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Abstract 

A literary review on micro-lattice structures for the design of orthopedic implants has been 
performed and two parameters, i.e. Young modulus (E) and pore size (p) (defined as the diameter 
of the biggest inscribed sphere inside the lattice domain) have been found crucial to avoid stress 
shielding the former and to promote bone ingrowth and vascularization the latter. Design intervals 
of those variables has been defined to ensure the above-mentioned properties (300-4000 MPa 
for ‘E’ and 500-1000 𝜇𝑚 for ‘p’) and 3D printed via SLM using Ti6Al4V powder. 
Among seven initial unit cell geometries, two of them (Diamond and Tetrahedron) have been 
selected on the basis of the overmentioned constraints on ‘E’ and ‘p’.  For the numerical 
estimation of the elastic modulus, a homogenized approach has been used and proper PBC 
(Periodic Boundary Conditions) have been imposed to the boundary of a periodic micro-lattice 
unit volume representative of the infinite homogenized mean. Different ways to apply PBC has 
been studied for symmetric and non-symmetric structures. A Matlab code has been developed to 
calculate pore size of ideal and real geometry reconstructed from CT scan. 
Static compression and tension tests have been conducted and the homogenized stress vs strain 
curves have been obtained with the aid of DIC (Digital Image Correlation). CT scans have been 
performed in order to evaluate the differences between real and ideal geometry.  
Numerical elasto-plastic simulations under compression loading condition have been realized 
either on the ideal and real structures and the values of Young modulus, yield stress and pore 
size have been estimated and compared with experimental data. An attempt to substitute solid 
with beam elements thus saving computational time and enabling the modelling of big structures 
has been performed; even if it resulted promising, several open questions have been left for future 
developments.  
A strong relationship has been observed between relative density and printing quality on one side 
and mechanical properties on the other side. With reference to Tetrahedron topology, an 
important deviation between as-designed and as-manufactured Young modulus and yield stress 
(nearly 50 %) is present because of poor geometry other than lower relative density (16.6 % ideal 
vs 14.5 % real). Nevertheless, real values of ‘E’ and ‘p’ of both cells shape still fall within the 
interval defined by the constraints relevant for the biomedical application.  
With reference to the numerical compressive simulations, a difference, caused by boundary 
effects, between the elastic modulus of the periodic unit with PBC and the structures composed 
by a finite number of cells (like the models of the specimens) has been assessed and quantified 
for both cell topologies as a function of the cross-sectional area. These boundary effects are 
mainly due to the presence of free surfaces at the boundary of the specimens. 
Regarding the non-linear regime, Buckling has been observed on Tetrahedron in compression 
tests; the same behavior has been predicted by numerical analysis. The observation, already 
present in literature, that one periodic unit cell with PBC is not enough to represent the infinite 
mean in non-linear regime in case of buckling has been confirmed. No buckling phenomena has 
been observed for Diamond cell. 
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Sommario 

Una ricerca legata all’applicazione di strutture micro-lattice finalizzata alla progettazione di protesi 
ossee è stata realizzata in letteratura e due parametri, ovvero modulo elastico (E) e dimensione 
di poro (p) sono risultati cruciali per evitare l’intorpidimento osseo il primo e per promuovere 
vascolarizzazione e ricrescita ossea il secondo. Gli intervalli di progettazione per garantire tali 
proprietà sono stati definiti (300-4000 MPa for ‘E’ and 500-1000 𝜇𝑚 for ‘p’).  
Partendo da sette celle unitarie candidate, due di loro (Tetraedro e Diamante) sono state 
selezionate sulla base della migliore compatibilità con ‘E’ e ‘p’ e stampate in 3D con la tecnica 
SLM usando polvere di Titanio Ti6Al4V. 
Per la stima numerica del modulo elastico, un approccio di omogeneizzazione è stato applicato 
e opportune condizioni al contorno periodiche sono state imposte all’interfaccia di un volume 
unitario di micro-lattice in modo tale che esso sia rappresentativo del mezzo omogeneo infinito. 
Differenti modalità di applicazione delle PBC sono state studiate su strutture simmetriche e non. 
Un codice Matlab è stato sviluppato per calcolare la dimesione di poro sia della geometria ideale 
sia di quella reale ricostruita a partire dalla tomografia.  
Test sperimentali a trazione e compressione sono stati condotti e le curve sforzi-deformazioni 
omogeneizzate sono state misurate tramite la tecnica DIC (Digital Image Correlation). Inoltre, le 
immagini tomografate sono state acquisite per valutare le differenze tra geometria reale ed ideale.  
Simulazioni numeriche con modello elasto-plastico sono state realizzate sia sulle strutture reali 
sia su quelle ricostruite a partire dalla tomografia e i valori di modulo elastico, dimesione di poro 
e carico di snervamento sono stati stimati e confrontati con i dati sperimemtali. Un approccio per 
sostituire gli elementi solidi con i beam nei modelli ad elementi finiti è stato implementato per 
favorire la modellazione di geometrie computazionalmente onerose; sebbene esso sia 
promettente, diversi sono i punti aperti lasciati a sviluppi futuri. 
Una forte dipendenza fra densità relativa e qualità di stampa da una parte e proprietà meccaniche 
dall’altra è stata osservata. Con rifermento alla geometria tetraedrica, un’importante differenza 
tra modulo elastico e snervamneto reali ed ideali è presente (50 % circa) a causa di una non 
perfetta riuscita di stampa oltre che alla differenza delle densità relative (16.6 % ideale contro 
14.5 % ideale). Ciononostante, i valori reali di modulo elastico e dimensione di poro di entrambe 
le geometrie rispettano ancora i vincoli rilevanti in ambito biomedico.  
Con riferimento alle simulazioni numeriche, una differenza, causata da effetti di bordo, tra i moduli 
elatici della cella singola con PBC e di strutture composte da un numero finite di celle (come i 
modelli dei provini) è stata stimata e quantificata per entrambe le geometrie come funzione della 
dimensione di sezione. Tali effetti di bordo sono dovuti alla presenza di superfici libere alla 
periferia dei provini. 
Per quanto riguarda il regime non lineare, la deformazione di tipo buckling è stata osservata sulla 
struttura tetraedrica nei test di compressione; lo stesso comportamento è stato previsto anche 
dalle analisi numeriche. In linea con studi precendenti, si è confermato che una singola unità 
periodica non è sufficiente per rappresentare il mezzo omogeneo infinito in campo non lineare in 
presenza di buckling. Nessun cedimento di tipo buckling è stato osservarto sulla cella Diamante. 
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1. Introduction 

The thesis work hereafter presented regards the topological and mechanical study of micro-lattice 
structures obtained by SLM (Selective Laser Melting) and made of Ti6Al4V for severely damaged 
bone replacement and it has been developed at the mechanical department of Politecnico di 
Milano in cooperation with Prof. Nima Shamsaei of Auburn university Alabama. The objective of 
this thesis work is to establish a starting point for the application of competences and experience 
of the research group of a mechanical department about the mechanical assessment of micro-
lattice e structures to the biomedical field in order to design orthopaedic implants for the 
substitution of severely damaged bones. To this extent, this work is divided into two main parts: 
the first part comprises chapter 1 and chapter 2, the second part is composed by chapter 3, 4 and 
5. 
The aim of the first part is to carry out a literary review about the state of the art of the use of 
micro-lattice scaffold in biomedical field and understand which parameters are needed to make 
the implant suitable for bone substitution and which solutions have been figured out so far. What 
is more, in the first part, the problem of the pore size computation by means of a home-made 
code is fronted as well as the way PBC must be imposed to a small periodic unit to represent the 
homogenised infinite lattice mean for symmetric and non-symmetric geometries. The ultimate 
objective of the first part is to design suitable periodic unit cells lattice geometries suitable for the 
overmentioned biomedical application and perform the 3D printing of compression and tension 
specimens. 
In the second part, compression and tension experiments for mechanical characterisation are 
carried out as well as the CT scans of compression samples for the analysis of real relative density 
and FE reconstruction of the real geometries. To understand how and if the specimen is able to 
predict the Young modulus of the homogenised infinite mean numerical models are established. 
Moreover, the study of how many periodic unit are needed to obtain an RVE (Representative 
volume element) of the infinite lattice either in linear and non-linear regime is made. Finally, 
numerical values of Young modulus, yield stress and pore size are computed on ideal and real 
reconstructed structures and compared with experiments. 

1.1 State of the art 

1.1.1 Properties of bone 

Human bone has a hierarchical structure which goes from the macroscale to the sub-nanoscale. 
Although each level of such hierarchy performs important functions, it is purpose of this work to 
limit the attention to the macroscale, the same one of the orthopaedic implant. 
At such level, a distinction between cortical or compact bone and cancellous or trabecular bone 
is made as it can be seen in Figure 1-1 
Cortical bone is stiffer and is in charge of carrying loads, it stands at the periphery of the structure, 
it is highly anisotropic possessing higher mechanical properties in longitudinal rather than 
transversal direction, better in compression than tension [1]. 
Cancellous bone fills the inner part, it has high porosity and performs important biological 
functions since it contains bone marrow where red blood cells are produced[1]. 
As far as mechanical and geometrical properties go, values are affected mainly by bone type (for 
instance tibia is stiffer than femur) and age [2]. Below, some general ranges are shown according 
to [2] either for cortical (Table 1) and cancellous bone (Table 2): 
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Figure 1-1:	Cortical	and	cancellous	bone 
 

 
Cortical bone 

 
E 
 

15-28 GPa 

Tensile YS 
 

100-140 MPa 

UTS 
 

68-170 MPa 

UCS 
 

179-213 MPa 

Density	
 

≅ 1.85 𝐠
𝐜𝐦𝟑 

Porosity 
 

3-5 % 

 
Table 1: properties of cortical bone 

 
 

Cancellous bone 
 

E 
 

0.02-0.83 GPa 

Tensile YS 
 

- - 

UTS 
 

- - 

UCS 
 

2.2-10.6 MPa 

Density	
 

≅ 0.3 𝐠
𝐜𝐦𝟑 

Porosity 
 

50-90 % 

 
Table 2: properties of cancellous bone 
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1.1.2 Brief historical remarks of orthopaedic implants and main 
features 

The history of orthopaedic implants dates back to China around 2000 BCE with bamboo pegs to 
replace missing teeth and 1000 BCE in Egyptian society with similar pegs made by copper [3]. 
Looking to more recent years, in 1985, thanks to the discovery of antiseptics and X-ray radiology, 
metal implants and screws started to appear and between 1936-1950 bio-compatible solution 
such as Co-based and Ti-based were developed [3]. Today, most of the commercially available 
prothesis for bone replacement are still made of full metal and, even if this is good from the load-
bearing and durability point of view (component life up to 25 years[3]), they cannot achieve some 
important features which were recently pointed out, and that micro-lattice implants manufactured 
by 3D printing are able to. 
The technical aspects that must be met by modern prothesis can be summarized according to [4] 
in the following four points: 
 

1. Form: scaffold should completely fill the bone defect cavity. 
 

2. Function: scaffold needs to provide load-bearing properties. 
 
3. Fixation: scaffold must provide an adequate interface and interconnection to the 

surrounding bone. 
 

4. Formation: scaffold should promote new bone formation. 
 

Whereas points 1 and 2 are already addressed also by full metal solutions, point 3 and 4 represent 
the new challenge of modern research. 
Fixation can be achieved by avoiding the phenomenon of stress shielding, by means of an 
implant’s Young Modulus lower or equal to the one of real bone. 
Formation instead, means to promote a biological activity in terms of vascularisation and bone 
tissue regeneration and it is enhanced by providing a certain porosity and pore size to the implant. 

1.1.3 Stress shielding and vascularisation 

Stress shielding involves bone resorption and bone density reduction caused by a drop of the 
usual level of stress which human tissue is normally subjected to and can bring to the failure of 
the implant. Said phenomenon occurs, for example, in full metal prothesis since they carry most 
of the load leaving human bone in a condition of decreased physiologic loading. Common full 
metal implants like Co-Cr-Mo or Ti6Al4V have a stiffness of 210 GPa and 110 GPa respectively, 
much higher than the one of human bone [3] thus causing this type of problem (see Table 1 and 
Table 2 for human bone properties). Because elastic properties of micro-lattice scaffolds are 
much lower than the one of the original material from which they are made, they are a successful 
solution to the problem. 
On the other end, formation within the prothesis is agreed to be a crucial function to be addressed. 
Vascularization and cell seeding would reconstruct new bone all around and through the implant 
so that it acts as a bridge for new bone tissue generation. 
Pore size and porosity are the two geometrical parameters to select in order to make such 
biological activity successful [5], [6]. 
Porosity is defined as one minus the ratio between the volume of the real unit (𝑉2) cell and the 
one of a cube having the same unit length (𝑉3245): 
  

𝑃∗ = 91 −
𝑉2
𝑉3245

< 100 

 
Pore size is the radius of the largest inscribed sphere into the lattice medium [5]. (Figure 1-2) 
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Figure 1-2: pore size image [5] 
 
Several methods can be found in literature to measure pore size: 
Bobbert et al. [7] acquired images form a real lattice specimen with micro-CT scanner, 2D slices 
of the structure were reconstructed using the software Analyse 11.0 and finally the Fiji plugin Bonj 
was used for 3D computation of morphological features (pore size was determined by means of 
the “thickness” option). A similar approach is adopted in [8]  where the software VGstudiomax is 
adopted. A slightly different possibility is based on the development of an algorithm acting on 
voxel images and capable of measuring pore size as described in [9]. 
According to [5] porosity over 50 % and pore size between 50 and 800 µm are required, similar 
values are also suggested by [6] (pore size between 100 and 900 µm). In the work of  Du Plessis 
[8] micro-lattice structures with different geometry of the unit cell were investigated and structures 
with dual pore size like the octet are considered to be interesting since big pores enhance 
vascularization and small pores enhance cell seeding. What is more, another important feature 
associated to pore size is its progressively increase/reduction from the core out to the periphery 
of the prothesis (the so called dense-in or dense-out configuration Figure 1-3). Ezgi Onal et al. 
[10] discovered, out of in vitro test on BCC porous scaffolds, that a varying dense-in pore size is 
more beneficial for cell seeding and proliferation than dense-out porosity; as a matter of fact, after 
7 days of test, the dense-out structure started to occlude vascularization which develops from 
outside to indside. 

 
 

Figure 1-3: dense-in and dense-out scaffold configurations [10] 
 

The work of [6] proposes, instead, cylindrical multilayer configurations with increasing pore size 
from the external to the internal (Figure 1-4) in order to mimic the structure of real bone (especially 
for long bones like femur); the stress strain curves in the post-plateau region show a lower degree 
of fluctuations resulting in a higher ductility and higher capacity to absorb energy which is 
beneficial for orthopaedic applications. 
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Figure 1-4: multilayer cylindric scaffolds [6] 
 
To obtain porous structures with such a small value of pore size and such a complex internal 
shape, conventional manufacturing techniques cannot be applied, and additive manufacturing is 
the only solution up to date. 
Two similar 3D printing procedures are mainly used: Selective Laser melting (SLM) and Electron 
beam melting (EBM) because of their good controllability and higher precision if compared to 
other fabrication methods like direct deposition and three-dimensional printing [11]. Both 
technologies progressively build up the component layer by layer through the melting and 
consequent solidification of metallic powder which is added at each step; while the former 
provides energy from a laser, the latter employs a high-energy beam of electrons. 
Some of the disadvantages and issues of AM are related to the energy and time consumption (a 
3D printing session is still quite slow and unsuitable for mass production), to the surface quality 
and the need of performing some post processing and to the dependency of the mechanical 
properties with the printing direction. 

1.1.4 Micro-lattice unit cell geometries  

A lattice structure is made by a subsequent repetition, either by a mirror or a pattern, of a single 
periodic unit cell, namely a 3D structure of any shape contained inside a cube of a certain side 
length “L”. As far as design goes, an important distinction can be made between two different 
ways of conceiving a cell: the so called “strut-based” and “sheet-based” configurations (Figure 
1-5). The former is composed by a combination of beam-like structures called struts all connected 
to each other, the latter is featured by a smooth and continuous attachment of sheets of material. 
Among sheet-based solutions, triply based minimal surfaces, (TBMS) (minimal surfaces with 
‘‘translational symmetries in three independent directions”) [7] are the most utilised ones. 
 
 

 
Figure 1-5: examples of “sheet-based” TPMS cells (left) and “strut-based” cells (right) 

	
Several different geometries and dimensions are proposed in literature leading to a quite wide 
variety of possible solutions to be selected for design. An exhaustive state of the art review 
summary about static compressive mechanical properties of various strut-based geometries is 
reported by [2]. The key aspect to meet is the contemporary cohesion of mechanical properties, 
cell seeding and vascularization and manufacturability, all of them being controlled by contrasting 
variables; for instance, to an increase of strength, that can be obtained by choosing higher 
dimensions of struts, follows a decrease of pore size and porosity which might be detrimental for 
cell seeding and might bring about manufacturing issues. Regarding the matching of mechanical 
properties with human bone, the approach is not univocal in the sense that either the 
correspondence with cortical or cancellous bone properties or a halfway compromise can be 
found in literature. To make an example, the structures studied in the work of [12] emulates 
cortical bone while in the work of [7] results are more close to trabecular bone. 
Although sheet-based lattice seems promising for biomedical application, they owns more issues 
from the manufacturing point of view because of their small thickness and continuously changing 
orientation which involves the need of much more support material [7]. 
Talking about strut-based structures, two relevant families can be defined according to their 
deformation behaviour: bending-dominated and stretch-dominated.  
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Bending-dominated possess struts which tend to bend under compressive loading resulting in 
shear failure whereas stretch-dominated are stiffer and fail in a layer-by-layer mechanism. 
According to the Maxwell criterion [13] the following rule is suggested to make a prior distinction 
among the two: 
 

Being: M = b – 3j + 6 
 
b = number of struts of the cell; 
j = number of joints of the cell; 
 
if M < 0 the structure is bending-dominated 
if M ≅ 0 the structure is stretch-dominated 
if M > 0 the structure is over rigid 
 
A stretch-dominated structure is generally preferred since it is able to better distribute the load. 

1.1.5 Experimental characterisation of micro-lattice structures 

The analysis of mechanical properties is carried out either by experimental tests and FE numerical 
simulations. All the references that will be cited make use of Ti6Al4V that is a common material 
employed for bone replacement thank to its biocompatibility. The compressive test is the most 
common one; up to date, tensile tests are not diffused due to the problem of designing a proper 
gripping on the specimen that prevents localised failure near the gripping itself, a possible solution 
is proposed by [14] where struts own increasing density close to the grasps so to increase the 
stiffness of that area and enhance failure at the middle of the sample as shown in Figure 1-6.  
 

 
 

Figure 1-6: Grasping solution for a tensile specimen; (a) is the initial configuration, (b) the modified 
configuration with varying density and (c) the resulting failure correctly far from the grasps	[14]	

 
In general, tests on metamaterials are more difficult to be performed than for conventional ones 
since no extensometers can be put and the use of DIC (Digital Image Correlation) to map strains 
is suggested. An example of compression test set up which makes use of DIC is discussed in the 
work of Fei Liu et al. [15] on Diamond structures of varying struts diameter and fillet radius 
between each strut. For the obtainment of the stress vs strain curve, a homogenised approach 
has been adopted, namely the load has been divided times the cross-section area (the one of a 
square) and the displacement times the vertical length of the specimen. A similar method for 
compression tests has been implemented by Ezgi Onal et al. [10], in this case uniform and 
functionally graded BCC structures with varying densities and have been tested featuring the 
uniform micro-lattice a 45 band failure and the functionally graded a layer-by-layer crush initiating 
at the weakest struts (Figure 1-7).  
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Figure 1-7: Failure	mode	of	BCC	uniform	(a),	(b)	and	functionally	graded	(d),	(e)	micro-lattice	
scaffold	[10] 

 
As far as fatigue properties go, S. Amin Yavary et al.  [16] investigated the fatigue properties of 
diamond, cube and truncated cuboctahedron micro-lattice finding a correlation between porosity 
and fatigue strength (the higher is porosity, the poorer is fatigue response) as well as the 
matching, for each cell type, of the normalised fatigue curves for different porosities respect to 
the yield stress of a single curve suggesting therefore a direct dependency between static and 
fatigue properties. Talking about TBMS, according to [7], four TPMS (primitive, I-WP, gyroid and 
diamond) have been printed via SLM to carry out either fatigue and static compressive tests. 
Results show Young Modulus in the range of trabecular bone (3.8–6.4 GPa) and good fatigue 
properties for the I-WP, gyroid and diamond structures (shapes are shown in  Figure 1-10) with 
life up to 7x10^5 cycles. 
 

1.1.6 Numerical characterisation of micro-lattice structures 

The comparison between experimental and numerical properties is sometimes present, and it is 
extremely important since it establishes and validates models that can easily and rapidly predict 
the behaviour of the real component. In two subsequent papers edited by Pasini et al. [5], [17] 
two strut-based structures namely Tetrahedron and Octet truss are investigated (Figure 1-8). A 
particular effort is devoted to the realisation of design maps able two correlate and compare 
Young modulus, yield stress, strut thickness, porosity and pore size of as-design and as-
manufactured lattice, showing the relative errors of each overmentioned variable between the 
real and the ideal cell; those design maps are reported in Figure 1-9. The numerical models 
established make use of AH (asymptotic homogenisation), which replaces the micro-lattice with 
a representative full solid volume, to get the elastic properties (E) and, a reduced volume respect 
to the real specimens, to obtain yield stress with elasto-plastic material properties. The results 
are such that as-manufactured mechanical properties are lower than as-designed one owing the 
formers lower relative density. 
 

 
 

Figure 1-8: Octet Truss (left) and Tetrahedron (right) cells [5] 
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Figure 1-9: Example of design spaces realised by [17]; (a) for TET and (b) for Octet truss 
 
In the work of Du Plessis et al. [8], strut-based and TBMS sheet-based structures are compared 
from a numerical point of view. with static compressive simulations (Figure 1-10) involving linear 
elastic models. Being the linear elastic model not excessively expensive from a computational 
point of view, the entire lattice specimen is modelled. The most relevant conclusion is that TPMS 
structures have lower value of Von Mises stress and so they can distribute better the load without 
relevant stress concentration regions: this could suggest also a longer fatigue life than strut-based 
systems.  
 

 
 

Figure 1-10: structures	compared	in	the	work	of	[8]	
	

Moving to strut-based scaffolds, a different work of Du Plessis [12] performs numerical static 
compressive tests on diagonal and rhombic dodecahedron lattice samples of 5x5x5 cubes (Figure 
1-11). Once again simulations are linear elastic and performed on the entire specimen with the 
aim of computing the elastic modulus and locations of localised stress. Results show a good 
matching with cortical bone Young Modulus. 
 

 
 
 

Figure 1-11: Rhombic	dodecahedron	(a)	and	diagonal	(b)	cells	[12]	
	

 
One of the aims of FE numerical modelling of ideal structures is the identification of a 
homogenized model involving a “small” sub-domain made of a certain number of unit cells 
representative of the infinite lattice mean (RVE) (Representative volume element). According to 
the definition provided in [18], RVE “consists in a limited region of the domain that contains the 
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main microstructural features of the material and responds as the infinite medium, if uniform 
strain, or stress, and boundary conditions are imposed”. The question to be answered is: in which 
manner the size of the RVE influences the mechanical properties prediction in non-linear regime? 
With pertinence to this question, a study presented Vigliotti et al. [18] on 2D beam structures in 
non-linear regime, demonstrates that the size of the RVE is function of the cell type and can be 
higher than one after a bifurcation in the homogenised stress vs strain curve. Figure 1-12 shows 
that, in compression, a bifurcation occurs with the consequence that the 1X1 RVE is no more 
representative of the infinite lattice mean. 
 

 
 

Figure 1-12: Example of bifurcation due to different bucking deformation modes 
 

Bifurcations can occur, for example, for buckling deformation modes because the system tends 
to follow the buckling wave shape of lowest energy. Regarding the linear elastic behaviour only, 
a homogenisation Matlab code able to compute the homogenised elastic constants of infinite 
cellular materials based on FEM simulation is described in [19] and scripts are freely available. 
Another topic about numerical models has to do with the differences observed between the 
properties of the RVE (defined as above) and the ones of the specimen estimated by imposing 
boundary conditions able to replicate the real experiment. To this extent, looking at the results 
provided by Foletti et al. [20], the dimension of the specimen used for experimental mechanical 
tests influences its properties (in terms of E and 𝜎?) up to a certain size for which they are 
supposed to asymptotically tend to the value of the RVE, therefore, the design of a specimen with 
suitable size must be realised or at least one should be aware of the error committed respect to 
the properties of the infinite mean. 
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2. Design and identification of micro-lattice 
topology for biomedical application 

The first part of the thesis work has the aim of designing two different micro-lattice specimens of 
the strut-base type with cylindrical struts, candidates for bone substitutions to be 3D printed via 
SLM using Ti6Al4V powder. The design of the cell involves either the choice of the shape and the 
choice of two independent geometrical parameters among: strut length, strut diameter, pore size 
and porosity. 
To fix ideas, an example is made in  Figure 2-1. 
 
 

 
 
 

Figure 2-1: example of cubic cell: strut diameter (d) and strut length (L) are independent parameters 
 

As it is possible to see from the figure, once a cell shape is selected (simple cubic shape is 
considered here for simplicity) other two parameters (strut diameter and strut length in this 
example) are enough to fully characterise the ideal micro-lattice either in terms of geometry and 
in terms of elastic properties. In other words, the definition of two parameters among E (Young 
Modulus), L (strut length), d (strut diameter), P (porosity) and p (pore size) characterises 
univocally an ideal unit cell of a certain geometry. 
In order to orient the selection and the design for the printing session, prior decisions have been 
taken in terms of which independent variables to look at and in terms of which variables 
boundaries to consider.  
As far as interesting variables goes, Young modulus, pore size, UTS (ultimate compressive 
stress) and σA summarise the main features of micro-lattice orthopaedic implants and material in 
general. In the preliminary design phase, particular attention is paid to E (Young modulus) and p 
(pore size) that control stress shielding the former and cell seeding and vascularization on the 
latter. These last have been chosen to build up a target design area onto an E vs p chart. 
Regarding the values, the interval between 500-1000 µm is taken for pore size in line with the 
values suggested in literature, while 500 MPa and 4000 MPa are the boundaries for Young 
modulus. The choice of E is dictated by different aspects: first of all, as mentioned in paragraph 
1.1.4, the state of the art of micro-lattice prothesis presented already the matching of cancellous 
bone properties as a possible alternative, in this condition, the structure has minor load bearing 
function but improved bone in-growth features with the aim of enabling a bone reconstruction all 
around; what is more, the increase of Young modulus is, in general terms, associated to a 
decrease of the micro-lattice porosity and pore size and consequent possible issues with SLM 
manufacturing; to conclude, such a design interval for E ensures the total avoidance of stress 
shielding which is one of the main reasons why micro-lattice prothesis are built. 
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2.1 CAD design and pore size computation 

Seven unit cell with different topology have been chosen as possible candidates for the printing 
session based on those structures that are more recurrent in literature. They are shown in Figure 
2-2. 
 

 
 
Figure 2-2: the seven unit cell shapes taken for the initial step of design; in order: (a) dodecahedron, 
(b) diamond, (c) BCC, (d) tetrahedron, (e) FCC, (f) H45, (g) octet truss. 

 
Whereas structures (a), (c), (f) and (g) owns three planes of geometric symmetry and form the 
lattice by either a symmetric or a periodic repetition of the unit cell without differences in the final 
shape, a clarification on the way the micro-lattice is obtained must be made for the remaining 
three geometries. Even if the base unit of (d) and (e) owns three planes of symmetry, a 2x2x2 
configuration, realised with a mirror operation, is needed to get a structure for which the infinite 
lattice can be equally achieved with a mirror or pattern repetition. As a consequence, the micro-
lattice reference unit becomes 2x2x2 instead of 1x1x1 for (d) and (e) (Figure 2-3). 
Diamond is the only arrangement without planes of symmetry: therefore, the only manner to 
realise the infinite correctly shaped micro-lattice is by periodically repeating the unit cell with a 
pattern. This distinction on the building of the metamaterial is important because it affects the way 
BC (boundary conditions) must be imposed in the FE simulations to make the base unit 
representative of the infinite mean as it will be shown later. 
 

 
 

Figure 2-3: 2x2x2 base unit for FCC (a) and Tetrahedron (b) 
 

The initial design of the candidate cells consists in the selection of either strut length ‘L’ and strut 
diameter ‘d’; the logic to set those values is mainly devoted to printability issues, to this extent, 
the reference intervals which have been considered are: 
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Strut diameter:  0.3 < 𝑑 < 0.8  mm 

 
Strut length:  𝐿 > 1.2   mm 

 
Non-dimensional Strut length I𝜆 = 		 J

K
L :			4 < 𝜆 < 6.5 

 
The lower bound on ‘d’ is suggested by the common experience that, in the printing of micro-
lattice samples, the precision would be to low and so the quality [5], the upper bound limits mainly 
the Young modulus which would otherwise get out of the target range set for this work. On the 
other end, the lower limit of ‘L’ guarantees that the pore size will not be too small as well as ’E’ 
would not be too high.  
Table 3 resumes all the selected geometrical parameters of the candidate micro-lattice. 
 
 

structure code  Strut diameter 
(d) 

 Strut length (L) unit 

BCC 0416 
0418 

0.4 
0.4 

1.6 
1.8 

mm 
mm 

FCC 0415 
0416 
0418 

0.4 
0.4 
0.4 

1.5 
1.6 
1.8 

mm 
mm 
mm 

Tetrahedron 0416 
0418 
0420 

0.4 
0.4 
0.4 

1.6 
1.8 
2 

mm 
mm 
mm 

Diamond 0416 
0418 
0420 

0.4 
0.4 
0.4 

1.6 
1.8 
2 

mm 
mm 
mm 

H45 0416 0.4 1.6 mm 

Octet truss 0424 0.4 2.4 mm 

Dodecahedron 0416 
0420 

0.4 
0.4 

1.6 
2 

mm 
mm 

 
Table 3: geometric properties of the candidate micro-lattice subjected to pore size and Young 

modulus analysis 
 

 
The software Digimat by Dassault system has been used for the CAD modelling of the unit cells. 
Although it is normally used for the design and FE analysis of composite materials, Digimat offers 
also an easy and fast approach to design lattice strut-based structures with of the ‘custom 3D’ 
option. It is possible to define the coordinates of the nodes that connects two or more struts and 
join them with circular beams of a specified diameter. The units have been generated with the so 
called ‘closed-strut’ configuration (like the one of Figure 2-2). The CAD-designed scaffolds have 
been saved with Parasolid (X_T) format and imported to Autodesk Inventor to compute their 
porosity ‘P’. 
As previously mentioned, pore size (p) is defined as the maximum inscribed ball inside the micro-
lattice and, based on such definition, no simple commands nor tools are available in traditional 
CAD software like Inventor to perform its evaluation. To overcome said issue, a simple Matlab 
code able to calculate pore size has been written. A complete description of its functioning is 
discussed below. 
The code takes a 3D voxel matrix of 1 and 0 that represents the specific cell as input; 1 is 
associated to the presence of material, 0 is associated to a void. The operations to move from 
the ITP CAD model to the voxel matrix are the following:  
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1. Starting from the CAD model, transform the format from ITP to STL Inside Autodesk 
Inventor. 

 
2. Import the STL format to Autodesk Netfabb and set its resolution; for all the cases a 

resolution of 10 µm has been assigned so that each element of the final matrix is 
representative for a cubic space of 10x10x10 µm 

 
3. Export the STL format as slices: at the end of this operation, a stack of PNG images is 

stored into a file, each image representative of subsequent section of the original cell with 
the same resolution of 10 µm.  

 
4. Import the slices to Matlab using the function ‘uigetfile’ and arrange them to create a cubic 

matrix with a for cycle; The lines of code to perform this operation are shown in Figure 
2-4. 

 

 
 

Figure 2-4: Code lines to import slices and arrange the 3D voxel matrix 
 
The variable ‘mat’ is a 3D voxel matrix in which numbers are on the usual scale 0-255, (0 for white 
region (void), 255 for black region (full) and different tonality of grey for all the numbers between). 
The images exported from Netfabb owns only black and white colours thus the values of the 
matrix are either 255 or 0. A final transformation turns 255 into 1 and the target matrix of 1 and 0 
is created. This last operation could theoretically be avoided and is made only for stylistic reasons. 
The main part of the code, by means of three for cycles one inside the other, goes through, one 
by one, each point of the ‘mat’ matrix and creates, centred in each point, an inscribed sphere 
which is a possible candidate to be the maximum. Before entering into the for cycles, three 
auxiliary matrices are defined. They are called 𝐵R?, 𝐵S? and 𝐵RS  and are generated with a pre-
defined Matlab function called ‘bwdist’. The latter takes a 2D voxel matrix of 1 and 0 as input and 
gives back, for each pixel different than one, the distance from the nearest non-zero pixel; since 
‘bwdist’ acts on a 2D matrix, the operation is repeated for each section of mat toward z direction 
to get 𝐵R?, toward y direction for 𝐵RS and toward x direction to get 𝐵S?. Whenever ‘bwdist’ 
encounters a 1 it returns 0. Figure 2-5 provides a visual example of ‘bwdist’: 
 

 
Figure 2-5: example of how the	Matlab function ‘bwdist' works: (a)	is	the	input	matrix	and	(b)	is	

the	output	
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Inside the system of three for cycles, at first, an initial trial value of the radius of a possible 
candidate inscribed sphere is defined equal to the minimum value among the one of the three 
matrices 𝐵R?, 𝐵RS and 𝐵SR at the correspondent set of 3D coordinate; the name of the radius is 
‘val’. ‘val’ might be higher than the radius of an inscribed sphere, nevertheless, it is a reasonable 
value from which to start to look for the biggest inscribed sphere whose centre has the specific 
coordinates of each step. 
matT, a 3D matrix full of zeros with the same size of mat, is defined and a sphere of radius equal 
to ‘val’ is built inside.  
For a generic iteration, jj, ii and zz is the set of coordinates representing the centre of the sphere 
whose initial radius is set equal to val (jj is associated to x, ii to y and zz to z in a cartesian 
reference system). The generation of the sphere is performed by stacking several circumferences 
in the x-y plane one after the other with increasing radius from planes zz-val to zz and with 
decreasing radius from planes zz to zz+v. The part of script which constructs the sphere is 
reported in Figure 2-6. 
 

 
 

Figure 2-6:  Code lines for the generation of the sphere inside matT 
 

As it is possible to appreciate form Figure 2-6, the circumferences are numerically assembled by 
solving their equation thus obtaining the two points of intersections with either the x or y axis. 
Once the sphere of radius val is inserted into matT, the former is multiplied times the original 
matrix mat with the point by point multiplication (each value of one matrix is multiplied times the 
value of the other matrix at the correspondent set of 3D coordinates). If the new matrix, generated 
by the product of mat and matT, does not contain any value equal to 1, it means that no point of 
intersection exists between the sphere and the micro-lattice cell and so the quantity val can be 
directly saved into a vector called D2. Otherwise, in case one or more point of intersection are 
found, the sphere is not inscribed, and its radius must be decreased. The algorithm recognizes 
the coordinates of all the points of intersection applying the Matlab function ‘ind2sub’ and 
calculates the distances between the centre of the sphere and every point of intersection; the 
minimum among all distances is the radius of a new sphere that is the maximum inscribed sphere 
centred in the specific set of coordinates ii, jj, zz; its value is saved inside D2. 
At the end of the system of for cycles, after all the points have been investigated and all the 
possible candidate inscribed spheres have been built, the variable D2 contains the values of 
radius of all the overmentioned spheres. The maximum of D2 multiplied times two is finally the 
pore size p. Because the resolution is always set to 10 µm, the computed quantity is multiplied 
times ten in such a way that the unit of p becomes micro-meters. Indeed, the final multiplication 
factor can be adjusted for different resolutions of the input images stack. The algorithm is flexible 
and can be used also to evaluate the pore size of a real tomography; of course, the higher are 
resolution and micro-lattice size and the higher is the computational time. A final picture showing 
the visual output of the algorithm with the maximum inscribed sphere into a Tetrahedron cell 
(taken as example) is reported in Figure 2-7. 
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Figure 2-7: Visual output of the algorithm 

2.2 Young modulus evaluation 

Numerical linear Finite Element (FE) simulation have been carried out in compression to 
investigate the Young modulus of the micro-lattice units in Abaqus CAE and understand which 
candidates get closer to the target area on the E vs p chart. Because the models are linear, no 
difference in the results occurs between tension and compression and, therefore, only the latter 
load case is implemented. Even though the geometric parameters initially set for the cells will not 
necessarily be the ones of the final to be printed specimens, they are helpful to give an idea of 
the elastic stiffness of each geometry with similar dimensions in a range of good printability. The 
RVE approach has been followed in the sense that appropriate BC have been applied so that a 
single periodic unit cell is representative of the infinite metamaterial, as a matter of fact, is taken 
for granted that the size of the RVE doesn’t affect the elastic modulus as stated in [18]. 
At this stage, an important distinction must be pointed out between those structures whose unit 
cell owns three planes of symmetries, and those who don’t: only diamond in this case. The 
distinction affects the way BC must be defined in order to make the periodic unit representative 
of the infinite mean: periodic BC for symmetric structures in the first case (which impose planarity 
of the surfaces), general periodic BC for the second. General periodic BC are always correct but 
involve a much higher computational effort and are avoided when possible. Before making the 
focus and explaining the difference among the two BC types, those steps which are common to 
each analysis are described. 
The first step regards the geometry to import in Abaqus: for a coherent homogenisation, it is 
mandatory to consider the so called open-strut configuration instead of the closed-strut one 
(Figure 2-8). The former implies half of the struts on the surfaces and one quarter of strut on the 
edges. Indeed, the imposing of symmetric BC in Abaqus would overestimate the stiffness (and 
all mechanical properties in general) in case of closed-strut leading to wrong results.  
All the cells are cut in Inventor and exported into SAT format which is suitable to be read into 
Abaqus. A qualitative picture of those structures is shown in Figure 2-9. 
Linear elastic material properties for Ti6Al4V have been set based on the parameters of a printed 
sample according to [21]:  E = 112000 MPa and v (Poisson ratio) = 0.34 and a solid homogeneous 
section has been defined and assigned. A static general step has been implemented and, for 
each analysis, a quadratic mesh of tetrahedral elements of 0.07 mm size has been used after 
performing a rapid convergence analysis between 0.08 0.07 and 0.06 on the BCC0418 (taken as 
sample and reported in Table 3) accepting a relative error lower than 1%.  



Design and identification of micro-lattice topology for biomedical application 

 29 

 

 
Figure 2-8: comparison between close-cell configuration (a) and open-cell configuration (b) on a 

BCC cell 
 
 

 
 

Figure 2-9: candidate structures with "open-strut" configuration 

2.2.1 Periodic boundary conditions for symmetric structures 

The periodic BC for symmetric structures constrain the cell faces so that they remain plane and 
always delimited by a parallelepiped while the cubic cell deforms. Considering the three planes 
passing through the centre of gravity of the cell and any couple of correspondent symmetric node 
respect to those planes, they get the same relative displacement. It is important to underline that 
these PBC work only for tensile and compressive load cases. 
A successful homogenization can be achieved by imposing these BC to a single unit cell that 
owns three planes of symmetry (in general along the direction x-y-z of a cartesian reference unit) 
or to those structures that generate the lattice with mirror operations. Based on this consideration, 
a single 1x1x1 unit of (a), (c), (f), (g) is subjected to symmetric BC as well as a single 1x1x1 unit 
of (d) and (e). Once again, even though (d) and (e) are not symmetric respect to the three planes 
passing through their centre of gravity, they create the metamaterial with subsequent mirror 
operations, and this justifies the possibility of modelling a 1x1x1 sample only and save 
computational time.  
To reproduce the planarity of the faces in Abaqus, with reference to the schematic cube of Figure 
2-10, the displacements of the nodes on faces 3, 5 and 6 have been blocked in the out-of-plane 
direction (by setting equal to zero the linear displacement in the direction normal to the plane and 
the out-of-plane rotations) so for example, referring to x-y surface, U3 = 0, UR1 = UR2 = 0.  What 
is more, an interaction equation-tye has been applied to faces 4 and 6. The interaction consists 
in imposing the displacements of a set of N ‘slave’ nodes equal to the one of a single ‘master’ 
node so that they all move on the same plane. 
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Figure 2-10: Reference	cube 

 
In symbols the equation looks like: 
 

𝐴𝒙X + 𝐵𝒙Z = 0							𝑤𝑖𝑡ℎ	𝑖 = 1,2,… ,𝑁 − 1 
 

Where 𝒙X and 𝒙Z are the vectors of the displacements of the i-th slave node and of the master 
node respectively and A and B are the two coefficient of the equation, 1 and -1 in this case so 
that finally: 
 

𝒙X = 𝒙Z							𝑤𝑖𝑡ℎ	𝑖 = 1,2,… ,𝑁 − 1 
 

For all the cases, a compressive deformation of 1% is applied to the upper surface (face 1).  
In Figure 2-11 an example of constraints and load is shown and Figure 2-12 visualises slave and 
master node for the interaction equation-type. The BCC is taken here as example, but the same 
procedure has been applied to all the structures suitable for symmetric BC. 
 

 
 

Figure 2-11: symmetric BC applied to a BCC structure taken as example 
 

Finally, pictures of the deformed shape and of the displacement U1, U2, U3 are shown in Figure 
2-13. To compute the Young modulus, on surface 1, all the reaction forces in y direction (RF2) 
are saved and summed leading to the total force which is than divided times the area of a cube 
with a square equal to the strut length of the cell and the displacement of a single node in y (U2) 
direction is saved and divided times the strut length L. The two quantities are combined and in 
the stress strain chart and E is derived. It is worth pointing out that by proceeding this way, the 
homogenised stress vs strain curve is obtained. 
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Figure 2-12: sets for the equation constraints: (a) shows the master node, (b1) all the slaves node; 
(b2) is a focus to	see the missing node among the slaves 

 

 
 

Figure 2-13: deformed shape of BCC and displacements in	x-y	(a)	–	(b)	and	x-z	(c)	planes  
 

2.2.2 General Periodic boundary conditions 

If a structure does not possess three planes of symmetry nor form the metamaterial by mirroring 
the base unit, the planarity of the boundary faces cannot be imposed to ensure periodicity 
because, for structures of this type, it is not granted that the deformation mode of the faces is 
planar but can assume any form. To solve this issue, periodic BC has been applied using the 
Abaqus plug-in Homtools [22] which can be freely downloaded from the net. Homtools is a 
homogenization toolbox based on a set of Python scripts that can be used, in general, to estimate 
the average mechanical response of a metamaterial by means of a FE applied on the periodic 
unit. Among the options Homtools offers, there is the so called periodic boundary condition (PBC) 
option which guarantees that the stress and strain are periodic within the metamaterial at the level 
of periodicity of the single cell. Given two opposite faces of the cubic unit, the PBC option applies 
a linear constraint to each couple of correspondent nodes so that their displacements are coupled. 
To understand what Homtools actually does, an example, simplified to the 2D case, is shown in 
Figure 2-14.  
 
 
 
 



Topological design, experimental characterization and elasto-plastic modelling of micro-lattice structures for orthopaedic 
implants 

 

 32 

 
 

 
 

Figure 2-14: 2D example of the constraints applied by Homtools 
 
The two quantities 𝜀bb and 𝜀TT owns to 𝜺𝒊𝒋, i.e. the macroscopic strain tensor and they are equal 
to the displacements of RP1 and RP2: (𝑢ghb = 𝜀bb and 𝑣ghT = 𝜀TT) two reference points that are 
appositely defined in Abaqus. To extend the approach to the 3D case, the strain 𝜔 referred to z 
direction is introduced and the reference point RP3 defined so that 𝑤ghk = 𝜀kk. The mesh of 
opposite faces must be identical and to each node of a face must correspond a node on the 
opposite face in the same position. The realisation of identical mesh between each couple of 
faces is enhanced in Abaqus with the specific command ‘create mesh pattern’ in the edit menu. 
From a practical point of view, to apply the PBC, after creating the three reference points that 
represent the values of each line of the macroscopic strain tensor (RP1 the first line, RP2 the 
second and RP3 the third), plug-in/Homtools is selected in the interaction module. From the 
outstanding menu, the voice ‘periodic boundary condition’ is chosen and the window is filled with 
all the information required: 
 

1. Selection of ‘finite strain’ option. 
 

2. Editing of the 3 reference points. 
 

3. Selection of the sets to be coupled (two opposite faces in this case). 
 

4. Definition of the periodicity vector which indicates the distance between the nodes of the 
selected sets. 

 
In the end, the coupling between two opposite faces is performed; of course, the same procedure 
must be repeated for the other two pair of surfaces. 
As far as the application of loads and constraints goes, Figure 2-15 shows that they are attached 
directly to the reference points taking care that what Abaqus reads are strains and not 
displacements. To impose a compressive load along y direction, therefore, the following 
assignments are defined: 
 
RP1:    𝑣ghb = 0     𝑤ghb = 0 
RP2:    𝑢ghT = 0     𝑣ghb = −0.01     𝜔ghb = 0 
RP3:    𝑢ghb = 0     𝑣ghb = 0 
 
Finally, the displacements of one single node have been constrained to make the solution unique. 
As a matter of fact, the rigid translation of the structure is not fixed by the periodic conditions given 
by Homtools. Regarding to the preliminary analysis on the Young Modulus, only diamond 
(structure (b) of Figure 2-9) was subjected to these periodic BC since, from a geometric point of 
view, it is the only one not owning planes of symmetry nor leading to the metamaterial by mirrors. 
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Figure 2-15: Constraints	and imposed	displacement	for	general	PBC	
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2.3 Results and selection of candidate structures to be 
printed 

For all the structures listed in Table 3, the measurement of pore size and the evaluation of Young 
modulus has been performed with the methods discussed qualitatively in 2.1 and 2.2.  Table 4 
resumes of the results of the preliminary analysis. 
 
 

structure Porosity 
(𝑷∗) 

 Strut diameter 
(d) 

 Strut length 
(L) 

Pore size 
(p) 

Young 
modulus (E) 

BCC0416 
 

BCC0418 

64.77 % 
 

70.98 % 

0.4 [mm] 
 

0.4 [mm] 
 

1.6 [mm] 
 

1.8 [mm] 

480 [𝜇𝑚] 
	

530 [𝜇𝑚]	

11415 [MPa] 
 
8270 [MPa] 
 

FCC0415 
 

FCC0416 
 

FCC0418 

69.8 % 
 

72.9 % 
 

77.84 % 

0.4 [mm] 
 

0.4 [mm] 
 

0.4 [mm] 
 

1.5 [mm] 
 

1.6 [mm] 
 

1.8 [mm] 
 

1080 [𝜇𝑚] 
 

1180 [𝜇𝑚] 
 

1380 [𝜇𝑚] 

12605 [MPa] 
 

10845 [MPa] 
 
 8879 [MPa] 

Tetrahedron0416 
 

Tetrahedron0418 
 

Tetrahedron 0420 

61.38 % 
 

68.53 % 
 

73.68 % 
 

0.4 [mm] 
 

0.4 [mm] 
 

0.4 [mm] 

1.6 [mm] 
 

1.8 [mm] 
 

2 [mm] 

540 [𝜇𝑚] 
 

620 [𝜇𝑚] 
 

760 [𝜇𝑚] 

13339 [MPa] 
 

9713 [MPa] 
 

7570 [MPa] 

Diamond0416 
 

Diamond0418 
 

Diamond0420 

73.65 % 
 

78.45 % 
 

82.15 % 
 

0.4 [mm] 
 

0.4 [mm] 
 

0.4 [mm] 

1.6 [mm] 
 

1.8 [mm] 
 

2 [mm] 

900 [𝜇𝑚] 
 

1060 [𝜇𝑚] 
 

1220 [𝜇𝑚] 

4582 [MPa] 
 

2932 [MPa] 
 

1223 [MPa] 

H45041 
 

H450416 

71.4 % 
 

87.4 % 

0.4 [mm] 
 

0.4 mm] 

1 [mm] 
 

1.6 [mm] 

980 [𝜇𝑚] 
 

1580 [𝜇𝑚] 

4128 [MPa] 
 

640 [MPa] 

Octet0424 72.9 % 0.4 [mm] 2.4 [mm] 1260 [𝜇𝑚] 6485 [MPa] 

Dodecahedron0416 
 

Dodecahedron0420 

53.34 % 
 

68.23 % 

0.4 [mm] 
 

0.4 [mm] 

1.6 [mm] 
 

2 [mm] 

800 [𝜇𝑚] 
 

1220 [𝜇𝑚] 

17801 [MPa] 
 

6387 [MPa] 
 

Table 4: Results of the preliminary analysis 
 
 
Figure 2-16 shows the E vs p chart in which the candidate structures are compared with each 
other and with the target area highlighted in red. The fact that none of them falls within the area 
is not, at this stage, a problem since it was important to get qualitative information about which 
structures (at least two) can more easily match the desired values with a modification of L and d 
so to keep 𝜆 inside the interval specified in paragraph 2.1. 
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Figure 2-16: representation	of	the	candidate	structures	on	the	E	vs	p	chart 
 
 
The way in which cells of the same geometry and different strut length are positioned on the chart, 
suggests, with a certain approximation, a linear dependency between E and p for all the structures 
for which more than one value was computed, at least in a limited range of 𝜆. Respect to the red 
target area, three structures can be distinguished to be more promising than the others: 
Tetrahedron (c), diamond (b) and H45 (f). Since, from experience, H45 is highly anisotropic and 
does not work well under cut loading, the decision to focus on (c) and (b) has been taken. 
As already stated at the beginning of chapter 2, two independent parameters rule the geometric 
and elastic properties of ideal micro-lattice materials of pre-defined unit cell shape; for this reason, 
it is convenient to define a new set of non-dimensional parameters to decrease the number of 
handling variables without losing generality. To this extent, the following entities has been 
introduced: 
 

Phi (Non-dimensional pore size):    𝜙 =	 q
K
 

 
Lambda (non-dimensional strut length = slenderness):    𝜆 = J

K
 

 
Because of the fact that 𝜆 and 𝜙 are independent, follows that E is fixed once one of the two is 
fixed. Making the hypothesis that Young modulus and pore size are linearly correlated, also 𝜆 and 
𝜙 have this property because they are both obtained scaling p and L by the same parameter d. 
The Matlab function polyfit has been used to compute the coefficients of the linear regression 
between either 𝜆 vs E and 𝜆 vs 𝜙 for both tetrahedron and diamond giving as input the values of 
E and p of Table 4 with the addition, only for tetrahedron, of a new point whose values are: L = 
2.2 mm , d = 0.37 mm, p = 869 𝜇𝑚, E = 5067 MPa. The reason for this late update for tetrahedron 
only is due to the fact that, whereas diamond suits almost perfectly the linear hypothesis, an extra 
point is helpful for tetrahedron to commit a lower mistake.  
In symbols: 

𝑦 = 𝐴𝑥 + 𝐵 
 
A and B are the two coefficients calculated, in general terms, by polyfit; results are shown in Table 
5 and Table 6. 
In Figure 2-17 and Figure 2-18 the linear regression of tetrahedron is shown either for  𝜆 vs E and 
𝜆 vs 𝜙. Among the two charts, it is possible to notice that the linear hypothesis for the non-
dimensional pore size is more accurate than for the E; this is confirmed by the 𝑅T, given: 
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𝑅T = 1 −	
∑ (𝑦X − 𝑦uX)v
Xwb

T

∑ (𝑦X − 𝑦x)Tv
Xwb

	 

 
Where 𝑦X is the i-th value of the fitting curve at the correspondent experimental point, 𝑦uX  the value 
of the i-th experimental point used for the regression and 𝑦x the mean of all the experimental 
values, it results: 	𝑅y,zT = 0.9914 and 𝑅y,|T = 0.9357. 
 
 

 
Figure 2-17:	Linear	regression	of	𝜆	vs	𝜙		for	Tetrahedron	

 
 

 
Figure 2-18: Linear	regression	of		𝜆	vs	E	for	Tetrahedron	

	
  Tetrahedron   
     

Linear A B unit 𝑅T 
E vs 𝝀 -4091 28810 [MPa] 0.9357 
𝝓 vs 𝝀 0.5128 -0.7119 [𝜇𝑚] 0.9914 

 



Design and identification of micro-lattice topology for biomedical application 

 37 

Table 5:	Regression	parameters	for	Tetrahedron	
 

The two values are quite high but, since only four points has been given as input, the actual error 
committed might be higher. Nevertheless, the choice of a linear fitting has been made mainly to 
make the building of design areas on the 𝜙 vs E easier and to enhance a better visualisation. 
Anyway, an error is expected when using the linear regression to predict Young and pore size 
giving any values of d and L as input. 
 

 
 

Figure 2-19: Linear	regression	of	𝜆	vs	𝜙		for	Diamond	
 
 

 
 

Figure 2-20: Linear	regression	of		𝜆	vs	E	for	Tetrahedron	
 

Figure 2-19 and Figure 2-20 reports the same the linear regressions for Diamond. The values of 
𝑅T confirm the visual impression of the goodness of linear regression for diamond: 	𝑅�,zT = 1 and 
𝑅�,|T = 0.999. In this case, the fitting coefficients A and B can be used to predict pore size and 
Young modulus without expecting any errors. 
 
 



Topological design, experimental characterization and elasto-plastic modelling of micro-lattice structures for orthopaedic 
implants 

 

 38 

 
  Diamond   
     

Linear A B unit 𝑅T 
E vs 𝝀 -3604 16872 [MPa] 0.999 
𝝓 vs 𝝀 0.8 -0.95 [𝜇𝑚] 1 

 
Table 6: Regression	parameters	of	Diamond	

	 	
Design areas, consistent with the constraints on d and L, have been built on the E vs p chart for 
both structures; said design areas have a trapezoidal shape whose boundaries are built as follow: 
 

1. Right and left boundaries are based on limitations on the value of 𝜆 = J
K
 which is linearly 

dependent to E (1.5 < 𝜆 < 6.5).  
             In symbols: 

 
𝐸X = 𝐴𝜆X + 𝐵    where    𝜆X =

J�
K�

   both 𝐿X and 𝑑X are imposed and so 𝐸X is defined, 
i is a generic index that enables 𝜆 varying between 1.5 and 6.5 

 
2. Up and down boundaries are built by multiplying the curve  𝜙 times 𝑑2q = 0.8		and  

𝑑K��v = 0.3. 
In symbols: 

 
𝜙X =

q�
K�
= 𝐴𝜆 + 𝐵    

by setting different values of ‘d’ each specific line iso-d is created and represent how ‘𝑝X ’ 
changes as a function of 𝜆. 

 
The parameters A and B are not always the same but change for the two different strictures and 
for the two different charts according to Table 5 and Table 6. 
The results are shown in Figure 2-21 for Tetrahedron and Figure 2-22 for Diamond. A similar 
approach to define design areas based on geometrical constraints has been applied in the work 
of [17]. 
 

 
 

Figure 2-21: Design	area	for	Tetrahedron	
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Figure 2-22: Design	area	for	Diamond	
 
 
For both geometries, as far as linear hypothesis is correct, an intersection between the red target 
area and the area delimited by 𝑑2q	and 𝑑K��v exists, thus demonstrating the presence of an 
infinite numbers of ideal geometrical combination suitable to match the required parameters. In 
the two charts of Figure 2-21 and Figure 2-22 the initial points used for the fitting are shown as 
well as the ones of the selected cells.  
 
 

structure Selected 
d [mm] 

Selected 
L [mm] 

Predicted 
E [MPa] 

Numerical 
E [MPa] 

Error 
E % 

Predicted 
p [𝝁𝒎] 

Numerical 
p [𝝁𝒎] 

Error 
p % 

 
Tetrahedron 0.33 2.145 2218 4185 47 865 980 11.7 

Diamond 0.33 1.55 2565 2565 0 926 920 0.65 

 
Table 7: Design	parameters	for	printing	session	

	
Table 7 finally contains the selected values of d and L and the predicted associated elastic 
modulus and pore size faithful to linear hypothesis.  
As far as E is concerned, whereas the estimation is good for Diamond structure, a considerable 
error is committed for Tetrahedron; a second order fitting for the curve E vs 𝜆 might decrease the 
mistake committed. Anyway, the numerical value on the Young modulus of Tetrahedron is 
accepted even if slightly higher than 4000 MPa because the discrepancy is very small. 
Regarding Tetrahedron structure, a clarification must be done in the sense that the geometry is 
not orthotropic and, more in detail, the Elastic stiffness along the directions ‘y’ and ‘z’ are different 
form the one along direction ‘x’ (see Figure 2-23). From a quantitative point of view, it results: 
𝐸? = 𝐸S = 4185 MPa, 𝐸R = 4206	MPa. Direction y is the one significative for the experimental 
tests and numerical simulations.  
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Figure 2-23: Loading	direction	for	tetrahedron	structure	
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3. Compression and tension experimental tests on 
micro-lattice specimens 

The two structures selected and discussed in chapter 2 (Tetrahedron = TET and Diamond = DIA) 
have been used to design four types of specimens for experimental tests: for each geometry one 
in compression and one in tension. The two unit cells used to generate the specimens are 
depicted in Figure 3-1. 

 
Figure 3-1: Base	units	for	building	test	specimens:	TET	(a)	and	Diamond	(b)	

	

3.1 Geometry and preparation of testing specimens 

The building of specimens has been realised in Autodesk Inventor; the CAD models has been 
saved in STL format and sent to Auburn university Alabama for 3D printing with Ti6Al4V powder.  

3.1.1 Compression specimens 

Compression specimens have been obtained through a geometric pattern leading to the definition 
of structures with parallelepiped shape and aspect ratio A = 3; with: 
 

𝐴 =
𝑁35��,�XK��
𝑁35��,�5X���

 

 
For Diamond, a 7x7x21 specimen from 1x1x1 periodic unit cell has been built; for TET a 3x3x9 
specimen has been constructed from the 2x2x2 unit. Moreover, the upper and lower faces in 
contact with the plates of the compression machine have been provided with skins of 0.8 mm 
height to improve the contact and to enhance a better and more homogeneous load distribution 
to the cells. The two ‘ready-to-print’ compression specimens are shown in Figure 3-2. 
The surfaces of the skins of the real manufactured specimens has been polished to obtain 
smoother supports and, before being tested, the sides oriented toward the cameras of DIC (Digital 



Topological design, experimental characterization and elasto-plastic modelling of micro-lattice structures for orthopaedic 
implants 

 

 42 

Image Correlation) have been painted with subsequent tonalities of white and black to get a 
random grey scaled colour distribution needed from DIC to build the speckle. Throughout the 
manufacturing process, the way in which powder particles are deposited, generally has an impact 
on the real specimen relative density (𝜌�5��∗ )	compared to the ideal one, with: 
 

𝜌∗ =
𝑉2
𝑉3245

𝑥100 

 
 

 
Figure 3-2: Ideal	compression	specimens:	DIA	(a)	and	TET	(b).	

 
 

Structure Ideal relative 
density [𝝆∗] 

DIA 20 % 

TET 16.6 % 

 
Table 8: Ideal relative density for compression specimens 

3.1.2 Tension specimens 

Specimens for tensile tests need to be equipped with a grasping system to perform the mounting 
on the testing machine and, in doing so, particular care must be taken to avoid that failure occurs 
at the transition area between gripping and lattice in which stress concentration is likely to occur 
thus leading to incorrect estimation of the mechanical properties. As pointed out in a previous 
thesis work carried out at Politecnico di Milano [23], in accordance with the outcome of [14], a 
possible solution is to increase progressively the strut cross section of cells close to the grasps 
so to realise a stiffer section and prevent localised failures. The overmentioned approach has 
been adopted for the current tension specimens. 
Both Diamond and TET probes are featured by a central cube of 7x7x7 and 3x3x3 cells 
respectively with the nominal dimensions presented in paragraph 2.3 and two additional rows in 
both vertical directions with progressively increasing struts dimensions. These last struts are 
featured by elliptical sections built via sweep command. 
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To get them ready for the tests, also tension specimens are painted to obtain the speckle. 
The two specimens are displayed in Figure 3-3.  
 

 
 

Figure 3-3: Ideal	tension	specimens:	DIA	(a)	and	TET	(b). 
 
Three samples for each structure will be tested in tension. Figure 3-4 shows an example of each 
real printed specimen. 
 

 
 

Figure 3-4: Real specimens: (a) Diamond compression, (b) Diamond tension, (c) TET compression, (d) TET 
tension 
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3.2 Mechanical testing: set-up, measurement method 
and procedure 

Compression and tension tests have been conducted in the laboratories of Politecnico di Milano 
on Alliance RF/150, an electrodynamic testing machine with maximum load capacity of 150 KN. 
For compression, two plates have been mounted to place the micro-lattice; for tension, the 
machine has been provided with a suitable gripping system able to hold the two grasping plates 
of the specimens; the two configurations are reported in Figure 3-5. 
 

 
 

Figure 3-5: Set-up of the testing machine: (a) for compression, (b) for tension 
 
The final output is the homogenised stress vs strain curve from which Young modulus, yield 
stress, UTS and UCS can be measured. 
For both tests, Aramis image acquisition system able to perform DIC (Digital image correlation) 
has been placed in front of the machine to acquire images and measure stress and strains. DIC 
is a measurement method able to calculate stress and strains of a component, during its load 
history, by acquiring and processing a stack of subsequent images at high frequency. The 
algorithm which governs DIC starts from an image of the undeformed shape in which points, in 
randomly distributed grey scale, are present and recognize the way each point deforms thus 
computing localised strains. For this reason, every specimen has been painted as stated in 
paragraph 3.1. What is more, the image acquisition system is featured by two cameras able to 
build a 3D speckle and communicates with the control system of the load machine so that the 
sampling of images performed by Aramis is synchronized with the data (force vs displacement) 
acquired by the software of the test machine. In this way, each load corresponds to a specific 
image. A calibration process is needed for Aramis before conducting the tests in order to perform 
a correct 3D reconstruction of the speckle. 
The tests have been conducted in displacement control (𝜐 = 0.3	 ��

�Xv
) and the settled load path 

involves a load-unload cycle for the correct evaluation of the Young modulus. 
As a matter of fact, especially for compression tests, the first part of the curve is highly non-linear 
due to the contact between plates and lattice surfaces. Figure 3-6 shows, as example, a focus of 
such non-linearity taken from one compressive Diamond homogenised stress vs strain curve.  
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Figure 3-6: Example of initial non-linear trend of compressive homogenised stress vs strain curve 
 
The same qualitative load path has been assigned also to tensile tests: in this case the initial non-
linear trend is lower.  
 
Table 9 and Table 10 summarise the load history settled for each test and each specimen. 
 

Compression Absolute value [N] 
 

structure Load  Unload Load  Unload  Load  

DIA 50 - 500 500 - 50 50 - 950 950 - 350 350 - failure 

TET 50 – 500 500 – 50 50 – 3000  3000 – 1000 - failure 

 
Table 9: load	path	of	compression	tests	

	
Tension Absolute value [N] 

 
structure Load  Unload Load  

DIA 0 - 1000  1000 - 500  50 - failure 

TET 0 – 3000  3000 - 100 100 - failure 

 
Table 10: load	path	of	tension	tests	

	
As it can be seen from Table 9, in compression, an extra load-unload cycle is performed at the 
beginning for machine stabilisation. Different values have been chosen for load and unload 
starting points among the two structures because they have different expected numerical 
mechanical properties that are discussed in detail in chapters 4 and 5. 

3.3 Results 

For each specimen, loads and strains, thanks to the application of virtual strain gauges on the 
speckle, have been extracted from GOM software and put into arrays for post-processing. 
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Different strain gauges have been positioned from left to right on the speckle of every specimen 
to evaluate if some dependency exists between E and strain gauge position. Figure 3-7 visualises 
how different strain gauge has been placed on each specimen.  
 

 
 

Figure 3-7: Positioning of every strain gauge. (a) compressive Diamond; (b) tensile Diamond; (c) 
compressive TET; (d) tensile TET 

 
By means of a Matlab code, the homogenised stress-strain curves averaged between each strain 
gauge has been plotted and the values of Young modulus, yield stress and ultimate stress have 
been computed. 
About the extraction of data from GOM, whereas strains are already provided in the homogenised 
form, it is necessary to divide the load times the cross section of the specimen to compute 
homogenised stress; in symbols: 
 

𝜀 = 	
Δ𝑙
𝑙��

 

 

𝜎 =
𝐹

𝐴����X35
 

 
Where 𝐴����X35 is the area of the projection of the lattice cross section and 𝑙�� is the length of the 
virtual strain gauge. A Matlab code has been used for the processing of all experimental data. In 
order to perform a correct estimation of E, a linear interpolation has been made on the 60 % 
central part of the unloading branch appositely realised; with reference to Table 9, the unloading 
branches considered for compression are between 950 – 350 N for Diamond and between 3000 
– 1000 N for TET. 
Regarding the estimation of yield stress, the Rp02 definition has been adopted; the Matlab 
function ‘intersections’ has been used to evaluate the point of intersection between the Rp02 line 
and the homogenized stress strain curve. 
UTS and UCS has been simply determined taking the highest value of each stress strain curve. 
Finally, images of the broken specimens extracted from GOM are described. 
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3.3.1 Diamond 

Six specimens of Diamond type, three in tension and three in compression have been tested. 
Starting from compression, Figure 3-8 shows the average homogenised stress strain curves of 
the three compression tests. (exp 1, exp 2 and exp 3). 
 

 
 

Figure 3-8: homogenised	average	stress	strain	curves	of	diamond	for	each	compressive	test	
	
As can be seen from the picture, the three curves are very close to each other and so no important 
deviations in manufacturing quality nor in experimental deviation occurred. 
 

 
	

Figure 3-9: Trend	of	Young	modulus	in	compression	for	strain	gauge	from	left	to	right	
	
Figure 3-9 depicts how the elastic stiffness changes from the left to the right of the speckle (E1 
refers to left extremity and E4/E5 to right extremity). For the first two samples only four points 
could be evaluated because of an imperfect realisation of the speckle; it is worth pointing out that 
the realisation of a good quality speckle on Diamond structure is not easy since the latter does 
not possess a flat and smooth surface. Apart from E3 of the first sample, for which such a lower 
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value can be due to measurement noise or excessive imperfection of the speckle in that specific 
portion, the trend is substantially uniform. 
Regarding tension tests, the same type of charts like the ones for compression have been 
obtained and extracted from Matlab. Figure 3-10 is about the homogenised tensile stress vs strain 
curves, again the scatter between the three tests is small, this confirms that the manufacturing 
has been successful and constant also for the tension specimens. 
 

 
 

Figure 3-10: homogenised average stress strain curves of diamond for each tensile test 
 
Only three virtual strain gauges have been positioned on the central part of speckle of the tensile 
specimens because of the same problems, already discussed, with its realisation. The trend is 
visualised in Figure 3-11.  In this case the points are quite sparse and no significative dependency 
with the strain gauge position is observed. 
 

 
 

Figure 3-11: Trend	of	Young	modulus	in	tension	for	strain	gauge	from	left	to	right	
 
In general terms, a higher number of tests and a higher effort in the obtainment of a better speckle 
could add information about the relation between strain gauge position and Young modulus; 
indeed, it is not purpose of this work to enter in detail of this topic. 
The average values of E, 𝜎? and Ultimate stress for tensile and compression tests are inserted 
for comparison in Figure 3-12. 
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Figure 3-12: Comparison	between	tensile	and	compressive	tests:	left (a) average Young modulus 
and right (b) average yield stress and UTS	

 
As far as Young modulus go, a difference of about 200 MPa is observed between compression 
and tension, this is generally due to non-perfect contact between skins and compression plates 
given by the fact that the polished surfaces of the skins are not perfectly plane, as a matter of 
fact, compressive and tensile elastic stiffness are generally expected to be equal on equal terms. 
The yield stress is substantially the same for the first two tests and slightly higher in compression 
than tension for the third, the discrepancy is small and might be due to measurement noise. 
Finally, ultimate tensile stresses are higher than compressive ones; such a difference might be 
caused by an earlier strain failure of compression specimens (around 0.035 mm/mm) respect to 
the one of tensile specimens (around 0.045 mm/mm). All the experimental results about Diamond 
are summarised in Table 11 and the average compression and tension curves are compared in 
Figure 3-13. 
 
 

Test 
number 

E tensile 
[MPa] 

E 
compressive 

[MPa] 

Compressive 
𝝈𝒚 [MPa] 

 

Tensile 
𝝈𝒚 [MPa] 

UCS 
[MPa] 

UTS 
[MPa] 

N° 1 2226 1931 34.2 34 42.55 44.46 

N° 2 2189 2012 33.08 33.22 41.85 43.75 

N° 3 2231 2061 36.54 34 42.43 44.55 

Mean value 
(𝝁) 

2216 2001 34.63 33.77 42.28 44.25 

Standard 
deviation 
(𝝈) 

 

 
65.54 

 
23.06 

 
1.75 

 
0.47 

 
 

 
0.38 

 
0.44 

 
Table 11: Resume	of	experimental	values	of	Diamond	averaged	between	each	strain	gauge.	

	
Figure 3-14 visualises the fracture behaviour of Diamond specimens in compression. The failure 
is featured by a shear band with inclination smaller than 45° in the lower part of the structure; a 
similar failure behaviour was observed in the work of [15]. The image (b) of Figure 3-14 represents 
the frame at which the test was stopped. Red lines on frame (a) of all the pictures show where 
the five virtual strain gauges have been positioned (for test number one and two of Diamond 
compressive tests, the missing strain gauge is number four from left to right). 
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Figure 3-13: Average tension and compression Diamond curves 
 

 
 

Figure 3-14: compressive	deformation	of	Diamond:	(a)	is	the	undeformed	shape,	(b)	the	
deformed	shape	

	
	
A Similar fracture behaviour is possessed by the specimens in tension; in this case the shear 
band has a higher inclination of 45° and a clear detachment can be noticed due to the nature of 
the test. The picture is shown in Figure 3-15, once again, frame (b) is the one at which the test 
was stopped. 
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Figure 3-15: tensile	deformation	of	Diamond:	(a)	is	the	undeformed	shape,	(b)	the	deformed	
shape	

 
 
 
 

3.3.2 Tetrahedron 

From a preliminary visual analysis, TET tension specimens came out of the manufacturing 
process with defects on some horizontal struts being these lasts already broken. Since this issue 
is expected to bring about an important underestimation of the mechanical properties, just an 
exemplary specimen has been tested in tension. With respect to compression, two experiments 
have been carried out. 
The homogenised stress vs strain curve in tension is depicted in Figure 3-16. 
 

 
 

Figure 3-16: Tensile	homogenised	average stress vs	strain curves	of	TET	
	



Topological design, experimental characterization and elasto-plastic modelling of micro-lattice structures for orthopaedic 
implants 

 

 52 

It can be noticed from the chart that the strength of the specimen is lower than the as-designed 
one. As a matter of fact, the unload reload has been designed to be in the linear part of the curve 
based on the predicted ideal yield, in reality, it starts when the curve has already become non-
linear. The analysis of the Tomography and the FE simulation of the real reconstructed cell 
developed in chapter 5 will provide some further explanations. Despite the specimen has been 
designed with struts of increasing diameter close to the grasping thus expecting failure in the 
central part of the specimen, failure occurs near the area of defected struts: this is the unequivocal 
hint that the failure properties (UTS and 𝜎?) of the specimen are lowered by the presence of the 
defects. This statement is visually demonstrated in Figure 3-18 where images from the DIC are 
shown: frame (a) refers to the beginning of the test and frame (b) to when the experiment was 
stopped. For this reason, yield stress and UTS are considered unreliable and not worth of further 
analysis. Nevertheless, being the strain gauge positioned in the central part of the specimen far 
from the defected area, the value of Young modulus could be valuable and is reported in Figure 
3-17. The variation of E along the section is quite higher respect to the compression (Figure 3-20), 
the cause could be imputed to the initial defects or to measurement noise.  
 
 
 

 
 

Figure 3-17: Trend	of	TET	Young	modulus	in	tension	for	strain	gauge	from	left	to	right 
 
Moving to the outcome of compressive tests, in Figure 3-19 the homogenised compressive stress 
vs strain curves are visualised. 
A non-negligible difference in the strain at failure can be noticed between the two curves, as well 
as difference in Young modulus, this latter might be caused by a different contact between 
specimens and plates among the two tests. 
 



Compression and tension experimental tests on micro-lattice specimens 

 53 

 
 

Figure 3-18: tensile	deformation	of	TET:	(a)	is	the	undeformed	shape,	(b)	the	deformed	shape.	
The	red	area	highlights	the	defected	struts. 

 
 

 
Figure 3-19: homogenised	average	stress	strain	curves	of	TET	for	each	compressive	test	
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Figure 3-20: Trend	of	TET	Young	modulus	in	compression	for	strain	gauge	from	left	to	right	

 
Like it happened for Diamond structure, also for TET, different virtual strain gauges have been 
attached to the speckle from left to right with Aramis software to evaluate, form a preliminary point 
of view, the dependency of E with the strain gauge position. The results are shown in Figure 3-20;  
a uniform trend is observed for both specimen. Figure 3-21 depicts the two values of yield stress 
and UCS. Following the same dissimilarity already pointed out for Young modulus, the second 
specimen has a lower yield tress than the first. 
 

 
 

Figure 3-21: UCS	and	𝜎?	for	TET	compressive	tests	
	
The values of TET compressive and tensile tests are summarised in Table 12. The mechanical 
properties evaluated are much lower than the numerical ones: for example, looking at Young 
modulus, the experimental one is nearly 50% lower. This huge difference might be justified by a 
discrepancy between the densities of real and ideal specimens (being the latter lower) and by 
other geometrical details which demonstrates that the manufacturing tolerances are high; a focus 
on this aspect is carried out in chapter 5 where the tomography of the real structures is analysed.  
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Test number E compressive 
[MPa] 

E tensile 
[MPa] 

Compressive 𝝈𝒚 
[MPa] 

 

UCS [MPa] 

N° 1 2590 2693 23.15 25.89 

N° 2 2509 - 
 

21.88 25.8 

Mean value (𝝁) 2549 - 22.51 25.84 

Standard 
deviation 
(𝝈) 

 

 
57.66 

 
- 

 
0.9 

 
0.06 

 
Table 12: Resume	of	experimental	values	averaged	between	each	strain	gauge	of	TET. 

 
The average Young modulus of the tensile test is slightly higher than the ones of compression 
presented in Table 12, such aspect can be due to the non-perfect contact between compression 
plates and skins; for this reason, the tensile E is considered more reliable than the compressive 
one. 
Even though the values of TET compressive tests result in lower properties than the as-designed 
ones, they are representative of the as-manufactured specimens. It is indeed interesting to look 
at the deformed shape of the samples to gain some qualitative information about their failure 
mode. 
 

 
 

Figure 3-22: compressive	deformation	of	TET:	(a)	is	the	undeformed	shape,	(b)	the	deformed	
shape 

 
As Figure 3-22 reports, TET structure failed on a 45° plane and the struts along a horizontal row 
on the plane partially visible on the right of frame (b) collapsed with a buckling deformation mode. 
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4. Numerical elastic and elasto-plastic analysis on 
ideal selected structures 

The aim of this chapter is to go deeper in the analysis of the RVE dimensions in linear elastic and 
non-linear elastoplastic regime and to investigate the difference between the Young modulus of 
specimens of increasing cross sectional size and RVE specifically to TET and Diamond following 
with the aspects pointed out in paragraph 1.1.6. What is more, in the definition of the FE models, 
an effort to substitute homogeneous solid elements with linear beam elements has been made in 
order to save computational time. The result of this approach as well as its drawbacks are part of 
the discussion of this chapter too. For all the elastoplastic simulations, a plastic model of 3D 
printed annealed Ti6Al4V according to the one used in [21] has been used; even if those values 
refer to tensile properties, they are used in this work also in compressive simulations since no 
relevant difference between tension and compression is expected for Titanium. The main values 
of the monotonic curve, extrapolated from the one of  
Figure 4-1,  are in Table 13.	
 

E [GPa] 𝝈𝒚 [MPa] 𝝂 

112 959  0.34 

 
Table 13: Monotonic	mechanical	properties	of	annealed	Ti6Al4V	

	

	
	

Figure 4-1: Monotonic	curve	for	data	extrapolation	[21]	
 
The parameters to define the RVE size in linear regime is Young modulus in the sense that the 
RVE is the one starting to which no difference in E is appreciated if the size of the periodic lattice 
volume is increased; the same role, in non-linear regime, is played by the trend of the stress vs 
strain curve and the presence or not of bifurcations. Before going on with the analysis, a short 
remind of the difference between solid and beam elements is presented. 
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3D Beam elements 

Linear beam elements used in this work fall within the category of 3D line elements. They possess 
2 nodes and 12 DOF, 6 for each node of the beam, namely: u1, v1, k1, 𝜃𝑢1,	𝜃𝑣1, 𝜃𝑘1 for the first 
node and u2, v2, k2, 𝜃𝑢2,	𝜃𝑣2, 𝜃𝑘2 for the second node, where u, v and k refer to x, y, and z 
direction whereas 𝜃𝑢,	𝜃𝑣, 𝜃𝑘 are the rotations about each correspondent axis. The shape of the 
section must be defined among several option available in Abaqus. The advantage of using beam 
elements is that a much lower number of nodes is needed to mesh the same geometry respect 
to solid elements thus leading to important reduction of computational time. Among their 
drawbacks they don’t account for shear force contribution which brings about an underestimation 
of the mechanical properties and lead more easily to numerical convergence problems for 
elastoplastic models. The scheme of the DOF of a beam element is shown in Figure 4-2. 
In the figure the section shape is not specified and left as the one of a wire, in reality the FE needs 
the definition of a section to recognize its geometric moments of inertia. 

 
 

Figure 4-2: Scheme	of	DOF	of	a	3D	linear	beam	element	
 

Tetrahedral solid elements 

Tetrahedral elements owe their name to their shape, as visualized in Figure 4-3. They are used 
to mesh any complex 3D geometry and possess a number of DOF which depends on their 
typology but generally higher than beam ones. The difference with respect to beams is that, each 
node owns only the three translational DOF and do not possess any rotations. What is more, that 
they can account to shear force enabling a better estimation of the mechanical properties of the 
real component. The price to pay is a much higher computational time for the simulations. 
 

 
 

Figure 4-3: Ten	node	tetrahedral	element	
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4.1 Linear regime 

All the models realised to study the linear regime consider the assignment of linear elastic 
properties to the material and the only output is Young modulus. 

4.1.1 Tetrahedron 

Regarding the dependency between linear RVE size and Young modulus, no relation has been 
observed neither with solid nor with beam elements. Simulations have been run on 2x2x2 and 
4x4x4 configuration with solid and on 2x2x2, 4x4x4 and 6x6x6 configuration with beam and the 
resulting Young modulus always remain equal to the base 2x2x2 size. It is therefore possible to 
conclude that the smallest RVE size in linear regime is the 2x2x2 periodic unit for TET.  
Once the linear RVE size has been defined, the difference between E of specimen and of RVE 
has been investigated. To this extentet, in Abaqus CAE, solid elements are used to compare the 
elasticity of the RVE with the one of the specimen used for compressive experiments. TET unit 
cell has dimension 2x2x2 (see paragraph 2.1) whereas a portion of the specimen equal to 1/8 
has been modelled to reduce the computational time. As for loads and displacements, periodic 
BC for symmetric structures (see paragraph 2.2.1 for the BC description) has been assigned to 
the 2x2x2 unit and planarity has been imposed to the non-boundary faces of the 1/8 portion of 
specimen, namely the upper, the lower and two adjacent on the side. To impose planarity in 
Abaqus the x-symm, y-symm and z-symm constraints have been imposed on the faces normal 
to x, y and z respectively and with open struts. In doing so, the lattice behaves as if it was replied 
in the three directions thus leading to the complete specimen. Both simulations are carried out 
with compressive imposed displacement of 1 % of the vertical length and tetrahedral quadratic 
elements. In Figure 4-4 the 1/8 specimen is shown. The outcome of the analysis is such that: 
 
𝐸���XK,�q53X�5v = 4841   MPa 
 
𝐸���XK,g�| = 4185   MPa    
 
𝐸���XK,�q53X�5v
𝐸���XK,g�|

= 𝑅�,g�| = 1.157 

 
The parameter	𝑅�,g�| has been defined “ad hoc” for this study: ‘s’ stands for ‘specimen’. The 
difference among the two values can be imputed to the extra stiffness given by the two faces of 
the 1/8 specimen with closed struts, phenomenon known as “boundary effect”. In paragraph 4.1.2 
a detailed explanation of this phenomenon is presented 
 

 
 

Figure 4-4: Picture	of	the	1/8	solid	specimen	for	FE	analysis 



Topological design, experimental characterization and elasto-plastic modelling of micro-lattice structures for orthopaedic 
implants 

 

 60 

 
The overmentioned boundary effect can be reduced if the dimension of the specimen section 
increase adopting the same approach of [20]. In this work, to save computational time, the same 
type of analysis has been carried out with beam elements. Before doing this, in order to establish 
a parallelism between solid and beam elements and to evaluate if and how much 𝑅�,g�| changes, 
the two simulations described above have been reproduced with beams.  
To this extent, the entire specimen (instead of 1/8) has been modelled since the expected 
computational time is lower. BC can be seen in Figure 4-5: encastre has been put to the lower 
face to simulate the presence of the skin which, with good approximation, possess infinite 
stiffness respect to the rest of the structure thus preventing lateral movements. Compressive load 
has been given with a reference point kinematically coupled with all the nodes of the upper face. 
What is more, because in real compressive test the rotation of the upper face is approximately 
null, the rotations of the reference point have been constrained too. A circular section has been 
assigned to every beam of the specimen. 
 

 
 

Figure 4-5: TET	specimen	with	beam	elements 
 
Moving to the beam modelling of the RVE with open struts, it is possible to notice that the struts 
on the six faces have a semi-circular shape and the struts at the corners are ¼ of a circle but, 
because Abaqus does not allow to assign sections with semi-circular and ¼ circle shape, a 
specific strategy has been implemented as discussed below. 
Bending and axial stiffness of a beam section depend on its area and on the two moments of 
inertia, therefore, it is possible to obtain the same stiffness with a different shape yet imposing 
the same area and same inertias. 
In Figure 4-6 the RVE beam model with opportune sections is shown, the BC imposed are the 
same as the ones of the solid model. The only difference respect to solid elements, is that beams 
have rotations and it is therefore necessary to set the in-plane rotations of the upper surface null. 
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Figure 4-6: Tetrahedron	2x2x2	RVE	with	beam	elements	
	

The FE results are: 
 
𝐸45��,�q53X�5v = 4246   MPa 
 
𝐸45��,g�| = 3550   MPa    
 
𝐸45��,�q53X�5v
𝐸45��,g�|

= 𝑅�,g�| = 1.18 

 
According to 𝑅�,g�|, the boundary effect is slightly more pronounced for beam than for solid 
elements. Another comparison between beam and solid regards the ratio of specimens and 
RVEs: 
 
𝐸���XK,�q53X�5v
𝐸45��,�q53X�5v

= 1.14 

 
 
|�����, ¡¢
|£¤¥¦, ¡¢

=	1.16 
 
The outcome is that beam elements can be used to substitute solid elements for the specimen 
modelling with an error accounted by the ratio 	

|�����,�§¤¨�¦¤©

|£¤¥¦,�§¤¨�¦¤©
= 1.14. Five different specimen 

configurations with one row and imposed vertical periodicity with PBC for symmetric structures 
on upper and lower faces only (to save computational time and memory) have been modelled: 
the cross section has been progressively increased with 4x4, 6x6, 8x8, 10x10 and 12x12 periodic 
units as depicted in Figure 4-7 to evaluate the trend between E and RVE size. Regarding the 
section assignment, each section reproduces the one of a specimen with closed struts on the 
lateral sides, therefore, the open strut configuration (with I shaped section) has been attached 
only to the surfaces normal to the vertical direction. The result of the investigation is resumed in 
Figure 4-8 and quantitative values in  
Table 14. 



Topological design, experimental characterization and elasto-plastic modelling of micro-lattice structures for orthopaedic 
implants 

 

 62 

 
 

Figure 4-7: Specimen section of increasing dimensions: (a) 4x4, (b) 6x6, (c) 8x8, (d) 10x10, (e) 12x12 
 
 

 
 

Figure 4-8: Young	modulus	behaviour	with	increasing	TET	specimen	section	
	
	

 Section 4x4 Section 6x6 Section 8x8 Section 
10x10 

Section 
12x12 

RVE 

E [MPa] 4200 3909 3829 3782 3751 3550 

Error % 15.4 9.1 7.3 6.1 5.3 - 
 

Table 14: Boundary effect on TET modelled with beams 
 

The points on the chart confirm that the boundary effect reduces as the size of the specimen 
increase and, with 12x12 section, still a deviation is present, and the reduction of E with the 
increase of section is very slow. Therefore, a certain gap between specimen and periodic unit 
cannot be covered unless the specimen is designed with very big dimensions. Since it is not 
feasible to print such big specimens because it would be expensive form manufacturing and 
experimental point of view (a huge compression machine capable of supply thousands of KN 
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would be needed), a certain error is accepted. In this case, with a 12x12 section, the error is 5.3 
%.  

4.1.2 Diamond 

If compared to tetrahedron, Diamond has an important difference which affects the numerical 
modelling and the possibility of using beam elements the same way it has been done for TET. As 
discussed in paragraph 2.2, because Diamond does not have any planes of symmetry, general 
PBC with Homtools must be imposed to model the RVE and obtain the periodicity of the unit cell. 
Unfortunately, it has been noticed that Homtools commits mistakes, when this specific geometry 
is modelled with beams, in coupling the displacements of some nodes of opposite faces thus 
leading to non-reliable results. The problem is explained in detail with the help of Figure 4-9 on a 
couple of nodes taken as example; (also other nodes have the same problem). 
 

 
 

Figure 4-9: Mistake	in	the	coupling	of	Diamond	structure	with	Homtools 
 
In picture (a), the two red points represent a pair of nodes whose displacements should be 
coupled to achieve periodicity; in reality, Homtools, couples the nodes highlighted in picture (b) 
thus bringing about wrong results. A possible way to bypass this mistake is to develop a Matlab 
code which performs the same work of Homtools making sure that the coupling of each node is 
correct. Because this procedure is not trivial and time consuming, it has not been implemented in 
this work and is suggested as future development. For all these reasons, the dependency of the 
RVE size with Young modulus and the impact of boundary effect is evaluated with solid elements 
only. Identically to TET, also for this structure it is confirmed that the linear RVE has the same 
dimension of the periodic unit which is 1x1x1. 
Moving to the boundary effect, four reduced specimen models with 3x3, 4x4, 6x6 and 7x7 cross 
sections and 6 vertical cells have been considered. The nomenclature ‘reduced’ refers to the fact 
that every configuration is smaller than the 3D printed specimen which is 7x7x28. The motivation 
on top of this is merely to reduce the computational cost. Indeed, relevant deviations are not 
expected since strains are measured at mid height and the effect of the specimen’s height is not 
so relevant. For each model encastre has been applied to the lower face and a compressive 
displacement of 1 % has been assigned to the upper face. Another way could be to model one 
single cell in vertical direction and couple the upper and lower face with equations from Homtools 
so to impose PBC conditions, this solution has been avoided because the enormous number of 
equations to set (3 for each node of the surface) would take a higher total computational time. 
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Figure 4-10: Ideal Diamond specimens of different section dimensions: (a) 3x3, (b) 4x4, (c) 6x6 and (d) 
7x7 

 
Figure 4-10shows the four reduced specimens utilised to carry out the analysis. The outcome of 
Figure 4-11 represents the counterpart of Figure 4-8 specifically to Diamond. The curious aspect 
is that the boundary effect is opposite respect to TET meaning that the smallest is the section of 
the specimen and the lower is E. The reason why TET and Diamond show two opposite boundary 
effects can be explained as follows. 
Two simultaneous aspects make the stiffness of the finite specimen different from the one of the 
RVE: the presence of closed struts on the periphery of the specimen and the fact that a finite 
specimen does not have any material that somehow provides support out of its boundary. The 
first contribution increases the stiffness of the specimen with respect to the one of the RVE 
whereas the second contribution makes it smaller. It follows that, TET possess many struts at the 
boundary of the cell and the first contribution dominates the second, on the contrary, Diamond 
does not possess struts at the periphery and the second contribution dominates the first. values 
of different E of Diamond are in Table 15. 
 

 
 

Figure 4-11: Young	modulus	behaviour	with	increasing	Diamond	specimen	section	
 
This result is attributed to the different type of geometries among TET and Diamond: the former 
with vertical closed struts at the periphery of the lattice scaffold that contribute in raising the 
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strength, the latter without any peripheric struts. In this case, the parameter error is 5.7 for the 
7x7 section so the trend for convergence is faster and, therefore, the deviation between RVE and  
 
 

 Section 3x3 Section 4x4 Section 6x6 Section 7x7 RVE 

E [MPa] 2106 2248 2353 2418 2565 

Error % 17.8 12.3 8.3 5.7 - 

 
Table 15: Boundary effect on Diamond modelled with solids	

	
specimen is expected to furtherly decrease with an acceptable section size. By the 
implementation of Diamond beam models, it would be possible to check rapidly and without 
excessive computational effort when and if periodic unit and specimen gain the same elastic 
stiffness for greater section sizes thus achieving zero error.  

4.2 Non-linear regime 

In non-linear regime an elasto-plastic model of Ti6Al4V extrapolated from  
Figure 4-1 has been assigned to the material properties with the aim of computing the yield stress 
and studying the shape of the homogenised stress vs strain curve after the yielding.	

4.2.1 Tetrahedron 

The same structures shown in Figure 4-4 and Figure 4-5 (the former is 1/8 specimen with solid 
elements and the latter the complete specimen with beam elements) have been simulated in 
Abaqus adding the elastoplastic model for Ti6Al4V. The outcomes of both deformed shapes 
confirm what it has been observed also from the DIC images of TET compression tests, namely 
that the structure undergoes buckling (see Figure 4-12). Moreover, looking at the figure, it can be 
assessed that the crush takes place on a 45° inclined plane the same as for compression 
specimen (Figure 3-22). Being buckling a non-linear periodic phenomenon, it is no longer possible 
to model the RVE with periodic BC for symmetric structures to correctly predict it, on the contrary, 
general PBC like the ones inserted by Homtools should be used. The motivation is that PBC for 
symmetric structures impose planarity of the boundary faces of the periodic units preventing them, 
for example, to have an out of plane buckling wave which could occur in reality as stated by Figure 
4-13 where two TET periodic units (1x) have been simulated with either general PBC and 
symmetric PBC. For the same reason, the prediction of homogenised stress vs strain curve given 
by the 1/8 specimen with imposed planarity involves some error; as a matter of fact, the 
introduction of general PBC with homtools would be needed on the cut surfaces but this has been 
avoided for computational reasons. In general terms, when buckling occurs, several wave lengths 
featuring the deformation of the buckled system represent possible solutions from a mathematical 
point of view, but the real system tends to follow the one owing the lower amount of energy. 
Having said that, it follows that the periodic lattice geometry should be big enough to comprise, 
inside its domain, at least one period of the lowest energy deformation wave. According to the 
approach of [18], the minimum size owing the overmentioned property can be figured out by 
looking when the stress vs strain curves of increasing model dimensions become stable. Such 
strategy has been used also in this work to try to estimate the non-linear TET RVE size.  
Two solid TET structures, namely with 1x1x1 (1x) periodic units and 2x2x2 periodic units (2x) 
have been modelled with general PBC and an imposed displacement of 0.07 times the vertical 
height; the two homogenised stress vs strain curves have been compared with each other and 
with the one of the 1/8 specimen in Figure 4-14. 
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Figure 4-12: TET specimen undergoes buckling; (a) with solid elements, (b) with beam elements	

 

 
 

Figure 4-13: Different	deformed	TET	shape	between	PBC	for	symmetric	structures	(a)	and	general	
PBC	(b) 

 
 

 
 

Figure 4-14: Effect of the RVE size on the non-liner part of TET homogenised stress vs strain curve	
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A bifurcation can be appreciated in correspondence of a strain of circa 0.05 mm/mm and, in line 
with the expectations, the 2x configuration stands below the 1x following the former a lower 
deformation energy path as soon as buckling begins. This result is, from a qualitative point of 
view, in fully agreement with the statements of [18]. The 1/8 specimen model returns a lower 
buckling strain (≈ 0.03 mm/mm) compared to the two periodic models, this is due to the fact that 
that the former is not representative of the infinite lattice mean and an increased size would move 
the buckling starting point to the right and close to the 1x and 2x ones. Nevertheless, since neither 
a higher size specimen nor a higher size periodic model has been created with solid elements for 
computational cost reasons, an open question remains regarding the dimension of the TET non-
liner RVE size. Indeed, the definition of a 3x (or higher) structure could reveal a lower deformation 
energy and, at the same time, its stress vs strain curve stand below the 2x one. In order to perform 
an exhaustive analysis and grow with the dimension of the models with reasonable computational 
cost, the adoption of beam elements could be a solution. Unfortunately, being Homtools ideated 
for solid elements, it does not bother about the coupling of rotations of correspondent nodes 
causing wrong results and numerical convergence problems for static general FE simulations with 
beam. One of the possible future developments of this topic, which has not been performed in 
this work, might be to add the coupling of rotations to Homtools via Matlab script. 
As far as the numerical yield stress prediction goes, it has been demonstrated that PBC for 
symmetric structures and general PBC can be indiscriminately used to carry out a right prediction. 
This is demonstrated by Figure 4-15 in which the homogenised stress vs strain curves of 1x and 
2x TET models with PBC for symmetric structures have been added to the curves already present 
in Figure 4-14 where it is possible to see that all the curves are identical up to the buckling 
activation strain. 
 

 
 

Figure 4-15: Comparison	between	general	PBC	and	PBC	for	symmetric	structures	
	

4.2.2 Diamond 

With reference to the compression tests, it can be assessed that Diamond fails because of a 
sudden crush of struts disposed on a 45° plane without undergoing buckling. This is not enough 
to conclude that Diamond as unit lattice shape never undergoes this failure mode, but it is indeed 
true for geometries with a relatively small non-dimensional strut length 𝜆 (known also as 
slenderness) like the one of this work which is 𝜆 = 4.69. On the basis of this consideration, the 
RVE size is expected to be equal to the smallest 1x1x1 periodic unit. To have a confirmation of 
the overmentioned point, three Diamond models with 1x1x1 (1x), 2x2x2 (2x) and 3x3x3 (3x) 
periodic units, solid elements and imposed displacement of 0.1 times the height have been 
simulated in Abaqus and their homogenised stress vs strain curves compared; the outcome is 
shown in Figure 4-16. 
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Figure 4-16: Effect of the RVE size on the non-liner part of Diamond homogenised stress vs strain curve 
 

The three curves are perfectly superposed up to the strain of 0.1 (no buckling is expected for 
higher strains) thus an RVE of one 1x1x1 can be concluded. 
A further evidence in favour of this conclusion is provided by the deformed shapes of the three 
simulations shown in Figure 4-17. As can be visually appreciated, no evidence of buckling is 
visible. 
 

 
Figure 4-17: Deformed shape of Diamond 1x (a), 2x (b) and 3x (c) periodic 
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5. Analysis of the real geometry 

The compression specimens of each structure have been CT scan and weighted. From the 
scanning, a stack of images has been obtained in order to reconstruct the real geometries and 
compare their real pore size and mechanical properties with the ideal ones and with the properties 
of the real specimens as well as evaluate the real strut dimensions. From the weighting, the real 
relative density 𝜌�5��∗  has been estimated. For the computation of the real relative density the 
contribution of skins has been removed. The chapter will be divided in two parts: the discussion 
of how the CT scanned images are processed to compute the morphological parameters such as 
pore size, relative density and strut dimensions at first and, secondly, real TET and Diamond 
structures have been reconstructed and numerical elasto-plastic simulations have been carried 
out. 

5.1 Real morphological properties 

As far as the weighting goes, since it is known that a considerable amount of powder is stuck 
inside each probe, the weight values which has been selected to obtain 𝜌�5��∗  are the lowest based 
on the fact that they are more accurate being associated to specimen containing a smaller amount 
of residual powder. The values of real relative densities are reported in Table 16 and compared 
to the ideal ones. 
 

Structure Real relative 
density 𝝆𝒓𝒆𝒂𝒍∗  

Ideal relative 
density 𝝆∗ 

Difference % 

Diamond 18.6 % 2 % 7 

TET 14.5 % 16.6 % 12 

 
Table 16: Real relative density for compression specimens 

 
The file of the CT scan has been opened with myVGL 3.3 and the stack of images exported in 
PNG format so that they can be read and processed with IamgeJ. Once imported in ImageJ, the 
unit of length has been changed from pixel to mm and the pixel resolution defined equal to the 
resolution of the CT scan: 0.016 mm for TET and 0.008 mm for Diamond. These two values are 
not arbitrary but fixed by the resolution of the image acquisition process.  
The most important action to carry out in ImageJ is the setting of the threshold, namely the 
parameter that adjusts the percentage of black and white pixel associated to full material and 
void. (black pixel = full material, white pixel = void). The threshold has been set in order to achieve 
the real relative densities of the periodic unit. As a matter of fact, according to the investigation 
performed on TET ideal specimen, it has been noticed that its relative density is different: 17.5 % 
for the for the periodic unit and 16.6 % for the specimen. The deviation can be attributed to the 
extra volume given by the closed struts at the contour, namely the boundary effect. With reference 
to  Table 16, 𝜌�5��∗  of TET specimen is equal to 14.5 % thus, taking the assumption that said 
deviation remains identical also for real structures, the target value of 𝜌�5��∗   for the periodic unit 
is approximately 13.5 %. No differences can be notified for Diamond for which the relative 
densities are identical. A sensitivity analysis has been performed setting different values of 
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thresholds (T is the variable that governs the threshold in ImageJ) and computing the 
correspondent 𝜌�5��∗  up to reaching the target. Regarding the measurement of real pore size, four 
unit cells at different positions (highlighted by the red squares) of the complete sections have 
been analysed with the Matlab code described in paragraph 2.1 to account for possible 
deviations; a focus on the selection is visualised in Figure 5-1.  
 

 
Figure 5-1: Selected	unit	cells	for	real	pore	size	computation	from	the	complete	section	of	TET	

(a)	and	Diamond	(b) 
 
In Figure 5-1, only the first frame of each cubic cell is shown, the number of pictures selected in 
the out-of-plane direction has been determined in the following way: 4.29/0.016 = 269 images for 
TET and 1.55/0.008 = 194 images for Diamond to be consistent with the pixel resolution and 
obtain the entire cubic cell.  
The results of real pore size and relative density are reported in Table 17. In line with the 
expectations, real pore sizes are smaller than ideal ones: this is justified by local material 
agglomerations and roughness of real geometries.  

 

 
Table 17: comparison between ideal and real morphological properties of TET and Diamond RVE 

 
Looking at the tomography of TET, something that can be easily noticed from a qualitative point 
of view is that d (strut diameter) decreases moving form vertical to horizontal struts passing from 
inclined ones. The difference is attributed to the printing process and to the fact that the printing 
angle has been set to 90° (the printing angle is defined as the angle among the building inclination 

structure Real 
pore size 

p [𝝁𝒎] 

p Mean 
value 
[𝛍𝐦] 

p Standard 
deviation 

[𝛍𝐦]    

Ideal 
pore size 

p [𝝁𝒎] 

p difference 
% 

Diamond p1 = 832 
 

p2 = 784 
 

p3 = 832 
 

p4 = 784 
 

 
 
 

808 

 
 
 

27.72 

 
 
 

920 

 
 
 

12.2 % 

TET p1 = 896 
 

p2 = 864 
 

p3 = 869 
 

p4 = 864 
 

 
 
 

873 

 
 
 

15.35 

 
 
 

980 

 
 
 

10.9 % 
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and the horizontal plane).  In line with observations of previous studies like the one of [24], a 
smaller and smaller intersection between subsequent layers occurs as the printing angle of a strut 
approaches 0°, the latter being null for horizontal struts with the settled printing angle of 90°. This 
condition could lead to bad tolerances and excessive local accumulation of melted powder. The 
overmentioned statements are verified by Figure 5-2 which shows a frontal (a) and an upper (b) 
view of two TET frames. From the quantitative side, it can be observed that the dimensions of the 
real vertical struts are homogenously distributed and with a value of approximately 𝑑�5�� = 0.26 
(lower than the as-designed one of d = 0.33). 
 

 
 

Figure 5-2: Tomography	detail	of	TET	compression	specimen 
 
Relevant differences between ideal and real values of d have not been observed for Diamond as 
testified by the strut dimensions measurements shown in Figure 5-3. Whereas TET has horizontal 
struts which are more problematic form a printing point of view and a higher value of 𝜆 = 6.5, 
Diamond possess inclined struts and a lower value of 𝜆 = 4.69 and this is, in general terms, better 
from the manufacturing quality point of view. A future analysis on the relationships between strut 
dimensions and printing angle is suggested especially for TET to gain more information about the 
optimal angle able to reduce the geometric tolerances.  
 

 
 

Figure 5-3: Tomography	detail	of	Diamond	compression	specimen	
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5.2 Real elasto-plastic mechanical properties 

5.2.1 Tetrahedron 

Staring from the stack of images processed in ImageJ as described in 5.1, a 2x2x2 TET cell has 
been extracted to reconstruct the real periodic unit and evaluate the compressive mechanical 
properties for comparison with experimental tests. To begin, with the ‘isosurface’ option of the 
Bonej plug-in, the STL format of the selected frames has been built; the process is summarised 
in Figure 5-4. 
 

 
 

Figure 5-4: From	the	PNG	(a)	to	the	STL	(b)	of	real	TET	
	

The STL file is imported into Mimics and, after a series of operations, an INP format of the real 
RVE is generated for FE modelling. The operations can be summarised as follows: 
 

Application of the mesh (0.085 has been chosen). 
 

Fixing of any geometrical issues like: removal of intersecting and overlapping mesh triangles, 
removal of noise shells, setting the correct normal orientations, removal of bad contours, bad 
edges, planar holes and so on. 
 
Rotation of the structure so that it is normal to a x-y-z reference system. 
 
Cutting of extra material so to obtain an RVE delimited by a cube of a specific strut length L 
= 4.29 mm. 
 

The final INP file ready for FE modelling is shown in Figure 5-5. A numerical model involving PBC 
for symmetric structures has been defined with the aim of evaluating E and 𝜎? and the 
homogenised stress vs strain curve has been extracted. A compressive displacement of 5 % has 
been applied. By implementing this type of PBC and not the ones using Homtools (which is 
mandatory because no mesh manipulation can be performed on an orphan mesh like the one 
generated in Mimics), it is known a priori that buckling cannot be predicted by the homogenised 
stress vs strain curve. 
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Figure 5-5: Real	reconstructed	TET	2x2x2	periodic	unit	
	

Figure 5-6 shows the comparison between the homogenised stress vs strain curves of real 
reconstructed cell, compression experimental tests averaged between the two compression 
specimens, ideal 2x2x2 periodic unit and the 1/8 numerical specimen. The ideal periodic unit 
stands, by far, above the real curves; this remarkable difference between as-designed and as-
built micro-lattice would not be justified by the reduced 𝜌�5��∗  of 12% respect to 𝜌∗ only, but it is 
also due to the smaller vertical struts as discussed and shown in paragraph 5.1, this latter effect 
having the greatest impact on such a wide discrepancy. Moreover, by implementing PBC for 
symmetric structures and not the ones using Homtools (which is mandatory because no mesh 
manipulation can be performed on an orphan mesh like the one generated in Mimics), that 
buckling cannot be predicted by the homogenised stress vs strain curve remaining the latter flat 
at high strain levels. Apart from this, it is worth noticing that the curve of the compression tests is 
slightly above the one of the real periodic unit mainly because of the boundary effect which not 
only interests the linear, but also the non-linear part of the curve. What is more, the boundary 
effect between real periodic unit and real specimen has been compared to the one between ideal 
unit and ideal specimen: the result is 7 % vs 13.5 % if Young modulus of compressive tests is 
considered and 11.5 % vs 13.5 % is Young modulus of tension tests is adopted. It has already 
been explained in chapter 3 that, because of non-perfect contact between skins and plates in 
compression, it is better to refer to the Young modulus and yield stress of tension tests. The 
conclusion is that, being the two boundary effects close to each other, the real reconstructed 
2x2x2 cell represents a good prediction for the as-manufactured compression specimens. 
A resume of all the results of TET structure are presented in Table 18 where the value of Young 
modulus out of the real test is the tensile one being the latter more reliable. 

	
	

 Real 
periodic 

unit 

Real average 
compression 

specimen 

Ideal 
periodic 

unit 

Ideal 1/8 
compression 

specimen 

E [MPa] 2355 2693 4198 4840 

𝝈𝒚 [MPa] 17.34 22.51 39.8 44.62 

	
Table 18: Resume	of	TET	results	
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Figure 5-6: Numerical	homogenised	stress	vs	strain	curve	of	the	reconstructed	real	TET	2x2x2	RVE	
compared	with	compressive	tests,	ideal	2x2x2	RVE	and	ideal	1/8	compression	specimen	

5.2.2 Diamond 

For what concerns real Diamond structure, the reconstruction of the periodic unit has not been 
performed because the mesh which is set in Mimics is an orphan mesh that cannot be modified 
in Abaqus and, since Diamond needs the application of general PBC with Homtools, a direct 
modification of the mesh to make it identical for each pair of opposite faces would be needed. An 
alternative way could be, once again, to develop a Matlab code in communication with Abaqus 
which redistributes the position of the nodes thus obtaining periodicity. This is suggested as a 
future development. Anyway, the numerical prediction of the as-manufactured Diamond 
specimen has been performed by reconstructing a real 7x7x7 reduced specimen (see Figure 5-7). 
The operations to get the INP file for FE modelling are qualitatively identical to the one already 
explained for TET and will not be repeated. 
 

 
 

Figure 5-7: Real	reconstructed	Diamond	'reduced'	7x7x7	specimen	
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In Figure 5-8 the homogenised stress vs strain curves of 7x7x7 reduced reconstructed 
specimens, the real compression specimen and the numerical RVE are compared. Values are in 
Table 19. Once again, the reported value of experimental Young modulus refers to the tensile 
test since it is more reliable even if the experimental curve of Figure 5-8 is the compressive one. 
 

 
 

Figure 5-8: Comparison between experimental compression Diamond with RVE and reconstructed 7x7x7 
reduced specimen 

	
Based on the outcome of Table 19, a quite wide difference is observed among reconstructed 
7x7x7 specimen and experimental compression test. Since the relative density of the 
reconstructed specimen has been set to be equal to the real weighted one, such a wide deviation 
might be due to the effect caused by the smaller height (7 vertical cells of the real reconstructed 
reduced specimen vs 21 vertical cells of the manufactured one) other than measurement 
dispersion. 

	
 Real average 

compression 
specimen 

Ideal 
periodic 

unit 

Reconstructed 
7x7x7 specimen 

E [MPa] 2216 2565 2380 

𝝈𝒚 [MPa] 33.77 43 43.1 

	
Table 19: Resume	of	Diamond	results	
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6.  Conclusions and future developments 

This thesis represented an initial attempt to transfer the knowledge and competences of this 
research group about the mechanical assessment of micro-lattice structures in the biomedical 
field for the design of new generation orthopaedic implants which is one of the main current and 
future applications of lattice structures. The work has been divided in two main parts. In the first 
part a state of the art of the main features required by lattice in biomedical field has been realized 
and two promising unit lattice shapes capable of matching the specifications on Young modulus 
and pores size to avoid stress shielding and promote bone ingrowth and vascularization has been 
selected, 3D printed, CT scan and experimentally tested in tension and compression. For the 
computation of pore size, a Matlab code has been developed. In the second part, an experimental 
and mechanical characterization of the selected structures has been performed and, with respect 
to the homogenized stress vs strain curves, experimental and numerical real and ideal Young 
modulus and yield stress have been compared. What is more, the dependency between 
specimen and RVE elastic modulus as well as the RVE size in linear and non-linear regime have 
been studied. 
The results of the work are resumed, in detail, by the following points: 
 

1. Based on the definition according to which pore size ‘p’ is the maximum inscribed sphere 
inside a lattice volume, a Matlab script has been developed. The code is able to return 
the value of ‘p’ for any input geometry of any complexity and it is flexible respect to the 
target resolution one wants to achieve. Thank to this tool, the comparison between ideal 
and real pore size has been simply performed. 
 

2. To avoid carrying out many different simulations to map the trend between Young 
modulus and pore size, upon observing that Young modulus and slenderness (𝜆) of a 
certain cell geometry are linearly correlated, a non-dimensionalisation has been 
performed with the parameters 𝜙 = p/d and 𝜆= L/d and a liner relation has been assumed. 
The two variables are able, a priori, to predict numerical Young modulus and pore size of 
a specific unit cell of defined L and d. It is worth saying that the goodness of linear 
hypothesis is function of the cell type. (much better form Diamond than TET in this work). 
Out of this process, design spaces have been created and intersected with areas of 
biomedical constraints and admissible solutions have been found. 

 

 
 

                  Figure 6-1: Resume	of	the	values	of	Young	modulus	and	Pore	size 
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3. The comparison between as-designed and as-manufactured Young modulus and pore 

size has been performed showing that the as-manufactured values still match the 
biomedical constraints on ‘E’ (Young modulus) and ‘p’ (pore size). This is testified by 
Figure 6-1. A correlation between mechanical properties and relative density has been 
confirmed: if the former decreases so does the latter and, specifically to TET, a strong 
contribution of the vertical struts real dimension on Young modulus and yield stress has 
been observed. 

 
4. The study of suitable PBC to be imposed on a small representative micro-lattice volume 

to reproduce the infinite medium has been carried out distinguishing those structures 
whose periodic unit cells are symmetric and those who are not. For the first family, the 
imposition of planarity of each pair of opposite face is sufficient to gain periodicity, for the 
second family it is necessary to have a periodic mesh and couple the DOF of every 
correspondent node on opposite faces; this has been obtained with the Abaqus plug-in 
Homtools. The two geometries considered, Diamond and TET, belong, by chance, to the 
two families each. Moreover, the size of the RVE which said PBC are applied to has been 
investigated either in linear and non-linear regime concluding that it corresponds to one 
periodic unit in linear regime no matter which the unit cell shape is, and it can be higher 
than one periodic unit in non-linear regime if buckling occurs. Buckling has been observed 
both experimentally and numerically for TET and, in non-linear field, the RVE size of 
Diamond has been concluded to be one, higher than one the RVE of TET. 

 
5. The investigation of the specimen size so that its Young modulus is representative of the 

infinite homogenized mean simulated with PBC has been carried out and the presence 
of a residual difference, due to the boundary effect, has been observed. TET still 
preserves a positive error of 5.3 % (positive means that specimen is stiffer than periodic 
unit) with a 12x12 periodic units specimen section estimated with beam elements; 
whereas Diamond features a negative error of 5.7 % (negative means that periodic unit 
is stiffer than the specimen) with 7x7 periodic specimen section estimated with solid 
elements.  Among the two structures, a lower sensitivity to the boundary effect of 
Diamond has been assessed. 

 
Out of the state of the art research performed in this thesis, for the micro-lattice design, the focus 
has been put on two parameters E (Young modulus) and p (Pore size) relevant from a biomedical 
point of view. Indeed, a further and deeper research about bone properties and crucial implant 
topological variables is needed to widen the knowledge from the biomedical side. The 3D printing 
of one of the two structures, namely TET, proved to be not so successful and a big difference 
between as-designed and as-manufactured mechanical properties has occurred; therefore, a 
more careful study of the optimal printing angle could improve the struts quality as well as a review 
on the manufacturability constraints ‘d’ and ‘𝜆’ is suggested since the settled upper value of 𝜆 = 
6.5 is probably too high. As far as the study of mechanical properties goes, fatigue experimental 
tests and fatigue study in general are needed to estimate the fatigue strength of the micro-lattice 
specimens that is a relevant for the orthopedic implant design. 
In the attempt to define how many periodic units are needed to form the RVE in non-linear regime, 
a question has been left for TET because of a too high computational cost to increase the model 
size with solid elements. The use of beams with the opportune imposition of PBC which couples 
also the rotational DOF will enable to find the size of the RVE. Moreover, for the FE modelling of 
real reconstructed periodic units of non-symmetric geometries (like Diamond), a solution to 
manipulate the mesh and make it periodic on each couple of opposite faces still needs to be 
developed. Finally, the implementation of a numerical damage model for Titanium is suggested 
to numerically predict ultimate stresses in tension and compression and better study the buckling 
failure. In literature, with reference to two subsequent works of Ahmadi et al. [25], [26] the Johnson 
and Cook damage model has been used for Ti6Al4V. 
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