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Sommario

In questa tesi è stata studiata la corrente transizionale attorno al profilo SD7003
a α = 8◦, Re = 60 000 e Ma = 0.2 utilizzando le Large Eddy Simulations con
l’adattività polinomiale in una discretizzazione con elementi finiti discontinui di
Galerkin. Questo è un test case particolarmente impegnativo poiché è presente
una bolla di separazione laminare con transizione e riattacco dello strato limite
turbolento. Inoltre le dimensioni della bolla sono fortemente influenzate dalla
transizione. I risultati ottenuti col modello dinamico anisotropo sono stati con-
frontati con quelli ottenuti con un modello implicito, misure sperimentali e altri
risultati numerici disponibili in letteratura. L’adattività polinomiale ha confermato
la sua capacità di rappresentare correttamente la corrente con un grande risparmio
del costo computazionale. Inoltre i risultati ottenuti col modello anisotropo si
avvicinano alle misure sperimentali grazie alla capacità di tale modello di cogliere
il backscatter di energia dalle scale di sotto-griglia. A partire dal campo di moto
statisticamente stazionario ottenuto, è stata studiata l’interazione viscosa, parallela
tra vortice e profilo nello stesso contesto numerico. Questa interazione è presente
in molti problemi ingegneristici: il campo di applicazione più vicino a questo lavoro
è nel progetto di micro aerial vehicles per via del basso numero di Reynolds scelto.
Un vortice modellato è stato sovrapposto alla corrente attorno al profilo SD7003
e l’adattività polinomiale dinamica è stata utilizzata con successo per seguire il
trasporto del vortice nel tempo. I carichi aerodinamici sono stati confrontati con
quelli ottenuti con una simulazione senza vortice. A differenza del coefficiente
di resistenza che torna rapidamente alla condizione statisticamente stazionaria, i
transitori per i coefficienti di portanza e momento sono più lunghi a causa dell’effetto
del vortice sulla bolla di separazione laminare.

Parole chiave: Large Eddy Simulation, Discontinuous Galerkin, adattività polino-
miale, SD7003, bolla di separazione laminare, modello di sotto-griglia, interazione
vortice-profilo
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Abstract

In this thesis the transitional flow around the SD7003 airfoil at α = 8◦, Re =
60 000 and Ma = 0.2 was investigated employing p-adaptive large eddy simulations
in a Discontinuous Galerkin framework. This test case is particularly challenging
since a laminar separation bubble (LSB) with transition and reattachment of the
turbulent boundary layer (BL) has been observed. Furthermore the dimensions of
the LSB are greatly affected by transition. The results obtained with the dynamic
anisotropic model have been compared with the implicit model computations,
experimental measurements and other numerical results available in literature. The
polynomial adaptivity technique confirmed its capability to correctly represent the
flow with a great saving in the computational cost. Furthermore the results obtained
with the dynamic anisotropic model are close to experimental measurements thanks
to the capability of this model to capture the energy backscatter from the subgrid
scales. Starting from the statistically steady state flow field obtained, the viscous,
parallel, blade-vortex interaction (BVI) has been studied in the same numerical
framework. The BVI is a phenomenon of common occurrence in several engineering
problems: because of the low Reynolds number chosen, the closest application field
of the present work is in the design of micro aerial vehicles. A modelled vortex
has been superimposed to the flow around the SD7003 airfoil and the dynamic
p-adaptivity has been successfully employed to capture its advection over time. The
loads have been recorded and compared with a reference simulation without the
vortex. While the drag rapidly comes back to its steady-state value, the transients
for lift and moment coefficients are longer because of the effect of the vortex on the
LSB.

Keywords: Large Eddy Simulation, Discontinuous Galerkin, polynomial adaptivity,
SD7003, Laminar Separation Bubble, subgrid model, Blade-Vortex Interaction
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Chapter 1

Introduction

Computational fluid dynamics is today the main tool, together with experimental
studies, to investigate turbulent flows. Such flows show a large range of time and
length scales: the simulation should resolve all these scales to represent correctly
the flow. The smallest time and length scales can be estimated, according to
Kolmogorov theory, as O(Re−3/4) and O(Re−0.8) respectively. This means that they
become smaller increasing the Reynolds number, which is extremely high in the
majority of the aeronautical applications. Because of that, the computational cost
required to solve all the turbulent scales is prohibitive for practical applications.
However, this approach, called Direct Numerical Simulation (DNS), is employed for
fundamental research in very simple geometries and at moderate Reynolds numbers.
The results are considered as accurate as the one coming from experiments.

Today the most common way to tackle turbulent flows problems are the Reynolds
average Navier–Stokes equations (RANS), thanks to the fact that only the mean
(in time) flow quantities are solved and all the fluctuations in the smaller time and
length scales are modelled. Lots of models have been suggested, the most common
rely on the turbulent viscosity which can be obtained with algebraic or differential
equations from turbulence quantities, such as the turbulent kinetic energy k or
the dissipation rate of turbulent kinetic energy ε. RANS are used in industry and
in research that involves complex geometries and high Reynolds number and the
computational cost is orders of magnitude lower than a DNS. However the modelled
part of the time and length scales leads to limited accuracy which is not always
acceptable.

Between the representation of all the turbulence scales (DNS) and the modelling
of all the turbulence effects (RANS), there is the Large Eddy Simulation (LES)
approach. In this case the flow quantities are filtered in space rather than averaged
in time. In this way only the largest eddies are fully represented (the one linked to
the domain and time scales), while the smallest ones, which can be supposed to be
universal, are modelled. The computational cost is midway between a RANS and a
DNS computation, but nowadays still not feasible for a full scale aeronautic model.
Here the LES approach has been used to model the statistically 2D flow around
the Selig–Donovan (SD) 7003 airfoil at a moderate Reynolds number.

The flow around the SD7003 airfoil at Re = 60 000 or Re = 30 000 is a common

1



2 Chapter 1. Introduction

test case1 to asses the accuracy of a RANS or LES implementation in the prediction
of the transition to turbulence and reattachment. Indeed, also at low angle of
attack, there is a laminar boundary layer separation with the transition in the shear
layer. The reattachment of the turbulent boundary layer leads to the formation of a
recirculating region called laminar separation bubble (LSB). This flow is particularly
challenging to simulate numerically, since it shows a wide variety of turbulent scales:
large scale vortices, which are formed in the recirculating region, breaks down into
small scale structures while they are advected downstream.

Since the most common RANS models fail in low Reynolds conditions, ad
hoc RANS turbulence models have been developed to correctly represent this
flow; see for example the works of Catalano and Tognaccini (2010), Catalano and
Tognaccini (2011) and Bernardos, Richez, Gleize, and Gerolymos (2019). The
reference points for the assessment of these models are the LES of Catalano and
Tognaccini (2009) and Galbraith and Visbal (2008); however several authors applied
the LES approach to this flow to assess the accuracy of their particular LES
implementation or discretisation technique: Bolemann et al. (2015), Bassi et al.
(2016) and Uranga, Persson, Drela, and Peraire (2009) used the discontinuous
Galerkin method; Boom and Zingg (2013) and Garmann, Visbal, and Orkwis (2013)
used finite difference methods (Summation-by-parts and compact, respectively).
More recently Qin, Koochesfahani, and Jaberi (2018) used this test case to study
the effect of an harmonic variation in the free-stream angle of attack and velocity
magnitude on the LSB; Sarlak (2017) studied the effect that the Reynolds number
and the subgrid scale modelling have in this flow; finally Breuer (2018) compared
the results obtained varying the inflow turbulence, similarly to what has been done
experimentally by Herbst, Kähler, and Hain (2018). The P-adaptive method has
been applied very recently by Wang, Gobbert, and Yu (2019) (preprint, at the
present time) to save computational resources without affecting the accuracy of the
solution.

From an applicative point of view, the study of a low Reynolds flow around an
airfoil is particularly interesting in the development Micro Aerial Vehicle (MAV).
For this reason and to match the results of numerical simulation, this test case have
been studied experimentally, for example, in the works of Burgmann and Schröder
(2008), Ol, McAuliffe, Hanff, Scholz, and Kaehler (2005), Radespiel, Windte, and
Scholz (2007), McAuliffe and Yaras (2005), Zhang, Hain, and Kähler (2008) and
Hain, Kahler, and Radespiel (2009). More recently Herbst et al. (2018) analysed
the effect of free stream turbulence on the LSB.

Another important problem in the design of a MAV is the interaction between
the airfoil and a vortex, which can be generated either by the flapping motion or by
a previous blade (tip vortex). This interaction is know as blade–vortex interaction
(BVI) or airfoil–vortex interaction.

The interaction of vortices with solid bodies is a complex fluid dynamic phe-
nomenon of common occurrence in a lot of engineering problems such as rotorcraft
flows, heat exchangers, bridge pilings, offshore structures and flows around buildings.
This interaction usually cause negative effects such as noise, unsteady aerodynamic
loads and structural vibration. Both experimental and numerical approach have

1It has been proposed within the “International Workshop on High-Order CFD Methods”.
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been used to better understand the physics behind this phenomenon and to predict
the most critical conditions. Particularly interesting from the aeronautic point of
view is the BVI in the helicopter rotor where the tip vortex released by a blade
interact with the one of the following blades. It is particularly challenging since it
usually occur during slowly descending flight when the rotor wake remains in the
close proximity of the rotor disk, causing highly unsteady and three dimensional flow
field. However the BVI is usually classified in three different categories depending
on the relative orientation between the vortex axis and the blade span:

• Parallel BVI occurs when the vortex and the blade axis are parallel;

• Perpendicular BVI occurs when the vortex and the blade axis are perpendicular
and the vortex axis is aligned with the streamwise direction;

• Orthogonal BVI occurs when the vortex and the blade axis are perpendicular
to each other and also to the streamwise direction.

In the most general case the vortex axis and the blade span are arbitrarily
oriented and in literature it is usually referred as oblique BVI. This is the practical
scenario, but the simplified classification allows to better comprehend the basic
interactions that should be present in the real case. Nevertheless, in some regions
of the blades, the interaction can be simplified with one of the previous models.
The interaction can also be viscous or inviscid depending if the vortex hit directly
the blade (viscous) or it passes in its close proximity (inviscid). An extensive review
of the body–vortex interaction has been made by Rockwell (1998) and by Wilder
and Telionis (1998) on parallel BVI in particular.

It is particularly challenging to investigate experimentally the parallel BVI, since
it is not trivial to generate a single vortex. In a wind tunnel the vortex generator is
usually an airfoil collocated upstream to the target airfoil. The upstream airfoil is
moved with a pitch or plunge motion (or a combination of the two) to generate two
vortices: one detaching from the leading edge (LEV) and one from the trailing edge
(TEV). This configuration is known as Schmidt–propeller configuration and it was
conceived to extract vortical energy from the upstream airfoil to generate thrust
on the static airfoil (propeller). Measurement of parallel BVI in this configuration
have been made for example by Wilder and Telionis (1998); Rival, Manejev, and
Tropea (2010) and Peng and Gregory (2015).

Since in an experimental facility to study parallel BVI there are always a LEV and
a TEV, the numerical approach is a powerful method to investigate the interaction
between an airfoil and a single vortex. The parallel blade–vortex interaction has
been studied with a RANS approach, coupled with a vorticity confinement method
(see for example Steinhoff and Raviprakash (1995) and Morvant, Badcock, and
Barakos (2005)) to prevent the an excessive diffusion of the advected vortex due to
a poor resolution of the grid. Chimera method or overlapped grids approach have
been also used in the same framework to predict BVI noise (Tanabe et al., 2007
and Tanabe, Saito, Takasaki, and Fujita, 2009).

A hybrid RANS/LES method to study the parallel BVI has been applied by
Felten and Lund (2005), however the first fully LES of a parallel blade–vortex
interaction has been made by Ilie, Nitzche, and Matida (2007) followed by Ilie
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(2019), where a simplified aeroelastic model has been presented. The use of a LES
approach not only guarantees a better accuracy of the solution, but, furthermore,
it does not require any ad hoc technique to prevent the over-diffusion of the vortex.

In the present work the LES approach has been used to study the transitional
flow around the SD7003 airfoil and to investigate the parallel interaction between a
vortex and the airfoil. The numerical code is based on the Discontinuous Galerkin
finite element method characterised by high order accuracy and very good scalability
properties in High Performance Computing facilities. Furthermore the P-adaptive
method developed by Tugnoli (2017) and the dynamic anisotropic model developed
by Abbà, Bonaventura, Nini, and Restelli (2015) have been assessed in this test
case. The present work is part of a wider project in the Dipartimento di Scienze
e Tecnologie Aerospaziali (Department of Aerospace Science and Technology) of
Politecnico di Milano which aims to study BVI in rotorcraft flows. Perpendicular
BVI has been investigated by Droandi, Gibertini, and Zanotti (2016) and ongoing
experimental measurements are focused on parallel BVI.

In chapter 2 the numerical framework is explained. In chapter 3 the statistically
steady state flow around the SD7003 airfoil is presented and it is compared with
experimental data and other numerical results. Finally the BVI results are shown
in the chapter 4.



Chapter 2

Fluid Dynamics Simulation
Framework

In the present chapter the Large Eddy Simulation framework will be introduced
starting from the compressible Navier–Stokes equations and filtering operator in
section 2.1. In section 2.2 four subgrid models are explained: the ones adopted in
the present work are the dynamic anisotropic model 2.2.3 and the implicit model
2.2.4. The discretisation and the polynomial adaptivity techniques are treated in
sections 2.3 and 2.4 respectively. Finally the implementation details are explained
in section 2.5. A more detailed explanation of all the topics treated in this chapter
can be found in the works of Tugnoli (2017), Tugnoli, Abbà, Bonaventura, and
Restelli, 2016, Abbà et al. (2015) and Abbà, Campaniello, and Nini (2017).

2.1 Governing Equations
The compressible Navier–Stokes equations, have been used to model a com-

pressible viscous flow. The dimensional form, where each variable is denoted by
superscript "d", reads:

∂tdρ
d + ∂xdj (ρ

dudj ) = 0 (2.1a)

∂td(ρ
dudi ) + ∂xdj (ρ

dudiu
d
j ) + ∂xdi p

d − ∂xdjσ
d
ij = 0 (2.1b)

∂td(ρ
ded) + ∂xdj (ρ

dhdudj )− ∂xdj (u
d
iσ

d
ij) + ∂xdj q

d
j = 0 (2.1c)

The equations (2.1) represent, respectively, the mass, momentum and total energy
balance. The unknowns are the density ρd, the momentum density ρdud, and the
total energy density ρded. The specific total energy ed is defined as the sum of the
specific internal energy edi and the specific kinetic energy 1

2
udku

d
k:

ed = edi +
1

2
udku

d
k (2.2)

hd is the specific enthalpy, defined as ρdhd = ρded + pd. The problem is closed with
a polytropic ideal gas model, which provides the (two) state equations needed:

T d =
(γ − 1)

R
edi , P d = (γ − 1) ρdedi (2.3)

5



6 Chapter 2. Fluid Dynamics Simulation Framework

Finally the constitutive equations for the heat flux qd and for the viscous stress
tensor σdij are required:

qdj = −µ
dcp
Pr

∂xdjT
d, σdij = µdSd,d

ij (2.4)

where Sd,d
ij = Sdij − 1

3
Sdkkδij, Sdij = ∂xdi u

d
j + ∂xdju

d
i and Pr = 0.72 is the Prandtl

number. The dynamic viscosity µd is assumed to depend only by the temperature
with the power law

µd
(
T d
)

= µd0

(
T d

T d0

)α
(2.5)

with α = 0.7, according to Sutherland hypothesis.
The dimensionless form of the compressible Navier–Stokes equations is obtained

defining reference quantities (subscript "r") for all the variables such that:

xd = Lrx, td = trt, ρd = ρrρ, ud = uru,

pd = prp, ed = ere, µd = µrµ, T d = TrT, qd = qrq. (2.6)

The variables without superscript nor subscript are the dimensionless ones. Only
the quantities Lr, ρr, ur and Tr are assumed, while all the other reference quantities
are obtained as follows:

tr =
Lr
ur
, pr = ρrRTr, er = RTr, µr = µd0

(
Tr
T d0

)α
, qr =

µrcpTr
Pr Lr

(2.7)

Using the equations (2.7), the Navier–Stokes equations can now be rewritten in
non–dimensional form:

∂tρ+ ∂j(ρuj) = 0 (2.8a)

∂t(ρui) + ∂j(ρuiuj) +
1

γMa2∂ip−
1

Re
∂jσij = 0 (2.8b)

∂t(ρe) + ∂j(ρhuj)−
γMa2

Re
∂j(uiσij) +

1

kRe Pr
∂jqj = 0 (2.8c)

with Ma =
ur√
γRTr

, Re =
ρrurLr
µr

, γ =
cp
cv

and k =
R

cp
. The dimensionless total

energy e and the dimensionless enthalpy h are defined as

e = ei +
γMa2

2
ukuk, h = e+

p

ρ
(2.9)

being ei the dimensionless internal energy. The dimensionless constitutive equations
for the heat flux qj and the viscous stress tensor σij are

qj = −µ (T ) ∂jT σij = µ (T )Sd
ij (2.10)

with the dynamic viscosity µ (T ) = Tα and Sd
ij = Sij − 1

3
Skkδij, Sij = ∂iuj + ∂jui.

Finally, the dimensionless state equations for a PIG reads

T =
k

1− k
ei, p =

k

1− k
ρei (2.11)
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2.1.1 Filtering

The idea behind the LES approach is filtering (rather than average) the Navier–
Stokes equations (2.8). The filter operator is denoted by · and it is characterised
by the length scale ∆. The precise definition of the operator is linked to the
discretisation used and it will be treated in section 2.3. The fundamental properties
of a LES filter to allow an easier manipulation of Navier–Stokes equations are (1)
conservation of constant, (2) linearity and (3) commutation with derivation. The
last property is not verified in case of anisotropic or inhomogeneous filters, which is
the case of this work as well as the majority of practical LES. However the extra
term (called commutation error) arising from the anisotropy of the filter will be
neglected, as always done in literature. An estimate of the commutation error
for some simple filters has been computed by Sagaut and Meneveau (2006). In a
discontinuous Galerkin discretisation (see section 2.3) the filter is uniform on the
element, hence the commutation error is formally included in the error arising from
the numerical fluxes.

As customary while manipulating the compressible Navier–Stokes equations,
the Favre filtering operator ·̃ is here introduced to avoid an extra subgrid term in
the mass conservation equation:

ρui = ρũi, ρe = ρẽ, ρei = ρẽi, ρh = ρh̃ = ρẽ+ p. (2.12)

The filtered Navier–Stokes equations can be obtained from equations (2.8); the
resulting equations are:

∂tρ+ ∂j(ρũj) = 0 (2.13a)

∂t(ρũi) + ∂j(ρũiũj) +
1

γMa2∂ip−
1

Re
∂jσ̃ij

= −∂jτij − ∂jεsgs
ij (2.13b)

∂t(ρẽ) + ∂j(ρh̃ũj)−
γMa2

Re
∂j(ũiσ̃ij) +

1

kRe Pr
∂j q̃j

= −∂j(ρhuj)sgs +
γMa2

Re
∂jφ

sgs
j −

1

kRe Pr
∂jθ

sgs
j (2.13c)

where

τij = ρuiuj − ρũiũj, εsgs = σij − σ̃ij, (ρhuj)
sgs = (ρhuj)− ρh̃ũj,

φsgs
j = uiσij − ũiσ̃ij, θsgs

j = qj − q̃j (2.14)

are the subgrid contributions. The filtered counter part of the constitutive equations
(2.10) are simply:

q̃j = −µ(T̃ )∂jT̃ σ̃ij = µ(T̃ )S̃dij (2.15)

with S̃d
ij = S̃ij − 1

3
S̃kkδij and S̃ij = ∂iũj + ∂jũi. Finally the filtered state equations

reads:

T̃ =
k

1− k
ẽi, p =

k

1− k
ρẽi (2.16)
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Note that p = ρT̃ . From equation (2.9) the definitions of the filtered total energy ẽ
and the filtered enthalpy h̃ can be obtained:

ρẽ = ρẽi +
γMa2

2
(ρũkũk + τkk), ρh̃ = ρẽ+ p (2.17)

The subgrid contributions (2.14) represent the smaller, not resolved turbulent
scales. Since they are not known a priori, they must be computed from the resolved
(known) quantities through a turbulence model (see section 2.2). However some
of them can be neglected: as suggested by Pino Martín, Piomelli, and Candler
(2000) and Vreman, Geurts, and Kuerten (1995) and, supposing that σij ≈ σ̃ij and
qj ≈ q̃i, the terms ∂jφsgs, εsgs and θsgs

j vanish. The term (ρhuj)
sgs can be rewritten

in a more practical way: first of all combining the equations (2.17) and (2.16), the
definition of the filtered enthalpy can be restated:

ρh̃ = ρẽ+ p

= ρẽi +
γMa2

2
(ρũkũk + τkk) + ρT̃

=
1

k
ρT̃ +

γMa2

2
(ρũkũk + τkk) (2.18)

Substituting the new definition (2.18) in the definition of (ρhuj)
sgs (2.14) and

introducing the subgrid heat and turbulent diffusion fluxes

Qsgs
i = ρuiT − ρũiT̃ = ρ(ũiT − ũiT̃ ) (2.19)

J sgs
i = ρuiukuk − ρũiũkũk = ρũiukuk − ρũiũkũk (2.20)

one should obtain:

(ρhui)
sgs =

1

k
Qsgs
i +

γMa2

2
(J sgs
i − τkkũi) (2.21)

As suggested by Germano (1992) the subgrid turbulent diffusion flux J sgs
i can be

rewritten using the generalised central moments τ(ui, uj, uk) as follows:

J sgs
i = τ(ui, uk, uk) + 2ũkτik + ũiτkk (2.22)

being
τ(ui, uj, uk) = ρũiujuk − ũiτjk − ũkτij − ρũiũjũk (2.23)

Given the above definitions and assumptions the filtered Navier–Stokes equations
(2.13) can be finally written as:

∂tρ+ ∂j(ρũj) = 0 (2.24a)

∂t(ρũi) + ∂j(ρũiũj) +
1

γMa2∂ip−
1

Re
∂jσ̃ij

= −∂jτij (2.24b)

∂t(ρẽ) + ∂j(ρh̃ũj)−
γMa2

Re
∂j(ũiσ̃ij) +

1

kRe Pr
∂j q̃j

= −1

k
∂jQ

sgs
j −

γMa2

2
∂j(J

sgs
j − τkkũj) (2.24c)
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2.2 Subgrid Models
The subgrid scale contributions must take into account all the effects arising

from the not resolved scales which affect the resolved ones. If the cutoff frequency
of the filter is (ideally) at the very end of the inertial subrange, the main effect that
has to be modelled is the dissipation of the energy coming from the larger scale
eddies. However the model should also allow the backscatter: even if globally the
energy is transferred from the larger to the smaller scales, locally the energy could
be transferred in the opposite way. This is a fundamental property for a model to
avoid the over dissipation of the turbulent structures. As explained in section 2.2.1,
the Smagorinsky model does not have this property, while it can be archived with
the dynamic procedure (see section 2.2.2) proposed by Germano, Piomelli, Moin,
and Cabot (1991). These two models are here explained for clarity and for a better
comprehension of the model explained in section 2.2.3, but they will not be used.

The model adopted in the present work is the dynamic anisotropic model
explained in section 2.2.3 and presented by Abbà, Cercignani, and Valdettaro (2003)
for incompressible flows and extended to the compressible framework by Abbà et al.
(2015). In this model the dynamic procedure is coupled with an anisotropic model
to overcome the hypothesis that the principal directions of the subgrid stress tensor
τ are aligned with the rate of strain tensor S̃ij.

2.2.1 Smagorinsky Model

The model, introduced by Smagorinsky (1963) and initially applied in weather
forecast, is the most employed in LES context thanks to its simplicity. As the
majority of RANS models, the deviatoric part of the subgrid stress tensor τij is
modelled through the single scalar value νsgs called turbulent viscosity:

τij −
1

3
τkkδij = − 1

Re
ρνsgsS̃dij (2.25)

As pointed out by Pope (2000), this is a limitation for, mainly, two reasons. First
of all, also in a simple flow as the one in an axisymmetric contraction (see the
work of Uberoi (1956)), it is not true that the subgrid stress tensor depends only
on the filtered (or mean, in RANS) strain rate Sij, but a memory effect has been
observed. Furthermore the subgrid stress tensor is not aligned with the strain rate
tensor, which is implicitly assumed while saying that νsgs is a scalar value instead
of a fourth order tensor. Because of the last assumption the turbulent viscosity
models are also called isotropic models. As explained in section 2.2.3, the isotropic
hypothesis can be removed developing an anisotropic model.

The effect of eq. (2.25) is to add a dissipation to the molecular one. In RANS
models a complex relation between the turbulent viscosity and the averaged variables
is required to take into account the effect of all the turbulent scales. On the contrary,
in the LES approach, only the smallest turbulent scales are modelled and, thanks
to Kolmogorov similarity theory, they can be supposed to be universal and to be
modelled with the simple relation:

νsgs = Re C2
S∆

2|S̃| (2.26)
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where CS ' 0.1 is the Smagorinsky constant (to be tuned, since it depends on
the particular flow), ∆ is the characteristic length scale of the filter operator and
|S̃|2 = 1

2
S̃ijS̃ij. 1Despite the universality suggested by the Kolmogorov theory, a

damping function fD is required near the wall. The most used is the Van Driest
damping function:

fD = 1− exp (−y+/A) (2.27)

with A = 25 and y+ the dimensionless wall unit. So, the model (2.26) becomes:

νsgs = Re C2
S∆

2|S̃|fD (2.28)

Since all the terms on the right-hand-side of equation (2.28) are positive, νsgs is
always positive, hence no backscattering is possible. Furthermore, in case of laminar
flow, the filter is still active, while it should be required CS = 0, so that νsgs = 0. For
what concerns the isotropic part of the subgrid stress tensor, it could be neglected
as usually done in the incompressible case (see for example the work of Erlebacher,
Hussaini, Speziale, and Zang (1992)) or it can be modelled in a similar way of his
deviatoric counterpart as done by Yoshizawa (1986) and Abbà et al. (2015):

τkk = CIρ∆
2|S̃| (2.29)

The subgrid heat flux can be modelled as done by Eidson (1985) with the same
viscosity coefficient:

Qsgs
i = − Pr

Pr sgsρν
sgs∂iT̃ , (2.30)

The subgrid Prandtl number Pr sgs is another constant which has to be tuned,
usually Pr sgs ' Pr = 0.72. Finally the term τ(ui, uj, uk) can be neglected from
J sgs
i , hence the turbulent diffusion flux only depend on the subgrid stress tensor:

J sgs
i ' 2ũkτik + ũiτkk (2.31)

2.2.2 Smagorinsky Dynamic Model

To overcome the weaknesses of the Smagorinsky model, the dynamic procedure
has been developed by Germano et al. (1991). The main idea is to allow CS to
vary inside the domain and in time: it is not set a priori but it is automatically
computed at each time step and in each element of the domain. To do this, a second
filtering operator (test filter) denoted by ·̂ with a characteristic length of ∆̂ (usually
∆̂ = 2∆) and the corresponding Favre filter ·̆ have to be introduced as follows:

ρ̂ui = ρ̂ŭi, ρ̂e = ρ̂ĕ, ρ̂ei = ρ̂ĕi, ρ̂h = ρ̂h̆ = ρ̂ĕ+ p̂. (2.32)

Applying the filtering operator just introduced to the filtered momentum balance
equation (2.24b) leads to:

∂t(ρ̂ ˘̃ui) + ∂j(ρ̂ ˘̃ui ˘̃uj) +
1

γMa2∂ip̂−
1

Re
∂j ˘̃σij = −∂j(τ̂ij + Lij) (2.33)

1If the filter length that tends to zero, also the turbulent viscosity tends to zero; hence the
model is not active. Because of that it is usually said the LES tends to a DNS when reducing the
resolution, while this is not true for a RANS.
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where Lij is the Leonard stress tensor defined as:

Lij = ρ̂ũiũj − ρ̂ ˘̃ui ˘̃uj. (2.34)

Since the spatial scale of the test filter ·̂ is bigger than the one associated to · 2, for
the generic variable a, the following relation can be stated: â = â. Because of that
the eq. (2.33) reduces to:

∂t(ρ̂ŭi) + ∂j(ρ̂ŭiŭj) +
1

γMa2∂ip̂−
1

Re
∂jσ̆ij = −∂j(τ̂ij + Lij). (2.35)

It is worth noting that the Leonard stress tensor (2.34) is a known quantity as it
can be computed applying the test filter to the variables ρ and ũ which are the
solutions of the filtered Navier–Stokes equations (2.24). It is assumed that the
Smagorinsky model can be applied also to the deviatoric part of the term τ̂ij + Lij
of the equation (2.35) in the form

τ̂ dij + Ldij = −ρ̂∆̂2| ˘̃S|CS
˘̃
Sdij (2.36)

as well as to τ dij:
τ dij = −ρCS∆

2|S̃|S̃dij (2.37)

Substituting eq. (2.37) into eq. (2.36) leads to:

CSRij = Ldij. (2.38)

with Rkl =
̂

ρ∆
2|S̃|S̃dkl − ρ̂∆̂2| ˘̃S| ˘̃

Sdkl. So, the value of CS can be computed with a
least square approach:

CS =
LdijRij

RklRkl

. (2.39)

Also the isotropic part of the subgrid stress tensor (modelled with eq. (2.29)) can
be treated with a dynamic procedure, leading to:

CI =
Lkk

ρ̂∆̂2| ˘̃S|2 − ̂
ρ∆

2|S̃|2
(2.40)

The subgrid heat flux can be modelled similarly:

Qsgs
i = −ρ∆

2|S̃|CQ∂iT̃ , (2.41)

and the coefficient CQ can be computed dynamically:

CQ =
LQi R

Q
i

RQ
kR

Q
k

(2.42)

being LQi = ρ̂ũiT̃ − ρ̂ ˘̃ui
˘̃
T and RQ

i =
̂

ρ∆
2|S̃|∂iT̃ − ρ̂∆̂2| ˘̃S|∂i

˘̃
T . Following the work

of Pino Martín et al. (2000) the third order generalised moment τ(ui, uj, uk) from
the turbulent diffusion flux J sgs

i can be approximated as

τ(ui, uk, uk) = ρũiukuk − ρũiũkuk (2.43)
2This is true also for as their Favre counterpart ·̆ and ·̃.
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and modelled with the resolved kinetic energy gradient:

τ(ui, uk, uk) = −ρ∆
2|S̃|CJ∂i

(
1

2
ũkũk

)
. (2.44)

Finally, the coefficient CJ can be computed dynamically:

CJ =
LJiRJ

i

RJ
kRJ

k

(2.45)

with LJi = ̂ρũiũkũk − ρ̂ ˘̃ui ˘̃uk ˘̃uk and RJ
i =

̂
ρ∆

2|S̃|∂i
(

1
2
ũkũk

)
− ρ̆∆̂2| ˘̃S|∂i

(
1
2

˘̃uk ˘̃uk

)
.

The dynamic procedure allows to overcome some the shortcomings of the
Smagorinsky model: the model behaved very well near the wall and, hence, no
damping function is required; furthermore the value of CS is now zero in laminar flow
condition and it can be negative to allow backscatter 3. However, the Smagorinsky
dynamic model is still limited by the isotropic assumption as his "static" counterpart.
The coefficients, computed with the dynamic procedure, are very variable from
point to point and, to avoid numerical instabilities, they are averaged over each
element.

2.2.3 Dynamic Anisotropic Model

In this model the isotropic assumption is removed and the subgrid stress tensor
is supposed proportional to the strain rate tensor through a fourth order symmetric
tensor:

τij = −ρ∆
2|S̃|BijrsS̃rs (2.46)

A generic fourth order symmetric tensor can be represented as

Bijrs =
3∑

α,β=1

Cαβaiαajβarαasβ (2.47)

with Cαβ a second order symmetric tensor and aij a rotation tensor. The eq. (2.47)
is the generalisation for fourth order tensors of the diagonalisation of matrices. The
choice of aij can be, in principle, arbitrary and several different choices have been
analysed by Abbà, Cercignani, Picarella, and Valdettaro (2001), Abbà et al. (2003)
and Gibertini, Abbà, Auteri, and Belan (2010); however the results do not appear
to have strong dependency on the choice of the rotation tensor. For this reason,
in the present work, as well as done by Abbà et al. (2015), the basis chosen is the
canonic cartesian basis, i.e. aij = δij. Thanks to the simple rotation tensor chosen,
the eq. (2.46) reduces to

τij = −ρ∆
2|S̃|CijS̃ij, (2.48)

where the repeated indices strands for a element by element multiplication, differ-
ently from the notation adopted until now. Similarly to what have been done in

3Actually, it is required to ensure to the total dissipation, resulting from the subgrid stresses
and the viscous one, to be positive to avoid unphysical behaviour. See the work of Abbà et al.,
2015 for the details.
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section 2.2.2, the right hand side of eq. (2.35) has been modelled with (2.48) to
develop the dynamic procedure. In this case the isotropic part of the term τ̂ij +Lij
has been treated together with the deviatoric one, leading to:

τ̂ij + Lij = −ρ̂∆̂2| ˘̃S|Cij
˘̃
Sij. (2.49)

Substituting τij from (2.48) in the above relation, the values for Cij can be obtained:

Cij =
Lij

̂
ρ∆

2|S̃|S̃ij − ρ∆̂2|S̃|S̃ij
. (2.50)

The subgrid heat and turbulent diffusion fluxes are also modelled with a dynamic
procedure and two second order tensors:

Qsgs
i = −ρ∆

2|S̃|BQir∂rT̃ (2.51)

τ(ui, uk, uk) = −ρ∆
2|S̃|BJir∂r

(
1

2
ũkũk

)
(2.52)

with

BQir =
3∑

α=1

CQα aiαarα (2.53)

BJir =
3∑

α=1

CJαaiαarα. (2.54)

Exploiting again the relation aij = δij, the following relations are obtained:

Qsgs
i = −ρ∆

2|S̃|CQi ∂iT̃ (2.55)

τ(ui, uk, uk) = −ρ∆
2|S̃|CJi ∂i

(
1

2
ũkũk

)
, (2.56)

and the coefficients CQi and CJi are computed with the dynamic procedure:

CQi =
LQi(

̂
ρ∆

2|S̃|∂iT̃ − ρ̂∆̂2| ˘̃S|∂i
˘̃
T

) (2.57)

CJi =
LJi(

̂
ρ∆

2|S̃|∂i
(

1
2
ũkũk

)
− ρ̆∆̂2| ˘̃S|∂i

(
1
2

˘̃uk ˘̃uk

)) . (2.58)

As done previously for the isotropic (Smagorinsky) dynamic model 2.2.2, the
coefficients are averaged over the element to avoid numerical instabilities.

2.2.4 Implicit LES

As explained by Sagaut and Meneveau (2006), the Implicit LES (ILES) approach
is based on the hypothesis that the effect of the subgrid scales on the resolved ones
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is purely dissipative. This kind of simulation uses the dissipation introduced by the
numerical upwind schemes or an explicit artificial dissipation term to model the
subgrid dissipation: hence, the subgrid terms arising from the filtering operation
are simply dropped. The amount of dissipation introduced depends both on the
local resolution and on the numerical scheme adopted. Because of the purely
dissipative nature of this approach, the ILES simulations are not able to capture
the backscatter phenomenon.

2.3 Local Discontinuous Galerkin Discretisation
The equations (2.24) are discretised over the domain Ω through the so called

Discontinuous Galerkin (DG) method. It was first introduced by Reed and Hill
(1973) for steady state hyperbolic equations and, then, developed by Bassi and
Rebay (1997) for parabolic problem in the following form. The domain is divided
into elements K in which a space of basis function is defined. Differently from the
finite element method, the continuity of the basis functions between each element is
not prescribed. The Navier–Stokes equations (2.24) are rewritten in the following
form:

∂tU +∇ · Fc(U) = ∇ · Fv(U,∇U)−∇ · Fsgs(U,∇U) (2.59)

where U = [ρ, ρũT , ρẽ]T are the prognostic variables and the fluxes are divided into
convective fluxes

Fc =

 ρũ
ρũ⊗ ũ + 1

γMa2pI
ρh̃ũ

 , (2.60)

viscous fluxes

Fv =

 0
1
Re
σ̃

γMa2

Re
ũT σ̃ − 1

kRe Pr
q̃

 , (2.61)

and subgrid fluxes

Fsgs =

 0
τ

1
k
Qsgs + γMa2

2
(Jsgs − τkkũ)

 . (2.62)

In the present framework Cockburn and Shu (1998) introduced the so called
Local Discontinuous Galerkin (LDG) method which is a generalisation of the DG
method introduced by Bassi and Rebay (1997) and it is the one adopted in the
present work. The second order system (2.59) is rewritten as a first order system,
introducing the auxiliary variable G to indicate the gradient of ϕ = [ũT , T̃ ]T :

∂tU +∇ · Fc(U) = ∇ · Fv(U,G)−∇ · Fsgs(U,G) (2.63a)
G −∇ϕ = 0. (2.63b)

The discontinuous finite element space Vh is defined over a tetrahedral tessellation
Th of the domain Ω:

Vh =
{
Vh ∈ L2(Ω) : vh|K ∈ PqK (K),∀K ∈ Th

}
, (2.64)
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where PqK (K) is the space of polynomial functions of degree qK in the element
K. The numerical solution is searched in the space Vh: (Uh,Gh) ∈ ((Vh)5, (Vh)4×3)
through the weak form of (2.63):

∀K ∈ Th, ∀vh ∈ Vh, ∀rh ∈ V3
h

d

dt

∫
K

Uhvh dx−
∫
K

F(Uh,Gh) · ∇vh dx +

∫
∂K

︷︷
F(Uh,Gh) · n∂Kvh dσ = 0 (2.65a)∫

K

Gh · rh dx +

∫
K

ϕh∇ · rh dx−
∫
∂K

︷︷
ϕ n∂K · rh dσ = 0, (2.65b)

where F = Fc +Fv +Fsgs and the symbol
︷︷
· is used to indicate the numerical fluxes

at the elements boundaries. The numerical fluxes employed are the Rusanov flux
for the convective flux (2.66) and centred fluxes for the remaining fluxes (eqs. (2.67)
to (2.69)): ︷ ︷

Fc =
1

2
[Fc

L + Fc
R + |λ|(ULn∂K,L + URn∂K,R)] (2.66)︷ ︷

Fv =
1

2
(Fv

L + Fv
R) (2.67)︷ ︷

Fsgs =
1

2
(Fsgs

L + Fsgs
R ) (2.68)︷︷

ϕ =
1

2
(ϕL + ϕR). (2.69)

Following the modal DG formulation, the prognostic variables are represented
in each element K with a orthogonal polynomial basis. Hence the generic numerical
approximation ah of the variable a can be written as:

ah|K =

nφ(K)∑
l=0

a(l)φKl (2.70)

where φKl are the basis functions on the element K and a(l) are the modal coefficients
of the nφ + 1 basis functions. To span the polynomial space PqK (K) of degree qK
in R3 the number of basis functions required is

nφ + 1 =
1

6
(qK + 1)(qK + 2)(qK + 3). (2.71)

The filtering operator introduced in section 2.1.1 can now be defined more
precisely. In practical LES the application of the filter is purely formal since it
is coincides with the discretisation of the equations: the filtering operator is the
projector ΠVh : L2(Ω)→ Vh defined by:∫

Ω

ΠVhuv dx =

∫
Ω

uv dx ∀u, v ∈ Vh. (2.72)

Hence, the filtered counterpart of the generic variable a is simply:

a = ΠVha . (2.73)
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The test filter can be defined in a similar way using the subspace

V̂h =
{
V̂h ∈ L2(Ω) : v̂h|K ∈ Pq̂K (K),∀K ∈ Th

}
(2.74)

with 0 ≤ q̂K ≤ qK , so that â = ΠV̂ha.
Finally, the filter characteristic dimension used in the subgrid models is

∆(K) = 3

√
Vol(K)

nφ + 1
, (2.75)

with Vol(K) the volume of the element K.
Concerning the time discretisation, the solution is advanced with an explicit

fourth order five stages Runge–Kutta method with a fixed time step.

2.4 Polynomial Adaptivity

The polynomial adaptivity technique consist in varying locally the degree of the
polynomial approximation of the solution. The basic procedure is the following:

1. First of all, an indicator is computed in each element of the domain with the
solution available at the current time step;

2. On the base of the value of the indicator and the chosen values of the thresholds,
the polynomial degree of the solution in each element is increased, decreased
or kept equal to the previous one;

3. Finally the solution is projected on the new base: in case of a decreasing
of the polynomial degree, the high order contribution are simply truncated;
in case of a increasing of the polynomial degree, the new contributions are
initialised to zero.

In literature three main categories of p-adaptivity can be found. The first one is a
truncation-error-based or discretisation-error-based adaptation (see for example the
work of Kompenhans, Rubio, Ferrer, and Valero (2016) and Naddei (2019)), which
usually uses as indicator an estimate of the truncation or discretisation error from
the solution on a coarser grid or a lower degree approximation. In particular Naddei,
de la Llave Plata, and Couaillier (2018) compared several discretisation-error-based
indicators. The second one is an adjoint-based adaptation (see, for example, Bassi
et al., 2019) which uses the adjoint solution and the residual, computed with the
coarse space and injected in the fine space, to compute the indicator. This method
can be useful if the user is interested in output functionals, such as lift or drag.
However the additional cost can be large in case of unsteady turbulent simulations.
The third category is a feature-based adaption and it is the one adopted in the
present work as well as, for example, in the works of Tugnoli et al. (2016), Abbà,
Bonaventura, Recanati, and Tugnoli (2019) and Wang et al. (2019). They are easy
to implement and they rely on indicators based on some physical quantities of the
flow field.
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In the present work the indicator chosen is based on the second order structure
function (SF)

Dij = 〈[ui(x + r, t)− ui(x, t)] [uj(x + r, t)− uj(x, t)]〉 (2.76)

where 〈·〉 indicates the expected value operator. The SF gives a physical insight
into the local flow condition: it represents the lack of correlation of the velocity
between the two points x and x + r. Large values of the SF indicates that the
velocity in the two points are poorly correlated and, hence, a higher resolution is
necessary; on the contrary a very low value of the SF indicates that the velocities
correlate well and, hence, the polynomial degree could be lowered.

Since the subgrid models performed well in case of homogeneous isotropic
turbulence, the isotropic part of the SF has been subtracted from the indicator.
After choosing two points in the element K, the indicator is computed as:

IndSF (K) =

√∑
ij

(
Dij −Diso

ij

)2
. (2.77)

To eliminate the arbitrariness of the two points x and x + r, the (2.77) is computed
for the each couple of element vertices and then averaged.

In case of statistically stationary flow the polynomial adaptivity can be performed
only once (static adaption): the indicator is computed on a converged uniform
degree simulation every ∆tind ≥ ∆t, averaged for a time long enough to eliminate
the time dependency and, finally, the resolution is adapted. The polynomial degree
in each element is chosen on the base of the value of the indicator and on the values
of the thresholds decided a priori. For example, if three different polynomial degrees
q1, q2 and q3 (with q1 < q2 < q3) are used, two different thresholds ε1 and ε2 have
to be chosen (with ε1 < ε2). The degree of the polynomial approximation is set as
follows: if IndSF (K) < ε1 < ε2, the order is q1; if ε1 < IndSF (K) < ε2, the order is
q2; if ε1 < ε2 < IndSF (K), the order is q3. The computational cost is reduced thanks
to the fact that the indicator can be computed using an under resolved simulation
without affecting the accuracy of the final adapted flow field (see Tugnoli, 2017
and Tugnoli et al., 2016). With the new polynomial degree distribution the mesh
can be repartitioned to rebalance the computational load of the processors. This is
done assigning a weight to each element of the mesh equal to the number of basis
function required by the local polynomial degree. The simulation is finally resumed
with the new polynomial degree distribution.

If the statistics of the flow field are unsteady a dynamic adaption of the poly-
nomial degree is preferable to better represent the phenomenon. The indicator is
computed every ∆tind ≥ ∆t and the resolution is adapted every ∆tadapt ≥ ∆tind.
In the present implementation, despite a possible huge change in the value of the
indicator, the order in each element is decreased or increased only 1 per ∆tadapt;
this is done to avoid too fast changes in the local resolution. The computational
load rebalancing can be performed every ∆treb ≥ ∆tadapt, however the runtime
mesh repartition has been not implemented yet. In case of dynamic adaption, the
reduction of the computational cost is clear: the high polynomial degree is used
only where (and when) necessary, without affecting the accuracy of the solution
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(see again Tugnoli, 2017 and Abbà et al. (2019)). It should be noted that the
dynamic adaption could be used also for statistically steady flow (see Wang et al.,
2019). However, the downside is an increase of the computational cost due to the
computation of the indicator and to the disequilibrium of the computational load of
the processors (in case of no dynamic rebalancing). Hence, for steady simulations,
the static adaption is preferable.

The choice of the thresholds is not trivial because there is not a rigorous way
to set them. What it is usually done is changing the values of the threshold to
obtain a total number of degrees of freedom comparable with the one that would
be obtained with a uniform polynomial order intermediate between the ones used.
Furthermore one should try to avoid to have, in two adjacent elements, a jump
in the polynomial degree of two or more to avoid numerical instabilities and an
excessive grid anisotropy (see Naddei, 2019).

2.5 Numerical Implementation
The numerical implementation is based on the open source FEMilaro finite

element toolkit developed by Restelli (2017) and it is built in the solver dg-comp. It
is written in the latest standard Fortran (2015) and it makes an extensive use of the
object oriented paradigms. The mesh is generated with Gmsh and partitioned with
the METIS library developed by Karypis and Kumar (1998). The parallelisation is
obtained through a pure MPI framework.

The computational resources have been made available by the CINECA HPC
facility on the MARCONI A2 partition thanks to the projects ISCRA-C PAVILES,
ISCRA-C AVIPALES and ISCRA-B LESDY.



Chapter 3

SD7003 Test Case

The statistically stationary flow around the SD7003 airfoil at an angle of attack
of α = 8◦, Re = 60 000 and Ma = 0.2 has been considered. The Mach number
chosen is sufficiently low to allow a meaningful comparison with the incompressible
results available in literature, but high enough to avoid too small time steps required
by the explicit time solver.

The main flow feature is an unsteady laminar separation bubble (LSB) on the
suction side of the airfoil. The transition to turbulence takes place in free shear layer
and it is triggered by a Kelvin–Helmholtz (KH) instability as observed by McAuliffe
and Yaras (2005) and Burgmann and Schröder (2008). The reattachment point
moves on the airfoil because of the shed of the vortices from the main recirculating
region. The vortices are advected downstream and breaks down into small scale
structures.

In section 3.1 the grids adopted, the boundary conditions and the statistics
required are explained. A resolution sensibility analysis with the dynamic anisotropic
model (see section 2.2.3) is presented in section 3.2. After that the Implicit LES
(ILES) outcomes are shown in section 3.3. Finally, in section 3.4, the most significant
results of the previous sections are discussed and compared with other numerical
solutions and experimental measurements available in literature. The conclusions
of the present chapter are summarised in section 3.5.

3.1 Simulation Set-Up

3.1.1 Computational Domain and Grids

The computational domain has the typical C-grid shape used for airfoil analysis
(see fig. 3.1). The chord c of the airfoil is unitary. The trailing edge is located in
(0, 1c) and the airfoil is rotated by 8◦ around this point. The inflow boundary is a
semicircumference of radius 5c centred in the origin. The outflow boundary is 10c
downstream the airfoil. The thickness in the span-wise direction is 0.2c, as always
done in literature (see e.g. Bassi et al., 2016 or Boom and Zingg, 2013).

Two meshes have been used: the coarser mesh is composed by 57 479 tetrahedra
and the more refined one by 110 577 tetrahedra. A close-up of both meshes can
be seen in fig. 3.2. For both grids the structured inflation layer around the airfoil
has a wall-normal thickness of 0.01. In the wall-normal direction the inflation layer
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Figure 3.1: Computational domain and boundary conditions.

(a) Coarse mesh: 57 479 tetrahedron.

(b) Fine mesh: 110 577 tetrahedron.

Figure 3.2: 2D Close-up of the unstructured meshes adopted.



3.1. Simulation Set-Up 21

is divided into 4 hexahedra for the coarse mesh and 5 for the finer one. Each
hexahedra is divided into nt = 6 tetrahedra; hence, the resulting equivalent spacing
of an hexahedral mesh is

∆i =
li

3
√
nt
, (3.1)

where li is the length of the hexahedra in the i direction. To obtain an estimate
of the distance between two points, the equivalent spacing ∆i has to be further
divided taking into account the polynomial degree of the approximated solution,
i.e. the number of basis functions:

δi =
∆i

3
√
nφ + 1

, (3.2)

where nφ + 1 = 1
6
(qK + 1)(qK + 2)(qK + 3) is the number of basis function and qK is

the order of the polynomial degree in the tetrahedron K. This value can be used to
compute the first cell height in the in the wall-normal direction, i.e. y1st,n ≡ δn|wall.
It can be scaled with the viscous length to compute the y+

1st,n
1 as done in section

3.1.5, changing the polynomial degree accordingly with the simulation.
The inflation layer around the airfoil and the near wake region up to 1.5c

downstream the airfoil have been extruded in the z-direction with 6 layer for the
coarse mesh and 8 for the finer one. The span-wise equivalent spacing δz/c will be
reported for each simulation as well as the first cell height y1st,n. In the remaining
part of the domain the mesh is fully unstructured, also in the span-wise direction.
The characteristic dimension of the cells at the inflow, outflow, upper and lower
boundary 1c.

Since the results obtained with fine mesh has been used also for the blade-vortex
interaction simulation (see chapter 4), a refinement line upstream of the airfoil
has been added to prevent the over dissipation of the vortex. The same line has
been added also in coarse mesh so that also the results on this grid can be used, in
future works, for the same purpose and, furthermore, it is also possible to make a
meaningful comparison between the number of tetrahedra used in the two grids.
Since this line does not affect the statistically steady flow, its details will be given
in chapter 4.

The details of the grids are summarised in table 3.1. Note that the values
reported here are independent from the polynomial degree of the simulation.

The xyz coordinates are the one linked to the domain (see again fig. 3.1), while
ξ or xi will be used to indicate the coordinate parallel to the chord: ξ = 0 is the
leading edge and ξ = 1 the trailing edge.

1The y+ is the coordinate normal to the body surface and scaled with the viscous length scale
δν ≡ ν

uτ
, with uτ ≡

√
τw
ρ and τw the wall shear stress. This new coordinate, i.e. y+ = yn/δν ,

is of fundamental importance to study flows near the wall, for a number of reasons. The most
important one is probably the fact that turbulent velocity profiles, scaled with the viscous velocity
scale uτ , at different Reynolds numbers, collapse on the same curve if plotted against the y+
coordinate. See Pope, 2000 for the details.
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Table 3.1: Details of the two meshes adopted.

Mesh N. Elements ∆1st,n/c (N layers) ∆z/c (N layers)

Coarse 57 479 7.45× 10−4 (4) 1.83× 10−2 (6)
Fine 110 577 4.76× 10−4 (5) 1.38× 10−2 (8)

3.1.2 Boundary Conditions

The reference values Lr, ρr, ur, Tr, introduced in section 2.1, are all unitary.
On the surface of the airfoil non-slip, isothermal Dirichlet boundary condition is
imposed, with Tw = 1. On the inflow and outflow boundary, Dirichlet conditions
are enforced with the far field values U∞ = (1, 0, 0) and T∞ = 1. On the upper
and lower boundary, homogenous Neumann conditions are imposed. Sponge layers
have been applied on the outflow, on the upper and on the lower boundary to avoid
reflections (see e.g. Crivellini, 2016 and Restelli and Giraldo, 2009 for sponges
discussion). The boundary conditions are summarised in fig. 3.1.

3.1.3 Points for the Acquisition of the Statistics

The points used to acquire the boundary layer velocity profiles are show in
fig. 3.3. 20 points have been positioned every 0.1c from 0.1c to 1c, perpendicularly
to the local surface. The distance between two points increases parabolically with
the wall distance to obtain a better resolution of the boundary layer velocity profiles
(fig. 3.3b). For every chord-wise location, the last point is located at a distance
from the surface of 0.0285c. To average in the span-wise direction, 9 points (for
each one of the 20 points in the perpendicular direction), with a constant spacing,
have been used.

All the simulations have been run for sufficiently long time to obtain a fully
developed flow before starting the statistics acquisition. The statistically statistically
steady state condition has been verified.

3.1.4 Thresholds for p-adaptivity

Static P-adaptive simulations have been performed using 2nd, 4th and 4th order
polynomials. Some attempts have been done to introduce also the 5th order, but the
simulations were unstable and, probably, a de-aliasing technique should be required.
The thresholds used are ε1 = 1.0× 10−4 to pass from the 2nd to the 3rd order and
ε2 = 1.0 × 10−2 to pass from the 3rd to the 4th order. They have been chosen to
match, approximately, the total number of degrees of freedom (DOF) of the uniform
3rd order simulation, as well as an acceptable distribution of polynomial degrees.
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Figure 3.3: Position of the points for the statistics acquisition. Note in (b) that the
distance between two points becomes smaller near the wall for a better boundary layer
resolution.
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Table 3.2: Anisotropic model – Details of the simulations.

Mesh yn,1st/c δz/c DOF ∆t

P3 Fine 1.75× 10−4 5.08× 10−3 2 211 540 1.2× 10−5

P4 Fine 1.45× 10−4 4.22× 10−3 3 870 195 1.1× 10−5

P-adaptive Fine - - 1 953 460 1.1× 10−5

P4 Coarse 2.27× 10−4 5.59× 10−3 2 011 765 1.7× 10−5

3.1.5 y+ Estimate

The y+ coordinate can be estimated from the friction coefficient Cf as follows:

y+ = yn/δν = ynuτ/νr =
yn
νr

√
τw/ρr =

yn
νr

√
Cf

1

2
ρru2

r

1

ρr

=
yn
νr
ur

√
Cf/2 =

yn
c

ρrurc

µr

√
Cf/2

=
yn
c
Re
√
Cf/2.

(3.3)

Hence, the first cell height scaled with the viscous length scale is

y+
1st =

yn,1st

c
Re
√
Cf/2. (3.4)

Since in LSB Cf < 0, the absolute value |Cf | will be used in this region.

3.2 Resolution Dependence Analysis

Four simulations with the dynamic anisotropic model are compared for a grid
convergence study and to validate the polynomial adaptivity technique: on the fine
mesh uniform P3 , P4 and P-adaptive degree simulations are performed, while, on
the coarse mesh, a uniform P4 degree simulation has been done. The time steps ∆t
used depend both on the (maximum) polynomial degree and on the mesh. They
are reported in table 3.2 with the number of degrees of freedom (DOF) and the
equivalent spacings introduced in section 3.1.1. The equivalent spacing for the
P-adaptive simulation cannot be defined because the polynomial degree can vary in
all directions.

The static p-adaptive approach is performed: the value for the SF indicator
required in the P-adaptive simulation has been computed from a under-resolved
P2 simulation and averaged over time (0.5 time units) before the adaption. After
that the polynomial degree distribution remains unchanged. A 2D view of the
resulting value of the indicator in the domain is shown in fig. 3.4 and the resulting
polynomial degree distribution is shown in fig. 3.5. The indicator is able to capture
the turbulent wake region as well as the boundary layer on the pressure side of
the airfoil. A peak of the indicator can be observed near the stagnation point.
From fig. 3.5a it can be observed that the 4th order is used also in the laminar
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(a) Value of the SF indicator – Entire do-
main.

(b) Value of the SF indicator – Close-up on
the airfoil.

Figure 3.4: Value of the SF indicator (slice for z = 0.2) in logarithmic scale. It has been
computed from a uniform under-resolved P2 simulation with the anisotropic model.

(a) Elements in which a 4th order polynomial
is used.

(b) Elements in which a 3rd order polyno-
mial is used.

Figure 3.5: Anisotropic model – Polynomial degree distribution obtained with the
thresholds ε1 = 1.0×10−4 and ε2 = 1.0×10−2 applied to the SF indicator value of fig. 3.4.

shear layer and in the transitional region. Wang et al. (2019) performed P-adaptive
simulations (on the SD7003 test case) with a different feature-based indicator,
finding polynomial distribution very similar to the one presented here.

Mean force coefficients are reported in table 3.3. They have been averaged for at
least 2 convective time units and the statistical convergence has been verified. The
moment coefficient has been computed with respect to the quarter of chord and
positive clockwise, as usually done for airfoil analysis. Considering the 4th order
solution on the fine mesh as reference, it can be observed that the force coefficients
computed with the polynomial adaptivity are in good agreement, while the P3 and
the P4 (on coarse mesh) order solutions are more scattered.

However, from fig. 3.6 which shows the mean (in time and in spanwise direction)
pressure and friction coefficients, it can be observed that the solution obtained with
the P4 on the coarse mesh is much closer to the reference than the P3 on the fine
mesh, despite the higher number of DOF of the P3 simulation. This suggests that it
is more advantageous to increase the order of the polynomial approximation rather
than increase the resolution of the grid. The same conclusion can be found in the
work of Bassi et al. (2016).

Concerning the mean separation and reattachment points reported in table 3.3,
they have been extracted from the mean friction coefficient distribution of fig. 3.6b
(Cf = 0 points). It is worth noting the very good agreement between the reattach-
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Table 3.3: Anisotropic model –Force coefficients, separation and reattachment points for
the different simulaitons.

Force coefficients LSB details

Cl Cd Cm,c/4 ξs ξr

P3 0.9859 0.0410 −0.0192 0.026 0.211
P4 0.9738 0.0356 −0.0192 0.038 0.173
P-adaptive 0.9693 0.0346 −0.0186 0.038 0.175
P4 Coarse mesh 0.9561 0.0354 −0.0176 0.046 0.179
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Figure 3.6: Anisotropic model – Mean pressure and friction coefficients distributions.
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Figure 3.7: Anisotropic model – Profiles of mean x-component of velocity at chordwise
locations ξ = [0.1, . . . , 1] on the suction-side.

ment points computed with the P4 simulations (both on the fine and on the coarse
mesh) and the P-adaptive one, while the P3 solution over-estimate the length of
the LSB.

The mean velocity profiles of the x-component of the velocity at various chord
locations are shown in fig. 3.7. Also in these plots the P4 solutions on the coarse
and on the fine mesh and the P-adaptive simulation are very close to each other.
From the velocity profiles at x/c = 0.1 in fig. 3.7 it can be observed that the P3

solution over-estimates also the height of the LSB; this fact will be confirmed by
instantaneous flow visualisations. After the reattachment points, all the simulations
are in fair agreement.

The error bars in fig. 3.7 are reported only for the P4 degree simulation as an
example. Following Nobach and Tropea, 2007, they have been computed as the
statistical error estimate of a continuous signal: ±2σ (95% of confidence) with

σ = urms

√
2Tx
T

(3.5)

being urms the root-mean-square of the x-component of the velocity (see fig. 3.8), Tx
the integral time scale of the velocity fluctuations and T = 2.2 the total observation
time2. Quadrio and Luchini (2003) compute the integral time scale for y+ → 0
and for y+ = 10 in a turbulent channel flow at Reτ = 180 finding, respectively,
T+
x = 19.1 and T+

x = 19.2. The ’+’ superscript indicates that the time is scaled with
the viscous time units which can be written as a function of the Cf : tν = 2Lr

Re urCf
.

In a conservative way, T+
x = 20 has been chosen, while the values for the friction

coefficient have been extracted from the distribution in fig. 3.6b. The error bars
become significantly larger in the last chordwise locations since the Cf is lower.

In figs. 3.8 to 3.10 the (1,1), (2,2) and (1,2) components of the Reynolds stress
tensor are shown at the same chord locations of the mean velocity profiles. It
is worth noting the over-prediction of velocity fluctuations of the P3 simulation
particularly in the first half of the chord, while the P4 and the P-adaptive simulations
are all in agreement.

2The simpler estimator σ = urms/
√
N , with N the number of samples, can not be used since

the samples are strongly correlated.
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Figure 3.8: Anisotropic model – RMS of x-component of velocity, i.e.
√
〈u′2〉/ur, at

chordwise locations ξ = [0.1, . . . , 1] on the suction-side.
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Figure 3.9: Anisotropic model – RMS of y-component of velocity, i.e.
√
〈v′2〉/ur, at

chordwise locations ξ = [0.1, . . . , 1] on the suction-side.
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Figure 3.10: Anisotropic model – Profiles of mean xy-component of Reynolds stresses
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r , at chordwise locations ξ = [0.1, . . . , 1] on the suction-side.
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Figure 3.11: First point height in wall unit obtained applying the eq. (3.4). The friction
coefficient distribution of the P4 solution (fig. 3.6b) has been used.

An estimate of the first point height in y+−coordinate is show in fig. 3.11 for only
the uniform degree simulations. It has been computed applying eq. (3.4) and using
the friction coefficient distribution of the P4 simulation. Concerning the P-adaptive
simulation, since the polynomial degree can change also in the third dimension, an
estimate of the y+−coordinate can not be computed rigorously. However, since the
polynomial degree in the boundary layer is 3 or 4, it can be stated that the curve is
always between the red (P4 ) and blue one (P3 ). The first point height is below
y+ = 1 for all the simulations on the fine mesh with the exception of a small part
near the stagnation point where the friction coefficient tends to infinity. On the
coarse mesh, the first point height is slightly above 1 after the reattachment point
and on the first part of the pressure-side, but, as shown in the previous results, it
does not seem to affect the accuracy.

In fig. 3.12 a comparison between the dimensions of the instantaneous separated
flow region can be done. In particular, it can be observed the confirmation of what
it has been observed in the mean velocity profiles: the height of the recirculating
region is greater in the uniform P3 simulation (fig. 3.12a) than in all the others.
Moreover, in fig. 3.12b particularly, the Kelvin–Helmholtz (KH) instability, which
triggers the transition to turbulence in the free shear layer, can be easily seen.
There are no evident differences between the flow fields of the P4 and the P-adaptive
simulations (figs. 3.12b to 3.12d).

The over-estimation of both the height and the length of the recirculating
region of the P3 simulation has been explained with an excessive dissipation which
suppresses the KH instability. Consequently, the transition to turbulence is delayed
and the reattachment of the BL moves downstream.

In conclusion, it can be stated that:

• the P3 solution is under-resolved and too dissipative to correctly represent
the flow;

• the results of the P4 degree simulation on the coarse grid are close enough to
the reference to state that the resolution of the P4 simulation on the fine grid
is sufficient;



30 Chapter 3. SD7003 Test Case

(a) Uniform P3 degree simulation. (b) Uniform P4 degree simulation.

(c) P-adaptive simulation. (d) Uniform P4 degree simulation on the
coarse mesh.

Figure 3.12: Anisotropic model – Slice for z = 0.2 of the instantaneous x-component of
the velocity field showing a comparison between the different simulations of the dimension
of the separated flow region.

• the P-adaptive simulation results are very close to the reference and, hence,
the polynomial adaptivity technique is able to correctly represent the flow
with a great saving in the computational cost (50% of the P4 DOF, see again
table 3.3).

Because of that, in section 3.4 only the results obtained with P4 degree on the fine
mesh and the P-adaptive simulation will be used as comparison with literature and
with the results coming from the ILES (see section 3.3).

3.3 Implicit LES Results
The implicit modelling have been extensively used in literature to simulate the

flow around the SD7003 (see e.g. Bassi et al., 2016, Boom and Zingg, 2013 and
Uranga et al., 2009), hence two ILES are here presented and will be compared in
section 3.4 with the LES results obtained with the anisotropic model. Differently
from what usually done in literature, it has not been added any additional numerical
dissipation, artificial diffusion or regularisation of the computed solution: the
subgrid scale contributions to the Navier–Stokes equations are simply dropped,
leading, basically, to an under-resolved DNS. Thanks the very good results of
the P-adaptive simulation with the anisotropic model, only a uniform P3 degree
and a P-adaptive simulation have been done. In this case, the SF indicator for
the polynomial adaptivity has been computed from the P3 ILES simulation. The
resulting polynomial distribution is shown in fig. 3.13. It can be observed that
the distribution is quite different from the one presented in the previous section
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(a) Elements in which a 4th order polynomial
is used.

(b) Elements in which a 3rd order polyno-
mial is used.

Figure 3.13: Implicit model – Polynomial degree distribution obtained with the thresh-
olds ε1 = 1.0× 10−4 and ε2 = 1.0× 10−2.

Table 3.4: Implicit model – Details of the simulations.

Mesh yn,1st/c δz/c DOF ∆t

P3 ILES Fine 1.75× 10−4 5.08× 10−3 2 211 540 1.1× 10−5

P-adaptive ILES Fine - - 1 968 220 1.1× 10−5

(fig. 3.5). The time steps used, the number of DOF and the equivalent spacings
are reported in table 3.4. The total number of DOF and the equivalent spacings of
the P3 ILES is, of course, the same of the P3 with the anisotropic model, while the
time step has been reduced for stability reasons.

The time step reported for the P-adaptive ILES has been used to reach the
steady state condition and to acquire the statistics for only 1 convective time unit
(instead of the 2 or 3 of all the other simulations). After that, the simulation
becomes unstable and it was not possible to acquire more statistics also with a
reduction of the time step. Because of that, the not fully converged statistics of the
P-adaptive ILES will be marked with ’ * ’ in the following tables and with dashed
curves in the figures: the comparisons with this simulation must be interpreted
as tendencies. However the pressure and friction coefficient distributions have not
changed in the last 0.5 convective time unit, and, hence, they can be supposed to be
close to an hypothetical fully converged solution. It is highlighted once more that
no artificial dissipation has been added in the present ILES simulations, differently
of what usually done in literature for stability purposes.

The mean force coefficients, separation and reattachment points (computed
as the first and last Cf = 0 points) are reported in table 3.5. While the force
coefficients and the separation points are in a good agreement, the flow reattaches
downstream in the P3 ILES leading to a larger recirculating region, similarly to
what already seen in the results of the anisotropic model. Furthermore a secondary
and smaller reverse-flow region is present in both the ILES as it can be clearly seen
from the Cf < 0 regions in fig. 3.14b. Between the two revers-flow regions where,
the flow is going in the −x-direction, there is a small region where Cf > 0, hence
the flow is going in the +x-direction. This could be explained as a tiny recirculating
region where the flow, averaged in time and in the spanwise direction, is rotating
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Table 3.5: Implicit model –Force coefficients, separation and reattachment points for
the different simulations. * indicates the not fully converged statistics.

Force coefficients LSB details

Cl Cd Cm,c/4 ξs ξr

P3 ILES 0.9758 0.0518 −0.0153 0.021 0.335
P-adaptive ILES 0.9817* 0.0489* −0.0164* 0.023* 0.281*
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Figure 3.14: Implicit model – Mean pressure and friction coefficients distributions.

counter-clockwise.
The mean x-component of the velocity profiles is plotted in fig. 3.15. As expected

from the previous discussion, the major differences between the two ILESs are in
the first three chord locations. The error bars shown here for the P-adaptive ILES
have been computed as previously done in section 3.2, i.e. ±2σ; they are larger not
only because of the larger values of urms (see fig. 3.16), but, mostly, as a result of
the unstable simulation which allows a shorter observation time (only 1 convective
time unit). Recall that σ = urms

√
2Tx
T

and Tx is the integral time scale computed,
in this case, with the Cf distribution from the P-adaptive ILES.

In figs. 3.16 to 3.18 the RMS of x and y-component of the velocity and the
xy-component 〈u′v′〉 of the Reynolds stress tensor are plotted. While in section 3.2
the overshoot in the Reynolds stresses was clear for the more dissipative simulation
(uniform P3 ), in this case there is not a recognisable overshoot of one solution over
the other. This suggests possible a lack of resolution also of the P-adaptive ILES.
However, increasing the spatial resolution of an ILES, not only would require a
higher computational cost, but, most importantly, would also require an artificial
dissipation to be added to suppress the instabilities coming from the high order
discretisation. The right amount of artificial dissipation to be added is still a subject
of ongoing research (see e.g. Boom and Zingg (2013)): it must be tuned in order to
stabilise the simulation without compromise the accuracy of the solution. Since this
topic goes beyond the scope of the present work, others ILESs have not been done.
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Figure 3.15: Implicit model – Profiles of mean x-component of velocity at chordwise
locations ξ = [0.1, . . . , 1] on the suction-side.
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Figure 3.16: Implicit model – RMS of x-component of velocity, i.e.
√
〈u′2〉/ur, at

chordwise locations ξ = [0.1, . . . , 1] on the suction-side.
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Figure 3.17: Implicit model – RMS of y-component of velocity, i.e.
√
〈v′2〉/ur, at

chordwise locations ξ = [0.1, . . . , 1] on the suction-side.
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Figure 3.18: Implicit model – Profiles of mean xy-component of Reynolds stresses tensor,
i.e. 〈u′v′〉 /u2

r , at chordwise locations ξ = [0.1, . . . , 1] on the suction-side.

Flow visualisations will be shown in section 3.4 for comparison with the
anisotropic model results and they confirm the larger recirculating region of the P3

ILES with respect to the P-adaptive ILES.
In conclusion, it can be stated that:

• the uniform P3 ILES lacks of spacial resolution since the results differ from
the P-adaptive ILES, in particular in the estimation of the dimension of the
LSB;

• the P-adaptive ILES is unstable and the results obtained are not fully con-
verged; furthermore, from the comparison of the Reynolds stresses profiles,
there is not a clear overshoot of the P3 simulation over the P-adaptive , as
observed in the LES with the anisotropic closure. This could suggest a lack
of spacial resolution also of the P-adaptive ILES. Indeed it is actually an
under-resolved DNS, so a model for the subgrid scale contribution is important
also for stability reasons.

However, as observed in the anisotropic model results (see section 3.2), the polyno-
mial adaptivity is able to provide a better accuracy than the P3 simulation. Because
of that, in section 3.4, the P-adaptive ILES results will be used to give a qualitative
tendency of an implicit model computation, while the P3 ILES results will not be
shown.

3.4 Comparison and Discussion
The results presented in the previous sections (P-adaptive LES, P-adaptive ILES

and the P4 degree LES) are here compared with experimental measurements and
other numerical simulations available in literature. Since the RANS models are
tuned using the more accurate (I)LES results (see e.g. Catalano and Tognaccini,
2011), only (I)LES are considered for comparison. Unfortunately the only DNS
available for this test case has been made by Ducoin, Loiseau, and Robinet, 2015
for α = 4◦.

Another powerful tool available is XFOIL which has been proven to be very
accurate in the prediction of separation and reattachment points at low Reynolds
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numbers (see Drela, 1989). XFOIL uses the solution from an inviscid panel method
as the starting point for an iterative viscous formulation which employs integral
momentum and kinetic energy shape parameter equations. The transition point
is located through the eN -method which models the growth of perturbations:
the transition occurs when N reaches a user-specified critical value Ncr. This
value is usually related to the background disturbance (turbulence) level Tu of the
experimental facility. Two values have been used: Ncr = 6 (Tu = 0.245) has been
chosen to match approximately the experimental Tu ≈ 0.28% of Hain et al. (2009);
Ncr = 9 (Tu = 0.07%) has been considered as representative for the (nominally) zero
background turbulence level in a LES. Higher values of Ncr cause severe difficulties
in the convergence of XFOIL iterative method and the predictions are no longer
reliable. XFOIL takes also into account the compressibility effects through the
Karman–Tsien correction applied to the pressure coefficient and to the so called
dynamic pressure, i.e. q = 1

2
ρ∞U

2
∞. Both incompressible and compressible results

with Ma = 0.2 will be considered. The angle of attack of the XFOIL simulation
was set to α = 8◦.

3.4.1 Mean Flow Features

In table 3.6 the force coefficients and the details of the LSB are reported for
a number of experimental and numerical studies, as well as for the present work.
Force coefficients are quite scattered (also if only Ma = 0.1 results are considered)
and, most of them, overshoot the experimental measurements of Selig (1995) (name
in table: UIUC Wind T.), probably because of the higher Mach number. However
the force coefficients of the P4 and P-adaptive LESs of the present work agree very
well with the work of Boom and Zingg (2013) (O(4) SBP ILES) and Garmann et al.
(2013)(O(6) FD ILES). The drag coefficient of the P-adaptive ILES is more aligned
with the ILES results of Bassi et al. (2016) (P4 DG ILES and P3 DG ILES) and
Wang et al. (2019) (P-adapt. FR ILES), while the (qualitative) overshoot of the
P-adaptive ILES lift coefficient on all the other results (except for XFOIL) can be
only partially explained with the higher Mach number and, probably, it is most
due to the not fully converged value.

The major differences between all the studies are in the prediction of the
LSB characteristic points: separation, transition and reattachment. Experimental
measurements are strongly affected by the turbulence level Tu of the facility (see
e.g. Herbst et al., 2018): while the separation point moves downstream with an
increase of Tu, the transition and the reattachment points move upstream. The
overall effect is a reduction in the total LSB dimension until, for very high turbulence
levels, the LSB disappears completely. The AFRL dataset of Ol et al. (2005) (AFRL
Water T.) place separation at 0.05 and reattachment at 0.16; however, it has to be
remarked that the recirculating region in this experiment is not visible by means
of streamlines because of a lack in the PIV spacial resolution and, furthermore, it
is not clear how the points have been computed. Because of that they have been
marked with a ’*’ in table 3.6. Instead, the trend described by Herbst et al. (2018)
is identifiable for transition and reattachment points in the experiments of Hain
et al. (2009) (WUB Water T.1) and Burgmann and Schröder (2008) (Water T.),
with Tu ≈ 0.28% and Tu = 1% respectively. On the other hand the separation point
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seems to have the opposite trend.
With Ncr = 6 (Tu = 0.245%), separation, transition and reattachment points

computed by XFOIL are all collocated upstream with respect to the experimental
measurements of Hain et al. (2009) (WUB Water T.1). However it is worth noting
that the trend for the separation point for an increase of the Tu confirms the
experimental one. For Ncr = 9 (Tu = 0.07%) an increase in the Mach number leads
to an upstream movement of the computed LSB.

Regarding the numerical computed LSBs available in literature, they place the
separation at ξs ≈ 0.03 and the reattachment at ξr ≈ 0.29, which are in a very
good agreement with the P-adaptive ILES presented here, but rather far from the
experimental measurements and XFOIL predictions. Instead, the P-adaptive and the
P4 LESs with the dynamic anisotropic model predict a location for separation and
reattachment which is midway between experimental results and XFOIL predictions:
the separation is delayed and the transition and reattachment appear upstream with
respect to the (I)LESs available in literature. This behaviour could be assimilated
with a simulation with a small amount of turbulence background level, as suggested
by experiments and numerical simulations (see Breuer, 2018). However the source
of these disturbs it is not something artificially introduced by numerical errors, but
it is related to the turbulence modelling. Indeed:

• if in the P-adaptive simulation the disturbs would come from the polynomial
adaptivity, they should not be present in the uniform P4 simulation (but the
results of these two simulations are almost identical);

• all the remaining possible disturbs coming from the DG discretisation (i.e.
not related to the turbulence model) should also be present in the P-adaptive
ILES, but this is not the case, since the separation and reattachment points
are in completely different locations and in a good agreement with the other
numerical results.

Therefore the source of the disturbs is, for sure, related to the turbulence modelling.
To better comprehend why and if the anisotropic model could provide better results
compared to the implicit model it is necessary to analyse which are the physically
important phenomena involved in this type of flow.

In the recent work of Cimarelli, Leonforte, De Angelis, Crivellini, and Angeli
(2019) a DNS of the flow around a rectangular cylinder of dimensions (Lx, Ly) =

3Selig, 1995
4Ol et al., 2005
5Hain et al., 2009, Re = 66 000
6Radespiel et al., 2007
7Burgmann and Schröder, 2008
8Qin et al., 2018
9Catalano and Tognaccini, 2009

10Bassi et al., 2016
11Bassi et al., 2016
12Wang et al., 2019
13Galbraith and Visbal, 2008
14Garmann et al., 2013
15Boom and Zingg, 2013
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Table 3.6: Comparison between literature and present work results on the SD7003 airfoil
at Re = 60 000 and α = 8◦. Acronyms: Finite Differences (FD); Discontinuous Galerkin
(DG); Flux Reconstruction (FR); Compact Finite Differences (CFD); Summation-By-Parts
(SBP). Experimental acronyms refer to the specific facility or institution. * indicate not
fully converged statistics or unclear experimental results.

Mach Force coefficients LSB details

Cl Cd Cm,c/4 ξs ξt ξr

Experimental results

UIUC Wind T.3 Tu < 0.1% < 0.01 0.936 0.0299 - - - -
AFRL Water T.4 Tu < 0.1% - - - - 0.05* - 0.16*
WUB Water T.15 Tu ≈ 0.28% - - - - 0.078 0.147 0.205
WUB Water T.26 Tu = 0.8% - - - - - 0.136 -
Water T.7 Tu = 1% < 0.01 - - - 0.05 0.125 0.135

Numerical results

O(2) LES FD8 Inc. 0.93 0.040 - 0.042 0.16 0.25
O(2) LES FD9 Inc. ≈ 0.95 ≈ 0.044 - ≈ 0.03 - ≈ 0.28
P3 DG ILES10 0.1 0.9441 0.0457 −0.0223 0.028 - 0.303
P4 DG ILES11 0.1 0.9534 0.0454 −0.0224 0.027 - 0.294
P-adapt. FR ILES12 0.1 0.9270 0.0470 - 0.0301 - 0.3123
O(6) CFD ILES13 0.1 - - - 0.04 0.18 0.28
O(6) FD ILES14 - 0.9696 0.0391 −0.0197 0.023 - 0.259
O(4) SBP ILES15 0.2 0.968 0.034 - 0.037 0.105 0.20

Present work

XFOIL Ncr = 6 Tu = 0.245% Inc. 0.978 0.0305 −0.0179 0.018 0.130 0.148
XFOIL Ncr = 9 Tu = 0.07% Inc. 0.991 0.0360 −0.0175 0.019 0.160 0.195
XFOIL Ncr = 9 Tu = 0.07% 0.2 1.003 0.0394 −0.0153 0.017 0.152 0.190
P4 LES DG 0.2 0.9738 0.0356 −0.0192 0.038 . 0.1 0.173
P-adapt. LES DG 0.2 0.9693 0.0346 −0.0186 0.038 . 0.1 0.175
P-adapt. ILES DG 0.2 0.9817* 0.0489* −0.0164* 0.023* < 0.2 0.281*
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(5D,D) has been proposed. This is a common test case studied experimentally and
numerically. The main flow feature is the same of the present work, i.e. a laminar
separation and a transition to turbulence in the free shear layer triggered by a KH
instability and followed by a turbulent reattachment. An a priori analysis16 has
been performed finding an intense energy backscatter (see section 2.2) from the
subgrid field to both the mean and fluctuating flow fields. This phenomenon is
located in all the shear layer and, hence, it has severe influences on the transition
and, consequently, on the reattachment point (see e.g. Saathoff and Melbourne,
1997, Alam and Sandham, 2000 and Abdalla and Yang, 2004). The backscatter
phenomenon has been found also in the near-wall reverse BL. In the aforementioned
article of Cimarelli et al. (2019), it is also remarked that the phenomenon of reverse
energy transfer should be taken into account by subgrid closures because the wrong
prediction of the subgrid stresses in the shear layer could have a significant impact
on the mean reattachment point. The very same conclusions can be found in
the work of Piomelli, Cabot, Moin, and Lee (1991) and Piomelli, Zang, Speziale,
and Hussaini (1990) where "It was found that the standard residual stress models
are excessively dissipative; they erroneously delay the onset of transition in the
large-eddy simulation of boundary layers, leading to considerable error."

Since the implicit model is intrinsically not able to capture the reverse energy
cascade, it is probably not suitable to model the transitional flow around the SD7003
airfoil. The effect is exactly the one described by Piomelli et al. (1990): the lack of
the energy, which should come from the backscatter, delays the KH instability and,
as a result, the reattachment point. On the other hand, the dynamic anisotropic
model used in the P-adaptive and P4 simulations is able to capture this phenomenon.
However it is possible that it overshoots the amount of the energy coming from
the subgrid scales, leading to a too early transition and reattachment, but, since a
DNS dataset is not available, this hypothesis is based only on the comparison with
experimental measurements at lower Mach number.

The influence of the subgrid model on the SD7003 test case at Re = 60 000
and α = 4◦, 8◦ (the Mach number has not been reported) has been studied by
Garmann et al. (2013) (table name: O(6) FD ILES). They proposed a comparative
study between the results obtained with ILES and LES with Smagorinsky dynamic
closure (see section 2.2.2), finding very similar results. In table 3.6 only the ILES
results are reported, because only the last digit changes in the LES. Recall that
the Smagorinsky dynamic model is, in principle, able to capture the reverse energy
cascade. However, in the implementation proposed by Garmann et al. (2013), a
spanwise averaging of the dynamically-computed Smagorinsky constant has been
done to stabilise the simulation, resulting in a possible reduction of the backscatter.

The only ILES available in literature (as far as the author knowledge) which
obtains results very similar with the LESs of the present work, is the one proposed by
Boom and Zingg (2013) (O(4) SBP ILES). The separation and reattachment points
has been found, respectively, in 0.037 and 0.20, and also lift and drag coefficients
are in a very good agreement with the ones computed in the present work. This fact

16The a priori analysis is a common practice to asses the LES approach in a particular test
case. It consists in filtering the DNS flow field and in comparing the behaviour of the resolved
field and the subgrid stresses with the unfiltered DNS dataset.
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Figure 3.19: Comparison between pressure and friction coefficient distributions of the
P4 , P-adaptive LES and P-adaptive ILES of the present work with the results of Bassi
et al. (2016) and Boom and Zingg (2013).

presently lacks of a good explanation, but two possible reasons are here proposed:

• the extremely fine mesh adopted (4.9 × 106 DOF) reduces the amount of
numerical diffusion coming from the discretisation;

• the numerical diffusion added to stabilise the simulation has been carefully
tuned to match the DNS results in a different test case (Taylor–Green vortex).

As a result the total amount of dissipation added is probably very small compared to
the other ILESs. Hence, the disturbances are not suppressed and the KH instability
is triggered earlier, leading to a smaller (less diffused) LSB.

Friction and pressure coefficients of the present work are compared in fig. 3.19
with the results of the aforementioned article of Boom and Zingg (2013) (O(4) SBP
ILES) and with the results of Bassi et al. (2016) (P3 DG ILES). The last ones are
representative for the majority of ILESs. Major differences between the LESs of
the present work and the ILES of Bassi et al. (2016) can be seen not only in the Cf
but also in the Cp distribution. The lower peak in the Cp on the suction side of the
ILES of Bassi et al. (2016) is also present in the P-adaptive LES of the present work
and it is probably due to the over-diffusion. It is worth noting that the P-adaptive
ILES is midway between the LES of the present work and the majority of ILESs,
suggesting that a more resolved, stabilised (and fully converged) P-adaptive ILES
would probably be even closer to the results of Bassi et al. (2016). The pressure
coefficient distribution of the LES with the anisotropic closure and the ILES of
Boom and Zingg (2013) are in a very good agreement.

The mean velocity profiles are shown in fig. 3.20 and confirm the great differences
between the LESs with the anisotropic model and the P-adaptive ILES. The LSB
is not only longer in the ILES, but also much thicker at ξ = 0.1. In the second half
of the airfoil the higher velocity in the ILES boundary layer confirms the higher
friction coefficient observed in fig. 3.19b.

For completeness, the RMS of x and y-component of the velocity and the
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Figure 3.20: Comparison between P4 and P-adaptive LESs and P-adaptive ILES –
Profiles of mean x-component of velocity at chordwise locations ξ = [0.1, . . . , 1] on the
suction-side.
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Figure 3.21: Comparison between P4 and P-adaptive LESs and P-adaptive ILES – RMS
of x-component of velocity, i.e.

√
〈u′2〉/ur, at chordwise locations ξ = [0.1, . . . , 1] on the

suction-side.

xy-component of the Reynolds stresses are shown in figs. 3.21 to 3.23, once more
highlighting the differences between the LESs and the ILES.

The criterion for the choice of the transition points reported in table 3.6 is not
uniform between the different authors and, hence, they must be interpreted carefully.
For example Ol et al. (2005) and Hain et al. (2009) place the transition onset at
stream-wise location where the normalised Reynolds stress −〈u′v′〉 /u2

r first reaches
a arbitrary value of 0.001. XFOIL place the transition point where N reaches the
user-specified value Ncr (i.e. the eN method for the prediction of disturbances).
Another approach, proposed by McAuliffe and Yaras (2005), place the transition
onset at the stream-wise coordinate in which the growth rate of −〈u′v′〉 deviates
from the exponential path17. Since in the present work the flow statistics far from
the wall are available at discrete chord-wise locations, the transition point cannot be
determined precisely with this last criterion. However for the P4 and the P-adaptive
LESs at (ξ, yn/c) = (0.1, 0.0053) the (1,2) component of the Reynolds stresses are,
respectively, −〈u′v′〉 /ur = 0.00126 and −〈u′v′〉 /ur = 0.00140 (see fig. 3.23). These
values are slightly above the threshold suggested by Ol et al. (2005) and, hence,

17This last criterion would be preferable because it does not require an arbitrary choice of the
threshold.
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Figure 3.22: Comparison between P4 and P-adaptive LESs and P-adaptive ILES – RMS
of y-component of velocity, i.e.

√
〈v′2〉/ur, at chordwise locations ξ = [0.1, . . . , 1] on the

suction-side.
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Figure 3.23: Comparison between P4 and P-adaptive LESs and P-adaptive ILES –
Profiles of mean xy-component of Reynolds stresses tensor, i.e. 〈u′v′〉 /u2

r, at chordwise
locations ξ = [0.1, . . . , 1] on the suction-side.

it can be supposed ξt . 0.1 for both simulations. Nothing can be said about the
transition point of the P-adaptive ILES, other then that it is located between 0.1
and 0.2.

3.4.2 Instantaneous Flow Visualizations

The last comparison between the P-adaptive simulations is shown in fig. 3.24.
Once more, the differences between the dimensions of the recirculating region are
evident and not negligible.

In fig. 3.25 the instantaneous local Mach number is shown for the P-adaptive
LES. The quite high maximum value of 0.41 could justify the higher lift coefficient
computed than the ones measured experimentally by Selig (1995) (see again UIUC
Wind T. results in table 3.6) 18. Regarding the influence of the Mach number on
the LSB, the experimental results presented by Suwa, Nose, Numata, Nagai, and
Asai (2012) for the low Reynolds number flows around a flat plate and a triangular

18Recall that the increase of the lift coefficient with the Mach number can be explained with the
linear potential theory for compressible, inviscid flow. One of the main outcomes of this theory is,
indeed, Prandtl–Glauert rule: Cl =

Cinc.
l√

1−Ma2
∞

(see e.g. Anderson, 2010 or Glauert, 1928).
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(a) P-adaptive LES. (b) P-adaptive ILES.

Figure 3.24: Comparison between P-adaptive LES with anisotropic model and ILES
– Slice for z = 0.2 of the instantaneous x-component of the velocity field showing the
recirculating region. Note the different velocity scales.

Figure 3.25: Slice for z = 0.2 of the instantaneous Mach number obtained with the
P-adaptive LES.

airfoil suggest a downstream movement of the LSB with an increase of the Mach
number. However it is worth noting that XFOIL predicts the opposite trend for
this test case (see again table 3.6). In future works the effect of the Mach number
on the LSB will be further investigated.

Thanks to the lower cost of P-adaptive LES (compared to the P4 simulation), it
has been used to investigate the recirculating region. Further comparison with the
P-adaptive ILES were not possible due the instability of this simulation.

The visualisation of the instantaneous flow can give an interesting insight into
the unsteady flow features. If the steady flow is characterised by a LSB, it is worth
noting that the bubble is not visible in the unsteady flow. Indeed it is replaced by
a series of large scale vortices which, averaged in time, form the laminar separation
bubble. The same conclusion can be found, for example, in the work of Burgmann
and Schröder (2008).

Instantaneous pressure iso-surfaces have been used to identify the large scale
vortices in the recirculating region. Some attempts have been made also with
the Q-criterion but the visualisations were too disturbed to obtain qualitatively
interesting results. The noise is due to the velocity derivatives required in the
Q-criterion.

Fig. 3.26 shows six instantaneous pressure iso-surfaces corresponding to six
consecutive times (∆t = 0.01) during the P-adaptive simulation. It is possible to
observe the generation of a new vortex in the transitional region, the advection
and, finally, the decay into small scale structures. The same process has been
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observed experimentally by Burgmann and Schröder (2008) and McAuliffe and
Yaras (2005) (at α = 4◦). The high frequency vortex shedding has also an effect on
the instantaneous force coefficients, which show a low-amplitude and high-frequency
noise.

To estimate the Strouhal number of the vortex shedding, the pressure fluc-
tuations have been recorded every ∆ts = 0.0005 in the point (x/c, y/c, z/c) =
(0.1354, 0.1756, 0.1) for 1 convective time unit. The pressure time history has been
windowed using the Hamming function and Fourier-transformed. The resulting
Strouhal number based on ur and Lr have been estimated in the band 19.4 – 22.5.
For a more accurate estimate, a longer observation time should be required. This
result is confirmed by fig. 3.27: at t = t0 (fig. 3.26a) the vortex V3 is between
x/c = 0.14 and x/c = 0.15; after 0.05 time units at t = t0 + 0.05 (fig. 3.26f) the
vortex V2 is at the same location; this means that, approximately, one period
lasts 0.05 time units, i.e. St ≈ 1/0.05 = 20. The very same observation can be
made also for the other vortices. Burgmann and Schröder (2008) reported a vortex
frequency of f = 27.7 s−1 measured at u∞ = 0.3m/s and with an airfoil of chord
c = 0.2m. The resulting Strouhal number is St = fc

u∞
= 18.47, which is in a quite

good agreement with the one computed in the present work.

3.5 Conclusions
The numerical and experimental results available in literature on the flow around

the SD7003 airfoil at Re = 60 000 and α = 8◦ are quite scattered. For experimental
studies, this can be explained with the different background turbulence levels in
the facilities. Indeed, it has been proved (see e.g. Herbst et al., 2018) that the
Tu has severe influences on the LSB dimensions. For what it concerns numerical
results, the (nominally) zero turbulence intensity and the different Mach numbers
can only partially explain the differences that can be observed with experimental
measurements.

In the present work the dynamic anisotropic model has been used for the closure
of the filtered Navier–Stokes equations, leading to a LSB which is much smaller
than the majority of the LSBs computed without the SGS model (ILES). This has
been explained with the backscatter of energy from the SGS field, which has been
proved (see Cimarelli et al., 2019 and Piomelli et al., 1990) to play a key role in
the transition to turbulence when a laminar separation, with transition in the free
shear layer, is present. As a result, the KH instability is triggered upstream with
respect to the ILESs which are not able to capture this phenomenon, leading to a
earlier reattachment and a LSB which is closer to experimental measurements.

Furthermore the polynomial adaptivity confirms his capability to capture the
flow features with an accuracy comparable with the higher polynomial degree and
with a great saving in the computational cost (≈ 50% of the DOF). Because of
that, the P-adaptive approach has been used extensively in chapter 4 to study
the blade-vortex interaction starting from the statistically steady state condition
computed in the present chapter with the dynamic anisotropic model.

In future works the effects of the Mach number on the force coefficients and on
the LSB can be investigated more in depth.
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(a) t0 (b) t0 + 0.01

(c) t0 + 0.02 (d) t0 + 0.03

(e) t0 + 0.04 (f) t0 + 0.05

Figure 3.26: Instantaneous pressure iso-surfaces (p = 16.89, 16.90, 16.91, 16, 92) coloured
with the x-component of the velocity showing the vortex shedding. They have been
obtained with the anisotropic model and p-adaptivity. The black line indicates the mean
reattachment line. Note the horseshoe vortex in (d).
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(a) t0

(b) t0 + 0.01

(c) t0 + 0.02

(d) t0 + 0.03

(e) t0 + 0.04

(f) t0 + 0.05

Figure 3.27: Slice for z = 0.2 of the instantaneous x-component of the velocity. Only
the negative values are shown to highlight the bottom half of the vortices. They have
been obtained with the anisotropic model and p-adaptivity.





Chapter 4

Blade–Vortex Interaction

In this chapter the interaction between a vortex and a SD7003 airfoil at α = 8◦,
Re = 60 000 and Ma = 0.2 will be investigated. The axis of the vortex is parallel
to the spanwise direction of the airfoil (parallel BVI). In literature the type of
interaction studied in the present work is usually called viscous interaction because
of the impact of the vortex viscous core on the leading edge (LE). As a result, the
primary vortex splits into two secondary vortices which are advected downstream
and, eventually, break down into smaller scales structures (see e.g. Wilder and
Telionis, 1998).

The force coefficients during the BVI will be compared with the ones obtained
in a reference simulation without the vortex. It will also be investigated the effect
of the vortex on the recirculating region which has been studied in chapter 3. As
far as the author knowledge, there are not numerical simulation or experimental
measurements in literature which can be used for a direct comparison. However some
examples of similar works are presented. Felten and Lund (2005) studied the inviscid
parallel airfoil(NACA0012)–vortex interaction by means of zonal hybrid RANS/LES
method and compared their results with experimental measurements. Ilie et al.
(2007) simulate the parallel interaction between a vortex and a NACA0012 airfoil
at α = 0 and Re = 1.3× 106 using LES with the Smagorinsky model. Experimental
studies on parallel BVI on the SD7003 airfoil have been made by Rival et al. (2010)
at Re = 30 000; however these results cannot be used for comparison, not only for
the different Reynolds number, but, mostly, because two vortices are present in
that experimental set-up: one detaches from the trailing edge and the other from
the leading edge of an airfoil (vortex generator) collocated upstream to the target
airfoil. This configuration is called Schmidt–propeller configuration.

In section 4.1 all the details of the simulation are explained, with a particular
attention to the vortex model and to the polynomial degree distribution resulting
from the P-adaptive approach. In section 4.2 the results are presented and discussed.
Finally in section 4.3 the conclusions and some ideas for future works can be found.

4.1 Simulation Set-Up

The BVI simulation has been started from the statistically stationary flow field
obtained with the P-adaptive LES (see section 3.2) with the dynamic anisotropic

47
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Figure 4.1: Refinement line.

model. The computational domain is the same and it has been described in
section 3.1.1 and, as done previously, the ξ-coordinate identifies the chordwise
direction. The grid used is the fine mesh described in the same section. The
refinement line shown in fig. 4.1 was already present and it was added to prevent the
diffusion of the vortex. The maximum characteristic dimension of the tetrahedra
along that line is 0.2c, but, in the region where the vortex has been added, the
characteristic dimension of the elements is ≈ 0.1c. The choice of these values is
linked to the characteristic dimension of the vortex which will be discussed later
in this section, however it can be anticipated that the vortex core diameter is
0.1c. Exploiting the results of Tugnoli (2017) and Tugnoli, Abbà, and Bonaventura
(2019), a characteristic element dimension comparable to the core diameter has
been used, since it is sufficient to prevent the diffusion of the vortex with a P4

degree.
The time step is the same of the P-adaptive simulation of section 3.2 (∆t = 1.1×

10−5) and also the boundary conditions presented in section 3.1.2 are unchanged.
The definition of the (modelled) vortex is the one proposed by Lodato, Domingo,

and Vervisch (2008) and it is formulated in terms of stream function Ψ:

Ψ = Cv exp

(
− r2

2R2
v

)
(4.1)

where Cv is the vortex strength, r2 = (x− xv)2 + (y − yv)2 is the distance from the
vortex centre (xv/c, yv/c) and Rv is the vortex core radius. The velocity induced
by the vortex is:

u =
∂Ψ

∂x
= −Cv

y

R2
v

exp

(
− r2

2R2
v

)
(4.2)

v = −∂Ψ

∂y
= Cv

x

R2
v

exp

(
− r2

2R2
v

)
(4.3)

w = 0 (4.4)
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in the xyz reference frame and

ur =
1

r

∂Ψ

∂θ
= 0 (4.5)

uθ = −∂Ψ

∂r
= Cv

r

R2
v

exp

(
− r2

2R2
v

)
(4.6)

w = 0 (4.7)

in a cylindrical reference frame. In both reference frames the z-axis is centred in the
vortex centre. The maximum tangential velocity is uθ,max = Cv/(Rv

√
e) at r = Rv.

The pressure radial distribution has been modelled as done by Colonius, Lele, and
Moin (1991) for a compressible viscous vortex:

∂p

∂r
=
ρu2

θ

r
. (4.8)

Assuming that the temperature T does not change because of the vortex superim-
position, one should obtain:

p = pold exp

[
− C2

v

2TR2
v

exp

(
− r

2

R2
v

)]
, (4.9)

with pold the pressure of the statistically steady-state initial condition. Finally the
density is:

ρ =
p

T
(4.10)

Recall that all the quantities have been made dimensionless with unitary reference
values Lr, ρr, ur, Tr and pr = ρrRgasTr

1.
The vortex has been superimposed to the statistically steady flow field in

(xv/c, yv/c) = (−1,−0.0166), i.e. one chord upstream to the leading edge (LE) and
slightly below the trailing edge (TE). Because of the velocity induced by the airfoil,
from this position, the vortex hits the LE. It has been verified (see section 4.2) that
one chord upstream is sufficient to avoid any initial influences on the airfoil coming
from the vortex superimposition. The vortex radius chosen is Rv = 0.05, which is
comparable with the experimental measurements of Droandi et al. (2016), Zanotti,
Ermacora, Campanardi, and Gibertini (2014) and Steinhoff and Raviprakash (1995).
The vortex strength Cv has been computed from the maximum tangential velocity
uθ,max = 0.5 measured in the aforementioned works of Droandi et al. (2016) and
Zanotti et al. (2014). The resulting value is Cv = uθ,maxRv

√
e ≈ 0.0412. The vortex

rotates in the counter-clockwise direction. In fig. 4.2 the radial distributions for
tangential velocity, density and pressure are shown.

For this simulation the dynamic p-adaption have been used to better represent
the unsteady BVI phenomenon. The thresholds for the choice of the polynomial
degree have been kept equal to the ones used to reach the statistically steady-state
condition: ε1 = 1.0×10−4 and ε2 = 1.0×10−2. The SF indicator has been computed
every 4 time steps (∆tind = 4.4× 10−5) and averaged over 30 evaluations before the

1Actually, all the quantities are the filtered ones. The filter operator has been omitted here to
make the notation simpler.
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(a) Tangential velocity.
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(b) Pressure and density.

Figure 4.2: Tangential velocity, pressure and density radial distributions for the vortex
model. In (b) it has been assumed pold = pr.

actual adaption (∆tadapt = 30 ∆tind = 1.32× 10−3). These time intervals ensure to
accurately follow the vortex advection which moves at uvort ≈ ur = 1 and to average
the indicator on a number of samples statistically meaningful. Furthermore the
adaption frequency fadapt = 1/∆tadapt ≈ 758 is also much higher than the vortex
shedding frequency (Strouhal) in the recirculating region (St ≈ 20, see section 3.4.2):
in this way also this unsteady phenomenon is correctly represented by the dynamic
adaption technique.

Some examples of the resulting polynomial degree distribution are shown in
fig. 4.3 for different time instants (the vortex has been introduced at t = 0). The
SF indicator is able to detect the vortex and, thanks to the dynamic adaption
technique, it is also able to follow his advection during time. After the impact of the
primary vortex on the TE of the airfoil (figs. 4.3c and 4.3d) the SF indicator detects
accurately the position of the two secondary vortices. Thanks to the threshold
chosen, the fourth order degree is used in the vortex core, as shown in fig. 4.4a.
This prevents the over-diffusion of the vortex during its advection, before the actual
interaction with the airfoil (see Tugnoli, 2017). It is worth noting that a fourth
order polynomial degree is used also for the secondary vortex on the pressure side
(see fig. 4.4b).

4.2 BVI Results and Discussion

From an engineering point of view, one of the most interesting result is the
amplitude in the loads oscillation for structural analysis. The force coefficients
have been recorded for 2 convective time units after the introduction of the vortex.
They are compared in fig. 4.5 with a reference P-adaptive simulation without the
vortex. The details of the reference simulation can be found in section 3.2. The
moment coefficient has been computed with respect to the quarter of chord and
positive clockwise, as done in chapter 3. Until t ≈ 0.6, i.e. until the vortex is ≈ 0.4c
upstream the airfoil, the force coefficients do not significantly deviate from the
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(a) t = 0 (b) t = 0.5

(c) t = 1.1 (d) t = 1.4

Figure 4.3: 2D view (z = 0.2) of the polynomial degree distribution at different instants.

(a) t = 0 – Suction side (b) t = 1.4 – Pressure side

Figure 4.4: Elements in which a 4th order polynomial is used at different instants.
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Figure 4.5: Force coefficients during the BVI compared with a reference simulation
without the vortex.

reference simulation: this means that the initial position of the vortex is sufficiently
far from the airfoil to correctly simulate the BVI. The differences in the coefficients
until t ≈ 0.6 are probably due to the different P-adaptive approach of the two
simulations (static adaptivity for the reference simulation and dynamic adaptivity
for the BVI simulation, see section 2.4).

The drag is the first component of the aerodynamic force to change because
of the presence of the vortex. It decreases and reaches its minimum value of
Cd,min = −0.014 at t = 1.04: the airfoil is pulled by the low pressure core of the
vortex. This is confirmed by the fact that the stronger variation in the drag is
pressure-driven (fig. 4.5b). On the other hand the lift increases because the vortex
is rotating counter-clockwise and, hence, it induces a higher angle of attack on
the airfoil. The maximum value of the lift coefficient is Cl,max = 1.228 (+27% of
its mean value of 0.9693) at t = 1.08. Differently on what one could expect, the
minimum value of the moment coefficient is slightly delayed with respect to the
instant of maximum lift: the aerodynamic moment reaches its minimum value of
Cm,min = −0.054 (+190% of its mean value of -0.0186) at t = 1.17. The reason of
this fact is not trivial, since between t ≈ 1 and t ≈ 1.2 several different phenomena
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Figure 4.6: Pressure coefficient at different instants compared with the reference (statis-
tically steady-state) simulation.

occur almost simultaneously; however a possible explanation is given here.
First of all, when the vortex moves closer, the induced angle of attack changes the

pressure distribution mainly for 0 < ξ . 0.2 in both the pressure and suction-side
(see fig. 4.6, t = 1.0 curve); this results in an increase in the lift coefficient. After
hitting the LE at t = 1.04 (minimum drag instant), the vortex splits in two: on the
suction-side the low pressure core causes the peak clearly visible on the pressure
distribution in fig. 4.6 (t = 1.1 curve); on the pressure-side the secondary vortex
has not started being advected on the surface yet and, hence, the pressure is still
higher than its the steady state value. On the suction-side, after the passage of the
secondary vortex, the pressure is significantly higher than the steady-state reference
condition, especially for 0 < ξ . 0.3 (fig. 4.6, t = 1.2 curve); this results in the
decrease of the moment coefficient which reaches its minimum value. Furthermore
this effect is accentuated by the pressure distribution on the pressure-side: the
low pressure core of the secondary vortex at ξ ≈ 0.1 and the higher pressure for
ξ > 0.5 (see again t = 1.2 curve of fig. 4.6) lower even more the moment coefficient.
The higher pressure for ξ > 0.5 is caused by the acoustic wave resulting from the
impact of the vortex on the LE (see fig. 4.9b). While the lift coefficient is overall
reduced, the drag coefficient reaches its maximum value of Cd,max = 0.064 (+85% of
its mean value of 0.0346) at t = 1.15, mainly because of the change in the pressure
contribution (see fig. 4.5b).

After t = 1.2 the lift continues to decrease until t = 1.3 causing a positive peak
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in the moment coefficient Cm,max = 0.004 for the same instant. This is probably
due to a small separation induced by the secondary vortex on the suction-side. It
is worth noting that during the last time instants the drag coefficient reaches the
steady-state value, while the lift is still lower (consequently the moment coefficient is
higher). A longer simulation would be required to observe the end of the transient.

The effect of the passage of the vortex on the recirculating region on the suction-
side is show in fig. 4.7. It is worth noting a "2D regularisation" of the small vortices
(figs. 4.7b to 4.7f) while the superimposed vortex approaches. This is due to the
two-dimensional nature of the superimposed vortex. The vortex which causes the
low pressure peak in the Cp at t = 1.1 is clearly visible in fig. 4.7f. After the passage
of the vortex (fig. 4.7i) the recirculating region changes greatly, affecting lift and
moment coefficients: the vortex shedding of the statistically steady-state condition
is no longer present (fig. 4.7j). Also at the last time instant recorded (t = 2), the
vortices are smaller, less intense and at lower frequency (fig. 4.8b) if compared to
the instants before the interaction (fig. 4.7b) or to the reference simulation (fig. 3.26
in the previous chapter).

Another interesting quantity to be analysed during the BVI is the pressure
perturbation far from the airfoil for an aeroacoustic analysis: when the vortex
hits the LE an acoustic (pressure) wave departs from that point. For this type of
study, a much more resolved mesh is required to prevent the over-dissipation of
the acoustic wave and it goes beyond the scope of the present work. However, also
with the grid used, the pressure wave has been detected and it is show in fig. 4.9 by
means of pressure perturbation. It is worth noting that for t = 1.2 (fig. 4.9b) the
acoustic wave influences the pressure distribution on the pressure-side (see again
t = 1.2 curve of fig. 4.6): as explained previously, the pressure is increased for
ξ > 0.5 because of the pressure wave, contributing to the lowering of the moment
coefficient. A quantitative analysis of the sound pressure level has not been done.

4.3 Conclusions and Future Perspectives
The parallel, viscous BVI has been studied using the dynamic P-adaptive

approach in a DG framework. The results are compared with a reference static
P-adaptive simulation validated in chapter 3 to show the effects of the interaction
on the aerodynamic forces. Lift, drag and moment coefficients are all affected by
this interaction. It has been noticed that the transient of the lift and moment
coefficients is longer than the one of the drag which rapidly comes back to the
statistically steady-state condition. This has been explained with the less intense
vortex shedding phenomenon in the recirculating region which persists over time
after the BVI, affecting the lift and moment coefficients.

In future works it could be interesting to investigate different vortex positions
(i.e. inviscid interaction), rotation directions and angles of attack of the airfoil to
find the most critical condition. Furthermore, using a more refined mesh and a
wider domain, an aeroacoustic analysis could be done.
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(a) t = 0.5 (b) t = 0.5

(c) t = 1.0 (d) t = 1.0

(e) t = 1.1 (f) t = 1.1

(g) t = 1.2 (h) t = 1.2

(i) t = 1.6 (j) t = 1.6

Figure 4.7: Continues in fig. 4.8, see there for the caption.
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(a) t = 2 (b) t = 2

Figure 4.8: Left: 2D view (z = 0.2) of the vorticity magnitude in logarithmic scale.
Right: instantaneous pressure iso-surfaces (p = 16.89, 16.90, 16.91, 16, 92) coloured with
the velocity magnitude.
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(a) t = 0.9

(b) t = 1.2

(c) t = 1.4

(d) t = 1.6

Figure 4.9: Slice for z = 0.2 of pressure perturbation p− pr at different time instants.
Note in (b) that the acoustic wave influences the pressure (Cp) distribution on the
pressure-side.
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