ2
f exp(−

1

2l
(xn − xm)2) + σ2

nδnm (3.59)

The three unknown parameters are called hyperparameters, and as we shall
see, each one plays a significant role in learning the function wanted. Anyhow,
by now it is just enough to say that l is called correlation length or length scale,
σ2

f is a scale factor of the Gaussian function, and σ2
n is the variance of the

error (which is the dispersion of our observation around the function y(x)).
Since now we have discussed about the joint distribution of the observed
data set, but actually our goal in regression is to make prediction for a new
input give a set of training points. Let’s suppose that tN = (t1,, tN)T

are the target of the corresponding input x1,,xN our purpose is predict
the target variable t∗ for a new input x∗, which means that we have to
evaluate the predictive distribution p(tN+1|xN+1) and it can we written in
the following form:

Φ =

[
t
y∗

]
∼ N

(
0,

[
K(x,x) + σ2

nI K(x,x∗)
K(x∗,x) K(x∗,x∗)

])
(3.60)

To simplify the notation we can introduce a new matrix:

CN+1 =

[
K(x,x) + σ2

nI K(x,x∗)
K(x∗,x) K(x∗,x∗)

]
(3.61)

We can assume that we have only one test point and simplify the notation
such as: K = K(x,x) , k∗ = K(x,x∗) = K(x∗,x) and k(x∗,x∗) = K(x∗,x∗)
Finally we are ready to compute the mean and variance of the prediction.

m(t∗) = k∗K−1t (3.62)

σ2(t∗) = k(x∗,x∗)− k∗K−1k∗ (3.63)

A very important thing to be noticed is that the prediction is based on
an inversion of a N × N matrix where N is dimension of the data set. It
means that to avoid numerical problems the size of the data point cannot be

29

Figure 3.14. GP regression of a sinusoid. The green curve is the sinusoidal function, in
blue there re the training points, the red line is mean of the Gaussian Process, and finally
the shaded region is plus minus two standard deviation.

very large, usually the maximum number of points employed is 3000. A way
to avoid this inversion is using the Cholesky decomposition, in this way we
obtain a faster an numerically more stable process. Please note that σ2(t∗) is
the uncertainty of the prediction for a new input point, which is different from
the value of the hyperparameter σ2

n related to the noise the observation. We
have already seen that σ2(t∗) is lower near the training points, and becomes
larger far from them or we are out from the data set as shown in Figure 3.14.

3.6.3 Learning the hyperparametres
From a practical point of view the learning process depends upon the values
the hyperparameters θ take. To learn them we have to evaluate the likelihood
function p(t|θ) and maximize it. The log likelihood function for a Gaussian
process regression model is easily evaluated using the form for a multivariate
Gaussian distribution.

lnp(t|θ) = −1

2
ln|K| − 1

2
kT∗K

−1k∗ −
N

2
ln(2π) (3.64)

We than compute the derivative with respect to a given hyperparameter:

∂

∂θt
lnp(t|θ) =

1

2
Tr(K

∂K
∂θt

) +
1

2
kT∗K

∂K
∂θt

K−1k∗ (3.65)

3.6.4 Incorporating explicit basis function
It common to consider a GP with zero mean function, this is not a big a
limitation since the mean of the posterior is not zero. However there are
advantages (mainly from a computational point of view) to include a mean
function. Incorporating explicit basis function is a way to incorporate a non-
zero mean over function. This can be achieved by still using a zero mean

Gaussian Processes

Gaussian Process, but adding also a basis function, in this case y(x) takes
the following form:

y(x) = f(x) + h(x)Tβ (3.66)

where f(x) ∼ GP(0, k(x,x)), h(x) are a set of basis functions, usually it is
a polynomial vector such as h(x) = (1, x, x2, ..) and β is inferred from data.
The basic concept is that we do linear a regression (which gives the mean)
in which the residuals are learnt through a GP.

3.6.5 Effect of hyperparmeters: GP in practice
As already mentioned the squared-exponential covariance function has the
following form:

k(xn,xm) = σ2
f (− 1

2l
(xn − xm)2) + σ2

nδnm (3.67)

has three free parameters to be learnt or defined by our own: l is the length
scale, σ2

f is the process variance or scale factor, and σ2
n is the noise variance.

We must precise that the log-likelihood function is very complex since it
depends upon three parameters, this implies that the minimum solution of its
derivative is not unique, as a matter of fact there are multiple local minima,
and each one gives different results in terms of learning. In Figure 3.15 it
is shown a parabola in which in which are drawn 15 points smeared with a
Gaussian noise with standard deviation σ2

n = 50000. The blue line represents
the actual parabola, the blue points are the data points, the continuous red
line is the prediction of the Gaussian process and finally the dotted red line
is plus-minus two standard deviation predicted. In this case, the length scale
l found is 806, the process variance is 8.24 ∗ 106 and the estimated noise
variance σ2

n = 3.8 ∗ 104 which is actually very close to 5 ∗ 104, if we put
and higher number of training points, such as 30, its value would become
very alike to the real one. Let’s now change the length scale and see what
happens: Figure 3.16 shows the results when the length scale becomes much
larger than the previous one. In that very case l was set to 9000, the other
two parameter values are found by maximizing the log-likelihood, σ2

f = 10

and σ2
n = 7.12 ∗ 105. As we can see the prediction approximates to the

regression only and the noise variance is much higher than the real one.
When the length scale increases the general behaviour is ’smoother’ and it
approximates to the basis function (in this case it was linear), this type of
result can be explained by the fact that since the length is very high, one point
is correlated with many others, so it is a sort of generalized mean. In general,
when the computed σ2

n is much higher than the real one, the prediction passes
very far from the data points (even with). On the other hand, if we set the
length scale to a smaller value, we obtain a greater flexibility of the prediction
with a consistent reduction of the noise standard deviation, in fact in Figure
3.17 l has been reduced to 60, the remaining other two parameters were set

31

to maximize the likelihood again, (σ2
f = 6.59 ∗ 105 and σ2

n = 7.37 ∗ 103) the
noise variance turns out to be an order of magnitude lower than the optimal
one. This implies that the prediction passes very near the training points
and its trend has an higher variability, this behaviour can be compared to
over-fitting in linear regression and neural networks, in which the error with
respect the data set is quite low, but the result in terms of generalization
is very inefficient. In Figure 3.18 the length scale has been further reduced
down to l = 0.001. This means that each prediction point is correlated with
no one of the training data, with the result that the overall prediction follows
the linear regression, except for the trained points, in which it goes very near
them. In this case σ2

f = 6.64 ∗ 105, σ2
n = 6.67 ∗ 105.

Figure 3.15. A Gaussian process prediction.

Gaussian Processes

Figure 3.16. Effect of having an high length scale.

Figure 3.17. Effect of having a low length scale.

33

Figure 3.18. Effect of having a very low length scale.

Chapter 4

Artificial Neural Network

4.1 Introduction

Artifical Neural Network (ANN) is probably the most spread technique for
machine learning problems because of its mathematical simplicity, and ca-
pacity to deal with complex problems unmanageable by simpler techniques
such as polynomial regression. Born with the aim to reply the biological
brain and nervous human system in terms of structure and learning capa-
bilities, research about ANN became very active since 1940s. The aim of
this Chapter is to introduce the reader to ANN theory in order to make him
aware of the training process and ANN structure meaning, not all topics will
be treated since the literate is full of book and references, if the reader is
interested in going deeper about some topics he can refer to [30].
The Chapter is organized as follow: first the working principle of a single
neuron is shown in 4.2, then these concepts are extended to a more complex
artificial neural network structure 4.3. In 4.4 the learning process is shown,
and finally the advantages of neural networks committee are explored in 4.5.

4.2 The artificial neuron: single perceptron

As already mention ANN is a bio-inspired algorithm. Human brain is com-
posed by a huge number of single units called neurons interconnected with
each others as shown in Figure 4.1. Each neuron is a sort of black box which
receives inputs, elaborates them, and then it provides an output. This out-
put is an information entering in the system which will be then processed. A
single neuron does not work alone but this procedure is run in parallel with
all other neurons. For neurons the activation signal is in the form of electrical
stimulation, and it returns a signal as well, whose intensity depends upon the
level it was activated. Human’s learning activity goes through the contin-
uous stimulation of neurons, by means of continuously repetition of inputs,
there is a strengthening of neuron connection, making the network more and

35

Figure 4.1. Rapresentation of a biological neuron.

more capable to correctly respond for a given input. From a practical point
of view, when we approach a routine the first time, probably we will not be
able to do that task correctly, but if repeat that task many many time we
will able to carry out that job in the right way.
The biological neuron (Fig. 4.2.a) structure is constituted by a cell, where
the biochemical reactions occur,and synapses, which are connections among
neurons. The cell body sums all the electrical impulses coming from all other
connected neurons. If the summation exceeds a certain threshold, the neuron
will be activated, sending an electrical impulse outwards, thus stimulating
other neurons. Through a continuous excitement of neurons synapses be-
come stronger. A first explanation of the learning process was given by Hebb
(1949): when a cell A excites a cell B in a repetitive and persistent manner,
a change in metabolism or growth in one or both cells happens, such that the
effectiveness of A in stimulating B is increased with respect to all other con-
nected cells. In a more practical way, all neurons are interconnected among
each other, they can send and receive electrical impulses. If a neuron receives
impulses over a certain threshold it is activated and sends a new electrical
input. Similarly, the mathematical model of a neuron (Fig. 4.2.b) consists in
a computing cell, which receives information (si) from other neurons, sums
them and returns an informative impulse (Sj) which is modulated through
an activation function hj(.) and then passed to a consecutive computing unit.
The training, or programming, for artificial neural networks consists in a pre-
sentation of a sequence of stimulus-response pairs so that the network can
learn the appropriate relationship by reinforcing some of its internal con-
nections. In practice, a weight wji is assigned to each incoming dendrite
(each one transferring a signal si) and it is optimized based on training data

Artificial Neural Network

Figure 4.2. Structure for a (a) biological and (b) artificial neuron.

samples. The following parameters might be identified inside the jth neuron
model presented inside Fig. 4.2.b:

• The synaptic weights or simply weights wji, associated to the ith incom-
ing link for the jth neuron.

• The activation value zj =
∑N i

i=1wjisi.

• The bias (activation threshold) bj = −wj0 · 1

• The activation function hj(.), as will be explained later.

In the case we have only one neuron j = 1, while i is equal to the number of
synapses connected with it (or number of input from a mathematical point of
view). Again j is the neuron index while i is the synapse index. The output
of the jth neuron can thus be written as follows:

Sj = hj

 N i∑
i=1

wjisi − bj

 = hj

 N i∑
i=0

wjisi

 (4.1)

being N i the number of inputs contributing to the calculation of the activa-
tion value. It should be noted that the bias is not associated with the signal,
it is a fixed constant in order to allow an offset of the excitation zj. The
activation function hj will be better explained in the next section, by now
it is just enough to say that it depends upon the type of problem, whether
regression or classification, and upon the network structure, the hidden layer
will have a different activation function with respect the output one. For
the moment it is important to say that it must introduce a non-linearity in
the regression or classification scheme (since we want to model non linear
problem) and must be differentiable, an example is the sigmoid function (in
the reference given there are many other types of activation functions):

Sj =
1

1 + e−zj
(4.2)

37

An Artificial Neural Network (ANN) is an ensemble of many elementary ar-
tificial neurons (perceptron), as the one presented above. The general idea of
a neural network is to represent a non-linear function mapping between a set
of input variables into a set of output variables. Artificial Neural Networks
are algorithms able to learn from experience (either experimental or virtual,
the latter being the one adopted in this thesis), which means that after hav-
ing see a certain number of cases they are able to elaborate answers in the
case of new inputs, exactly like human being. The main advantage of ANN
algorithms is that no mathematical or physical modeling effort is needed to
evaluate the functions underlying the phenomenon to be described. Fur-
thermore, the system is able to perform an automatic parameter adjustment
in the training phase based on available input-output data coming from a
dataset obtained either from FE models or from joint FE and experimental
simulations. The drawback is that ANNs are difficult to interpret in terms of
physical processes and they sometimes require extensive input-output data
for proper training, increasing with the number of parameters involved, the
extent of non-linearity and the complexity of the approximated functions.
For this reason, the ANN may not be used as a “black box”, as its success
depends much on the knowledge of the problem domain that can be incor-
porated into the design and training of the neural network.
Many different Artificial Neural Network topologies exist in literature, suit-
able for different kind of application. The following classification can be
done, according to the learning paradigm:

• Supervised learning : the algorithm receives input patterns x1, x2, . . . , xn
as well as the associated outputs y1, y2, . . . , yn , and through a training
and learning process it produces the correct output given a new input
is provided.

• Unsupervised learning : it exploits regularities in the input data to build
a representation that can be used for reasoning or prediction (no output
target data are used during training).

• Reinforcement learning : producing actions a1, a2, . . . , an which affect
the environment, and receiving rewards r1, r2, . . . , rn, it learn to act in
a way that maximizes rewards in the long term.

The focus inside this thesis is on supervised learning since from numerical
simulations a large amount of data regarding input-output damage informa-
tion is available.

4.3 The feed-forward multi-layer perceptron (MLP)

The ANN structure which is most often used is the so-called Multi-Layer-
Perceptron (MLP), in which neurons are organized in layers (Fig. 4.3). In

Artificial Neural Network

Figure 4.3. Structure for multi-layer perceptron.

particular, a layer is a set of neurons and three types of layer can be identified:

• Input layer : neurons that receive as input the data to be processed
and distribute the input signals to the first available layer of computing
neurons

• Hidden layer(s): intermediate neurons that process data from other
neurons and provide input to a consecutive layer. They do not commu-
nicate with the outside world.

• Output layer : neurons that provide the final output of the network

In a feed-forward network topology the signals pass from the input layer,
progress forward through the hidden layers and finally emerge from the out-
put layer, feed-forward means the information can go only toward one direc-
tion, so every neuron can receive information only from the previous layer
unlike the feed-back network such as recurrent neural networks. Feed-forward
ANN are easy and fast to train, but they have intrinsic limits, for example
they are not able to deal dynamic inputs such as time series. Fig. 4.3 shows
that each node in a layer is connected through some weights to each node of
the consecutive layer. Moreover, each node (except those belonging to the
input layer) is also connected to a bias node by means of a special threshold
weight (wj0). At each computational node inside the hidden layer, the ac-
tivation value is calculated as in Eq. 4.3, taking into account also the bias

39

weight s0 and N i inputs to the computational node:

zj =
N i∑
i=0

wjisi (4.3)

Then, the ability of an ANN to learn depends on the choice of the activation
function (h(·) and g(·) in Fig. 4.3) for the hidden and output layer respec-
tively. Various choices for the activation function are possible, depending on
the problem to be modeled, as well as the considered layer:

1. hidden layers : if the problem to be modeled with ANN is non-linear (as
most of the times), the choice usually falls upon non linear functions
such as the hyperbolic tangent function (Eq. 4.4) or the sigmoid function
(Eq. 4.5), respectively providing an output in the interval [−1, 1] and
[0, 1].

Sj =
ezj − e−zj
ezj + e−zj

(4.4)

Sj =
1

1 + e−zj
(4.5)

2. output layer : the activation value can be expressed as in Eq. 4.6 ac-
cording to the nomenclature used inside Fig. 4.2 and Fig. 4.3:

Z =
Nhl∑
j=0

WjSj (4.6)

where Nhl is the number of hidden neurons belonging to the hidden layer.
Three forms of activation function are usually considered to generate the
output values y, depending on the problem under analysis:

• For regression problems, an appropriate choice is the linear function of
the form:

y = Z (4.7)

• For classification problems, a sigmoidal or a softmax activation function
can be successfully applied, as in Eq. 4.8 and Eq. 4.9 respectively.

y =
1

1 + e−Z
(4.8)

yk =
e−Zk∑No

k=1 e
−Zk

(4.9)

Eq. 4.9 is mostly recommended in the case one has to infer over two or
more mutually exclusive classes, being N o the number of output nodes
for the considered structure (nevertheless if one single output node is
used as in Fig. 4.3, 4.8 is the correct choice).

Artificial Neural Network

Finally, the ANN output y in Fig. 4.3 can be expressed through Eq. 4.10:

y = g

Nhl∑
j=0

Wj · h

 N i∑
i=0

wjisi

 (4.10)

where h(·) and g(·) are the activation functions for the hidden and output
layers respectively,Wj is the synapse weight connecting the jth hidden neuron
to the output node, wji is the synapse weight connecting the ith input node
to the jth hidden neuron, N i and Nhl are the number of input and hidden
nodes respectively. The goal is now to approximate a target function t given
a finite number of observations. This is done during the training process.

4.4 Learning in multi-layer perceptron

The aim of supervised training is to compute weights and biases in order
to achieve a good generalization (which means that the network is able to
respond not only to the training points but also to new inputs) of the data,
this step can be interpreted as the strengthening process of synapses in human
nervous system. In particular, at each step during training, a set of inputs is
passed forward through the network and a trial output is obtained, and then
compared with the desired known output. If a significant error is found, it
is passed backward through the network and is used to adjust the synapse
weight in order to minimize the error. This procedure is called error back-
propagation. Thus, the first thing to be considered is the definition of an
error function to be minimized during training. In particular, the ANN
learning can be associated to the problem of Maximum Likelihood Estimation
or Sum of squared error minimization, which are the same thing as shown
in 3. Focusing on regression problems, suppose to have a set of t1, t2, . . . , tN
independent identically distributed samples, which are output observations
for the process to be modeled through the ANN. Observations can be thought
as normally distributed, centered in y (the output of the ANN, dependent on
the unknown weight variables) with standard deviation σ (also unknown).
The likelihood L of the observation, with respect to the ANN model, can be
defined as follows:

L (w) =
N∏
n=1

1√
2πσ2

e−
(tn−yn)2

2σ2 (4.11)

The problem now turns in finding weights that maximize the likelihood pa-
rameter in Eq. 4.11. It already shown that the optimal weights are those
which minimize the cost function (the error function E):

arg max
w

L (w) = arg min
w

N∑
n=1

(tn − yn)2 = arg min
w

E (4.12)

41

4.4.1 The error back-propagation
Error back-propagation is a gradient descent optimization method, it is used
to iteratively minimize the network error E by adjusting its weight parame-
ters w. w

n+1 = wn + ∆w

∆w = −η · ∂E
∂w

(4.13)

One can express the back-propagation update rule for the Wj as follows,
being k the iteration index:

W k+1
j = W k

j + 2η
N∑
n=1

(tn − g (Z)) · (−g′ (Z)) · Sj (4.14)

Nevertheless, also the synapse weight connecting the ith input to the jth
hidden neuron has to be updated at each iteration during training. The
gradient of the error function with respect to the identified weight ∂E

∂wji
is the

following:

∂E

∂wji
=

N∑
n=1

2 (tn − g (Z)) · (−g′ (Z)) · ∂Z
∂wji

=
N∑
n=1

2 (tn − g (Z)) · (−g′ (Z)) ·Wj ·
∂Sj
∂wji

=
N∑
n=1

2 (tn − g (Z)) · (−g′ (Z)) ·Wj · h′ (zj) ·
∂zj
∂wji

=
N∑
n=1

2 (tn − g (Z)) · (−g′ (Z)) ·Wj · h′ (zj) · si

(4.15)

In the same way, the procedure to obtain the updating rule for the weight
wji can be synthesize:

wk+1
ji = wkji + 2η

N∑
n=1

(tn − g (Z)) · (−g′ (Z)) ·Wj · h′ (zj) · si (4.16)

In general terms, the updating rule for a synapse weight connecting ith
neuron with jth neuron in two consecutive layers can be summarized as fol-
lows:

wk+1
ji = wkji + ηδjsi (4.17)

Where δj is the error in the output from the jth node of the hidden layer.
This error is not known a priori and it is constructed from the errors that
can be easily calculated at the output layer

∑N
n=1 (tn − g (Z)).

Artificial Neural Network

4.4.2 Issues in ANN learning
Tough gradient descent methodology for weight optimization is rather a sim-
ple process, many problem could arise during ANN training, among which:

• Selection of the best ANN structure

• Convergence of the learning process

• Generalization and overfitting

• Existence of local optima

4.4.3 ANN structure definition
The MLP is capable of approximating a function with arbitrary accuracy
even if it only possesses one single hidden layer (as in Fig. 4.3). However
no guidelines for the a priori definition of the network complexity for a given
function are available. As a consequence, one has to try different ANN struc-
tures (one or more hidden layers with varying number of hidden neurons),
with increasing complexity, thus selecting the best one, which is the one
that minimizes the error with respect to the validation set (refer to Section
4.4.5). Nevertheless, for the specific case reported inside this thesis it has
been decided to use one single hidden layer, however optimizing the number
of neurons to obtain the best performances of the network.

4.4.4 The momentum coefficient
The learning coefficient drives the convergence speed of the learning process.
If η is too small convergence may take too time. On the other hand if η
is too large, the learning process will be rapid but there may be the risk
that parameters may diverge, as shown in Fig. 4.4. The introduction of a
momentum coefficient α can mitigate this problem, which is an additional
inertia term which depends on the weight modification at previous iteration
step, as shown in Eq. 4.18:

wk+1
ji = wkji + ηδjsi + α∆wkji (4.18)

4.4.5 Generalization and overfitting
Generalization is the capability of an ANN to learn the significant features
of a proposed dataset, without learning characteristic feature. By recalling
the example of polynomial curve fitting, in Figure 4.5 are shown the three
sin cases in which we have a poor fitting (or excess of generalization), a good
fitting and finally overfitting. Overfitting problem is not only characteristic
of polynomial curve fitting but also of ANN since to obtain weights there
is a minimization of an error function. In order to avoid overfitting three

43

Figure 4.4. Schematic representation of convergence to minimum error (a) and divergence
(b) during the weight optimization problem. The adoption of a low learning rate allows for
smaller weight step, thus slower converence, While the second figure shows that divergence
may occur.

Figure 4.5. Fitting of a dataset generated from a sinusoidal function with additive noise.
(a) A linear curve provides a poor fitting. (b) A cubic curve provides the best fitting. (c)
A 10th order polynomial over-fits data.

main methodologies are commonly used: Early stopping, training with noise
and regularization. Since only one of these techniques are used in this thesis,
only Early stopping is presented and explained. Early stopping : as explained
above, the training of ANNs corresponds to an iterative reduction of the error
function defined by comparing the ANN output with given set of weights with
respect to training data.It is common practice to divide the training dataset
in at least two parts:

• Training set : data used for weight optimization.

• Validation set : independent data not involved in the weight optimiza-
tion but used to avoid overfitting.

During the training procedure the error is measured also on the validation set,
as shown in Figure 4.6. In the first part of the training process both training
and validation error decrease but after a certain number of the training set
continues to decrease but the validation one starts increasing, which means
that overfitting is starting.

Artificial Neural Network

Figure 4.6. Error trend of the validation set during the training process. As we can see
after a certain number of iteration the error starts to grow, which means that overfitting
is taking place, thus the learning process must be stopped.

4.5 Uniqueness of solution and ANN committees

The problem related to error minimization is that the error function is very
complex and so it includes many local minimum, the ideal situation is to reach
the global minimum. In order to ’escape’ from local minimum randomized
algorithms add an amount of energy at each iteration, this energy decreases
over the number of iterations, in order to reach convergence.
Multiple restarts with different weights initialization is another tool. From
a practical point of view we train the network multiple times with a defined
training and validation sets which remain the same for each training. For
each training the weights are chained randomly in order to explore different
local optima, finally we take the network with the lower root-mean-square
error.
In order to achieve a better performance than multiple restarts which is
just one single isolated neural network, [30] proved that ANN committee
reaches a lower error. The concept behind ANN committee is that multiple
ANN models can be trained, also with different architecture such as different
activation function, number of layers, number of neurons and different local
minimum, using the training and validation sets, and once each network has
been trained, the prediction for a new input value will be just the average
of the predictions of each individual ANN model. This procedure is done
because, as we are going to see, the error of the committee is always equal
or lower than the average associated with the single neural network, on the
other hand the computational effort increases. Suppose to have a set of L
trained models yi(X) where i = 1, .., L. h(X) is the true regression function
we want to learn. The function yi(X) can be written as the desired function
with an additional error:

yi(X) = h(X) + εi(X) (4.19)

45

The sum-of-square error for model yi can be written as :

Ei = ξ[yi(X)− h(X)2] = ξ[ε2i] (4.20)

where ξ is the expectation, which is the integration over X weighted by the
probbility density of X as follow:

ξ[ε2i] =

∫
ε2i (X)p(X) (4.21)

from 4.20 the average error of the single neural networks is given by:

EAV =
1

L

L∑
i=1

Ei =
1

L

L∑
i=1

ξ[ε2i] (4.22)

The committe prediction is just the average of the outputs of the L networks,
thus it can be written as a simple mean:

yCOM(X) =
1

L

L∑
i=1

yi(X) (4.23)

The error of the committee can be written as:

ECOM = ξ
[(1

L

L∑
i=1

yi(X)− h(X)
)2]

= ξ
[(1

L

L∑
i=1

yiεi

)2]
(4.24)

Making the assumption that εi(X) are uncorrelated and having zero mean:

ξ[εi] = 0ξ[εiεj] = 0ifj 6= i (4.25)
Than using 4.22 we obtain the relation between the committee error and the
average error of the single network:

ECOM =
1

L2

L∑
i=1

ξ[ε2i] =
1

L
EAV (4.26)

This interesting result says that the average sum-of-square error of the single
network can be reduced by a factor L (number of networks in the committee)
by averaging the prediction of the networks. However this result is based
on strong assumptions: zero mean and uncorrelated, in fact in practice the
reduction is much smaller than that, since errors εi(X) of different models are
highly correlated, anyway it is possible to demonstrate the averaging process
with committee cannot increase the expected error value by using Cauchy’s
inequality: (L∑

i=1

εi

)2
= L

L∑
i=1

ε2i (4.27)

an thus
ECOM 6 EAV (4.28)

Chapter 5

Markov chain Monte Carlo

We start our discussion by doing a recall about the Bayes theorem under a
more practical point of view, so some information will be briefly repeated.
The goal is to make inference (in terms of probability density function) about
the parameter vector ϑ as a set of observation x of the variable X are avail-
able, as an example in our case we have to know the damage position and
dimension once the strain measurements are available. Different values of ϑ
can lead X to take different probability distribution p(X = x|ϑ), however
this is not a conditional distribution since θ is a discrete deterministic vari-
able, so it is just P (X = x) with the model affected by ϑ.
In classical statistics p(X = x|ϑ) is called likelihood, because it indicates how
much the parameter ϑ gives the vector x similar to the one observed, and
the real value of theta is the one which makes p(X = x|ϑ) maximum. It has
to be clear that the likelihood is not a probability about ϑ.
However under a Bayesian point of view the likelihood function is a real
probability, the variable Θ is assigned to the parameter vector ϑ. Θ is char-
acterized by a pdf p(Θ|ϑ), known as prior distribution of Θ, furthermore
p(X = x|Θ = ϑ) is now a conditional probability. As already explain in
Chapter 3, the Bayes’ theorem is used to compute the posterior probability
as follow:

p(Θ = ϑ|X = x) =
p(X = x|Θ = ϑ) ∗ p(Θ|ϑ)

p(X = x)
(5.1)

The goal is to compute the posterior probability taking into account informa-
tion coming from the observation of the phenomenon and the prior knowledge
about the system. The normalization constant p(X = x) makes sure that
the posterior is lower than one and it is computed as follow:

p(X = x) =
N∑
j=1

p (X = x |Θ = ϑj) · p (Θ = ϑj) (5.2)

where N is the length of the parameter variable vector ϑ. This marginal-
ization constant for real case application is never known since it must be

47

Figure 5.1. Illustration of the function f(z) and the probability distribution p(z).

evaluated for all parameters N of the vector ϑ, thus the Bayes’ theorem
becomes just a simple proportionality:

p (Θ = ϑ |X = x) ∝ p (X = x |Θ = ϑ) · p (Θ = ϑ) (5.3)

The computation of the posterior probability requires the calculation of
integral that cannot be solved analytically. Since an analytical solution is
not available, an approximate inference method based on numerical sampling
known as Monte Carlo techniques are considered.
By now let us limit ourselves to use the sampling methods to be computed the
expectation of a function f(z) with a probability distribution p(z), where z
is a set of whether continuous or discrete variables. In the case of continuous
variables:

E[f] =

∫
f(z)p(z)dz (5.4)

This situation is shown in Figure 5.1, and we now make the assumption
that this expectation is too complex to compute analytically. The main idea
behind the sampling methods is that we can obtain a set of sample z(l) drawn
independently from the distribution p(z) in order to approximate the integral
with a finite sum:

f̃ =
1

L

L∑
l=1

f(z(l)) (5.5)

If zl is drawn from the distribution p(z) then E[f∧] = E[f]. It is important to
say that the accuracy of the estimation does not depends upon the dimension
of z and so high accuracy may be reached with also a low value of samples.The
main problem which may affect the result is that samples zl may not be
independent, and so the meaningful samples may be lower than the number
actually drawn. Another problem is very easy to see and understand in
Figure 5.1, where we have zones in which f(z) is small in regions in which
p(z) is large and vice versa, in that case a very large number of samples must

Markov chain Monte Carlo

be drawn in order to estimate the expectation with sufficient accuracy.
The problem is now turned to find algorithms able to sample effectively from
a (complex) distribution that, as we shall see, will be the key to compute the
posterior probability p (Θ = ϑ |X = x) through a sequence of samples. In
our applied case we will have to find the pdfs of the damage parameters once
observations coming from sensors are available. Numerous texts provides
explanation about Monte Carlo method such as: [31], [32], [33].

5.1 Rejection sampling

Rejection sampling allows to sample from relatively complex distributions.
Let’s consider to sample from an univariate distribution p(z), and sampling
directly from that is difficult. Furthermore suppose that we cannot evaluate
p(z) but we can evaluate p̃(z) in such a way that:

p(z) =
1

Zp
p̃(z) (5.6)

where Zp is unknown.
In order to apply rejection sampling we need a simpler distribution q(z)
called proposal distribution from which we can easily draw samples. Than we
introduce a scaling factor k chosen in order to have kq(z) > p̃(z) for any value
of z. The function kq(z) is called comparison function and it shown in Figure
5.2. The sampling procedure involves generating two random numbers: first
we draw a number z0 from the distribution q(z) then a number u0 from the
uniform distribution over [0, kq(z0)]. Finally, if u0 > p̃(z0) the sample is
rejected, otherwise it is kept. This means that if the sample pair lies in the
gray shaded region shown in Figure 5.2 it will be rejected, the remaining
pairs will have a uniform distribution under the curve p̃(z). The number
z0 was generated from the proposal q(z) and the acceptance probability is
p̃(z)/kq(z), thus the number of sample rejected depends on the ratio between

Figure 5.2. In rejection sampling samples are drawn from a proposal distribution q(z) and
rejected if they fall in the gray area. The remaining samples are distributed as p(z) which
is the normalized distribution of p̃(z).

49

the unnormalized distribution p̃(z) and the area under the curve kq(z), so
the multiplication constant k must be as small as possible but kq(z) > p̃(z).

5.2 Importance sampling

As already seen we wish to sample from a complex distribution in order
to evaluate integrals or expectation as shown in equation 5.4. Importance
sampling is able to approximate integrals but it does not provide a method
to draw samples from a given distribution p(z). The approximation given in
5.5 depends on the ability to draw samples from p(z). Let us suppose that
it is not practical to draw samples directly from p(z) but it can be evaluated
for any value of z. One simple strategy to evaluate the expectation would
be to discretized the z-space uniformly and compute the integral as a finite
sum as follow:

E[f] '
L∑
l=1

p(z(l))f(z(l)) (5.7)

The first problem related to this approach is that the number of samples
increases a lot as the dimensionality of z increases. Second, the probability
distribution often has a small region of the space parameter z in which it
is confined the major of its mass, so uniform sampling will be inefficient,
because very few samples will give a contribution to the sum. We wish to
sample were p(z) is large, or better, where p(z)f(z) is large.
As the case of rejection sampling, importance sampling is based on a proposal
distribution q(z) from which it is easy to draw samples. The expectation can
be written with a finite sum:

E[f] =

∫
f(z)p(z)dz =

∫
f(z)

p(z)

q(z)
q(z)dz

' 1

L

L∑
l=1

p(z(l))
q(z(l))

f(z(l))
(5.8)

Where rl = p(z(l))/q(z(l)) are known as importance weights and are needed to
correct the bias introduced by sampling from the wrong distribution, unlike
rejection sampling all of samples will be retained.
Also in this case, the result strongly depends on how much the proposal
distribution q(z) matches the desired distribution p(z). If p(z)f(z) has a
significant portion of its mass concentrated in a small region of the z space,
there will be few importance weights having rl giving a significant contribu-
tion, thus the sample size may be much smaller than L.

Markov chain Monte Carlo

5.3 Markov Chain Monte Carlo

In the previous section we have seen that rejection sampling and importance
sampling have strong limitations for high dimensionality and when p(z) is
large where f(z) is small, thus we now turn to the Markov chain Monte Carlo
(MCMC) algorithm, in our case it is important to remember that we want
to make inference over some parameters distribution once observations are
available, in particular we are interested in finding p (Θ = ϑ |X = x) through
the Markov chain Monte Carlo sampling. As in rejection and importance
sampling we draw samples from a proposal distribution, but we now take
a record of the current state zt and the proposal q(z|zt) depends upon this
current state. By an acceptance criterion we decide whether to retain or
not the sample, and finally a sequence of samples z1, z2, ... forms a Markov
chain. Again we have p(z) = p̃(z)/Zp, where p̃(z) can be easily evaluated, Zp
is unknown, and a proposal distribution q(z) is simple in order to easily draw
samples. At each cycle we draw a sample z∗ from the proposal, than this
sample is accepted based on a criterion. In the basic framework the proposal
is symmetric so q(zA|zB) = q(zB|zA). The candidate sample at the iteration
t+ 1 will be accepted with probability:

A(z∗, zt) = min
(

1,
p̃(z∗)
p̃(zt)

)
(5.9)

By choosing a random number u with uniform distribution in the interval
[0, 1] the sample will be accepted if:

A(z∗, zt) > u (5.10)

It is important to note that if passing from sample zt to z∗ we have an in-
crease of p(z) the sample will accepted for sure.
If the candidate is accepted then zt+1 = z∗, otherwise if the candidate is dis-
carded zt+1 = zt, and then a new candidate is drawn from q(z|zt+1) building
in this way the sample chain. However it must be noted that if we take the
whole chain as it is, the samples are not independent one from each other,
and so once the entire chain is computed only one sample each ten is generally
kept, in order to have independent samples.

5.4 Markov chain definitions

In this section some general properties of Markov chains are explained, in par-
ticular we show under what circumstances a Markov chain will converge to-
ward the desired distribution, which means reaching a stationary and unique
solution, these properties can be achieved by satisfying the detailed balanced
condition, in order to reach the chain reversibility or by satisfying the ergod-

51

icity of an irreducible Markov chain. Deeper studies about this topic can be
found in [34].

Def. 1: Markov Chain A Markov chain is a sequence of random variables
that can be imagined as evolving in time It is mathematically defined in
terms of its transition kernel. Thus, given a kernel K, a sequence of random
variables zn is a Markov chain if:

p(z(n)|z(1), ..., z(n−1)) = p(z(n)|z(n−1)) (5.11)

Def. 2: Transition Kernel A transition kernel K is a conditional proba-
bility density function that relates two consecutive steps in a Markov chain:

K(z(n−1), z(n)) ≈ p(z(n), z(n−1)) (5.12)

A Markov chain is called homogeneous if the transition kernel are the same
for all m.

Def. 3: Stationarity (or invariant) A distribution is said to be invari-
ant, or stationary, with respect to a Markov chain if each step in the chain
leaves the distribution invariant. Which means that an invariant distribu-
tion π exists in a way that zk ≈ π, zk+1 ≈ π, . . ., which means the marginal
distribution of zk is independent on k. MCMC method is based upon the
possibility to meet this requirement. The invariant solution is a candidate
solution for the final algorithm convergence, being the marginal probability
distributions at various steps all equal to π. Nevertheless, sometimes it does
not exist or it is not unique. The ergodicity and irreducibility of the Markov
chain are the conditions that guarantee the existence and uniqueness of the
equilibrium solution (invariant solution).

Def. 4: Detailed Balance Condition A sufficient but not necessary condi-
tion for ensuring that the required distribution π(z) is to choose the transition
kernel to satisfy the detailed balance condition:

p(z)K(z, z
′
) = p(z

′
)K(z

′
, z) (5.13)

If a Markov chain respects the detailed balance is said reversible. Eq. 5.13
indicates that the entry rate in a certain state is equal to the exit rate. More
precisely, for a process at equilibrium, the number of times the process enters
in a state must be equal to the times it exits from the same state (in a fixed
step interval).
However, the verification of the DBC implies the knowledge of the equilib-
rium distribution π. In practice one usually calculates π from the DBC. As
a matter of fact, if an irreducible Markov chain satisfies the detailed balance
condition with π being a pdf , then the chain is positive recurrent and re-

Markov chain Monte Carlo

versible and the density π is the invariant equilibrium distribution for the
process.

Def. 5: Reversibility A stationary Markov chain is reversible if the dis-
tribution of zk+1 conditional on zk+2 = x is the same as the distribution of
zk+1 conditionally on zk = x.

Def. 6: Ergodicity The aim of the Markov chain is to sample from a given
distribution and order to achieve this purpose the desired distribution must
be invariant. It must also be required that for m → ∞ the distribution
p(z(m) converges toward the invariant distribution π(textbfz). This property
is called ergodicity and the invariant distribution is called equilibrium distri-
bution. An ergodic distribution can have only one equilibrium distribution.

Def. 10: MCMC A Markov chain Monte Carlo method for the estimation
of a pdf distribution π is any method producing an ergodic Markov chain
whose stationary distribution is π.

5.5 Metropolis-Hastings algorithm

Metropolis-Hastings algorithm is used to generate a Markov chain. The aim
is to draw samples that admit as stationary distribution the target posterior
distribution, as an example the pdf associated with the system parameters
conditioned on the system observations. Two min consideration must be
taken into account:

• If the Markov chain is irreducible, ergodic and stationary, it converges
towards a unique invariant distribution. This means that it is possible
to choose randomly the initial conditions of the chain (the first sam-
ple) as the chain will always converge toward the target distribution.
However the first part of the Markov chain (the first samples) must be
discarded because it was a transient, and samples do not belong to the
posterior target distribution. This transient window is usually named
burn-in period.

• As already mentioned, a Markov chain samples are dependent (any state
of the chain depends only on the previous one). As a matter of fact, the
adopted transition kernel usually allows for small jumps which causes
a correlation between subsequent samples. Nevertheless, to build a pdf
one has to refer to independent samples. Thus, after eliminating the
burn-in period, only one sample every nt is retained; this process is
named thinning.

53

As we have already seen in 5.3 that the drawing process is based on a proposal
distribution q(·) and an acceptance probability α(·), where α(·) · q(·) is the
transition kernel that links two consecutive steps of the Markov Chain. The
acceptance probability will take the following form:

α (ϑk+1 | ϑk) = min

(
π (ϑk+1 | y) · q (ϑk | ϑk+1)

π (ϑk | y) · q (ϑk+1 | ϑk)
, 1

)
(5.14)

The MH algorithm can be summarized through the following steps:

1. Initialize the chain by selecting an arbitrary starting point for the in-
ferred parameter vector ϑ0, this is the step k = 0.

2. At step k, draw a proposal sample ϑ̃k+1 from the proposal density
q (ϑk+1 | ϑk)

3. Evaluate α
(
ϑ̃k+1 | ϑk

)
= min

(
π(ϑ̃k+1|y)·q(ϑk| ϑ̃k+1)
π(ϑk|y)·q(ϑ̃k+1|ϑk)

, 1

)
4. Acceptance criterion: the new state ϑ̃k+1 will be accepted with proba-

bility α
(
ϑ̃k+1 | ϑk

)
if by generating a random sample r from a uniform

distribution U(0, 1) we have α > r, in tht case ϑk+1 = ϑ̃k+1. Otherwise
if α < r the sample will be rejected and so ϑk+1 = ϑk.

5. Repeat steps 2 to 4 until the desired chain length is reached

6. Skip samples relative to the burn-in period, activate thinning and com-
pute the required estimates.

Note that if a symmetric transition proposal density is selected a strong
simplification of Eq. 5.14 is obtained:

α (ϑk+1 | ϑk) = min

(
π (ϑk+1 | y)

π (ϑk | y)
, 1

)
(5.15)

A typical symmetrical distribution is the Gaussian one.
Secondly, π (ϑk | y) is the target of the investigation and one has to recall to
Bayes theorem in order to solve the problem, as shown in Eq. 5.16.

π (ϑk | y) =
π (y | ϑk) · π (ϑk)∫
π (y | ϑk) · π (ϑk) dϑk

∝ π (y | ϑk) · π (ϑk) (5.16)

As always the normalization constant is not available, in particular if many
parameters have to be estimated. Anyway it appears in both numerator and
denominator, so it is neglected. The prior probability is π (ϑk) and π (y | ϑk)
is the likelihood. If we do not have a prior knowledge about the system we
can use a uniform prior probability, thus non informative. In this case a

Markov chain Monte Carlo

further simplification can be done, and the acceptance probability becomes
only function of the likelihood function as follow:

α (ϑk+1 | ϑk) = min

(
π (y | ϑk+1)

π (y | ϑk)
, 1

)
(5.17)

As we shall see, since the measurement are supposed to be affected by a noise
µ ∼ N(0, σ2) normally distributed with zero mean and standard deviation
σ, the likelihood function can take the following form:

π (y | ϑk) = L (ϑk | y) =
1√

2πσ2
· e−

costfunction

2σ2 (5.18)

Again σ is the standard deviation of the uncertainty or noise which is inside
the observations and the cost function is the square error calculated between
the observations and the available model with the proposed parameter inside.

55

Chapter 6

Case studied

6.1 Introduction

In this section the diagnostic framework is going to be exploited to localize
a delamination in a composite panel caused by a low velocity impact. The
diagnostic system is based on sensors (such as strain gauges) placed on the
surface of the panel, these sensors gives information about the strain in the
position they are located. These strains are needed to compute the likelihood
function in the MCMC algorithm, in this way it is possible to build the
Markov chain and finally to solve the inverse problem by computing the pdf
of the damage parameters. Both Kriging and ANN surrogate models will be
implemented in the MCMC algorithm and a statistical analysis of the result
will be carried out in order to know how performances change as a function
of the damage size and noise level. The effectiveness of the tool is verified
through a series of finite element simulations and all the concepts explained
in the previous Chapters will be applied for this specific application.
The Chapter is organized as follow: first MCMC-MH is explained fo this
very application 6.2, then an explanation about how the FE model of the
composite materials shown together on how the training database has been
obtained 6.3. In 6.4 and 6.5 is shown the result of the training process of the
two surrogate models employed. Finally the application to some simulated
cases is shown in 6.6.

6.2 Metropolis-Hasting Markov Chain Monte Carlo: like-
lihood calculation and adaptive proposal

Suppose that a composite panel is mounted aircraft wing and during its op-
eration a low velocity impact occurs causing a delamination among plies of
the material, the goal is to identify the damage parameters (position and di-
mension) real-time, in particular we do not want a deterministic result, but

57

Figure 6.1. Example of the strain field induced in a composite panel, as a consequence of
a delamination.

a probabilistic one, which means that we are interested in the computation
of the probability density function of the damage parameters. At this scope
we can draw samples from the posterior distribution.
As we have seen in Chapter 5, the Markov Chain Monte Carlo Metropolis-
Hasting algorithm is able to sample from the posterior probability, so this
powerful tool can be used for our purpose. Let us suppose the panel we
are talking about is shown in Figure 6.1, the damage parameters we are
interested in are: x, y and r, where x, y are the center coordinates of the
delamination and r is its radius (because as we shall see we suppose to have
circular delamination). We can assign the variable ϑ to the damage param-
eters in a way that ϑ = [x y r]. A set of strain measurements is collected
from sensors, the variable z is assign to them, thus the aim is to sample
from the multivariate posterior distribution p(ϑ|z). It is now proposed again
the likelihood function already shown in Section 5.5 in order to make some
consideration about its form and its error function:

p (z | ϑi) =
1√

2πσ2
· e−

costfunction

2σ2 (6.1)

First it is now time to define clearly what is the cost function: it is the
discrepancy of the real measurements coming from sensors, and the strain
z∗i a delamination with damage parameters sampled by the MCMC at each
i would give. Being ϑ∗ the sample at iteration i, z∗i will be:

z∗i = f(ϑ∗) (6.2)

It is easy to understand that the measurements are always corrupted by a
noise ε. It is reasonable to assume that ε is Gaussian distributed with zero
mean and standard deviation σ as follow:

ε ∼ N(0, σ2) (6.3)

Case studied

thus since z∗i is not corrupted by noise, we can write:

zi = f(ϑ∗) + ε (6.4)

Through these considerations and having more than one sensor, the likelihood
function takes the form of a Gaussian function with error function as shown
below:

p (z | ϑi) =
1√

2πσ2
· e

(
−

∑
i(zi−z

∗
i)

2

2σ2

)
(6.5)

To compute this function we need to know how to obtain the unnoised strain
estimation z∗i , for example through an analytical or numerical model.
To model a delamination in a panel an analytical model is not available,
so finite element (FE) analysis must be used. The most intuitive way to
compute z∗i is, once ϑ∗ has been drawn, running a FE analysis in which the
damage simulated takes the damage parameters contained in the vector ϑ∗.
Although through this methodology we are able to converge toward the de-
sired distribution, in order to compute an entire Markov chain the likelihood
function must be assessed thousands of times, and for each sample a FE
simulation should be run, which implies that thousands of FE simulations
must be carried out. This would increase the computational burden, making
unfeasible a real-time identification. To overcome this issue surrogate mod-
els come to help us. If we train off-line a surrogate model, whether ANN or
Kriging, then we can use it to obtain z∗i as the sample ϑ∗ is drawn.
Till now we have never discussed about the drawing process and the proposal
distribution, except that it is useful to be symmetric in order to simplify the
way to compute the acceptance probability, the acceptance criterion is shown
in Figure 6.2.
Gaussian distribution represents a function from which it is easy to draw
samples and it is symmetric, thus we will use it as proposal distribution.
Since we have sample three parameters the distribution must be a multivari-
ate one, so we cannot define a single standard deviation that characterizes
the distribution but we have to define a covariance matrix. The covariance
matrix is a n × n matrix where n is the number of damage parameters (3
in our case) which define the orientation of the multivariate Gaussian distri-
bution. Since it is suppose that there is no correlation between the damage
parameters it will be a diagonal matrix as follow:

C =

c1 0 0
0 c2 0
0 0 c3

 (6.6)

were ci are the variances of each damage parameter.

59

Figure 6.2. Metropolis-Hasting algorithm acceptance criterion.

Figure 6.3. Case in which it is shown a delamination in the panel and the first sample.

A main problem is related to the tuning of this matrix, in fact C can
be seen as how far from the previous sample (in term of space, since we are
talking about spacial coordinates) a new one can be drawn, the larger the
variance is, the farer could be the new sample and vice versa. By taking as
reference Figure 6.3, we can see that the first sample may be far from the
delamination center, we have to be able to converge toward the desired dis-
tribution without consuming too many iterations. If the variance is too large
the number of samples accepted will be too low, thus the algorithm will not
converge toward the most probable damage parameters distribution. On the
other hand if the variance is too small the acceptance rate will be very high,
as a consequence the number of iteration needed to the stationary distribu-
tion will be too high. The ideal situation requires to have a larger variance
at the initial stage in order to have larger proposal steps, and then having a
lower variance as we approach the zone with an higher likelihood.This issue
is overcame by adopting an adaptive proposal covariance matrix [35]. This
method, shown in Figure 6.4, allows to recompute the covariance matrix af-

Case studied

ter a certain number of iteration U (called update frequency) by using the
residuals of the last H samples (memory).

Figure 6.4. Metropolis-Hasting algorithm adaptive proposal algorithm.

6.3 Composite FE model

As we have seen, running a FE analysis for each sample of the Markov chain
is computationally prohibitive, thus a surrogate model is needed for a fast
evaluation of the likelihood. Independently from the surrogate chosen a data
set is needed to be created in order to train the neural network or the Krig-
ing model, and so to learn the relationship between the input parameters
ϑ = [x y r] and the observed strain ε = [ε1, .., εi, ..εn]. This data set can
come either from experiments or simulations. The path chosen in this work
is to run a series of FE simulations off-line, in which the damage position
and dimension is varied and strains at the sensors’ locations are extracted.
The layup of the carbon fiber reinforced plastic (CFRP) is an 18 symmetric
plies as follow [45,−45, 0, 45,−45,−45, 45, 90, 0]S, the feature of the panel
are shown in table 6.1 while the mechanical properties in table 6.2.
The panel detailed model shall establish a relationship between the param-
eters space θ and the observable variables space ε. Once the relationship is
identified, one should be able through the M-H MCMC algorithm integrated
with a surrogate model, trained based on a detailed (FE) panel model, to
get back and estimates the parameters posterior pdf when a measure of the
variables is given. Naturally, the chosen variables have to exhibit some sensi-

61

Panel length [mm] Panel width [mm] Panel thickness [mm] Ply thickness [mm]
400 270 3.6 0.2

Table 6.1. Panel features.

E11 [MPa] E22 [MPa] G12 [MPa] G13 [MPa] G23 [MPa] ν [MPa]
157487 9946 4950 4950 3209 0.24

Table 6.2. Panel properties.

tivity to the parameters variation. Ergo, while the detailed surrogate models
allow to relate the parameters space to the observable variables space, M-H
MCMC enables to solve the inverse solution. The panel features the damage
parameters θ, to be identified are those which univocally characterize the
impact damage [36], and the observed variables are represented by some of
the strain field components on the panel outermost plies. On the surface of
the panel two strain components are present ε11 and ε22. Since we have to
decide which component we have to consider, a sensitivity analysis in which
it is studied how strains are affected as a function of the distance from a
delamination is carried out. These results are shown in Figure 6.6 in which
the strains trend are shown for a central delamination for points which moves
along the y axis with x = −40 as shown in Figure 6.5. From this study
it is clear that the external ply strain component which exhibits the highest
sensitivity to the damage parameters is ε22, i.e. the strain along the panel
longitudinal direction, thus to train the surrogate model only this compo-
nent has been taken into account, since in real word application the sensor
coverage must be minimized for cost and weight saving.
The sensor location is chosen in order to avoid an overlapping between a
sensor and the delamination as shown in Figure 6.7. The number of sensor
chosen is 18 and the placement is equally spaced among the edge. As proved
by [36],when an impact occurs and a delamination is created its shape is not
constant over the panel thickness, and it strongly depends upon the layup.
In order to avoid this type of model complexity, a simplified model of the
impact damage has been considered:

• The delamination size is equal for all plies

• The delamination has a circular shape so the size is characterized by
its radius RDEL

In order to well characterized the damage not only a delamination has been
introduced, but also a damage of the fiber and the matrix respectively are
introduced (intra-laminar damage). In order to take into account the intra-

Case studied

Figure 6.5. The red x are the points in which strains are measured as a function of the
delamination radius un a tensile load.

(a) (b)

Figure 6.6. (a) ε11 trend for various y distances and for different damage of the fiber,
while (b) shows ε22 trend for various y distances and for different damage of the fiber.

laminar damage two coefficients df , dm related to the damage of the fiber
and matrix are introduced. A directed consequence of these damages is that
the stiffness of the panel reduces, the following stiffness degradation scheme
is considered:

Ẽ11 = (1− df)E11 (6.7)

Ẽ22 = (1− df)(1− dm)E22 (6.8)

63

G̃12 = (1− df)(1− dm)G12 (6.9)

The damaged area shown in Figure 6.5 is modeled as follow :

• A circular shaped delamination area is introduced over the whole thick-
ness of the panel having radius RDEL in which the damage indexes
assumes the values shown in table 6.3.

• A smaller circular area (impact location area), concentric with the de-
lamination one, having radius R0 equal to RDEL/3 in which the damage
indexes are the highest (table 6.3).

df dm R

Delamination area 0.5 0.5 RDEL
Impact location 0.9 0.9 RDEL/3

Table 6.3. Damage feature.

The finite element (FE) model is built up with Abaqus, and being the layup
symmetric and the loading and boundary conditions of the panel are sym-
metric too, the two outermost surfaces are being characterized by the same
strain field. The load the panel is subjected, is kept constant for each damage

Figure 6.7. Sensors position on the panel.

Case studied

simulated, thus it is not considered in the damage parameters matrix. To
model each ply continuum shells (SC8R element) has been used. Between
adjacent plies a narrow-band of vanishing thickness (0,001mm), named the
cohesive zone, is inserted (Figure 6.8). Adjacent plies are connected to these
cohesive layers via tie constraints, except for the zones in which delami-
nation has occurred, which are tie-free. Here, the cohesive zone modeling
(CZM) is exploited for the delamination modeling only [37]. Impact damage
is taken into consideration by adjusting the plies stiffness in the impact area,
according to matrix and fiber damage indexes and considering the stiffness
degradation scheme described previously. The force is 10kN and it is ap-
plied longitudinally at one of the free ends, while the other one is clamped.
An adaptive mash is adopted in order to have a smaller mesh size in the
neighborhood of the delamination and a coarser one far from it, as shown in
Figure 6.9.
The training set is the same for both ANN and Kriging, and it is generated
from several FE simulations in which position and dimension of the delam-
ination is changed, in particular the damage position parameters (x, y) are
the delamination center, while the size is RDEL. In order to achieve a good
training a specific surrogate model is trained for each sensor, so we will have
eighteen committees of neural networks and eighteen Kriging models. The
dataset is composed by:

• A N ×M input matrix ϑINPUT in which N is the number of simulated

(a) (b)

Figure 6.8. (a) Panel in which the inner circle is the impact zone, the external one is the
delamination induced zone, (b) cohesive layer modeling.

65

(a) (b)

(c)

Figure 6.9. (a) FE adaptive mesh, (b) external ply resulting ε11 strain field, (b) external
ply resulting ε22 strain field.

delamination (data set size) and M is the number of damage parameters
(x, y, RDEL).

• An output N × 1 vector ZOUTPUT which contains the strain response
caused by each delamination at the specific sensor location.

Both of them are obtained via finite element. In table 6.4 it is shown the
step in which the delamination parameters are varied and Figure 6.10 it is

Case studied

Figure 6.10. Delamination positions used to generate the training data set.

RDEL x[mm] y [mm] Combinations
10:2:30 -84:21:84 -150:25:150 1507

Table 6.4. Bounds and step size of the discretized parameter space.

possible to see them from a graphical point of view, while in eq. 6.10 and 6.11
it is shown how the input-output matrices are formed. It must be precise
that not all the delaminations present in the table have been simulated by
FE, in fact they have been simulated in only a quarter of the panel, then
through symmetries with respect to the axises the complete dataset has been
created.

ϑINPUT =

x1 y1 R1

. . .

. . .

. . .
xN yN RN

 (6.10)

ZOUTPUT =

ε122
.
.
.
εN22

 (6.11)

where N is equal 1507 (number of total delaminations simulated). Again
the training is done for each single sensor. Now we are able to train our

67

surrogate models in order to learn the relationship zi = f(xi, yi, Ri), between
the damage parameters matrix ϑINPUT and ZOUTPUT .

6.4 Kriging training

(a)

(b)

Figure 6.11. (a) Scatter plot of the test delaminations of sensor 4 , (b) Scatter plot of the
test delaminations of sensor 5. The dotted green line is the fitting line, while the dotted
magenta lines represent the 95% confidence interval.

Case studied

The data set created with FE includes a number of 1507 delaminations of
various positions and dimensions, however not all of them were used as data
training points but 15% of them (randomly selected) were used as testing
points, which means points used to check the goodness of the training. A
worth consideration must be done about Kriging training. The prediction
strongly depends upon the values found in the optimization process shown
in equation 3.65 in which the likelihood function is derived with respect
hyperparameters. Actually the likelihood is a very complex function since it
is a function f : R3 → R1 thus multiple local minimum are present, and each
one can return different results in the prediction process. As a consequence
of this, the optimum point returned by the software strongly depends on the
starting point, so it was up to us finding the proper optimum point. To check
the precision of the training scatter plots of the test set were plotted for each
sensor, some examples are given in Figure 6.11.

6.5 ANN committee training

Figure 6.12. ANN structure.

A ANN multilayer perceptrons is fed with data obtained from FE simula-
tions, the layout chosen is the simplest one: a sigmoid function in the hidden
one, and a linear function in the output layer as shown in Figure 6.12.
Since the damage parameters-strain relation is quite complex, one single neu-

69

ral network is not able to learn accurately the relationship, thus a committee
is required, in fact as shown in section 4.5, the committee error is lower than
the single neural network, furthermore through committee we are not em-
ploying a deterministic surrogate model, but we are switching to a statistical
model, since we are able to compute mean and variance of the distribution
of networks, and then we are able to compare these features with respect to
Kriging.
To make up our the surrogate model we need to define: the number of neu-
ron, and the number networks in the committee.
The number of neuron should minimize the root-mean-squared error (RMSE)
with respect to the training and testing points, and contemporary avoid over-
fitting. In order to avoid over fitting early-stopping is adopted, thus the
dataset is divided into three subsets: training, validation and test sets with
a 70%, 15%, 15% proportions respectively. To choose the number of neuron
the trend of the RMSE as a function of the neuron number has been studied
and as shown in Figure 6.13 from 60 neurons on, we have that the RMSE
remains constant, thus 60 will be the number of hidden neurons chosen.

Figure 6.13. RMSE versus hidden units.

The number of networks per committee has been decided upon two conflict-
ing requirements: first we need to have a good generalization and to reduce
the RMSE, second we need to maintain low the computational effort, since
running more ANNs is much more time consuming. To satisfy both of them
20 networks have been employed. In order to check if the training process
has achieved a good result, an example of the scatter plot of the test set for

Case studied

(a)

(b)

Figure 6.14. (a) Scatter plot of the test delaminations of sensor 4 , (b) Scatter plot of the
test delaminations of sensor 5. The dotted green line is the fitting line, while the dotted
magenta lines represent the 95% confidence interval.

sensor 4 and 5 are shown in Figure 6.14.
We can observe that ANN committee has a better fitting results than Krig-
ing.

71

6.6 Application to impact damage

It is now time to apply all the concepts explained to a simulated delamination
damage. As already said MCMC is used to solve the inverse problem: com-
puting the posterior pdf of each damage parameter p(ϑ|z) once observations
of z in form of strain measurement on the surface of the panel are available.
In order to generate a wide range of cases of various position and dimension,
100 delamination were retrieve from FE simulations in which strain measure-
ments at the sensor positions were collected and then smeared with Gaussian
noise. In particular half of the delamination chosen where taken from the
dataset used to trained the surrogates and then smeared with Gaussian noise,
the other half was obtained by running new FE simulations in order to have
a completely new delamination locations not coincident with the one used
to train the surrogate. In order to understand the performance of the diag-
nostic system when data are affected by noise (measurements always are),
three level of noise were investigated: 1%, 2%, 3%, these noises represent two
times the standard deviation of a normal distribution with mean centered in
the measure itself, as follow:

σ = εmeas ∗ 1% (6.12)

ε∗meas ∼ N(εmeas, σ
2) (6.13)

Let’s start by showing in Figure 6.15 the Markov chain obtain from a simu-
lation by using both Kriging surrogate model, together with the pdf we can

Figure 6.15. Markov chains of the three damage parameters using Kriging surrogate model.

Case studied

(a) (b)

(c)

Figure 6.16. (a) x coord. distribution, (b) y coord. distribution, (c) radius distribution
with noise level of 1%, the red dotted line is the true value, Kriging surrogate model is
used.

derive from. In the example shown in Figure 6.15 there is a MCMC chain
of a delamination with the following damage parameter: θ = [42, 45, 26] and
noise level equal to 1%, and in Figure 6.16 it is possible to see the pdf of the
three damage parameters obtained from those chains.
To compute the pdf the burn in period has been discarded, only half of the
chain has been kept, and only one sample each 10 has been considered (thin-
ning process).
Two main information can be extrapolated from each distribution:

• First we can compare the real feature with respect the mode of the
distribution, in this way we can know the accuracy of the system for
that specific case.

• We can compute the interval dispersion around the mode, which is the
interval in which 95% of the data are contained, in order to compute the
precision of the system. As a matter of fact the result may be accurate

73

Figure 6.17. Markov chains of the three damage parameters with noise level of 2%, using
Kriging surrogate model.

but at the same time not precise. It means that if the distribution
was a Gaussian one, the standard deviation would be quite high, if the
distribution is not Gaussian, the two percentiles at 5% and 95% are
needed to compute the dispersion intervals.

One of the aim of this work is to understand the noise effect on perfor-
mances. As first observation in Figures 6.17 and 6.18 are shown the MCMC
chains of the three damage parameters of the same delamination shown in
Figure 6.15 but this time with an higher level noise. By comparing these
two cases it is clear that the probability distributions become larger and less
tall, which means that at least the precision (dispersion around the mode)
becomes worse. In this case the likelihood is not able to reach a location
with a real maximum.
In order to know how noise on measurement affects both accuracy and pre-
cision, we can run all the 100 delaminations with each noise value, and it
is possible to see how precision and accuracy change as a function of it. In
particular the statistical database is built as follow:

• Select the noise level wanted.

• Run all the 100 delaminations ten times, in order to sample a different
noise combination for each sensor each times.

• For each pdf obtained, compute the error between the mode and real
value, and the dispersion interval

• Change the noise level and repeat step 2.

Case studied

(a) (b)

(c)

Figure 6.18. (a) x coord. distribution, (b) y coord. distribution, (c) radius distribution
with noise level of 2%, the red dotted line is the true value, Kriging surrogate model is
used.

Following this procedure the total number of delaminations simulated is 3000,
and we have a database of errors and dispersions as a function of the noise,
by observing from Figures 6.19 to 6.22 we can conclude that :

• As the noise level increases the dispersion and error percentile becomes
more and more larger.

• The dispersion along the y direction is much wider than the other two
even though the error is not very high.

• These trends are quite similar between ANN and Kriging.

Even though the mean value of a Markov chain could be similar to the actual
one (good accuracy), having an high dispersion means that the MCMC is
not able to converge toward a region in which the likelihood is maximum
which implies that the simulated noised strains are very different from those
returned by the surrogate. This situation is particularly true when we are in

75

(a) (b)

(c)

Figure 6.19. (a) x coord. error distribution, (b) y coord. error distribution, (c) radius
error distribution, the red dotted line is the 95% percentile, Kriging surrogate model is
employed.

presence of small delaminations placed in the middle of the panel far from
the sensors, so the strains registered by them are low, and the noise injected
can have a great influence on measurements. By excluding progressively
small delaminations from the data base, it is possible to obtain a sensitivity
analysis of the system to the delamination size. In the following tables are
shown the trends of the 95% percentile of the error e and dispersion d as a
function of the radius of the delamination. From the graphs shown from
Figure 6.23 to Figure 6.28, in which it is shown the 95% percentile trend of
the error and dispersion of each damage parameter, it is clear that the dam-
age parameter which is more affected by the noise and the radius size is the
y coordinate. In particular the best performance in terms of accuracy and
precision is achieved when the noise level is minimum and the delamination
dimension range is high, but as we approach an higher noise level and we
take into account also smaller delamination we have a strong increment of
both error and dispersion, confirming that low dimension delamination are

Case studied

(a) (b)

(c)

Figure 6.20. (a) x coord. dispersion, (b) y coord. dispersion, (c) radius dispersion, the
red dotted line is the 95% percentile, Kriging surrogate model is employed.

difficult to be identified with a good level of accuracy and precision, in fact
even though the noise level is high (which means bad measure) but the ra-
dius is high as well we still have an acceptable result in terms of localization
performance.
About the surrogate model employed, we can observe that there is no a
significant difference between using Kriging or ANN committee from a per-
formance point of view, but a significant difference is present in terms of
computational time required to localize the damage. In fact the time re-
quired to ANN is much higher than Kriging to compute a Markov chain. In
table 6.5 are shown the time require for both of them to compute a Markov
chain with 5000 samples.

77

(a) (b)

(c)

Figure 6.21. (a) x coord. error distribution, (b) y coord. error distribution, (c) radius error
distribution, the red dotted line is the 95% percentile, ANN surrogate model is employed.

Kriging time [s] ANN time [s]
52.8 377.4

Table 6.5. Time required to compute an entire Markov chain.

Case studied

(a) (b)

(c)

Figure 6.22. (a) x coord. dispersion, (b) y coord. dispersion, (c) radius dispersion, the
red dotted line is the 95% percentile, ANN surrogate model is employed.

Figure 6.23. (a) Error percentile trend along the y coordinate for different noise level and
delamination dimensions considered using Kriging surrogate model, (b) dispersion per-
centile trend along the y for different noise level and delamination dimensions considered
using Kriging surrogate model.

79

Figure 6.24. (a) Error percentile trend along the y coordinate for different noise level
and delamination dimensions considered using ANN committee surrogate model, (b) dis-
persion percentile trend along the y for different noise level and delamination dimensions
considered using ANN committee surrogate model.

Figure 6.25. (a) Error percentile trend along the x coordinate for different noise level and
delamination dimensions considered using Kriging surrogate model, (b) dispersion per-
centile trend along the y for different noise level and delamination dimensions considered
using Kriging surrogate model.

Case studied

Figure 6.26. (a) Error percentile trend along the x coordinate for different noise level
and delamination dimensions considered using ANN committee surrogate model, (b) dis-
persion percentile trend along the x for different noise level and delamination dimensions
considered using ANN committee surrogate model.

Figure 6.27. (a) Error percentile trend of the radius r for different noise level and delam-
ination dimensions considered using Kriging surrogate model, (b) dispersion percentile
trend along the radius r for different noise level and delamination dimensions considered
using Kriging surrogate model.

81

Figure 6.28. (a) Error percentile trend of the radius r for different noise level and de-
lamination dimensions considered using ANN committee surrogate model, (b) dispersion
percentile trend along the radius r for different noise level and delamination dimensions
considered using ANN committee surrogate model.

Chapter 7

Conclusion

7.1 Summary of the algorithm and results

In this final chapter a review of all observations caught over the entire work
has been done, furthermore some potential future development will be pro-
posed.
First it is useful to recall the elements of novelty of the work: coupling
surrogate models to a MCMC algorithm in order to localize and quantify
a delamination in a CFRP and analyze the performances of the system in
terms of accuracy and precision as a function a the damage size. The usage
of surrogate models instead of a numerical tool such as FE method is indis-
pensable in order to reduce the computational time and make the real-time
diagnosis possible.
The algorithm can be summarized as follow: at each iteration a sample is
drawn attempting to identify the damage parameters (position and dimen-
sion). Each time a sample is drawn, a likelihood function is evaluated, this
function gives an indication of the similarity between the real strain mea-
surements and those simulated by the surrogate model receiving as input
the damage parameters just drawn. In this work two surrogate models are
employed: Kriging and artificial neural networks committee. Iteration after
iteration it is possible to build up a chain of samples which converges toward
the support partition with the highest likelihood, enabling to solve the in-
verse problem. It is important to remind that the damage localization has
been applied under a probabilistic framework and not deterministic, and the
real-time application is guaranteed by the surrogate model and not by the
physics-based model.
Both ANN and Kriging were trained using the same training points, and
scatter plots were done upon the same testing points. These graphs show
that ANN committee has a slight better learning performance than Kriging.
This is due to the fact that Kriging, being a kernel based algorithm, may
show a lack of generalization when it has to deal with high variability func-

83

tions, this situation can occur with large dimension delaminations located
near the sensors.
To check the ability of the framework to localize a delamination, several de-
lamination cases smeared with random noise of various levels have been run.
For each case the error between the real damage parameter values and the
estimated ones by the MCMC was computed together with the interval in
which 95% of the data were included. The next step was to make a statis-
tical analysis of these results as shown at the end of chapter 6. The results
show that as the noise level which affects the measurements increases, both
accuracy and precision become worst. This fact is particularly accentuate if
we have to localize small size delaminations, while if the delamination size
becomes higher we still have an acceptable results although the noise level
may be high.
Although the performances in terms of accuracy and precision are quite sim-
ilar between ANN committee and Kriging, a big discrepancy is present in
terms of identification time, in fact implementing a Kriging surrogate model
in a Markov-Chain Monte Carlo algorithm requires a time over than five
times lower than using ANN committee.
Another main differences between ANN committee and Kriging are, in my
opinion, constituted by the implementation process of these models, rather
than the detection performance. ANN committee, other than having a longer
Markov-Chain time consumption, requires a longer training time, in fact 20
ANN must be trained (for each sensor) with respect just one Kriging model
to learn the same function. On the other hand being Kriging based on a ma-
trix inversion, the training set cannot be too large (not higher than 10000),
while ANN does not show this kind of problem (it must be said, however,
that there exist some approximation techniques, such as the ’Subset of Re-
gressors’, which enable Kriging to handle also large datasets).

7.2 Future development

A list of possible future developments is proposed:

• Verify experimentally that the damage simulated in the panel could
be real, in fact the sensitivity achieved in this work depends upon the
values of damage induced in the fiber and the matrix, if the fiber and
matrix damages are much different the sensitivity will change a lot.

• Validate experimentally the diagnostic system.

• Incorporate to this framework a prognostic one through a particle filter,
in which a damage evolution model is included, able to make prognosis
and to estimate the RUL of the component.

References

[1] S. Sanchez-Saez, E. Barbero, R. Zaera, and C. Navarro, “Compression
after impact of thin composite laminates,” Composites Science and Tech-
nology, vol. 65, no. 13, pp. 1911–1919, 2005.

[2] T. Loutas, N. Eleftheroglou, and D. Zarouchas, “A data-driven proba-
bilistic framework towards the in-situ prognostics of fatigue life of com-
posites based on acoustic emission data,” Composite Structures, vol. 161,
pp. 522–529, 2017.

[3] J. Yang, G. Sha, Y. Zhou, G. Wang, and B. Zheng, “Statistical pattern
recognition for structural health monitoring using esn feature extraction
method,” International Journal of Robotics and Automation, vol. 33,
no. 6, pp. 569–576, 2018. cited By 0.

[4] A. Mondal, Y. Efendiev, B. Mallick, and A. Datta-Gupta, “Bayesian
uncertainty quantification for flows in heterogeneous porous media using
reversible jump markov chain monte carlo methods,” Advances in Water
Resources, vol. 33, no. 3, pp. 241 – 256, 2010.

[5] Y. Huang, C. Shao, B. Wu, J. Beck, and H. Li, “State-of-the-art review
on bayesian inference in structural system identification and damage as-
sessment,” Advances in Structural Engineering, vol. 22, no. 6, pp. 1329–
1351, 2019. cited By 3.

[6] C. Jiang, H. Qiu, L. Gao, D. Wang, Z. Yang, and L. Chen, “Real-
time estimation error-guided active learning kriging method for time-
dependent reliability analysis,” Applied Mathematical Modelling, vol. 77,
pp. 82–98, 2020. cited By 4.

[7] P. Wei, C. Tang, and Y. Yang, “Structural reliability and reliability sen-
sitivity analysis of extremely rare failure events by combining sampling
and surrogate model methods,” Proceedings of the Institution of Me-
chanical Engineers, Part O: Journal of Risk and Reliability, vol. 233,
no. 6, pp. 943–957, 2019. cited By 0.

[8] X. Zhao, H. Gao, G. Zhang, B. Ayhan, F. Yan, C. Kwan, and J. L. Rose,
“Active health monitoring of an aircraft wing with embedded piezo-

85

electric sensor/actuator network: I. defect detection, localization and
growth monitoring,” Smart Materials and Structures, vol. 16, pp. 1208–
1217, jun 2007.

[9] C. Boller and N. Meyendorf, “State-of-the-art in structural health mon-
itoring for aeronautics.”

[10] J. Lopez-Higuera, L. Rodriguez, A. Quintela, A. Cobo, F. Madruga,
O. M. Conde, M. Lomer, and J. MIrapeix, “Fiber optics in structural
health monitoring,” Proceedings of SPIE - The International Society for
Optical Engineering, vol. 7853, 11 2010.

[11] O. K. Ihesiulor and Z. Zhang, “Effectiveness of artificial neural net-
works and surrogate-assisted optimization techniques in delamination
detection for structural health monitoring,” in 10th IASTED Inter-
national Conference on Visualization, Imaging, and Image Processing,
July, pp. 3–5.

[12] R. J. Barthorpe, On model-and data-based approaches to structural
health monitoring. PhD thesis, University of Sheffield, 2010.

[13] D.-A. Tibaduiza, M.-A. Torres-Arredondo, L. Mujica, J. Rodellar, and
C.-P. Fritzen, “A study of two unsupervised data driven statistical
methodologies for detecting and classifying damages in structural health
monitoring,” Mechanical Systems and Signal Processing, vol. 41, no. 1,
pp. 467 – 484, 2013.

[14] E. Z. Moore, J. M. Nichols, and K. D. Murphy, “Model-based shm:
Demonstration of identification of a crack in a thin plate using free vibra-
tion data,” Mechanical Systems and Signal Processing, vol. 29, pp. 284
– 295, 2012.

[15] F. Lorenzoni, F. Casarin, M. Caldon, K. Islami, and C. Modena, “Un-
certainty quantification in structural health monitoring: Applications on
cultural heritage buildings,” Mechanical Systems and Signal Processing,
vol. 66-67, pp. 268 – 281, 2016.

[16] S. S. Kessler, S. Spearing, M. J. Atalla, C. E. Cesnik, and C. Soutis,
“Damage detection in composite materials using frequency response
methods,” Composites Part B: Engineering, vol. 33, no. 1, pp. 87 –
95, 2002.

[17] A. D’Alessandro, M. Rallini, F. Ubertini, A. L. Materazzi, and J. M.
Kenny, “Investigations on scalable fabrication procedures for self-sensing
carbon nanotube cement-matrix composites for shm applications,” Ce-
ment and Concrete Composites, vol. 65, pp. 200 – 213, 2016.

References

[18] P. Diaz Montiel, L. Escalona, and S. Venkataraman, “Explo-
ration of surrogate models for inverse identification of delamination
cracks in composites using electrical resistance tomography,” in 58th
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materi-
als Conference, p. 0199, 2017.

[19] J. E. Warner, J. D. Hochhalter, W. P. Leser, P. E. Leser, and J. A.
Newman, “A computationally-efficient inverse approach to probabilistic
strain-based damage diagnosis,” 2016.

[20] C. Sbarufatti, A. Manes, and M. Giglio, “Performance optimization of a
diagnostic system based upon a simulated strain field for fatigue damage
characterization,” Mechanical Systems and Signal Processing, vol. 40,
pp. 667–690, 11 2013.

[21] X. Yang, X. Guo, H. Ouyang, and D. Li, “A kriging model based finite el-
ement model updating method for damage detection,” Applied Sciences,
vol. 7, p. 1039, 10 2017.

[22] T. Mukhopadhyay, S. Naskar, S. Dey, and S. Adhikari, “On quantifying
the effect of noise in surrogate based stochastic free vibration analysis
of laminated composite shallow shells,” vol. 140, 4 2016.

[23] G. Yan, “A bayesian approach for impact load identification of stiffened
composite panel,” Inverse Problems in Science and Engineering, vol. 22,
no. 6, pp. 940–965, 2014.

[24] T. Peng, A. Saxena, K. Goebel, Y. Xiang, S. Sankararaman, and Y. Liu,
“A novel bayesian imaging method for probabilistic delamination de-
tection of composite materials,” Smart Material Structures, vol. 22,
pp. 5019–, 12 2013.

[25] R. Ghiasi, M. R. Ghasemi, and M. Noori, “Comparative studies of meta-
modeling and ai-based techniques in damage detection of structures,”
Advances in Engineering Software, vol. 125, pp. 101 – 112, 2018.

[26] F. Cheng, J. Yu, and H. Xiong, “Facial expression recognition in jaffe
dataset based on gaussian process classification,” IEEE Transactions on
Neural Networks, vol. 21, pp. 1685–1690, Oct 2010.

[27] M. Seeger, “Gaussian processes for machine learning,” International
journal of neural systems, vol. 14, no. 02, pp. 69–106, 2004.

[28] C. M. Bishop, Pattern recognition and machine learning. Springer Sci-
ence+ Business Media, 2006.

[29] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning, vol. 2. MIT press Cambridge, MA, 2006.

87

[30] C. M. Bishop et al., Neural networks for pattern recognition. Oxford
university press, 1995.

[31] D. Gamerman, “Sampling from the posterior distribution in generalized
linear mixed models,” Statistics and Computing, vol. 7, no. 1, pp. 57–68,
1997.

[32] A. Smith, Sequential Monte Carlo methods in practice. Springer Science
& Business Media, 2013.

[33] P. Diaconis and L. Saloff-Coste, “Walks on generating sets of groups,”
Inventiones mathematicae, vol. 134, no. 2, pp. 251–299, 1998.

[34] C. Robert and G. Casella, Monte Carlo statistical methods. Springer
Science & Business Media, 2013.

[35] H. Haario, E. Saksman, and J. Tamminen, “Adaptive proposal distribu-
tion for random walk metropolis algorithm,” Computational Statistics,
vol. 14, no. 3, pp. 375–396, 1999.

[36] T.-W. Shyr and Y.-H. Pan, “Impact resistance and damage charac-
teristics of composite laminates,” Composite structures, vol. 62, no. 2,
pp. 193–203, 2003.

[37] E. Panettieri, D. Fanteria, and F. Danzi, “Delaminations growth in com-
pression after impact test simulations: Influence of cohesive elements
parameters on numerical results,” Composite Structures, vol. 137, 11
2015.

	Ringraziamenti
	Abstract
	Introduction
	State of the art
	Introduction
	An overview of structural health monitoring
	Data-driven approach
	Model-based approach

	Uncertainty quantification in SHM
	SHM: current studies

	Gaussian Processes
	Introduction
	Bayesian Modelling

	Introduction to polynomial curve fitting
	Introduction to statistics
	Probability
	Bayes' theorem
	Bayesian probability

	Linear regression models
	Bayesian linear regression
	Parameter distribution
	Predictive distribution
	Equivalent kernel

	Gaussian processes
	Linear regression revisited
	Gaussian processes for regression
	Learning the hyperparametres
	Incorporating explicit basis function
	Effect of hyperparmeters: GP in practice

	Artificial Neural Network
	Introduction
	The artificial neuron: single perceptron
	The feed-forward multi-layer perceptron (MLP)
	Learning in multi-layer perceptron
	The error back-propagation
	Issues in ANN learning
	ANN structure definition
	The momentum coefficient
	Generalization and overfitting

	Uniqueness of solution and ANN committees

	Markov chain Monte Carlo
	Rejection sampling
	Importance sampling
	Markov Chain Monte Carlo
	Markov chain definitions
	Metropolis-Hastings algorithm

	Case studied
	Introduction
	Metropolis-Hasting Markov Chain Monte Carlo: likelihood calculation and adaptive proposal
	Composite FE model
	Kriging training
	ANN committee training
	Application to impact damage

	Conclusion
	Summary of the algorithm and results
	Future development

	References

