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POLITECNICO DI MILANO

Abstract
Modern tools for X-ray spectroscopy

simulations and data analysis applied to
strongly correlated systems

by Riccardo Piergiacomi

Strongly correlated systems exhibit many exotic properties due to a strong
Coulomb interaction among electrons. Several models try to describe these
phenomena, but a complete theory taking into account all possible inter-
actions has not been completed yet. Thus, further studies are needed to
verify the correctness of models and uncover the physics still unexplained.
X-ray absorption and Resonant Inelastic X-ray Scattering performed with
synchrotron radiation are valid techniques to investigate strongly correlated
materials. Some studies about intermediate valence in heavy fermion com-
pounds reported disagreements with the theory, while others reported suc-
cessful spectra simulation on strongly correlated oxides. In this thesis work,
Multivariate Curve Resolution methods are employed as a tool to investi-
gate intermediate valence in intermetallic ternary compounds based on Yb
and Ce. In addition, starting from Density Functional Theory calculations,
parametric spectra simulations of X-ray absorption and Resonant Inelastic
X-ray Scattering performed on NiO and MnO are tested. The data analy-
sis and spectra simulation methodologies presented and tested can be useful
tools to better understand experimental results and shed some light on the
theoretical models.
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Sommario
Modern tools for X-ray spectroscopy

simulations and data analysis applied to
strongly correlated systems

by Riccardo Piergiacomi

La forte interazione Coulombiana tra elettroni genera proprietà interessanti
all’interno di materiali fortemente correlati. Diversi sono i modelli che cer-
cano di descrivere tali fenomeni, tuttavia non è stato ancora sviluppato un
modello tenente conto di tutti i possibili tipi di interazioni presenti. Per-
ciò sono necessari ulteriori studi per verificare la correttezza dei modelli e
svelare fenomeni ancora inspiegabili. Le tecniche di X-ray Absorption e di
Resonant Inelastic X-ray Scattering utilizzate con luce di sincrotrone sono
valide sonde per investigare i materiali fortemente correlati. Alcuni studi
riguardo la presenza di una valenza intermedia in composti a fermione pe-
sante hanno mostrato alcune discordanze con i modelli teorici; mentre altri
hanno riportato simulazioni di spettri su ossidi fortemente correlati con suc-
cesso. In questo lavoro di tesi, metodi di Multivariate Curve Resolution sono
utilizzati come strumento per investigare la presenza di una valenza interme-
dia in composti ternari intermetallici basati su Yb e Ce. Inoltre, partendo da
calcoli di Density Functional Theory, sono testate simulazioni parametriche
di spettri X-ray Absorption e Resonant Inelastic X-ray Scattering su NiO e
MnO. Le metodologie di analisi dei dati e simulazioni di spettri presentati
e testati possono essere utili strumenti per comprendere meglio i risultati
sperimentali e indagare sulla correttezza dei modelli teorici.

iv





Acknowledgements
I would like to thank my supervisor Professor Ghiringhelli for the opportu-
nity to develop my thesis at the European Synchrotron Radiation Facility,
a world-class centre of excellence for fundamental and innovation-driven re-
search, and the ESRF itself for having hosted me.

I want to extend my gratitude to my two co-supervisors, Dr. Kurt Kum-
mer and Dr. Marius Retegan, for assisting and supporting me throughout
the all project, and for creating a calm but stimulating working environment.
I would also like to thank the ID32, ID26, ID20 staff for the pleasant lunches
and moments spent together.

I would like to thank my office colleague and friend Elisabetta, for always
being there to answer my stupid questions and for all the coffee breaks. I
definitely owe you a couple of them for the help.

Ringrazio tutti gli amici che mi hanno accompagnato in questi anni uni-
versitari. In particolar modo, Greta, Agnese, Matteo e Giordano, per le in-
numerevoli risate e le indimenticabili serate passate insieme in questi ultimi
cinque anni. Alla fine, le feste più feste siamo noi!

Un ringraziamento speciale va soprattutto alle mie due fantastiche coin-
quiline, Celeste e Ludovica, per essere ormai la mia seconda famiglia a Milano,
sempre presente sia nel momento del bisogno che per una spensierata serata
di divertimento.

Desidero inoltre ringraziare Tamara, per le lunghe telefonate e il supporto
morale costante nonostante la distanza geografica che spesso ci separa.

Infine, non finirò mai di ringraziare la mia famiglia, che ha sempre creduto
in me, a cui devo la persona che sono oggi, e senza la quale tutto ciò non
sarebbe stato possibile.

vi





Contents

Abstract ii

Sommario iv

Acknowledgements vi

Introduction 1

1 Modern methods of X-ray spectroscopy calculations and data
analysis 3
1.1 Density Functional Theory (DFT) . . . . . . . . . . . . . . . . 3
1.2 Atomic multiplet theory . . . . . . . . . . . . . . . . . . . . . 5
1.3 Wannier functions as a bridge to connect DFT and multiplet

theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Anderson model and Kondo interaction . . . . . . . . . . . . . 10

1.4.1 Anderson model . . . . . . . . . . . . . . . . . . . . . . 11
1.4.2 Kondo interaction . . . . . . . . . . . . . . . . . . . . . 15

1.5 Multivariate Curve Resolution (MCR) - an unbiased method
to analyse large X-ray spectroscopy datasets . . . . . . . . . . 17

2 X-ray Spectroscopy Instrumentation 23
2.1 X-ray absorption spectroscopy (XAS) . . . . . . . . . . . . . . 24
2.2 Resonant Inelastic X-ray Scattering (RIXS) . . . . . . . . . . 25

3 Temperature dependent valence in Yb and Ce Kondo lattice
from X-ray spectroscopies - a test case for MCR 28
3.1 Resonant X-ray emission on YbRh2Si2 . . . . . . . . . . . . . 28
3.2 Soft X-ray absorption spectroscopy on Ce 122 systems . . . . 37

4 Simulation on XAS and RIXS spectra of strongly correlated
oxides from first principles 69
4.1 NiO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

viii



4.1.1 Band structure . . . . . . . . . . . . . . . . . . . . . . 71
4.1.2 XAS spectra . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.3 RIXS spectra . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 MnO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.1 Band structure . . . . . . . . . . . . . . . . . . . . . . 74
4.2.2 XAS spectra . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.3 RIXS spectra . . . . . . . . . . . . . . . . . . . . . . . 75

5 Summary and outlooks 77

Bibliography 79

ix



List of Figures

1.1 Schematic plot of the f-spectral function Af (ω) . . . . . . . . . 13
1.2 Calculated nf temperature evolution . . . . . . . . . . . . . . 14
1.3 Pressure dependence of valence on CeCu2Si2 . . . . . . . . . . 15
1.4 Doniach Phase diagram for heavy fermion compounds . . . . . 16
1.5 Schematic representation of the bilinear model . . . . . . . . . 17
1.6 Sample dataset - profile evolution . . . . . . . . . . . . . . . . 20
1.7 Sample dataset - Singular Value Decomposition . . . . . . . . 20
1.8 Sample dataset - PCA . . . . . . . . . . . . . . . . . . . . . . 21
1.9 Sample dataset - model fit . . . . . . . . . . . . . . . . . . . . 22

2.1 ID32 beamline floor plan . . . . . . . . . . . . . . . . . . . . . 24
2.2 Direct RIXS process . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Indirect RIXS process . . . . . . . . . . . . . . . . . . . . . . 27
2.4 ESRF ID32 RIXS branch . . . . . . . . . . . . . . . . . . . . . 27

3.1 Crystal structure of YbRh2Si2 . . . . . . . . . . . . . . . . . . 29
3.2 YbRh2Si2 RXES temperature evolution . . . . . . . . . . . . . 29
3.3 YbRh2Si2 RXES Singular Value decomposition . . . . . . . . . 30
3.4 YbRh2Si2 PCA - pure variable selection . . . . . . . . . . . . . 31
3.5 YbRh2Si2 model fit - pure variable selection . . . . . . . . . . 32
3.6 YbRh2Si2 PCA - custom initial guess . . . . . . . . . . . . . . 33
3.7 YbRh2Si2 model fit - custom initial guess . . . . . . . . . . . . 34
3.8 YbRh2Si2 PCA - Evolving Factor Analysis . . . . . . . . . . . 35
3.9 YbRh2Si2 model fit - Evolving Factor Analysis . . . . . . . . . 36
3.10 CeNi2Si2 Soft XAS temperature evolution . . . . . . . . . . . 40
3.11 CeNi2Si2 Soft XAS Singular Value Decomposition . . . . . . . 40
3.12 CeNi2Si2 two components PCA - pure variable selection . . . 41
3.13 CeNi2Si2 four components PCA - pure variable selection . . . 41
3.14 CeNi2Si2 two components model fit - pure variable selection . 42
3.15 CeNi2Si2 four components model fit - pure variable selection . 43
3.16 CeNi2Si2 two components PCA - custom initial guess . . . . . 44

x



3.17 CeNi2Si2 two components model fit - custom initial guess . . . 45
3.18 CeNi2Si2 two components PCA - Evolving Factor Analysis . . 46
3.19 CeNi2Si2 four components PCA - Evolving Factor Analysis . . 46
3.20 CeNi2Si2 two components model fit - Evolving Factor Analysis 47
3.21 CeNi2Si2 four components model fit - Evolving Factor Analysis 48
3.22 CeRu2Ge2 Soft XAS temperature evolution . . . . . . . . . . . 49
3.23 CeRu2Ge2 Soft XAS Singular Value Decomposition . . . . . . 50
3.24 CeRu2Ge2 two components PCA - pure variable selection . . . 51
3.25 CeRu2Ge2 three components PCA - pure variable selection . . 51
3.26 CeRu2Ge2 two components model fit - pure variable selection . 52
3.27 CeRu2Ge2 three components model fit - pure variable selection 53
3.28 CeRu2Ge2 two components PCA - custom initial guess . . . . 54
3.29 CeRu2Ge2 two components model fit - custom initial guess . . 55
3.30 CeRu2Ge2 two components PCA - Evolving Factor Analysis . 56
3.31 CeRu2Ge2 three components PCA - Evolving Factor Analysis 56
3.32 CeRu2Ge2 two components model fit - Evolving Factor Analysis 57
3.33 CeRu2Ge2 three components model fit - Evolving Factor Anal-

ysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.34 SNIP algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.35 M4 edge 4f 0 peaks temperature evolution from several ternary

Ce compounds. . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.36 Zoomed version of figure 3.35 . . . . . . . . . . . . . . . . . . 63
3.37 M5 edge 4f 0 peaks temperature evolution from several ternary

Ce compounds. . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.38 Zoomed version of figure 3.37 . . . . . . . . . . . . . . . . . . 65
3.39 Normalized M4 edge 4f 0 peaks temperature evolution from

several ternary Ce compounds. . . . . . . . . . . . . . . . . . . 67
3.40 Normalized M5 edge 4f 0 peaks temperature evolution from

several ternary Ce compounds. . . . . . . . . . . . . . . . . . . 68

4.1 Unit cell and Quanty cluster of NiO . . . . . . . . . . . . . . . 70
4.2 Band structure of NiO in the [−10, 10] eV energy range . . . . 71
4.3 NiO XAS at L2,3 edges . . . . . . . . . . . . . . . . . . . . . . 72
4.4 NiO RIXS with incident photon energy at 853 eV . . . . . . . 73
4.5 Unit cell and Quanty cluster of MnO . . . . . . . . . . . . . . 74
4.6 Band structure of MnO in the [−10, 10] eV energy range . . . 74
4.7 MnO XAS at L2,3 edges . . . . . . . . . . . . . . . . . . . . . 75
4.8 MnO RIXS with incident photon energy at 640 eV . . . . . . . 76

xi



List of Tables

3.1 R2 factors and max order of magnitude of residuals of MCR-
ALS analysis on YbRh2Si2 . . . . . . . . . . . . . . . . . . . . 37

3.2 Ternary compounds based on Ce analyzed . . . . . . . . . . . 38
3.3 Crystalline structure of CeNi2Si2, CeNi2Ge2, CeRu2Si2,

CeRu2Ge2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 R2 factors and max order of magnitude of residuals of MCR-

ALS analysis on CeNi2Si2 . . . . . . . . . . . . . . . . . . . . 49
3.5 R2 factors and max order of magnitude of residuals of MCR-

ALS analysis on CeRu2Ge2 . . . . . . . . . . . . . . . . . . . . 59

xii



Introduction

The following thesis deals with the project carried on from April 2019 to Oc-
tober 2019 with the group of scientists at the beamline ID32 of the European
Synchrotron Radiation Facility (ESRF)

In this work, modern tools for data analysis and spectra simulation are
used to investigate strongly correlated compounds.

Those compounds are based on transition or rare-earth metals, in which
the 3d and 4f (or 5f) shell are partially occupied [1]. Indeed, they exhibit
a strong Coulomb repulsion among electrons in those shells. This strong
electron-electron interaction gives birth to many exotic properties such as
superconductivity [2], metal-insulator transition [3], heavy fermion states [4].

However, no complete model taking into account all the possible inter-
action has been developed yet. Simple impurity models such as the Ander-
son model [5] are usually employed to describe strongly correlated systems.
Therefore, employing modern tools to analyse data and simulate spectra
could shed some light on the physics behind those compounds.

In the thesis work hereafter, Multivariate Curve Resolution method is
used to analyse intermediate valence in heavy fermion systems. This method
has been previously used in chemistry to separate different concentrations of
substances inside a generic solution [6, 7]. Its power stems from the little a
priori knowledge about the physical phenomena needed to analyse the data,
making it virtually applicable to any field. Secondly, Density Functional
Theory calculations are used to obtain physical parameters used in para-
metric spectra simulations. This implies an opposite approach to spectra
simulations: usually simulated spectra are fitted to experimental data in or-
der to obtain key parameters regarding the Coulomb repulsion or spin-orbit
interaction. However, this fitting process does not always lead to unique
or physical meaningful results. Therefore, exploring the possibility of using
Density Functional Theory to calculate those parameters could be useful not
only to test the correctness of the models, but also to better understand the
experimental results [8].

Going into details about the contents, in chapter 1 a theoretical back-
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Introduction

ground of both the modern tools used and heavy fermion physics is given.
Going further, in chapter 2 a brief description of the spectroscopic techniques
will be presented. Then in chapter 3, the Multivariate Curve Resolution
method presented in chapter 1 will be employed to study intermediate va-
lence in Yb and Ce ternary intermetallic compounds. Eventually, in chapter
4 spectra simulations staring from Density Functional Theory calculation are
presented.

Notably, chapters 3 and 4 are conceived with the aim to prove to the
reader the validity of those tools in analysing data and simulating spectra,
respectively.
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Chapter 1

Modern methods of X-ray
spectroscopy calculations and
data analysis

1.1 Density Functional Theory (DFT)
Density Functional Theory (DFT) has been developed to investigate the
electronic structure of compounds through computational quantum mechan-
ical models. Thanks to the increasing computing performances in the last
decades, DFT has become popular in condensed matter physics and solid-
state physics since it allows good quality calculation with low computational
costs and time with respect to other methods such as Hartree-Fock. In this
chapter general concepts regarding DFT are introduced in order to better
understand its implementation.

Let’s consider a system composed by N interacting particles. The corre-
sponding Hamiltonian would be [9]:

Ĥ[v] = −1

2

N∑
i=1

∇2
i +

N∑
i=1

v(xi) +
1

2

N∑
i 6=j

w(|ri − rj|) = T̂ + Û + Ŵ (1.1)

where the external potential v is a functional variable and Ŵ is the correlation
energy among the particles. The interaction-free Hamiltonian (w = 0) would
be:

Ĥ0[v] = −1

2

N∑
i=1

∇2
i +

N∑
i=1

v(xi) (1.2)

In the following, a superscript 0 indicates the interaction-free case. The

3



CHAPTER 1 - X-ray spectroscopy calculations and data analysis theory

ground state energy is defined as

E[v] , inf{〈Ψ| Ĥ[v] |Ψ〉 |Ψ ∈ WN} (1.3)

where

WN , {Ψ|Ψ(x1, . . . , xN) (anti)symmetric,
〈Ψ|Ψ〉 = 1, 〈∇iΨ|∇iΨ〉 <∞ for i = 1, . . . , N}. (1.4)

Let’s define the class of potentials

VN , {v|v ∈ ⊕Lp for some p’s, Ĥ[v] has a ground state}. (1.5)

Having defined the ground state energy and the class of potentials, it is
possible to demonstrate the Hohenberg and Kohn theorem which states [9]

v(x) mod (const.) ∈ VN is a unique function of the ground state density n(x)

In other words, this theorem says it is possible to transfer any functional
dependence on v into a functional dependence on n. Let’s now define the
density functional introduced by Hohenberg and Kohn as:

FHK[n] , E[v[n]]−
∫
v[n]ndx, n ∈ AN , (1.6)

where AN is the class of densities defined as:

AN , { n(x) | n comes from an N-particle ground state}. (1.7)

As a result, FHK[n] is unique and well defined on AN . Exploiting the theorem
introduced above, it is possible to formulate the Hohenberg-Kohn variational
principle

E[v] = min
n∈AN

{
FHK[n] +

∫
nv dx

}
, v ∈ VN (1.8)

Therefore, minimizing the energy means finding the density of the ground
state. However, a major problem remains: neither the classes VN and AN nor
the functional FHK are known explicitly. Here it is where the so-called Kohn-
Sham equation comes into play. The clever idea of Kohn and Sham was to
consider the case on non-interacting particle moving in an effective external
potential that takes into account also the correlation among particles. In this
framework it is possible to rewrite the HK functional as follows:

FHK [n] = T [n] + EH [n] + EXC [n] (1.9)

4



1.2 Atomic multiplet theory

where EH [n] is the Hartree (Coulomb) energy and EXC the residual inter-
action. Since the particles are not interacting, it is possible to separate the
problem into N single particle Schrödinger equations:(

− ~2

2m
∇2 + veff (x)

)
φi(x) = εiφi(x) (1.10)

veff (x) , vext(x) + vH(x) + vXC(x) = vext(x) + e2
∫

n(x′)

|x− x′|
dx+

δEXC
δn(x)
(1.11)

where εi is the energy associated with the Kohn-Sham orbitals φi. Those
orbitals are used to define the density

n(x) =
N∑
i

|φi(x)|2 (1.12)

used in a self consistent method to minimize the following variational prin-
ciple

E[vext] = min
n

{
T [n] +

∫
nvext dx+ EH [n] + EXC [n]

}
(1.13)

Once the energy is minimized and the set of KS orbital are found, it is
possible to calculate the band structure of the ground state.

1.2 Atomic multiplet theory
In order to show how spectra in strongly correlated electronic systems are
calculated, in this section, the atomic multiplet theory is presented. It is
reasonable to start building the model from the atomic Hamiltonian and
then introducing solid-state effects as perturbations. The Hamiltonian of a
free atom with N electrons can be written as [10]

Hfree =
N∑
i=1

(
− ~2

2me

∇2
i −

Zeffe
2

ri
+ ζ(ri)li · si

)
+

N∑
i<j

e2

|ri − rj|
(1.14)

where, in order, the terms are: kinetic energy of the electrons, electrostatic
potential energy of the nucleus charge screened by inner shells, spin-orbit
interaction and Coulomb repulsion between two electrons on the same shell.
The origin of the reference system is the position of the nucleus. Many-
body Hamiltonians involving a mixture of coordinates are impossible to solve;

5



CHAPTER 1 - X-ray spectroscopy calculations and data analysis theory

therefore, a central field approximation [11] can be adopted. In this frame-
work, electrons feel an average spherical potential created by the other elec-
trons. The resulting Hamiltonian will be

Hfree =

H0︷ ︸︸ ︷
N∑
i=1

(
− ~2

2me

∇2
i −

Zeffe
2

ri
+

〈
N∑
i<j

e2

|ri − rj|

〉)

+
N∑
i<j

e2

|ri − rj|
−

〈
N∑
i<j

e2

|ri − rj|

〉
+

N∑
i=1

ζ(ri)li · si︸ ︷︷ ︸
H′

(1.15)

where the spin-orbit term and the remaining Coulomb interaction will be
treated in a perturbative approach. Notice that in H0 there is no mixture
of coordinates. Thus, the solution to the Schrödinger equation H0Ψ

0 =
ε0Ψ0 will be a linear combination of hydrogen-like atomic spin-orbitals ψτ (x),
where τ labels the good quantum numbers n, l, ml, ms, and x the spatial
and spin coordinates. Since the unperturbed system described by H0 has
spherical symmetry, the spatial dependent part of ψτ (x) can be written in
terms of polar coordinates (r, θ, φ):

ψτ (r, θ, φ, σ) = Rnl(r)Y
ml
l (θ, φ)χ(σ) (1.16)

where σ is the spin coordinate and Y ml
l (θ, φ) are the so-called spherical har-

monics.
In order to uphold the Pauli exclusion principle, the full antisymmetric many-
electron wavefunction Ψ0 is given by the Slater determinant of ψτ (x) [12]

Ψ0(x1,x2, . . . ,xN) =
1√
N

∣∣∣∣∣∣∣∣∣
ψτ1(x1) ψτ1(x2) · · · ψτ1(xN)
ψτ2(x1) ψτ2(x2) · · · ψτ2(xN)

...
... . . . ...

ψτN (x1) ψτN (x2) · · · ψτN (xN)

∣∣∣∣∣∣∣∣∣ . (1.17)

The resulting wavefunctions Ψ0 can act as a basis in the perturbation theory
to construct new wavefunctions to evaluate the first order energy correction
due to the spin-orbit and Coulomb interactions. In the case of RE atoms
those two interactions have the same order of magnitude, an intermediate
coupling scheme for the momentum summation must be adopted, which can
be derived from the LS coupling scheme [13].
The LS scheme is used when the spin-orbit interaction is smaller than the
Coulomb repulsion. In those cases, the azimuthal and spin quantum numbers

6



1.2 Atomic multiplet theory

are summed separately. Thus, the total orbital and spin momentum opera-
tors are L =

∑
i li and S =

∑
i si respectively. Moreover, the total quantum

number operator is J = L + S which has 2J + 1 degenerate eigenstates,
each one labeled with the quantum number M = −J,−J + 1, · · · , J − 1, J .
Those groups of eigenstates for different values of J are called multiplets. In
the end, in the LS scheme, L, S, J are all good quantum numbers, making
it convenient to label eigenstates with the Russel-Sanders notation 2S+1LJ .
However, as aforementioned, for REs an intermediate coupling scheme should
be adopted, where L and S are not good quantum numbers. Nevertheless,
the LS eigenfunctions

∣∣2S+1LJ
〉
can be used as a basis to define a new set

of eigenfunctions for the intermediate coupling scheme called free-ion wave-
functions [13]. Therefore, in the following description, in order to calculate
the energy correction due to the Coulomb repulsion, spin-orbit interaction
and crystal electric field,

∣∣2S+1LJ
〉
are used.

In perturbation theory, the first order energy correction due to the Coulomb
repulsion among electrons will be:〈

2S+1L
∣∣∣H′C∣∣∣2S′+1L′

〉
=
∑
k

fkF
k +

∑
k

gkG
k. (1.18)

The matrix element has been divided into four different contributions. Up-
percase letters (F,G) refer to the radial parts, which are called Slater inte-
grals: while lowercase letters (f,g) correspond to the angular part. The F
terms represent the repulsion among electrons belonging to the same shell,
and therefore are named direct Slater integrals; on the other hand, the G
terms are linked to the interaction among electron on different shells, and
are called indirect Slater integrals. Due to selection rules stemming from
the conservation of the total angular momentum, in 3dN configurations, only
F 0, F 2, F 4, are different from zero. Dealing with L2,3 edges, the final state
2p53dN+1 contains only F 0, F 2, F 4, G1 and G3 [14]. Those parameters can be
either calculated or extracted as fitting parameters from experimental data.

Following the same perturbative approach as above, the first order correc-
tion due to spin-orbit coupling to the total energy of the unperturbed system
would be: 〈

2S+1LJ

∣∣∣H′SO∣∣∣2S′+1L′J ′
〉

= ζnlASO(nl). (1.19)

Also those parameters can be either calculated or extracted as fitting param-
eters from experimental data.

When the atom is placed inside a crystalline environment, the charge
distribution of the other surrounding atoms creates a static electric field
that breaks the spherical symmetry of the free atom system. This field
splits the energetic levels of the atom lifting the (2J + 1) fold degeneracy.

7



CHAPTER 1 - X-ray spectroscopy calculations and data analysis theory

How these levels split depends on the local point symmetry on the atom.
One possibility to model the interaction is to consider an effective crystal
electric field potential VCEF (r) with the same symmetry of the surrounding
crystalline environment [15]. The resulting Hamiltonian would be

HCEF = −eVCEF (r) (1.20)

The crystal field potential can be expanded in terms of normalized spherical
harmonics Cm

k (θ, φ) =
√

4π
2k+1

Y m
k (θ, φ):

VCEF (r, θ, φ) =
∞∑
k=0

k∑
m=−k

Ãmk r
kCm

k (θ, φ) (1.21)

where k and m are generic azimuthal and magnetic quantum numbers re-
spectively.
In the framework of a perturbation theory, the first order correction to the
atomic system involves the calculation of the matrix elements in the basis of∣∣2S+1LJ

〉
[15, 13]:〈

2S+1LJ,M

∣∣∣HCEF

∣∣∣2S′+1L′J ′,M ′
〉

=

=
∞∑
k=0

k∑
m=−k

Amk (−1)J−M
(

J k J ′

−M m M ′

)
Dk
J (1.22)

where the 3j formalism [16] has been used and Amk ∝ Ãmk
〈
rk
〉
. Depending on

the point group symmetry of the crystal, only for specific values of k and m
the radial integral in Amk will survive. The value of Amk are usually obtained
from calculations or found fitting the experimental data [13].

1.3 Wannier functions as a bridge to connect
DFT and multiplet theory

In a periodic crystal, the eigenstates of the Hamiltonian operator in periodic
boundary condition are Bloch waves |Ψnk〉:

Ψnk = eik·Runk(r) (1.23)

Let’s consider an isolated band. To build a localized wave packet around
a specific atom/ion, a superposition of Bloch waves over a wide range of
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k is needed. Therefore, a Wannier function (WF) localized in the cell R
associated with the band n is built as [17]:

|WRn〉 =
V

(2π)3

∫
1BZ

e−ik·R |Ψnk〉 dk. (1.24)

Wannier functions are not eigenstates of the Hamiltonian. However, they still
contain some information about the charge density: the density obtained by
summing the squares of Bloch or Wannier functions is the same [18]. By
definition, it is possible to redefine a Bloch wave as follows:

|Ψ̃nk〉 = eiϕn(k) |Ψnk〉 (1.25)
without changing the physical description of the system. Notice how this
gauge freedom propagates into the WFs through eq. 1.24 as well. There-
fore, different transformation gauges imply different sets of WFs, making the
WFs not unique at all. A suitable choice could be a smooth gauge such as
∇k |unk〉, since smoother functions on the reciprocal space result in more lo-
calized functions in the real space [18], which in this case are the WFs.
In many crystals, internal degeneracy and/or crossing of bands is quite com-
mon; there usually exists a manifold of J bands separated by an energy gap
with respect to higher or lower bands. In these cases, using single band Bloch
waves as in eq. 1.24 will lead to not well-localized WFs. Indeed, it is impor-
tant to study the multiband case. The gauge transformation in eq. 1.25 can
be generalized in

|Ψ̃nk〉 =
J∑

m=1

U (k)
mn |Ψmk〉 , (1.26)

where U is a unitary matrix of dimension of J, periodic in k. Equation 1.24
becomes

|WRn〉 =
V

(2π)3

∫
1BZ

e−ik·R
J∑

m=1

U (k)
mn |Ψmk〉 . (1.27)

Well-localized WFs now depend on the choice of U. One way to make sure
that the resulting |Ψ̃nk〉 will be smooth enough is to use the so-called projec-
tion technique.
Let’s consider a manifold of J bands and pick a set of J test functions χn(r)
in the home unit cell. These test functions usually are simple functions lo-
cated where the expected WFs should be centered and with a similar angular
character. These χn(r) are projected onto Bloch waves corresponding to the
multiband set, obtaining:

|φnk〉 =
J∑

m=1

|Ψmk〉 〈Ψmk|χn〉 (1.28)

9
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The resulting wavefunctions are typically smooth in the k space. The new
states can be constructed through Löwdin-orthonormalization [18] as follows:

|Ψ̃nk〉 =
J∑

m=1

|φmk〉 (S
− 1

2
k )mn (1.29)

where (Sk)mn = 〈φmk|φnk〉UC (UC stands for unitary cell). Substituting the
new set of Bloch waves |Ψ̃nk〉 in eq. 1.24, will create well-localized WFs re-
sembling atomic orbitals centered in the ions locations. In the end, assuming
the equivalence between the WFs just defined and the atomic orbitals de-
scribed in section 1.2, from the WFs is possible to obtain useful parameters
used in calculation and simulations such as Slater integrals, crystal electric
field or hoppings strength among different orbitals.

1.4 Anderson model and Kondo interaction
In recent years rare-earth (RE) compounds based on Ce have aroused a sig-
nificant interest among the solid-state research community due to their exotic
properties. These compounds display different ground states: magnetic or-
dering, unconventional superconductivity [19], heavy-fermion behavior [20],
Kondo lattices [21] and mixed-valence states [22] have been reported. On
top of that, these physical properties can be easily controlled by changing
pressure [23], temperature [24], stoichiometry, external field [25]. Of partic-
ular interest in this thesis are intermetallic systems in which the RE element
exhibits a mixed-valence state depending on its physical and chemical envi-
ronment.
Atomic Ce has a [Xe]4f 15d16s2 electronic configuration. In solids, the 5d
and 6s hybridize together generating bands, becoming delocalized. On the
contrary, the 4f shell, extending less than the two aforementioned shells,
remains localized around the ion, and so do the 4f electrons. However, in
some intermetallic compounds, Ce shows a trivalent state in which the occu-
pation of the 4f orbitals is not stable. Because of their interaction with the
surrounding conduction electrons, Ce ions display a mixture of 4f 0 and 4f 1

configurations, leading to a not integer nf occupation number of the f shell.
A complete model that takes into account all possible effects and interac-
tions occurring in a heavy fermion crystal systems has not been developed
yet. However, for the seek of this thesis, a basic model able to describe qual-
itatively the origin of the mixed-valence regime is enough. In this chapter, a
brief description of the atomic model will be presented, followed by the An-
derson impurity model. Then an overview of the Kondo interaction will be
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presented, and finally the qualitative temperature and pressure dependence
of the occupation number will be discussed.

1.4.1 Anderson model

In the case of RE elements, the multiplet theory described in section 1.2
works under the assumption of weakly-interacting and well-localized f shells.
However, for the sake of this thesis, it is important to study the hybridization
of the 4f shell with its surroundings. In order to do that, let’s restart from
the atomic Hamiltonian but only taking into account a unitary occupation
of the f shell. The resulting atomic Hamiltonian will be

Hatomic = εfnf + Un↑fn
↓
f (1.30)

where U is the Coulomb repulsion energy between two electrons in the same
4f shell. Let’s now consider the energy cost of the following four states in
the atomic model:

|f 2〉 E(f 2) = 2εf + U∣∣f 1
↑
〉

E(f 1) = εf∣∣f 1
↓
〉

E(f 1) = εf

|f 0〉 E(f 0) = 0

(1.31)

Thus, the cost for adding an electron would be E(f 2)−E(f 1) = εf +U >
0, while the cost for removing an electron is E(f 0)− E(f 1) = −εf > 0.
So, for

−U < εf < 0 or −U/2 < εf + U/2 < U/2 (1.32)

the local moment will be well defined and there will be valence fluctuations
provided that kβT > max(−εf , εf+U). However, in the compounds in study,
the Coulomb repulsion between 4f electron is really strong and, since very
low temperature conditions are here considered, that is not enough to explain
a mixed-valence.

The intermediate valence regime at low temperatures in Ce materials can
be described with the Anderson model, which takes into account both the hy-
bridization between the 4f orbitals and the conduction band and the strong
Coulomb repulsion between 4f electrons.
In 1961, Anderson developed a model for magnetic alloys to better describe
localized magnetic states. The simplest version of the Anderson Hamilto-
nian can be used to characterize the hybridization of the 4f shell with the
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conduction band. Thus, the Hamiltonian can be written as follows:

HA =
∑
k,σ

εkc
†
kσckσ︸ ︷︷ ︸

Hband

+ εf
∑
i,σ

f †iσfiσ + U
∑
i

n↑f,in
↓
f,i︸ ︷︷ ︸

H4f

+
∑
i,k,σ

[
V (k)c†kσfiσ + H.c.

]
︸ ︷︷ ︸

Hhybr

(1.33)
where nσf,i = f †iσfiσ, and V (k) = 〈k|Vatomic |f〉measures the hybridization be-
tween the localized 4f electrons and the conduction band (Bloch wave). The
Anderson Hamiltonian has two main contributions: the 4f atomic Hamilto-
nian H4f introduced before, and a second Hamiltonian Hband +Hhybr com-
pletely describing the conduction electrons and their interaction with the 4f
shell. Notice that U and V (k) are the key parameters of the atomic and
conduction electron Hamiltonians respectively. Having already discussed the
atomic case, let’s focused on the hybridization.
The second component of the Anderson Hamiltonian

Hresonance =
∑
k,σ

εkc
†
kσckσ +

∑
i,k,σ

[
V (k)c†kσfiσ + H.c.

]
(1.34)

will model the conduction electron and, for a reason that will be clarified
soon after, it can be called the resonance Hamiltonian. The 4f local impu-
rity potential is not sufficiently attractive to create a bound state below the
conduction band. However, due to the resonant scattering, the local impurity
tends to localize the conduction electron in its vicinity, inducing the forma-
tion of a virtual bound state. Therefore, the f-states broaden, producing a
resonance of width

∆ = π
∑
k

|V (k)|2δ(εk − µ) = πV 2ρ (1.35)

In order to see how the Anderson Hamiltonian induces a mixed-valence state,
it is useful to introduce the f-spectral function Af (ω), which is the Fourier
transform of the time-ordered f-Green’s function. In Aω(f), positive energies
(ω > 0) refer to the energy distribution for electron addition; while the
negative part (ω < 0) determines the energy distribution for removing an
electron.
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Figure 1.1: Schematic plot displaying the f-spectral function Af (ω) as the Coulomb in-
teraction U is increased (the occupancy of the f-shell is kept constant). At U=0 (non-
interaction resonance), the broadening of the f-shell is purely due to the hybridization
with the conduction band. When U >> ∆, Af splits into three peaks: the two

∣∣f0〉, ∣∣f2〉
configurations separate in energy, and the Kondo resonance appears just below the Fermi
energy. Image taken from [26]

By looking at Fig. 1.1, as one could expect at U = 0, there is only
one broad peak whose width is ∆. However, As U is increased, the atomic
contribution starts to grow and three peaks appear: the two lateral peaks
are related to 4f 0 and 4f 2, while the central peak is often called "Kondo
resonance". This resonance stems from the quantum spin fluctuation of the
localized 4f 1. From the Af (ω) is possible to calculate the f-shell occupancy
by considering its distribution below the Fermi energy

〈nf〉 = N

∫ Ef

−∞
Af (ω)dω (1.36)

where N is the degeneracy.
In many materials where the Ce ion is in the 4f 1 state, the 〈nf〉 is slightly

below unity; however, if the Kondo resonance is wide enough, the compounds
tend more to a mixed-valence state, where the occupancy of the f-shell deviate
from unity [26].
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Some general behaviors of the nf have been calculated from the Anderson
impurity model or measured with different techniques. In Fig. 1.2 calcula-
tions of the temperature dependence of nf are reported from [27]. Notice
that as the temperature increases, the occupancy of the f shell tends towards
unit since more |f 1〉 states become thermally populated.

Figure 1.2: Calculated temperature variation of the occupation number of the f shell. T0
is defined to be the position of the Fermi surface resonance in the f-spectral function for
T → 0. Data taken from [27]

In Fig. 1.3 the f-electron occupancy per site n̄f = nf/2 are reported
from [23]. Data were obtained from XAS spectra of CeCu2Si2 measured at
different pressures at 14 K.
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1.4 Anderson model and Kondo interaction

Figure 1.3: f-electron number per site n̄f = nf/2 as function of pressure (top scale) and
dimensionless energy scale εf/D as used in [28] (bottom scale, D is the Fermi energy of
the conduction electrons as "if they were uncoupled with f electrons" [23]). Data borrowed
from [23].

1.4.2 Kondo interaction

Many Ce compounds exhibit different types of ground state at low tem-
peratures: antiferromagnetic, ferromagnetic or paramagnetic ground states
might arise [29, 30, 31, 32]. These states can be described in terms of the
competition between the RKKY and Kondo interactions. The former fa-
vors long-range magnetic order: the coupling among magnetic moments is
conveyed by the surrounding conduction sea; the latter localizes conduction
electrons around the 4f magnetic moments, effectively generating a singlet
state and therefore screening the local magnetic moment of the ion. The
characteristic temperatures of those two effects scale differently with respect
to both the density of states at the Fermi energy D(EF ) and the spin coupling
interaction J between the 4f and conduction electrons:

TK ∝ exp

[
− 1

JD(EF )

]
(1.37)

TRKKY ∝ D(EF )J2 (1.38)

As one can see in Fig. 1.4, for small values of J , the RKKY interaction
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Figure 1.4: Doniach Phase diagram for heavy fermion compounds. The red dashed line
and the blue dot lines are the TRKKY and TK evolution respectively. For J < JC ,
TRKKY > TK and therefore a magnetically ordered ground state is favored (green area);
while for J > JC , TRKKY < TK , and so, provided that the temperature is low enough, a
heavy fermion ground state appears (orange area). Image takes from [33]

is dominant (TK < TRKKY ), and so the ground state would be magnetically
ordered; on the order hand, when J is above a critical value Jc (TK > TRKKY ),
the Kondo effect overcomes the RKKY interaction leading to a disordered
ground state and, if the temperature and external magnetic field are low
enough, the system exhibits a paramagnetic heavy Fermi liquid state. In
order to understand how the Kondo effect could lead to the formation of
a heavy fermion state, let’s take into account how the resistivity of these
compounds changes at very low temperatures.

Suppose to have J > Jc, so that the Kondo interaction prevails. As the
temperature decreases, the resistivity drops until the first isolated magnetic
ions start to be "quenched" by the Kondo effect. Indeed, the newly created
singlet states act as a scattering source for conduction electrons, effectively
increasing the resistivity. However, since the ions are arranged in a periodic
lattice, as the temperature continues to decrease, the scattering becomes
coherent, leading to a sudden drop in the resistivity at very low temperatures.
In this coherent state, electrons show an increased effective mass, almost 1000
times larger than the free electron mass. The situation in which the Kondo
effect develops coherence among all the impurities and a heavy electron band
is formed is referred as "Kondo lattices".
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1.5 Multivariate Curve Resolution

1.5 Multivariate Curve Resolution (MCR) - an
unbiased method to analyse large X-ray spec-
troscopy datasets

Multivariate Curve Resolution (MCR) methods can find interesting applica-
tions in spectroscopy due to their ability to extract pure components of spec-
tra without any previous knowledge or model of the physical phenomenon.
They are based on a bilinear model decomposition which separates the ex-
perimental spectra in a linear combination of principal components. The
bilinear model can be written as [34]:

D = CST + E (1.39)

Figure 1.5: Schematic representation of the bilinear model

where:

• D is a m× n matrix containing m measurements taken over n energy
points;

• C is a m×c matrix containing the weights of the principal components
for each measurement;

• S is a c × n matrix containing the first c principal components (PCs)
of the spectra (c ≤ m);

• E is the matrix of residuals not explained by the resolved components.

The number of relevant PCs can be both selected manually, or guessed via
the Singular Value Decomposition (SVD) algorithm.

The SVD is a generalization of the eigendecomposition of a square matrix.
Suppose A is a n × m matrix, then it is possible to factorize A as follows
[35]:

A = UΣVT (1.40)

where:
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• U is a n×n unitary matrix whose columns ~ui are a set of orthonormal
vectors;

• Σ is n ×m matrix, whose diagonal elements σi are non-negative real
numbers called singular values;

• V is a m × m unitary matrix whose columns ~vi are also a set of or-
thonormal vectors.

The singular values σi are ordered in a decrescent order along the main
diagonal, and it is possible to associate each σi with a PC. To σ1, the highest
singular value, is associated the PC the cover most of the variance of the
data; to σ2 the second PC that explains the second largest percentage of the
variance, and so on.

Having no prior knowledge on the origin of the data, principal compo-
nent analysis (PCA) does not take into account any physical constraint: in
this thesis work, PCs are absorption spectra, and so their intensity must be
positive. Luckily, the D matrix decomposition into C and S is not unique.
Therefore, it is possible to exploit the so-called rotational ambiguities and
define a rotation matrix T to generate a new pair of Cnew and Snew matrices
as follows [36]:

D = CST + E = D∗ + E (1.41)

ST
new = TST (1.42)

Cnew = CT−1 (1.43)

D∗ = CST = CnewST
new (1.44)

By properly defining T, it is possible to apply different constraints to
both pure spectra components and their weights (i.e. non-negativity). In
order to find the best T, an optimization method is used. Firstly, initial
estimations of C, S and T are made: T will be an identity matrix whose
dimension is equal to the number of PCs (C and S estimation methods will
be briefly descried later). Then, the two LS equation min

C

∥∥D−CnewST
new

∥∥
and min

ST

∥∥D−CnewST
new

∥∥ are alternated and solved iteratively, applying the

selected constraints at each iteration [36].
Regarding the initial estimation of C and S, there are three possible

paths to follow: they can be either be a sensible initial guess or be obtained
from pure variable detection and evolving factor analysis (EFA) methods
[34]. Let’s focus on the last two. Pure variable detection method aims at
selecting the most dissimilar rows or columns in a single data matrix or a
multiset structure providing initial estimates of spectra or of concentration
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profiles, respectively. On the other hand, EFA method exploits the emergence
and decay of the components in datasets. Assuming a sequential order of
emergence/decay for all components in the system, this method provides a
suitable initial estimation of the concentration profiles. In order to assess
which method leads to the best results, two parameters related to the model
fit can be taken into account. The first is R-squared (R2) which represents
the percentage of the total variance explained by the principal component
selected; the second one are the residuals, which contains the residual part
of the experimental spectra not reconstructed by the principal components.
In the end, good quality result are the ones with the R2 factor close to 100%
and the low residuals.

To better understand how it works, an example will be reported in the
following. In order to test the algorithm, a dataset was manually generated:
the general profile is composed of six gaussian with different µ and σ. In
figure 1.6, The evolution of the profile with respect to a generic variable
that ranges between 0 and 100 is plotted. Counting the peaks from left to
right, the intensities of the 1st and 4th peaks decrease linearly as X increases;
whereas the remaining peaks have their intensity linearly increased as X rises
from 0 to 100.

Let’s start with the singular value decomposition reported inf figure 1.7.
As one can clearly see, there are only two singular values much greater than
zero; therefore, only two PCs will be considered.

Regarding the initial guess, the pure variable selection method is em-
ployed. Moreover, no constraints are used, so that the simplest analysis can
be performed. The results of the PCA are reported in figure 1.8. Notably,
the PCA is able to correctly reconstructed both the shape and intensity evo-
lution of the six gaussian. The algorithm has correctly grouped gaussian
with the same evolution in the same principal component. Moreover, it has
retrieved the linear dependence of the intensities over X.

Let’s now look at the model fit reported in figure 1.9
The model fit is perfect with a R2 factor of 100% and residuals of the

order of machine epsilon (10−16).
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Figure 1.6: Sample data generated to test the MCR-ALS. The general profile is the sum
of six gaussian with different µ and σ; the weight of each gaussian changes with respect
to another variable whose values range from 0 to 100.
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Figure 1.7: Singular Value decomposition of the sample dataset.
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Figure 1.8: Principal component analysis of the sample dataset. Notably, the PCA was
able to correctly group together the gaussian with the same evolution into two principal
components. Moreover, the linear dependence on X is reconstructed in the evolution of
the weights associated with the PCs
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Figure 1.9: Model fit on the sample dataset. The fit is perfect: the resulting R2 factor is
100% and the residuals are of the order of the machine epsilon (10−16)
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Chapter 2

X-ray Spectroscopy
Instrumentation

Spectroscopy techniques involving X-rays are powerful tools to investigate
the electronic and optical properties of solids: the importance of X-rays lies
in their ability to excite core level electrons. Core level spectroscopy allows
extracting information about the local environment around specific elements
inside solids. Synchrotron facilities play a key role in experimental studies of
core level spectroscopy: thanks to technological improvements, synchrotron
radiation source have reached brilliance comparable to lasers [37].

The Soft X-Rays Spectroscopies Beamline at ESRF is a state-of-the-art
beamline dedicated to X-Ray absorption (XAS), Resonant Inelastic X-Rays
Scattering (RIXS) and X-Rays Magnetic Dichroism (XMCD and XMLD)
experiments. The 400ev/1600eV energy range allows to measure absorp-
tion egdes of different elements. The beamline has two branches: one is
designed for XMCD and XMLD studies, with high sensitivity, reproducibil-
ity, flexibility, user friendliness and the capability for fast energy scanning.
The second branch is designed for high energy resolution RIXS experiments
with a combined resolving power up to 30000 around 930 eV. [38] In order
to perform XMCD and RIXS measurements, the X-ray source must have
tunable polarization (both linear and circular) and very high intensity, since
RIXS experiments are flux hungry techniques. In order to achieve that, three
APPLE-II undulators are employed, which are able to provide a polarization
close to 100% over the 400/1600 energy range. Undulators are insertions
devices composed of four arrays of permanent magnets ordered in a specific
way. By sliding horizontally the arrays, the user can obtain different polariza-
tions, while by changing the gap between the block of array, it is possible to
change the frequency of the emitted light. In Fig.2.1 the ID32 beamline floor
plan is reported from [38]. The radiation exiting the undulators impinges
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Figure 2.1: ID32 beamline floor plan

on a double mirror. This mirror has two major tasks: firstly it shifts the
beam horizontally by 16 mm, allowing the deployment of a Bremsstrahlung
stopping device; secondly, it adsorbs unwanted high energies radiations, effec-
tively reducing the heat load on the entrance slit and monochromator optics.
In order to assure the same degree of monochromaticity over the wide energy
range, variable line spacing (VLS) plane gratings are used. In the following
sections, a brief description of the XAS and RIXS experimental techniques
and related instrumentation will be provided.

2.1 X-ray absorption spectroscopy (XAS)
XAS allows to probe electronic transitions from ground states to core excited
states. Within the electric dipole approximation, the transition rate from an
initial ground state |i〉 to a final core exited state |f〉 will be [11]:

Wfi ∝
∑
s

| 〈f | es · r |i〉 |2δ(Ef − Ei − ~ω) (2.1)

where the sum index s stand for the different polarization of the photon and
δ provides the energy conservation.

The transition rate will be zero whenever the integral 〈f | es · r |i〉 is zero;
to avoid that, the integrand function must be even. In order to achieve that,
being the transition operator an odd function, |i〉 and |f〉 must have different
parity. Within the atomic multiplet theory, this parity constraint generates
selection rules quantum numbers must obey. Considering only first order
absorption events (single photon absorption) and assuming to use linearly
polarized photons, which have the orbital quantum number equal to 1 and
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spin equal to 0, the selection rules are the following [11]:

∆l = ±1, ∆s = 0, ∆J = 0,±1, with Ji + Jf ≥ 1

∆ml = 0,±1, ∆ms = 0
(2.2)

These selection rules are essential to explain and understand XAS spectra
since each absorption edge is linked to different allowed transitions between
the initial ground state and the final core excited state. Indeed, the energy
of the absorption edge will be determined by δ, while the intensity will be
proportional to the probability of the transition (matrix element squared)
and the density of empty states ρ:

IXAS ∼ | 〈f | es · r |i〉 |2ρ. (2.3)

Two different methods have been employed to measure XAS: total fluo-
rescence yield (TFY) and total electron yield (TEY). As the name suggests,
the TFY mode measures the photons created by the fluorescence decay of
the core hole: those photons have a mean free path of the same order of
magnitude of the impinging photon, so no surface effects appear. However, if
the sample is not dilute, a resonance effect that leads to re-absorption could
arise. As a consequence of that, some saturation effects might occur in the
most intense peaks. On the other hand, TEY mode detects all the electrons
exiting the sample by measuring the current flowing into the sample. Since it
is not possible to distinguish the origin of those electrons (Auger or secondary
electrons), the probing depth is not precise. Nevertheless, this disadvantage
is compensated by the ease of acquisition and large signal.

2.2 Resonant Inelastic X-ray Scattering (RIXS)
RIXS is a photon-in photon-out second order optical process that involves
a coherent absorption and emission of X-rays at resonance with electronic
excitations. In RIXS process, two different scattering mechanisms take place:
direct and indirect RIXS. The former is more dominant if allowed by selection
rules, whereas the latter contributes only at higher orders [39].

A schematic representation of the direct scattering is reported in figure 2.2
(image taken from [39]). The impinging photon with wave vector kin carrying
an energy ~ωin excites a core level electron, promoting it into an empty state
in the valence band. Within few fs, an electron from an occupied state in the
valence band decays and fills the core hole, emitting a photon with wavevector
kout and energy ~ωout. As a result of this 2-step excitation and relaxation
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Figure 2.2: Schematic representation of the direct RIXS process. The impinging photon
promotes the core electron into an empty state of the valence band. In few fs, an electron
from the occupied valence band fills the core hole, emitting a new photon. As a conse-
quence, a valence excitation has been created with momentum ~kout − ~kin, and energy
~ωin − ~ωout. Image taken from [39]

process, an electron-hole excitation is created, carrying a momentum ~q =
~kout − ~kin and energy ~ω = ~ωout − ~ωin. For the direct RIXS to occur,
both the excitation of the core hole and the following relaxation must be
allowed by selection rules.

The indirect RIXS process is depicted in figure 2.3 (image taken from
[39]). The electron core is excited into an empty state several eVs above
the Fermi level. In the intermediate state, the core-hole potential scatters
valence electrons which tend to screen the positive charge. As a consequence
of that, electron-hole excitations are generated in the valence band. After the
strongly excited electron decays in the core hole, the electron-hole excitations
are left behind. However, it should be pointed out that for pure indirect
RIXS to occur, transitions from core states to conduction band states must
be weak.

At ESRF, the RIXS branch is composed of five major parts, as reported in
fig. 2.4: a sample chamber, collimating mirror, spherical grating, polarime-
ter, detectors. The sample chamber hosts a four-circle UHV diffractometer
and its position is fixed. From this, a mechanical arm composed of three
vacuum chambers is attached. The first chamber contains a parabolic colli-
mating mirror to increase the acceptance angle from the sample. The second
chamber hosts two VLS spherical gratings that scatter the impinging photons
in the vertical direction. The output signal would be a series of horizontal
lines, each one associated with different energies. The last chamber at the end
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2.2 Resonant Inelastic X-ray Scattering (RIXS)

Figure 2.3: Schematic representation of the indirect RIXS. The impinging photon promotes
one core electron to a strongly excited state, several eVs above the Fermi level. In this
intermediate state, the core-hole potential scatters valence electrons, creating electron-hole
excitations in the valence band. Once the strongly excited electron fills the core hole, those
electron-hole excitations remain. Image taken from [39]

of the arm locates two 2D position-sensitive CCD cameras used as detectors.
The output scattering angle can be changed from 50◦ to 150◦

Figure 2.4: Structure at the end of RIXS branch. From left to right: four-circle diffractome-
ter as sample holder, parabolic collimating mirror to increase acceptance angle, spherical
gratings to scatter different energy signals in the vertical direction, detectors. Image takes
from [38]
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Chapter 3

Temperature dependent valence
in Yb and Ce Kondo lattice from
X-ray spectroscopies - a test case
for MCR

All of the MCR-ALS analysis previously described have been implemented
in a MATLAB script by [34]

3.1 Resonant X-ray emission on YbRh2Si2
YbRh2Si2 crystallizes in the ThCr2Si2 structure, whose crystallographic space
group is I4/mmm, reported in figure 3.1. At low temperatures YbRh2Si2
exhibits a intermediate valence states due to the creation of Kondo lattices:
the Yb+3 valence starts to slightly deviate towards Yb+2.

In figure 3.2 the temperature evolution of L3 − Lα1 RXES spectra of
YbRh2Si2 are reported. By looking at the plot, a clear dependence of the
peaks intensity over temperature emerges. The peak around 1527 eV de-
creases its intensity as the temperature rises; whereas the peak around 1533
eV exhibits the opposite behavior. From previous studies [40], is now clear
the peaks around 1527 eV and 1533 eV are associated with Yb+2 and Yb+3

contributions, respectively.
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3.1 Resonant X-ray emission on YbRh2Si2

Figure 3.1: Crystal structure of YbRh2Si2
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Figure 3.2: Temperature evolution of RXES spectra of YbRh2Si2. As referred in previous
studies [40], the peaks around 1527 eV and 1533 eV are associated with Yb+2 and Yb+3

contributions respectively. A clear pattern emerges: as the temperature rises, the Yb+2

peak decreases more than the Yb+3 peak increases.
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CHAPTER 3 - Temperature dependent valence in Yb and Ce Kondo lattice

In order to extract the shape of the two peaks, the MCR-ALS method
previously described was adopted. In figure 3.3, the singular values associ-
ated with the first seven principal components are shown. As described in
chapter 1, the best number of principal components to select should be two,
since, starting from the third component, the associated singular values are
practically zero, especially if compared to the first which is 164.5.
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Figure 3.3: Singular value decomposition. Since after the 3rd component, the singular
values are almost zero, only two components should be chosen. The values associated
with the chosen component are marked with a green circle, while the values linked to
discarded components are marked with a red cross.

Considering that a reasonable initial guess is required for the ALS algo-
rithm, all the three methods depicted in chapter 1 will be used and tested.
It should be pointed out that the only constrained used for both spectra and
weight is the non-negativity constraint.

Firstly, the pure selection method is employed. In figure 3.4 two plot
are reported: from left to right, the two principal components resulting from
the optimization algorithm and the evolution of the weight of those two
components as a function of temperature are reported. By just looking at
the plot on the left, one can clearly see that each component recovers one
of the two peaks of the RXES spectra. Thus, is reasonable to associate the
1st component (in red) with the Yb+2 peak, and the 2nd (in green) with the
Yb+3 contribution. Moreover, looking at the second plot and recalling figure
3.2, the temperature evolution of the weights further supports and confirms
the previous assumption. In fact, from figure 3.2, it is clear that the range
over which the intensity of the Yb+2 varies is larger than the one of the
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3.1 Resonant X-ray emission on YbRh2Si2

Yb+3 peak. Therefore, as the temperature increases, one should expect the
weight associated with the 1st component (Yb+2) to decreases more than the
2nd component weight (Yb+3) increases. Indeed, the behavior just described
matches the plot on the left in figure 3.4.
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Figure 3.4: Principal components analysis with the pure variable detection method for
initial guess selection. On the left, the two principal components are plotted; on the right,
the temperature dependence of the weights are displayed. Each component describes only
one peak of the spectra. From the temperature evolution of the components, is clear the
1st and 2nd components are related to the Yb+2 and Yb+3 contributions respectively
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Figure 3.5: Model fit of the MCR-ALS analysis with pure variable detection method used
for the initial guess selection. R2 factor is 99.9982% and the maximum of the residuals is
of the order of 10−17.

Let’s now look at the contribution of each component to the total spectra
and how well the model fits with experimental data. In figure 3.5 four plots
are reported: in the second column the weighted contribution of the 1st

and 2nd component are plotted separately, while in the first column they
are summed. The two rows refer to the lowest (3 K) and highest (296 K)
temperature measurements. These two extremes are taken into account to
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3.1 Resonant X-ray emission on YbRh2Si2

enhance the difference between the Yb+2 and Yb+2 contributions.
The result of the PCA is quite astonishing: the first two principal com-

ponents alone explain 99.9982% of the total variance, and the residuals are
of the order of 10−17.

Let’s now look at the second choice of the initial guess. As a reasonable
guess that does not include any a priori knowledge about the physics behind
the shape of spectra, the mean (as 1st component) and the difference between
the RXES spectra at 3 K and 296 K (as 2nd component) were chosen. In
figure 3.6 the results from the MCR-ALS are reported in the same frame as
the ones in figure 3.4. Notably, the 2nd component successfully recreate the
Yb+2 peak, while the first component matches the spectra at 296K, as one
can clearly see from figure 3.7. The weights dependence over temperature
displays a vanishing behavior for the 2nd component, having no contribution
to the spectra at almost 300 K. This vanishing behavior is in accordance
with the theory which claims that the valence of Yb ions at 300 K should be
really close to +3.
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Figure 3.6: Principal components analysis where the initial guesses were the mean of
the spectra and the difference between the 3 K and 296 K measurements. On the left,
the two principal components are plotted; on the right, the temperature dependence of
the weights are displayed. The 2nd component clearly reconstructs the peak associated
with Yb+2, while the 1st component resembles the 296 K spectrum. Notably, the 2nd

component contribution to the total spectrum vanishes at 296 K, in accordance with the
Yb +3 valence at 300 K reported in previous studies.
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Figure 3.7: Model fit of the MCR-ALS analysis where the initial guesses were the mean
of the spectra and the difference between the 3 K and 296 K measurements. R2 factor is
99.9982% and the maximum of the residuals is of the order of 10−7.

Finally, let’s analyze the EFA as a method to choose initial guesses. As
aforementioned in chapter 1, the EFA should be used whenever one expects
there is a sequential order of emergence/decay for all components in the sys-
tem. As already highlighted above, there is a sequential decay and emergence
of the Yb+2 and Yb+3 contribution. However, it should be pointed out that
the EFA is thought to work well whenever the emergence/decay is complete
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3.1 Resonant X-ray emission on YbRh2Si2

in the sense that one component fully substitutes the others as the spectra
evolves. This is not clearly the case, since at 3 K there is still a significant
Yb+3 contribution to the total spectra intensity. Nevertheless, it is worth
giving a try. The resulting MCR-ALS analysis is reported in figure 3.8.
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Figure 3.8: Principal component analysis with the EFA as method used for the initial
guess selection. Despite the presence of the emergence and decay behavior of the spectra,
the resulting components do not reflect the physics of the phenomenon, since the Yb+3

contribution always be present.
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Figure 3.9: Model fit of the MCR-ALS analysis with evolving factor analysis for the initial
guess selection. R2 factor is 99.9982% and the maximum of the residuals is of the order
of 10−6.

The two peaks are not isolated into one component each, instead both
principal components contain the two peaks. Moreover, looking at the evo-
lution of the weights, is clear how the EFA searches for complete emergence
and decay of the components: indeed, at the extreme of the temperature
range only one component is present. The model fit reported in figure 3.9
further confirm what said just above: the 1st component is exactly the RXES
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3.2 Soft X-ray absorption spectroscopy on Ce 122 systems

spectra at 3 K, while the 2nd is the RXES spectra at 296 K.
One thing is worth pointing out at this point. The three analyses de-

scribed above only differ in the selection of the initial guess, and those se-
lections lead to three very different outcomes in terms of the shape of the
principal components.

Pure Mean&Diff EFA

R2 99.9982% 99.9982% 99.9982%

Residuals 10−17 10−7 10−6

Table 3.1: R2 factors and max order of magnitude of residuals of MCR-ALS
analysis on YbRh2Si2

In the table 3.1 the R2 and residuals of the three MCR-ALS analyses just
described are reported. All three of them have a 99.9982% the percentage
of total variance explained and very low residuals. This is a clear example
of the rotational ambiguity introduced in chapter 1. At this point some
kind of physical knowledge about the phenomenon needs to be introduced to
interpreter the results and decide which method is the one to choose. Indeed,
only the pure variable selection method led to physically meaningful results.

3.2 Soft X-ray absorption spectroscopy on Ce
122 systems

Ternary intermetallic systems based on Ce exhibit interesting intermediate
valence behaviors around the Kondo scale. In this section, Soft XAS of
different Ce compounds are analyzed through MCR-ALS and more classical
spectra analysis.

The ternany intermetallic system in study are the following:
In table 3.3, crystalline structure of CeNi2Si2, CeNi2Ge2, CeRu2Si2 and

CeRu2Ge2 along with their lattice constants are reported. They all exhibit
a ThCr2Si2-type crystalline structure.

In order to evaluate the intermediate valence M4,5 edge X-ray absorption
spectra were acquired. An example of how those spectra look like is reported
in figure 3.10. From previous studies [45] have emerged that the small peaks
around 885 eV and 903 eV are the Ce+4 (4f 0 configuration) contribution to
the M4 and M5 edges respectively. All the other peaks are related to the M4

and M5 edges of Ce+3 (4f 1 configuration).
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CHAPTER 3 - Temperature dependent valence in Yb and Ce Kondo lattice

CeNi2Si2 CeRu2Si2

CeNi2Si1.2Ge0.8 CeRu2Si1.7Ge0.3

CeNi2Si0.6Ge1.4 CeRu2Si1.2Ge0.8

CeNi2Si0.2Ge1.8 CeRu2Si0.6Ge1.4

CeNi2Ge2 CeRu2Ge2

Table 3.2: Ternary compounds based on Ce analyzed

In order to understand how the valence changes over the temperature
range, the intensity of the 4f 0 peaks must be extract from the spectra. To
separate the contribution of the 4f 0 shell with respect to the 4f 1, two different
methods have been used: MCR-ALS and SNIP algorithm. However, before
the actual peak reconstruction, data must be prepared. First of all, all spectra
are normalized over the intensity of the impinging beam in order to take into
account fluctuations of the beam intensity over time and energy. Then, the
background is removed by subtracting a 2-step arctan function conveniently
weighted:

f(c1, c2, ε1, ε2, γ1, γ2) =

1

π

[
c1 arctan

(
ε− ε1
γ1

+
π

2

)
+ c2 arctan

(
ε− ε2
γ2

+
π

2

)]
, (3.1)

where c1 and c2 are the intensities of the two plautes after each peak respec-
tively, γ1 and γ2 measure how broadened is the arctan function in energy.
The two arctan functions are centered at the maximum of the two edges.

Each measurement has a slightly different energy scale. In order to align
spectra from different measurements, the points must be increased through
interpolation and then smoothed out. At this point spectra are ready for
peak isolation.

The first Ce ternary compound studied is CeNi2Si2. It crystallizes in the
ThCr2Si2 structure, whose crystallographic space group is I4/mmm.

In figure 3.10 the temperature evolution of Soft XAS spectra at the M4,5

edge of CeNi2Si2 is reported. As said before, the Ce+4 contribution to the
spectra are four peaks at almost 884 eV, 886 eV, 902 eV and 904 eV. Notably,
the different features of the spectrum slightly change with temperature.

In figure 3.11 singular values from the singular value decomposition are
plotted. The predominance of one singular value is evident, suggesting
that the PCA might not work. However, a similar condition was found for
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3.2 Soft X-ray absorption spectroscopy on Ce 122 systems

Compound CeNi2Si2 CeNi2Ge2

Structure

a [Å] 4.0325 4.1500

b [Å] 4.0325 4.1500

c [Å] 9.5663 9.8540

Compound CeRu2Si2 CeRu2Ge2

Structure

a [Å] 4.1850 4.2684

b [Å] 4.1850 4.2684

c [Å] 9.7940 10.0471

Table 3.3: Crystalline structure of four different ternary intermetallic com-
pounds based on Ce. lattice parameters taken from [41, 42, 43, 44] for
CeNi2Si2, CeNi2Ge2, CeRu2Si2 and CeRu2Ge2 respectively
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Figure 3.10: Temperature evolution of M4,5 Soft XAS of CeNi2Si2. The contribution of
Ce+4 are four peaks around 884 eV, 886 eV 902 eV and 904 eV; all the other peaks coming
from the XAS of Ce+3.
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Figure 3.11: Singular value decomposition. Two is the minimum number of PCs that is
possible to select. The second choice of the number of PCs is four since the 3rd and 4th

components have singular values close to the one related to the 2nd
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3.2 Soft X-ray absorption spectroscopy on Ce 122 systems

YbRh2Si2 case, and it still led to good results; therefore, it is worth it giving
a try. Since PCs components from the 2nd to the 4th have similar singular
values, two PCAs will be carried with two and four PCs, respectively. As for
the previous case all the three methods for the initial guess selection were
employed. Let’s start from the pure variable selection method. In figures
3.12 and 3.13 the PCA analysis with two and four PCs are reported.
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Figure 3.12: PCA on CeNi2Si2 with two PCs when pure variable selection is used as
method to generate a suitable initial guess.
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Figure 3.13: PCA on CeNi2Si2 with four PCs when pure variable selection is used as
method to generate a suitable initial guess.
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Notably, the situation is far more chaotic with respect to the YbRh2Si2
case. There is no clear difference between PCs in both studies reported in
figures 3.12 and 3.13: different components do not describe different peaks or
groups of peaks. The same regarding the temperature evolution of weights:
no clear dependence emerges.
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Figure 3.14: Model fit of the MCR-ALS analysis on CeNi2Si2 with two PCs when the pure
variable selection method is used for the initial guess selection. R2 factor is 99.996% and
the maximum of the residuals is of the order of 10−6.
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Figure 3.15: Model fit of the MCR-ALS analysis on CeNi2Si2 with four PCs when the pure
variable selection method is used for the initial guess selection. R2 factor is 99.9989% and
the maximum of the residuals is of the order of 10−6.

In figures 3.14 and 3.15 the model fit with two and four PCs are reported.
Despite having a really good fit, the PCs have no physical significance. All
in all this method has resulted in being inconclusive.

Let’s focus the second selection of initial guess: as for the YbRh2Si2 case,
the mean of all spectra, and the difference between the measurements at 5
and 300 K are chosen as initial guesses.
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Figure 3.16: PCA on CeNi2Si2 with two PCs when the mean of spectra and the difference
between the spectra at 5 K and 300 K are used as the initial guesses.

Compared to the previous method, now the evolution of the weights seems
more clear. However, the shape of the two PCs resembles the entire shape
of spectra; again, the PCA is not able to separate different features of the
spectra without any a priori knowledge.
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Figure 3.17: Model fit of the MCR-ALS analysis on CeNi2Si2 with two PCs when the
mean of spectra and the difference between the spectra at 5 K and 300 K are used as the
initial guesses. R2 factor is 99.9964% and the maximum of the residuals is of the order of
10−6.

By looking at figure 3.17, the model fit is again good, with a R2 factor of
99.9964% and residuals of the order of 10−6.

Finally let’s look at the EFA as selection method for the initial guess.
The resulting PCA with two and four components is shown in figures 3.18
and 3.19. Again the situation has not changed: there is no physical meaning
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behind the PCs.
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Figure 3.18: PCA on CeNi2Si2 with two PCs when EFA is employed as method to generate
a suitable initial guess.
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Figure 3.19: PCA on CeNi2Si2 with four PCs when EFA is employed as method to generate
a suitable initial guess.
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Figure 3.20: Model fit of the MCR-ALS analysis on CeNi2Si2 with two PCs in which the
EFA was used to select the initial guess. R2 factor is 99.996% and the maximum of the
residuals is of the order of 10−6.
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Figure 3.21: Model fit of the MCR-ALS analysis on CeNi2Si2 with four PCs in which the
EFA was used to select the initial guess. R2 factor is 99.9989% and the maximum of the
residuals is of the order of 10−6.

The model fits reported in figures 3.203.21 show again good results: the
R2 factor is 99.996% for the analysis with two PCs, while the one with four
PCs has a R2 factor of 99.9989%. Residuals are both of the order of 10−6.
In the end, all three methods have lead to similar results with no physical
meaning but good fits.
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2 PCs Pure 4 PCs Pure 2 PCs Mean&Diff 2 PCs EFA 4 PCs EFA

R2 99.996% 99.9989% 99.9964% 99.996% 99.9989%

Residuals 10−5 10−6 10−6 10−6 10−6

Table 3.4: R2 factors and max order of magnitude of residuals of MCR-ALS
analysis on CeNi2Si2

The second compound analyzed is CeRu2Ge2, which crystallizes in the
same ThCr2Si2 structure as CeNi2Si2.

In figure 3.22 Soft XAS spectra of CeRu2Ge2 are plotted. As for the
CeNi2Si2, intensities of different peak slightly change with temperature.
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Figure 3.22: Temperature evolution of M4,5 Soft XAS of CeRu2Ge2. The contribution of
Ce+4 are four peaks around 884 eV, 886 eV, 902 eV and 904 eV; all the other peaks coming
from the XAS of Ce+3.

Being the spectra similar between the two Ce compounds presented, al-
most equal singular values were obtained as one can see in figure 3.23. How-
ever, in this case only the 3rd singular value is close to the 2nd; therefore a
maximum of three PCs is considered.
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Figure 3.23: Singular value decomposition. Two is the minimum number of PCs that is
possible to select. The second choice of the number of PCs is three since only the 3rd

component has singular value close to the one related to the 2nd

Since all the MCSALS methods employed have reported similar results,
they are all commented at the end. In order there will be: PCA when
pure variable selection method is employed in figures 3.24 and 3.25, and the
corresponding models fits in figures 3.26 and 3.27; subsequently in figures 3.28
and 3.29, PCA and model fit when the mean and difference were chosen as
initial guesses is reported; finally in figures 3.30 and 3.31 PCAs in which the
EFA method is used are shown, and in figures 3.32 and 3.33 the corresponding
model fits are plotted.
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Figure 3.24: PCA on CeRu2Ge2 with two PCs when pure variable selection is used as
method to generate a suitable initial guess.
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Figure 3.25: PCA on CeRu2Ge2 with three PCs when pure variable selection is used as
method to generate a suitable initial guess.
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Figure 3.26: Model fit of the MCR-ALS analysis on CeRu2Ge2 with two PCs when pure
variable selection is used as method to generate a suitable initial guess. R2 factor is
99.9944% and the maximum of the residuals is of the order of 10−5.
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Figure 3.27: Model fit of the MCR-ALS analysis on CeRu2Ge2 with two PCs when pure
variable selection is used as method to generate a suitable initial guess. R2 factor is
99.9978% and the maximum of the residuals is of the order of 10−5.
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Figure 3.28: PCA on CeRu2Ge2 with two PCs when the mean of spectra and the difference
between measurements at 5 and 300 K were used as suitable initial guesses.
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Figure 3.29: Model fit of the MCR-ALS analysis on CeRu2Ge2 with two PCs when the
mean of spectra and the difference between measurements at 5 and 300 K were used as
suitable initial guesses. The R2 factor is 99.9948% and the maximum of the residuals is
of the order of 10−6.

55



CHAPTER 3 - Temperature dependent valence in Yb and Ce Kondo lattice

880 890 900 910
Energy [eV]

0.00

0.05

0.10

0.15

0.20

0.25

Principal components
1st comp.
2nd comp.

0 50 100 150 200 250 300
Temperature [K]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 Coefficients temperature dependence
1st comp.
2nd comp.

Figure 3.30: PCA on CeRu2Ge2 with two PCs when EFA is used as method to generate
a suitable initial guess.
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Figure 3.31: PCA on CeRu2Ge2 with two PCs when EFA is used as method to generate
a suitable initial guess.
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Figure 3.32: Model fit of the MCR-ALS analysis on CeRu2Ge2 with two PCs with evolving
factor analysis for the initial guess selection. R2 factor is 99.9944% and the maximum of
the residuals is of the order of 10−4.
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Figure 3.33: Model fit of the MCR-ALS analysis on CeRu2Ge2 with three PCs with
evolving factor analysis for the initial guess selection. R2 factor is 99.9978% and the
maximum of the residuals is of the order of 10−5.
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2 PCs Pure 3 PCs Pure 2 PCs Mean&Diff 2 PCs EFA 3 PCs EFA

R2 99.9944% 99.9978% 99.9948% 99.9944% 99.9978%

Residuals 10−5 10−6 10−6 10−5 10−6

Table 3.5: R2 factors and max order of magnitude of residuals of MCR-ALS
analysis on CeRu2Ge2

By just looking at all the principal component analysis on CeRu2Ge2,
the same conclusion drawn from the CeNi2Si2 study arises: each component
resembles the general shape of the spectrum and none of them is able to
isolate the Ce+4 contribution. Again, the MCR-ALS method has failed.

All in all, both CeNi2Si2 and CeRu2Ge2 MCR-ALS analysis were totally
inconclusive. Despite having really good model fits and low residuals as
reported in tables 3.4, 3.5, all the PCs calculated from different initial guesses
resemble the shape of the entire XAS spectrum: the Ce+4 contributions have
not been isolated into a single principal component.

The reasons why this method did not work could be several. How-
ever, comparing the mere shape of YbRh2Si2 measurements with the ones of
CeNi2Si2 and CeRu2Ge2, some hypotheses could be drawn.

First of all, the general shape of YbRh2Si2 spectra is much simpler than
the one of Ce compounds: in the former there are only two peaks, while in
the latter there are two groups of four/five peaks each.

Secondly, the temperature evolution of the intensity of different peaks.
In the YbRh2Si2, the intensities of the Yb+2 and Yb+3 peaks exhibit an
opposite variation and there is a clear dominance of one peak over the other
at the extreme of the temperature range. Instead, in both Ce compounds,
the 4f 0 peak never becomes dominant: its max intensity is almost on order
of magnitude lower than the highest peak intensity. Moreover, other peaks
not related to the 4f 0 contribution show a similar temperature dependence
of the 4f 0 peak, making it almost impossible to separate their contributions.
In the end, the MCR-ALS analysis could lead to good results only for specific
types of measurements. Probably, by applying more constraints regarding the
features of the principal component, good results can be obtained. However,
in doing so, implicit a priori information about the phenomenon is being
provided, making the MCR-ALS lose its power of generating good analysis
without any a priori knowledge. Since the purpose of this thesis was only
to test the PCA as a method for spectra analysis, no further investigations
were carried on regarding changes in the algorithm that might provide better
results.

Having found poor results with the MCR-ALS on two Ce compounds,
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the analysis regarding the temperature dependence of intermediate valence
in those compounds is carried on with a more classical analysis.

The SNIP algorithm, despite not being the most correct approach to
peak extraction, works well and does not implies much data manipulation.
The algorithm extracts the background of the peak in an iterative way. Let
v(p) be the spectra intensity over energy. At each iteration the algorithm
calculates

vM+1(i) = min

{
vM(i),

vM(i−M) + vM(i+M)

2

}
(3.2)

The result is the peak background. In figure 3.34 an example of the SNIP
algorithm working is reported.
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Figure 3.34: Example of SNIP algorithm applied to CeNi2Si2 with at different number of
iterations.
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Once two of the four 4f 0 peaks are extracted from the M4 and M5 edges,
the evolution of the peak maximum over the temperature is plotted and
fitted with a 5th degree polynomial function. In figure 3.35 the temperature
evolution of the M4 edge 4f 0 peak is reported (zoomed version shown in
figure 3.36). The same results regarding the M5 edge are reported in the
same order as the M4 edge in figures 3.37 and 3.38.
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Figure 3.35: M4 edge 4f0 peaks temperature evolution from several ternary Ce compounds.
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Figure 3.36: Zoomed version of figure 3.35. Despite being small, CeRu2Si0.6Ge1.4 and
CeRu2Ge2 exhibits and increasing contribution of the 4f0 as the temperature arises.
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Figure 3.37: M5 edge 4f0 peaks temperature evolution from several ternary Ce compounds.

64



3.2 Soft X-ray absorption spectroscopy on Ce 122 systems

101 102

Temperature [K]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Pe
a
k 

in
te

n
si

ty
 [

a
b
s.

 u
.]

CeNi2Si0.2Ge1.8

CeNi2Ge2

CeRu2Si2

CeRu2Si1.7Ge0.3

CeRu2Si1.2Ge0.8

CeRu2Si0.6Ge1.4

CeRu2Ge2

Figure 3.38: Zoomed version of figure 3.37. Despite being small, CeRu2Si0.6Ge1.4 and
CeRu2Ge2 exhibits and increasing contribution of the 4f0 as the temperature arises.
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Looking at figures 3.35 and 3.37, a pattern clearly emerges. There is
a coherent transition from CeNi2Si2 to CeRu2Ge2. The overall intensity is
decreasing and the temperature behavior is changing: as the temperature
rises, in CeNi2Si2 the peak intensity decreases; while in CeRu2Ge2 the peak
intensity increases, despite the overall intensity being small. There is no
general theory predicting this kind of behavior. Possible factors include the
crystal electric field effect and the variation of the lattice constants of the
crystal structure. Indeed, notice how the compound with the smallest lattice
constant, CeNi2Si2, exhibits the highest intensity of the 4f 0, while the largest
compound, CeRu2Ge2, practically shows no hybridization (see table 3.3 for
lattice constants). Moreover, the transition seems to be continuous. This
behavior suggests that the variation of lattice constants actually affects the
hybridization strength.

In order to better see the general dependence of the 4f 0 contributions over
temperature, all the previous plots are normalized such that the minimum is
at 0 abs. u. and the maximum at 0.06. The resulting plots are reported in
figures 3.39 and 3.40.

Many factors are worth to be noticed. Firstly, the general behavior change
from being decreasing to increasing somehow in a continuous way, suggesting
the existence of a competition between two different contributions. Secondly,
all these compounds exhibit the same Kondo temperature and energy scale;
and lastly some compounds exhibit some sort of hysteresis loop when the
temperature is lowered and risen again. The increasing intensity of the 4f 0

peak, as the temperature rises, has no explanation in the model presented
in chapter 1. As said before, one possible explanation could be the effect of
the crystal electric field. Indeed, the first excited level assuming the CEF
splitting would be around 200-300K. Populating this excited level creates
an increase of the degeneracy, leading to higher Kondo temperature and
ultimately to higher occupation of the 4f 0 shell. Since strong hybridization
destroys the idea of having crystal field splitting, this kind of effect will be
only visible when the hybridization is weak. That is the case of CeRu2Ge2:
it shows practically no hybridization at low temperature, but around 200-300
K there is an increase in the 4f 0 occupancy.

Finally, the presence of the hysteresis loop can be caused by some mis-
placements during measurement due to dilatation and shrinkage of the sample
holder.
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Figure 3.39: Normalized M4 edge 4f0 peaks temperature evolution from several ternary
Ce compounds.

67



CHAPTER 3 - Temperature dependent valence in Yb and Ce Kondo lattice

101 102

Temperature [K]

CeRu2Ge2

CeRu2Si0.6Ge1.4

CeRu2Si1.2Ge0.8

CeRu2Si1.7Ge0.3

CeRu2Si2

101 102

Temperature [K]

H
e
ig

h
t-

n
o
rm

a
liz

e
d
 p

e
a
k 

in
te

n
si

ty
 [

a
b
s.

 u
.]

CeNi2Ge2

CeNi2Si0.2Ge1.8

CeNi2Si0.6Ge1.4

CeNi2Si1.2Ge0.8

CeNi2Si2

Figure 3.40: Normalized M5 edge 4f0 peaks temperature evolution from several ternary
Ce compounds.
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Chapter 4

Simulation on XAS and RIXS
spectra of strongly correlated
oxides from first principles

In this study, the L2,3 edges XAS and L3 edge RIXS spectra are taken into
account. The L2 and L3 edges respectively describe excitations from the
2p1/2 and 2p3/2 shells to the 3d shell. The different features of the L3 RIXS
spectra are characteristic excitations of the system in the final state. The final
states corresponding to a re-arrangement of the 3d electrons at constant 3d
population are usually indicated as dd excitations. In the following chapter,
the simulated spectra of NiO and MnO resulting from DFT calculation are
reported. In order to achieve that, the combination of two software, FPLOR©

[46] and Quanty [47, 8], has been exploited.
FPLOR©, developed at IFW Dresden (Institute for Theoretical Solid-State

Physics, Group Numerical Solid-State Physics and Simulation), allows the
user to calculate the electronic band structure of solids and use WFs to build
localized orbitals.

On the other hand, Quanty, developed by M. W. Haverkort, Y. Lu S.
Macke, R. Green, M. Brass and S. Heinze, works with a small cluster of
atoms and can be used to simulate spectra by defining the Hamiltonian and
transitions operator in the second quantization framework. To simulate the
XAS and RIXS spectra, the atomic multiplet framework introduced in chap-
ter 1 has been used. In order to simulate different types of spectroscopic
measurements, Quanty needs the following parameters regarding the com-
pounds in study:

• Coulomb repulsion between two electron in the d shell, Udd
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• Coulomb repulsion between one electron in the p shell and another in
the d shell, Upd

• Slater integrals, F k and Gk

• Crystal Electric Field parameters, Amk

• Spin-orbit interaction, ζ2p and ζ3d

• Charge transfer energy, ∆

As aforementioned in chapter 1, WF act as a bridge connecting the infinite
crystal framework, in which FPLOR© operates, with the localized cluster used
in Quanty. Indeed, both for MnO and NiO, the Slater integrals F k, Gk, and
the CEF parameters Amk are obtained from DFT calculations. The remaining
parameters necessary for the simulation are taken from literature.

Since the 3d and 2p shells of the transition metal and oxygen, respectively,
are the only orbitals needed to simulated the L2,3 XAS and RIXS, no other
shells are considered in order to reduce the total computational time.

4.1 NiO
In figure 4.1 the unit cell of NiO and the cluster used in Quanty are reported.

Figure 4.1: i) Unit cell of NiO. a = b = c = 4.178 Å (data taken from [48]). ii) Cluster of
atoms extracted from NiO crystalline structure used in Quanty.

In the simulation the following parameters have been used: Udd=7.3 eV,
Upd=8.5 eV, ∆ = 4.7 eV, ζ2p=11.51 eV, ζ3d=0.08 eV [8]

70



4.1 NiO

4.1.1 Band structure

In figure 4.2, the electronic band structure of NiO is plotted.

Figure 4.2: Band structure of NiO in the [−10, 10] eV energy range. The band recon-
structed from the WFs (red) are perfectly fitting the bands calculated from DFT (blue).
Since the WFs are defined only for the 2p and 3d shells, they do not extend over the whole
energy windows selected.

In the WFs definition, only the 3d shell of Ni and 2p shell of O have
been taken into account, since those are the only orbitals needed to simulate
the spectra as aforementioned. Therefore the band structure reconstructed
from the WFs, is not complete in the [−10, 10] eV energy range. Notably,
the match between the two bands is practically perfect, confirming a good
definition of the WFs.
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4.1.2 XAS spectra

In figure 4.3, the X-ray absorption spectroscopy measurements [49] and sim-
ulation at the L2,3 edges of NiO are reported. Each spectra is normalized to
its maximum intensity.
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Figure 4.3: X-ray Absorsption Spectroscopy measurements and simulation on NiO at L2,3

edges. Experimantel data taken from [49]. The intensity are normalized to the maximum.
Notably, the match is not perfect, but the simulation is able to reconstruct the different
feature of the spectra. Background in not simulated.

Looking at the plot, the simulation succeeded in reproducing all the peaks
at the correct energy, despite some of them having a lower intensity with
respect to the experiment. Therefore, DFT calculation seems to be correct.
No background has been simulated since the purpose of the simulation is to
correctly reconstruct the different features of spectra.
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4.1 NiO

4.1.3 RIXS spectra

In figure 4.4, experimental [50] and simulated RIXS spectra of NiO with
incident photon energy at 853 eV are reported. A Lorentzian broadening of
0.2 eV has been applied to the simulated spectra.
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Figure 4.4: Experimental (blue) and simulated (orange) RIXS of MnO with incident pho-
ton energy at 853 eV. Experimental data extracted from [50]. A Lorentzian broadening of
0.2 eV has been applied to the simulated spectra.

Looking at experimental RIXS, it is possible to distinguish three different
major peaks; however a small shoulder is present on the left side of the highest
peak, suggesting the presence of a fourth peak. Notably, four out of five peaks
present in the simulated spectra have a match with the experimental one.
Starting from right to left, the 1st, 2nd and 4th simulated peaks are slightly at
higher energies than the experimental RIXS; whereas the 3rd peak is shifted
at lower energies. The 5th has no correspondence with the measurements. In
the end, most of the features have been correctly modeled.
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4.2 MnO
In figure 4.5 the unit cell of MnO and the cluster used in Quanty are reported.

Figure 4.5: i) Unit cell of MnO. a = b = c = 4.446 Å (data taken from [48]). ii) Cluster
of atoms extracted from MnO crystalline structure used in Quanty.

In the simulation the following parameters have been used: Udd=5.5 eV,
Upd=7.2 eV, ∆ = 8.0 eV, ζ2p=6.85 eV, ζ3d=0.04 eV [8]

4.2.1 Band structure

In figure 4.6, the electronic band structure of the MnO is plotted.

Figure 4.6: Band structure of MnO in the [−10, 10] eV energy range. The band recon-
structed from the WFs (red) are perfectly fitting the bands calculated from DFT (blue).
Since the WFs are defined only for the 2p and 3d shells, they do not extend over the whole
energy windows selected.
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4.2 MnO

As for the NiO, only the 3d and 2p shells of Mn and O respectively are
used. Looking at the figure, the band structure from DFT calculation and
the one resulting from WF display a perfect match. Again, this is a clue
that the WF are well-localized and correctly resembling the atomic orbitals
around the ions.

4.2.2 XAS spectra

In figure 4.7, the measured and simulated XAS of MnO at L2,3 edge are
reported.
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Figure 4.7: X-ray Absorsption Spectroscopy measurements and simulation on MnO at L2,3

edges. The intensity are normalized to the maximum. Notably, the match is not perfect,
but the simulation is able to reconstruct the different feature of the spectra. Background
in not simulated.

The spectra are both normalized to its maximum intensity. Notably, the
simulated spectra is well describing all the different peaks in terms of energy
positioning. As for NiO, no background has been simulated. Again, by just
looking at the XAS, DFT calculations seem to be correct.

4.2.3 RIXS spectra

In figure 4.8, the simulated and measured RIXS spectra at 640 eV are re-
ported. A Lorentzian broadening of 0.2 eV has been applied to the simulated
spectra.
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Figure 4.8: Experimental (blue) and simulated (orange) RIXS of MnO with incident pho-
ton evergy at 640 eV. A Lorentzian broadening of 0.2 eV has been applied to the simulated
spectra.

Clearly, the two spectra are completely different: despite having a good
fit in the XAS case, the simulation is not able to correctly describe all the
features of the RIXS measurement.

In conclusion, the usage of DFT to calculate key parameters used in
spectra simulation has led to different results. XAS simulated are good when
compared with measurements; however, the RIXS simulations are not as good
as the XAS. Since a combination of two software is used in order to calculated
parameters and simulated spectra, the problem could dwell in both of them.
In order to understand the true nature of the problem, a more deep and
consistent analysis must be pursued. However, due to the limited amount of
time at disposal and since the aim of the thesis was to test the goodness of
this method to simulated spectra, no further investigations have been carried
on.
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Chapter 5

Summary and outlooks

In this thesis work, modern tools for data analysis and simulation for X-ray
spectroscopic data have been presented and tested. In chapter 1, theoretical
fundamentals of multivariate curve resolution in conjunction with alternat-
ing last squared algorithm (MCR-ALS), density functional theory (DFT)
and heavy fermion physics are provided to the reader. A brief description
of the X-Ray Absorption Spectroscopy (XAS) and Resonant Inelastic X-ray
Scattering (RIXS), from both theoretical and experimental points of view,
are presented in chapter 2. Chapters 3 and 4 contain the results of the
data analysis and simulation, respectively. Specifically, in chapter 3 a princi-
pal component analysis performed on YbRh2Si2, CeNi2Si2 and CeRu2Ge2 to
investigate the intermediate valence is reported; whereas chapter 4 reports
XAS and RIXS spectra simulations of NiO and MnO.

The effectiveness of the MCR-ALS algorithm, used to isolate different
features inside spectra, strongly depends on the shape and evolution of mea-
surements and on the initial guess selection. Indeed, simple-shaped spectra
with a clear evolution of peak intensities have led to astonishingly good re-
sults, both in terms of peak reconstruction and weight evolution. This is the
case of YbRh2Si2. However, this method failed to isolated relevant features
in complex spectra with smaller intensity evolution. Indeed, for CeNi2Si2
and CeRu2Ge2, none of the proposed methods were able to identify and sep-
arate the features of the spectra. All the components are resembling the
whole shape of the spectra, with almost no difference between each other,
despite being the total fit with the experiment perfect. One possible way to
solve this problem could be to apply more constraints about the shape of the
components. However, in doing so, the ability of these types of algorithms
to extract data without any a priori knowledge is greatly affected. In the
end, the MCR-ALS algorithm could lead to good results whenever the shape
of the spectra is not too complicated, but the resulting analysis in the case

77



Summary and outlooks

of complex spectra could be inconclusive. For the sake of completeness, the
intermediate valence in ternary Ce compounds has been analyzed by man-
ual peak extraction. The results are quite surprising. From theory, the Ce
valence should become closer to unity as the temperature rises. However,
this is not the case for some of the studied ternary compounds based on Ce,
which show an opposite behavior, reflecting the incompleteness of the model
and the need for further studies on heavy fermion compounds.

Regarding spectra simulation, the usage of Wannier functions as a bridge
to connect DFT calculations in infinite crystals with a cluster-based simula-
tion software works well. Indeed, X-ray Absorption Spectroscopy simulation
is quite similar to measurements: despite having some differences in the in-
tensity of the peaks, all the characteristic features of the spectra are correctly
positioned in terms of energy. However, Resonant Inelastic X-ray Scattering
simulations are not as good as XAS spectra. Looking at NiO, four out of five
peaks are almost correct in terms of energy positioning but the simulated
spectrum shows an extra peak not present in the measurements. Regarding
MnO, there is no match between the simulated and the experimental spec-
tra, both the number of peaks and their energy positioning are wrong. In the
end, the combined approach presented to simulate spectra from first princi-
ples works properly for XAS, but not for RIXS. In order to understand the
reasons behind such discrepancies between the aforementioned simulations,
a much deeper analysis both on the parameters and the software must be
pursued.
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