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Abstract

As consequence of global warming, extreme events are expected to increase
in magnitude and frequency at global and local scales. In the water resources
field, on top of increasingly uncertain hydrological regimes, more recurrent and
intense cases of flood and drought are projected, which causes reservoirs to lose
efficiency and even to fail at their purpose of supplying water and preventing
floods. Forecast has been proven to be a useful tool in improving water man-
agement, but little is known about its capability in future time periods under
climate change. Therefore, it is the aim of this thesis to investigate the fore-
cast value in the future and its contributions in mitigating the projected climate
change impacts. For that, a study case at the Folsom reservoir is used, where
97 future climate scenarios are analyzed and selected according to their forecast
potentiality. The selected scenarios are then simulated to establish the absolute
and relative Expected Value of Perfect Information (EVPI). Given the nonexis-
tence of data for future forecasts, a novel statistical framework is used to gen-
erate synthetic forecasts for future time periods whilst preserving the accuracy
of the existing model currently used. When combined the selected future pro-
jections with the synthetic forecast framework, the future forecast ensembles
for different climate change scenarios are created. In order to simulate these
scenarios, a policy search framework is adopted, which applies an innovative
method by controlling operation decisions with binary trees, defined by states
and actions. Results indicate the use of forecast can improve water supply and
prevent future floods from happening, in spite of an overall deterioration of
the water operations in the future. The absolute value of forecast is projected
to increase for all selected scenarios, while the relative forecast value has its
evolution conditioned by the type of future scenario. In general, the relative
value is expected to increase in wet scenarios but to decrease in dry scenarios.
The thesis also found that forecast-based policies optimized over the past can
improve the water supply levels over future time periods at the cost of increas-
ing the flood risk. Moreover, given the concern about future uncertainty due
to climate change, results show that forecasts allow for a wider range of future
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scenarios to be contemplated by a single policy, granting more flexibility to the
operation.
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Riassunto

Come conseguenza del riscaldamento globale, si prevede che gli eventi estremi
aumentino in ampiezza e frequenza su scala globale e locale. Nel campo delle
risorse idriche, oltre a regimi idrologici sempre più incerti, vengono proiettati
casi più ricorrenti e intensi di alluvione e siccità, che fanno perdere alle infras-
trutture le infrastrutture responsabili di attività vitali, come fornitura d’acqua
e la prevenzione delle inondazioni, fallire al loro scopo. Le previsioni hanno
dimostrato di essere uno strumento utile per migliorare la gestione e il fun-
zionamento delle risorse idriche, ma si sa poco sulla sua capacità in periodi di
tempo futuri sotto il cambiamento climatico. Pertanto, lo scopo di questa tesi
è studiare i contributi previsionali per mitigare gli impatti previsti sul cambia-
mento climatico nella gestione delle risorse idriche e valutarne il valore rispetto
alle condizioni attuali. Per questo, vengono analizzate 97 proiezioni di afflusso
per il serbatoio Folsom, basato su più modelli di circolazione generale (GCM)
e percorso di concentrazione rappresentativo (RCP), quindi selezionate in base
alla loro potenzialità di previsione. Gli scenari selezionati vengono simulati con
una programmazione dinamica per stabilire politiche operative di base e per-
fette e vengono calcolati i valori potenziali assoluti e relativi. Data la inesistenza
di dati per le previsioni future, viene utilizzato un quadro statistico per gener-
are previsioni sintetiche per periodi di tempo futuri, preservando l’accuratezza
del modello esistente a breve termine attualmente utilizzato nel serbatoio. Se
combinate le proiezioni future selezionate con il quadro di previsione sintetico,
vengono creati gli insiemi di previsioni future per diversi scenari di cambia-
mento climatico. Al fine di ottimizzare e simulare questi scenari, viene adot-
tato un framework di ricerca delle politiche, che applica un metodo innovativo
controllando le decisioni operative definiti da stati e azioni. I risultati indicano
un generale deterioramento delle operazioni idriche, ma l’uso delle previsioni
può migliorare l’approvvigionamento idrico e impedire che si verifichino inon-
dazioni future per una serie di scenari futuri diversi rispetto a un’operazione
di base. Si prevede che il valore assoluto della previsione aumenti con il tempo
per tutti gli scenari selezionati in conseguenza dei maggiori costi delle oper-
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azioni in futuro, mentre il valore relativo ha la sua evoluzione condizionata
dal tipo di scenario futuro. In generale, il valore relativo dovrebbe aumentare
negli scenari bagnati ma diminuire negli scenari asciutti. La tesi ha anche scop-
erto che una vecchia politica operativa supportata dalle previsioni può miglio-
rare le prestazioni fino a un livello simile di una futura politica ottimizzata
senza previsioni, aumentandone la durata. Inoltre, data la preoccupazione per
l’incertezza futura dovuta ai cambiamenti climatici, i risultati mostrano che le
previsioni consentono di contemplare una gamma più ampia di scenari futuri
da un’unica politica, garantendo una maggiore flessibilità all’operazione.
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1
Introduction

1.1 The context

The planet earth has been experiencing a constant increase in its temperature
along the past decades, both on land and on the ocean surface. It is estimated
that an average warming of 0.85 ◦C has taken place since 1880 to present-day
(IPCC, 2018). The increase in temperature has had reflections on acidification
of the oceans, loss of ice sheets on both poles, rise of mean sea level, among
other consequences (IPCC, 2014).

There are no records of any similar event to the present one and there is
a plethora of evidences that relates global warming to an abrupt increase of
greenhouse gas (GHG) concentration levels, which in turn have their roots at
human-related activities, especially from 1750 onwards, with half of the cu-
mulative anthropogenic CO2 emissions taking place in the last 40 years (IPCC,
2014). Emissions come mainly from electricity and heat production, industry,
transport and agriculture, forestry and other land use. In addition, two factors
stand out as the main drivers of CO2 emissions: human growth and economic
growth, the latter presenting an ever-increasing contribution (IPCC, 2014).

Changes observed in temperature and climate carry consequences into the
environment. Different species have altered their natural behaviour as a reac-
tion to climate change, while hydrological systems are being affected due to
snow melting, oceans are suffering from acidification, and certain crops have
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1. Introduction

had their yields negatively disturbed (IPCC, 2014). Moreover, it is expected that
water scarcity and stress cases will grow in many regions around the world.
The tendency is to observe increased occurrences of floods in certain regions,
as a result of more frequent extreme precipitation events and to observe harsher
droughts for longer periods (multi-decade) in other regions (IPCC, 2014; Dama-
nia et al., 2017).

On top of that, the global population is expected to keep growing during
this century. In spite of the variability of growth projections, it is predicted that
a net value of one billion people will be added to the world by 2030, which
makes for a total of 8.6 billion people. Furthermore, by the end of the century
the total population should be around 11.2 billion people, increasing by 3.6
billion with respect to the current population (United Nations, 2017). While de-
veloped countries are growing at slower rates, especially in Europe, the main
population growth will take place in countries in Africa and South Asia. At
the same time, a different process is taking place, the rural flight. Migrations
from rural areas to urban areas all over the world will add 2.4 billion people to
cities by 2050 (FAO, 2017). This increase in human population implies naturally
a greater demand for food and the expansion of cities translates into a bigger
demand for sanitation and energy, all of which will accentuate even further the
stress on water resources, given their role in agriculture, sanitation and power
generation (FAO, 2017). Thus, the demand of energy keeps rising, concurrently
with a need for decarbonising its sources, which contributes to the expansion
of clean and renewable sources. Hydropower is a key supply in the energy
production, being the major source of renewable energy, corresponding to 58%
of the total global renewable energy generation (IRENA, 2018).

In this context, the importance of water-control structures, such as water
reservoirs is growing (Zarfl et al., 2014; Culley et al., 2016; Ehsani et al., 2017).
However, simply expanding the infrastructure capacity of dams might prove
costly and not-necessarily effective, since the infrastructure investment is ir-
reversible and might not meet the future water supply needs. This is due
to the amplified uncertainty of future projections, which prevents an accurate
comprehension of the climate conditions in the long-term future (Fletcher et al.,
2019). Thus, as an alternative to the construction of water reservoirs, it is pos-
sible to act on the operation of the reservoirs, representing a low-cost and flexi-
ble solution that can improve the resilience of the system against the increased
variability of future conditions (Castelletti et al., 2008; Ramos et al., 2013; Giuliani
et al., 2016).
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1.2. Objectives of the thesis

Reservoir operations are traditionally managed based on historical records,
such as precipitation, temperature, day of the year and daily demand. How-
ever, because of climate change, the patterns for hydrometeorological states
change in multiple and unprecedented forms. Hence, the traditional approach
loses reliability and performance, since it cannot effectively control the releases
of water in a scenario where the hydrological conditions behave differently
from what was historically defined and is more prone to system failures (Geor-
gakakos et al., 2012; Turner et al., 2017). Because of that, an adaptive management
strategy is needed. This approach consists in constantly receiving new data, ei-
ther observations from a physical state or future predictions based on models,
related to the hydrological conditions at the moment of the operation and using
it for informing operational decisions. Studies (Georgakakos et al., 2012; Culley
et al., 2016; Giuliani et al., 2016) showed that different concepts of the adap-
tive method did improve the operation with respect to the traditional method.
Among them, forecast systems excels as one of the most studied tools in wa-
ter operations. The forecast value has been verified in different occasions and
circumstances, be it for flood prevention using short-term models (Adamowski,
2008; Cloke and Pappenberger, 2009), water supply supported by long-term fore-
cast information (Hamlet and Lettenmaier, 1999; Mahanama et al., 2011; Yuan et al.,
2015) or for different types of reservoirs (Turner et al., 2017; Anghileri et al., 2016).
Its flexibility allows for large ensembles of physical forecasts to be coupled for
more accuracy (Pappenberger et al., 2008) or to rely on statistics to generate the
predictions (Toth et al., 2000; Block and Rajagopalan, 2007). Building on these
mentioned studies, the main interest of this work concerns moving the assess-
ment of forecast from the present to the future time period, in which the uncer-
tainty is intensified and extreme events are more likely to occur. Particularly, to
understand if a forecast system is able to keep the properties and contributions
seen in the current time and, furthermore, if it is capable of mitigating the neg-
ative impacts of climate change by reducing the occurrences of system failures
and extending the lifespan of the structure.

1.2 Objectives of the thesis

As previously explained, even though there are plenty of studies supporting
the benefits of using forecasts in water-control operations (Georgakakos et al.,
2012; Denaro et al., 2017; Turner et al., 2017; Nayak et al., 2018; Herman and Giuliani,
2018), they usually focus on the use of forecast for past or current scenarios. In
such cases, in spite of the benefits already being significant to the improvement
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of regular operations, little can be learned or applied to the incoming future,
where projections heavily differ from historical records and the states of the
climate variables are harder to predict.

This study has the primary goal of exploring the forecast value in future con-
ditions affected by climate change and to assess in which ways it differs from
the current contributions estimated over historical conditions. Specifically, the
research questions that guide this work are:

1) How water systems operations and their performance will be impacted
by climate change?

2) Can forecast contribute to design adaptive operating policies?

3) Is the forecast value expected to increase under future and more variable
hydroclimatic regimes?

4) How sensitive is the forecast value across an ensemble of uncertain sce-
narios?

5) Can an adaptive policy over a historical conditional provide satisfactory
results when evaluated in the future? Is the addition of a forecast enough to
extend its usefulness?

The case study of the Folsom reservoir, near the Sacramento city in Cali-
fornia (United States of America) is used to test the proposed methodology.
California is a state that has historically faced water-related problems, such as
extreme shortages of water that can exceed the duration of years and severe
floods affecting its many cities and inhabitants. Folsom reservoir is an artificial
reservoir constructed in 1955 and located on the American River. Nowadays,
the reservoir serves multiple objectives, but its main tasks are still flood control
and water supply operations.

In order to achieve the ultimate goal of evaluating the benefits of forecast
in a future scenario affected by climate change, some intermediate and specific
objectives need to be set as well, which are:

1) Analyzing the projected climate and understanding the main trends in
terms of variability and predictability, frequency and duration of extreme events.
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2) Quantifying the maximum space of improvement of the historical op-
erations with respect to an ideal solution designed assuming a perfect (deter-
ministic) knowledge of the future, also known as Expected Value of Perfect
Information (EVPI; Giuliani et al. (2015)).

3) Generation of a synthetic forecast ensemble for projected reservoir inflow
based on the work of Nayak et al. (2018). The synthetic generation allows for
a reliable simulation of the existing forecast models over projected inflow sce-
narios.

4) Quantifying the actual forecast value as the performance gain generated
by informing the Folsom reservoir operations with the synthetic forecast over
the historical and future scenarios.

1.3 Outline of the thesis

Chapter 2 describes the state-of-the-art on the topic of metereological and hy-
drological forecasting in water systems. It starts with the definition of value
of exogeneous information for water systems operations. It then describes the
types of existing forecasts, discussing skill, lead time, uncertainty, and the rela-
tion between forecast skill and forecast value. A brief explanation of reforecast,
hindcast and synthetic forecast is also provided.

Chapter 3 provides a comprehensive description of the Folsom reservoir
case study. Firstly, the morphologic and hydro-climatic features of the Califor-
nia river basin are presented. Then, a summary of the stakeholders and the
main interests involved in the system is provided. Finally, the data utilized in
the study are described.

Chapter 4 illustrates the proposed methodology, which is composed of the
following three main blocks: 1) Scenarios selection based on a statistical anal-
ysis of the climate projections coupled with the quantification of EVPI; 2) Syn-
thetic generation of inflow forecast for the selected scenarios; 3) Assessment of
historical and future forecast value.

Chapter 5 reports the numerical results obtained in this study. According to
the proposed 3-block framework, it first discusses the scenairo selection based
on the projected climate statistics and the values of EVPI; the synthetic forecast
generated for the selected scenarios are then reported; finally, it analyzes the
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historical and projected forecast value.

Chapter 6 sums up the conclusions and suggests some starting points for
further research about the topic.
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State-of-the-art

2.1 Value of observation

Today there are many technologies, tools and methods that improve the man-
agement and operation of water resource systems. In a world with a surfeit of
data available, one of the most common practices is to harness real-time data
and observations, which can be achieved by using a variety of equipment, such
as radars, sensors, satellites or even touristic webcams (Giuliani et al., 2016),
in order to gather additional useful information that allows for an enhanced
operation. For water resources operations, relevant observable information
can be for instance precipitation, upstream flows or snow pack depth (Denaro
et al., 2017). Similarly, Giuliani et al. (2016) developed a low-cost, real-time and
observation-based method for extracting snow-related information from pic-
tures on the web taken from users and webcams. After an automatic process
where the pictures are localized, processed and analysed, a virtual snow index
is computed to represent the snow-covered area. This index is embedded into
the system operations and it produced an improvement of 10% in relation to
the baseline operations (Giuliani et al., 2016).

Even though direct observations cannot foresee future trends of inflow with
great accuracy, the potential for directly using hydro-meteorological data is be-
coming relevant as indicated by Denaro et al. (2017). Their study showed that by
knowing solely the accumulated snow state on the mountains during winter,
it was possible to anticipate the amount of water to be melted during spring,
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ultimately permitting a larger amount of water to be stored for providing re-
liable irrigation over the summer. The higher water levels of the lake led to
an improvement of the water supply index of 10% in relation to the baseline
scenario, in spite of an increased risk of flooding. In another study concerning
flood events in the north of Italy, Castelletti et al. (2008), added to a traditionally-
designed policy real-time information, e.g., precipitation and temperature mea-
sures. While the results presented modest improvements with respect to the
regular policy performance during the flood season, this solution largely im-
proves the system performance during the rest of the year.

However, even though better informing the operations of water systems
has its benefits, it also carries some drawbacks, such as observational error and
estimation biases, possibly negatively affecting the system performance. To
support the selection of the most useful information for improving the system
operations, Giuliani et al. (2015) developed the information selection and as-
sessment (ISA) framework. Figure 2.1 illustrates the process and it works as
following: first the expected value of perfect information is determined as the
difference between an ideal, perfect solution designed under perfect knowl-
edge of the future and a baseline solution relying on a basic set of information.
Then, multiple candidate information are processed by an input variable selec-
tion algorithm to automatically identify the ones that are expected to be more
valuable for informing operational decisions. Lastly, the selected variables are
used in designing informed solutions. The operational value of this informa-
tion is quantified as the the performance gain of the informed solutions with
respect to the baseline.
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2.1. Value of observation

Figure 2.1: Description of the steps of the Information Selection and Assessment (ISA) frame-
work. Figure by Giuliani et al. (2015).
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Whilst the original intended use of the ISA framework was to identify and
select the most valuable information from a set of observational data, it can also
be exploited for forecasts identification and selection. The process and steps
would remain the same, but the candidates in the second step of the frame-
work would instead be different forecast models, different forecast variables,
or different forecast lead times.

Figure 2.2: Contribution of additional information to the overall performance of the operation.
Figure by (Giuliani, Pianosi and Castelletti, 2015).

2.2 Forecasting

2.2.1 Forecasting in water resources operations

Although it is possible to predict future conditions, such as flood events, only
by relying on weather observations, there are situations in which a forecast
model is necessary. It might happen that the equipment fails or it might be that
the basin is located in an area where the conditions are hard to be measured
(Toth et al., 2000). Furthermore, studies have shown that with the help of fore-
cast models, water supply failures were reduced and the life-spam of hydraulic
infrastructure was increased, all at a relatively low cost, when compared to new
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investments in new infrastructure (Turner et al., 2017).

Along the past fifty years, there was a considerable improvement in weather
forecasting, with great advances in lead times, forecast skill and value. This
progress is directly linked to the considerable increase in computing power, in-
strumentation and understanding of the atmospheric dynamics (Lynch, 2008).
Plenty of researches have been published analysing the multiples contributions
of forecasting to the water resources operations, including different objectives
like flood control, water supply, hydropower generation and different combi-
nations of them together. Some of these studies are recalled and briefly ex-
plained in this section in order to provide evidences of the importance of fore-
casting in this domain.

A study by Faber and Stedinger (2001) presented the implementation of fore-
cast into a Sampling Stochastic Dynamic Programming (SSDP) model and how
it performed in comparison to a standard operation. In fact, two alternatives
were developed: A SSDP model calibrated on the historical conditions, but in-
corporating current hydrologic information forecasts to update the probabili-
ties and a SSDP model using ensemble streamflow prediction (ESP) updated on
a weekly basis. Both presented a superior performance in relation to the base-
line case, the same system and model but without the forecast components.
Plus, some differences in the output of the two forecast models were found,
with the one using the ESP outperforming the solution based on historical con-
ditions but updated with current hydrologic information forecasts (Faber and
Stedinger, 2001).

Anghileri et al. (2016) recently studied the value of long-term forecasts in the
design of water supply operations, by using a forecast-based adaptive control
framework. The first results showed that season-long ESP forecasts improved
operations with respect to the baseline, remaining 35% below the perfect fore-
cast value. The system considered in this study (i.e., the Oreville reservoir,
California) allows storing water from one year to the other and would have
here gained much more from forecast over longer lead-time than the seasonal
one. In fact, the inter-annual component of the forecast contributed from 30 to
45% of the total forecast value. Moreover, it was possible to analyse in which
circumstances each type of forecast generated most value with respect to the
baseline (no forecast): for high demands with respect to the storage capacity
or inter-annual carryover, only a perfect forecast would be able to properly an-
ticipate the streamflow; medium-high demands but a small storage was suffi-
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cient for the seasonal ESP forecast to perform and finally, inter-annual forecasts
worked best for big storages, in spite of not being useful for small reservoirs
(Anghileri et al., 2016).

It is also worth noticing that the gains to the water operations provided by
forecasts depend also on the final objective of the water reservoir, as shown
by Turner et al. (2017). For flood-prevention operations, for instance, increasing
the quality of forecasts directly implies in an improvement to the system’s per-
formance. However, for water supply purposes, the correlation is not as clear,
because some reservoirs are capable of buffering the variability of the inflow.
In addition, smaller reservoirs, which have less buffering capacity, are the ones
that would profit the most of long-term forecast (Turner et al., 2017).

Another example demonstrating the value of forecast is provided by Nayak
et al. (2018) for the operations of Folsom Reservoir (California), in which it was
possible to considerably improve the reliability of water supply without in-
creasing the risk of floods due to the prediction of major flood events by a fore-
cast model. However, the study found that forecasts with a skill of thirty days
did not present significant improvements in relation to forecasts with a three-
day skill for the river basin studied. Finally, it was suggested that forecasts
can also bring advantages to conjunctive use, such as groundwater storage in
water reservoirs, because of the longer times required for water banking and
withdrawing from underground storages (Nayak et al., 2018).

2.2.2 Forecast lead time

Forecasts are usually divided in two categories: short-term and long-term or
seasonal. The first ranges from one day to five days, rarely exceeding one week,
while the second ranges from months to multiple years. Each category has its
own objectives, because it is still a challenge to integrate the different time-
frames in a single model (Yuan et al., 2015). The dynamics in each case change
substantially and so do the main factors contributing to the forecast skill. In
short-term predictions, the forecast horizon, which quantifies the number of
days in advance that can be foreseen, is the most important factor. Gener-
ally, the longer the forecast horizon the better is the performance of the system.
However, for long-term forecasts, the forecast uncertainty plays the main role,
as the forecast can become too uncertain at long lead times. At medium fore-
cast horizon, the performance of the system is equally affected by both factors
(Zhao et al., 2012).
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Short-term forecasts are mostly aimed at alerting flood occurrences and at
mitigating the impacts related to them. The few days of anticipation allow for
releasing water from reservoirs, so the flood can be partially diminished, con-
tributing to a reduction of the damage to people, buildings, agriculture, and
infrastructure (Pappenberger et al., 2008; Elsafi, 2014). Short-term forecasts can
be based on direct observational data through the use of radars and gauges to
capture the precipitation state or on more advanced models, such as numeri-
cal weather prediction and ensemble prediction systems that ensures accuracy,
quickness, reliability and robustness of the forecast system (Adamowski, 2008;
Cloke and Pappenberger, 2009).

On the other hand, long-term forecasts address concerns that are not as im-
mediate or urgent as the short-term, but still of great importance to the envi-
ronment and society, such as water supply and power generation. For these, it
is important that the forecast can predict the future states at longer time leads,
such as months, seasons, and years. Long-term forecast mostly rely on slow cli-
mate dynamics and, consequentially, require different weather information to
be acquired. Among them, snow state information and soil moisture data have
been proved to be useful at extending the forecast skill to longer lead times for
specific regions. As an example, a study by Mahanama et al. (2011) found that in
some regions of the United States of America, the contributions of soil moisture
and snowpack initialization allowed for skillful forecasts with 95% confidence
level of up to 9 months of lead time during certain seasons (Mahanama et al.,
2011).

Nonetheless, such correlations are limited to specific regions and seasons.
At the global scale the understanding of ocean-atmosphere teleconnections is
paramount and nowadays, most long-term forecasts rely on understanding
teleconnection patterns (Yuan et al., 2015). The term describes a naturally-occurring
climate variation or alteration, such as the sea surface temperature (SST) fluc-
tuation of the oceans, that affects different regions globally, usually at long dis-
tances and for multi-year periods of time (Nigam and Baxter, 2014). Among
teleconnection patterns, the El Niño Southern Oscillation (ENSO) is one of the
major ones, affecting the whole planet in different ways. It involves sea sur-
face temperature (SST) oscillation along the years, with a warm-phase called
el Niño and a cold-phase called La Niña, as seen in Figure 2.3. The return fre-
quency varies from 4 to 6 years and lasts for 2 years. Forecasts based on ENSO
were shown to keep the skill from 6 to 9 months of lead time for some regions
along the coastline of the Pacific Ocean (Hamlet and Lettenmaier, 1999).
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Figure 2.3: Representation of both El Niño and La Niña, figure by National Oceanic and
Atmospheric Administration.

Yet, some regions are not substantially affected by the ENSO, as is the case
of the European continent. During the colder months of the Northern Hemi-
sphere, another phenomenon becomes predominant in the atmospheric vari-
ability, which is known as North Atlantic Oscillation (NAO). It is a large-scale
reorganization of the air masses located in the Arctic and subtropical Atlantic.
Every movement alters the average speed, direction, temperature and moisture
of the air currents in the region and even storms are regulated by the NAO.
The phenomenon has two phases, a positive one and a negative one and the
consequences can be observed for instance in fish population, agricultural har-
vests, water management and energy supply (Hurrell et al., 2003). Furthermore,
when basing forecasts on NAO, it is possible to predict winter discharges with
relatively high skill in some regions of Europe and also subsequent summer
discharges, but at lower skill (Bierkens and van Beek, 2009).

One of the first researches studying teleconnections at water resources oper-
ations was the work by Hamlet and Lettenmaier (1999), which aimed at exploring
the potentiality of long lead climate forecasts to improve river operations in the
United States of America. By coupling the El Niño Southern Oscillation (ENSO)
and the Pacific Decadal Oscillation (PDO), to the streamflow forecast ensemble,
it was verified that a 6-month forecast was achieved for the Columbia River.
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Furthermore, the study showed that this addition of forecast would bring ben-
efits to hydropower generation, water supply for agriculture activities, fisheries
management and flood control (Hamlet and Lettenmaier, 1999).

2.2.3 Types of forecast models

A model is a simplified copy of a real system that has as purpose to mimic it,
in order to represent as realistically as possible the experiments conducted and
to generate reliable results, which can then be used as base for other experi-
ments, tests and researches (Soncini-Sessa, 2007). There are many types of mod-
els, which are duly described in the study by Jajarmizadeh et al. (2012). In the
realm of hydrological forecasting, however, there are two main approaches, the
first relying on physically-based models and the second on data-driven models.

Physically-based models, also known as dynamic, process-based climate
models aim at reproducing specific climate patterns and dynamics, as atmo-
spheric pressure, temperature, precipitation, so a future state can be foreseen.
A classical example is the numerical weather prediction (NWP), one of the most
traditional models for the forecasting of climate states, such as precipitation.
The outcome of the NWP can then be used as input for hydrological models,
which will allow ultimately to predict a river flood event. While the dynamic
models usually lead to better responses of a water system, its uncertainty is
still considerable, with high chances of missing flood events or providing false
alarms, especially at longer lead times (Zhao et al., 2012). A way to solve the
vulnerability is to conceive an ensemble of forecasts or an ensemble prediction
system (EPS), in which multiple predictions of possible states are put together,
providing different values of forecasting and thus giving a broader idea of the
upcoming climate state, as can be seen in Figure 2.4 which will serve as infor-
mation for a hydrological model. Studies showed EPSs contribute to the value
of forecasting at medium-range, presenting a better performance at identifying
floods events for longer lead times (Cloke and Pappenberger, 2009; Pappenberger
et al., 2008). Albeit, while EPS improved results, relying on a single Ensem-
ble Prediction System might still offer some vulnerabilities motivating the use
of multiple EPS together, also known as grand-ensemble. Pappenberger et al.
(2008) used the THORPEX Interactive Grand Global Ensemble (TIGGE), which
is composed of seven ensembles, to reduce the vulnerabilities of the system and
attained an improved performance with respect to a single EPS, forecasting up
to 8 days in advance flood events (Pappenberger et al., 2008).
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Figure 2.4: Example of an ensemble prediction system, where different forecasts are taken
together and a better understanding of the future scenario can be obtained. Figure by Cloke
and Pappenberger (2009).

The concept of ensembles can be applied as well for forecasting river in-
flows, which is called ensemble streamflow prediction (ESP), developed by the
National weather service (NWS) since 1970 (Yuan et al., 2015). It consists in
combining the physical-based model of a river at the given moment, where
current conditions are taken into calculations, with the climate data from many
historical years, culminating into a set of patterns or traces that could possi-
bly take place, each one based on a different year (Faber and Stedinger, 2001).
Later, with the increase of computing capacity and better understanding of
globally occurring phenomena, such as teleconnections, the general circula-
tion models (CGCMs) were conceived, describing globally the behaviour of
atmosphere, ocean and land in an integrated way. Alongside the traditional
ESP, this allowed for the creation of the climate-model-based seasonal hydro-
logic forecasting (CM-SHF). It benefits from the ensembles of trajectories of the
ESP for precipitation and temperature, but at longer lead times, because of the
higher capacity of the CGCM at predicting season-long climate states (Yuan
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et al., 2015).

The second class of forecast models are the data-driven models, also known
as black box models. The idea behind data-driven models is to determine cor-
relations between data, by applying different mathematics operations, without
necessarily explaining the physical and chemical processes involved. The most
common and basic type is the linear regression model, in which different data
are coupled and correlated in a linear way. Among the drawbacks of linear
regression, it is worth mentioning the impact of outliers and the inability to
capture non-linear correlations between the data (Block and Rajagopalan, 2007).
Another data-driven model commonly used is the autoregressive moving aver-
age (ARMA) model, which establishes a linear relation between different time-
steps of the same data, predicting future values based on past observations
(Toth et al., 2000).

An alternative proposed by Block and Rajagopalan (2007) was to utilise a lo-
cal polynomial-based nonparametric approach, overcoming some of the lim-
itations of linear-regression models, being more flexible and able to capture
other trends. The method allowed for the selection of the nearest neighbours
of a specific point of interest, then locally parametrizing the data with a poly-
nomial function and finally adding random deviates with the same standard
deviation of the polynomial to generate an ensemble. The advantages of this
method are the minimization of outliers’ disturbance, detection of local corre-
lations and elimination of multicollinearity, when one variable is correlated to
multiple other variables (Block and Rajagopalan, 2007).

In addition, two other data-driven models deserve to be briefly discussed.
The K-Nearest-Neighbour Method (KNN) explores the closest data to a specific
observation in a data sample and establishes the correlation between them. It
is a non-parametric approach and does not establish any structural relation-
ship between the data sets (Toth et al., 2000). The second model, Artificial Neu-
ral Network (ANN), is a computer intelligence trained at recognizing relation-
ships between inputs and outputs. This method does not require any a priori
hypothesis and works with any sort of relationship between the data sets, in-
cluding non-linear and complex ones. Many studies showed ANN overcoming
the more basic methods such as ARMA and linear regression (Toth et al., 2000;
Adamowski, 2008; Elsafi, 2014).

In spite of the evolution of both physical and data-driven models along the
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past decades, there is still no clear evidence of outperformance of one model
over the other, with each one presenting different benefits and disadvantages
to the other. Physical models are precise, give better understanding of the natu-
ral processes involved and can simulate a variety of flow situations, but require
more data to be set, which is not always possible and cannot take exogeneous
data into account (Elsafi, 2014). Data-driven models are usually quicker, sim-
pler and easier to operate, but are restricted to stationary data, which makes it
particularly limiting for the current climate change context (Adamowski, 2008).

2.2.4 Forecast uncertainty

Meteorological and hydrological forecasting can contribute to the improve-
ment of water systems in different ways, such as alerting for floods and prepar-
ing for droughts, by anticipating the upcoming conditions and extreme events.
However, forecasts cannot provide flawless predictions and there is a need to
assess and measure the uncertainty of the predictions, fully understanding the
uncertainty of a forecast can actually further improve its value and reduce mis-
lead decisions (Ramos et al., 2013).

Better understanding of forecast uncertainty means incorporating additional
information into the expected forecast prediction. Instead of only providing
what the future value is expected to be, the uncertainty allows communicat-
ing the confidence interval of such value. Results by Ramos et al. (2013) suggest
that decisions by operators were taken based on both forecasted values and un-
certainty information show how the higher the uncertainty of a prediction, the
more conservative the decisions taken were. Moreover, the same study pointed
out that with uncertainty information, more optimal decisions were taken, im-
proving the overall performance of the system (Ramos et al., 2013).

A model can have many sources of uncertainty. Generally, the major source
of uncertainty of a long-term forecast is the one related to the meteorological
input (Cloke and Pappenberger, 2009). Observational uncertainty, which is related
to the data assimilation, is also relevant because of the temporal and spatial
uncertainties that can alter the system. Among the other sources of uncertainty,
there are the geometry of the system and the characteristics of it, which are
represented as parameters in the model and can be wrongly defined. For a
more extensive discussion on the different types of uncertainty, refer to Cloke
and Pappenberger (2009).
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2.2.5 Forecast skill and value

There are two important factors when assessing the usefulness of forecasts:
skill and value. The forecast skill is defined as the ability of the model of accu-
rately predict the streamflow that will actually occur within given upper and
lower bound (Hamlet and Lettenmaier, 1999). Thus, a skillful forecast implies that
the value observed is within the estimation boundaries of the forecast model.
The skill relies solely on the capacity of the forecast model and because of that,
over the past 50 years, there has been a continuous improvement with the de-
veloping of new technologies and models (Lynch, 2008).

Skill alone is not enough to determine the quality of a forecast. For example,
two forecasts with similar skill can generate different results for a water oper-
ation and there are cases in which, even if there is a perfect forecast with con-
siderable skill, the operation might not change substantially because of other
factors, such as structural limitation. An example is the case of a reservoir with
a small storage capacity with respect to the incoming flood volume, which will
not be able to buffer the flow peak even if this is perfectly forecasted (Anghileri
et al., 2016). The relationship between the forecast and the actual improvement
to the operation is called forecast value. It is computed by comparing the sys-
tem performance with the forecast and without it.

In a study on farmers decisions based on forecasts, Li et al. (2017) identified
a clear non linear relationship between skill and value; moreover, they showed
that most of the state-of-the-art weather forecast products still presented a lim-
ited accuracy for long-term forecasts. This inaccuracy generates doubts among
farmers about forecast reliability and based on that, the quality of forecast did
not necessarily improve proportionally the operation performance. On the
other hand, farmer behaviour was shown to be a relevant variable influenc-
ing the estimated forecast: while a risk-neutral profile presented an increase of
3% with respect to the baseline case, a risk-prone profile experienced 10% of
increment, since the operator was taking a bigger risk and relying more on the
forecast result (Li et al., 2017).
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Figure 2.5: Difference between accuracy and quality of a forecast and the actual improvement.
Figure by Li et al. (2017).

In a similar study exploring forecast skill and value for water supply, Turner
et al. (2017) suggest that in order to minimize the risks of a misleading forecast
and to potentialize its value, it is recommended to have long records of data
and a large number of reforecasts (Turner et al., 2017).
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Study site

3.1 California

The state of California is located on the west coast of the United States of Amer-
ica and bordered by Mexico to the south (Figure 3.1. Globally recognized be-
cause of its many industries, it is the third largest state of the country in terms
of area, the most populated one with roughly 39 million people and represents
the largest economy in the country. California is also well known for its accen-
tuated environmental awareness, and especially for advanced water manage-
ment strategies. In fact, California has always had a deep dependency on water
resources. They proved to be essential for the development of the state along
the centuries in many areas, but especially for water-intensive activities, like
mining and agriculture. Nonetheless, the state of California is now exposed
to growing vulnerabilities generated by the recent occurrence of both extreme
drought and flood events.
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Figure 3.1: Location of the State of California and its main cities. Adapted from Bing Maps
(2019).

3.1.1 Climate and water resources

Given its considerable size, the state presents a complex range of climate condi-
tions, from deserts in the south to mountains in the north, including temperate
rainforests, coastal and Mediterranean climates as well. All of this variety con-
tributes to a diverse range of water availability and runoff with respect to the
location, as illustrated in Figure 3.2. In addition, it is worth noting that the
water variability not only varies geographically, but temporally as well, with a
considerable variability across seasons and years. The majority of the state is
considered to be located in a semiarid region, which entailed recent disputes
over water sources between multiple users (Escriva-Bou et al., 2016; Hanak et al.,
2011). Despite presenting a general symptom of water scarcity throughout the
state, there is also a great risk of floods in parts of it and most of them happen
to be exactly where cities and urban areas have been raised (Hanak et al., 2011).
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Figure 3.2: Distribution of runoff. Figure by Hanak et al. (2011).

However, even though the water systems of the state are already under
stress, extra demand for high-quality water supply is expected, as the popu-
lation is likely to keep growing and urbanizing. On top of that, climate change
will also affect California’s water management, either through temperature in-
crease, sea level rise or precipitation changes, increasing the variability and
unpredictability of hydrologic regimes and water availability. Without timely
and effective adaptation strategies, these new circumstances are expected to
negatively impact on California water resources in multiple ways, including
the declination of native fish species, ultimately resulting in extinctions; more
frequent and intense floods in urban areas; longer periods of drought and de-
terioration of water standards (Hanak et al., 2011). A new and improved man-
agement of the water resources is deemed crucial for the future quality of life
of the local population and for a sustainable development of the state.
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3.1.2 Water network and management

In order to handle the multiple water demands from industries, farms and 40
million people, a complex system for water supply exists, consisting of a large
network of reservoirs, groundwater basins, aqueducts, and pumping stations,
most dating back to before 1960. Naturally, the management of such broad
network of systems and infrastructures is a challenging task and only in the
last decade an integrated approach including most parts of the system was
conceived. This approach is supported by the CALVIN (California value in-
tegrated network) model originally developed by Jenkins et al. (2001), which
simulates the dynamics of both surface and groundwater, while also consider-
ing the water demands and the operations of water facilities. The model aims
at maximizing the economic value generated to the whole state (Jenkins et al.,
2001). A schematization of the CALVIN model, including 51 surface reservoirs,
28 groundwater basins, 18 urban economic demand areas, 24 agricultural eco-
nomic demand areas, is illustrated in Figure 3.3.
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Figure 3.3: California water supply system represented in the CALVIN model scheme.
Adapted from Hanak et al. (2011).

3.2 Folsom reservoir

The Folsom Dam and Reservoir was constructed by the U.S. Army Corps of
Engineers and finished in 1956. Its primary objective is to prevent floods in
the region of Sacramento, a highly vulnerable area to catastrophic floodings
(Hanak et al., 2011). The Folsom reservoir is currently managed by the U.S.
Department of the Interior’s Bureau of Reclamation and is part of the Central
Valley Project, a water management project designed to supply water for the
central region of California. Besides flood prevention, nowadays the reservoir
is used also for hydroelectricity generation, water quality control, water supply,
environmental preservation and recreation purposes. It is located in the central
valley of California, between the city of Sacramento and the Sierra Nevada
mountain range (figure 3.4), and is part of the American River Basin. The river
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basin, considered to be one of the most important in the region because of its
role in providing water fed by the melting snowpack of the Sierra Nevada to
the central valley, covers an area of 1850 m2 and ends up in the confluence
with the Sacramento River, 48 km after the Folsom reservoir. Downstream of
the Folsom dam, there is the lake Natoma, which helps adjusting the dam’s
regulations and fluctuations as a consequence of daily operations for power
generation (Maher, 2008; U.S. Bureau of Reclamation, 2008).

Figure 3.4: Location of the American River Basin and Folsom Reservoir. Adapted from Her-
man and Giuliani (2018).

The dam’s storage capacity is of 977 thousand acre-foot (TAF), covering a
surface area of 11,450 acres. It is the main storage and flood control point of the
river, with its dam walls standing 427 m tall (Maher, 2008; U.S. Bureau of Recla-
mation, 2008). The reservoir follows a historical operating strategies, mainly
divided in two sections that varies according to the season: From November to
February, which is the winter season, the conservation pool drops from 977 to
400 TAF, while the rest is used for flood control (Nayak et al., 2018). After that
period, the flood pool decreases and the conservation pool equals the maxi-
mum capacity at the beginning of the summer, as shown in Figure 3.5. More
recently, an update was taken on the flood control policy, allowing for a smaller
flood pool of 375 TAF, because the system got updated and is now benefiting
from a short-term streamflow forecast, which enabled the anticipation from one
to five days of the inflow (U.S. Army Corp of Engineers and U.S. Bureau of Recla-
mation and California Department of Water Resources and H. I. Consulting, 2017).
For a better understanding, Figure 3.6 depicts the historical release of water
per each day of the year from 1995 to 2016 and the mean daily values, which
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are used as the daily demands value in this work. The release policy show a
clear increase in demand during the irrigation period in California, the time of
the year in which most of the water is used for agricultural supply, since there
is no rain during this period and it is when the crops need it most to be able to
grow. This policy, although recently updated, is likely to suffer from a decrease
in performance, as the higher temperature in the future will provoke a decrease
of the snowpack volumes and an earlier melting of the snow on the mountain
range, deeply affecting the pattern of inflows of water into the reservoir (U.S.
Bureau of Reclamation, 2008).

Figure 3.5: Historical rule curve of the Folsom reservoir. During winter the conservation pool
needs to be reduced to 400 TAF for flood prevention.
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Figure 3.6: Historical register of release of water per day. Adapted from Herman and Giuliani
(2018).

One relevant characteristic of the Folsom reservoir is that it had release ca-
pacity limitations. Nowadays, while its maximum release capacity is about
34,000 cubic feet per second (cfs) through the regular outlets, when the level of
water reaches the spillway, the release can grow up to 115,000 cfs. In case of
extreme floods, there are three emergency spillway gates that allow for a total
release of 160,000 cfs for a limited amount of time (U.S. Army Corp of Engineers
and U.S. Bureau of Reclamation and California Department of Water Resources and H.
I. Consulting, 2017). The channel was also improved, with its levees reinforced,
guaranteeing 160000 cfs of discharge capacity (Maher, 2008).

The dynamics of the Folsom reservoir are modeled by a mass balance equa-
tion of the water storage using a daily timestep, i.e.:

st+1 = st − rt + qt+1, t ∈ [0, H] (3.1)

28



3.3. Data collection

where the variables s, r and q stand for storage, release and inflow, respec-
tively. The multipurpose operations of the dam, targeting water supply and
ensuring flood control, is modeled by means of the following objective func-
tion:

J =
1
H

H

∑
t=0

max(Dt − rt+1, 0)2 +
H

∑
t=0

c ∗max(rt+1 − rmax, 0)2 (3.2)

In this case, rt+1 is the total release of water (including spills and constraints),
rmax is the limit to a safe release, which for this work is rmax = 130, 000 cfs and
c = 1000 and represents a constant to make any flood event so costly that the
evolutionary algorithm is expected to automatically avoid any case of flood.
Therefore, this equation aims at reducing J by minimizing the deficits of water,
especially large ones, since it is a quadratic function, while preventing releases
above the limit to persist. In the case a final policy does result in a release value
above the limit, it needs to be examined, as it implies that in the given sce-
nario avoiding flood events is impossible, since all experimented solutions still
suffered from flood events.

3.3 Data collection

The standard procedure for a long-term simulation of climate change requires
both Representative Concentration Pathways (RCPs) and General Circulating
Models (GCMs). Whilst the GCMs provide the proper mechanisms to process
the climate along the years, the RCPs are entitled to guide the models through
a pathway towards a specific target, providing all the information required.
Naturally, different RCPs will generate different results, even if the model is
the same for all of them. Likewise, running different models for a single RCPs
will generate different results as well. In addition, for impact assessment, it is
usual to downscale the GCM to a RCM so local results can be more reliable, as
described in the previous subsection.

The data set used in this study includes 97 climate change scenarios of Fol-
som reservoir inflows over the time horizon from 2000 to 2100. These projec-
tions are the result of the combination of 31 GCM models with all four Repre-
sentative Concentration Pathway (RCPs). Figure 3.1 provides further informa-
tion on the models and their centres.
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Modeling center Institute ID Model Name
Commonwealth Scientific and Industrial

Research Organisation (CSIRO) and
Bureau of Metereology (BOM), Australia

CSIRO-BOM ACCESS1.0

Beijing Climate Center, China Metereological Administration BCC
BCC-CSM1.1

BCC-CSM1.1(m)
Canadian Centre for Climate Modelling and Analysis CCCMA CanESM2

National Center for Atmospheric Research NCAR CCSM4

Community Earth System Model Contributors NSF-DOE-NCAR
CESM1(BGC)

CESM1(CAM5
Euro-Mediterranean Center on Climate Change CMCC CMCC-CM

Commonwealth Scientific and Industrial
Research Organization Queensland

Climate Change Centre of Excellence
CSIRO-QCCCE CSIRO-Mk3.6.0

LASG, Institute of Atmospheric Physics, Chinese
Academy of Sciences and CESS, Tsinghua University

LASG-CESS FGOALS-g2

The First Institute of Oceanography, SOA, China FIO FIO-ESM
NASA Global Modeling and Assimilation Office NASA GMAO GEOS-5

NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL
GFDL-CM3

GFDL-ESM2G
GFDL-ESM2M

NASA Goddard Institute for Space Studies NASA GISS
GISS-E2-H-CC

GISS-E2-R
GISS-ES-R-CC

National Institute of Meteorological Research/
Korea Meteorological Administration

NIMR/KMA HadGEM2-AO

Met Office Hadley Centre MOHC
HadGEM2-CC
HadGEM2-ES

Institute for Numerical Mathematics INM INM-CM4

Institute Pierre-Simon Laplace IPSL
IPSL-CM5A-MR
IPSL-CM5B-LR

Japan Agency for Marine-Earth Science and Technology,
Atmosphere and Ocean Research Institute (University of Tokyo),

National Institute for Environmental Studies
MIROC

MIROC-ESM
MIROC-ESM-CHEM

Atmosphere and Ocean Research Institute (University of Tokyo),
National Institute for Environmental Studies,

Japan Agency for Marine-Earth Science and Technology,
MIROC MIROC5

Max Planck Institute of Meteorology MPI-M
MPI-ESM-MR
MPI-ESM-LR

Meteorological Research Institute MRI MRI-CGCM3
Norwegian Climate Centre NCC NorESM1-M

Table 3.1: Table illustrating the costs of each scenario for different types of policy. The columns
show the type of model used and the rows define the type of scenario for each time period.

The observed inflow data for the Folsom Reservoir were acquired from the
United States Bureau of Reclamation (USBR) and consist in daily observations
of the inflow for the time period ranging from January 1915 to December 2015
as in Nayak et al. (2018). The data related to the forecasted inflows are also ob-
tained from Nayak et al. (2018). In order to generate the hydrologic inflows, they
used a forecast model that is a lumped version of the conceptual Sacramento
Soil Moisture Accounting (SAC-SMA) model, which is the same one used for
current operations at the Folsom Reservoir and simulates rainfall-runoff pro-
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cesses in the upstream basin. The model uses rainfall, snowmelt and tempera-
ture as input and returns the inflow as output and the forecasts produced by the
SAC-SMA model are 30 traces of daily prediction of the average inflow for the
upcoming three days from January 1980 until December 2015. For more infor-
mation and details about the processes and methods to generate the forecasted
inflow, refer to Nayak et al. (2018).

3.4 Experiment settings

The policy tree for the Folsom case is designed so that there are two types of
models, the rule curve and the three-day forecast cases, as mentioned in section
3.2. The algorithm optimization requires the decisions to be conditioned by the
variable states, which depends on the type of model. For the first case, the rule
curve, the two states available are the storage level St and the day of the wa-
ter year dowy, measured in days, whilst for the forecast case, the 3 days ahead
predicted storage is also condidered as reported in table 3.2. Given the prob-
abilistic nature of the forecast (i.e., 30 member ensemble), it is also necessary
to define which statistics of the ensemble to use for conditioning the operating
policy. In this work, both the maximum and the 90th percentile are analyzed.
The reason behind adopting upper-level percentiles is to be conservative with
respect to the flood cases, since it is the main penalty factor and the forecast
used is of short range, generally linked to flood prevention (review subsection
2.2.2).

State variable Range Unit Policy
Day of the water year (Dowy) 0-365 Days All

Storage (St−1) 0-975 TAF Rule curve
Storage + inflow + prediction (St−1 + Q + P3) 0-975 TAF Three-day forecast

Table 3.2: State variables used for the policy tree algorithm.

The actions available for the policy tree to choose from are "Release the de-
mand", "Hedge p%" and "Release Excess". Release demand is the action where
the operator is able to release the exact amount of water required for that day,
without major problems. Hedge p% is a set of actions that allows for the releas-
ing of a percentage from the demand, varying from 50% to 90%. The last action
release excess is aimed at tackling the flood events, so the release of water is
not ruled by the demand, but rather by the possibility of flood occurrence. All
actions are summarized in table 3.3
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Action variable Target release rule Policy
Release demand ut = Dt All

Hedge p% ut = (p/1000) ∗ Dt All
Release excess ut = K f (Qt + St−1) Three-day forecast

Table 3.3: Actions that can be taken for each policy. The rule curve is limited to either releasing
demand or hedging a variation of p and three-day forecast policy has an additional action to
anticipate floods.

The different parameters used in this work are shown in table 3.4. There
are two types of forecast use, a model without forecast and the other with a
three-day one; three types of scenarios are used for the experiments, dry, in-
termediate and wet. Two time periods are considered, being the first one from
2000 to 2020, labelled historical and the the other from 2080 to 2099, the future
one. The forecast ensemble is considered in two ways, a 90th percentile and the
maximum value among the 30-trace ensemble. Finally, ten different random
seeds are used for each experiment to minimize possible initialization issues.

Parameter Alternatives Number of alternatives
Forecast type rule curve and three-day forecast 2

Scenarios dry, intermediate and wet 3
Time period historical and future 2
P3 function max value and 90th percentile 2

Initialization random seeds 10

Table 3.4: Changes required in the parameters to allow for the proper simulations of each case.

Finally, the settings of the Genetic Programming optimization are the fol-
lowing ones (as in Herman and Giuliani (2018)): each optimization was run for
100,000 function evaluations; the maximum tree depth is set equal to 5, the
size of the population equal to 96, crossover and mutation probabilities equal
to 0.7 and 0.9, respectively; due to the stochastic nature of the evolutionary
algorithm (which can be affected by random effects in initial populations and
runtime search operators), each optimization was run for 10 random generator
seeds, as showed in table 3.5.
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Parameter Definition Value
Max. NFE maximum number of nodes per case 100,000

dmax maximum depth allowed for the tree 5
µ size of the parents pool 10
λ size of the population 96
pc crossover probability 0.7
pm mutation probability 0.9

Table 3.5: Common parameters for the entire simulation.

In total, 1800 optimization trials were run, requiring approximatively 5760
computing hours. The computational experiments were parallelized and run
using the High Performance Computing (HPC1) cluster located at University
of California Davis, California. The cluster contains 60 nodes with 32 cores each
that reach up to 2.4GHz.
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4
Methods

The aim of this work is assessing how beneficial can the use of forecast models
be to future water systems operations under climate change scenarios. In order
to properly achieve this goal, a three-step methodology as illustrated in figure
4.1 was developed: Scenario selection, synthetic forecast generation and assess-
ment of historical and future forecast value. All three blocks are explained in
the coming sections.
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Figure 4.1: General structure of the methodology used in this work.
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4.1 Scenario Selection

The first block of the proposed methodology aims at analyzing all inflow sce-
narios to the Folsom reservoir obtained from the work by Herman and Giuliani
(2018) for selecting a subset providing diverse projections (e.g., drier or wetter
conditions) that are expected to benefit from the use of forecast information.
This is due to the fact that the longer the Expected Value of Perfect Information
is (i.e., the difference in performance between the basic policy and the policy
with perfect forecast) the bigger the potential forecast value is.

4.1.1 Statistical analyses

The first step to find promising candidate scenarios was applying basic statis-
tical indexes: the arithmetic mean, variance, minimum and maximum values
of the daily inflow series along the 100 years of prediction for each scenario.
The trend of these statistics is also analyzed, such as an increase of variance or
maximum values over time. The statistics indicate the possibilities of observ-
ing higher or lower volumes of inflows and increased unpredictability, which
are expected to challenge the current operations of Folsom Reservoir.

In order to support the indices conceived so far, it was decided to directly
apply the inflow data into the RClimDex library to use its values as a perfor-
mance benchmark (Zhang and Yang, 2004). RclimDex is package in R (a free
programming language) that calculates the extreme climate indices as defined
by the Expert Team on Climate Change Detection and Indices (ETCCDI). For
this work purpose, the library was adjusted for streamflow and the indices con-
sidered were: Annual total wet day precipitation, very wet days, extremely wet
days and number of days above a given threshold. Beside standard statistics,
the annual number of days when the inflow exceeds the 90th percentile and
the ones below the 10th percentile is computed for each scenario, to capture
the projected trends in extreme floods and droughts. The percentiles used as
reference level were calculated and defined over the first two decades of the
century (2000-2020). Again, greater occurrences of extreme events are expected
to challenge systems without forecast. Moreover, based on the climate indexes
defined by (Zhang and Yang, 2004), the same index was also computed using a
different reference value for each day of the year in order to account for possible
changes in the timing of future hydrologic regimes.

The last index considered is the length of extreme events. For each scenario,
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the trend in the annual longest flood or drought spell is the analyzed. Also for
this case, a second index was introduced to account for seasonality.

4.1.2 Computation of explored value of perfect information

With the most promising scenarios selected, they are taken to the second step
of the first block, for deepening the analysis by computing the Expected Value
of Perfect Information of each one. To calculate the perfect operating policy
(POP), the deterministic dynamic programming (DDP) was considered, which
allows for an optimal policy because it minimizes the objective function (eq.
3.2) by recursively computing the optimal cost-to-go as in:

Ht(xt) = minut Ψεt+1

[
Φ
[

gt(xt, ut, εt+1), Ht+1(xt+1)
]]

(4.1)

where Ht is the optimal cost-to-go with respect to the state xt, Ψ is a statistic
used to filter the disturbance, Φ an operator for aggregation over time, g a step-
cost function generated from one time-step to the other, ut decision or control
vector and ε the disturbance vector.

For the calculation of the basic operating policy (BOP), the baseline opera-
tion of the policy tree for the Folsom Reservoir was used. This is due to the
fact that in Herman and Giuliani (2018) the policy tree is used to design both the
policies informed by the forecast as well as the baseline solutions that do not
use forecast information. In fact, an optimal policy tree dependent on day of
the year and reservoir storage represents a good approximation of the histori-
cal operations of Folsom Reservoir, which makes it the most suitable candidate
for the basic operating policy (BOP). After obtaining the BOP and POP perfor-
mance, the EVPI can be measured in two ways: the first one is a simple sub-
traction of the lower boundary from the upper boundary, which is considered
to represent the absolute performance increase; the second one is instead the
ratio of the two performance that measures the relative performance increase.

Given the many statistical indices introduced in subsection 4.1.1, 19 scenar-
ios are selected and the EVPI is computed for each scenario. Some scenarios
can then be discarded looking at BOP and POP performance. Specifically, in
case the BOP performance (i.e. water deficit) is equal to zero, there is no need
of introducing forecast for improving the baseline operations. At the other ex-
treme, if the POP generates a flood, the scenario is also excluded because the
solutions informed by the forecast cannot outperform the POP.
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4.2 Synthetic Forecast

After having selected a subset of climate scenarios, the second block of the
proposed methodology implements a synthetic forecast generation model to
produce a forecast ensemble for each climate scenario. The synthetic forecasts
allow quantifying the actual improvement in system performance obtained by
operating the system with a policy informed by the forecast with respect to the
BOP, which does not use any forecast. This value is known as Expected Value of
Sample Information as it does not account for perfect information as the EVPI,
but rather relies on the available data at the time of the operation.

4.2.1 Type of residual and preliminary tests

Among the different approaches for generating a synthetic forecast, the one
used in this work resides in comparing forecasted inflows to the observed ones
over the historical period in order to model the forecast errors. A crucial aspect
in this process is to determine which type of residual should be used because it
can have multiples forms, such as the difference or ratio between observed and
forecasted values and in different scale, like normal scale or logarithmic scale.
Some tests need to be run to select the best approach for modeling the forecast
error.

The first test is the histogram of the residuals, which is a graph that allows
the comparison between the frequency of the residuals and the range of the
residual values. Residuals that present a bell-shaped distribution are usually
an indicator of a normal and random distribution, whilst other formats suggest
there is some sort of bias in the residuals. The second test, normal quantile-
quantile (Q-Q) plot, compares the residuals to theoretical values in order to
define if there is a normal distribution of the data. Should it be normal, there
ought to be a straight line roughly at an angle of 45 degrees, otherwise it sug-
gests once more that there is some sort of bias or non-random pattern in the
residual data. Then, there are two tests for memory, autocorrelation function
(ACF) and partial autocorrelation function (PACF). ACF aims at evaluating if
the residuals are in any way related along time between themselves. The PACF
demonstrates the linear relationship between one value and the past one with-
out considering the other past values. Both ACF and PACF indicate that the
residuals are not random if there is a significant memory in the series of resid-
uals. The last test is called heteroskedasticity. It measures how the residuals
behave for different values of forecasted observations. If the data follow a vi-
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sual pattern like a cone or a fan, it means the residuals vary according to the
magnitude of the forecast, which suggests residual data are not random and
can be represented by a mathematical function.

After establishing the best representation of the residuals and how they be-
have, the synthetic forecast model reproduces the error distribution and prop-
agate the forecast uncertainty to any inflow trajectory, either back in the past
when forecasts were not generated yet (Nayak et al., 2018) or, as it is the case for
this work, in the future for each climate change scenario.

4.2.2 Synthetic generation

The process of generating the synthetic traces of an existing forecast model
consists on a two-step procedure, relying on the use of the K-nearest neighbor
algorithm (KNN). First step requires two types of datasets, one is the simula-
tion dataset, composed by observed and projected inflows and the second is the
training dataset, composed by historical observations that have corresponding
forecast data. For every t of the simulation, the algorithm measures the Eu-
clidean distance dj between the observed inflow from the simulation dataset,
Qt, and all the observed inflows from the training dataset, as it can be seen in
the following equation:

dj =

√
(Qt −

n

∑
t∗=1

Qt∗)2 (4.2)

where Qt∗ is the observed inflow of the training dataset corresponding to
the training day t∗ and n stands for the length of the training data. This steps
generates a pool with all the observed inflow from the training set and their
corresponding Euclidean distance to the Qt∗ . To select the best matches, the size
of the pool is reduced and the value K is responsible for that, which, according
to Lall and Sharma (1996), should be K =

√
n
ns

, where ns stands for the number
of seasons. The size of the reduced pool means that only the K closest values
are considered when selecting the suitable match, and these values do not have
equal weight, as they follow a kernel density function:

f (dj) =
1/j

∑K
j=1 1/j

(4.3)

The closer to the observed data a value is, the higher its weight is and the
more probable it is to be chosen. Then, with each observed value assigned a
new forecasted value, the forecast error can be computed. For this study, it is
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adopted as following:

ε̂Q,t∗+1:t∗+3 = logQ̂t∗+1:t∗+3 − logQt∗+1:t∗+3 (4.4)

where ε̂Q,t∗+1:t∗+3 is the error originated by the difference between the ob-
served Qt∗+1:t∗+3 and the forecasted Q̂t∗+1:t∗+3 inflows for the forecasted pe-
riod. Theˆabove the Q indicates that this is an estimate or forecasted value and
not the actual one.

The second step consists in generating the forecast out of the observed in-
flows. As each observed value now has a corresponding residual, in order to
generate the synthetic forecast, the forecast error should be added to the ob-
served inflow, i.e.:

Q̂t+1:t+3 = Qt+1:t+3 + ε̂Q,t+1:t+3 (4.5)

A brief summary of the process is that the observed inflows from the sim-
ulation dataset (Qt ) are assigned residuals values by adopting the residuals
from corresponding observed inflows from the training dataset (Qt∗ ). This
matching process is performed by the KNN algorithm. Then, with every ob-
served inflow from the training set coupled with a residual value, the synthetic
forecast (Q̂t+1:t+3) is generated by adding the former two values.

After training and testing the synthetic forecast for the entire simulation
dataset period, it is required to check the quality of the synthetic forecast with
respect to the original forecast. To do so, a residual analysis is carried out,
which involves:

• Comparison between forecasted series and observed series for both syn-
thetic and historical values.

• Error distribution analysis between historical and synthetic values.

• Histogram of the residuals.

• Autocorrelation functions for the residuals.

Should it be considered satisfactory, then the model is properly calibrated
and ready.
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4.3 Forecast Value

The third and last block of the proposed methodology aims at assessing the
actual improvements the use of forecasts can bring to the system operations
under historical and future conditions. This step required the decision of op-
erating policies informed by the synthetic forecast generated in the previous
block and the comparison of their performance with the references provided
by BOP and POP solutions.

4.3.1 Policy tree

The method used in this work to design an operating policy that can be in-
formed by inflow forecasts is called policy tree Herman and Giuliani (2018). Pol-
icy tree is a direct policy search approach where the closed loop operating pol-
icy is defined as a binary tree optimized via genetic programming. Decision
variables are discrete actions (ai ∈ A), along with specific thresholds activating
then on the basis of the observed system conditions (state variables xt). The
overall solution of the problem means finding the optimal policy tree structure
and thresholds (T∗), i.e.:

T∗ = argminT J(s0, T, qH
1 ) (4.6)

During the simulation, at any time t, the optimal action to be taken depends
on the system state xt, i.e. aR

t = T∗(xt). Whenever there is the need to include
forecast information into the policy tree, the release decision has to consider
the predicted storage three days in advance, which is based on the previous
day storage, the current inflow and the predicted incoming inflow for the next
three days, as the following equation demonstrates:

Ŝt+3 = St−1 + Qt + Q̂t+1:t+3 (4.7)

4.3.2 Genetic Programming

Tree-structured operating policies are developed by means of genetic program-
ming, a sub-domain of evolutionary computation that searches and optimizes
solutions mimicking the natural selection, a widely recognised mechanism of
the evolutionary biology. The main steps involved in the a genetic algorithm
are: 1) Survival of the fittest, 2) Crossover and 3) Mutation.

For a proper explanation of how the policy is optimized, an introduction to
the components of the policy tree is required. A binary tree has only two types
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of nodes: the indicator node, which displays a state variable (xt) in compari-
son with a threshold value (k), and the action node (at), which instructs which
decision to be taken given the indicator node state. The trees follow a binary
structure: for each indicator node, there is always a true and a false option,
which can then give place to another indicator node or to an action node, as
seen in figure 4.2.

Figure 4.2: Representation of a policy tree model. Figure by Herman and Giuliani (2018).

At the very start of the simulation, there is no policy tree structure and in
order to generate one, a process known as initialization is required. The initial
population must be randomly generated and to do so a random indicator node
with a random threshold is created. Then it follows a process of appending and
assigning random indicators, thresholds and actions up to the maximum tree
depth allowed (dmax, an hyperparameter to be set before running the optimiza-
tion). Since the algorithm is basing itself on natural selection, only a set com-
posed of the best performing solutions is as the "parents" for the next iteration.
The underlying concept is to advance at each iteration configurations offering
the most suitable solution, minimizing the equation 4.6. In order to avoid the
local optimum issue, usually linked to the starting population or location, the
algorithm is ran multiple times with different and random initialization data.

The second step, crossover, is the process entitled for the generation of the
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next population, the "children" solutions. It consists in generating a child by
swapping subtrees between two parents with a specific probability. A con-
straint is that crossovers are only allowed up to the maximum depth, to avoid
exchanging an action node for a indicator node and thus increasing the true
size. Child trees that are not the result of a crossover yet part of the new pop-
ulation are randomly changed by a new tree following the initialization proce-
dure. Then, in the third step, mutation, each node of the tree, either indicator
or action, has a probability of being altered randomly.

In addition to selection, crossover and mutation, the policy tree optimiza-
tion implements also the pruning operator, with the purpose of eliminating re-
dundancies by eliminating possible distortions generated by the crossover and
mutation processes, such as both true and false branches resulting in the same
result or unreachable branches. All these operators are illustrated in figure 4.3.

Figure 4.3: Examples of processes in the genetic algorithm. a) Crossover, b) Mutation and
c)Pruning. Figure by Herman and Giuliani (2018).
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The numerical results are presented in this chapter following the three main
blocks of the methodology illustrated in Chapter 4, namely scenario selection,
synthetic forecast generation, and quantification of historical and future fore-
cast value.

5.1 Scenario Selection

Starting from the 97 scenarios of future inflows to the Folsom reservoir, this sec-
tion serves the purpose of a selection process in order to single out subsets of
candidate scenarios that are expected to benefit the most from the use of fore-
cast information. This section is further divided into two sub-sections, the first
being a preliminary screening based on statistics, while the second runs a more
profound simulation-based analysis to determine quantitatively the potential
of each candidate. Two subsets of selected scenarios are generated, a larger
pool containing the scenarios selected from the first step for experiments that
require more data and a smaller pool with the scenarios obtained in step two.
These are representative scenarios of different climate conditions that allow for
a wider range of experiments to be tested with better readability.

5.1.1 Preliminary analysis

The 97 scenarios present different projections of inflow for the Folsom reser-
voir, and this is due to the distinct combinations of Representative Concen-
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tration Pathways, Global and Regional Circulation Models used for projecting
the climate conditions. Nevertheless, there are some similarities across these
scenarios as illustrated in Figure 5.1, where all scenarios are averaged over a
calendar year. The first four months of the year represent the wet period of the
year, with special attention to the period ranging from beginning of January
until end of February, with values up to 44 TAF/d (628,16 m3/s). This indi-
cates high chances of floods taking place at this period, but a lot of uncertainty
is present, as seen in the figure, which makes it troublesome to quantify with
precision the actual flood risk. Then, from March until the end of April, a pro-
gressive decrease of inflow is observed until summer arrives and the inflow of
the reservoir reaches 0 TAF/d (0 m3/s). Even though other periods of the year
might suffer from a highly variable expected inflow value on account of the
multiple projections linked to different scenarios, the summer season shows es-
sentially no variation between the scenarios. This evidence indicates that acute
droughts are expected to take place with a high degree of confidence. The last
part of the year sees an increase in the inflow, but then again with substantial
fluctuations, ranging from low to flood-level values.

Figure 5.1: Daily inflow for all 97 scenarios and the mean inflow among all scenarios for a
calendar year.
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Climate change is a dynamic phenomenon which translates to impacts vary-
ing according to time. Therefore, the effects are not only influenced by the sce-
narios, but also by the progression of the years. Additional analysis can be done
on the data in order to try to better understand the trends along the years, as il-
lustrated by the boxplots in Figure 5.2, which show the average trend across the
scenarios from 2020 to 2099. The figure shows that while the average values of
the inflow along the time series slightly decreases, the lower quartile values are
increasingly approaching the zero inflow. Conversely, the upper quartile keeps
approximately the same levels, but the upper extreme are constantly increas-
ing. This confirms that while the majority of the scenarios will see a decrease of
the future inflows, generating long and intense droughts, extreme flood events
are also projected to increase.

To better understand the projected inflow trends, a three-dimensional barplot
is reported in Figure 5.3, in order to provide additional information about how
the inflows (averaged for the 97 scenarios) behave with respect to the days and
to the years. The trajectories are shown from January to May to highlight the
most critical period for the operations of the Folsom reservoir during the transi-
tion from the wet to the dry season. Beside confirming the increasing frequency
of high flow episodes, the figure also clearly shows the projected reduction of
the summer inflow: taking as reference the day 130 in the graph, the inflows
referring to the first years are around the 14 TAF/day (199.87 m3/s) and they
decrease smoothly and constantly until reaching approximately at 5 TAF/day
(71,38 m3/s).
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Figure 5.2: Boxplot with the pattern of inflows along the years 2020 until 2099.
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Figure 5.3: Daily inflow variability with respect to the both days and years. The anticipation
of the dry period can be seen along the years as well as an increase of the flood events during
winter.

5.1.2 Statistical analysis

Starting from the visual analysis presented in the previous section, the main
characteristics of the future scenarios are then discussed by computing some
statistics, such as mean, variation, maximum values and minimum daily values
displayed in table 5.1, but also the number of drought and flood days (defined
in section 4.1.1).

The same statistics, now computed over the 2070-2100 period which present
the more evident changes in the projected inflows with respect to the historical
ones, are illustrated in Figure 5.4. The red bars identify candidate scenarios
to be selected, which are listed in Table 5.2. Not surprisingly, the majority of
the these scenarios have in common the RCP8.5, the most extreme Radiative
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Index Scenario Frequency
Max mean 11 9
Min Mean 79 7
Variance 11 10

Maximum 25 7
Minimum 82 5

Counter flood 93 6
Counter drought 80 7

Counter flood season 52 6
Counter drought season 5 6

Length flood 51 4
Length drought 40 6

Length flood season 52 4
Length drought season 5 7

Table 5.1: Statistical characteristics to be assessed, the scenarios selected and the frequency of
these scenarios as the most suitable for each index.

Concentration Pathway.

Scenario Model name RCP
2 access1-0 RCP8.5
5 bcc-csm1-1 RCP2.6
11 canesm2 RCP8.5
17 cesm1-bgc RCP8.5
20 cesm1-cam5 RCP6.0
24 cnrm-cm5 RCP4.5
25 cnrm-cm5 RCP8.5
32 fgoals-g2 RCP8.5
40 gfdl-cm3 RCP8.5
51 giss-e2-r RCP2.6
52 giss-e2-r RCP4.5
66 inmcm4 RCP8.5
70 ipsl-cm5a-mr RCP8.5
79 miroc-esm-chem RCP6.0
80 miroc-esm-chem RCP8.5
82 miroc-esm RCP4.5
84 miroc-esm RCP8.5
93 mri-cgcm3 RCP8.5
95 noresm1-m RCP4.5

Table 5.2: All scenarios selected, their model names and RCPs.
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Figure 5.4: Different criteria displayed in bar graphs and the selected scenarios in red.

To complement this statistical analysis, four RClimDex indices, adapted
from their original formulation for meteorological variables (Zhang and Yang,
2004) to be used for inflow scenarios, are analyzed. As it can be seen in ta-
ble 5.3, the correlations between the statistical indices and the indices from the
RClimDex library are generally significant.
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Index TOT. INFLOW COUNTER R90 R95P R99P
Mean 1.00 0.94 0.88 0.80
Var 0.73 0.47 0.92 0.95
Min 0.55 0.63 0.37 0.23
Max 0.41 0.15 0.56 0.65

Flood Legnth 0.71 0.69 0.62 0.58
Flood Length Seasonal 0.70 0.67 0.59 0.54

Flood Counter 0.94 1.00 0.69 0.58
Flood Counter Seasonal 0.95 1.00 0.71 0.60

Drought Length -0.46 -0.36 -0.44 -0.55
Drought Length Seasonal -0.67 -0.78 -0.39 -0.33

Drought Counter -0.72 -0.75 -0.48 -0.45
Drought Counter Seasonal -0.91 -0.99 -0.63 -0.52

Table 5.3: Correlation between indices used at this work and the ones from RClimDex.

5.1.3 Computation of the expected value of perfect information

After the statistical selection process, 19 scenarios were selected and then an-
alyzed looking at the Expected Value of Perfect Information. The estimated
values of EVPI are reported in Table 5.4 and illustrated by the figure 5.5.

Scenario POP (TAF/day)2 BOP(TAF/day)2 Absolute(TAF/day)2 Relative
Hist 0.127 0.309 0.182 0.59
2 0.05 3.72 3.67 0.99
5 0.47 3.59 3.12 0.87
11 404730000.00 976990000.00 flood flood
17 0.01 242610000.00 flood flood
20 0.31 4.05 3.74 0.92
24 0.01 3.29 3.28 1.00
25 0.14 55471000.00 flood flood
32 0.11 2.54 2.43 0.96
40 0.64 4.94 4.30 0.87
51 0.00 0.00 0.00 NA
52 0.00 0.00 0.00 NA
66 480200.00 480200.00 flood flood
70 0.79 2.55 1.76 0.69
79 1.31 2.69 1.38 0.51
80 2.50 5.49 2.99 0.54
82 0.52 0.83 0.32 0.38
84 1.07 1.40 0.33 0.23
93 0.01 0.18 0.17 0.93
95 106150000.00 545958495892.64 flood flood

Table 5.4: Perfect operation policy and basic operation policy performance; the absolute EVPI
and relative EVPI computed over the selected future scenarios and over the historical period.
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The obtained values of EVPI characterize two types of results. Scenarios 51
and 52 present an operational cost of 0 (TAF/day)2 for both deterministic and
stochastic cases. This indicates that a forecast is not necessary for such scenarios
as it is already possible to achieve perfect operation without it. These scenar-
ios have been therefore not considered in the following steps of the proposed
procedure. Conversely, scenarios 11, 66 and 95 show a much higher operation
cost for both BOP and POP, where values over thousands of (TAF/day)2 are a
result of the flood penalty in equation 3.2. This result suggests that these sce-
narios predict critical flood events that cannot be controlled even with a perfect
knowledge of the future. Since informing the operations with the synthetic
forecast cannot outperform the POP solution, also these scenarios will not ben-
efit from forecast information and are not considered in the following steps. In
conclusion, only 14 scenarios are left to be used for the later stages of this work.

Figure 5.5: Absolute and relative EVPI: Red colour stand for the relative gains and blue colour
stands for the absolute gains; Dashed lines correspond to the historical values.

The analysis of the remaining 14 scenarios provide interesting insights about
the potential value of forecast for informing the future operations of Folsom
reservoir, as illustrated in Figure 5.5. Scenarios 17 and 25 show the presence of
flood for the basic operation but no flood with a perfectly informed operation.
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This suggests that forecasts can in theory help prevent floods that otherwise
are expected to happen (these scenarios are not included in figure 5.5 for read-
ability reasons). Looking at the other scenarios in the figure, two main findings
emerge: the first is that the absolute potential gains are not completely pro-
portional to the relative potential gains. In fact, there are scenarios where a
relative gain is high and the absolute gain is low and vice versa. Secondly, no
scenario excels in both indices. To better understand the relationship between
future scenarios and potential value of the forecast, the correlation between the
absolute and relative EVPIs is investigated (see Table 5.5).

Index Absolute Relative
Mean 0.28 0.80

Variance 0.44 0.63
Min -0.12 0.44
Max 0.09 0.14

Flood Legnth 0.36 0.75
Flood Length Seasonal 0.40 0.79

Flood Counter 0.17 0.77
Flood Counter Seasonal 0.21 0.77

Drought Length 0.18 -0.05
Drought Length Seasonal -0.26 -0.83

Drought Counter -0.09 -0.58
Drought Counter Seasonal -0.13 -0.75

Table 5.5: Correlation between the two types of performance gain and the various indices
indicating different properties of the scenarios. Positive correlation for the absolute gain
are variance and flood length. For the relative gains flood indices and mean are positively
correlated and drought negatively correlated. Relative gains seem to be more influenced by
the climate conditions than the absolute gain.

Results suggest that there are differences in correlation between considering
the absolute or relative EVPI. The absolute gain seems to be less correlated with
the climatic indices. It has almost no negative correlations, except for a weak
correlation with the drought and it has a medium positive correlation with the
variance and the flood seasonal length, with a maximum of 0.4 of dependency.
On the other hand, the relative gain seems to be more sensitive to the climatic
indices. It has a strong positive correlation with the mean, 0.8, the variance, 0.6,
and especially with the flood indices, where they range between 0.75 and 0.79.
However, it has a strong negative correlation with the drought indicators, up
to -0.83. This suggests that long spells of drought decrease the efficiency of the
forecast.
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Figure 5.6: Flood and drought occurrences for the historical scenario and for the future projec-
tions. The red dots represent the selected scenarios.

Lastly, given these complex relationships between EVPI and the character-
istics of the projected scenarios, it is more suitable to use the 14 subset of sce-
narios only for specific experiments that require more data. Simplifying the
subset allows for better readability and still preserves the quality of the results.
Because of this, the subset of 14 scenarios is processed via k-means clustering
to identify three groups of similar scenarios. The clustering algorithm was run
over the floods and drought indicators, so the groups could be divided accord-
ing to the levels of wetness and dryness. Using this clustering analysis, three
groups of scenarios were identified and classified as dry, intermediate and wet.
The climate characteristics among the members of each group were averaged
and the most similar scenario to the group average was selected as the repre-
sentative of each group. They were named after the group they represent: dry,
intermediate and wet. The dry scenario selected is the model MIROC-ESM-

55



5. Results

CHEM based on the RCP 6.0 from the Japan Agency for Marine-Earth Science
and Technology, Atmosphere and Ocean Research Institute (The University of
Tokyo), and National Institute for Environmental Studies; the second scenario,
labelled as the intermediate one, is the model IPSL-CM5A-MR based on the
RCP 8.5 from Institute Pierre-Simon Laplace and the wet scenario is the one
from the Community Earth System Model Contributors, based on the model
CESM1 (BGC), running on the RCP 8.5 as well. In addition to these three rep-
resentative scenarios, two extra scenarios are included for some experiments,
one presenting the driest scenario and the other representing the wettest sce-
nario. The driest scenario is similar to the dry one, being developed by the
same group and using the same model, but this time simulating the RCP 8.5.
The wettest scenario is also based on the RCP 8.5 as simulated by MRI-CGM3
models. Figure 5.6 illustrates the characteristics of these scenarios with respect
to the historical observation in terms of number of flood and dry days per year.

Scenario Dry Intermediate Wet Driest Wettest
Mean (TAF) 6.84 9.19 11.23 7.04 11.17

Variance (TAF2) 273.16 454.79 545.70 289.59 324.96
Min (TAF) 0.16 0.16 0.16 0.15 0.162
Max (TAF) 426.34 478.38 497.77 468.24 378.42

Flood length (days) 18.90 31.18 34.44 20.33 31.93
Flood counter (days) 35.32 50.05 63.41 36.22 73.61

Drought length (days) 83.75 73.93 69.88 78.67 71.19
Drought counter (days) 123.23 115.67 106.76 129.60 103.11

Table 5.6: Table illustrating the properties of each selected scenario. The columns show the
scenarios representing the three types of groups: dry, wet and intermediate and the two
extra scenarios driest and wettest. The rows are for the main characteristics of each scenario.

The properties of the scenarios are illustrated by Table 5.6. As expected, the
driest and dry scenarios are the ones with longest spells of drought, 83 days in
a row, and the largest amount of dry days, 129. The wet scenario, on the other
hand, is less worrying in terms of drought, even though it still presents 106
days of drought in average per year. In terms of floods, however, it is expected
to have 63 days of floods, being 34 of those during a consecutive streak, while
the wettest achieves a total of 73 days of flood in a year. Finally, the interme-
diate scenario presents an equilibrium between the two other scenarios, with
drought occurrences at 115 days per year and 50 days of flood cases per year.
The variability characteristic to the intermediate scenario can also be seen in fig-
ure 5.7, in which the intermediate scenario not only shares values with both dry
and wet scenarios along the century by constantly alternating between them,
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but it is also the one with the largest confidence interval. The dry scenario is
constantly at low inflows until the very end of the century, where it increases
significantly. Lastly, the wet scenario also presents a large confidence level, but
in general it stays above the 10 TAF/day threshold, with a constant increase in
inflow along the century.

Figure 5.7: Smoothed inflows for the entire future period, presenting trends for each scenario.
The buffer around the inflow series is the confidence level of 95% for each scenario at a given
time.

5.2 Synthetic forecast generation

After the selection of the candidate scenarios, it is necessary to develop a syn-
thetic generator that mimic the existing forecast model to produce ensemble
forecast for the future scenarios. Following the methodology introduced in
Section 4.2, the present section discusses the type of residual selected to be
modeled, the synthetic model performance alongside its error distribution with
respect to the original model and an example of the actual synthetic forecast in
the future joined by a future scenario.
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In order to generate synthetic forecasts, two data sets are required, observed
and forecasted inflows, and the essential step here is to model the forecast resid-
uals. It is worth recalling that this approach assumes stationarity in the forecast
skill, meaning that it assumes the forecast model in the future is characterized
by the same level of accuracy (i.e., same residuals) shown in the historical pe-
riod. The forecast model is then calibrated over the 1980-2015 time period for
which real forecast data are available. As in Nayak et al. (2018), the statistical
properties of the synthetic forecasts are then validated over the period 1915-
2015. The accuracy of the existing forecast model is shown in the scatterplot in
Figure 5.8, with the trajectories of forecast residuals illustrated in Figure 5.9.

Figure 5.8: Scatterplot between observed and forecasted inflow. Blue line is the pattern of the
data distribution and the red line indicates the perfect fit between the data.
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Figure 5.9: Distribution of the forecasted inflow in relation to the observed inflow.

The majority of the forecasts tends to overestimate the observed inflow, par-
ticularly for values up to 50 TAF/day; moreover, the greater the inflow gets,
the larger the residual is. Figure 5.9 confirms these results and shows that the
majority of the residuals are close to zero. Nevertheless, it is also verifiable that
there is a periodic occurrence of extreme values along the years, ranging from
4 up to 7.5 TAF/day in the log format.

5.2.1 Residual testing and selection

The first step in generating the synthetic forecast is to define the nature and
type of residual to be used. It can be either additive or ratio between the fore-
casted and observed values, and the space can be logarithmic or normal. This
choice is supported by the tests reported in Figures 5.10-5.13, i.e.: histogram of
the residuals, quantile-quantile (Q-Q) plot, autocorrelation (ACF) and partial
autocorrelation (PACF) tests and heteroskedasticity.

The following figures present the performances of the four different types
of residuals:
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Figure 5.10: Histogram for different types of residuals. Log additive residuals present a more
uniform distribution than the others.

Figure 5.11: Normal Q-Q plots for different types of residuals. Additive residuals present a
more uniform distribution.
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Figure 5.12: Autocorrelation function for different types of residuals. Additive residuals show
longer memory.
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Figure 5.13: Partial autocorrelation function for different types of residuals. Normal additive
residuals are the only showing negative PACF values and longer memory.
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Figure 5.14: Heteroskedasticity function for different types of residuals. Only additive residu-
als show heteroskedasticity.

Figure 5.10 suggests that the only residual looking normally distributed is
the additive residual in the logarithmic form, in spite of its slight skewness to
the right. However, figure 5.11 shows that none of the types of residuals follows
a normal distribution, but the closest to that is again the additive residual in
logarithmic form. All figures present "heavy tails", indicating a considerable
amount of extreme values, which are not expected in a normal distribution
case.

There is a remarkable difference between additive residuals and ratio resid-
uals when it comes to the memory. The autocorrelation, Figure 5.12, presents a
long memory in both additives, while no memory for the ratio residuals. In this
case, the space in which the residuals are measured did not seem to be of great
impact. Conversely, the results of the PAFC test in Figure 5.13 show the space is
dominating the type of results generated, with log residuals presenting a one-
day memory, while normal space residuals presented longer memory. Lastly,
the heteroskedasticity of the four residuals reported in figure 5.14 indicates that
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only additives errors are heteroskedastic; for ratio residuals, the residuals’ vari-
ation is instead independent from the magnitude of the observation.

These five tests helped in better understanding how the residuals behave
and that the four types of residuals are not completely random processes. From
these results, the additive residual in logarithmic form was selected for the
forecast generation model (see next section) as it presents a histogram and an
autocorrelation function that are easier to to reproduce synthetically.

5.2.2 Synthetic model

The synthetic forecast model generates a 30-member forecast ensemble by means
of the kNN approach described in Section 4.2 working on the additive log-scale
residuals. The model is calibrated over the training period 1980-2015 and val-
idated over the 1915-2015. Four main analyses were used: Error distribution
analysis, forecasted against observed values, histogram and autocorrelation
functions. Figure 5.15 illustrates a scatterplot between observed and forecasted
inflows, including both the real forecast and the synthetic one. It shows that
the synthetic forecast successfully reproduce the skill of the real forecast. Fig-
ure 5.16 gives further evidence to the quality of the synthetic results by showing
that the synthetic forecasts are again similar to the observed ones in terms of
residual-observation relationship. Both sets of data are distributed according
to a triangular shape with the majority of the errors being close to zero. The
histogram presented in figure 5.17 also shows some similarities between real
and synthetic forecasts.
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Figure 5.15: Scatterplot presenting the forecasted inflow based on the observed inflow. Black
triangles represent the historical data and the red circles the synthetic generated.

Figure 5.16: Relationship between the residual inflow and the observed inflow. Black triangles
represent the historical data and the red circles the synthetic generated.
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Figure 5.17: Histogram with magnitude and frequencies of the residuals for both historical and
synthetic cases. Black represents the historical data and red the synthetic generated.

The autocorrelation functions of the synthetic forecast reported in Figure
5.18, however, show worse performance. The original residuals during sum-
mer had a long memory, up to 40 days, with a linear shape descending from
0.9 for the 1-day lag up to 0.1 for the 40-day lag. Also, the winter ACF had a
similar shape to the summer one. The synthetic model reproduces instead a
weaker ACF for the summer period. The same bias affects the winter period
which exhibits weaker memory with respect to the case of original forecasts.
In general, these differences in memory can however be considered acceptable,
because the autocorrelation values are anyway above the statistical significance
for the majority of the days.
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Figure 5.18: Autocorrelation functions for observed residuals and synthetic residuals for both
summer and winter seasons.

When considering the main properties of the synthetic model, the analyses
previously done allow for a general assessment of the model. In three out of
four tests the synthetic properties present a high fidelity reproduction of the
historical properties and only one, the autocorrelation of the residuals, was not
as high as the original one. Nevertheless, its performance is deemed satisfac-
tory, as, even though not with the same intensity, the memory is still accounted
for the entire period. The model was then applied to each scenario of projected
inflows in order to generate a 30-members ensemble of projected synthetic fore-
cast for the time period 2070-2099.

5.3 Forecast value

The final section of the results is designed to provide answers to the main sci-
entific questions of this work by quantifying the historical and future value
of inflow forecasts for the operations of Folsom reservoir. The next step is to
explore the behaviour of the system when ruled by different versions of the pol-
icy tree, such as the differences in storage dynamics, release decisions and in
which ways the forecasts can contribute to a change in the operation. Lastly, the
results of the water operations are displayed for different scenarios, time peri-
ods and models of policy tree, followed by multiple comparisons and analyses
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with the purpose of investigating exhaustively the impacts and contributions
of forecast models in future conditions. For more information on the validation
of the results obtained by the policy tree, see annex A.

5.3.1 Historical and future forecast values

Firstly, a summary of the operating costs across different scenarios and oper-
ating policies is shown in figure 5.19, where all the scenarios are shown in the
vertical axis referring to both future and historical time periods. The horizontal
axis indicates the cost function as defined in eq. 3.2. The blue bar represents
the perfect operating policy designed via DDP under the assumption of per-
fect knowledge of the future; the black bar indicates the baseline operation,
without any use of forecast; and the red dot represents the operation informed
by the synthetic forecast. Additionally, the black X indicates when there is an
event of flooding. Results show that for all scenarios, the forecast-based oper-
ation reduced the cost in comparison with the baseline. Second, operations in
general are going to have their costs increased for every future scenario when
compared to their historical performance. It is interesting to observe that, for
the dry scenario, the baseline operations attains a null cost over the histori-
cal period, meaning the water supply always met the demand also control-
ling any potential flood event; the same operations simulated over the future
time period attains a cost exceeding 2.5 (TAF/d)2. For the intermediate case,
even though the historical period already presents costs in all operating poli-
cies, with almost no value generated by the use of forecast information, all of
them get increased in the future period over which forecast allows reducing the
cost of the baseline solution. Lastly, the wet scenario indicates small costs for
all policies over the historical periods; in the wet future, however, the baseline
operations becomes incapable of controlling floods, with forecast information
becoming extremely valuable as they allow avoiding such extreme events.

68



5.3. Forecast value

Figure 5.19: Operating costs for different scenarios and time periods. The black bar repre-
sents the baseline operation without forecast, the blue bar stands for the perfectly-informed
operation and the red dot shows the actual operation with the use of forecast. The black X
represents scenarios that have flood events and penalties linked to it.

The results in Figure 5.19 are then illustrated in Figure 5.20 adopting a nor-
malization of the cost where the performance of the baseline performance is
set equal to 1. The performance improvement attained by the perfect operating
policies and the one informed by the synthetic forecasts is then shown as a frac-
tion of avoided costs. The dry scenario over the historical period shows that the
use of forecast information provides almost the same reduction in cost as the
perfect case, suggesting that the existing forecast already provides all the in-
formation needed to perfectly operate the system. In future periods, however,
the operating costs increase and this means the performance of the forecast-
informed solution is lower than the perfect operations, suggesting the potential
need of more accurate forecast to face the projected inflows under this scenario.
For the intermediate case, the forecast operation is closer to the perfect opera-
tion in the future period than it is in the historical one, indicating that forecast
value is expected to increase over time. This is also true for the wet scenario,
where the future period presents a perfect and a forecast-based operations that
are approximately zero percent of the baseline cost which is driven by the oc-
currences of flood events, whilst the historical period shows a less relevant
contribution by the forecast.
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Figure 5.20: Costs reductions and fractions in a normalized space for the different scenarios.
The black bar represents the baseline operation cost without forecast as 1.0, the blue bar
indicates the maximum reduction possible with a perfectly-informed operation and the red
dot shows the actual reduction of the operation cost when using forecast.

The direct comparison between historical and future forecast value is re-
ported in Figure 5.21. The black squares represent historical absolute forecast
value and the red triangles represent the forecast value in the future. The figure
shows that the gain is expected to increase for every single scenario, no matter
the conditions predicted by the different scenarios. As explained in the previ-
ous paragraphs, the wet scenario shows a occurrence of flood for the baseline
scenario, which makes the actual absolute gain way larger than it is demon-
strated in the figure, but for the sake of readability, it was decided to represent
this fact with a sign and preserve the proportions for the other scenarios.
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Figure 5.21: Forecast gain for both historical and future time periods in absolute terms,
(TAF/day)2. Black square stands for the historical forecast improvement with respect to a
baseline operation, red triangle stands for the operation in a future time period. Note that
for the sake of readability, the gain of future wet scenario which allows avoiding the flood
event is rescaled and marked with a black cross.

In addition to these absolute gains, figure 5.22 presents the results for the
relative gains. While the black square and red triangle still represent the his-
torical and future forecast value, respectively, the figure reports relative values,
ranging from 0 to 1, being the reference level the performance attained by the
baseline policy without forecast. Differently from the absolute gain, there is no
clear trend or pattern among the scenarios, with the intermediate and wet sce-
narios presenting higher forecast value in the future than in the past, while dry
scenarios show a loss of gain with time.
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Figure 5.22: Forecast gain for both historical and future time periods in relative terms, based
on the baseline operation without forecast. Black square stands for the historical forecast
improvement with respect to a baseline operation and red triangle stands for the operation
in a future time period.

One last experiment is taken, where the fraction of the maximum perfor-
mance improvement (with perfect knowledge of the future) covered by using
the synthetic forecast is analyzed. Figure 5.23 shows the fraction of the gain
generated by the forecast for each scenario in both historical and future peri-
ods, where 0 means there is no gain with respect to the baseline operation and
1 means the forecast operation is performing as the perfect operation. Results
seem to confirm the findings discussed on the relative forecast values varying
with the underlying climate scenarios, with the two dry scenarios indicating a
decreasing forecast value while the intermediate and the wet future scenarios
present an increasing trend over time.
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Figure 5.23: Temporal evolution of the forecast gain between a historical time period and a
future time period. The red triangle stands for the gain of forecast in the future, while the
black square represents its gain in a historical time period. If the red triangle is closer to one
than the black square, it means the value increased in time, otherwise, it lost value.

These results and the way they are conditioned, just like previously seen
with the relative case, suggest an analysis involving more scenarios could give
additional contributions to the study. Therefore, all the 14 scenarios obtained in
Sub-section 5.1.2 are used for the experiment shown in Figure 5.24, where the
gains for every single scenario are measured and the scenarios are ranked from
driest to wettest. This figure confirms the hypothesis that the increasing/de-
creasing trend in forecast value over time is linked to the characteristics of the
considered climate projections. On the lower part of the figure, which encom-
passes the driest scenarios, the forecast value decreases with time. Then, in the
middle section, which holds the intermediate scenarios, gains and losses are
observed; and, finally, in the upper section with the wettest scenarios, an in-
creasing forecast value is observed. Wet scenarios are therefore expected to be
associated with increasing forecast value in the future, whereas dry scenarios
are expected to show decreasing values.
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Figure 5.24: Assessment of the forecast gain for different scenarios along time. The red triangle
stands for the gain of forecast in the future, while the black square represents its gain in a
historical time period. If the red triangle is closer to one than the black square, it means the
value increased in time, otherwise, it lost value.

To provide further support to these evidences, Figure 5.25 (a) presents the
temporal gain or loss of forecast value according to the number of flood days
(blue triangles) and to the number of drought days (red circles) for the differ-
ent climate scenarios. Despite the large variability probably due to the lim-
ited number of scenarios, the figure shows that there is a positive correlation
between the forecast value and the quantity of flood, and there is a negative
correlation when taking the number of drought days. Figure 5.25 (b) reports a
scatter plot between the temporal deviation of the drought days (vertical axis)
and flood days (horizontal axis) over future and historical periods, respectively,
with the color of the circles representing the trend of forecast value over time.
The scatterplot confirms the two main patterns obtained so far: the greater the
increase in the frequency of drought, the the more negative is the forecast value
change in the future, and the wetter the scenarios get, the higher is the increase
in the future forecast value.
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Figure 5.25: (a) Analysis of the forecast gains when compared to extreme events such as floods
and droughts. Blue triangles stand for the number of days in a year of floods and red circles
represent the days in a year with a drought. The two lines stand for the linear regression
of the two data sets, blue for the flood cases and red for the drought cases. (b) illustrates
the forecast gain in time, varying in color, with the temporal deviation of the two types of
events, flood and droughts, between the past and future time periods.
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The pattern observed in this work for the fraction and relative forecast val-
ues are likely linked to the type of forecast model used. A short-term forecast
model with a 3-day leadtime is designed to anticipate quick and intense events,
such as floods, but is not ideal for long-term operations. Therefore, a future sce-
nario that presents a higher level of water inflow offers more possibilities for
the forecast model to operate, either by hedging water or preventing floods.
Conversely, for scenarios that are expected to become drier with time and the
drought spells to get longer, the 3-day leadtime forecast system becomes less
efficient in improving the water management, since it is incapable of foresee-
ing far into the future and to act accordingly. It needs to be seen, however,
the contributions of a long-term forecast to the future dry scenarios, as it is
the appropriate type of forecast for dealing with long lengths of drought and
improving water supply over a longer time period.

5.3.2 Dynamics of the forecast

Given the results illustrated in the previous section showing the benefit of us-
ing forecast for informing the operating policy, it is crucial to understand how
the decisions are influenced by the forecast information. The first analysis fo-
cuses on the wet season dynamics in the reservoir. During this season, there
is a considerable amount of water entering into the reservoir, usually higher
than the amount demanded downstream, and the main concern is to prevent
floods. Figure 5.26 compares storage and release trajectories for different poli-
cies over the 2080-2100 time period under the dry scenario. Results in panel (a)
show that the forecast operation allows for higher levels of water to be stored
than under the baseline solution. The forecast-based operation, which is not
constrained by the flood control pool, is able to store more water along the year
without facing any flood event through the entire period of time, thus improv-
ing the amount of water available for water supply during the rest of the year.
Figure 5.26 (b) presents the corresponding release trajectories, which confirm
the superiority of the forecast-based operation in satisfying the downstream
water demand. Finally, Figure 5.26 (c) compares the storage dynamics of poli-
cies informed by perfect and synthetic forecasts. By using a perfectly-informed
prediction, during the wet periods, the level of water is similarly managed to
the actual forecast-based operations.
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Figure 5.26: Storage levels for a dry scenario in the future. (a) Comparison between the storage
levels managed by the baseline operation, the black line, and the forecast operation, blue line.
Rule curve stands for a static ruling policy; (b) Release scheme during a wet season, being
the dashed line the water demand; (c) Comparison between the storage levels of the actual
forecast (blue line) and the perfect forecast operation (green line). The background colors
represent the type of action taken by the policy: red for hedging, blue for releasing excess and
light yellow for releasing the demand.
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Figure 5.27 analyzes the role of forecast under a wet scenario, under which
the baseline solution generates some flood events (note the change in action
in panel b, by the change of colours from release demand, light yellow back-
ground, to release excess of water, the blue background) despite the presence
of the flood control pool. On the contrary, the forecast-based solution is able
to maintain higher average storage values (panel a) and, at the same time, an-
ticipate the inflow peak and successfully control the flood (panels b-c). When
considering the perfect forecast, Figure 5.27 (d), the two trajectories follow a
similar dynamics, but the perfect one manages to keep the level of storage at
its full capacity for longer periods than the synthetic forecast-based operation.
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Figure 5.27: (a) Storage levels in a wet scenario managed by the baseline operation, black
line, and the forecast-based operation, blue line. (b) and (c) show the moment when a flood
happens. (d) Comparison between the synthetic forecast operation (blue line) and the perfect
forecast operation (green line). The background colors represent the type of action taken by
the policy: blue for releasing excess and light yellow for releasing the demand.

79



5. Results

During the dry season, the system dynamics are slightly different. The wa-
ter demand is often higher than the water available and the risk of flooding
is minimal. The main difference between baseline and forecast-based solution
relies in the more effective hedging strategy when forecasts are used. Forecast
indeed allows storing more water during the wet season (Figure 5.28a) and
thus providing a more continuous water supply than using the baseline solu-
tion (Figure 5.28b). When taking into account the perfect forecast (figure 5.28c),
it is seen that not much could be changed in comparison with the actual fore-
cast, since during the dry season there is limited inflow and the accuracy of the
forecast is of less importance.
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Figure 5.28: (a) Storage levels during a dry season in a dry scenario for both baseline (black
line) and forecast-based (blue) operations, with the latter storing more water than the former.
(b) Corresponding period of time for release of water by the dam in both operations and the
demand curve of water for the same period (dashed line). (c) Comparison between the storage
management for both operations using an actual forecast (blue line) and a perfect forecast
(green line). The background colors represent the type of action taken by the policy: red for
hedging, blue for releasing excess and light yellow for releasing the demand.
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Similar results are obtained for the dry season of the wet scenario. Higher
levels of storage for forecast-based operations during the wet season (figure
5.29a) allow a more effective hedging that reduces the water supply costs. In
this case, the flexibility of the forecast-based solution that is not constrained
by the flood control pool plays an important role in allowing to store large
volumes of water. Furthermore, as figure 5.29 (b) indicates, after the month
of September, the baseline operation starts to decrease the volume of water
released until it reaches zero cfs for some days during the months of Novem-
ber and December. Conversely, the forecast-based operation keeps supplying
a constant volume of water. Similarly to the previous case, the perfect opera-
tion looks similar to the one informed by the synthetic forecasts (Figure 5.29c),
confirming that the extremely limited water availability becomes the limiting
factor while the accuracy of the forecasts play a minor role.
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Figure 5.29: (a) Storage levels in a dry season of a wet scenario for both baseline (black line)
and forecast-based (blue) operations, with the latter storing more water than the former.
(b) Corresponding period of time for release of water by the dam in both operations and the
demand curve of water for the same period (dashed line). (c) Comparison between the storage
management for both operations using an actual forecast (blue line) and a perfect forecast
(green line). The background colors represent the type of action taken by the policy: red for
hedging, blue for releasing excess and light yellow for releasing the demand.
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Summarizing, the forecast proves to be the most suitable for wet conditions
and this is valid for both the wet scenarios and wet seasons, as the larger the
amount of water inflow, the higher the potential of hedging strategies for re-
ducing the water supply costs. During really dry conditions, such as a long dry
season in a dry scenario, the value of forecast is of little use, given the com-
plete lack of water incoming. At the same time, the forecast proved useful in
avoiding flood events, because it has the capacity of anticipating the inflow and
releasing water beforehand.

5.3.3 Robustness and adaptation

The entire analysis conducted so far designs a set of basic, perfect, and forecast-
based policies over a historical and a future horizon, assuming the adaptation
of the operating policy to each climate condition is a straightfoward adaptation
option. However, given the future uncertainty of the climate scenarios, there
is a genuine interest in understanding if the adaption of past policies into the
future is possible and if a policy can account for more than one future scenario.
Figure 5.30 illustrates these cases, by showing the change in the operating poli-
cies between a historical operation (a) and a future operation (b) for the same
scenario and the diverse operating strategies for different scenarios (c) and (d)
over the same future period. Therefore, in this section two additional poten-
tial benefits of forecast information are discussed, looking at its contribution in
designing adaptive and robust operating policies, respectively.
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Figure 5.30: Comparison between the resulting policy for the wet scenario in the historical
time period (a) and the policy for the same wet scenario but now in the future period (b);
Example of how two scenarios can generate different actions for a similar state, (c) is the
policy for a wet scenario, while (d) is the one for a dry scenario.

The first experiment aims at assessing if a policy optimized over the histori-
cal period is capable of adapting to the future period only because it is informed
by the forecast. This analysis hence requires quantifying the performance over
a future period of a baseline policy and a forecast-based solution, both designed
over historical conditions. Results in Table 5.7 show that adding forecast infor-
mation is not producing consistently more adaptive solutions than the base-
line. In more details, scenarios 17 and 25 present flood events for both types of
policy, meaning a proper future optimization is required for flood prevention.
Then, scenarios 2, 32, 79 and 80 show a better performance under the baseline
optimization than under the forecast optimization due to the fact that the latter
suffers from flooding while the former does not. Lastly, the rest of the scenarios
do not show any flood event and in these cases, the forecast-based operations
offer a batter performance than the baseline. Therefore, there is a suggestion
that the policies optimized for a forecast-based operation are more conserva-
tive in terms of hedging for water supply than the baseline operations at the
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cost of increasing the flood risk.

Scenario
Past forecast

policy
Past baseline

2 4.84E+10 1.80
5 1.17 1.26

17 1.76E+12 3.89E+08
20 1.15 1.55
24 0.11 0.79
25 5.19E+11 7.20E+10
32 2.73E+11 4.15
40 1.62 5.15
70 1.67 2.82
79 7.71E+10 3.69
80 1.31E+11 6.61
84 3.24 5.29
93 0.05 0.31

Table 5.7: Comparison of the total operating costs between the forecast policy optimized in the
past and the past baseline for simulations during the future time period.

The second experiment aims at exploring the potential for designing a ro-
bust solution with respect to the uncertainty of different climate projections.
Table 5.8 presents the results obtained when a policy optimized over a specific
scenario (on the column) is simulated over a different scenario (on the row).
The row/column "Critical flood scenario" indicates that the wet scenario can
only avoid flood events when operated by its own policy. Results suggest that
the only policy that is able to avoid floods for all scenarios is the one trained for
the wet policy. Conversely, all the other policies suffer from flood events under
the wet scenario. This means that the wet policy is the only one that could be
possibly considered robust from a flood-prevention perspective.

Optimized Policies

Scenario Wet Intermediate Dry Driest
Critical flood

scenario
Wet 0.023 3.32E+11 1.82E+11 4.65E+10 Flood

Intermediate 2.844 1.719 1.813 2.257 No flood
Dry 3.404 2.501 2.156 2.476 No flood

Driest 6.620 4.574 4.107 3.920 No flood
Critical flood scenario No flood Flood Flood Flood

Table 5.8: Analysis of robustness from a flood prevention perspective. The columns describe the
optimize policy and the rows describe the simulated scenario. The Verdict scenario indicates
if the given scenario suffered from flood events under any policy and the Verdict policy
indicates if the corresponding policy results in flood events for any type of scenario.
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However, it is worth mentioning that the performance of this robust solu-
tion is outperformed by the adaptation of the baseline solution over the future
(see Table 5.9) in all scenarios except the wet one. Moreover, the performance
of the robust solution is comparable with the one of the baseline operations op-
timized over the historical conditions. This result hence suggests that although
forecasts can contribute in increasing the flexibility of the solutions in adapting
to the future climate (at least in terms of lower water supply costs), they do not
produce significant improvement in terms of robustness of the forecast-based
operations.

Scenario
Robust forecast

policy
Baseline past Baseline future

Wet 0.023 1.75544E+12 3.89E+08
Intermediate 2.844 2.82 2.55

Dry 3.404 3.69 2.69
Driest 6.620 6.61 5.49

Table 5.9: Analysis of robustness from a water supply perspective. The columns describe the
robust policy obtained in table 5.8 and the the baseline policies, in historical and future
periods, while the rows describe the simulated scenarios.
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Many projects suggest that water stress is expected to increase globally driven
mainly by population growth and climate change, contributing to increasing
the water scarcity around the world. Climate change is also likely to change
water patterns at a local scale, culminating in intense short-term storms that
might cause floods impacting millions of people. Water infrastructure, such as
reservoirs, can help mitigate the problems related to water supply whilst also
buffering incoming storms and ultimately reducing flood damages. One of the
main ways of enhancing the management of a water reservoir is to add a fore-
cast system for informing its operating policy. Forecasts can anticipate both
short-term events like floods and long-term phenomena, such as droughts,
and there are many studies indicating the advantage of using forecast systems
in water operations. However, the contribution of a forecast under a climate
change scenario characterized by more frequent and intense extreme events is
still unknown.

This thesis contributes a novel procedure to quantify the future value of
forecast information in a future under varying conditions generated by climate
change. The proposed methodology is structured in three main blocks and is
demonstrated in the case study of Folsom reservoir (California), whose opera-
tions is balancing water supply and flood control. The first block is responsible
for selecting a subset of diverse climate scenarios among a set of climate large
ensemble of climate projections. The second block consists in developing a
synthetic forecast model to generate streamflow forecast for the future horizon
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that project the skill of the existing forecast system. By matching the synthetic-
forecast generator with the future climate projections, various ensembles of
synthetic forecasts are obtained for the multiple climate change scenarios se-
lected in the first step. Finally, a recently developed policy optimization frame-
work is used to design optimal operating policies for all scenarios with and
without the use of forecast, over the historical and future time periods. This al-
lows quantifying the forecast value as the improvement in system performance
generated by the forecast information, as well as analyzing its evolution over
time.

Results show that water operations in the future, with and without forecast,
are expected to substantially increase in cost for all scenarios tested, meaning
the performance of the reservoir is likely to decrease with time. Moreover, it
has also been demonstrated that the absolute value of forecast is expected to
increase in all scenarios, ranging from 0.1 (TAF/day)2 to 1.7 (TAF/day)2 for
non-flood scenario, and, up to billions of (TAF/day)2 for scenarios where a
flood is prevented. Nonetheless, when considering the relative gain, a different
interpretation was obtained, since not every single scenario indicates increas-
ing forecast value with time. Some scenarios suggest that in the future the
relative gain of the forecasts might deteriorate up to 60% and the reason to that
lies in the characteristics of the future projections. Results show that scenarios
deemed as dry usually suffer from a decrease in the relative value of the fore-
cast, ranging from -60% to +5%, whilst wet scenarios tend to present positive
relative gains, from 0% to 100%. Further experiments confirmed this correla-
tion between the forecast value and the level of wetness of a projection. The
justification for this result is linked to the characteristics of the forecast system
used as reference, since its range of prediction is of three days in advance. This
type of short-term forecast performs better at preventing floods than at pre-
dicting long-term droughts, which explains why wetter scenarios where flood
events are more likely have better overall performance than dry scenarios in
which dry spells last up to two years. Finally, the adaptability and robustness
of forecast-based operations were also investigated. Results show that even
though forecast-based solutions designed over the historical time period are
more susceptible to the enhanced floods of the future as seen in some scenar-
ios, they are able of reducing the water supply costs of 36% when compared to
the baseline. When simulating policies to multiple scenarios, it was found that
there are policies that can prevent floods from taking place for the majority of
the scenarios tested and also improve the water supply performance with re-
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spect to the historical baseline operations optimized to each scenario, with an
average increase in performance of 3%. Yet, this robust solution is 18% less
efficient when compared with future baseline operations.

The results of this work suggest that while forecasts are useful in general
and can contribute at preventing floods and reducing the impacts of droughts
even under different hydrological regimes due to climate change, the forecast
value depends on the perspective of the analysis and on the stakeholders in-
volved. The absolute forecast value is projected to increase in the future, while
the relative one might increase or decrease depending on the type of future sce-
nario that will occur. This stalemate has the potential to be conflicting because,
for instance, a forecast provider might be interested in using the absolute gain
to determine its product is a long-lasting solution, whereas a reservoir operator
might be more interested in the relative performance of the forecast and might
be concerned of changing its current strategy to embed forecast if their value
will actually decrease with time.

These conclusions suggest a number of directions for further investigation.
Among the future projections, at least three showed a flood occurrence even
for the perfect operation and had to be excluded, given the limitation of this
work in dealing only with improving the management of the reservoir. A pos-
sible continuation would be to develop an adaptation strategy combining both
management and structural improvements, in order to create a policy capable
of dealing even with the worst possible outcome. A crucial assumption of this
work is considering the residual propagation of the synthetic forecast station-
ary over time. Because the impacts of climate change are still far from being
fully understood, this assumption might be questionable and would require
to run a sensitivity analysis on the results with respect to potential increase or
decrease in forecast skills. Moreover, the diverging results obtained analyzing
absolute and relative forecast values suggest the need of more thorough and
careful analysis on the mutual relationship and dependency on the underlying
climate conditions, but also the possibility of trying different forecast models,
such as long-term ones, more suited for long dry spells. The robustness ex-
periment tested in this work is a posteriori, which means we tried to find the
policies that could satisfy other scenarios, but naturally all of them were op-
timized to a specific scenario. Running a real robust optimization, conducted
over multiple scenarios may allow designing solutions that better cope with the
uncertainty of the future climate. Finally, we considered the Folsom reservoir
as a single entity, but it is actually part of a larger reservoir network; studying
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the coordinated operations of the multireservoir systems using forecast infor-
mation might provide novel perspectives on the value of forecast and the ways
it can contribute to water operations.
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Appendix
A

Validation of policy tree results

The simulation of the policy trees for the selected scenarios in both historical and future time
periods allows for the generation of different types of results. However, it is necessary, as a very
first step, to verify that the results are feasible. So that can be accomplished, the initial step is to
compare the resulting operation costs obtained by the policy tree simulation in its many forms
with the costs obtained by the dynamic programming, demonstrated in subsection 5.1.3.

After generating an ensemble of 30 traces in section 5.2, a final prediction value is calculated
based on the ensemble. In this work, two types of ensemble were initially considered for the
policy tree, one where the predicted value corresponds to the 90th percentile of the ensemble
and the other to the maximum value of the ensemble. The first validation test is to assess if the
results generated by the policy tree surpass the upper boundary, represented by the DDP. As
table 1 indicates, between the two variations of the ensemble and the DDP, the best operational
cost is still obtained by the DDP operation, which is expected given the perfect information it
possess and this supports the same pattern found in the work by Herman and Giuliani (2018).
Moreover, given that only one variation of the ensemble is needed, one of the two needs to be
selected as the actual ensemble. Again taking table 1 as reference, it is noticeable how similarly
the 90th percentile of the forecast ensemble and the maximum value of the ensemble produce
results. Since the idea is to establish which variation of the ensemble is most suitable and given
that the usual operator profile expected in this type of operation consists in a more conservative
approach, the "Max" policy is perceived as the best candidate and is thus selected for further
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use.

Time period Scenario DDP Max 90th percentile

Historical

Dry 0 0 0
Intermediate 0 0 0

Wet 0.0138 0.14 0.16
Absolute 0.01 0.01 0.01
Relative 0.1505 0.37 0.39

Future

Dry 1.5169 2.16 2.13
Intermediate 1.2521 1.72 1.69

Wet 0.0113 0.02 0.02
Absolute 3.6999 3.92 3.91
Relative 1.06E+08 4.13E+11 4.14E+11

Table 1: Table illustrating the costs of each scenario for different types of policy. The columns
show the type of model used and the rows define the type of scenario for each time period.

Next step consists in the comparison between the maximum value of the ensemble with
both the single trace policy and the perfect policy. The objective of this test is to understand
how the costs are affected by the use of the ensemble and if there is any chance of it bypassing
the synthetic residual behaviour, since the residual is stationary. Therefore, it is necessary to
include a policy that uses a single trace, thus not relying on statistical operations when pre-
dicting the inflow for the next three days, instead of having the whole ensemble of forecasts.
In addition, it is also required to have the perfect policy, which instead of having a synthetic
forecast of the next three days, subjected to forecasting errors, has the perfect knowledge of
the inflow of the next three days and is expected to provide better forecasting. The difference
between these three policies can be better understood with table 2.

Time period Scenario Max One trace Perfect

Historical

Dry 0 0 0
Intermediate 0 0 0

Wet 0.14 0.16 0.13
Absolute 0.01 0.01 0.01
Relative 0.37 0.37 0.37

Future

Dry 2.16 2.13 2.05
Intermediate 1.72 1.77 1.59

Wet 0.02 0.02 0.02
Absolute 3.92 3.89 3.85
Relative 4.13E+11 4.27E+11 3.96E+11

Table 2: Table highlighting the difference in values between the ensemble of forecasts, a single
trace and the perfect policy. The rows define the type of scenario for each time period.
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Figure 1: Estimation of costs by the perfect forecast, the ensemble and single trace. The grey
line stands for the standardized perfect-operation cost, while the markers represent how
much more expensive the operations are for each case. The traced blue line illustrates the
difference in cost between the ensemble and a single trace policy.

There is a confirmation that the perfect policy is the one presenting the best results along
all the scenarios, guaranteeing the feasibility of the policy results. Moreover, there is no clear
domination between the max and one trace variations and figure 1 illustrates the case, where
the difference between the operational costs among the ensembles and the single policy are
showed. Since there is the absence of any evidence suggesting a statistical prevalence or rela-
tion between the values, it is safe to attest the maximum value of the ensemble is still preserv-
ing the forecast error with respect to the observed inflow and thus duly replicating an actual
ensemble of forecasts and not overperforming the predictions.
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