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Sommario

Sistemi in grado di raccogliere dati, comunicare e rispondere in tempo reale sono
componenti critiche per la realizzazione di una collaborazione uomo-robot sicura ed efficace
per applicazioni manufatturiere in future “smart factories”. È quindi di fondamentale
importanza una perfetta integrazione di strumenti cognitivi, di rilevamento e previsione
all’interno della struttura di controllo del robot. Inoltre, il robot è inserito in un contesto
manufatturiero eterogeneo, caratterizzato dalla presenza sia di operatori che di attrezzatura.
L’obiettivo di questa tesi è, quindi, lo sviluppo di una cosiddetta Proactive Adaptive Collab-
oration Intelligence (PACI) e di una logica di switch, componenti centrali dell’architettura
di controllo proposta. Grazie a questo approccio, gli autori intendono conferire al robot la
capacità di adattare i propri movimenti dinamicamente sulla base delle traiettorie definite
offline e del comportamento rilevato dell’operatore. La sfida sta quindi nello sviluppo
di capacità decisionali avanzate finalizzate ad ottenere un sistema robotico innovativo,
in grado di comprendere la specifica situazione in cui si trova e reagire di conseguenza,
rispettando i requisiti di sicurezza e garantendo alti livelli di produttività.

Gli autori hanno scelto di utilizzare ROS Melodic Morenia (sistema operativo: Ubuntu
18.04 Bionic Beaver) in quanto rappresenta uno standard per la ricerca robotica e assicura
grande scalabilità e manutenibilità del sistema. La struttura di controllo, sviluppata
all’interno di questa piattaforma, presenta le seguenti caratteristiche: flessibilità (adatta
ad un ampio spettro di applicazioni), accessibilità (interfaccia user friendly), modularità
(tecniche di offline planning, soluzioni di controllo e comportamento selezionabili e facilmente
espandibili), sicurezza e produttività. I comportamenti reattivi del robot sono stati ottenuti
tramite una logica di switch che sfrutta funzioni di costo per attivare in tempo reale il
controller più adatto alla situazione. Il “costo di attivazione” è valutato sulla base di
dati relativi a sicurezza (distanza dall’operatore o altri ostacoli) e produttività (ritardi
di produzione registrati). Sfruttando librerie open-source (MoveIt!), i moduli di controllo
sviluppati hanno dimostrato alti livelli di modularità e flessibilità. Un banco di prova
con hardware-in-the-loop (e.DO robot) e percezione dell’operatore emulata è stato, infine,
sfruttato per validare le performance del sistema soggetto a diversi livelli di interazione
uomo-robot.

Questa tesi si inserisce in un contesto di collaborazione internazionale ed è stata
svolta presso University of Florida (Gainesville, FL, USA). I risultati di questo lavoro
rappresentano il punto di partenza per un progetto di ampio respiro chiamato “Intelligent
Human-Robot Collaboration for Smart Factory” e finanziato dal programma NSF-NRI.
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Abstract

To enable safe and effective human-robot collaboration (HRC) in smart manufacturing,
seamless integration of sensing, cognition and prediction into the robot controller is critical
for real-time awareness, response and communication. Further complicating matters, the
robot is co-operating within a heterogeneous manufacturing environment (robots, humans,
equipment). Therefore, the specific research objective of this thesis is to provide the robot
Proactive Adaptive Collaboration Intelligence (PACI) and switching logic within its control
architecture. That is, give the robot the ability to optimally and dynamically adapt its
motions given a priori knowledge and predefined execution plans for its assigned tasks,
and detected human actions. The challenge lies in augmenting the robot’s decision-making
process to have a greater situation awareness and to yield robot behaviors/reactions subject
to different human-robot actions while simultaneously maintaining safety and production
efficiency.

The work was carried out using ROS Melodic Morenia (running on Ubuntu 18.04
Bionic Beaver) since it is today’s standard platform for robotic research and ensures great
scalability and maintainability of the system. Inside this framework, a control architecture
was developed to have features: flexibility (suitable for a large range of applications),
accessibility (user friendly interface), modularity (selective and expandable path planning
techniques, high-level controllers, behavior definitions), safety and productivity. Robot
reactive behaviors were achieved via cost function-based switching logic activating the best
suited high-level controller. The cost is a function of safety (e.g., obstacle/human proximity)
and productivity (e.g., induced time delays). Leveraging the availability of numerous path
planning and robot controllers in existing open-source robot libraries (MoveIt!), the PACI’s
underlying segmentation and switching logic framework was demonstrated to yield a high
degree of modularity and flexibility. Using a hardware-in-the-loop testbed setup, the
performance of the developed control architecture subjected to different levels of human-
robot interactions was validated in the University of Florida e.DO robot testbed, simulating
perception of the human operator.

This research has been carried out at University of Florida (Gainesville, FL, USA),
member of a multi-university/industry international collaboration. It represents the starting
point for a long-term project funded by NSF-NRI and called “Intelligent Human-Robot
Collaboration for Smart Factory”.

xviii



Chapter 1

Introduction

Recent advancements in sensing, computational intelligence, and big data analytics
have been rapidly transforming and revolutionizing the manufacturing industry towards
robot-rich and digitally connected factories. However, effective, efficient and safe coordina-
tion between humans and robots on the factory floor has remained a significant challenge.
Further complicating matters, the robot is co-operating within a heterogeneous manufactur-
ing environment (robots, humans, equipment). To enable safe and effective human-robot
collaboration (HRC), seamless integration of sensing, cognition and prediction into the
robot controller is critical for real-time awareness, response and communication.

This thesis focuses on human-robot collaboration for a smart factory with the research
objective to provide the robot Proactive Adaptive Collaboration Intelligence (PACI) and
switching logic within its control architecture. That is, give the robot the ability to
optimally and dynamically adapt its motions given a priori knowledge and predefined
execution plans for its assigned tasks, and detected human actions. The challenge lies
in augmenting the robot’s decision-making process to have a greater situation awareness
and to generate robot behaviors/reactions subject to different human-robot actions while
simultaneously maintaining safety and production efficiency.

The authors of this thesis chose to exploit ROS (Melodic Morenia) running on Ubuntu
18.04 Bionic Beaver, since it is today’s standard platform for robotic research and allows
the development of a scalable system, easily adaptable to several robotic cells, while
guaranteeing high levels of maintainability of the system itself. To validate and expand
upon the multi-objective, decision-making algorithm methodology established in prior
work [6], a control architecture was developed to have features: flexibility (applicable to a
large range of applications), accessibility (user friendly interface), modularity (selective and
expandable path planning techniques, high-level controllers, behavior definitions), safety
and productivity. Robot reactive behaviors were achieved via cost function-based switching
logic activating the best suited high-level controller. The cost is a function of safety (e.g.,
obstacle/human proximity) and productivity (e.g., induced time delays). Leveraging the
availability of numerous path planning and robot controllers in existing open-source robot
libraries (MoveIt!), the PACI’s underlying segmentation and switching logic framework
was demonstrated to yield a high degree of modularity and flexibility. The performance of
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2 Chapter 1. Introduction

the developed controller was validated by subjecting it to different levels of human-robot
interaction. Tests were performed using the University of Florida e.Do testbed for hardware
in the loop setup and including a simulated human operator.

This research has been carried out at University of Florida, member of a multi-
university/industry international collaboration. It establishes and evaluates an underlining
framework of the robot control architecture for the “Intelligent Human-Robot Collaboration
for intelligent HRC in smart manufacturing.

1.1 Intelligent HRC for Smart Factory

Three U.S. universities (Missouri University of Science and Technology, University of
Florida, Case Western Reserve University), the National Research Council of Italy (Institute
of Intelligent Industrial Technologies and Systems for Advanced Manufacturing) and
industry Comau LLC (COnsorzio MAcchine Utensili) have recently started an international
partnership, in order to push the boundaries of safe and effective human-robot collaboration
in manufacturing by launching a project called “Intelligent Human-Robot Collaboration for
Smart Factory”, funded by the National Science Foundation/National Robotics Initiative
(NSF/NRI) program. The aim is to develop an integrated set of algorithms and robotic
testbeds to sense, understand, predict and control the cooperation of human workers
and robots in collaborative manufacturing cells, for significantly improved productivity of
hybrid human-robot production systems towards deployment in future “smart factories”.
This project addresses several fundamental challenges in human-robot collaboration in the
manufacturing environment, such as the limitation of one-to-one sensing between humans
and robots, the lack of adaptive and stochastic modeling methods for reliable recognition
and prediction of human actions and motions in different manufacturing scenarios, and
multi-scale human-robot coordination.

Figure 1.1: Research tasks and subdivision scheme
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To address these challenges, multi-disciplinary research involving sensing, machine
learning, stochastic modeling, robot path planning, and advanced manufacturing is being
conducted collaboratively under this partnership. In particular, four research tasks aimed
at the realization of the envisioned human-robot collaboration have been identified and are
presented in Figure 1.1. The tasks represeted in the scheme have been assigned to different
teams with the following roles:

• Sense where objects (e.g., robots, humans, parts or tools) are located;
• Cognize what each worker is doing;
• Predict what the next human action will be;
• Plan and control safe and optimal robot trajectories for individualized job-specific-

collaboration between human and robot, avoiding worker injury proactively.

The authors of this thesis are part of the Action Team, which deals with the ‘plan
and control’ research task conducted at the University of Florida. Over the course of
four years, the team will investigate multilayer and modular control structures that allow
stable mode switching for flexibility in defining the ‘optimized’ real-time robot response,
to safely adapt to human worker planned and unplanned interactions, and to maintain
production efficiency. The research will also focus on the development of optimal safe
real-time obstacle avoidance and robot motion control amongst a shared space with humans
and other moving equipment.

A multi-layer control structure, shown in Figure 1.2, is selected for interoperability
between algorithms and devices and builds upon the backbone of the industrial robotic
cell. This layer of control retains the functionality of the original industrial robot and its
safety features, robot sensor feedback (encoders, vision, proximity), cell management of
robot and other moving equipment.

Figure 1.2: Proposed multi-layered control structure

The core of the proposed control structure in Figure 1.2 is represented by the Proactive
Adaptive Collaboration Intelligence (PACI) layer, in charge of modifying the robot motion
based on the input from the Human Action and Body Motion Predictor and the Preplanned
workflow/tasks module. The former provides as input the predicted sequence of human
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actions and body motion trajectories accompanied by the confidence intervals of the
trajectories. The latter provides a preplanned workflow/task schedule including a library
of robot trajectories and ideal task breakpoints for ‘fail safe’ priority. The PACI algorithm
performs kinematic segmentation for effectively parsing the data received from the prediction
algorithm and for identifying impact on current/preplanned robot trajectories and tasks.
Then PACI kinematically adapts tasks in real-time for safe controlled robot motions,
optimizing the collaboration and mitigating production disruptions. Another feature of
the proposed control structure is a soft and sensitive skin mounted on the robot, used
in order to provide the operator with feedback intervention capability to stop the robot
motion by simply touching it. The output of the PACI algorithm combined with direct
human intervention (e.g., interrupts via Soft and Sensitive Robot Skin interface), represent
the input for the Decision Switch Module. This module toggles the control action to
match with the optimized Human-Robot Interaction (HRI) scenario and sends modified
trajectory/controller updates to the Industrial Robot. As a further layer of safety, the
controller will have the capability to signal the humans when necessary to alert them of a
need to change their intended behavior. A robot task in progress may need to avoid an
unsafe situation by communicating its state to the human, for example by means of visual
tools or haptic arm bands.

1.2 Thesis objective

This thesis focuses on the modules of the proposed control structure that have been
highlighted in Figure 1.3, designing and implementing them as a series of multi-layered
algorithms achieving efficient and safe coordination between humans and robots for future
deployment in “smart factories”.

Figure 1.3: Proposed control structure with highlight on the addressed modules
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To meet the current challenges of state-of-the-art, “fenceless” and smart HRC solutions,
the authors envision a robotic system with the following features:

• Flexibility: seamless adaptability of the system to a wide variety of applications
and advanced customizability of the product, main needs of today’s industry 4.0;

• Accessibility: intuitive, fast and easy programmability of the robotic system,
accessible to the operator without the need of any advanced knowledge;

• Modularity: easily manageable code structure that enhances the reusability of the
code by allowing developers to add new features or discard obsolete ones without
rearranging the whole system;

• Safety: real-time awareness and response capabilities ensuring safety of humans,
robots and equipment co-operating within the manufacturing cell;

• Productivity: smart human-robot collaboration that guarantees high levels of
productivity.

In order to develop a robotic system coherent with the framework of the proposed control
structure and that guarantees the desired features listed above, the authors propose a
solution composed of two multi-layered modules, resulting in a slightly reorganized control
structure, illustrated in Figure 1.4.

Figure 1.4: Reorganized control structure

As depicted, the Offline Module is equipped with a Graphical User Interface (GUI) that
takes as input the requests of the user and feeds the processed information to a second
multi-layered module that performs the offline kinematic segmentation of the task, preplans
all the segments and manages their distribution. The second main component of the
control structure is an Online/Real-time Module that takes as input the information
provided by the first module and collects data about the human presence and the external
environment. This data is exploited for the task kinematic adaptation of the robot motion
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to achieve optimized collaboration with the operator, in accordance with the envisioned
PACI algorithm. The outcome triggers a Decision Switch layer that real-time activates the
high-level controller that best suits the human-robot interaction scenario.

The introduction of a GUI in the robotic system sensibly increases accessibility by
lowering the skill threshold required to program the robot coherently with the Task
Segmentation and Planning approach. The segmentation process itself provides high levels
of flexibility since each segment is managed independently in terms of offline trajectory
planning and real-time task adaption. The combination of the two modules determines the
motion of the robot that accomplishes high productivity levels while ensuring the safety of
the HRC, also exploiting a feedback signal that the robot can use to communicate with
the human. Finally, the algorithms that compose the control structure are written in a
modular fashion providing a list of possible choices regarding offline planning techniques,
decision switch logics and human-robot collaboration scenarios. It should be noted that
the inputs of the Online/Real-time Module in Figure 1.4 are labeled as “emulated”. Due to
the early stages of the project at the time of the authors’ research, the sensor fusion input
envisioned for the complete robotic system was not yet available. For this reason, they have
been emulated in order to allow system testing, overcoming the absence of real sensors.
In order to demonstrate that the characteristics of the developed control structure match
the initial goals of the authors, achieving efficient and safe HRC, a hardware-in-the-loop
validation on lab-scale testbeds has been performed.

1.3 Thesis structure

The thesis starts from a literary review (Chapter 2) aimed to provide the reader with a
clear overview of the state of the art of collaborative robotics for industrial manufacturing
and the current challenges in this field. Then, after a presentation of the main software
and hardware tools exploited in this research (Chapter 3), the thesis follows the structure
of the control scheme. First, the Task Segmentation and Planning approach is introduced
with a detailed explanation of the developed GUI and of the logic used to create, plan and
manage the segments that compose a task (Chapter 4). The following chapter deals with
the online capabilities of the robotic system addressing the content of the Online Module
with an in-depth description of the so-called Robot Behaviors and High-level Controllers
(Chapter 5). A description of the experimental scenario used to test the control system and
a presentation of the obtained results follow (Chapter 6), in order to validate the outcome
of the research. Finally, the thesis ends with a conclusive discussion on the research and
with a proposal for future developments (Chapter 7).



Chapter 2

State of the art

2.1 Introduction to industrial robotics

Many definitions of “industrial robot” are available, but the commonly accepted one
is reported in the international standard ISO 8373:2012 [7] in which the following can be
found:

"An industrial robot is an automatically controlled, reprogrammable, multipurpose manipu-
lator, programmable in three or more axes, which can be either fixed in place or mobile for
use in industrial automation applications.”

Industrial robots are a crucial part of the progress of manufacturing industry as can be
seen from the last estimates by the International Federation of Robotics. With reference
to Figure 2.1, the new World Robotics report [1] shows record breaking annual global
robot sales of 16.5 billion USD. Additionally, it reported a 6% percent shipment increase
in 2018 compared to the previous year, with a total of 422,000 units shipped globally. The
IFR’s long term outlook shows that the ongoing automation trend and continued technical
improvements will keep growing, with an estimate of about 584,000 units in 2022.

Figure 2.1: Data on the annual installations of industrial robots, [1]

7
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Looking at the plot in Figure 2.2, Asia is still the world’s largest industrial robot market.
However, the combination of the decline in installation experienced by China and Republic
of Korea together with the considerable growth of Japan result in an overall 1% growth
of the region’s market for this past year. In Europe, on the other hand, the market has
increased by 14% and reached a new peak for the sixth year in a row, similarly to the
Americas that registered a growth rate of 20%, again marking a new record.

Figure 2.2: Robot density by country, manufacturing industry, 2018, [1]

As reported by IFR, an increasing need of robots has been found in all industrial sectors,
but the strongest demand still pertains to the automotive industry which accounts for 30%
of the total supply. For the first time this year, World Robotics has analyzed the market
for collaborative robots (cobots) with interesting results, presented in Figure 2.3. The
number of units installed is still very low with a share of 3.24% of the total market but
the number of annual installations of cobots shows a promising 23% increase from 2017 to
2018.

Figure 2.3: Collaborative and traditional industrial robots in 2017 and 2018, [1]
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The reason for the rapid growth of industrial robots registered in the past few years is
easily explained. Robots can be programmed to perform dangerous and repetitive tasks
with consistent precision and accuracy and their automated functionality allows them
to operate no-stop, in the presence of hazardous materials and environments, therefore
leaving personnel free to perform other tasks. Robotic technology also leads to sensible
increase in productivity and profitability and, at the same time, eliminates labor-intensive
activities that might cause physical strain or potential injury to workers [8]. Robotic
systems therefore seem to be perfect machines for the fully automated processes, but many
limitations start to rise when trying to adapt this technology to a world in which the
demand of customized products is arising exponentially. The internet connectivity at the
core of Industry 4.0 has enabled “mass-customization” of products and market research
shows that the trend is already evolving towards a so called “mass-personalization” leading
to the need of an extremely high level of flexibility of the production system [9]. All these
challenges could find a promising solution in the fact that where robots begin to struggle,
humans excel and vice versa. Robots are perfectly suited to execute repetitive tasks with
force and precision, humans are naturally able to perform complex handling tasks while
quickly adapting to changes in the environment and to new process sequences. In particular,
a series of aspects in which humans have an advantage over robots can be identified:

• They are naturally equipped with a wide array of sensors (touch, vision, hearing,
pattern recognition. . . );

• They have the ability to learn and make decisions even when the required data is
not available;

• They are flexible and easily trainable;
• They are characterized by a high degree of mobility;
• They represent a low capital investment.

All the jobs requiring one or more of these skills therefore find a more immediate and
straight-forward implementation in the work of human operators instead of robots. A large
number of cases can be found in which, due to the current limitations of this technology,
the use of robots is either impossible or impractical. For the sake of brevity, here only
one significant example is reported. Final assembly of cars represent a great challenge
for automated robotic systems: the flexibility of carpets and wire harnesses makes them
unpredictable components that would require extremely advanced sensory capabilities
not yet possessed by robots. Another problem arises in this field when dealing with the
method used to supply the components: a robot either requires a precise orientation and
positioning of each part or a complex vision system in order to be able to handle them
while, on the other hand, the same parts could easily be supplied to an operator in bins.
Furthermore, the mobility of robotics systems represents another limitation. In general,
robotic cells are designed to have a certain degree of redundancy so that, in case of a fault,
the workload of a manipulator can be covered by a different one. When this happens,
though, a lot of time is wasted in order to adapt the cell to the new configuration while an
operator naturally ensures this degree of mobility [10]. It is clear that both robots and



10 Chapter 2. State of the art

human operators have unique advantages and disadvantages over each other. Therefore,
the development of robot systems in which a human can take over portions of the task that
are too hard for a robot is of great interest. Those systems would enable high-performances
and precision while still maintaining a high-degree of flexibility and adaptability. Figure
2.4 shows the trend of the number of product variants as a function of their production
volume. The plot also identifies the manufacturing solution best suited for each situation
and, as represented, collaborative applications are directly related to mass customization.
"Collaborative robotics" has been one of the central topics of research in the robotic world
for the past few years and continues to be very important as several challenges still have
to be addressed.

Figure 2.4: Product variants and volumes for the main production solutions

In order to provide the reader with formality around the concept of collaborative
robotics, the main definitions reported in ISO/TS 15066:2016 [11] can be found below:

• Collaborative robot: A robot capable of being applied for use in a collaborative
operation;

• Collaborative operation: State in which a purposely designed robot system and
an operator work within a collaborative workspace;

• Collaborative workspace: Space within the operating space where the robot
system (including the workpiece) and a human can perform tasks concurrently during
production operation.

This Technical Specification [11] provides general guidance for collaborative robot oper-
ations, where a robot system and human operators share the same workspace. In such
operations, the integrity of the safety-related control system is of major importance and
a comprehensive risk assessment is required to assess both the robot system and the
environment around it. This international standard cannot be referenced alone since
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it basically supplements the requirements and guidance given in a series of additional
documents, listed below:

• ISO 10218-1:2011, Robots and robotic devices – Safety requirements for industrial
robots – Part1: Robots, [12];

• ISO 10218-2:2011, Robots and robotic devices – Safety requirements for industrial
robots – Part2: Robot systems and integration, [13];

• ISO 12100:2010, Safety of machinery – General principles for design – Risk assess-
ment and risk reduction, [14];

• ISO 13850:2015, Safety of machinery – Emergency stop function – Principles for
design, [15];

• ISO 13855:2010, Safety of machinery – Positioning of safeguards with respect to the
approach speeds of parts of the human body, [16];

In the following sections, the authors present a brief description of the role played by
collaborative robots in today’s industry together with a complete state of the art of this
technology, in order to provide a wide understanding of the main goals and challenges that
have characterized this field of research up to now.

2.2 The role of collaborative robotics

To achieve safety, robotic applications traditionally exclude human access to the
operations area while the robot is active. Therefore, a variety of operations requiring
human intervention often cannot be automated using robot systems. The objective of
cobots is to combine the repetitive performance of robots with the individual skills and
abilities of human operators: while the former one exhibits precision, power and endurance,
the latter one has an excellent capability of solving imprecise exercises and adapting to
the specific situation. It is clear that a number of promising benefits could be the direct
consequence of such an implementation, as shown below in Figure 2.5.

Figure 2.5: Benefits of human-robot collaboration
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Moreover, most cobots are fully compatible with Industry 4.0 design principles. In 2015,
McKinsey defined Industry 4.0 as “the next phase in the digitization of the manufacturing
sector, driven by four disruptions:

• The astonishing rise in data volumes, computational power, and connectivity, espe-
cially new low-power wide-area networks;

• The emergence of analytics and business-intelligence capabilities;
• New forms of human-machine interaction such as touch interfaces and augmented-

reality systems;
• Improvements in transferring digital instructions to the physical world, such as

advanced robotics and 3D printing."

As stated by McKinsey, the role of “human-machine interaction” is of utmost importance
for the current developments of automation. Cobots could represent a first important step
towards a future which, with reference to Figure 2.6, can be referred to as “Fourth Robotic
Revolution”.

Figure 2.6: Features of the four Robot Revolutions

Beyond their innate Industry 4.0 compatibility, cobots have been the main actors in
enabling small and medium-sized enterprises (SMEs) to start automating their processes.
Because they are versatile, easy to program, small, lightweight and affordable, cobots are
being deployed at companies not yet ready to build a state-of-the-art Industry 4.0 facility,
and at companies of all sizes in developing countries. These characteristics also make
cobots perfectly suited for deployment in processes that were not previously automated. It
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can be therefore said that cobots are helping companies everywhere to join the latest wave
of automation, even if they are not ready to go all the way to Industry 4.0. Furthermore,
because cobots are programmed, configured and controlled locally in the factory, companies
deploying this solution on their factory floors are able to retain the expertise over their
automated processes. This results in greater operational agility and flexibility, and greater
competitive power in world markets [17].

2.3 State of the art of collaborative robotics

Collaborative operation is ripe for exploration and innovation, opening the possibility
for widespread adoption of robots into new fields for which they may currently be perceived
as unsuitable. Even with the current state-of-the-art in skill acquisition and execution,
robots have difficulty performing at their full potential when removed from the typically
well-controlled environment of the lab. As explained so far, collaborative robot systems
could represent a solution to this problem, but many challenges still have to be addressed.
The first aspect to be taken into consideration is that robots are already working side by
side with human operators inside many factory floors, but different levels of interaction
can be identified, as suggested in the paper [18].

Figure 2.7: Levels of human-robot interaction

With reference to Figure 2.7, most industrial robots are simply “coexisting” with the human
operator since their workspaces are completely separated and no direct interaction is ever
allowed to happen. In many cases this separation is even enforced by placing the robots
inside cages or creating physical/virtual fences around their workspace in order to stop any
motion if an unexpected access is detected. A lower percentage of the industrial robots are
already entering the world of the so called “fenceless robots”, capable of “cooperating” with
the operator in a tighter space and sharing the same workspace, but either on a sequential
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basis or in parallel. This second level of interaction represents a big step towards the
concept of cobots, but still retains a series of limitations. For instance, the workspace of the
two entities is the same, but is either accessed by only one of the two at a time (sequential)
or at the same time but with no contact intended (parallel). Finally, representing a small
niche of today’s deployed industrial automation, a small percentage of robots is actually
capable of “collaborating” with the human as a second teammate would. In this case both
the human and the manipulator are allowed to work in the same workspace simultaneously
with a series of situations in which direct contact is intended. Achieving this final level
of interaction seamlessly and safely while still maintaining high levels of productivity,
represents the current challenge of collaborative robotics as well as the goal of this thesis
and of the long-term project to which it belongs.

As just stated, the first issue to be tackled when trying to develop this kind of
collaborative system is the operational safety of human operator, robot and equipment.
In [19], a categorization of the different levels of human-robot interaction similar to the
one just presented is proposed. Additionally, a nested framework is used to clarify how a
higher level of human-robot interaction inherits the requirements of the lower levels and
introduces new necessary features that make the system significantly more complex, as
reported in Figure 2.8 below.

Figure 2.8: Nested levels of safety for human-robot collaboration, [2]

In order to guarantee all these features, a series of solutions have been proposed in the
past, but success is limited due to the disruption of system production, generated while
ensuring this level of safety. Safety standards provide unified requirements and design
guidelines which help and simplify the development of new systems. From a formal point
of view, compliance to standards is not mandatory to demonstrate the safety of a system
but it conveniently reduces the effort in safety compliance and certification with respect
to Machinery Directive, which is the main European legislation for health and safety
requirements for machinery, and at the same time it speeds up the commissioning of new
systems. According to these standards, four main collaboration modes can be distinguished
[2]:
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• Safety-rated Monitored Stop (SMS): The operator performs manual tasks inside
a collaborative area in which both the human and the robot can work. Safety is
guaranteed by ensuring that, if the operator is occupying the shared space, the robot
is not allowed to move. When the human enters the collaborative area, the robot
switches to a “safe standstill” mode, as indicated in [20]: its movement is paused
maintaining the automatic cycle active so that the program can restart from where
it was interrupted as soon as the worker leaves the collaborative area. Applications
for this type of cooperation can be found in literature [21], for instance manual
placement of objects to the robot’s end-effector, finishing operations or other complex
operations that require the presence of a human, or situations in which the robot
can help the operator to position heavy components.

• Hand Guiding (HG): In this collaborative mode the operator teaches the robot
positions directly moving it for example by means of a teach pendant, while the
weight of the robot arm is compensated in order to hold its position. Examples of
this collaborative approach in an industrial assembly scenario can be found in [22]
and the more recent [23]. This collaborative solution is much more complicated to
implement since the robot must be equipped with both safety-rated monitored stop
and safety-rated monitored speed capabilities. The robot executes its program inside
the collaborative area automatically until the operator approaches it. This situation
triggers the robot’s program interruption and, as the operator activates the hand
guiding device, the robot state switches to safety-rated monitored speed functionality.
This allows direct contact with the manipulator that follows the operator’s guidance.
When the hand guiding device is released, the robot returns in safety-rated monitored
stop and any previously interrupted program can restart as soon as the operator
leaves the collaborative area.

• Speed and Separation Monitoring (SSM): In this collaborative mode, the
human presence inside the same workspace of the robot is allowed through safety-
rated monitoring sensors. With reference to Figure 2.9, the robot operates at different
speeds depending on the zone occupied by the operator: full speed for the green zone
and reduced speed for the yellow zone, while the manipulator’s motion is completely
stopped as the human moves into the red zone. Metrics that take into account safety
and productivity of this approach are provided in [24]. These areas are constantly
inspected by a vision system that should also monitor areas out of the reach of the
manipulator, where the operator does not get in contact with the robot, but that
can represent a potential danger due to dropped manipulated objects. As in SMS,
when the operator moves away from the red zone the manipulator’s motion can be
restarted either at reduced or maximum speed depending on the position of the
operator. An analysis of the current equation for SSM implementation is discussed
in [25], while a practical application of this approach can be found in [26].

• Power and Force Limiting (PFL): This collaborative approach allows the worker
to operate side-by-side with the robot by limiting the motor power and force. Dedi-
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cated equipment and control models are required in order to ensure that collisions
between the robot and the human do not have any harmful consequence for the latter.
An overview of human–robot physical interaction control has been proposed in [27],
where a classification of the different types of contact, their related injuries and a
series of collision handling methods are presented. In the paper, four robot reactions
in response to the contact are also proposed. A straight-forward solution can be
achieved by activating the robot’s brakes after collision with immediate stop while
torque control with gravity compensation, torque and admittance reflex are more
advanced strategies leading to a safer behavior (e.g. lower impact energy thanks to a
countermotion in the opposite direction).

Figure 2.9: Representation of the four human-robot collaboration modes

A very interesting approach to collaborative robotic systems has been proposed in [3].
The authors of the paper envision “complex robot behaviors to emerge in real time from
the interplay of several concurrently running elemental controllers”. In order to accomplish
complex tasks, a solution to provide proper sequencing of skills in a reactive manner is
found in Behavior Trees [28], used to assign appropriate success/failure conditions to the
various elemental controllers. A pre-defined library of skills optimized beforehand is made
available by the authors of the paper so that a user has free choice to achieve completion
of the task at hand. A schematic representation of the concept proposed in the paper is
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presented in Figure 2.10. One benefit of this approach highlighted by the authors of the
paper is that “existing controllers can be leveraged also for learning new ones and that
controllers can be implemented in arbitrary operational spaces”.

Figure 2.10: Schematic representation of the concept of behavior in [3]

Additional robot controller approaches are available in literature. For example, a
deformation-tracking impedance control method was validated with a robot performing a
cooperative assembly tasks with the human worker acting as the time-varying environment
[29]. Using a parallel combination of a baseline time-invariant controller and a safety
controller enforcing a time varying safety constraint, U.C. Berkeley researchers are working
to establish a set of design principles for a safe and efficient robot collaboration system
(SERoCS). Their approach consists of: efficiency and safety goals treated separately,
modularized structure, compatible with existing robot motion control algorithms, online
safety controller, robot motion confined to safe regions according to predicted human
motion, reduced computations by modeling humans as single or multiple sphero-cylinders
with portions of the control policy solved offline [30]. A collision avoidance strategy is
presented in [31] for on-line re-planning of robot motion and creates a safe network for
unsafe devices (distributed layers of data cross-checking and validation of sensors, PLCs,
PCs) as an infrastructure for achieving functional safety. An optimal control problem
formulated for physical-HRC based robot motion control is augmented with a social-HRC
in [32], improving interactions in assembly tasks by increasing the human worker’s trust in
his/her robot partner. It was also shown that an optimal velocity could be determined which
reduced human workload while maintaining the overall performance of the human–robot
team. However, because the generation of safe robot trajectories is limited due to the
inherent uncertainty of robot trajectory execution time (i.e., a need to modulate robot speed
according to the distance between the robot and the worker), CNR-STIIMA estimated a
confidence interval on robot trajectory execution time for scenarios in which human–robot
space sharing is required [5].
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Today’s research on cobots is not solely focused on the development of new methodologies
for real-time motion planning and control that ensures safety and productivity of the system.
Another relevant research topic for the field of collaborative robotics is the way cobots are
managed and taught. It is of fundamental importance to provide human operators with
intuitive interfaces that ease the process of communication and therefore leave the operator
free to concentrate on the task and goals at hand. Traditional non collaborative robots
often require expert engineers for the programming operations on the robot. This obviously
means higher cost of personnel and possible disruption of the company’s expertise, since
in many cases external consultants are needed for the management of the automated
system. In the case of cobots, this is not a suitable scenario since the operator works
side-by-side with the manipulator and must be able to easily communicate with the it
and receive feedback from it, as would happen with a human collaborator, in order to
achieve safe and productive levels of collaboration. In general, a distinction is made
between online and offline programming. Online programming approaches require the
interruption of the robot’s production cycle since the user will “teach” the new task directly
to the robot itself. Many methodologies are available in literature and are currently being
investigated: lead-through programming, in which the robot learns the new trajectory
by storing a series of positions defined by jogging through the use of a teach pendant
[33] [34], walk-through programming, in which the operator is allowed to physically move
the end-effector of the robot through the desired positions freely therefore creating a
direct intuitive language between the robot and the human operator [35], programming by
demonstration, in which the robot is not purely reproducing the motion of the operator
as in walk-through programming but is also able to generalize them in new scenarios [36]
and other new interaction modes that exploit sensors in order to alleviate the burden of
communication with the robot (speech, gestures, eye tracking, facial expression, haptics).
Offline programming, instead, uses software tools to virtually replicate the shop floor on a
computer in order to minimize the downtimes of the robot. In this case many intuitive
interfaces have been developed [37], but typically each manufacturer has its own specific
software protected by very expensive licenses. Another aspect to take into consideration is
the mental strain of the operator during the interaction with the robot, currently under
research in a framework called “affective robotics” [38]. The goal is once again to relieve the
cognitive burden of the user, when the task to be accomplished overloads his/her mental
capabilities, by adapting the behavior of the robot and implementing a sufficient level of
autonomy [39]. Finally, only recently much interest in robot interfaces has been devoted
to augmented and virtual reality for manufacturing applications. The first examples of
application have shown that these new approaches can lead to improved productivity of
the system and enhanced human safety [40]. Figure 2.11 provides a quick summary of all
the aspects just presented.
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Figure 2.11: Programming approaches, input modes and reality enhancement listed in [2]

The main research topics for collaborative robotics, that have been presented up to
this point, represent the starting point for the development of the system envisioned
in the long-term project of which this thesis is a part of. Therefore, starting from the
state of the art defined in this section, the authors’ research attempts to combine all the
benefits of the solutions already published in literature while at the same time overcoming
the limitations that still slow down the deployment of this technology in future “smart
factories”. Obviously, the complete envisioned system is wide and complex and, as the
project moves towards maturity, will require more detailed studies focused on specific
aspects of human-robot collaboration, that are not addressed here due to the early stages
at the time of the authors’ research.





Chapter 3

Materials and methods

Figure 3.1: Representation of the main software and hardware components of the testbed

Figure 3.1 is used to represent the main software and hardware components exploited to
build the robotic testbed. As shown, a human operator works in the same workspace of a
physical e.DO robot in order to complete a collaborative assembly scenario, representative
of common industrial applications. The robot is wired to a computer, represented on the
right in Figure 3.1, on which the developed robotic system used to control the manipulator
is running. One screen shows the command windows related to the underlying ROS and
MoveIt! operations in play, together with the main window of the GUI, used to program
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the collaborative operation offline. The second screen is, instead, showing the simulation
according to which the robot is controlled. As said, due to the early stages at the time of
the authors’ research, the sensor fusion input envisioned was not available yet. Therefore, in
order to allow system testing and validation, perception of the human operator’s presence
have been emulated using ROS, and graphically displayed on the second screen using the
RViz 3D visualizer. A keyboard is also connected to the computer and directly accessible
by the operator for manual data input and quick confirmations signals. In this chapter,
the tools just introduced and exploited by the authors for the development of the robotic
system are briefly presented.

3.1 ROS

In order to develop a robotic system characterized by a high level of scalability and
in line with the state of the art, the authors of this thesis chose to use ROS Melodic
Morenia running on an Ubuntu 18.04 Bionic Beaver system. The acronym ROS [41]
stands for Robotic Operating System, a free open-source platform for robotic systems.
Many software packages and libraries for communication, motion planning and control,
perception, navigation and mapping have been developed for use with ROS. This tool
allows the development of a modular and scalable robotic system, in line with the state
of the art of industrial robotics. Because of all these benefits, it is strongly supported by
the academic, research and industrial communities. The ROS environment is composed of
independent units called “nodes” which communicate between each other through links
called “topics”, based on a subscription/publication protocol. Basically, the ROS framework
is a common interface between different nodes corresponding to different hardware or
software components. The functionalities of a manipulator may be divided between several
nodes, each one with a different function and goal, thus guaranteeing an easy debugging
operation. Nodes can be written in different programming languages, the most common
ones are C++ and Python (regarding this thesis, all the codes have been written in C++).
In Figure 3.2 an example of communication between four nodes through one topic is shown.

Figure 3.2: Schematic example of the subscription/publication protocol
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Topics can be considered as buses used to send messages between different nodes. Nodes
can use the publish function to publish data to a topic and the subscribe function to read
information from the topic in which they are interested. A node may publish or subscribe
to multiple topics and topics may have multiple publishers and subscribers. Each publisher
can publish only one type of message and the same rule is applied for subscribers, which
can read only the type of message that characterizes the topic they are interested in. Some
examples of types of message are: boolean, float, integer or string. These are some of the
basic message types provided by ROS, but users may use custom types as well.

3.2 MoveIt!

MoveIt! [42] is an open-source mobile robot manipulation library developed by Ioan A.
Sucan and Sachin Chitta. It provides solutions for mobile manipulation related problems,
such as kinematics, motion planning and control, 3D perception, collision checking and
navigation. It is widely used in robotic systems as it can be easily configured and adapted
to any kind of robot. Moveit! is built inside the ROS environment and uses a main node
called “move_group” which provides actions and services to the user. The structure [43]
of the MoveIt! package is represented in Figure 3.3.

Figure 3.3: Functionalities and services offered by the "move_group" node

As depicted on the left of Figure 3.3, a user interface supporting C++ and Python
programming languages as well as a plugin for graphical simulation called Rviz, is made
available to the user. Through this intuitive tool, the user can exploit actions and services
provided by the “move_group” node, represented as the core of the scheme in Figure 3.3.
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Thanks to a parameter server, the “move_group” node is also capable of analyzing and
storing a URDF model (Unified Robot Description Format) containing the robot kinematic
representation, and a SRDF model (Semantic Robot Description Format) carrying all the
preset robot parameters, such as position, speed and acceleration limits for the joints.
Always with reference to Figure 3.3, the “move_group” node has the ability to communicate
with the manipulator through a topic called /joint_states, carrying all the data measured
by its available sensors. Direct commands to the robot controllers can also be sent
exploiting the JointTrajectoryAction server. Moreover, external sensors can be used to
collect information about the external environment. In particular, the so called “Planning
Scene Monitor”, represented in Figure 3.4, is the component of the MoveIt! package in
charge of collecting all the information in order to plan and execute trajectories correctly.
As shown, the “Planning Scene Monitor” receives information about the robot state and
builds a 3D representation of the surrounding environment taking into account data from
external sensors and geometry models uploaded by the user.

Figure 3.4: Functionalities and services offered by the "planning_scene_monitor" node

As introduced before, MoveIt! is an extremely rich package, offering several solutions for
many different robotic-related tasks. For instance, direct and inverse kinematics, planning
algorithms and collision detection capabilities are some of the features already available in
the package and immediately accessible for use. In the following pages, a brief introduction
of the MoveIt! plugins exploited for this research is reported.

3.2.1 OMPL library

MoveIt exploits the Open Motion Planning Library (OMPL) [44] which makes available
a variety of sampling-based planning algorithms. The developer can choose to plan a
certain trajectory either using a pre-existing algorithm offered by the OMPL Library or a
custom one, which can be easily added into the software. Below, a list of planners offered
by this library together with a brief description of their characteristics is reported.
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Multi-query Planners

These planners build a roadmap of the entire environment that can be used for multiple
queries.

1. Probabilistic Roadmap Method (PRM)
This is a sampling-based algorithm. The OMPL’s implementation uses one thread
to construct a roadmap while a second thread checks whether a path exists in the
roadmap between a start and goal state. A number of variants of PRM are available
in the library:

• LazyPRM
This planner is similar to regular PRM but checks the validity of a vertex or
edge “lazily,” i.e. only when it is part of a candidate solution path.

• PRM*
While regular PRM attempts to connect states to a fixed number of neighbors,
PRM* gradually increases the number of connection attempts as the roadmap
grows in a way that provides convergence to the optimal path.

• LazyPRM*
A version of PRM* with lazy state validity checking.

2. SPArse Roadmap Spanner algorithm (SPARS)
SPARS is a planner that provides asymptotic near-optimality (a solution that is
within a constant factor of the optimal solution) and includes a meaningful stopping
criterion. Although it does not guarantee optimality, its convergence rate tends to
be much higher than PRM*.

3. SPARS2
SPARS2 is variant of the SPARS algorithm that works through similar mechanics,
but uses a different approach to identifying interfaces and computing shortest paths
through said interfaces.

Single-query Planners

These planners typically grow a tree of states connected by valid motions. They differ
in the heuristics they use to control where and how the tree is expanded. Some tree-based
planners grow two trees: one from the start and one from the goal. Such planners will
attempt to connect a state in the start tree with another state in the goal tree.

1. Rapidly-exploring Random Trees (RRT)
This is one of the first single query planners. Many variants of RRT have been
proposed. The OMPL library contains several RRT variants:

• RRT Connect
This planner is a bidirectional version of RRT (i.e. it grows two trees). It usually
outperforms the original RRT algorithm.
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• RRT*
An asymptotically optimal version of RRT: the algorithm converges on the
optimal path as a function of time. Since its publication, several other algorithms
have appeared that improve on RRT*’s convergence rate, such as RRTX.

• Lower Bound Tree RRT (LBTRRT)
LBTRRT is a asymptotically near-optimal version of RRT: it is guaranteed to
converge to a solution that is within a constant factor of the optimal solution.

• Sparse Stable RRT
SST is an asymptotically near-optimal incremental version of RRT.

• Transition-based RRT (T-RRT)
T-RRT does not give any hard optimality guarantees, but tries to find short,
low-cost paths.

• Vector Field RRT
VF-RRT is a tree-based motion planner that tries to minimize the so-called
upstream cost of a path. The upstream cost is defined by an integral over a
user-defined vector field.

• Parallel RRT (pRRT)
Many different parallelization schemes have been proposed for sampling-based
planners, including RRT. In the OMPL’s implementation, several threads si-
multaneously add states to the same tree. Once a solution is found, all threads
terminate.

• Lazy RRT
This planner performs lazy state validity checking (similar to LazyPRM). It
is not experimental, but it does not seem to outperform other planners by a
significant margin on any class of problems.

2. Expansive Space Trees (EST)
This planner was published around the same time as RRT. It is not as sensitive
to having a good distance measure, which can be difficult to define for complex
high-dimensional state spaces. There are actually three versions of EST: the original
version that is close to the first publication, a bidirectional version, and a projection-
based version. The low-dimensional projection is used to keep track of how the state
space has been explored. Most of the time OMPL can automatically determine a
reasonable projection. A few planners that are not necessarily simple variants of
EST, but do share the same expansion strategy, have been implemented:

• Single-query Bi-directional Lazy collision checking planner (SBL)
This planner is essentially a bidirectional version of EST with lazy state validity
checking.

• Parallel Single-query Bi-directional Lazy collision checking planner (pSBL)
This planner grows the two trees in SBL with multiple threads in parallel.
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3. Kinematic Planning by Interior-Exterior Cell Exploration (KPIECE)
KPIECE is a tree-based planner that uses a discretization (multiple levels, in general)
to guide the exploration of the (continuous) state space. The OMPL’s implementation
is a simplified one, using a single level of discretization. The grid is imposed on a
projection of the state space. When exploring the space, preference is given to the
boundary of that part of the grid that has been explored so far. The boundary is
defined to be the set of grid cells that have fewer than 2n non-diagonal non-empty
neighboring grid cells in an n-dimensional projection space. There are two variants
of KPIECE:

• Bi-directional KPIECE (BKPIECE)
• Lazy Bi-directional KPIECE (LBKPIECE)

4. Search Tree with Resolution Independent Density Estimation (STRIDE)
This planner was inspired by EST. Instead of using a projection, STRIDE uses a
Geometric Near-neighbor Access Tree to estimate sampling density directly in the
state space. STRIDE is useful for high-dimensional systems where the free space
cannot easily be captured with a low-dimensional (linear) projection.

5. Path-Directed Subdivision Trees (PDST)
PDST is a planner that has entirely removed the dependency on a distance measure,
which is useful in cases where a good distance metric is hard to define. PDST
maintains a binary space partitioning such that motions are completely contained
within one cell of the partition. The density of motions per cell is used to guide
expansion of the tree.

6. Fast Marching Tree algorithm (FMT*)
The FMT* algorithm performs a “lazy” dynamic programming recursion on a set
of probabilistically-drawn samples to grow a tree of paths, which moves outward in
cost-to-come space. Unlike all other planners, the number of valid samples needs to
be chosen beforehand.

7. Bidirectional Fast Marching Tree algorithm (BFMT*)
Executes two FMT* trees, one from the start and another one from the goal resulting
in a faster planner as it explores less space.

As will be explained in Chapter 4, all the planning algorithms listed above can be
leveraged by the user during the offline planning process of the developed robotic system.
However, some further planning operations have been hardcoded by the authors and exploit
specific preset algorithms. In particular, the authors chose to exploit RRT Connect and
RRT* algorithms for those operations because of their efficiency in finding either feasible
or optimal trajectories in a very short time.
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3.2.2 RRT and RRT* algorithms

Rapidly exploring random tree (RRT) is an algorithm developed to efficiently search
nonconvex, high-dimensional spaces by randomly creating a space-filling tree. This tree
is expanded incrementally from samples drawn randomly from the search space and is
inherently biased to direct towards large unsearched areas of the problem. In other words,
when the planner creates a suitable path for the manipulator, points are randomly generated
and connected to the closest available node. Each time a new vertex is identified, the
code has to perform a check that guarantees that the vertex is not in correspondence
of an obstacle. Furthermore, chaining the vertex to its closest neighbor must also avoid
obstacles. The algorithm finds its solution when a node is created within the goal region, or
a computational limit is reached. The RRT makes the planning process very fast and with a
low computational cost, although the solution is not necessarily the optimal one. For these
reasons, the authors of this thesis decided to use this specific planner only when the robot
needs to generate a trajectory in the shortest time possible, and, more in general, in all
the cases in which the path planning has to be performed online. As will be analyzed later
(Section 5.2), the RRT algorithm allows the robot to perform an online, quasi-real-time
replanning to avoid an obstacle in the workspace. A more detailed explanation of the
algorithm and of its implementation can be found in [45].

RRT* is an optimal version of the RRT algorithm, capable of delivering the shortest
possible path from a start position of the robot to the goal. Its basic principle is the same
as RRT, but with two key additions to the algorithm that guarantee a significantly different
result. First, RRT* checks the distance that each vertex has traveled from its parent
vertex. This distance is called “cost” of the vertex. After the closest node is detected in
the graph, a neighborhood of vertices at a fixed distance from the new node is analyzed.
If a node with a “cost” lower than the proximal node is found (smaller distance) , it is
used to replace the proximal node. The other difference between the two algorithms is
that RRT* also performs the rewiring of the tree: when a new vertex is connected to the
cheapest neighbor, the other vertex in the neighborhood are again examined by checking if
being rewired to the newly added vertex will make their cost decrease. If it happens, the
neighbor is rewired to the newly added vertex, also leading to the generation of a smoother
path. For a more detailed explanation of RRT* algorithm and implementation please refer
to [46].

3.2.3 Inverse kinematics

The Inverse Kinematics problem aims to find a suitable set of joint values that moves
the robot’s end-effector to a user-specified pose, defined in position and orientation. The
equations that describe this problem are in general non-linear and, for this reason, numerical
methods are more feasible approaches to find a solution. The most commonly used numerical
IK implementation in the robotics community today is the so called Orocos Kinematics
and Dynamics Library (KDL), an open-source kinematics framework [47] used for example
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by MoveIt! planning library. KDL implementation exploits the Inverse Jacobian method
together with the Newton’s iteration method in order to try to find a set of joint values that
brings the end-effector “close enough” to the desired Cartesian solution. Inverse Jacobian
methods generally start from a seed value of the joints qseed, for example their current
position. This seed is then used to calculate its corresponding pose by a process of simple
forward kinematics. Then, the Cartesian error perr between the seed pose and the target
pose and the Jacobian J, which comprises the partial derivatives in Cartesian space with
respect to the current joint values are also calculated. At this point the Jacobian can
be inverted in order to obtain the partial derivatives in joint space with respect to the
Cartesian pose and the kinematic inversion is then performed by the following iteration:

qnext = qprevious + J−1 · perr

When all the elements of perr satisfy a certain stopping criterion, the last computed vector
of joints is returned as solution to the IK problem. After a first analysis of the performances
of this solver, however, the authors noticed that a series of failures would occur even when
giving exact poses known reachable by the manipulator. Further studies on this problem led
the authors to the decision of using a different plugin for the inverse kinematic problem. In
particular the authors chose the TRAC-IK solver, another open-source framework described
in [4]. The paper highlights the following issues for the KDL’s IK implementation:

• Frequent convergence failures for robots with joints limits;
• No actions taken when the search becomes “stuck” in local minima.

The first problem is explained by the author of [4] by stating that the iterative algorithm
seems to be making progress towards a feasible solution but encounters joint limits in
the robot configuration. This issue cannot be overcome by simply improving the KDL’s
algorithm since it rises from a limitation of the applied method itself: the inverse Jacobian
mathematics want to push the joints over their limits in order to reduce the Cartesian error,
therefore causing the IK solver to fail. Therefore, a different method, called Sequential
Quadratic Programming, is presented in the paper as a solution to this problem. SQP is
an iterative algorithm for nonlinear optimization that can be applied successfully in the
presence of constraints such as, in this case, joint limits.

min (qseed − q)T (qseed − q) and fj(q) < bi

In particular, the author proposes to exploit the SQP-SS variant of the algorithm, where SS
indicates Sum of Squares as metrics used for the error calculation, for which the objective
function being minimized is formulated as follows:

ϕSS = perr · perr
T

The second problem, on the other hand, is solved in [4] thanks to a simple re-implementation
of the KDL’s IK solver, leading to a new version of the algorithm called KDL-RR. From
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the name itself we can understand how this proposed solution works: RR means Random
Restarts, meaning that this improved version of the algorithm is able to detect a local
minimum as

qnext − qprevious ' 0

and mitigate it by providing a new randomly generated seed, so that the solver can restart
its iterations avoiding the local minimum “trap”.
An analysis of the performances of these two new methods is then presented in [4], with
the results shown in Figure 3.5:

Figure 3.5: Summary of the results obtained in [4] for the performance of the analyzed plugins

In particular:

• SQP-SS outperforms all the tested algorithms in terms of success rate, with a final
result, averaged on 180000 samples, of 99.21%;

• KDL-RR has the lowest runtime for all the cases in which a solution is found without
hitting the joint limits.

Given these results, the TRAC-IK solver proposed in [4], tries to overcome the limitations
of the analyzed algorithms by running both of them in separate threads. As soon as one
of the two methods finishes with a solution, both threads are stopped, and the resulting
solution is returned. As expected, TRAC-IK not only outperforms all the other IK methods
tested in terms of solve rate, but also reduces the overall runtime.
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Regarding this research, the switch from KDL’s IK plugin to TRAC-IK plugin proved
to be very helpful in all the processes in which the solver is exploited, by overcoming the
limits previously experienced and yielding higher performances.

3.2.4 Collision detection

For this research, the collision checking process is carried out exploiting the FCL
(Flexible Collision Library) package, a powerful library for collision checking explained in
detail in [48]. As described in the article, a collision detection process between two different
bodies A and B, given their configurations in space qA and qB as groups of points, is carried
out by computing every separation distance in space between the two body configurations:

distance = inf {‖x− y‖2 : x ∈ A (qA) , y ∈ B (qB)}

If at least one of the computed distances is negative or equal to zero, it means that the
two bodies are in collision between each other, while, on the contrary, if all the distances
are greater than zero, it means that A and B are two non-overlapping objects. In the
latter case (A and B not in collision), it could be useful to know the value of the minimum
distance between the two bodies:

minx∈A(qA),y∈B(qB) ‖x− y‖2

The biggest limit of the collision checking process is the huge amount of computational
expense (often close to the 90% of the whole motion planning process [43]). Therefore, to
reduce the computational burden, Moveit! allows the user to define an Allowed Collision
Matrix (ACM). This matrix basically encodes a binary value related to the need of checking
for collision between pairs of bodies, either belonging to the robot or to the external
environment. In particular, if the value in the ACM corresponding to two objects is set
to 1, this specifies that collision check between the two bodies is not needed. This, for
instance, is convenient for cases in which it is guaranteed that two entities will never collide
with each other.
In this thesis, every possible collision between the moving parts of the robot and any other
object in the workspace must be avoided. However, the computational burden can be
significantly reduced, while still maintaining this safety condition valid, by disabling a
series of collision checks, as displayed in Figure 3.6. As can be seen, the authors have
disabled the collision check between all the couples of adjacent links and between all the
couples of links that for hardware limits can never be in contact with each other. Moreover,
an additional collision check can be avoided: since the base of the robot is fixed inside the
environment, it is not considered as one of the moving parts of the robot and therefore
there is no risk in allowing contacts between it and the objects in the workspace.
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Figure 3.6: Summary of the disabled collision checks

3.2.5 Joint limits and time parametrization

Limits for position, velocity and acceleration can be specified for each joint in the
kinematic chain in the URDF (Unified Robot Description Format) file, which is a textual
CAD description of the robot itself. Additionally, a file called joint_limits.yaml allows the
dynamic properties specified in the URDF file to be overwritten or augmented as needed.
For this project, the limit values in the URDF file have been set to the hardware ones,
reported in the technical sheets of the e.DO Robot. On the other hand, slightly lower
values have been specified in the joint_limits.yaml file in order to guarantee a certain
safety margin. Figure 3.7 reports an extract of the values set in the file. As explained later
in Section 3.3, the first three joints of the e.DO robot are equipped with big motion units,
while the last three are moved by smaller motors. As depicted in Figure 3.7, in which only
the first and fourth joints are reported, different motors have been assigned different values
of maximum allowed speed.

Figure 3.7: Extract of acceleration and speed limits set for the robot’s joints



3.3. e.DO robot 33

However, MoveIt! is primarily a kinematic motion planning framework. This means
that the planning routines that it uses take into account the position of the joints or of
the end effector, but not their velocity or acceleration. For this reason, post-processing is
needed to time parametrize the planned trajectories, in order to be sure that the specified
limits are respected. The default post-processing algorithm used by MoveIt! is called
Iterative Parabolic Time Parametrization and works by assigning time stamps, properly
defined, to each waypoint of the trajectory, as explained in [49].
First, the velocity constraint is taken into account by iteratively analyzing a couple of
consequent points, until all the points of the trajectory have been considered. For each
couple of points the algorithm calculates their distance in terms of joints position and uses
that information to define the delta time that ensures a velocity within constraint.

∆time = max
abs(qj,n−qj,n+1)

vmax
for j = 1, ..., joints number

In the formula above, n and n+1 are used to distinguish between the two consecutive
waypoints. After this procedure has been performed on the whole trajectory, the acceleration
constraint has to be taken into account. In order to do that, three consecutive points need
to be considered per iteration so that v1 (speed to go from the first to the second point)
and v2 (speed to go from the second to the third point) can be defined. Then, the required
acceleration can be calculated as:

a = 2 · v2 − v1
∆t1 + ∆t2

At this point, the algorithm keeps incrementing the deltas and recalculating the values of
speed until it is assured that a < amax. Finally, on top of the limit values reported in the
robot model, additional indexes can be defined at runtime: max_velocity_scaling_factor
and max_acceleration_scaling_factor. These indexes can be set to be equal to values
between 0 and 1 and they are used to further reduce the limits written in the configuration
files.

3.3 e.DO robot

The hardware-in-the-loop used to validate the collaborative outcome of this research is
represented by a six axis robot called e.DO [50], manufactured and provided by the Italian
company Comau, partner of the NSF/NRI project. The e.DO robot is equipped with six
articulated axes that are capable of interfacing between themselves in a modular, easy and
independent way. Each motorized unit is provided with an autonomous mechanical and
electronic control that can be configured by the operator, allowing e.DO to pick up, move,
manipulate and rotate parts, in order to accomplish the desired tasks. It must be noted
that this robot has been created mainly for educational purposes. The authors believe
that, thanks to the low investment required, such a platform could represent a perfect tool
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for the validation and evaluation of newly developed algorithms, before the implementation
on the actual industrial robots.

As shown in Figure 3.8, the robot is equipped with a black hexagonal base, which ensures
the full stability of the manipulator and contains its integrated open-source hardware and
software platforms. In particular the base contains a Raspberry Pi motherboard, running
the ROS framework, and a SD memory card, on which the pre-installed e.DO Control
Logic, Infratask and the ISO have been uploaded.

Figure 3.8: e.DO representation and general specification

The manipulator has three big motion units and three small motion units, each of them
represented by a DC motor. The table reported in Figure 3.9 contains all the specifications
for these motors.

Figure 3.9: Motors specification for e.DO robot

In order to perform pick and place operations, the e.DO used for this research was equipped
with a mechanical two-prongs gripper, shown in Figure 3.10.
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Figure 3.10: Gripper specification for e.DO robot





Chapter 4

Offline module: Task segmentation
and planning

4.1 Introduction

Due to smaller lot sizes of customized products, the demand for increased flexibility and
adaptability to changing production environments is rising exponentially. This requirement
leads both to the need for a system that is reprogrammable in a fast and intuitive way and
also to the necessity of a manipulator able to adapt to very different scenarios.
A general observation of real industrial cases led the authors to the realization that common
industrial robotic applications can be thought of as composed of a series of discrete subtasks.
These subtasks can represent a movement of the robot between two configurations in space,
a specific action of the end-effector performed by the robot in a certain position or a
combination of the two. Therefore, the focus of this work is to develop a system specifically
built to allow the user to describe a scenario as a collection of consequent subtasks. In this
project, the division process will be referred to as “segmentation” and each subtask will
be called a “segment”. This approach introduces the possibility to independently manage
each segment in a different way, both in terms of how the robot’s motion trajectory is
planned offline and of how the robot reacts online to unexpected obstacles (e.g., human
encounters) during the execution of the mentioned trajectory. In particular, this chapter
deals with the offline planning process by developing a series of planning techniques aimed
at addressing the main needs of common industrial scenarios. For instance, considering a
welding scenario, the programming approach that would be more suited for the segment in
which the robot is approaching the welding area from its original position is different from
the segment in which the robot performs the welding on the workpiece. The two segments
are part of the same task and are performed continuously one after the other, but they have
completely different features. In the first case, the robot simply has to succeed in its motion
from start to goal position, avoiding possible obstacles without constraints on its trajectory.
In the second case, a predefined trajectory must be followed, and any stop or disturbance
of the execution must be avoided. For this reason, having a set of available offline planning

37
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techniques that can be assigned independently to each segment could represent a great
source of flexibility and adaptability for the robotic system. Moreover, the fact that each
scenario is described as a collection of consecutive segments simplifies reprogramming of
the robot motion when considering cases of customized production. Supposing that the
production cycle for a specific product has already been programmed, reprogramming the
whole scenario from scratch for a customized version of the same product would be very
time-consuming. Thanks to the segmentation process the new program can be obtained
by simply modifying the segments of the original scenario according to the customized
production process, therefore saving time in the offline programming step.

Figure 4.1: Focus on the module of the control scheme addressed by Chapter 4

With reference to the control structure represented in Figure 4.1, this chapter is focused
on the Offline Module, implemented by the authors through a dedicated code, structured
in four main parts:

1. Input reading: the first section of the code is responsible to read the input given
by the user in an intuitive language and translate it into efficient coded information;

2. Offline planning: the second part of the code is in charge of generating the trajectory
of each segment according to the choice of offline planning technique specified by the
user;

3. Segment connection: the code then analyzes the computed trajectories to ensure
a proper connection between consecutive segments;

4. Segment execution: this final section of the code is used to make sure that each
segment is executed with the correct timing.
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This code represents a node in the ROS environment and, as such, it is able to exchange
information with the other available nodes. A more in-depth presentation of the tools used
for the implementation can be found in Chapter 3, where all the background knowledge
exploited for this project has been reported.

4.2 Offline planning

One of the key goals of collaborative robotics is the ability to reprogram the task
with a great degree of freedom and in an intuitive and fast way. The relevant needs
for these features are driven by the application of this type of robot, mainly concerned
with flexible and rapidly changing environments, like the production of highly customized
parts. Therefore the operator should be able to easily reconfigure the robotic task without
the need of any programming specialization and without losing focus on the task to be
performed [2]. With this goal in mind, the authors propose the implementation of a series
of high-level programming methods, fast and intuitive, but general enough to not limit the
operator and the robot in their abilities. The first step in this direction is an analysis of
the different needs of a user that has to plan a trajectory for a real industrial scenario.

In the process of creating a segment, three main possibilities have been identified by the
authors. The user may be interested only in the definition of start and goal configurations
of the robot. Other situations may, instead, require the definition of the whole trajectory
to be followed by the manipulator. Moreover, the definition of an action to be performed
by the end-effector in a specific position of the workspace could be required. If the user is
not interested in the specific path, but only in start and goal configurations of the robot
for the segment, two possibilities arise. First, the authors imagine a situation in which
the user does not have any a priori knowledge of the task (in the sense of human presence
probability, average task execution time, synchronization with the human, etc.). Therefore
the generation of the path that connects the two configurations only depends on the choice
of planning algorithm, which can be based on the type of optimization that is required, the
computational burden that can be sustained or many other aspects. On the other hand,
a scenario in which a priori knowledge of the task is available to the user, must also be
considered. In that case, the trajectory could be defined taking into account a series of
stochastic data related to the human presence for the specific task, collected by means
of experiments. By leveraging the availability of these data, it is possible to develop an
offline planning approach able to generate a high-performance trajectory offline on the
basis of a-priori knowledge of the task. Considering now the case in which the user has to
define the whole trajectory of the segment, a different approach would be needed. The
authors propose the development of an offline planning technique that enables the user
to generate the segment’s path point by point. This approach is particularly useful for
segments in which the end-effector is not simply moving from point A to point B, but
it is also performing a certain operation along with its motion (e.g. welding, pouring
molten metals. . . ). Finally, there are many cases in which the segment does not represent a
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movement of the robotic arm, but simply an action performed by the end effector. Also in
this case, the authors propose a different offline planning technique, specifically developed
to address this need. On the basis of the analysis just presented, Table 4.1 summarizes
the four main needs identified by the authors, together with the specific offline planning
technique that have been developed by the authors to address them.

OFFLINE PLANNING
TECHNIQUE

ADDRESSED NEED

User-defined Algorithm

The user is interested only in the definition of
start and goal configurations of the robot for the
segment and a-priori knowledge of the task
is not available.

Human Occupancy Volumes

The user is interested only in the definition of
start and goal configurations of the robot for
the segment and stochastic data about the
human presence for the task have been collected.

Relevant Trajectory
The user wants to define the whole trajectory to
be followed by the manipulator for the segment
point by point.

Tool Operation
The user has to plan an action of the end-effector
to be performed in a specific position inside the
workspace.

Table 4.1: Developed offline planning techniques and application field

In the following pages a detailed description of each of these planning techniques is
reported, considering both their specific application field and the logic that has been used
to implement them.

4.2.1 User-defined Algorithm

This first offline planning technique addresses the problem of planning a trajectory
given start and goal configurations of the robot, specified by the user, when no a-priori
knowledge of the task is available. In order to leave as much freedom as possible, the authors’
implementation gives the user the possibility of defining these two configurations either in
joint space (defining the angular position of each joint of the robot) or in operational space
(specifying the corresponding poses of the end-effector). Since the planning algorithms
generally work inside the joint space, the difference between these two options mainly
lays in the computational burden. If the user knows the angular position of all of the
joints corresponding to the two configurations, the planner can directly work with them
giving out the result in a shorter time and with a unique solution. If, instead, the user
specifies the pose of the end-effector, before being able to generate a trajectory, the planner
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has to perform inverse kinematics in order to extract a feasible set of corresponding joint
values (Section 3.2.3). This additional operation increases the computational effort and
the obtained solution is not unique, since other configurations of the joints that bring the
end-effector to the same pose may exist. Additionally, the developed code enables the user
to specify a planning algorithm, choosing among the ones offered by the OMPL Library
(Section 3.2.1). Limits related to maximum speed and acceleration for the specific robot
have been hardcoded by the authors and are automatically respected by the planning
algorithm. However, in order to give more control to the user, two additional scaling factors
for these parameters can be specified so that it is always possible to further reduce these
limits when needed (Section 3.2.5). Given all this data, the developed code exploits the
capabilities of MoveIt! to compute a feasible trajectory that connects the two specified
configurations of the robot using the chosen planning algorithm and respecting all the limits
set for the robot. This trajectory is generated in the form of a “path object”, schematically
represented in Figure 4.2.

Figure 4.2: Structure of a Path object

As depicted in Figure 4.2, the path object is composed of three items: “planning time”,
reporting the amount of time it took to generate the plan, “start state”, containing the
full start state used for planning and “trajectory”, made up of a series of waypoints. Each
waypoint represents an intermediate state that the robot will assume during the execution
of the trajectory. Their number mainly depends on the “maximum_waypoint_distance”
parameter set for the planning algorithm, defining the discretization of robot motion for
collision checking. This is one of the aspects that makes MoveIt! a very powerful tool: the
planning algorithm automatically takes into account any obstacle present in the planning
scene in order to trace a trajectory that avoids collisions with them (Section 3.2.4). For
this specific project, the obstacles are modelled as STL volumes and represent the static
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environment in which the task takes place. Finally, each waypoint contains the information
about position, velocity, acceleration and effort of each of the joints that make up the robot,
together with the “time_from_start” value. This last parameter indicates how much time,
from the beginning of the execution of the segment, is needed to reach that particular
intermediate state and is calculated in post-processing through a time parametrization that
considers both the preset hardware limits and the user-defined scaling factors. For a more
detailed description of the plugin used for the process of inverse kinematics, the available
path planners, the collision detection method and the time parametrization performed, the
reader can refer to Section 3.2.

4.2.2 Human Occupancy Volumes

This second approach is inspired by the paper [5]. It has been developed to address the
case in which the user is still interested only in start and goal configurations of the robot
for the segment but, thanks to an experimental campaign, has access to vast amounts of
data related the specific task at hand. In this section, both the methodology proposed in
the article (the same notation is used here for clarity) and the authors’ implementation of
an offline planning approach exploiting said method are presented and discussed.

The authors of [5] propose to describe a collaborative operation as a spatial and
statistical distribution of human occupancy volumes related to the execution of the task,
where task is defined as “the arm (robot or human) movements necessary to reach for a
goal and to locally execute an action”. Looking at Figure 4.3, it is immediately clear that
a trajectory passing far from the usual location of the human operator (“human working
volume”) yields a higher execution time, because a longer path is needed to circumnavigate
the whole volume, but a smaller variability since, ideally, the probability of encountering
the operator is bound to zero. On the other hand, a trajectory crossing the worker’s
workspace is shorter and therefore faster but, at the same time, more likely to undergo
variations due to stops or changes in speed needed to avoid collisions.

Figure 4.3: Comparison between two possible trajectories of the robot, [5]
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For each point in space, the probability to be occupied by the human during his/her
movements is calculated and assigned to its corresponding probability range. All the points
belonging to a certain probability range are then grouped to form a volume, called “Human
Occupancy Volume” (HOV). Each HOV represents the part of the workspace in which there
is the corresponding probability of intersecting the operator during the execution of the task.
It must be noticed that both the dimension of the probability intervals and the resolution
with which the workspace is approximated to a grid are a trade-off between accuracy and
computational time. For instance, if (0-20%, 20-40%, 40-60%, 60-80%, 80-100%) are the
probability ranges considered, five volumes, each one related to one of these ranges, will
be generated. Now, considering one of these volumes at a time, a robot trajectory that
does not intersect it is defined. This trajectory, however, may intersect other volumes
with lower probability indices, as we can see from the example in Figure 4.4, in which a
trajectory avoiding HOV99,100 is represented. The path avoids the mentioned volume, but
is in collision both with HOV80,99 (dotted lines) and with HOV60,80 (solid lines).

Figure 4.4: Graphical representation of the HOVs, [5]

It is essential to estimate the probability for the manipulator to interfere with the
human operator during the trajectory execution, which would cause a stop or a decrease
of the robot’s speed and therefore a loss in performance. The procedure proposed by the
article is the following. First, an optimal free trajectory avoiding HOV99,100 is generated.
Then, the probability of collision with the volumes of lower index (indicated as CP99,100)
is calculated as the average of the human occupancy probabilities (HOP) associated with
each of these volumes, weighted on the number of collisions (NCk,j) detected with each
one of them.

CPHOP (k) =
∑

j<k 0.5 (HOP (j + 1) + HOP (j)) ·NCk,j∑
j NCk,j
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The maximum delay, that could be caused by the collision with each volume, is
represented by the time of human stay (HSTHOP (j),HOP (j+1)) inside that volume. This
value can be used to estimate the maximum robot time (MRTHOP (k) needed to complete
its task. This parameter is calculated as the sum of the duration of the free trajectory
(RTHOP (k)) and of the time of human stay of each volume intersected.

MRTHOP (k) = RTHOP (k) +
∑
j<k

HSTHOP (j),HOP (j+1)

Finally, from the information of “maximum robot time” and “collision probability”, the
“likely robot time” (LRTHOP (k)) can be estimated. If RTHOP (k) is the robot time related
to the execution of the undisturbed trajectory and MRTHOP (k) is the maximum time
required to complete the motion if all the collisions actually occur, LRTHOP (k) represents
a more realistic estimated time, recalibrated on the basis of the probability that the delay
will happen.

LRTHOP (k) = RTHOP (k) +

∑
j<k

HSTHOP (j),HOP (j+1)

 · CPHOP (k)

Once this value is calculated, the volume used for the generation of the free trajectory
is removed and the process is repeated iteratively for each of the computed HOVs. This
means that for the next iteration the first volume is not considered anymore, and the
free trajectory is computed around the next (in terms of probability range) HOV. When
considering the last volume, which is the one related to the lowest probability range, no
delay can be induced since the trajectory is already avoiding any possible interaction with
the operator. This means that the last “likely robot time” computed coincides both with
the “maximum robot time” and with the duration of the free trajectory.

In [5] these results are used to define a confidence interval for the robot execution time,
relevant data for a scheduling problem. Regarding the specific objectives of this thesis, the
authors believe that the “likely robot time” can also be considered a valuable indicator
of the performance of the trajectory. In particular, among all the plans that have been
computed during the process, the one with the shortest LRT is selected. In fact, on the
basis of the available a priori knowledge of the task, it is the fastest path considering both
its length and possible delays induced by human-robot interference. The thesis now focuses
on the authors’ implementation of the approach just presented.

It is assumed that the following required inputs have been received: the STL files of
the volumes obtained experimentally, the corresponding probability ranges, the total task
execution time, start and goal configurations defined by the user and maximum allowed
speed and acceleration. First, the HOV related to the highest probability range is added
to the planning scene and an optimal trajectory is computed around it using the optimal
planning algorithm RRT* (Section 3.2.2) offered by MoveIt!. Once the optimization process
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has finished and the trajectory has been created, the code removes the volume under
analysis, adds the next HOV with lower probability index and checks if any collision exists
with the waypoints composing the trajectory. This process repeats iteratively for each
HOV. For each waypoint the authors assign “0” if there is no collision or “1” if a collision
has been detected, therefore obtaining a vector of booleans for each of the lower probability
volumes. In order to compute the number of collisions (NCk,j) that is needed to use the
formulas proposed by the article, the relevant data is not the number of colliding waypoints,
but the number of trajectory portions in collision. These portions are identified inside the
vector of booleans by a certain number of consecutive colliding waypoints, as shown in
Figure 4.5.

Figure 4.5: Example of vector of booleans with two portions of the trajectory in collision

To obtain the number of collisions, the code counts the number of changes from “0”
to “1” or from “1” to “0” and divides the total count by a factor 2, supposing that there
is no collision at the beginning and at the end of the trajectory. Finally, RTHOP (k) is
extracted from the trajectory by looking at the “time_from_start” of its last waypoint, as
explained in Figure 4.2. At this point, all the data required to compute the LRT of this first
trajectory are available. Once the value of LRT has been computed, the volume around
which the trajectory has been generated can be removed from the planning scene. The
same process is iteratively repeated starting from the following volume with the highest
probability, thus obtaining a number of paths equivalent to the number of HOVs given as
input and a corresponding LRT for each one of them. Among all the available paths, the
code outputs the one associated with the lowest value of “likely robot time”. This path
is the one that will be used during task execution since, based on the statistical analysis
performed, it satisfies the user requests in the shortest time. The logic that has been used
to implement this approach can be analyzed in detail with the flowchart in Figure 4.6.
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Figure 4.6: Flowchart of the HOV offline planning technique
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4.2.3 Relevant Trajectory

The third offline planning technique proposed by the authors deals with the case in
which the user has to define the whole trajectory of the segment. In general, this happens
because the end-effector is not simply moving in space, but is also performing some kind of
activity, like for example welding, cutting, pouring molten metals, etc. In a collaborative
scenario, these operations are typically assigned to the robot because they are either
dangerous or require a high degree of precision. With the approach proposed by the
authors, first the user has to define the trajectory point by point in terms of position and
orientation of the end-effector. Then, the code takes this collection of points as input and
generates a corresponding trajectory that respects the limits of speed and acceleration set
for the robot.

As just stated, the user is asked to input the trajectory point by point, either in joint
space or operational space. Once the user has defined all the desired waypoints, the
algorithm processes them in order to assign to each point of the trajectory a time stamp
calculated so that all the limits of speed and acceleration can be respected. As shown in
Figure 4.2, the mentioned time stamp is called "time_from_start" and represents the time
from the beginning of the execution needed to reach the particular intermediate state. In
order to assign correct values of time to each waypoint, the authors followed a method
similar to the one explained in Section 3.2.5. The first waypoint is automatically assigned a
time_from_start equal to 0 as it is the starting point of the trajectory. For the remaining
waypoints, the code calculates the joint distance between all sets of consecutive points.
Next, the minimum acceptable delta time is calculated on the basis of the distances just
evaluated, the speed limit set in the configuration files and the scaling factor defined by
the user. The time_from_start of a generic waypoint of the trajectory is equal to the sum
of the time_from_start of the previous one and the calculated delta time. Regarding the
last waypoint of the trajectory, an increased delta time is used in order to obtain a smooth
stop of the robot at goal position. A representation of the logic used to implement this
procedure is reported in Figure 4.7.
At this point, a trajectory that satisfies all the joint limits has been created. As for every
other trajectory commanded to the robot, MoveIt! is able to take the path object as input,
interpolate between the waypoints and execute it using its built-in position controller.
Obviously, if for a given trajectory only a few waypoints are specified, the computational
burden is low, but the path followed between each couple of consecutive waypoints is less
predictable. If, on the other hand, the same trajectory is defined using a higher number of
waypoints the user has more control on the exact path that will be followed, at the cost of
a higher computational burden for the interpolation process.
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Figure 4.7: Flowchart of the Relevant Trajectory offline planning technique
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4.2.4 Tool operation

Differently from the previous cases, the aim of this last offline planning technique,
called Tool Operation, is not to plan a movement of the robotic arm, but to plan an action
to be performed by the end-effector in a certain pose inside the workspace. Regarding this
specific research, the robot was equipped with a simple two-prongs mechanical gripper.
Therefore, pick and place operations can be performed by controlling the opening and
closing distance of the end-effector’s fingers. In Figure 4.8 the features of the specific
gripper used for this research and its specifications are reported.

Figure 4.8: Technical sheet of the e.DO gripper

In terms of code, the user is simply required to input a choice of action and the position
in which it has to be performed, either in joint space or in operational space. Starting
from the capabilities of the mentioned end-effector, the author’s decided to implement
the three actions depicted in Figure 4.9: “Open fingers”, “Close fingers” and “Wait”. The
first two possibilities represent simply the open and close functionalities of the gripper
performed in the position specified by the user. For all the previously introduced offline
planning approaches this code is in charge of providing the correct timing for the segment
execution, as will be explained in the following sections. In this case, no movement of
the robotic arm is required, and the code has to behave differently. A ROS-message
containing the information about the desired action is published on an available topic,
named /open_gripper, that allows the authors to control the end-effector in a very fast and
intuitive way. The third option, instead, is an operational mode in which the robot remains
stationary in a predefined configuration and direct contact with the operator is allowed.
This mode applies to all the cases in which, for instance, inspection of the end-effector
or of the carried workpiece is needed. Since the robot is not allowed to move for all the
time needed to perform the inspection, no harm can be done to the operator. The robot is
allowed to restart its motion, and therefore execute the following segment, only when the
operator gives a confirmation signal. Regarding the authors’ implementation, this signal is
sent simply by pressing the “ENTER” key on the keyboard.
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Figure 4.9: Implemented actions for the Tool Operation offline planning technique

4.2.5 Code modularity

All the coding necessary to implement the robotic features presented up to now has
been structured with the goal of enhancing the modularity of the system. This means that
for any new offline planning technique required, a future developer can simply add the new
implementation to the list of possibilities. In order to do that, each segment created by
the user is translated into a C++ “segment object” characterized by a series of attributes,
represented in Figure 4.10.

Figure 4.10: Pseudo-code of a Segment object

As shown, each segment object contains a series of booleans that are used to activate
the corresponding offline planning technique and to select a choice between joint space or
operational space. The same object is used to store the scaling factors defined by the user,
together with the behavior preference, that will be addressed in Chapter 5. In order to
obtain a modular structure, each offline planning mode is implemented inside a dedicated
C++ if statement. For each offline planning technique, the authors’ implementation offers
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a choice between joint space and operational space, once again introduced in the code as
an additional if statement. In Figure 4.11, a pseudocode representing an example of the
practical implementation of this structure is reported. The if statement related to the
User-defined Algorithm mode is represented and, inside its structure, two additional if
statements are used to distinguish between joint space and operational space. Therefore,
the code implementing the offline mode is written inside the specific corresponding section.
The same idea is used for all the offline planning techniques developed by the authors. In
practice, when a segment is created, the booleans related to the choices of offline planning
technique and computational space are set to “true” so that the corresponding section
of code can be accessed. This code structure simplifies the process of introducing new
features in the robotic system. In fact, a future developer can simply create a new boolean
variable inside the segment object and implement the new approach inside a corresponding
if statement. Thanks to this approach, the process of discarding or updating obsolete
features and introducing new ones in the robotic system can be performed quickly and in
a more intuitive manner.

Figure 4.11: Pseudo-code of the modular structure of the system

4.3 Segment processing

Up to this point, this chapter has presented the different offline planning techniques
made available by the authors for the generation of the trajectory of the segments. As
stated at the beginning of the chapter, though, the code under analysis is also responsible
for additional offline steps. First, this section deals with the analysis of the connection of
the segments. Then, the authors’ solution to achieve correct timing in the execution of the
segments is presented.

4.3.1 Connection analysis

Supposing that the user has already defined all the segments that compose the robot’s
task at hand and that their trajectory has been computed offline by the algorithm, an
additional step is required in order to ensure the correct connection of the sections. In this
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thesis, two consequent segments are considered properly connected if the configuration
of the robot at the end of the first one coincides, within a certain tolerance, with the
configuration prescribed for the beginning of the following one. The code first checks the
difference of the value of each joint between the end position of a segment and the start
position of the following one. If this difference is bigger than a certain tolerance, set to 0.05
rad, a new segment connecting the two configurations is created. Thanks to this analysis,
the algorithm is therefore able to automatically compensate for any mistake or inaccuracy
of the user. The connection path is planned using the RRT algorithm offered by MoveIt!, an
efficient and fast planner addressed in detail in Section 3.2.2. The reason behind this choice
of algorithm is that the authors were not interested in creating a connecting trajectory with
particular features. Therefore, a planner able to find a feasible solution in a very short time
represents an ideal solution since it has very limited impact on the offline performances of
the system.

With reference to Figure 4.12, an example of the process just presented, simplified in
two dimensions, is reported. As depicted, the user has created a first segment going from
A to B and a second one going from C to D, but due to inaccuracy or a mistake they are
not properly connected. The algorithm takes as input the segments created by the user
and checks the distance between B and C. Since the value of distance between the two
positions is bigger than the predefined tolerance, a third segment going from B to C, called
“connection segment” in the example, is generated. It is of utmost importance in this
phase to maintain the correct order of the segments, since it also represents the sequence
with which the code will command the execution. In this example, the code takes in input
the vector <Segment_1 , Segment_2> and, after the connection process, expands it to
become the vector <Segment_1 , Connection_Segment , Segment_2>.

Figure 4.12: 2D example of the connection analysis process

The flowchart of the logic used to analyze the collection of segments and create
connections where needed is reported in Figure 4.13.
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Figure 4.13: Flowchart of the logic used for the connection analysis
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4.3.2 Segment execution

At this point, the collection of properly connected trajectories that composes the robotic
task has been created. The last critical step assigned to the code under analysis, is to
make sure that the execution of the segments is commanded in a safe manner and with
the correct timing. As already stated, the code presented up to this point also represents a
node in the ROS environment and, as such, is capable of communicating with the other
components of the robotic system. Exploiting the ROS functionalities of publisher and
subscriber, this node is responsible for the communication of the online characteristics
of the segments to the other nodes in play. In the authors’ implementation, the actual
execution command for a path can be sent only when two conditions are satisfied. The
first condition is that a feedback, carrying the information about the readiness of the
controller, is received. Thanks to this safety check, the authors are able to guarantee that
no uncontrolled, and therefore unsafe, movements of the robot are allowed to happen.
Furthermore, an additional feedback is collected by the code and represents the second
condition to be satisfied: for all the duration of the task, it must be ensured that the
segment under execution has been successfully completed before commanding the execution
of the following one. In Figure 4.14, a schematic representation of the ROS framework
developed by the authors is reported.

Figure 4.14: Diagram showing the ROS structure of the implemented system

Always with reference to Figure 4.14, the “Segmentation Node” represents the offline
code presented in this chapter. The “Behavior Node” and the “Controllers Node” are two
additional codes, developed by the authors and addressed in Chapter 5, related to the online
behavior of the robot. The scheme also represents the connections created between these
nodes and the messages that are exchanged. In particular, the Segmentation Node publishes
two messages: one on a topic called /behavior_code, containing the user preference for the
online behavior of the robot for the specific segment, and another one through the topic
named /trajectory_plan, carrying the trajectory that has been computed by the offline
planning process. The first condition to be satisfied before commanding the execution of a
segment, is therefore to make sure that both the Behavior Node and the Controllers Node
are effectively subscribed to their corresponding topic. In fact, only if this happens the
messages can be received and therefore used to take care of the segment execution according
to the user requests. The remaining branch of the graph represents the subscription of
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the Segmentation Node to another topic, called /follow_joint_trajectory/result, on which
a message, containing the second feedback needed, is published by a node created by
MoveIt!. Among all the information within that message, a parameter containing the
status of the trajectory under execution can be found, as shown in the Table 4.2. The
second condition for the execution of a new segment is therefore satisfied only when the
status of the execution of the previous path becomes “Succeeded”.

STATUS CODE DESCRIPTION
Pending 0 The goal has yet to be processed by the action server.
Pending 1 The goal is currently being processed by the action server.

Preempted 2
The goal received a cancel request after it started executing
and has since completed its execution.

Succeeded 3 The goal was achieved successfully by the action server.

Aborted 4
The goal was aborted during execution by the action server due
to some failure.

Rejected 5
The goal was rejected by the action server without being processed,
because the goal was unattainable or invalid.

Preempting 6
The goal received a cancel request after it started executing
and has not yet completed execution.

Recalling 7
The goal received a cancel request before it started executing,
but the action server has not yet confirmed that the goal is canceled.

Recalled 8
The goal received a cancel request before it started executing
and was successfully cancelled.

Lost 9
An action client can determine that a goal is LOST. This should not be
sent over the wire by an action server.

Table 4.2: List of status codes related to the execution of a trajectory

A robotic system based on the envisioned segmentation process is now available.
Thanks to the developed framework, the user has the possibility to divide a robotic
application into sequential segments and to characterize each one of them independently.
The code automatically takes care of the problem of planning, connecting, sequencing and
commanding the execution these segments properly. Moreover, the system ensures that
each segment is executed with the right timing and only when under the supervision of the
desired controller, so that operational safety can be guaranteed.

4.4 Graphical User Interface

In order to enhance the accessibility of the robotic system and lower the skill threshold
required to program the robot, an intuitive Graphical User Interface (GUI) has been
developed. The GUI makes it possible to rapidly create, open, edit or save groups of
segments by completely avoiding the need of “hard-coding” any movement of the robot.
Thanks to this tool, the user is able to program the robot in a fast and easy way with no need
of complex trainings or advanced knowledge. With this approach, the task segmentation is
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performed in an iterative offline process guided by the GUI, that leads the user through the
full definition of the robot’s task, specifying the levels of human-robot interaction allowed
for each segment.

Upon opening the GUI, the main window is simple yet provides a quick overview of
the capabilities of the system, as show in Figure 4.15. The scenario is defined segment by
segment by clicking on the “Create New Segment” button. Any segments that have already
been created are displayed in a dedicated white box, along with a brief summary of their
characteristics. The “File” tab, located at the top left corner of the window, allows the user
to save the scenario for future use or to open an already existing one. It should be noted
that the convenience of this feature has a great impact on the degree of customizability
that this robotic system provides. For instance, if the production of a product has already
been programmed and a new customization is needed, the user has the possibility to open
the existing scenario, modify the segments according to the new customization and save the
new program instead of having to re-define the scenario from scratch. Moreover, the “Edit”
tab can be used for further basic functionalities like “Undo”, “Redo” or “Copy/Paste”
operations on the segments. Once the whole scenario has been defined, the algortithm
automatically takes care of all the remaining offline steps: segments planning, connection
and management.

Figure 4.15: Screenshot of the main window of the GUI

As previously stated, the scope of the segmentation approach is the independent
characterization of each segment both in terms of offline planning technique, main content
of this chapter, and of online robot behavior, that will be addressed in detail in Chapter 5.
In line with this concept, every time that a segment is created with the GUI, a new window
pops up in order to request the characterization of the segment desired by the user. Each
segment is assigned a “Name”, a “Mode” (offline planning technique), and a “Behavior”,
both selectable from a list of available choices, as shown in Figure 4.16. Once the user
has properly characterized the segment, the “Create” button shown in Figure 4.16 can be
clicked. At this point, a new window is generated in order to allow the manual input of
more detailed information about the segment, according to the assigned characteristics.
The windows relative to each available offline planning technique are now presented.
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Figure 4.16: Creation of a new segment with the GUI

In Figure 4.17, the window related to “User Defined Algorithm” mode is reported. First,
the user can select a preference between joint space or cartesian space for the definition of
start and goal configurations of the robot for the segment. A list, provided at the bottom
of the window, can then be used to choose the desired planning algorithm among the ones
offered by the OMPL plugin (Section 3.2.1). Finally, two scaling factors can be specified in
order to further reduce the preset maximum allowed values of speed and acceleration.

Figure 4.17: Screenshot of the User Defined Algorithm offline planning mode

The window related to the “Human Occupancy Volumes” mode, shown in Figure 4.18,
maintains all the features of the previous one but, instead of asking the user for a choice
of planning algorithm, a box for the upload of the probability volumes is available. The
user has to click on the “Upload” button in order to select the STL files of the volumes
experimentally created and assign to each one of them the corresponding human occupancy
probability range. Moreover, a value of “Task Execution Time” is required in order to
completely define the task to be analyzed, as explained in detail in the previous section
dealing with this specific offline planning technique.
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Figure 4.18: Screenshot of the Human Occupancy Volume offline planning mode

The “Relevant Trajectory” window, presented below in Figure 4.19, is built using a
different logic with respect to the previous ones. Again, the user chooses between joint
space and pose space and, optionally, specifies scaling factors for maximum velocity and
acceleration of the robot. At this point, the trajectory can be created point by point by
clicking the “Add Point” button. Every time, a small additional window, like the ones in
Figure 4.20, pops up in order to store the values for the configuration of the robot in that
specific point. Once all the points have been stored, the user can click on “Add Trajectory”
in order to confirm the creation of the segment.

Figure 4.19: Screenshot of the Relevant Trajectory offline planning mode
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Figure 4.20: Window for the definition of the points of a trajectory

Finally, the “Tool Operation” mode window shown in Figure 4.21 allows the user to
select a preference between joint space and cartesian space for the definition of the position
in which the robot has to perform the operation. The specific action to be performed can
be selected among the available ones (Open, Close and Wait). As a further notice, for all
the cases in which the operator selects the “Wait” operation, the system automatically
assigns the “Human Contact” behavior to the segment in order to make the robot act as
desired.

Figure 4.21: Screenshot of the Tool Operation offline planning mode

In order to provide the reader with a deeper understanding of the convenience of the
GUI, Figure 4.22 shows a fully defined scenario (note that the scenario displayed on the
GUI is the same used in Chapter 6 for the experimental validation of the system). As
previously stated, a brief summary of the characteristics of each segment is displayed in a
very intuitive manner in order to give the user a general overview of the programmed task.
Once the scenario has been saved, it can be re-opened at any time and each segment can be
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modified by simply double-clicking on it. In Figure 4.23 two examples of the window that
pops up during this modification process are reported: a summary of all the information
assigned to the specific segment is provided and immediately accessible to the user for any
change.

Figure 4.22: Overview window of a scenario programmed with the GUI

Figure 4.23: Example of the windows available for the modification process
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As introduced at the beginning of the chapter, the first duty of this code is a step
of “input reading”. In fact, all the information provided by the user through the GUI is
written in a TXT file in an intuitive form, in order to enhance the accessibility of the
system as much as possible. However, this language is not efficient in terms of coding
and, therefore, it is necessary to translate all the data in C++ programming language. In
order to do that, the authors developed a method to quickly read the information provided
by the user through the GUI and store it inside the “segment objects” that have been
presented in the previous sections. Thanks to this step of translation, the algorithm can
exploit all the data in an efficient way and, at the same time, the original program file can
be saved creating a library of preprogrammed collaborative scenarios, always available for
future use.





Chapter 5

Online module: High-level
controllers and robot behaviors

5.1 Introduction

So far, this work has introduced the idea of programming an industrial application
as a composition of segments. A detailed explanation of the methodology used to create,
manage and execute segments can be found in Chapter 4. In the first part of this chapter,
instead, the research will focus on the development of a series of high-level controllers,
providing the robot with a variety of capabilities that can be used to react in real-time
to different changes in the environment (e.g., obstacles, human encounters). Then, the
concept of “robot behavior” is introduced. As proposed in [3], a behavior consists in the
interplay of several concurrently running elemental controllers, properly sequenced. By
joining the segmentation process and the concept of robot behaviors, a user that divides
the robotic application into segments, can assign a particular behavior to each one of them
independently. This approach is particularly useful for all the cases in which the segments
composing an industrial application are characterized by different needs and therefore
require different online behaviors.

This can be shown by referring to the same example used in Chapter 4. When
considering a welding scenario the robot has to behave differently while approaching the
welding area and when performing the welding on the workpiece. According to previous
explanation, this scenario can be described as the composition of two segments: the first
one represents the movement of the robot from its original position to the welding area,
while the second one is the path that the end effector has to follow while performing the
welding. Thanks to the segmentation process, the user is not only able to plan the two
trajectories using two different approaches, but also to independently assign to each one of
them an appropriate online behavior. Considering the first segment of the example, the
user could decide that the path followed by the robot to reach its goal is not relevant, and
therefore may want to allow the system to be able to modify what has been computed
offline if necessary. Unexpected changes to the environment therefore trigger the system to
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adapt the robot movement in order to reach the goal ensuring safety and good performances.
On the other hand, the trajectory defined for the second segment is of absolute importance
when trying to obtain good welding results. Speed and positions that have been decided
offline cannot be modified without risking a damage to the workpiece, meaning that the
system should try to avoid any of those changes.

Before presenting the implementation of this system, another important aspect must be
taken into account. The target application field of this work is characterized by a rapidly
changing environment that requires high levels of flexibility and, therefore, robot behaviors
able to adapt to every possible requirement. As already stated in the previous chapter, a
modular system could represent a great solution. In fact, it would allow developers to keep
up with the rapid changes of the industry by improving the online capabilities of the robot
or by adding new features, without discarding the whole structure of the system. This
concept of modularity also enables reusability of code, incremental design of functionality
and efficient testing as highlighted in [28] and [3]. With reference to Figure 5.1, showing
the control architecture of the robotic system, this chapter addresses the Online/Real-time
Module.

Figure 5.1: Focus on the module of the control scheme addressed by Chapter 5

In particular, this chapter presents in detail two codes:

1. High-level controllers: containing all the controllers that have been developed;
2. Robot behaviors: containing all the implemented reactive behaviors.

As already introduced in Figure 4.14, each one of these codes represents a node in the
ROS environment and can, therefore, communicate with all the other available nodes.
They are connected both to the segmentation code, developed in Chapter 4, in order to
gather information about the plans under execution, and between each other to exchange
information about the controllers’ activation.
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5.2 High-level controllers

In Chapter 2, the existing approaches to human-robot collaboration have been presented.
Starting from the need of flexibility and adaptability of today’s industry, though, selecting
a single mode of interaction and developing an entire system around it would be limiting.
Therefore, the idea of this project is to develop a series of approaches to human-robot
interaction so that the most suitable one can be activated for every specific situation. In
this thesis, these approaches are called “High-level Controllers” and represent the different
modalities that are available for the robot to interact with both the environment and the
human operator. Moreover, having a series of different controllers allows the robotic system
to be able to adapt to a great variety of situations typical of an industrial environment,
making the system flexible while always ensuring safety. Here is the list of the controllers
that have been developed:

• Stop and Go;
• Replan;
• Reconnect;
• Alert;
• Human Contact;
• Fail Safe.

In the following pages, a detailed analysis of each one of them is reported, in order to
understand their functionality and the logic behind their implementation.

5.2.1 Stop and Go

This first high-level controller developed by the authors constantly monitors the distance
between the robot and any obstacle in the environment during the execution of a trajectory.
If this distance becomes smaller than a certain predefined threshold, the robot comes
to a complete stop in order to avoid a possible collision. When this happens, the whole
system remains active so that the value of distance can be constantly updated and no
information about the commanded trajectory is lost. Then, as soon as the obstacle moves
away from the manipulator and the distance becomes once again bigger than the given
threshold, the robot restarts its motion from the position in which it was stopped, following
the remaining part of the original trajectory. The threshold is decided at code level and
represents the minimum distance between the moving robot and the environment/operator
that can be considered acceptable in terms of safety. Figure 5.2 provides a representation
of the functionalities of this controller.

As long as the Stop and Go controller is active, the algorithm cycles inside a C++
while loop where the value of distance from the closest obstacle is constantly updated.
Every obstacle present in the workspace is also represented in the planning scene so that
the robotic system can take it into account. This allows MoveIt! to calculate the minimum
distance between the robot and the obstacles using the FCL library, presented in greater
detail in Section 3.2.4. A safety check is performed every time the distance is updated. If
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the distance is bigger than the predefined threshold the robot is allowed continue on its
path. However, if the value of distance is smaller, the controller considers the situation
as hazardous and therefore calls a MoveIt! function that immediately stops the robot,
overriding the execution of the remaining part of the trajectory.

Figure 5.2: Representation of the functionality of the Stop and Go controller

As soon as the obstacle has moved away far enough and the value distance has become
greater than the threshold, the algorithm is triggered to perform an analysis on the original
trajectory. First, it cycles through all the waypoints of the trajectory, looking for the
minimum distance between the state in which the robot was stopped and the intermediate
states corresponding to each waypoint. This information allows the authors to detect the
waypoint of the preempted path closest to the stop position. This point is used to extract,
from the original trajectory, the portion that still has to be executed and to copy it inside
a new path object. Moreover, in order to avoid any problem related to the tolerance on the
start position, the code adds, at the beginning of the new plan, a point corresponding to
the exact position in which the robot has been stopped. Before commanding the execution
of this new trajectory, the algorithm has to modify the time stamps of all the points. The
first waypoint is assigned a time_from_start equal to zero, the following ones are labeled
with a time value calculated on the basis of the distance between them and the imposed
limits of speed and acceleration, while the time stamp of the last waypoint is modified in
order to make the robot slow down and smoothly stop at goal position. The structure of
this controller is reported in Figure 5.3.
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Figure 5.3: Flowchart of the Stop and Go controller
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5.2.2 Replan

The high-level controller presented here introduces a different approach to obstacle
avoidance with respect to the one used for “Stop and Go”. The “Replan” controller differs
from the “Stop and Go” controller in the fact that the first one allows the manipulator
to modify its path in order to avoid the obstacle and reach its goal. In particular, when
the value of distance becomes smaller than a predefined threshold, the robot gets stopped
using the built-in MoveIt! function and the algorithm immediately starts looking for a new
path that brings the robot from the position in which it was stopped to the same goal of
the original trajectory, without colliding with the obstacle. In order to ensure the safety of
this operation, a key feature of this controller is the ability to replan around the object
with a certain value of clearance. The built-in planner used by MoveIt! does not allow
the user to select a desired minimum distance from the obstacle. Instead, it considers as
feasible every configuration of the robot that is not in a state of collision, even if it brings
the manipulator extremely close to the object. To overcome this limitation, before calling
the planner, the code developed by the authors increases the size of the virtual obstacle
in a process referred to as “virtual inflation” Thanks to this process, zero clearance from
the “inflated” object actually represents a value of clearance for the real one equal to the
difference between the two sizes. As soon as the planner has generated the new path around
the virtually enlarged obstacle, the algorithm reduces its size to the original one and, only
after that, the execution can be commanded. As a result, by modifying the percentage
of size increase at code level, the algorithm is able to guarantee a value of clearance that
satisfies the required safety constraints. Once again, in Figure 5.4 a representation of the
functionalities of this high-level controller is provided.

Figure 5.4: Representation of the functionality of the Replan controller
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In terms of code, the activation of the controller means entering a while loop in which
the system continuously updates the value of distance between the robot and the closest
obstacle. If this value is bigger than a predefined threshold, no action is required and the
robot can continue on its path undisturbed. If, instead, the distance becomes smaller than
the minimum allowed, the algorithm immediately stops the execution of the trajectory. At
this point, in order to increase the dimensions of the virtual obstacle, a message containing
the information of the new size is published to the Planning Scene Monitor (Section 3.2)
in order to modify the original value. Then, the planner computes a path that avoids
the enlarged obstacle using as start position the current position, and as goal the original
goal extracted from the last waypoint of the old trajectory. Finally, a second message is
published in order to resize the object in the planning scene to its original real value, and
the execution of the newly computed path is commanded. A flowchart of what has just
been explained is reported in Figure 5.5.

Regarding threshold value, it should be noted that, if the execution of the replanned
trajectory was commanded without modifying it, the algorithm would immediately stop
the robot once again since the value of distance would still be too small. For this reason,
before starting the execution, the threshold has to be reduced in order to allow the motion
of the robot and then, as soon as the distance grows bigger than the original limit, its
value can be restored. The code in charge of the constant communication of the threshold
is “Robot Behaviors”, addressed in the next section of this chapter.
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Figure 5.5: Flowchart of the Replan controller
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5.2.3 Reconnect

The “Reconnect” controller is very similar to the previous one: if an obstacle is detected
within a predefined threshold, the robot is stopped and the virtual object is enlarged in
order to ensure a certain clearance. Then, the algorithm tries to replan a new trajectory
around the object. The only difference between “Replan” and “Reconnect” is that, for the
latter, the planner looks for a new path that goes from the position in which the robot
was stopped to the first valid point of the original trajectory after the obstacle, instead of
replanning all the way to the original goal. In the authors’ implementation, the controller
considers “valid” the first waypoint of the portion of the original path that has not been
executed not in collision with the obstacle and at a distance from the obstacle specified
at code level. The only constraint in performing this operation, is that the chosen value
of distance must be bigger than the threshold in order to make sure that the “first valid
point” is detected after the obstacle. Finally, once the robot has reconnected with the
original trajectory, it follows it until the goal of the segment is reached. The main steps
representing the functionalities of this controller are depicted below in Figure 5.6,

Figure 5.6: Representation of the functionality of the Reconnect controller

The code developed to implement this new controller is very similar to the previous
one but requires further calculations in order to generate the reconnection capability. For
every cycle, the value of distance is updated and compared to the threshold. Once again,
if the distance is too small, the robot is immediately stopped to prevent any collision.
As done for the “Stop and Go” controller, the code looks for the waypoint closest to the
position where the robot was stopped by cycling through the whole original trajectory and
saves its corresponding index. After that, the virtual obstacle inflation is triggered, and
the algorithm starts looking for the “first valid point” of the preempted path by cycling
through its intermediate positions from the saved index to the end of the segment. Now,
the planner is leveraged to compute a path that avoids the enlarged obstacle and connects
the current position of the robot with the “first valid point” just defined. This path is then
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copied into a new path object where it is merged with the portion of the original trajectory
that goes from the “first valid point” to the end of the segment. As already done for the
previous controllers, the time stamp of all the waypoints is modified in order to respect
speed and acceleration limits of the robot and, finally, the execution can be commanded.
The flowchart representing this whole procedure is shown in Figure 5.7.

Figure 5.7: Flowchart of the Reconnect controller
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5.2.4 Alert

The “Alert” controller differs from the previous ones mainly in the robot reaction
triggered when the distance from the closest obstacle becomes smaller than a predefined
threshold. In the previous cases, the system was looking for the position of external
obstacles in order to stop the robot if a collision was imminent. In this case, instead, the
system still analyzes the distance from the obstacles, but the aim of the controller is to
communicate to a human operator that the trajectory of the manipulator must not be
disturbed. In practice, when this controller is activated, a while loop is accessed in order to
constantly update the value of distance. Another threshold is used to define the minimum
acceptable distance below which communication with the operator has to be activated.
Therefore, if the user, or any other obstacle, gets too close to the manipulator while it is
operating under this controller, a certain signal is emitted in order to state the detected
possible disturbance and ask for a clear path. In the long run, the "Intelligent HRC for
Smart Factory" project envisions the development of a new language between the human
and the manipulator, able to allow a natural and intuitive way of communication between
the two entities. In these early stages of the project, though, the authors’ implementation
simply relies on an alert sound that gets activated every time that an obstacle comes closer
than a certain threshold to the robot. A flowchart of the logic of this controller is reported
in Figure 5.8.

Figure 5.8: Flowchart of the Alert controller
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5.2.5 Human Contact

The “Human Contact” controller has been developed to allow direct contact between
the robot and the external environment. For example, this functionality could be exploited
every time that an operator has to perform a certain operation on the robot, such as
inspection of the end-effector or of the carried workpiece, as represented in Figure 5.9.
Since this controller basically allows collisions to happen, it can be activated only when
the robot is completely still and therefore there is no risk of harming the operator. The
“Human Contact” controller remains active for as long as the user needs to complete the
operations on the robot. When the operator is done, the system waits for a confirmation
signal, needed to trigger the execution of the next segment. In the authors’ case, this signal
is given by the operator simply by pressing the ENTER key on the keyboard.

Figure 5.9: Example of an inspection operation performed under the Human Contact controller

In terms of code, the controller has been realized with the following simple logic: the
system waits inside a while loop until the confirmation signal is given by the user. Only
after that the signal is received, the controller sends a feedback to the segmentation code
matching all the requirements needed for commanding the execution of the next segment,
as explained in Chapter 4. Note that, for this type of controller, there is no need to monitor
the distance from the closest collision. The flowchart of this controller is reported in Figure
5.10;
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Figure 5.10: Flowchart of the Human Contact controller

5.2.6 Fail Safe

The last high-level controller, developed by the authors for this project, represents the
base layer for the safety of the system. It equips the robot with a “Fail Safe” mode that
can be called every time something unexpected happens. For instance, it is automatically
activated if, for any reason, the distance between the manipulator and an external obstacle
approaches zero, meaning that a collision is impending. In practice, whenever the “Fail
Safe” gets activated, it overrides every other controller and brings the system to a complete
shutdown. Obviously, this does not happen if the “Human Contact” controller is running,
since the value of distance is not monitored and contact is allowed. A situation in which
this mode has to be called represents an emergency. In this case, the only acceptable
reaction is to interrupt whatever operation is being performed, so that maximum priority
can be given to the safety of the operators. This means that if the “Fail Safe” is activated,
since the whole system is shut down, a reboot will be needed before being able to restart
it. Figure 5.11 reports a flowchart of the structure of the code used to implement the Fail
Safe.

Figure 5.11: Flowchart of the Fail Safe controller
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The high-level controllers have been developed starting from the recognition of the
main needs that can show up in real industrial scenarios. Each one of them tries to solve
the problem of human-robot interaction in a different way and for this reason, depending
on the situation, there may be a particular one that is better suited than the others in
terms of safety and performance. A more detailed analysis of when and why each controller
could be preferred over the others will be presented in Section 5.3, dealing with the robot
behaviors.

5.2.7 Code modularity

As already introduced for the offline planning techniques, a modular structure of the
code would ease the process of adapting to the rapid changes of the modern industrial
environment, enhance the reusability of the code and allow developers to add new features
without the need of rearranging the whole system. Therefore, the solution proposed by the
authors consists of a switch structure in which each case contains a high-level controller. A
switch module is a simple C++ structure that can be exploited to activate different sections
of the code on the basis of the value that it receives as input. Each section is labelled
with a specific number and, every time that the switch function receives a new input, it
activates the part of the algorithm that corresponds to that value. The code responsible
for sending the correct input to this module is “Robot Behaviors”, able to communicate
with “High-level Controllers” exploiting the functionalities of the ROS environment. The
two codes are both nodes composing the robotic network and therefore have the possibility
of exchanging messages between each other. As a result of this approach, a new controller
could be integrated in the system by simply adding it as a new case for the switch module.
Moreover, an already existing controller can be modified in a simplified way, since it is
confined in a specific part of the code, and an obsolete controller can be discarded by
deleting its corresponding case. The pseudo-code representing this structure is shown in
Figure 5.12.

Figure 5.12: Pseudo-code of the modular structure containing the developed High-level Controllers
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5.3 Robot Behaviors

As explained in the first part of this chapter, the high-level controllers represent a series
of possible approaches to human-robot interaction. The robotic system is now equipped
with several online capabilities, but still lacks a smart decision-making module able to
activate in real-time the best suited controller as a reaction to the data collected from
the external environment. In order to guarantee the maximum flexibility, this module has
been conceived as a collection of decision-making logics, called “robot behaviors”, each
one capable of selecting in real-time the best controller to be activated on the basis of its
own choosing algorithm. In particular, every behavior is associated to a specific group of
high-level controllers and has the role of calculating a “cost of activation” for each one
of them, by means of a cost function. This cost is used to quantify the impact that the
activation of a specific controller would have on the safety and the productivity of the
collaborative operation. On top of that, if any emergency situation is detected, the Fail
Safe controller is immediately activated in order to guarantee operational safety.

The structure of each cost function is the same for all the implemented behaviors. The
cost of activation of a controller, belonging to a specific behavior, is calculated as the sum
of the following components:

Cost of Activation = Base cost + Distance cost + Delay cost

• Base cost: component of the cost that does not depend on any external parameter,
simply equal to a constant value (Cbase);

Base cost = Cbase

• Distance cost: component of the cost inversely proportional to the distance between
the manipulator and the closest obstacle, calculated as the ratio between a constant
coefficient (Cdist) and the value of distance measured by the collision detection library;

Distance cost = Cdist

Distance

• Delay cost: component of the cost proportional to the delay induced by any stop
of the robot motion due to the presence of an obstacle, calculated as the product
between a constant coefficient (Cdelay) and the amount of delay measured in terms
of number of code cycles spent while the robot is stopped;

Delay cost = Cdelay ·Delay

The base cost is used to make sure that the desired controller is activated when the
other two components are irrelevant. For instance, when no obstacle is detected close to
the robot, the value of distance is big enough to make its corresponding cost very small
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and the delay cost is equal to zero since the robot is proceeding undisturbed on its path.
The cost of activation is, therefore, almost equal to the base cost which becomes the
main determinant for the choice of the controller to be activated. Considering the second
component of the cost function, as the value of distance between the robot and external
obstacles becomes smaller, its associated cost rises. This means that the switch logic can
make a decision taking into account the safety level of the operation. Finally, the delay
cost starts rising as soon as the robot motion is forced to stop in order to avoid a collision
and, therefore, represents an indicator of the performance level for the task at hand.

Cost = Cbase + Cdist

Distance
+ Cdelay ·Delay

As shown in the final formula above, the total cost of activation for a controller is
calculated on the basis of three coefficients. The value assigned to these coefficients are a
specific characteristic of each decision algorithm. They have been defined experimentally in
order to guarantee a specific timing and logic for the switch between the controllers triggered
by each behavior. As depicted in the scheme in Figure 5.13, during the entire execution
of a segment, the corresponding behavior chosen by the user is activated. This behavior
constantly calculates the cost of activation for each controller belonging to its group and
activates the least expensive one. This means that any change in the external environment
influences the cost values and therefore triggers a switch between the controllers as soon as
a different one becomes more convenient. If, for any reason, the safety of the operator is
threatened, the system automatically switches to the “Fail Safe” mode, which immediately
overrides the running controller in order to avoid any damage or injury cause by a collision
with the robot.

Figure 5.13: Schematic representation of the logic behind the Online/Real-time module
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Once again this algorithm exploits the communication network provided by ROS. Every
time that the “Segmentation” node commands the execution of a new segment, it publishes
a message to “Robot Behavior” containing the code corresponding to the desired decision
logic. This last node keeps the requested behavior running and, in turn, publishes a
message to the “High-level Controllers” node with the information of the least expensive
controller that has to be activated. Furthermore, “Robot Behavior” is also in charge of the
communication of the values of the thresholds to be used by the involved controllers. In
fact, every controller can be used by more than one behavior and for each case different
values of the thresholds could be required. This means that they cannot be an intrinsic
characteristic of the controller, but they must be updated every time according to the logic
of the specific behavior.

On the basis of a general analysis of real industrial collaborative applications, the
authors developed a series of robot behaviors aimed to solve the most common needs in
terms of online smart capabilities:

• Limited Time Stop (Replan);
• Limited Time Stop (Reconnect);
• Unlimited Time Stop;
• Robot Trajectory (Non-restrictive);
• Robot Trajectory (Restrictive);
• Allowed Contact.

In the following pages a detailed analysis of the logic used to implement them and of their
main benefits is presented.

5.3.1 Limited Time Stop (Replan)

The idea behind this first behavior is to address the problem of a convenient robot
reaction in front of an obstacle obstructing the manipulator’s path. In some cases it would
be convenient to stop the motion of the robot and simply wait for the obstacle to move
away before restarting the original trajectory. On the other hand, for some situations it
would be preferable to replan and avoid the detected obstacle. Given that, for the current
state of the project, the duration of the obstruction cannot be predicted, the solution
proposed by the authors consists in stopping the robot in front of the obstacle and taking a
decision on the basis of the amount of delay that this stop causes. In particular, the robot
is allowed to wait in its stationary state only for a time equal to a value specified by the
user during the definition of the segments. If the obstacle moves away before the time limit,
the execution of the original path can be restarted, otherwise a new plan is computed in
order to avoid the obstacle and reach the goal of the segment. Obviously, this is possible
only if the goal configuration is not obstructed by the obstacle itself. If this happens, the
only feasible option is to let the robot wait in its position until the goal of the segment is
cleared. If, during the execution of the segment, any emergency situation is detected, the
“Fail Safe” controller immediately overrides any other command and the system is shut
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down. This behavior is particularly suited for all the cases in which the focus is not on the
path followed by the manipulator, but mostly on its performance in reaching the goal. The
two controllers selected for this behavior are “Stop and Go” and “Replan”. The coefficients
of the function used to estimate their cost of activation are reported in Table 5.1.

High Level Controller Cbase Cdist Cdelay

Stop and Go 0 0 1
Replan cycle_frequency · time_limit 0 0

Table 5.1: Table of Coefficients for the Limited Time Sop (Replan) behavior

As reported in Table 5.1, Cdelay has been fixed to 1 for “Stop and Go” and to 0 for
“Replan”, meaning that a delay would cause a cost increase only for the first controller.
The value of Cdist is the same for both controllers because, for this behavior, the decision
does not depend on the distance, but only on the amount of wasted time. In this case,
the coefficients has been set to 0 in order to simplify the calculations. Regarding Cbase,
their values are calculated as a function of the maximum wait time defined by the user
during the creation of the segments. In order to provide an example, the authors suppose
a time limit equal to 4 seconds. Knowing that the cycle frequency is 10 Hz, the effect of
the coefficients set by the authors is shown in Table 5.2.

Controller As soon as the
robot stops

After 2s of delay After 4.1s of delay

CostStopAndGo 0 20 41
CostReplan 40 40 40
Active Controller Stop and Go Stop and Go Replan

Table 5.2: Table with an example of cost values during the execution of a segment characterized
by the Limited Time Stop (Replan) behavior

As shown, as soon as the robot stops due to the presence of an obstacle, the cost of the
“Stop and Go” controller starts rising due to the contribution of the delay cost. After 2
seconds of delay, “Stop and Go” remains the most convenient controller, since the limit set
by the user has not been reached. When the delay exceeds the limit, the cost of “Replan”
becomes the lowest and therefore the switch between the controllers is triggered. When
“Replan” gets activated, it plans a new path that avoids the obstacle and then commands
its execution. The robot starts moving again and the value of delay is reset to 0, causing
the “Stop and Go” controller to once again become the least expensive one, meaning that
the new plan will be executed under its control.

As represented in the flowchart in Figure 5.14, this behavior has been implemented
in the form of a while loop that remains active as long as the switch code, published by
the “Segmentation” node, remains equal to the one corresponding to “Limited Time Stop
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(Replan)”. Inside the loop, the values of the thresholds and of the coefficients of the cost
function are defined and the measure of the distance from the closest obstacle is constantly
updated. For every cycle during which the robot is stopped due to the presence of an
obstacle not obstructing the goal of the segment, the value of delay is increased while, if the
robot is moving, it is reset back to 0. Then, the cost of activation for both the controllers is
calculated. If an emergency situation is detected, then Fails Safe is immediately activated.
Otherwise, the switch code of the least expensive controller is published to High-level
Controllers together with the corresponding value of threshold.

Figure 5.14: Flowchart of the Limited Time Stop (Replan) behavior
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5.3.2 Limited Time Stop (Reconnect)

The “Limited Time Stop (Reconnect)” behavior is very similar to the previous one.
Also in this case, the robot is stopped in front of a detected obstacle by the “Stop and Go”
controller and then a decision has to be made. If the delay limit set by the user is exceeded,
then the “Reconnect” controller gets activated, in order to plan a path going from the
current position of the manipulator to the first valid point of the original trajectory after
the obstacle. Additionally, any emergency situation would trigger an immediate switch to
the “Fail Safe” controller to ensure the safety of the operator. This behavior is suited for
all the cases in which the focus is still on the performance of the task execution but, at
the same time, the user is interested in keeping the manipulator as close as possible to
the original trajectory. Table 5.3 reports the values of the coefficients of the cost function
specific of this behavior, set by the authors to guarantee the desired reaction of the robot.

High Level Controller Cbase Cdist Cdelay

Stop and Go 0 0 1
Reconnect cycle_frequency · time_limit 0 0

Table 5.3: Table of Coefficients for the Limited Time Sop (Reconnect) behavior

With reference to Table 5.3, this logic is very similar to the previous one. The table of
coefficients for the cost function as well as the flowchart of implementation, presented in
Figure 5.15, are almost identical to the previous behavior. The only difference that can be
noticed is that, when the delay limit is exceeded, the algorithm publishes to “High-level
Controllers” the switch code corresponding to the “Reconnect” controller, thus triggering
its activation.
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Figure 5.15: Flowchart of the Limited Time Stop (Reconnect) behavior
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5.3.3 Unlimited Time Stop

Considering a growing interest in keeping the trajectory close to the one calculated
offline, the authors developed the so called “Unlimited Time Stop”. With this behavior,
the robot stops in front of a detected obstacle, but the only allowed reaction is to wait for
the obstacle to move away before restarting the motion along the original path. For all the
cases in which the offline planning technique used to compute the trajectory of the segment
is very elaborate and time consuming, the user has now the possibility of choosing this
behavior in order to make sure that it is never modified. For instance, “Unlimited Time
Stop” can be applied to trajectories calculated using the “Human Occupancy Volumes”
approach, explained in Chapter 4. In fact, the mentioned algorithm defines the best
trajectory to follow, also considering the possible stops due to the interaction with an
obstacle.

In this case, the only controller belonging to this behavior is the “Stop and Go”, which
is therefore kept active for the entire execution of the segment, unless an emergency occurs.
This means that no cost function is required and, as can be seen from the flowchart in
Figure 5.16, the behavior simply has to publish the switch code corresponding to “Stop
and Go”, together with the threshold to be used.

Figure 5.16: Flowchart of the Unlimited Time Stop behavior
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5.3.4 Robot Trajectory (Non-Restrictive)

The idea behind the “Robot Trajectory (Non-Restrictive)” behavior is to provide the
user with a solution to all the cases in which the main interest is to let the robot perform
its motion without being stopped. Regarding the behaviors presented before, the robot
was adapting its movement according to the presence of the human operator. In this
case, the aim is to obtain the opposite result: the motion of the manipulator is considered
more important than the task of the operator and, therefore, the operator is the one that
should adapt to the situation. Therefore, the problem is to develop an efficient way of
communication with the human that allows the system to warn the operator whenever
his/her movements are not compatible with the task of the manipulator. The solution
proposed by the authors constantly monitors the position of the obstacles with respect to
the robot. If the an obstruction is detected within a certain warning area, then an alert
sound is activated in order to alert the operator of the possible interference. Regarding the
name of the behavior, the expression “Non-Restrictive” is used because a stop in the robot
motion is not desirable, but still acceptable. If the obstacle inside the warning area does
not move away and the measured distance reaches a critical level set by the user, then the
robot stops and waits for the obstacle to move away. Moreover, if any emergency situation
occurs, the behavior triggers the immediate action of the “Fail Safe” controller.

The controllers that belong to this behavior are “Alert” and “Stop and Go” and their
corresponding coefficients used in the cost function are listed in Table 5.4.

High Level Controller Cbase Cdist Cdelay

Alert 0 1 0
Stop and Go 1

Critical_distance 0 0

Table 5.4: Table of Coefficients for the Robot Trajectory (Non-Restrictive) behavior

With reference to Table 5.4, Cdist has been set to 1 for “Alert” and to 0 for “Stop and
Go”. This means that, as the value of distance decreases, the distance cost rises only for
the “Alert” controller. Moreover, the value of delay is not monitored. In this case, the
decision process that triggers the switch is only based on the distance between the obstacle
and the manipulator and therefore both the Cdelay coefficients have been set to 0. Cbase,
instead, is calculated in order to trigger the switch at a critical value of distance, chosen
by the user. This value represents the safety distance used to pause the robot motion if
the operator has not followed the warning provided by the system. To provide an example
of the effect of these coefficients, the authors selected the following values: the warning
zone starts at a distance of 0.3 m from the robot, while the critical distance has been set
equal to 0.1 m. A practical representation of the effect of these values is reported below in
Table 5.5. As displayed, when the obstacle is still outside the warning area, the “Alert”
controller is active, but no sound is produced. The second column shows an obstacle inside
the warning zone, meaning that the active controller is still “Alert” but, in this case, a
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sound alarm is produced to force the operator to leave that area. Finally, as the distance
reaches a value smaller than the critical one, the cost of “Stop and Go” makes it the most
convenient controller, therefore triggering the switch to pause the robot movement.

Controller Distance = 0.31 m Distance = 0.2 m Distance = 0.09 m
CostAlert 3.23 5 11.11
CostStopAndGo 10 10 10
Active Controller Alert (no sound) Alert (sound) Stop and Go

Table 5.5: Table with an example of cost values during the execution of a segment characterized
by the Robot Trajectory (Non-Restrictive) behavior

The flowchart in Figure 5.17, shows the logic used to implement this behavior. As
represented, the structure of the code is very similar to “Limited Time Stop”. The only
differences are that the value of delay is not measured, since it does not influence the costs
of activation, and that the switch codes available for this behavior are related to its specific
group of controllers (“Alert” and “Stop and Go”).
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Figure 5.17: Flowchart of the Robot Trajectory (Non-Restrictive) behavior
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5.3.5 Robot Trajectory (Restrictive)

The behavior presented here is very similar to the previous one but represents a more
”restrictive” version of it. Again, an obstacle inside the warning area triggers the activation
of a sound alarm to notify the operator of the situation. However, in this case, any
interruption of the robot motion must be avoided without exceptions. This means that the
robot is not allowed to enter any pause condition. Therefore, even if the obstacle does not
react accordingly to the warning, the robot keeps moving, unless the situation becomes so
critical that the “Fail Safe” controller is triggered. This behavior is therefore suited for
all the cases in which any disturbance of the robot trajectory execution would lead to a
damage of the workpiece and, therefore, must be avoided unless it is due to an emergency.

As in “Unlimited Time Stop”, only one controller is involved in the implementation of
this behavior and there is no need for a cost function. The switch code related to “Alert”
and its value of threshold are published to the “High-level Controllers” node for the entire
execution of the segment, unless an emergency requires the intervention of the “Fail Safe”
controller, as represented in the flowchart in Figure 5.18.

Figure 5.18: Flowchart of the Robot Trajectory (Restrictive) behavior
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5.3.6 Allowed Contact

There are many situations in which the user needs to perform manual operations
directly on the robot. For instance, the manipulator may be stopped in a certain position
in order to allow the inspection of the end-effector or of the carried workpiece. In all those
cases, contact with the operator must be permitted, and not detected as a collision, until
the robotic system receives a confirmation signal from the user. The signal means that the
operator has finished its operations on the robot and the execution of the next segment can
be commanded. This problem has already been solved by the “Human Contact” controller
but, up to now, none of the implemented behaviors included it in their group of available
controllers. The role of the “Allowed Contact” behavior is therefore to simply publish the
switch code that activates “Human Contact”. As soon as this behavior is requested, the
robot is stationary in the required position and, therefore, there is no need to monitor for
emergency situations (in terms of distance from the manipulator). The simple logic needed
for the implementation of this behavior is represented below by the flowchart in Figure
5.19.

Figure 5.19: Flowchart of the Allowed Contact behavior

5.3.7 Code modularity

Finally, in order to obtain a modular structure, the authors approached the structure
of this code similarly to the code related to the High-level Controllers. Each behavior is
implemented inside individual cases of a switch module, as shown in the Figure 5.20. Every
time the execution of a new segment starts, the “Segmentation” node publishes the code
corresponding to the behavior chosen by the user for that particular segment. The switch
code is received by the “Robot Behaviors” node and used to activate the correct section
of code. This approach, as already said for “High-level Controllers”, guarantees a high
level of modularity of the system since a behavior can be added, discarded or modified by
simply adding, discarding or modifying the corresponding case of the switch structure.
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Figure 5.20: Pseudo-code of modular structure containing the developed Robot Behaviors



Chapter 6

Case study: Results and discussion

In order to validate the control architecture developed and presented in the previous
chapters, a hardware-in-the-loop testbed setup is used. An industrial collaborative scenario
is proposed by the authors in order to show and test the capabilities of the system and its
performance in terms of safety and productivity. The experimental activity is performed by
a physical e.DO robot equipped with a two-prongs gripper able to perform pick and place
operations. The robot, together with a human operator, executes a series of predefined
tasks in order to complete a collaborative assembly operation. Due to the early stages
of the project at the time of the authors’ research, sensing of a real-life operator was
not possible and therefore all the perception data needed to represent the human actions
during the execution of the scenario have been emulated. In particular, the original goal of
the authors was the dynamic emulation of the whole body of the operator, but software
limitations led to unexpected crashes of the simulation platform. For this reason, the
authors chose to dynamically emulate only the forearm of the operator, since it is the main
body part actively interacting with the robot. The presence of the remaining body parts
was still taken into account as a static obstacle inside the workspace. The implementation
of a more stable simulation, capable of achieving the original goal, is therefore left for
future developments.

6.1 Scenario description and robot task segmentation

In this section, a detailed presentation of the collaborative scenario under analysis is
reported. The authors chose to validate the robotic system by means of a simple assembly
task, representative of common real industrial scenarios. In the example, manipulator
and human share the same workspace and the assembly of the product is carried out in a
collaborative manner. In Figure 6.1, the product taken into account is represented: it is
made up of four components, in the example colored blocks, which are placed in different
locations of the workspace. Some of the operations required for its production are assigned
to the human, others are responsibility of the robot and some direct interaction between
the two is also required. During this collaboration, human intervention may intersect the
motion of the manipulator, generating the need for smart robot reactions in order to ensure
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the safety of the operator while at the same time attempting to minimize the disruption of
production efficiency. Always with reference to Figure 6.1, a customization of the same
product, used to test the flexibility of the system, is represented. The difference between
the two versions lays in the location of their components, meaning that a reprogramming
of the robotic task is needed, while the operator can easily adapt to the new duties. In
the example, the outcome of the customization is simply a product composed of blocks of
different colors, but it is used as a generic representation of real industrial scenarios.

Figure 6.1: Schematic representation of the two product customizations and of the testbed setup

As depicted in Figure 6.2, the robot, starting from its stand-by vertical position, moves
to grasp the first component in location A (1) and then transfers it towards the second
component located in C. At the same time, the operator prepares the common assembly
area (2), located in B between the two parts. The robot performs the assembly of the
two components (3), moves away and waits for the operator to ensure the solidity of the
subassembly (4). After the inspection, the operator gives a confirmation signal by pressing
the ENTER key on the keyboard and triggers the manipulator to start its next task. The
subassembly is moved by the robot towards B, where the operator has placed the third
component with the correct orientation (5). As the end-effector reaches the predefined
location where the assembly will take place, it stops and allows the operator to check
the correct alignment of the three parts (6). After another confirmation signal is given,
the robot performs the next step of the assembly operation by joining the subassembly
with the third component (7). At this point, the robot has completed successfully all
its tasks and therefore moves back to its vertical stand-by position, while the operator
assembles the fourth and last component and retrieves the finished product (8). In Figure
6.2, the production of Customization A is depicted. Being the first component a yellow
block (location A), the robot is required to move to location C in order to assemble
it with the component of the same color, while the human, knowing the composition
of the specific product, automatically inserts green parts. Regarding the production of
Customization B, the process to be followed would be very similar to the one just presented.
The first component fed to the robot (location A) would be a blue block and therefore the
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manipulator would have to move to location D in order to assemble it with a second blue
component. Once again, the human would naturally adapt to the new production cycle by
inserting red components in the assembly.

Figure 6.2: Main steps of the assembly operation under analysis (Customization A)

Now that the collaborative scenario has been presented, it is duty of the user to correctly
program the robot. According to the segmentation approach introduced in Chapter 4,
the robot motion is divided into consecutive segments and each segment is assigned a
certain offline planning technique (Chapter 4) and online behavior (Chapter 5), based on
the specific requirements of each individual segment. In this example, the logic used to
perform the segmentation process is strongly task-oriented, meaning that each segment is
either a movement between two key points of the task or an action of the end-effector. This
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segmentation logic is the most intuitive one, but many different ways of segmenting the
same scenario could be chosen, depending on the needs of the user. In Table 6.1, a brief
description of the manipulator’s motion corresponding to each segment together with the
assigned characteristics is reported (note that for each location A, B, C and D indicated in
Figures 6.1 and 6.2 a corresponding position just above them has been defined as Ahigh,
Bhigh, Chigh and Dhigh respectively):

Segment Robot motion
Offline

Planning
Technique

Online
Robot

Behavior
1 Move from stand-by vertical position to Ahigh UDA LTS
2 Move from Ahigh down to A UDA RT(R)
3 Close the gripper to grasp first component TO RT(R)
4 Move from A up to Ahigh UDA RT(NR)
5 Move from Ahigh to Chigh UDA LTS
6 Move from Chigh down to C UDA RT(R)
7 Open the gripper to assemble first and second components TO RT(R)
8 Move from C up to Chigh UDA RT(NR)
9 Wait for operator consent in Chigh UDA HC
10 Move from Chigh down to C UDA RT(R)
11 Close the gripper to grasp subassembly TO RT(R)
12 Move from C up to Chigh UDA RT(NR)
13 Move from Chigh to Bhigh UDA UTS
14 Wait for operator consent in Bhigh TO HC
15 Move from Bhigh down to B UDA RT(R)
16 Open the gripper to assemble the third component TO RT(R)
17 Move from B up to Bhigh UDA RT(NR)
18 Move from Bhigh to Ahigh UDA LTS
19 Move from Ahigh to the vertical stand-by position UDA LTS

Legend:
UDA User Defined Algorithm
TO Tool Operation
LTS Limited Time Stop

RT(R) Robot Trajectory (Restrictive)
RT(NR) Robot Trajectory (Non-Restrictive)

HC Human Contact
UTS Unlimited Time Stop

Table 6.1: Robot motion, offline planning technique and robot behavior assigned to each segment

According to the segmentation approach, once the segments have been defined, they
can be independently characterized in terms of how their trajectory will be planned offline
(Chapter 4) and of how the robot will react online when executing them (Chapter 5).
Table 6.1 summarizes the characteristics assigned to each segment. Regarding the offline
planning, for all the segments in which a movement of the robotic arm is required, the
User Defined Algorithm mode has been selected since no a-priori knowledge of the task is
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available. For the segments in which the robot has to open/close the gripper or wait for
the operator’s consent, the dedicated Tool Operation mode has been used. In terms of
online robot behaviors, the authors made the following choices:

• For all the segments in which a wide motion of the robotic arm has to be performed,
the Limited Time Stop behavior has been selected, since interactions with the human
operator may occur (segments 1, 5, 18 and 19);

• For all the segments in which the manipulator has to be extremely precise, like
when it is approaching, grasping or releasing a component, the Robot Trajectory
(Restrictive) behavior has been chosen to make sure that no external disturbances are
allowed during the execution of these tasks (segments 2, 3, 6, 7, 10, 11, 15 and 16);

• For all the segments in which the manipulator moves away from a component, the
required precision of the task is lower and therefore the Robot Trajectory (Non-
restrictive) behavior can be used (segments 4, 8, 12 and 17);

• When the robot has to remain stationary in one position, while the human operator
performs a certain activity, until the confirmation signal is received, the Human
Contact behavior has been selected (segments 9 and 14);

• Segment 13 has been assigned the Unlimited Time Stop behavior because the most
likely interaction with the operator would happen at the goal of the segment. Therefore
no replanning is possible, since the goal of the segment is obstructed, and the only
solution is to wait for the path to be cleared.

Figure 6.3: GUI overview window for the scenario under analysis

This scenario has been programmed offline using the dedicated GUI, introduced in
Chapter 4. Figure 6.3 shows the overview window of the interface, in which the segments
specified in Table 6.1 and their assigned characteristics are reported.
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In order to further test the reactive behaviors of the robot during the execution of the
scenario, three different level of human-robot interaction have been analyzed:

1. CASE 1: Since the scenario have been defined offline with the aim of achieving the
maximum productivity level, if everything goes as expected, the human presence
does not induce any delay in the motion of the manipulator. In this case, the robot
is able to move through its predefined trajectories continuously without any stop
caused by the operator’s forearm.

2. CASE 2: In this variant of the scenario, fixturing of the assembly area performed by
the operator takes a little longer than expected. Consequently, during the execution
of segment 5, the robot finds the operator’s forearm obstructing its way and has to
stop in order to avoid a collision. The same happens again during the execution of
segment 13.

3. CASE 3: This third variant represents the case in which a certain problem occurs
during the preparation of the common assembly area. For this reason, the operator,
in charge of solving the problem, remains in the way of the robot (segment 5) for a
much longer period of time. Therefore, the robot has to react in order to mitigate
the loss in performance by accomplishing its task while the operator still remains
on the original path. As in the second variant, a short delay also occurs during the
execution of segment 13.

6.2 Performance of the robotic system

6.2.1 Offline performance

The scenario under analysis have been programmed using the dedicated Graphical User
Interface, developed for this project and introduced in Chapter 4. Once the step of manual
data input has been carried out by the user, the GUI triggers the system to start the
planning process according to the user’s requests. Timers have been implemented inside
the developed codes in order to measure the performance of the system in its offline duties.
In particular the authors are interested in four values: duration of the process needed to
read all the information provided by the user through the GUI, duration of the offline
planning process used to generate all the predefined robot trajectories, duration of the
analysis of the segments aimed to check their correct connection and total duration of the
processes. In Table 6.2, the collected results for the two customizations are reported:

Customization A [ms] Customization B [ms]
Reading process 0.6 0.6
Planning process 765.9 772.7
Connection process 5.1 5.9
Total duration 771.6 779,2

Table 6.2: Measured times for the offline performance of the robotic system
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Analyzing the terms reported in Table 6.2, it can be stated that the most relevant value
is the one related to the planning process. The reading process duration, measured for the
example under analysis, is almost irrelevant if compared to the other terms. Regarding
the connection process, the small values measured for both Customization A and B are
justified by the fact that the segments had already been correctly created by the user and
therefore no connections had to be planned. In general, it must be said that the duration
of the three process is strictly related to the complexity of the programmed task. The
more complex the scenario to be programmed, the higher the three values and therefore
the total duration of the offline computations. Considering the example under analysis,
the total duration of the processes carried out by the robotic system is less than 1 s for
both Customization A and Customization B. Comparing this value with the time needed
by the user for the manual input of all the characteristics of the segments (not precisely
measurable, but in the order of minutes), it is clear that the duration of the offline processes
above do not impact the overall offline performances of the system. Given the fact that
more complex scenarios would require longer times both for the manual data input and
for the offline computations, it is safe to say that the most time-consuming offline step is
represented by the manual user data input. Thanks to the GUI, this step is required only
the first time that a scenario is introduced in the production system. Once a robotic task
has been defined, the GUI offers the possibility to save it, therefore creating a library of
scenarios that can be retrieved every time that the specific production process is required.
This means that, supposing that a library of programmed scenarios is already available, the
setup required to start performing one of them is limited, in terms of offline computation,
to total duration values like the ones reported in Table 6.2. Consequently, the developed
robotic system would be perfectly suited for constantly changing “Pull Manufacturing”
environments, as it provides high levels of flexibility and adaptability. In fact, every time
that a different product is requested, if its production process is already available in the
library, the manipulator is able to quickly adapt to the situation by simply retrieving the
existing information. Moreover, the ability to quickly modify an existing scenario, in order
to accommodate customized versions of a product, has been validated with the definition
of Customization B. Supposing that the program for Customization A has already been
created by the user and saved in the library of programmed tasks, defining the program
of Customization B from scratch would represent a waste of time since it is only slightly
different from the first one. Thanks to the GUI, the user can simply reopen the program
of Customization A, modify the segments according to the customized process and save
it as a new independent scenario to be added to the library, therefore minimizing the
time required for the manual input of all the information. Finally, the user interface was
demonstrated to be very effective in enabling non expert users to intuitively interact with
the robotic system with minimal needed technical knowledge.
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6.2.2 Online performance

As previously introduced, the robotic system has been tested in its online performances
with three different levels of human-robot interaction for each product customization.
A summary of the results related to Customization A is presented in Figure 6.4, while
Figure 6.5 refers to Customization B. The two graphs can be used to compare the online
performance of the system depending on the different levels of human-robot interaction.
On the x-axis the specific segment under execution is indicated, while the y-axis shows the
time passed from the beginning of the task.

Figure 6.4: Execution times for the segments of Customization A with three different levels of
human-robot interaction

Figure 6.5: Execution times for the segments of Customization B with three different levels of
human-robot interaction
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As shown in both Figure 6.4 and 6.5, the lines for the three cases analyzed coincide
until the end of Segment 4. In fact, up to that point (when the robot has lifted the first
component), no human interference occurs for any of the cases and therefore the same
execution times are measured. Segment 5 is still undisturbed for Case 1, while a delay in
the robot’s motion is introduced for both Case 2 and 3 because of the human presence on
the path of the manipulator. As can be seen, the delay measured for Case 2 is shorter than
the one related to Case 3 because, as previously stated, in the latter case the operator is
experiencing some problems in the preparation of the assembly area and therefore obstructs
the robot’s path for a much longer time. From Segment 6 till Segment 12 the three lines
develop in parallel, since no further delay is introduced. Segment 13 is again undisturbed
for Case 1, while a short delay is induced for Cases 2 and 3 by the human intervention.

Furthermore, Figure 6.6 can be used to compare the results obtained for the two
customizations. Customization A is represented with solid lines, while dashed lines are
used for Customization B and, for each of them, the three cases under analysis are reported.
A vertical dashed line is used in order to point out the segments where a difference between
the two customizations exists. As can be seen from Figure 6.6, higher times have been
registered for Segments 5 and 13 of Customization B. The reason for this simply lays in
the fact that those two segments are the only ones that have been modified in order to
accommodate the production process of the second customization. Since Segments 5 and
13 of Customization B are characterized by longer trajectories than the same segments for
Customization A, longer execution times were expected by the authors. Regarding all the
other segments, the same values have been measured for the two scenarios and, for this
reason, couples of lines (solid and dashed) related to the same case are generally parallel
to each other.

Figure 6.6: Comparison of the execution times for Customizations A and B
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Now, a more detailed analysis is performed considering Segment 5 of Customization A,
where the main interaction with the human happens. The authors aim to provide a deeper
understanding of how the robot reacted online to the presence of the human for the three
levels of interaction. An evaluation of the online performance, obtained through the smart
decision logic implemented for the robotic system, is also presented in order to validate it
as a suitable base framework for future developments.

Customization A, Case 1, Segment 5

As previously stated, Case 1 represents a situation of perfect synchronization of the
individual tasks of human operator and robot and, for this reason, no interference is
experienced. This example can be considered a reference measure of maximum performance
for the specific task and is therefore used for a comparison with the other two cases, for
which, instead, the movements of human and robot intersect. The times measured for this
ideal case are reported in Table 6.3 below.

Undisturbed
execution

Stopped
robot

Disturbed
execution

Computational
time

Total
time

Actuated reaction [s] 4.5 - - - 4.5
Table 6.3: Reaction times for Customization A, Case 1, Segment 5

Customization A, Case 2, Segment 5

Segment 5 is characterized by the Limited Time Stop (Reconnect) behavior, which, as
explained in Chapter 5, evaluates the best controller to be activated between Stop and Go
and Reconnect on the basis of the values of obstacle proximity and induced delay. During
the execution of this segment for Case 2, the robot finds the operator’s forearm obstructing
its way while moving from location A towards the location C. As it is performing this
motion, the Stop and Go controller is active and, as the distance between the robot and
the operator’s forearm goes under the predefined threshold, it immediately stops the robot
to ensure safety. As the operator clears the path, the manipulator is allowed to restart its
motion along the original trajectory and reach its goal.
With reference to Figure 6.7, the trend of the cost of activation of the controllers and the
values of the parameters considered to evaluate them during the execution of the segment
can be analyzed. At the beginning of the segment, Stop and Go controller has the lowest
cost of activation, the distance from the closest obstacle is around 280 mm and no delay
has yet been induced. In this case, Cdist has been set to a value different from zero in order
to see the effect of this parameter on the cost of the controllers. Therefore, as the value
of distance decreases, the cost of both controllers rises until the proximity threshold (100
mm) is reached, around 1.2 s from the beginning. From the plots, it can be easily noticed
that the cost of the Reconnect controller remains constant for about 2.8 s. On the other
hand, the cost of the Stop and Go controller starts rising as soon as the stop is triggered,
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since the robot motion has been paused and delay starts being measured. As the operator
clears the path, the value of distance grows over the threshold once again and the Stop and
Go controller commands the robot to restart its motion along the original trajectory. As
soon as the robot starts moving again, the value of delay is reset to zero and therefore the
cost of activation of the Stop and Go controller drops. In this case, the cost of activation
of the Stop and Go controller did not increase enough to exceed the cost of Reconnect and
therefore trigger a switch. For this reason, the Stop and Go controller remained active for
the whole execution of the segment.

Figure 6.7: Trend of the cost of activation of the controllers in play and of the parameters used
for the calculations in Case 2

The robot’s reactive choice demonstrated to be effective in minimizing the disruption
of the productivity of the system. As summarized in Table 6.4, the time needed by the
robot to complete the segment is 7.3 s, which is basically the sum of the duration of the
undisturbed trajectory (time to complete the segment if no interaction with the human
occurs), equal to 4.5 s, and of the time during which the robot was paused, equal to 2.8
s. This result is not affected by the algorithm of the active controller since the process
of updating the trajectory only takes around 0.002 s. If, instead, the control architecture
would have immediately triggered a replanning operation around the obstacle, the total
registered time to reach the goal would have been equal to 14.7 s, a much higher value
than the previous one. It is therefore clear that, for all the cases in which the obstacle is
going to clear the obstructed path quickly, the best choice is to wait and restart along the
original trajectory, instead of immediately replanning around it.

Undisturbed
execution

Stopped
robot

Disturbed
execution

Computational
time

Total
time

Actuated reaction [s] 4.5 2.8 7.3 0.002 7.3
Discarded reaction [s] 4.5 - 14.6 0.14 14.7

Table 6.4: Reaction times for Customization A, Case 2, Segment 5
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Customization A, Case 3, Segment 5

Considering Case 3, Segment 5 is still characterized by the Limited Time Stop (Recon-
nect) behavior. Once again, the robot moves from location A towards location B, but its
path is obstructed by the operator that is experiencing some issues in the preparation of
the common assembly area. The Stop and Go controller stops the robot as soon as the
threshold (100 mm) is reached. After waiting for a certain period of time, the robot reacts
to the induced delay by replanning its way around the operator’s forearm and reaches its
goal while the human is still working on the common assembly area. With reference to
Figure 6.8, the cost of activation of the controllers can be analyzed in order to understand
the logic behind the robot’s reaction. As in the previous case, the execution of the segment
starts under the control of Stop and Go and, as the robot approaches the human operator,
the value of distance decreases till the threshold value (at 2.8 s). At that point, the robot
stops and delay starts being measured. As in the previous case, the cost of Reconnect
remains constant while the cost of Stop and Go grows. Around 6.8 s, the cost of Stop and
Go becomes bigger than the cost of Reconnect and therefore the latter gets activated. As
explained in detail in Chapter 5, the effect of this second controller is to trigger a virtual
inflation of the obstacle (that can be seen in a sudden change in the distance plot), create
a new plan that goes from the position in which the robot was stopped to the first valid
point of the original trajectory and then follow it until the goal of the segment is reached.
As soon as the robot starts the execution of the new plan, the delay is reset to zero and this
causes the cost of the Stop and Go controller to become once again the most convenient
one, causing a second switch. This means that the execution of the new computed plan is
performed under the supervision of the Stop and Go controller.

Figure 6.8: Trend of the cost of activation of the controllers in play and of the parameters used
for the calculations in Case 3

Once again, an analysis of the performance of the system in this specific situation
can be performed on the basis of the collected execution times, presented in Table 6.5.
The time needed by the robot to complete the segment in this example is 19.1 s which
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can be decomposed as follows: execution of the first part of the segment till the stop is
commanded, acceptable delay specified by the user, time required to compute the new
plan (around 0.16 s) and its execution. Considering that the operator remains inside the
common area for around 17 s and that the undisturbed execution of the whole segment
takes 4.5 s, a solution in which the robot waits for the obstacle to move away instead of
replanning around it would have let to a total completion time of around 21.5 s. It is clear
that, if the obstruction stays in place for a long time, the best choice for the robot is to
find a new way instead of waiting for the original one to be cleared.

Undisturbed
execution

Stopped
robot

Disturbed
execution

Computational
time

Total
time

Actuated reaction [s] 4.5 4.0 18.9 0.16 19.1
Discarded reaction [s] 4.5 17.0 21.5 0.002 21.5

Table 6.5: Reaction times for Customization A, Case 3, Segment 5

On a further notice, the long-term project envisions data input related to the predicted
human actions. Therefore, in the future, it will be possible to augment the capabilities
of switching logic and cost functions by taking into account new parameters related to
these predictions. Thanks to this additional knowledge, the authors of this thesis expect
a further minimization of the disruption of the productivity of the system. The robotic
system was capable of guaranteeing the safety of the human operator, of the robot itself and
of all the equipment around it, by avoiding any possible collision and by keeping a certain
clearance from the objects of the external environment. At the same time, production
times have been reduced by mitigating the sources of delay through smart and reactive
robot behaviors and switching logic.

6.3 Reaction distance analysis

A further analysis has been performed by the authors in order to understand the
impact of a certain set of parameters on safety and productivity of a segment in which the
Replan controller is activated. In particular, the analysis is performed on Segment 5 of
Customization B (Case 3), where, as previously presented, the robot’s motion is disturbed
by the presence of an obstacle that triggers a replanning operation in order to complete the
execution. As explained in Chapter 5, the Replan controller is characterized by a distance
threshold (t), used to stop the robot as it gets in the proximity of an obstacle, and a value
of virtual inflation (R) of the obstacle itself, ensuring a certain clearance from the real
obstacle when moving along the replanned path. The first parameter (t) can be considered
as a sort of “reaction distance”, since it is the distance within which the robot will react
to the presence of an obstacle inside the workspace. The second parameter (R), on the
other hand, represents the minimum distance acceptable for a robot trajectory that passes
close to an obstacle and, for this reason, it can be considered an indicator of safety. The
analysis consists in repeatedly executing the trajectory of Segment 5 with different values
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of reaction distance (t) and virtual inflation (R), measuring for each execution the time
needed by the robot to move from the beginning (start) to the end (goal) of the segment.
The execution time can be considered an indicator of productivity and the goal of the
authors is to find a connection between the three mentioned parameters, in order to better
understand how they influence each other. In order to have a clearer visualization of the
parameters considered for this experimental campaign, Figure 6.9 can be used. The robot
moves along a preplanned path, called “Original Trajectory”, obstructed by the presence
of an object, indicated as “Real Obstacle”. The robot stops in front of the obstruction at a
distance t, the obstacle is virtually inflated of a radius R to obtain the “Inflated Obstacle”
and the trajectory recomputed in order to avoid it and reach the goal of the segment is
indicated as “New Plan”. Always with reference to Figure 6.9, three cases are represented.
Case 1 and Case 2 represent situations in which the same inflation radius, but different
reaction distances are used. On the other hand, Case 2 and Case 3 are characterized by
the same reaction distance but different inflation radii. It can be easily noticed that the
shape of the replanned trajectory for the three cases is very different and an effect on the
execution times is expected by the authors.

Figure 6.9: Schematic examples of the role of the different parameters
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As can be inferred from Figure 6.9, the amount of virtual inflation of the obstacle
is limited by the position in which the robot is stopped. In fact, an inflated obstacle
overlapping with the body of the manipulator would represent a “virtual collision” for the
robotic system and must therefore be avoided. In order to have a more intuitive parameter
to evaluate this limit, the term d has been introduced. This new parameter is calculated
with the formula reported in the top right corner of Figure 6.9 and it is directly dependent
on t and R. Basically, d must always be greater than zero, since it represents the distance
between the position in which the robot is stopped and the inflated obstacle.

Figure 6.10 represents the results of the experimental campaign. The plot on the left
contains all the obtained curves, while the plot on the right only shows the two extreme
ones together with the indication of the individual points used for their construction. The
analysis has been performed by iteratively fixing a certain value of d while varying the
value of virtual inflation R (and consequently the reaction distance t). For each fixed d, 9
different values of R have been considered and the obtained points have been interpolated
to obtain each represented curve. Moreover, for each point (a set of d and R), multiple
executions of the trajectory (Segment 5 Customization B) have been performed in order to
average the intrinsic variability of the exploited planner. Given the computational burden
of the simulation, the authors chose to perform 20 repetitions for each set of parameters in
order to have a significative statistic sample.

Figure 6.10: Plots of the results of the experimental campaign showing the impact of the param-
eters under analysis on safety and productivity

Analyzing the plots above curve by curve, it can be noticed that the general trend
is to have an increasing execution time as the value of inflation grows. This is easily
explained using Cases 2 and 3 in Figure 6.9 as reference: if the trajectory has to be
replanned to avoid a bigger virtual obstacle (larger inflation), the new resulting path is
longer and therefore more time is needed by the robot to complete it. On the other hand,
considering the five plotted lines and a fixed value of inflation, it is clear that as d gets
smaller, the average execution time rises. Once again, this behavior can be explained using
the first two cases represented in Figure 6.9. For Case 1, the value of d is smaller and the
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consequent replanned path is characterized by the presence of “sharp turns”. Since the
manipulator has limits on the maximum acceleration that can be produced by its motors,
these turns sensibly slow down the execution of the trajectory, leading to higher execution
times. Regarding Case 2, thanks to a larger value of d, the new plan is much smoother
and therefore the robot is able to execute it without slowing down and therefore achieving
higher productivity.
The immediate consequence of these results is that, in order to minimize the robot execution
times and therefore maximize the productivity of the system, a small inflation radius and
a big reaction distance would be required. As already stated, though, the virtual inflation
is an indicator of the safety of the operation and therefore its reduction would yield more
discomfort and higher risks of collision between the human operator. On the other hand, a
large reaction distance set for the robot would lead to a much more frequent disturbance of
the trajectory, since the robot would attempt to modify its path according to the presence
of obstacles that are still far from its body. Moreover, with reference to Figure 6.10, a
non-linear relationship is observed. That is, the average execution time (inverse indicator of
productivity) is not monotonically increasing with an increase in R. Consequently, further
modelling is needed to arrive at an optimal set of the parameters under analysis able to
maximize at the same time operational safety and productivity. For now, it is therefore
duty of the user to select a set of parameters that represent an acceptable compromise
between safety and productivity for the task at hand.

The analysis performed by the authors was successful in defining the influence of a
series of parameters on the safety and productivity of the task, even if it was not possible
to define an optimal set of parameters. Moreover, the authors believe that the results
obtained with this experimental campaign could represent useful information for the future
developments of the robotic system. The long-term project, in fact, envisions data related
to predicted human trajectories as input to the control architecture. Knowing the impact
that the robot’s reaction distance has on the performance of the system could, therefore,
represent a powerful drive in the definition of an optimal value of the time span to be
covered by the predicted data.
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Conclusions

To enable safe and effective human-robot collaboration in manufacturing for a smart
factory, seamless integration of sensing, cognition and prediction into the robot controller
is critical for real-time awareness, response and communication. Starting from these needs,
this thesis proposed the implementation of a robot Proactive Adaptive Collaboration
Intelligence (PACI) and switching logic within its control architecture. In particular, the
end goal of this research was to give the robot the ability to optimally and dynamically
adapt its motions given a priori knowledge and predefined execution plans for its assigned
tasks, together with reliable sensing of human actions.

Figure 7.1: Successfully implemented control structure

The control architecture in Figure 7.1 was successfully developed on Ubuntu 18.04 Bionic
Beaver inside the framework of ROS Melodic Morenia, a standard robotic platform for
today’s research in the field, well known for the high-level of scalability and maintainability
that it provides. Moreover, open-source robotic libraries, such as MoveIt!, were exploited
for their convenience in path planning and robot interface operations.

107
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The GUI developed as part of the Offline Module was demonstrated to be very effective
for the enhancement of the accessibility of the system, enabling non-experienced users
to easily program the task at hand. Moreover, this tool yielded great flexibility and
adaptability to the system by creating a library of preplanned scenarios, retrievable in any
moment and useful both for “Pull Manufacturing” environments and for quick product
customization. The Task Segmentation proposed for the same module was validated to be
an additional source of flexibility for the robotic system. Thanks to this approach, each
scenario can be decomposed in a series of segments making it much easier for the user
to define the specific operations and allowing the independent characterization of each
motion requested to the manipulator. In particular, the authors provided a list of offline
planning techniques (Chapter 4), high-level controllers and robot behaviors (Chapter 5),
briefly summarized below. The user is free to choose the best suited characteristics among
the implemented ones, in order to optimize the human-robot interactive scenario. All the
codes needed for the implementation of these capabilities have been written in C++, a
high-level programming language that provides great reusability and reliability. Moreover,
the structure used to write these codes augments the modularity of the system and allows
easy updates and expansions for future needs.

Offline Planning Techniques

• User Defined Algorithm: allows the operator to create a segment by simply
defining start and goal configurations of the robot together with the preferred
planning algorithm;

• Human Occupancy Volumes: a-priori knowledge of a task can be exploited to
define offline the best trajectory to be followed by the manipulator in terms of
minimum "likely robot time";

• Relevant Trajectory: enables the user to generate a trajectory from scratch by
defining a series of waypoints where the manipulator’s passage is compulsory;

• Tool Operation: provides easy and intuitive definition of an action (open, close,
wait) to be performed by the end effector in a specific position and orientation.

High-level Controllers

• Stop and Go: the robot stops in front of a detected obstacle and waits there for its
path to be cleared before restarting the operation;

• Replan: the robot reacts to the presence of a detected obstacle by stopping and
immediately replanning its way to the original goal of the segment;

• Reconnect: the robot reacts to the presence of a detected obstacle by stopping and
immediately replanning its way to the first valid point of the remaining part of the
original trajectory;

• Alert: if the robot senses the presence of an obstacle within a certain distance, it
communicates the alert situation through a sound alarm;

• Human Contact: direct contact with the manipulator is allowed, provided that
the robot is stationary in a certain position;
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• Fail Safe: if an unexpected or hazardous situation occurs, the system immediately
shuts down to give priority to the operator’s safety.

Robot reactive behaviors were achieved via cost function-based switching logic activating
the best suited high-level controller. The cost of activation has been defined as a function
of safety (e.g., obstacle/human proximity) and productivity (e.g., induced time delays).
Using a hardware-in-the-loop testbed setup, the performance of the developed control
architecture subjected to different levels of human-robot interactions was validated in the
University of Florida e.DO robot testbed, simulating perception of the human operator. In
particular, a series of implemented behaviors were demonstrated to be very effective in
triggering the correct reactions of the robot. Both safety and productivity were therefore
achieved for the three human-robot interaction levels analyzed.

Further analysis, related to the Replan and Reconnect controllers, was also performed.
The influence of two parameters (reaction distance and inflation radius) on the safety and
productivity of the task was successfully evaluated, even if it was not possible to define
their optimal values. However, knowing the impact that the robot’s reaction distance
has on the performance of the system could represent a powerful drive in the definition
of an optimal value of the time span to be covered by the human action predicted data
envisioned for the long-term project.

In general, the authors successfully developed a control structure having the desired
features:

• Flexibility: the system can be adapted to a great variety of applications;
• Accessibility: an intuitive user interface allows non-expert users to easily program

the tasks at hand;
• Modularity: the particular code structure and language used enable easy reusability

and expansion of the various components of the system;
• Safety: the implemented high-level controllers guarantee that safety of operator,

robot and equipment are always ensured;
• Productivity: intelligent reactive robot behaviors were demonstrated to be effective

in the limitation of productivity disruption, while maintaining the required levels of
safety.

A series of limitations were encountered during the development of the robotic system:

• Due to the early stages of the project at the time of the research, real sensor data was
not available. The authors chose to emulate the workspace on a simulation platform
in order to be able to validate the developed robotic system.

• Emulation of multiple dynamic obstacles led to unexpected crashed of the simulation
platform. For this reason, the authors decided to validate the developed system by
dynamically emulating only the operator’s forearm and considering the rest of the
body as a static obstacle.

• The absence of predicted human data at the time of the research limited the robot
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behaviors to a level of intelligence that can be considered reactive, but not proactive.
A framework upon which predicted trajectories can be taken as input has, on the
other hand, been successfully established.

• Even if problems of this kind were not experienced, the stability of the switching
logic has not yet been proven.

Finally, the authors propose a series of future developments, aimed to improve the
overall system by overcoming its current limitations and moving towards greater maturity
of the final product:

• Development of a dedicated planning algorithm capable of taking into account
predicted trajectories of obstacles/operators in order to perform real-time replanning
operations on the basis of sensor data;

• Improvement of the simulation robustness in order to sustain multiple dynamic
obstacles, achievable by introducing a complete and controllable human model
interacting with the manipulator;

• Expansion of the definition of the cost functions in order to take into account a
greater set of parameters, such as more specific safety indicators weighted on danger
levels related to different body parts and data related to the predicted motion of the
operator;

• Prove of the stability of the implemented switching logic;
• Implementation of real-life sensor capabilities, together with additional and more

advanced feedback methods to alert the human operator of hazardous impending
situations, such as vision or haptic systems;

• Development of new offline planning techniques, high-level controllers and robot
behaviors in order to further augment the adaptability of the system.
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